xref: /linux/mm/mempool.c (revision 1a0e2cd9c4243871e534f02459ecca0ddd6ff6d5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/mempool.c
4  *
5  *  memory buffer pool support. Such pools are mostly used
6  *  for guaranteed, deadlock-free memory allocations during
7  *  extreme VM load.
8  *
9  *  started by Ingo Molnar, Copyright (C) 2001
10  *  debugging by David Rientjes, Copyright (C) 2015
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/writeback.h>
21 #include "slab.h"
22 
23 #ifdef CONFIG_SLUB_DEBUG_ON
24 static void poison_error(mempool_t *pool, void *element, size_t size,
25 			 size_t byte)
26 {
27 	const int nr = pool->curr_nr;
28 	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29 	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30 	int i;
31 
32 	pr_err("BUG: mempool element poison mismatch\n");
33 	pr_err("Mempool %p size %zu\n", pool, size);
34 	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35 	for (i = start; i < end; i++)
36 		pr_cont("%x ", *(u8 *)(element + i));
37 	pr_cont("%s\n", end < size ? "..." : "");
38 	dump_stack();
39 }
40 
41 static void __check_element(mempool_t *pool, void *element, size_t size)
42 {
43 	u8 *obj = element;
44 	size_t i;
45 
46 	for (i = 0; i < size; i++) {
47 		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48 
49 		if (obj[i] != exp) {
50 			poison_error(pool, element, size, i);
51 			return;
52 		}
53 	}
54 	memset(obj, POISON_INUSE, size);
55 }
56 
57 static void check_element(mempool_t *pool, void *element)
58 {
59 	/* Skip checking: KASAN might save its metadata in the element. */
60 	if (kasan_enabled())
61 		return;
62 
63 	/* Mempools backed by slab allocator */
64 	if (pool->free == mempool_kfree) {
65 		__check_element(pool, element, (size_t)pool->pool_data);
66 	} else if (pool->free == mempool_free_slab) {
67 		__check_element(pool, element, kmem_cache_size(pool->pool_data));
68 	} else if (pool->free == mempool_free_pages) {
69 		/* Mempools backed by page allocator */
70 		int order = (int)(long)pool->pool_data;
71 		void *addr = kmap_local_page((struct page *)element);
72 
73 		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
74 		kunmap_local(addr);
75 	}
76 }
77 
78 static void __poison_element(void *element, size_t size)
79 {
80 	u8 *obj = element;
81 
82 	memset(obj, POISON_FREE, size - 1);
83 	obj[size - 1] = POISON_END;
84 }
85 
86 static void poison_element(mempool_t *pool, void *element)
87 {
88 	/* Skip poisoning: KASAN might save its metadata in the element. */
89 	if (kasan_enabled())
90 		return;
91 
92 	/* Mempools backed by slab allocator */
93 	if (pool->alloc == mempool_kmalloc) {
94 		__poison_element(element, (size_t)pool->pool_data);
95 	} else if (pool->alloc == mempool_alloc_slab) {
96 		__poison_element(element, kmem_cache_size(pool->pool_data));
97 	} else if (pool->alloc == mempool_alloc_pages) {
98 		/* Mempools backed by page allocator */
99 		int order = (int)(long)pool->pool_data;
100 		void *addr = kmap_local_page((struct page *)element);
101 
102 		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
103 		kunmap_local(addr);
104 	}
105 }
106 #else /* CONFIG_SLUB_DEBUG_ON */
107 static inline void check_element(mempool_t *pool, void *element)
108 {
109 }
110 static inline void poison_element(mempool_t *pool, void *element)
111 {
112 }
113 #endif /* CONFIG_SLUB_DEBUG_ON */
114 
115 static __always_inline bool kasan_poison_element(mempool_t *pool, void *element)
116 {
117 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
118 		return kasan_mempool_poison_object(element);
119 	else if (pool->alloc == mempool_alloc_pages)
120 		return kasan_mempool_poison_pages(element,
121 						(unsigned long)pool->pool_data);
122 	return true;
123 }
124 
125 static void kasan_unpoison_element(mempool_t *pool, void *element)
126 {
127 	if (pool->alloc == mempool_kmalloc)
128 		kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
129 	else if (pool->alloc == mempool_alloc_slab)
130 		kasan_mempool_unpoison_object(element,
131 					      kmem_cache_size(pool->pool_data));
132 	else if (pool->alloc == mempool_alloc_pages)
133 		kasan_mempool_unpoison_pages(element,
134 					     (unsigned long)pool->pool_data);
135 }
136 
137 static __always_inline void add_element(mempool_t *pool, void *element)
138 {
139 	BUG_ON(pool->curr_nr >= pool->min_nr);
140 	poison_element(pool, element);
141 	if (kasan_poison_element(pool, element))
142 		pool->elements[pool->curr_nr++] = element;
143 }
144 
145 static void *remove_element(mempool_t *pool)
146 {
147 	void *element = pool->elements[--pool->curr_nr];
148 
149 	BUG_ON(pool->curr_nr < 0);
150 	kasan_unpoison_element(pool, element);
151 	check_element(pool, element);
152 	return element;
153 }
154 
155 /**
156  * mempool_exit - exit a mempool initialized with mempool_init()
157  * @pool:      pointer to the memory pool which was initialized with
158  *             mempool_init().
159  *
160  * Free all reserved elements in @pool and @pool itself.  This function
161  * only sleeps if the free_fn() function sleeps.
162  *
163  * May be called on a zeroed but uninitialized mempool (i.e. allocated with
164  * kzalloc()).
165  */
166 void mempool_exit(mempool_t *pool)
167 {
168 	while (pool->curr_nr) {
169 		void *element = remove_element(pool);
170 		pool->free(element, pool->pool_data);
171 	}
172 	kfree(pool->elements);
173 	pool->elements = NULL;
174 }
175 EXPORT_SYMBOL(mempool_exit);
176 
177 /**
178  * mempool_destroy - deallocate a memory pool
179  * @pool:      pointer to the memory pool which was allocated via
180  *             mempool_create().
181  *
182  * Free all reserved elements in @pool and @pool itself.  This function
183  * only sleeps if the free_fn() function sleeps.
184  */
185 void mempool_destroy(mempool_t *pool)
186 {
187 	if (unlikely(!pool))
188 		return;
189 
190 	mempool_exit(pool);
191 	kfree(pool);
192 }
193 EXPORT_SYMBOL(mempool_destroy);
194 
195 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
196 		      mempool_free_t *free_fn, void *pool_data,
197 		      gfp_t gfp_mask, int node_id)
198 {
199 	spin_lock_init(&pool->lock);
200 	pool->min_nr	= min_nr;
201 	pool->pool_data = pool_data;
202 	pool->alloc	= alloc_fn;
203 	pool->free	= free_fn;
204 	init_waitqueue_head(&pool->wait);
205 
206 	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
207 					    gfp_mask, node_id);
208 	if (!pool->elements)
209 		return -ENOMEM;
210 
211 	/*
212 	 * First pre-allocate the guaranteed number of buffers.
213 	 */
214 	while (pool->curr_nr < pool->min_nr) {
215 		void *element;
216 
217 		element = pool->alloc(gfp_mask, pool->pool_data);
218 		if (unlikely(!element)) {
219 			mempool_exit(pool);
220 			return -ENOMEM;
221 		}
222 		add_element(pool, element);
223 	}
224 
225 	return 0;
226 }
227 EXPORT_SYMBOL(mempool_init_node);
228 
229 /**
230  * mempool_init - initialize a memory pool
231  * @pool:      pointer to the memory pool that should be initialized
232  * @min_nr:    the minimum number of elements guaranteed to be
233  *             allocated for this pool.
234  * @alloc_fn:  user-defined element-allocation function.
235  * @free_fn:   user-defined element-freeing function.
236  * @pool_data: optional private data available to the user-defined functions.
237  *
238  * Like mempool_create(), but initializes the pool in (i.e. embedded in another
239  * structure).
240  *
241  * Return: %0 on success, negative error code otherwise.
242  */
243 int mempool_init_noprof(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
244 			mempool_free_t *free_fn, void *pool_data)
245 {
246 	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
247 				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
248 
249 }
250 EXPORT_SYMBOL(mempool_init_noprof);
251 
252 /**
253  * mempool_create_node - create a memory pool
254  * @min_nr:    the minimum number of elements guaranteed to be
255  *             allocated for this pool.
256  * @alloc_fn:  user-defined element-allocation function.
257  * @free_fn:   user-defined element-freeing function.
258  * @pool_data: optional private data available to the user-defined functions.
259  * @gfp_mask:  memory allocation flags
260  * @node_id:   numa node to allocate on
261  *
262  * this function creates and allocates a guaranteed size, preallocated
263  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
264  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
265  * functions might sleep - as long as the mempool_alloc() function is not called
266  * from IRQ contexts.
267  *
268  * Return: pointer to the created memory pool object or %NULL on error.
269  */
270 mempool_t *mempool_create_node_noprof(int min_nr, mempool_alloc_t *alloc_fn,
271 				      mempool_free_t *free_fn, void *pool_data,
272 				      gfp_t gfp_mask, int node_id)
273 {
274 	mempool_t *pool;
275 
276 	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
277 	if (!pool)
278 		return NULL;
279 
280 	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
281 			      gfp_mask, node_id)) {
282 		kfree(pool);
283 		return NULL;
284 	}
285 
286 	return pool;
287 }
288 EXPORT_SYMBOL(mempool_create_node_noprof);
289 
290 /**
291  * mempool_resize - resize an existing memory pool
292  * @pool:       pointer to the memory pool which was allocated via
293  *              mempool_create().
294  * @new_min_nr: the new minimum number of elements guaranteed to be
295  *              allocated for this pool.
296  *
297  * This function shrinks/grows the pool. In the case of growing,
298  * it cannot be guaranteed that the pool will be grown to the new
299  * size immediately, but new mempool_free() calls will refill it.
300  * This function may sleep.
301  *
302  * Note, the caller must guarantee that no mempool_destroy is called
303  * while this function is running. mempool_alloc() & mempool_free()
304  * might be called (eg. from IRQ contexts) while this function executes.
305  *
306  * Return: %0 on success, negative error code otherwise.
307  */
308 int mempool_resize(mempool_t *pool, int new_min_nr)
309 {
310 	void *element;
311 	void **new_elements;
312 	unsigned long flags;
313 
314 	BUG_ON(new_min_nr <= 0);
315 	might_sleep();
316 
317 	spin_lock_irqsave(&pool->lock, flags);
318 	if (new_min_nr <= pool->min_nr) {
319 		while (new_min_nr < pool->curr_nr) {
320 			element = remove_element(pool);
321 			spin_unlock_irqrestore(&pool->lock, flags);
322 			pool->free(element, pool->pool_data);
323 			spin_lock_irqsave(&pool->lock, flags);
324 		}
325 		pool->min_nr = new_min_nr;
326 		goto out_unlock;
327 	}
328 	spin_unlock_irqrestore(&pool->lock, flags);
329 
330 	/* Grow the pool */
331 	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
332 				     GFP_KERNEL);
333 	if (!new_elements)
334 		return -ENOMEM;
335 
336 	spin_lock_irqsave(&pool->lock, flags);
337 	if (unlikely(new_min_nr <= pool->min_nr)) {
338 		/* Raced, other resize will do our work */
339 		spin_unlock_irqrestore(&pool->lock, flags);
340 		kfree(new_elements);
341 		goto out;
342 	}
343 	memcpy(new_elements, pool->elements,
344 			pool->curr_nr * sizeof(*new_elements));
345 	kfree(pool->elements);
346 	pool->elements = new_elements;
347 	pool->min_nr = new_min_nr;
348 
349 	while (pool->curr_nr < pool->min_nr) {
350 		spin_unlock_irqrestore(&pool->lock, flags);
351 		element = pool->alloc(GFP_KERNEL, pool->pool_data);
352 		if (!element)
353 			goto out;
354 		spin_lock_irqsave(&pool->lock, flags);
355 		if (pool->curr_nr < pool->min_nr) {
356 			add_element(pool, element);
357 		} else {
358 			spin_unlock_irqrestore(&pool->lock, flags);
359 			pool->free(element, pool->pool_data);	/* Raced */
360 			goto out;
361 		}
362 	}
363 out_unlock:
364 	spin_unlock_irqrestore(&pool->lock, flags);
365 out:
366 	return 0;
367 }
368 EXPORT_SYMBOL(mempool_resize);
369 
370 /**
371  * mempool_alloc - allocate an element from a specific memory pool
372  * @pool:      pointer to the memory pool which was allocated via
373  *             mempool_create().
374  * @gfp_mask:  the usual allocation bitmask.
375  *
376  * this function only sleeps if the alloc_fn() function sleeps or
377  * returns NULL. Note that due to preallocation, this function
378  * *never* fails when called from process contexts. (it might
379  * fail if called from an IRQ context.)
380  * Note: using __GFP_ZERO is not supported.
381  *
382  * Return: pointer to the allocated element or %NULL on error.
383  */
384 void *mempool_alloc_noprof(mempool_t *pool, gfp_t gfp_mask)
385 {
386 	void *element;
387 	unsigned long flags;
388 	wait_queue_entry_t wait;
389 	gfp_t gfp_temp;
390 
391 	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
392 	might_alloc(gfp_mask);
393 
394 	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
395 	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
396 	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
397 
398 	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
399 
400 repeat_alloc:
401 
402 	element = pool->alloc(gfp_temp, pool->pool_data);
403 	if (likely(element != NULL))
404 		return element;
405 
406 	spin_lock_irqsave(&pool->lock, flags);
407 	if (likely(pool->curr_nr)) {
408 		element = remove_element(pool);
409 		spin_unlock_irqrestore(&pool->lock, flags);
410 		/* paired with rmb in mempool_free(), read comment there */
411 		smp_wmb();
412 		/*
413 		 * Update the allocation stack trace as this is more useful
414 		 * for debugging.
415 		 */
416 		kmemleak_update_trace(element);
417 		return element;
418 	}
419 
420 	/*
421 	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
422 	 * alloc failed with that and @pool was empty, retry immediately.
423 	 */
424 	if (gfp_temp != gfp_mask) {
425 		spin_unlock_irqrestore(&pool->lock, flags);
426 		gfp_temp = gfp_mask;
427 		goto repeat_alloc;
428 	}
429 
430 	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
431 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
432 		spin_unlock_irqrestore(&pool->lock, flags);
433 		return NULL;
434 	}
435 
436 	/* Let's wait for someone else to return an element to @pool */
437 	init_wait(&wait);
438 	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
439 
440 	spin_unlock_irqrestore(&pool->lock, flags);
441 
442 	/*
443 	 * FIXME: this should be io_schedule().  The timeout is there as a
444 	 * workaround for some DM problems in 2.6.18.
445 	 */
446 	io_schedule_timeout(5*HZ);
447 
448 	finish_wait(&pool->wait, &wait);
449 	goto repeat_alloc;
450 }
451 EXPORT_SYMBOL(mempool_alloc_noprof);
452 
453 /**
454  * mempool_alloc_preallocated - allocate an element from preallocated elements
455  *                              belonging to a specific memory pool
456  * @pool:      pointer to the memory pool which was allocated via
457  *             mempool_create().
458  *
459  * This function is similar to mempool_alloc, but it only attempts allocating
460  * an element from the preallocated elements. It does not sleep and immediately
461  * returns if no preallocated elements are available.
462  *
463  * Return: pointer to the allocated element or %NULL if no elements are
464  * available.
465  */
466 void *mempool_alloc_preallocated(mempool_t *pool)
467 {
468 	void *element;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&pool->lock, flags);
472 	if (likely(pool->curr_nr)) {
473 		element = remove_element(pool);
474 		spin_unlock_irqrestore(&pool->lock, flags);
475 		/* paired with rmb in mempool_free(), read comment there */
476 		smp_wmb();
477 		/*
478 		 * Update the allocation stack trace as this is more useful
479 		 * for debugging.
480 		 */
481 		kmemleak_update_trace(element);
482 		return element;
483 	}
484 	spin_unlock_irqrestore(&pool->lock, flags);
485 
486 	return NULL;
487 }
488 EXPORT_SYMBOL(mempool_alloc_preallocated);
489 
490 /**
491  * mempool_free - return an element to the pool.
492  * @element:   pool element pointer.
493  * @pool:      pointer to the memory pool which was allocated via
494  *             mempool_create().
495  *
496  * this function only sleeps if the free_fn() function sleeps.
497  */
498 void mempool_free(void *element, mempool_t *pool)
499 {
500 	unsigned long flags;
501 
502 	if (unlikely(element == NULL))
503 		return;
504 
505 	/*
506 	 * Paired with the wmb in mempool_alloc().  The preceding read is
507 	 * for @element and the following @pool->curr_nr.  This ensures
508 	 * that the visible value of @pool->curr_nr is from after the
509 	 * allocation of @element.  This is necessary for fringe cases
510 	 * where @element was passed to this task without going through
511 	 * barriers.
512 	 *
513 	 * For example, assume @p is %NULL at the beginning and one task
514 	 * performs "p = mempool_alloc(...);" while another task is doing
515 	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
516 	 * may end up using curr_nr value which is from before allocation
517 	 * of @p without the following rmb.
518 	 */
519 	smp_rmb();
520 
521 	/*
522 	 * For correctness, we need a test which is guaranteed to trigger
523 	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
524 	 * without locking achieves that and refilling as soon as possible
525 	 * is desirable.
526 	 *
527 	 * Because curr_nr visible here is always a value after the
528 	 * allocation of @element, any task which decremented curr_nr below
529 	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
530 	 * incremented to min_nr afterwards.  If curr_nr gets incremented
531 	 * to min_nr after the allocation of @element, the elements
532 	 * allocated after that are subject to the same guarantee.
533 	 *
534 	 * Waiters happen iff curr_nr is 0 and the above guarantee also
535 	 * ensures that there will be frees which return elements to the
536 	 * pool waking up the waiters.
537 	 */
538 	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
539 		spin_lock_irqsave(&pool->lock, flags);
540 		if (likely(pool->curr_nr < pool->min_nr)) {
541 			add_element(pool, element);
542 			spin_unlock_irqrestore(&pool->lock, flags);
543 			wake_up(&pool->wait);
544 			return;
545 		}
546 		spin_unlock_irqrestore(&pool->lock, flags);
547 	}
548 	pool->free(element, pool->pool_data);
549 }
550 EXPORT_SYMBOL(mempool_free);
551 
552 /*
553  * A commonly used alloc and free fn.
554  */
555 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
556 {
557 	struct kmem_cache *mem = pool_data;
558 	VM_BUG_ON(mem->ctor);
559 	return kmem_cache_alloc_noprof(mem, gfp_mask);
560 }
561 EXPORT_SYMBOL(mempool_alloc_slab);
562 
563 void mempool_free_slab(void *element, void *pool_data)
564 {
565 	struct kmem_cache *mem = pool_data;
566 	kmem_cache_free(mem, element);
567 }
568 EXPORT_SYMBOL(mempool_free_slab);
569 
570 /*
571  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
572  * specified by pool_data
573  */
574 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
575 {
576 	size_t size = (size_t)pool_data;
577 	return kmalloc_noprof(size, gfp_mask);
578 }
579 EXPORT_SYMBOL(mempool_kmalloc);
580 
581 void mempool_kfree(void *element, void *pool_data)
582 {
583 	kfree(element);
584 }
585 EXPORT_SYMBOL(mempool_kfree);
586 
587 void *mempool_kvmalloc(gfp_t gfp_mask, void *pool_data)
588 {
589 	size_t size = (size_t)pool_data;
590 	return kvmalloc(size, gfp_mask);
591 }
592 EXPORT_SYMBOL(mempool_kvmalloc);
593 
594 void mempool_kvfree(void *element, void *pool_data)
595 {
596 	kvfree(element);
597 }
598 EXPORT_SYMBOL(mempool_kvfree);
599 
600 /*
601  * A simple mempool-backed page allocator that allocates pages
602  * of the order specified by pool_data.
603  */
604 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
605 {
606 	int order = (int)(long)pool_data;
607 	return alloc_pages_noprof(gfp_mask, order);
608 }
609 EXPORT_SYMBOL(mempool_alloc_pages);
610 
611 void mempool_free_pages(void *element, void *pool_data)
612 {
613 	int order = (int)(long)pool_data;
614 	__free_pages(element, order);
615 }
616 EXPORT_SYMBOL(mempool_free_pages);
617