1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/mempool.c
4 *
5 * memory buffer pool support. Such pools are mostly used
6 * for guaranteed, deadlock-free memory allocations during
7 * extreme VM load.
8 *
9 * started by Ingo Molnar, Copyright (C) 2001
10 * debugging by David Rientjes, Copyright (C) 2015
11 */
12
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/writeback.h>
21 #include "slab.h"
22
23 #ifdef CONFIG_SLUB_DEBUG_ON
poison_error(mempool_t * pool,void * element,size_t size,size_t byte)24 static void poison_error(mempool_t *pool, void *element, size_t size,
25 size_t byte)
26 {
27 const int nr = pool->curr_nr;
28 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30 int i;
31
32 pr_err("BUG: mempool element poison mismatch\n");
33 pr_err("Mempool %p size %zu\n", pool, size);
34 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35 for (i = start; i < end; i++)
36 pr_cont("%x ", *(u8 *)(element + i));
37 pr_cont("%s\n", end < size ? "..." : "");
38 dump_stack();
39 }
40
__check_element(mempool_t * pool,void * element,size_t size)41 static void __check_element(mempool_t *pool, void *element, size_t size)
42 {
43 u8 *obj = element;
44 size_t i;
45
46 for (i = 0; i < size; i++) {
47 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48
49 if (obj[i] != exp) {
50 poison_error(pool, element, size, i);
51 return;
52 }
53 }
54 memset(obj, POISON_INUSE, size);
55 }
56
check_element(mempool_t * pool,void * element)57 static void check_element(mempool_t *pool, void *element)
58 {
59 /* Skip checking: KASAN might save its metadata in the element. */
60 if (kasan_enabled())
61 return;
62
63 /* Mempools backed by slab allocator */
64 if (pool->free == mempool_kfree) {
65 __check_element(pool, element, (size_t)pool->pool_data);
66 } else if (pool->free == mempool_free_slab) {
67 __check_element(pool, element, kmem_cache_size(pool->pool_data));
68 } else if (pool->free == mempool_free_pages) {
69 /* Mempools backed by page allocator */
70 int order = (int)(long)pool->pool_data;
71
72 #ifdef CONFIG_HIGHMEM
73 for (int i = 0; i < (1 << order); i++) {
74 struct page *page = (struct page *)element;
75 void *addr = kmap_local_page(page + i);
76
77 __check_element(pool, addr, PAGE_SIZE);
78 kunmap_local(addr);
79 }
80 #else
81 void *addr = page_address((struct page *)element);
82
83 __check_element(pool, addr, PAGE_SIZE << order);
84 #endif
85 }
86 }
87
__poison_element(void * element,size_t size)88 static void __poison_element(void *element, size_t size)
89 {
90 u8 *obj = element;
91
92 memset(obj, POISON_FREE, size - 1);
93 obj[size - 1] = POISON_END;
94 }
95
poison_element(mempool_t * pool,void * element)96 static void poison_element(mempool_t *pool, void *element)
97 {
98 /* Skip poisoning: KASAN might save its metadata in the element. */
99 if (kasan_enabled())
100 return;
101
102 /* Mempools backed by slab allocator */
103 if (pool->alloc == mempool_kmalloc) {
104 __poison_element(element, (size_t)pool->pool_data);
105 } else if (pool->alloc == mempool_alloc_slab) {
106 __poison_element(element, kmem_cache_size(pool->pool_data));
107 } else if (pool->alloc == mempool_alloc_pages) {
108 /* Mempools backed by page allocator */
109 int order = (int)(long)pool->pool_data;
110
111 #ifdef CONFIG_HIGHMEM
112 for (int i = 0; i < (1 << order); i++) {
113 struct page *page = (struct page *)element;
114 void *addr = kmap_local_page(page + i);
115
116 __poison_element(addr, PAGE_SIZE);
117 kunmap_local(addr);
118 }
119 #else
120 void *addr = page_address((struct page *)element);
121
122 __poison_element(addr, PAGE_SIZE << order);
123 #endif
124 }
125 }
126 #else /* CONFIG_SLUB_DEBUG_ON */
check_element(mempool_t * pool,void * element)127 static inline void check_element(mempool_t *pool, void *element)
128 {
129 }
poison_element(mempool_t * pool,void * element)130 static inline void poison_element(mempool_t *pool, void *element)
131 {
132 }
133 #endif /* CONFIG_SLUB_DEBUG_ON */
134
kasan_poison_element(mempool_t * pool,void * element)135 static __always_inline bool kasan_poison_element(mempool_t *pool, void *element)
136 {
137 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
138 return kasan_mempool_poison_object(element);
139 else if (pool->alloc == mempool_alloc_pages)
140 return kasan_mempool_poison_pages(element,
141 (unsigned long)pool->pool_data);
142 return true;
143 }
144
kasan_unpoison_element(mempool_t * pool,void * element)145 static void kasan_unpoison_element(mempool_t *pool, void *element)
146 {
147 if (pool->alloc == mempool_kmalloc)
148 kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
149 else if (pool->alloc == mempool_alloc_slab)
150 kasan_mempool_unpoison_object(element,
151 kmem_cache_size(pool->pool_data));
152 else if (pool->alloc == mempool_alloc_pages)
153 kasan_mempool_unpoison_pages(element,
154 (unsigned long)pool->pool_data);
155 }
156
add_element(mempool_t * pool,void * element)157 static __always_inline void add_element(mempool_t *pool, void *element)
158 {
159 BUG_ON(pool->min_nr != 0 && pool->curr_nr >= pool->min_nr);
160 poison_element(pool, element);
161 if (kasan_poison_element(pool, element))
162 pool->elements[pool->curr_nr++] = element;
163 }
164
remove_element(mempool_t * pool)165 static void *remove_element(mempool_t *pool)
166 {
167 void *element = pool->elements[--pool->curr_nr];
168
169 BUG_ON(pool->curr_nr < 0);
170 kasan_unpoison_element(pool, element);
171 check_element(pool, element);
172 return element;
173 }
174
175 /**
176 * mempool_exit - exit a mempool initialized with mempool_init()
177 * @pool: pointer to the memory pool which was initialized with
178 * mempool_init().
179 *
180 * Free all reserved elements in @pool and @pool itself. This function
181 * only sleeps if the free_fn() function sleeps.
182 *
183 * May be called on a zeroed but uninitialized mempool (i.e. allocated with
184 * kzalloc()).
185 */
mempool_exit(mempool_t * pool)186 void mempool_exit(mempool_t *pool)
187 {
188 while (pool->curr_nr) {
189 void *element = remove_element(pool);
190 pool->free(element, pool->pool_data);
191 }
192 kfree(pool->elements);
193 pool->elements = NULL;
194 }
195 EXPORT_SYMBOL(mempool_exit);
196
197 /**
198 * mempool_destroy - deallocate a memory pool
199 * @pool: pointer to the memory pool which was allocated via
200 * mempool_create().
201 *
202 * Free all reserved elements in @pool and @pool itself. This function
203 * only sleeps if the free_fn() function sleeps.
204 */
mempool_destroy(mempool_t * pool)205 void mempool_destroy(mempool_t *pool)
206 {
207 if (unlikely(!pool))
208 return;
209
210 mempool_exit(pool);
211 kfree(pool);
212 }
213 EXPORT_SYMBOL(mempool_destroy);
214
mempool_init_node(mempool_t * pool,int min_nr,mempool_alloc_t * alloc_fn,mempool_free_t * free_fn,void * pool_data,gfp_t gfp_mask,int node_id)215 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
216 mempool_free_t *free_fn, void *pool_data,
217 gfp_t gfp_mask, int node_id)
218 {
219 spin_lock_init(&pool->lock);
220 pool->min_nr = min_nr;
221 pool->pool_data = pool_data;
222 pool->alloc = alloc_fn;
223 pool->free = free_fn;
224 init_waitqueue_head(&pool->wait);
225 /*
226 * max() used here to ensure storage for at least 1 element to support
227 * zero minimum pool
228 */
229 pool->elements = kmalloc_array_node(max(1, min_nr), sizeof(void *),
230 gfp_mask, node_id);
231 if (!pool->elements)
232 return -ENOMEM;
233
234 /*
235 * First pre-allocate the guaranteed number of buffers,
236 * also pre-allocate 1 element for zero minimum pool.
237 */
238 while (pool->curr_nr < max(1, pool->min_nr)) {
239 void *element;
240
241 element = pool->alloc(gfp_mask, pool->pool_data);
242 if (unlikely(!element)) {
243 mempool_exit(pool);
244 return -ENOMEM;
245 }
246 add_element(pool, element);
247 }
248
249 return 0;
250 }
251 EXPORT_SYMBOL(mempool_init_node);
252
253 /**
254 * mempool_init - initialize a memory pool
255 * @pool: pointer to the memory pool that should be initialized
256 * @min_nr: the minimum number of elements guaranteed to be
257 * allocated for this pool.
258 * @alloc_fn: user-defined element-allocation function.
259 * @free_fn: user-defined element-freeing function.
260 * @pool_data: optional private data available to the user-defined functions.
261 *
262 * Like mempool_create(), but initializes the pool in (i.e. embedded in another
263 * structure).
264 *
265 * Return: %0 on success, negative error code otherwise.
266 */
mempool_init_noprof(mempool_t * pool,int min_nr,mempool_alloc_t * alloc_fn,mempool_free_t * free_fn,void * pool_data)267 int mempool_init_noprof(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
268 mempool_free_t *free_fn, void *pool_data)
269 {
270 return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
271 pool_data, GFP_KERNEL, NUMA_NO_NODE);
272
273 }
274 EXPORT_SYMBOL(mempool_init_noprof);
275
276 /**
277 * mempool_create_node - create a memory pool
278 * @min_nr: the minimum number of elements guaranteed to be
279 * allocated for this pool.
280 * @alloc_fn: user-defined element-allocation function.
281 * @free_fn: user-defined element-freeing function.
282 * @pool_data: optional private data available to the user-defined functions.
283 * @gfp_mask: memory allocation flags
284 * @node_id: numa node to allocate on
285 *
286 * this function creates and allocates a guaranteed size, preallocated
287 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
288 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
289 * functions might sleep - as long as the mempool_alloc() function is not called
290 * from IRQ contexts.
291 *
292 * Return: pointer to the created memory pool object or %NULL on error.
293 */
mempool_create_node_noprof(int min_nr,mempool_alloc_t * alloc_fn,mempool_free_t * free_fn,void * pool_data,gfp_t gfp_mask,int node_id)294 mempool_t *mempool_create_node_noprof(int min_nr, mempool_alloc_t *alloc_fn,
295 mempool_free_t *free_fn, void *pool_data,
296 gfp_t gfp_mask, int node_id)
297 {
298 mempool_t *pool;
299
300 pool = kmalloc_node_noprof(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id);
301 if (!pool)
302 return NULL;
303
304 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
305 gfp_mask, node_id)) {
306 kfree(pool);
307 return NULL;
308 }
309
310 return pool;
311 }
312 EXPORT_SYMBOL(mempool_create_node_noprof);
313
314 /**
315 * mempool_resize - resize an existing memory pool
316 * @pool: pointer to the memory pool which was allocated via
317 * mempool_create().
318 * @new_min_nr: the new minimum number of elements guaranteed to be
319 * allocated for this pool.
320 *
321 * This function shrinks/grows the pool. In the case of growing,
322 * it cannot be guaranteed that the pool will be grown to the new
323 * size immediately, but new mempool_free() calls will refill it.
324 * This function may sleep.
325 *
326 * Note, the caller must guarantee that no mempool_destroy is called
327 * while this function is running. mempool_alloc() & mempool_free()
328 * might be called (eg. from IRQ contexts) while this function executes.
329 *
330 * Return: %0 on success, negative error code otherwise.
331 */
mempool_resize(mempool_t * pool,int new_min_nr)332 int mempool_resize(mempool_t *pool, int new_min_nr)
333 {
334 void *element;
335 void **new_elements;
336 unsigned long flags;
337
338 BUG_ON(new_min_nr <= 0);
339 might_sleep();
340
341 spin_lock_irqsave(&pool->lock, flags);
342 if (new_min_nr <= pool->min_nr) {
343 while (new_min_nr < pool->curr_nr) {
344 element = remove_element(pool);
345 spin_unlock_irqrestore(&pool->lock, flags);
346 pool->free(element, pool->pool_data);
347 spin_lock_irqsave(&pool->lock, flags);
348 }
349 pool->min_nr = new_min_nr;
350 goto out_unlock;
351 }
352 spin_unlock_irqrestore(&pool->lock, flags);
353
354 /* Grow the pool */
355 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
356 GFP_KERNEL);
357 if (!new_elements)
358 return -ENOMEM;
359
360 spin_lock_irqsave(&pool->lock, flags);
361 if (unlikely(new_min_nr <= pool->min_nr)) {
362 /* Raced, other resize will do our work */
363 spin_unlock_irqrestore(&pool->lock, flags);
364 kfree(new_elements);
365 goto out;
366 }
367 memcpy(new_elements, pool->elements,
368 pool->curr_nr * sizeof(*new_elements));
369 kfree(pool->elements);
370 pool->elements = new_elements;
371 pool->min_nr = new_min_nr;
372
373 while (pool->curr_nr < pool->min_nr) {
374 spin_unlock_irqrestore(&pool->lock, flags);
375 element = pool->alloc(GFP_KERNEL, pool->pool_data);
376 if (!element)
377 goto out;
378 spin_lock_irqsave(&pool->lock, flags);
379 if (pool->curr_nr < pool->min_nr) {
380 add_element(pool, element);
381 } else {
382 spin_unlock_irqrestore(&pool->lock, flags);
383 pool->free(element, pool->pool_data); /* Raced */
384 goto out;
385 }
386 }
387 out_unlock:
388 spin_unlock_irqrestore(&pool->lock, flags);
389 out:
390 return 0;
391 }
392 EXPORT_SYMBOL(mempool_resize);
393
394 /**
395 * mempool_alloc - allocate an element from a specific memory pool
396 * @pool: pointer to the memory pool which was allocated via
397 * mempool_create().
398 * @gfp_mask: the usual allocation bitmask.
399 *
400 * this function only sleeps if the alloc_fn() function sleeps or
401 * returns NULL. Note that due to preallocation, this function
402 * *never* fails when called from process contexts. (it might
403 * fail if called from an IRQ context.)
404 * Note: using __GFP_ZERO is not supported.
405 *
406 * Return: pointer to the allocated element or %NULL on error.
407 */
mempool_alloc_noprof(mempool_t * pool,gfp_t gfp_mask)408 void *mempool_alloc_noprof(mempool_t *pool, gfp_t gfp_mask)
409 {
410 void *element;
411 unsigned long flags;
412 wait_queue_entry_t wait;
413 gfp_t gfp_temp;
414
415 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
416 might_alloc(gfp_mask);
417
418 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
419 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
420 gfp_mask |= __GFP_NOWARN; /* failures are OK */
421
422 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
423
424 repeat_alloc:
425
426 element = pool->alloc(gfp_temp, pool->pool_data);
427 if (likely(element != NULL))
428 return element;
429
430 spin_lock_irqsave(&pool->lock, flags);
431 if (likely(pool->curr_nr)) {
432 element = remove_element(pool);
433 spin_unlock_irqrestore(&pool->lock, flags);
434 /* paired with rmb in mempool_free(), read comment there */
435 smp_wmb();
436 /*
437 * Update the allocation stack trace as this is more useful
438 * for debugging.
439 */
440 kmemleak_update_trace(element);
441 return element;
442 }
443
444 /*
445 * We use gfp mask w/o direct reclaim or IO for the first round. If
446 * alloc failed with that and @pool was empty, retry immediately.
447 */
448 if (gfp_temp != gfp_mask) {
449 spin_unlock_irqrestore(&pool->lock, flags);
450 gfp_temp = gfp_mask;
451 goto repeat_alloc;
452 }
453
454 /* We must not sleep if !__GFP_DIRECT_RECLAIM */
455 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
456 spin_unlock_irqrestore(&pool->lock, flags);
457 return NULL;
458 }
459
460 /* Let's wait for someone else to return an element to @pool */
461 init_wait(&wait);
462 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
463
464 spin_unlock_irqrestore(&pool->lock, flags);
465
466 /*
467 * FIXME: this should be io_schedule(). The timeout is there as a
468 * workaround for some DM problems in 2.6.18.
469 */
470 io_schedule_timeout(5*HZ);
471
472 finish_wait(&pool->wait, &wait);
473 goto repeat_alloc;
474 }
475 EXPORT_SYMBOL(mempool_alloc_noprof);
476
477 /**
478 * mempool_alloc_preallocated - allocate an element from preallocated elements
479 * belonging to a specific memory pool
480 * @pool: pointer to the memory pool which was allocated via
481 * mempool_create().
482 *
483 * This function is similar to mempool_alloc, but it only attempts allocating
484 * an element from the preallocated elements. It does not sleep and immediately
485 * returns if no preallocated elements are available.
486 *
487 * Return: pointer to the allocated element or %NULL if no elements are
488 * available.
489 */
mempool_alloc_preallocated(mempool_t * pool)490 void *mempool_alloc_preallocated(mempool_t *pool)
491 {
492 void *element;
493 unsigned long flags;
494
495 spin_lock_irqsave(&pool->lock, flags);
496 if (likely(pool->curr_nr)) {
497 element = remove_element(pool);
498 spin_unlock_irqrestore(&pool->lock, flags);
499 /* paired with rmb in mempool_free(), read comment there */
500 smp_wmb();
501 /*
502 * Update the allocation stack trace as this is more useful
503 * for debugging.
504 */
505 kmemleak_update_trace(element);
506 return element;
507 }
508 spin_unlock_irqrestore(&pool->lock, flags);
509
510 return NULL;
511 }
512 EXPORT_SYMBOL(mempool_alloc_preallocated);
513
514 /**
515 * mempool_free - return an element to the pool.
516 * @element: pool element pointer.
517 * @pool: pointer to the memory pool which was allocated via
518 * mempool_create().
519 *
520 * this function only sleeps if the free_fn() function sleeps.
521 */
mempool_free(void * element,mempool_t * pool)522 void mempool_free(void *element, mempool_t *pool)
523 {
524 unsigned long flags;
525
526 if (unlikely(element == NULL))
527 return;
528
529 /*
530 * Paired with the wmb in mempool_alloc(). The preceding read is
531 * for @element and the following @pool->curr_nr. This ensures
532 * that the visible value of @pool->curr_nr is from after the
533 * allocation of @element. This is necessary for fringe cases
534 * where @element was passed to this task without going through
535 * barriers.
536 *
537 * For example, assume @p is %NULL at the beginning and one task
538 * performs "p = mempool_alloc(...);" while another task is doing
539 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
540 * may end up using curr_nr value which is from before allocation
541 * of @p without the following rmb.
542 */
543 smp_rmb();
544
545 /*
546 * For correctness, we need a test which is guaranteed to trigger
547 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
548 * without locking achieves that and refilling as soon as possible
549 * is desirable.
550 *
551 * Because curr_nr visible here is always a value after the
552 * allocation of @element, any task which decremented curr_nr below
553 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
554 * incremented to min_nr afterwards. If curr_nr gets incremented
555 * to min_nr after the allocation of @element, the elements
556 * allocated after that are subject to the same guarantee.
557 *
558 * Waiters happen iff curr_nr is 0 and the above guarantee also
559 * ensures that there will be frees which return elements to the
560 * pool waking up the waiters.
561 */
562 if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
563 spin_lock_irqsave(&pool->lock, flags);
564 if (likely(pool->curr_nr < pool->min_nr)) {
565 add_element(pool, element);
566 spin_unlock_irqrestore(&pool->lock, flags);
567 if (wq_has_sleeper(&pool->wait))
568 wake_up(&pool->wait);
569 return;
570 }
571 spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*
575 * Handle the min_nr = 0 edge case:
576 *
577 * For zero-minimum pools, curr_nr < min_nr (0 < 0) never succeeds,
578 * so waiters sleeping on pool->wait would never be woken by the
579 * wake-up path of previous test. This explicit check ensures the
580 * allocation of element when both min_nr and curr_nr are 0, and
581 * any active waiters are properly awakened.
582 */
583 if (unlikely(pool->min_nr == 0 &&
584 READ_ONCE(pool->curr_nr) == 0)) {
585 spin_lock_irqsave(&pool->lock, flags);
586 if (likely(pool->curr_nr == 0)) {
587 add_element(pool, element);
588 spin_unlock_irqrestore(&pool->lock, flags);
589 if (wq_has_sleeper(&pool->wait))
590 wake_up(&pool->wait);
591 return;
592 }
593 spin_unlock_irqrestore(&pool->lock, flags);
594 }
595
596 pool->free(element, pool->pool_data);
597 }
598 EXPORT_SYMBOL(mempool_free);
599
600 /*
601 * A commonly used alloc and free fn.
602 */
mempool_alloc_slab(gfp_t gfp_mask,void * pool_data)603 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
604 {
605 struct kmem_cache *mem = pool_data;
606 VM_BUG_ON(mem->ctor);
607 return kmem_cache_alloc_noprof(mem, gfp_mask);
608 }
609 EXPORT_SYMBOL(mempool_alloc_slab);
610
mempool_free_slab(void * element,void * pool_data)611 void mempool_free_slab(void *element, void *pool_data)
612 {
613 struct kmem_cache *mem = pool_data;
614 kmem_cache_free(mem, element);
615 }
616 EXPORT_SYMBOL(mempool_free_slab);
617
618 /*
619 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
620 * specified by pool_data
621 */
mempool_kmalloc(gfp_t gfp_mask,void * pool_data)622 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
623 {
624 size_t size = (size_t)pool_data;
625 return kmalloc_noprof(size, gfp_mask);
626 }
627 EXPORT_SYMBOL(mempool_kmalloc);
628
mempool_kfree(void * element,void * pool_data)629 void mempool_kfree(void *element, void *pool_data)
630 {
631 kfree(element);
632 }
633 EXPORT_SYMBOL(mempool_kfree);
634
mempool_kvmalloc(gfp_t gfp_mask,void * pool_data)635 void *mempool_kvmalloc(gfp_t gfp_mask, void *pool_data)
636 {
637 size_t size = (size_t)pool_data;
638 return kvmalloc(size, gfp_mask);
639 }
640 EXPORT_SYMBOL(mempool_kvmalloc);
641
mempool_kvfree(void * element,void * pool_data)642 void mempool_kvfree(void *element, void *pool_data)
643 {
644 kvfree(element);
645 }
646 EXPORT_SYMBOL(mempool_kvfree);
647
648 /*
649 * A simple mempool-backed page allocator that allocates pages
650 * of the order specified by pool_data.
651 */
mempool_alloc_pages(gfp_t gfp_mask,void * pool_data)652 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
653 {
654 int order = (int)(long)pool_data;
655 return alloc_pages_noprof(gfp_mask, order);
656 }
657 EXPORT_SYMBOL(mempool_alloc_pages);
658
mempool_free_pages(void * element,void * pool_data)659 void mempool_free_pages(void *element, void *pool_data)
660 {
661 int order = (int)(long)pool_data;
662 __free_pages(element, order);
663 }
664 EXPORT_SYMBOL(mempool_free_pages);
665