xref: /linux/mm/mempolicy.c (revision fde668244d1d8d490b5b9daf53fe4f92a6751773)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte, *mapped_pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(mapped_pte, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	ret = mpol_set_nodemask(new, nodes, scratch);
879 	if (ret) {
880 		mpol_put(new);
881 		goto out;
882 	}
883 	task_lock(current);
884 	old = current->mempolicy;
885 	current->mempolicy = new;
886 	if (new && new->mode == MPOL_INTERLEAVE)
887 		current->il_prev = MAX_NUMNODES-1;
888 	task_unlock(current);
889 	mpol_put(old);
890 	ret = 0;
891 out:
892 	NODEMASK_SCRATCH_FREE(scratch);
893 	return ret;
894 }
895 
896 /*
897  * Return nodemask for policy for get_mempolicy() query
898  *
899  * Called with task's alloc_lock held
900  */
901 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
902 {
903 	nodes_clear(*nodes);
904 	if (p == &default_policy)
905 		return;
906 
907 	switch (p->mode) {
908 	case MPOL_BIND:
909 	case MPOL_INTERLEAVE:
910 		*nodes = p->v.nodes;
911 		break;
912 	case MPOL_PREFERRED:
913 		if (!(p->flags & MPOL_F_LOCAL))
914 			node_set(p->v.preferred_node, *nodes);
915 		/* else return empty node mask for local allocation */
916 		break;
917 	default:
918 		BUG();
919 	}
920 }
921 
922 static int lookup_node(struct mm_struct *mm, unsigned long addr)
923 {
924 	struct page *p = NULL;
925 	int err;
926 
927 	int locked = 1;
928 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
929 	if (err > 0) {
930 		err = page_to_nid(p);
931 		put_page(p);
932 	}
933 	if (locked)
934 		mmap_read_unlock(mm);
935 	return err;
936 }
937 
938 /* Retrieve NUMA policy */
939 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
940 			     unsigned long addr, unsigned long flags)
941 {
942 	int err;
943 	struct mm_struct *mm = current->mm;
944 	struct vm_area_struct *vma = NULL;
945 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
946 
947 	if (flags &
948 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
949 		return -EINVAL;
950 
951 	if (flags & MPOL_F_MEMS_ALLOWED) {
952 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
953 			return -EINVAL;
954 		*policy = 0;	/* just so it's initialized */
955 		task_lock(current);
956 		*nmask  = cpuset_current_mems_allowed;
957 		task_unlock(current);
958 		return 0;
959 	}
960 
961 	if (flags & MPOL_F_ADDR) {
962 		/*
963 		 * Do NOT fall back to task policy if the
964 		 * vma/shared policy at addr is NULL.  We
965 		 * want to return MPOL_DEFAULT in this case.
966 		 */
967 		mmap_read_lock(mm);
968 		vma = find_vma_intersection(mm, addr, addr+1);
969 		if (!vma) {
970 			mmap_read_unlock(mm);
971 			return -EFAULT;
972 		}
973 		if (vma->vm_ops && vma->vm_ops->get_policy)
974 			pol = vma->vm_ops->get_policy(vma, addr);
975 		else
976 			pol = vma->vm_policy;
977 	} else if (addr)
978 		return -EINVAL;
979 
980 	if (!pol)
981 		pol = &default_policy;	/* indicates default behavior */
982 
983 	if (flags & MPOL_F_NODE) {
984 		if (flags & MPOL_F_ADDR) {
985 			/*
986 			 * Take a refcount on the mpol, lookup_node()
987 			 * wil drop the mmap_lock, so after calling
988 			 * lookup_node() only "pol" remains valid, "vma"
989 			 * is stale.
990 			 */
991 			pol_refcount = pol;
992 			vma = NULL;
993 			mpol_get(pol);
994 			err = lookup_node(mm, addr);
995 			if (err < 0)
996 				goto out;
997 			*policy = err;
998 		} else if (pol == current->mempolicy &&
999 				pol->mode == MPOL_INTERLEAVE) {
1000 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1001 		} else {
1002 			err = -EINVAL;
1003 			goto out;
1004 		}
1005 	} else {
1006 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1007 						pol->mode;
1008 		/*
1009 		 * Internal mempolicy flags must be masked off before exposing
1010 		 * the policy to userspace.
1011 		 */
1012 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1013 	}
1014 
1015 	err = 0;
1016 	if (nmask) {
1017 		if (mpol_store_user_nodemask(pol)) {
1018 			*nmask = pol->w.user_nodemask;
1019 		} else {
1020 			task_lock(current);
1021 			get_policy_nodemask(pol, nmask);
1022 			task_unlock(current);
1023 		}
1024 	}
1025 
1026  out:
1027 	mpol_cond_put(pol);
1028 	if (vma)
1029 		mmap_read_unlock(mm);
1030 	if (pol_refcount)
1031 		mpol_put(pol_refcount);
1032 	return err;
1033 }
1034 
1035 #ifdef CONFIG_MIGRATION
1036 /*
1037  * page migration, thp tail pages can be passed.
1038  */
1039 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1040 				unsigned long flags)
1041 {
1042 	struct page *head = compound_head(page);
1043 	/*
1044 	 * Avoid migrating a page that is shared with others.
1045 	 */
1046 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1047 		if (!isolate_lru_page(head)) {
1048 			list_add_tail(&head->lru, pagelist);
1049 			mod_node_page_state(page_pgdat(head),
1050 				NR_ISOLATED_ANON + page_is_file_lru(head),
1051 				thp_nr_pages(head));
1052 		} else if (flags & MPOL_MF_STRICT) {
1053 			/*
1054 			 * Non-movable page may reach here.  And, there may be
1055 			 * temporary off LRU pages or non-LRU movable pages.
1056 			 * Treat them as unmovable pages since they can't be
1057 			 * isolated, so they can't be moved at the moment.  It
1058 			 * should return -EIO for this case too.
1059 			 */
1060 			return -EIO;
1061 		}
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Migrate pages from one node to a target node.
1069  * Returns error or the number of pages not migrated.
1070  */
1071 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1072 			   int flags)
1073 {
1074 	nodemask_t nmask;
1075 	LIST_HEAD(pagelist);
1076 	int err = 0;
1077 	struct migration_target_control mtc = {
1078 		.nid = dest,
1079 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1080 	};
1081 
1082 	nodes_clear(nmask);
1083 	node_set(source, nmask);
1084 
1085 	/*
1086 	 * This does not "check" the range but isolates all pages that
1087 	 * need migration.  Between passing in the full user address
1088 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1089 	 */
1090 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1091 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1092 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1093 
1094 	if (!list_empty(&pagelist)) {
1095 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1096 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1097 		if (err)
1098 			putback_movable_pages(&pagelist);
1099 	}
1100 
1101 	return err;
1102 }
1103 
1104 /*
1105  * Move pages between the two nodesets so as to preserve the physical
1106  * layout as much as possible.
1107  *
1108  * Returns the number of page that could not be moved.
1109  */
1110 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 		     const nodemask_t *to, int flags)
1112 {
1113 	int busy = 0;
1114 	int err;
1115 	nodemask_t tmp;
1116 
1117 	migrate_prep();
1118 
1119 	mmap_read_lock(mm);
1120 
1121 	/*
1122 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1123 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1124 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1125 	 * The pair of nodemasks 'to' and 'from' define the map.
1126 	 *
1127 	 * If no pair of bits is found that way, fallback to picking some
1128 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1129 	 * 'source' and 'dest' bits are the same, this represents a node
1130 	 * that will be migrating to itself, so no pages need move.
1131 	 *
1132 	 * If no bits are left in 'tmp', or if all remaining bits left
1133 	 * in 'tmp' correspond to the same bit in 'to', return false
1134 	 * (nothing left to migrate).
1135 	 *
1136 	 * This lets us pick a pair of nodes to migrate between, such that
1137 	 * if possible the dest node is not already occupied by some other
1138 	 * source node, minimizing the risk of overloading the memory on a
1139 	 * node that would happen if we migrated incoming memory to a node
1140 	 * before migrating outgoing memory source that same node.
1141 	 *
1142 	 * A single scan of tmp is sufficient.  As we go, we remember the
1143 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1144 	 * that not only moved, but what's better, moved to an empty slot
1145 	 * (d is not set in tmp), then we break out then, with that pair.
1146 	 * Otherwise when we finish scanning from_tmp, we at least have the
1147 	 * most recent <s, d> pair that moved.  If we get all the way through
1148 	 * the scan of tmp without finding any node that moved, much less
1149 	 * moved to an empty node, then there is nothing left worth migrating.
1150 	 */
1151 
1152 	tmp = *from;
1153 	while (!nodes_empty(tmp)) {
1154 		int s,d;
1155 		int source = NUMA_NO_NODE;
1156 		int dest = 0;
1157 
1158 		for_each_node_mask(s, tmp) {
1159 
1160 			/*
1161 			 * do_migrate_pages() tries to maintain the relative
1162 			 * node relationship of the pages established between
1163 			 * threads and memory areas.
1164                          *
1165 			 * However if the number of source nodes is not equal to
1166 			 * the number of destination nodes we can not preserve
1167 			 * this node relative relationship.  In that case, skip
1168 			 * copying memory from a node that is in the destination
1169 			 * mask.
1170 			 *
1171 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1172 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1173 			 */
1174 
1175 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1176 						(node_isset(s, *to)))
1177 				continue;
1178 
1179 			d = node_remap(s, *from, *to);
1180 			if (s == d)
1181 				continue;
1182 
1183 			source = s;	/* Node moved. Memorize */
1184 			dest = d;
1185 
1186 			/* dest not in remaining from nodes? */
1187 			if (!node_isset(dest, tmp))
1188 				break;
1189 		}
1190 		if (source == NUMA_NO_NODE)
1191 			break;
1192 
1193 		node_clear(source, tmp);
1194 		err = migrate_to_node(mm, source, dest, flags);
1195 		if (err > 0)
1196 			busy += err;
1197 		if (err < 0)
1198 			break;
1199 	}
1200 	mmap_read_unlock(mm);
1201 	if (err < 0)
1202 		return err;
1203 	return busy;
1204 
1205 }
1206 
1207 /*
1208  * Allocate a new page for page migration based on vma policy.
1209  * Start by assuming the page is mapped by the same vma as contains @start.
1210  * Search forward from there, if not.  N.B., this assumes that the
1211  * list of pages handed to migrate_pages()--which is how we get here--
1212  * is in virtual address order.
1213  */
1214 static struct page *new_page(struct page *page, unsigned long start)
1215 {
1216 	struct vm_area_struct *vma;
1217 	unsigned long address;
1218 
1219 	vma = find_vma(current->mm, start);
1220 	while (vma) {
1221 		address = page_address_in_vma(page, vma);
1222 		if (address != -EFAULT)
1223 			break;
1224 		vma = vma->vm_next;
1225 	}
1226 
1227 	if (PageHuge(page)) {
1228 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1229 				vma, address);
1230 	} else if (PageTransHuge(page)) {
1231 		struct page *thp;
1232 
1233 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1234 					 HPAGE_PMD_ORDER);
1235 		if (!thp)
1236 			return NULL;
1237 		prep_transhuge_page(thp);
1238 		return thp;
1239 	}
1240 	/*
1241 	 * if !vma, alloc_page_vma() will use task or system default policy
1242 	 */
1243 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1244 			vma, address);
1245 }
1246 #else
1247 
1248 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1249 				unsigned long flags)
1250 {
1251 	return -EIO;
1252 }
1253 
1254 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1255 		     const nodemask_t *to, int flags)
1256 {
1257 	return -ENOSYS;
1258 }
1259 
1260 static struct page *new_page(struct page *page, unsigned long start)
1261 {
1262 	return NULL;
1263 }
1264 #endif
1265 
1266 static long do_mbind(unsigned long start, unsigned long len,
1267 		     unsigned short mode, unsigned short mode_flags,
1268 		     nodemask_t *nmask, unsigned long flags)
1269 {
1270 	struct mm_struct *mm = current->mm;
1271 	struct mempolicy *new;
1272 	unsigned long end;
1273 	int err;
1274 	int ret;
1275 	LIST_HEAD(pagelist);
1276 
1277 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1278 		return -EINVAL;
1279 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1280 		return -EPERM;
1281 
1282 	if (start & ~PAGE_MASK)
1283 		return -EINVAL;
1284 
1285 	if (mode == MPOL_DEFAULT)
1286 		flags &= ~MPOL_MF_STRICT;
1287 
1288 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1289 	end = start + len;
1290 
1291 	if (end < start)
1292 		return -EINVAL;
1293 	if (end == start)
1294 		return 0;
1295 
1296 	new = mpol_new(mode, mode_flags, nmask);
1297 	if (IS_ERR(new))
1298 		return PTR_ERR(new);
1299 
1300 	if (flags & MPOL_MF_LAZY)
1301 		new->flags |= MPOL_F_MOF;
1302 
1303 	/*
1304 	 * If we are using the default policy then operation
1305 	 * on discontinuous address spaces is okay after all
1306 	 */
1307 	if (!new)
1308 		flags |= MPOL_MF_DISCONTIG_OK;
1309 
1310 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1311 		 start, start + len, mode, mode_flags,
1312 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1313 
1314 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1315 
1316 		migrate_prep();
1317 	}
1318 	{
1319 		NODEMASK_SCRATCH(scratch);
1320 		if (scratch) {
1321 			mmap_write_lock(mm);
1322 			err = mpol_set_nodemask(new, nmask, scratch);
1323 			if (err)
1324 				mmap_write_unlock(mm);
1325 		} else
1326 			err = -ENOMEM;
1327 		NODEMASK_SCRATCH_FREE(scratch);
1328 	}
1329 	if (err)
1330 		goto mpol_out;
1331 
1332 	ret = queue_pages_range(mm, start, end, nmask,
1333 			  flags | MPOL_MF_INVERT, &pagelist);
1334 
1335 	if (ret < 0) {
1336 		err = ret;
1337 		goto up_out;
1338 	}
1339 
1340 	err = mbind_range(mm, start, end, new);
1341 
1342 	if (!err) {
1343 		int nr_failed = 0;
1344 
1345 		if (!list_empty(&pagelist)) {
1346 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1347 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1348 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1349 			if (nr_failed)
1350 				putback_movable_pages(&pagelist);
1351 		}
1352 
1353 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1354 			err = -EIO;
1355 	} else {
1356 up_out:
1357 		if (!list_empty(&pagelist))
1358 			putback_movable_pages(&pagelist);
1359 	}
1360 
1361 	mmap_write_unlock(mm);
1362 mpol_out:
1363 	mpol_put(new);
1364 	return err;
1365 }
1366 
1367 /*
1368  * User space interface with variable sized bitmaps for nodelists.
1369  */
1370 
1371 /* Copy a node mask from user space. */
1372 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1373 		     unsigned long maxnode)
1374 {
1375 	unsigned long k;
1376 	unsigned long t;
1377 	unsigned long nlongs;
1378 	unsigned long endmask;
1379 
1380 	--maxnode;
1381 	nodes_clear(*nodes);
1382 	if (maxnode == 0 || !nmask)
1383 		return 0;
1384 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1385 		return -EINVAL;
1386 
1387 	nlongs = BITS_TO_LONGS(maxnode);
1388 	if ((maxnode % BITS_PER_LONG) == 0)
1389 		endmask = ~0UL;
1390 	else
1391 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1392 
1393 	/*
1394 	 * When the user specified more nodes than supported just check
1395 	 * if the non supported part is all zero.
1396 	 *
1397 	 * If maxnode have more longs than MAX_NUMNODES, check
1398 	 * the bits in that area first. And then go through to
1399 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1400 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1401 	 */
1402 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1403 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1404 			if (get_user(t, nmask + k))
1405 				return -EFAULT;
1406 			if (k == nlongs - 1) {
1407 				if (t & endmask)
1408 					return -EINVAL;
1409 			} else if (t)
1410 				return -EINVAL;
1411 		}
1412 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1413 		endmask = ~0UL;
1414 	}
1415 
1416 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1417 		unsigned long valid_mask = endmask;
1418 
1419 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1420 		if (get_user(t, nmask + nlongs - 1))
1421 			return -EFAULT;
1422 		if (t & valid_mask)
1423 			return -EINVAL;
1424 	}
1425 
1426 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1427 		return -EFAULT;
1428 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1429 	return 0;
1430 }
1431 
1432 /* Copy a kernel node mask to user space */
1433 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1434 			      nodemask_t *nodes)
1435 {
1436 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1437 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1438 
1439 	if (copy > nbytes) {
1440 		if (copy > PAGE_SIZE)
1441 			return -EINVAL;
1442 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1443 			return -EFAULT;
1444 		copy = nbytes;
1445 	}
1446 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447 }
1448 
1449 static long kernel_mbind(unsigned long start, unsigned long len,
1450 			 unsigned long mode, const unsigned long __user *nmask,
1451 			 unsigned long maxnode, unsigned int flags)
1452 {
1453 	nodemask_t nodes;
1454 	int err;
1455 	unsigned short mode_flags;
1456 
1457 	start = untagged_addr(start);
1458 	mode_flags = mode & MPOL_MODE_FLAGS;
1459 	mode &= ~MPOL_MODE_FLAGS;
1460 	if (mode >= MPOL_MAX)
1461 		return -EINVAL;
1462 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1463 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1464 		return -EINVAL;
1465 	err = get_nodes(&nodes, nmask, maxnode);
1466 	if (err)
1467 		return err;
1468 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1469 }
1470 
1471 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1472 		unsigned long, mode, const unsigned long __user *, nmask,
1473 		unsigned long, maxnode, unsigned int, flags)
1474 {
1475 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1476 }
1477 
1478 /* Set the process memory policy */
1479 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1480 				 unsigned long maxnode)
1481 {
1482 	int err;
1483 	nodemask_t nodes;
1484 	unsigned short flags;
1485 
1486 	flags = mode & MPOL_MODE_FLAGS;
1487 	mode &= ~MPOL_MODE_FLAGS;
1488 	if ((unsigned int)mode >= MPOL_MAX)
1489 		return -EINVAL;
1490 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1491 		return -EINVAL;
1492 	err = get_nodes(&nodes, nmask, maxnode);
1493 	if (err)
1494 		return err;
1495 	return do_set_mempolicy(mode, flags, &nodes);
1496 }
1497 
1498 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1499 		unsigned long, maxnode)
1500 {
1501 	return kernel_set_mempolicy(mode, nmask, maxnode);
1502 }
1503 
1504 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1505 				const unsigned long __user *old_nodes,
1506 				const unsigned long __user *new_nodes)
1507 {
1508 	struct mm_struct *mm = NULL;
1509 	struct task_struct *task;
1510 	nodemask_t task_nodes;
1511 	int err;
1512 	nodemask_t *old;
1513 	nodemask_t *new;
1514 	NODEMASK_SCRATCH(scratch);
1515 
1516 	if (!scratch)
1517 		return -ENOMEM;
1518 
1519 	old = &scratch->mask1;
1520 	new = &scratch->mask2;
1521 
1522 	err = get_nodes(old, old_nodes, maxnode);
1523 	if (err)
1524 		goto out;
1525 
1526 	err = get_nodes(new, new_nodes, maxnode);
1527 	if (err)
1528 		goto out;
1529 
1530 	/* Find the mm_struct */
1531 	rcu_read_lock();
1532 	task = pid ? find_task_by_vpid(pid) : current;
1533 	if (!task) {
1534 		rcu_read_unlock();
1535 		err = -ESRCH;
1536 		goto out;
1537 	}
1538 	get_task_struct(task);
1539 
1540 	err = -EINVAL;
1541 
1542 	/*
1543 	 * Check if this process has the right to modify the specified process.
1544 	 * Use the regular "ptrace_may_access()" checks.
1545 	 */
1546 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1547 		rcu_read_unlock();
1548 		err = -EPERM;
1549 		goto out_put;
1550 	}
1551 	rcu_read_unlock();
1552 
1553 	task_nodes = cpuset_mems_allowed(task);
1554 	/* Is the user allowed to access the target nodes? */
1555 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1556 		err = -EPERM;
1557 		goto out_put;
1558 	}
1559 
1560 	task_nodes = cpuset_mems_allowed(current);
1561 	nodes_and(*new, *new, task_nodes);
1562 	if (nodes_empty(*new))
1563 		goto out_put;
1564 
1565 	err = security_task_movememory(task);
1566 	if (err)
1567 		goto out_put;
1568 
1569 	mm = get_task_mm(task);
1570 	put_task_struct(task);
1571 
1572 	if (!mm) {
1573 		err = -EINVAL;
1574 		goto out;
1575 	}
1576 
1577 	err = do_migrate_pages(mm, old, new,
1578 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1579 
1580 	mmput(mm);
1581 out:
1582 	NODEMASK_SCRATCH_FREE(scratch);
1583 
1584 	return err;
1585 
1586 out_put:
1587 	put_task_struct(task);
1588 	goto out;
1589 
1590 }
1591 
1592 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1593 		const unsigned long __user *, old_nodes,
1594 		const unsigned long __user *, new_nodes)
1595 {
1596 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1597 }
1598 
1599 
1600 /* Retrieve NUMA policy */
1601 static int kernel_get_mempolicy(int __user *policy,
1602 				unsigned long __user *nmask,
1603 				unsigned long maxnode,
1604 				unsigned long addr,
1605 				unsigned long flags)
1606 {
1607 	int err;
1608 	int pval;
1609 	nodemask_t nodes;
1610 
1611 	if (nmask != NULL && maxnode < nr_node_ids)
1612 		return -EINVAL;
1613 
1614 	addr = untagged_addr(addr);
1615 
1616 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1617 
1618 	if (err)
1619 		return err;
1620 
1621 	if (policy && put_user(pval, policy))
1622 		return -EFAULT;
1623 
1624 	if (nmask)
1625 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1626 
1627 	return err;
1628 }
1629 
1630 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1631 		unsigned long __user *, nmask, unsigned long, maxnode,
1632 		unsigned long, addr, unsigned long, flags)
1633 {
1634 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1635 }
1636 
1637 #ifdef CONFIG_COMPAT
1638 
1639 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1640 		       compat_ulong_t __user *, nmask,
1641 		       compat_ulong_t, maxnode,
1642 		       compat_ulong_t, addr, compat_ulong_t, flags)
1643 {
1644 	long err;
1645 	unsigned long __user *nm = NULL;
1646 	unsigned long nr_bits, alloc_size;
1647 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1648 
1649 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1650 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1651 
1652 	if (nmask)
1653 		nm = compat_alloc_user_space(alloc_size);
1654 
1655 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1656 
1657 	if (!err && nmask) {
1658 		unsigned long copy_size;
1659 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1660 		err = copy_from_user(bm, nm, copy_size);
1661 		/* ensure entire bitmap is zeroed */
1662 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1663 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1664 	}
1665 
1666 	return err;
1667 }
1668 
1669 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1670 		       compat_ulong_t, maxnode)
1671 {
1672 	unsigned long __user *nm = NULL;
1673 	unsigned long nr_bits, alloc_size;
1674 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1675 
1676 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1677 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1678 
1679 	if (nmask) {
1680 		if (compat_get_bitmap(bm, nmask, nr_bits))
1681 			return -EFAULT;
1682 		nm = compat_alloc_user_space(alloc_size);
1683 		if (copy_to_user(nm, bm, alloc_size))
1684 			return -EFAULT;
1685 	}
1686 
1687 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1688 }
1689 
1690 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1691 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1692 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1693 {
1694 	unsigned long __user *nm = NULL;
1695 	unsigned long nr_bits, alloc_size;
1696 	nodemask_t bm;
1697 
1698 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1699 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1700 
1701 	if (nmask) {
1702 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1703 			return -EFAULT;
1704 		nm = compat_alloc_user_space(alloc_size);
1705 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1706 			return -EFAULT;
1707 	}
1708 
1709 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1710 }
1711 
1712 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1713 		       compat_ulong_t, maxnode,
1714 		       const compat_ulong_t __user *, old_nodes,
1715 		       const compat_ulong_t __user *, new_nodes)
1716 {
1717 	unsigned long __user *old = NULL;
1718 	unsigned long __user *new = NULL;
1719 	nodemask_t tmp_mask;
1720 	unsigned long nr_bits;
1721 	unsigned long size;
1722 
1723 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1724 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1725 	if (old_nodes) {
1726 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1727 			return -EFAULT;
1728 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1729 		if (new_nodes)
1730 			new = old + size / sizeof(unsigned long);
1731 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1732 			return -EFAULT;
1733 	}
1734 	if (new_nodes) {
1735 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1736 			return -EFAULT;
1737 		if (new == NULL)
1738 			new = compat_alloc_user_space(size);
1739 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1740 			return -EFAULT;
1741 	}
1742 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1743 }
1744 
1745 #endif /* CONFIG_COMPAT */
1746 
1747 bool vma_migratable(struct vm_area_struct *vma)
1748 {
1749 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1750 		return false;
1751 
1752 	/*
1753 	 * DAX device mappings require predictable access latency, so avoid
1754 	 * incurring periodic faults.
1755 	 */
1756 	if (vma_is_dax(vma))
1757 		return false;
1758 
1759 	if (is_vm_hugetlb_page(vma) &&
1760 		!hugepage_migration_supported(hstate_vma(vma)))
1761 		return false;
1762 
1763 	/*
1764 	 * Migration allocates pages in the highest zone. If we cannot
1765 	 * do so then migration (at least from node to node) is not
1766 	 * possible.
1767 	 */
1768 	if (vma->vm_file &&
1769 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1770 			< policy_zone)
1771 		return false;
1772 	return true;
1773 }
1774 
1775 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1776 						unsigned long addr)
1777 {
1778 	struct mempolicy *pol = NULL;
1779 
1780 	if (vma) {
1781 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1782 			pol = vma->vm_ops->get_policy(vma, addr);
1783 		} else if (vma->vm_policy) {
1784 			pol = vma->vm_policy;
1785 
1786 			/*
1787 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1788 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1789 			 * count on these policies which will be dropped by
1790 			 * mpol_cond_put() later
1791 			 */
1792 			if (mpol_needs_cond_ref(pol))
1793 				mpol_get(pol);
1794 		}
1795 	}
1796 
1797 	return pol;
1798 }
1799 
1800 /*
1801  * get_vma_policy(@vma, @addr)
1802  * @vma: virtual memory area whose policy is sought
1803  * @addr: address in @vma for shared policy lookup
1804  *
1805  * Returns effective policy for a VMA at specified address.
1806  * Falls back to current->mempolicy or system default policy, as necessary.
1807  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1808  * count--added by the get_policy() vm_op, as appropriate--to protect against
1809  * freeing by another task.  It is the caller's responsibility to free the
1810  * extra reference for shared policies.
1811  */
1812 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1813 						unsigned long addr)
1814 {
1815 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1816 
1817 	if (!pol)
1818 		pol = get_task_policy(current);
1819 
1820 	return pol;
1821 }
1822 
1823 bool vma_policy_mof(struct vm_area_struct *vma)
1824 {
1825 	struct mempolicy *pol;
1826 
1827 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1828 		bool ret = false;
1829 
1830 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1831 		if (pol && (pol->flags & MPOL_F_MOF))
1832 			ret = true;
1833 		mpol_cond_put(pol);
1834 
1835 		return ret;
1836 	}
1837 
1838 	pol = vma->vm_policy;
1839 	if (!pol)
1840 		pol = get_task_policy(current);
1841 
1842 	return pol->flags & MPOL_F_MOF;
1843 }
1844 
1845 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1846 {
1847 	enum zone_type dynamic_policy_zone = policy_zone;
1848 
1849 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1850 
1851 	/*
1852 	 * if policy->v.nodes has movable memory only,
1853 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1854 	 *
1855 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1856 	 * so if the following test faile, it implies
1857 	 * policy->v.nodes has movable memory only.
1858 	 */
1859 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1860 		dynamic_policy_zone = ZONE_MOVABLE;
1861 
1862 	return zone >= dynamic_policy_zone;
1863 }
1864 
1865 /*
1866  * Return a nodemask representing a mempolicy for filtering nodes for
1867  * page allocation
1868  */
1869 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1870 {
1871 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1872 	if (unlikely(policy->mode == MPOL_BIND) &&
1873 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1874 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1875 		return &policy->v.nodes;
1876 
1877 	return NULL;
1878 }
1879 
1880 /* Return the node id preferred by the given mempolicy, or the given id */
1881 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1882 {
1883 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1884 		nd = policy->v.preferred_node;
1885 	else {
1886 		/*
1887 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 		 * because we might easily break the expectation to stay on the
1889 		 * requested node and not break the policy.
1890 		 */
1891 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1892 	}
1893 
1894 	return nd;
1895 }
1896 
1897 /* Do dynamic interleaving for a process */
1898 static unsigned interleave_nodes(struct mempolicy *policy)
1899 {
1900 	unsigned next;
1901 	struct task_struct *me = current;
1902 
1903 	next = next_node_in(me->il_prev, policy->v.nodes);
1904 	if (next < MAX_NUMNODES)
1905 		me->il_prev = next;
1906 	return next;
1907 }
1908 
1909 /*
1910  * Depending on the memory policy provide a node from which to allocate the
1911  * next slab entry.
1912  */
1913 unsigned int mempolicy_slab_node(void)
1914 {
1915 	struct mempolicy *policy;
1916 	int node = numa_mem_id();
1917 
1918 	if (in_interrupt())
1919 		return node;
1920 
1921 	policy = current->mempolicy;
1922 	if (!policy || policy->flags & MPOL_F_LOCAL)
1923 		return node;
1924 
1925 	switch (policy->mode) {
1926 	case MPOL_PREFERRED:
1927 		/*
1928 		 * handled MPOL_F_LOCAL above
1929 		 */
1930 		return policy->v.preferred_node;
1931 
1932 	case MPOL_INTERLEAVE:
1933 		return interleave_nodes(policy);
1934 
1935 	case MPOL_BIND: {
1936 		struct zoneref *z;
1937 
1938 		/*
1939 		 * Follow bind policy behavior and start allocation at the
1940 		 * first node.
1941 		 */
1942 		struct zonelist *zonelist;
1943 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1944 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1945 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1946 							&policy->v.nodes);
1947 		return z->zone ? zone_to_nid(z->zone) : node;
1948 	}
1949 
1950 	default:
1951 		BUG();
1952 	}
1953 }
1954 
1955 /*
1956  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1957  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1958  * number of present nodes.
1959  */
1960 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961 {
1962 	unsigned nnodes = nodes_weight(pol->v.nodes);
1963 	unsigned target;
1964 	int i;
1965 	int nid;
1966 
1967 	if (!nnodes)
1968 		return numa_node_id();
1969 	target = (unsigned int)n % nnodes;
1970 	nid = first_node(pol->v.nodes);
1971 	for (i = 0; i < target; i++)
1972 		nid = next_node(nid, pol->v.nodes);
1973 	return nid;
1974 }
1975 
1976 /* Determine a node number for interleave */
1977 static inline unsigned interleave_nid(struct mempolicy *pol,
1978 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1979 {
1980 	if (vma) {
1981 		unsigned long off;
1982 
1983 		/*
1984 		 * for small pages, there is no difference between
1985 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 		 * for huge pages, since vm_pgoff is in units of small
1987 		 * pages, we need to shift off the always 0 bits to get
1988 		 * a useful offset.
1989 		 */
1990 		BUG_ON(shift < PAGE_SHIFT);
1991 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1992 		off += (addr - vma->vm_start) >> shift;
1993 		return offset_il_node(pol, off);
1994 	} else
1995 		return interleave_nodes(pol);
1996 }
1997 
1998 #ifdef CONFIG_HUGETLBFS
1999 /*
2000  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001  * @vma: virtual memory area whose policy is sought
2002  * @addr: address in @vma for shared policy lookup and interleave policy
2003  * @gfp_flags: for requested zone
2004  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2006  *
2007  * Returns a nid suitable for a huge page allocation and a pointer
2008  * to the struct mempolicy for conditional unref after allocation.
2009  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2010  * @nodemask for filtering the zonelist.
2011  *
2012  * Must be protected by read_mems_allowed_begin()
2013  */
2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2015 				struct mempolicy **mpol, nodemask_t **nodemask)
2016 {
2017 	int nid;
2018 
2019 	*mpol = get_vma_policy(vma, addr);
2020 	*nodemask = NULL;	/* assume !MPOL_BIND */
2021 
2022 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2023 		nid = interleave_nid(*mpol, vma, addr,
2024 					huge_page_shift(hstate_vma(vma)));
2025 	} else {
2026 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2027 		if ((*mpol)->mode == MPOL_BIND)
2028 			*nodemask = &(*mpol)->v.nodes;
2029 	}
2030 	return nid;
2031 }
2032 
2033 /*
2034  * init_nodemask_of_mempolicy
2035  *
2036  * If the current task's mempolicy is "default" [NULL], return 'false'
2037  * to indicate default policy.  Otherwise, extract the policy nodemask
2038  * for 'bind' or 'interleave' policy into the argument nodemask, or
2039  * initialize the argument nodemask to contain the single node for
2040  * 'preferred' or 'local' policy and return 'true' to indicate presence
2041  * of non-default mempolicy.
2042  *
2043  * We don't bother with reference counting the mempolicy [mpol_get/put]
2044  * because the current task is examining it's own mempolicy and a task's
2045  * mempolicy is only ever changed by the task itself.
2046  *
2047  * N.B., it is the caller's responsibility to free a returned nodemask.
2048  */
2049 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2050 {
2051 	struct mempolicy *mempolicy;
2052 	int nid;
2053 
2054 	if (!(mask && current->mempolicy))
2055 		return false;
2056 
2057 	task_lock(current);
2058 	mempolicy = current->mempolicy;
2059 	switch (mempolicy->mode) {
2060 	case MPOL_PREFERRED:
2061 		if (mempolicy->flags & MPOL_F_LOCAL)
2062 			nid = numa_node_id();
2063 		else
2064 			nid = mempolicy->v.preferred_node;
2065 		init_nodemask_of_node(mask, nid);
2066 		break;
2067 
2068 	case MPOL_BIND:
2069 	case MPOL_INTERLEAVE:
2070 		*mask =  mempolicy->v.nodes;
2071 		break;
2072 
2073 	default:
2074 		BUG();
2075 	}
2076 	task_unlock(current);
2077 
2078 	return true;
2079 }
2080 #endif
2081 
2082 /*
2083  * mempolicy_nodemask_intersects
2084  *
2085  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2086  * policy.  Otherwise, check for intersection between mask and the policy
2087  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2088  * policy, always return true since it may allocate elsewhere on fallback.
2089  *
2090  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2091  */
2092 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2093 					const nodemask_t *mask)
2094 {
2095 	struct mempolicy *mempolicy;
2096 	bool ret = true;
2097 
2098 	if (!mask)
2099 		return ret;
2100 	task_lock(tsk);
2101 	mempolicy = tsk->mempolicy;
2102 	if (!mempolicy)
2103 		goto out;
2104 
2105 	switch (mempolicy->mode) {
2106 	case MPOL_PREFERRED:
2107 		/*
2108 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2109 		 * allocate from, they may fallback to other nodes when oom.
2110 		 * Thus, it's possible for tsk to have allocated memory from
2111 		 * nodes in mask.
2112 		 */
2113 		break;
2114 	case MPOL_BIND:
2115 	case MPOL_INTERLEAVE:
2116 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2117 		break;
2118 	default:
2119 		BUG();
2120 	}
2121 out:
2122 	task_unlock(tsk);
2123 	return ret;
2124 }
2125 
2126 /* Allocate a page in interleaved policy.
2127    Own path because it needs to do special accounting. */
2128 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2129 					unsigned nid)
2130 {
2131 	struct page *page;
2132 
2133 	page = __alloc_pages(gfp, order, nid);
2134 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2135 	if (!static_branch_likely(&vm_numa_stat_key))
2136 		return page;
2137 	if (page && page_to_nid(page) == nid) {
2138 		preempt_disable();
2139 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2140 		preempt_enable();
2141 	}
2142 	return page;
2143 }
2144 
2145 /**
2146  * 	alloc_pages_vma	- Allocate a page for a VMA.
2147  *
2148  * 	@gfp:
2149  *      %GFP_USER    user allocation.
2150  *      %GFP_KERNEL  kernel allocations,
2151  *      %GFP_HIGHMEM highmem/user allocations,
2152  *      %GFP_FS      allocation should not call back into a file system.
2153  *      %GFP_ATOMIC  don't sleep.
2154  *
2155  *	@order:Order of the GFP allocation.
2156  * 	@vma:  Pointer to VMA or NULL if not available.
2157  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2158  *	@node: Which node to prefer for allocation (modulo policy).
2159  *	@hugepage: for hugepages try only the preferred node if possible
2160  *
2161  * 	This function allocates a page from the kernel page pool and applies
2162  *	a NUMA policy associated with the VMA or the current process.
2163  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2164  *	mm_struct of the VMA to prevent it from going away. Should be used for
2165  *	all allocations for pages that will be mapped into user space. Returns
2166  *	NULL when no page can be allocated.
2167  */
2168 struct page *
2169 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2170 		unsigned long addr, int node, bool hugepage)
2171 {
2172 	struct mempolicy *pol;
2173 	struct page *page;
2174 	int preferred_nid;
2175 	nodemask_t *nmask;
2176 
2177 	pol = get_vma_policy(vma, addr);
2178 
2179 	if (pol->mode == MPOL_INTERLEAVE) {
2180 		unsigned nid;
2181 
2182 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2183 		mpol_cond_put(pol);
2184 		page = alloc_page_interleave(gfp, order, nid);
2185 		goto out;
2186 	}
2187 
2188 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2189 		int hpage_node = node;
2190 
2191 		/*
2192 		 * For hugepage allocation and non-interleave policy which
2193 		 * allows the current node (or other explicitly preferred
2194 		 * node) we only try to allocate from the current/preferred
2195 		 * node and don't fall back to other nodes, as the cost of
2196 		 * remote accesses would likely offset THP benefits.
2197 		 *
2198 		 * If the policy is interleave, or does not allow the current
2199 		 * node in its nodemask, we allocate the standard way.
2200 		 */
2201 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2202 			hpage_node = pol->v.preferred_node;
2203 
2204 		nmask = policy_nodemask(gfp, pol);
2205 		if (!nmask || node_isset(hpage_node, *nmask)) {
2206 			mpol_cond_put(pol);
2207 			/*
2208 			 * First, try to allocate THP only on local node, but
2209 			 * don't reclaim unnecessarily, just compact.
2210 			 */
2211 			page = __alloc_pages_node(hpage_node,
2212 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2213 
2214 			/*
2215 			 * If hugepage allocations are configured to always
2216 			 * synchronous compact or the vma has been madvised
2217 			 * to prefer hugepage backing, retry allowing remote
2218 			 * memory with both reclaim and compact as well.
2219 			 */
2220 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2221 				page = __alloc_pages_node(hpage_node,
2222 								gfp, order);
2223 
2224 			goto out;
2225 		}
2226 	}
2227 
2228 	nmask = policy_nodemask(gfp, pol);
2229 	preferred_nid = policy_node(gfp, pol, node);
2230 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2231 	mpol_cond_put(pol);
2232 out:
2233 	return page;
2234 }
2235 EXPORT_SYMBOL(alloc_pages_vma);
2236 
2237 /**
2238  * 	alloc_pages_current - Allocate pages.
2239  *
2240  *	@gfp:
2241  *		%GFP_USER   user allocation,
2242  *      	%GFP_KERNEL kernel allocation,
2243  *      	%GFP_HIGHMEM highmem allocation,
2244  *      	%GFP_FS     don't call back into a file system.
2245  *      	%GFP_ATOMIC don't sleep.
2246  *	@order: Power of two of allocation size in pages. 0 is a single page.
2247  *
2248  *	Allocate a page from the kernel page pool.  When not in
2249  *	interrupt context and apply the current process NUMA policy.
2250  *	Returns NULL when no page can be allocated.
2251  */
2252 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2253 {
2254 	struct mempolicy *pol = &default_policy;
2255 	struct page *page;
2256 
2257 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 		pol = get_task_policy(current);
2259 
2260 	/*
2261 	 * No reference counting needed for current->mempolicy
2262 	 * nor system default_policy
2263 	 */
2264 	if (pol->mode == MPOL_INTERLEAVE)
2265 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266 	else
2267 		page = __alloc_pages_nodemask(gfp, order,
2268 				policy_node(gfp, pol, numa_node_id()),
2269 				policy_nodemask(gfp, pol));
2270 
2271 	return page;
2272 }
2273 EXPORT_SYMBOL(alloc_pages_current);
2274 
2275 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2276 {
2277 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2278 
2279 	if (IS_ERR(pol))
2280 		return PTR_ERR(pol);
2281 	dst->vm_policy = pol;
2282 	return 0;
2283 }
2284 
2285 /*
2286  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2287  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2288  * with the mems_allowed returned by cpuset_mems_allowed().  This
2289  * keeps mempolicies cpuset relative after its cpuset moves.  See
2290  * further kernel/cpuset.c update_nodemask().
2291  *
2292  * current's mempolicy may be rebinded by the other task(the task that changes
2293  * cpuset's mems), so we needn't do rebind work for current task.
2294  */
2295 
2296 /* Slow path of a mempolicy duplicate */
2297 struct mempolicy *__mpol_dup(struct mempolicy *old)
2298 {
2299 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2300 
2301 	if (!new)
2302 		return ERR_PTR(-ENOMEM);
2303 
2304 	/* task's mempolicy is protected by alloc_lock */
2305 	if (old == current->mempolicy) {
2306 		task_lock(current);
2307 		*new = *old;
2308 		task_unlock(current);
2309 	} else
2310 		*new = *old;
2311 
2312 	if (current_cpuset_is_being_rebound()) {
2313 		nodemask_t mems = cpuset_mems_allowed(current);
2314 		mpol_rebind_policy(new, &mems);
2315 	}
2316 	atomic_set(&new->refcnt, 1);
2317 	return new;
2318 }
2319 
2320 /* Slow path of a mempolicy comparison */
2321 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2322 {
2323 	if (!a || !b)
2324 		return false;
2325 	if (a->mode != b->mode)
2326 		return false;
2327 	if (a->flags != b->flags)
2328 		return false;
2329 	if (mpol_store_user_nodemask(a))
2330 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2331 			return false;
2332 
2333 	switch (a->mode) {
2334 	case MPOL_BIND:
2335 	case MPOL_INTERLEAVE:
2336 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2337 	case MPOL_PREFERRED:
2338 		/* a's ->flags is the same as b's */
2339 		if (a->flags & MPOL_F_LOCAL)
2340 			return true;
2341 		return a->v.preferred_node == b->v.preferred_node;
2342 	default:
2343 		BUG();
2344 		return false;
2345 	}
2346 }
2347 
2348 /*
2349  * Shared memory backing store policy support.
2350  *
2351  * Remember policies even when nobody has shared memory mapped.
2352  * The policies are kept in Red-Black tree linked from the inode.
2353  * They are protected by the sp->lock rwlock, which should be held
2354  * for any accesses to the tree.
2355  */
2356 
2357 /*
2358  * lookup first element intersecting start-end.  Caller holds sp->lock for
2359  * reading or for writing
2360  */
2361 static struct sp_node *
2362 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2363 {
2364 	struct rb_node *n = sp->root.rb_node;
2365 
2366 	while (n) {
2367 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2368 
2369 		if (start >= p->end)
2370 			n = n->rb_right;
2371 		else if (end <= p->start)
2372 			n = n->rb_left;
2373 		else
2374 			break;
2375 	}
2376 	if (!n)
2377 		return NULL;
2378 	for (;;) {
2379 		struct sp_node *w = NULL;
2380 		struct rb_node *prev = rb_prev(n);
2381 		if (!prev)
2382 			break;
2383 		w = rb_entry(prev, struct sp_node, nd);
2384 		if (w->end <= start)
2385 			break;
2386 		n = prev;
2387 	}
2388 	return rb_entry(n, struct sp_node, nd);
2389 }
2390 
2391 /*
2392  * Insert a new shared policy into the list.  Caller holds sp->lock for
2393  * writing.
2394  */
2395 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2396 {
2397 	struct rb_node **p = &sp->root.rb_node;
2398 	struct rb_node *parent = NULL;
2399 	struct sp_node *nd;
2400 
2401 	while (*p) {
2402 		parent = *p;
2403 		nd = rb_entry(parent, struct sp_node, nd);
2404 		if (new->start < nd->start)
2405 			p = &(*p)->rb_left;
2406 		else if (new->end > nd->end)
2407 			p = &(*p)->rb_right;
2408 		else
2409 			BUG();
2410 	}
2411 	rb_link_node(&new->nd, parent, p);
2412 	rb_insert_color(&new->nd, &sp->root);
2413 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2414 		 new->policy ? new->policy->mode : 0);
2415 }
2416 
2417 /* Find shared policy intersecting idx */
2418 struct mempolicy *
2419 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2420 {
2421 	struct mempolicy *pol = NULL;
2422 	struct sp_node *sn;
2423 
2424 	if (!sp->root.rb_node)
2425 		return NULL;
2426 	read_lock(&sp->lock);
2427 	sn = sp_lookup(sp, idx, idx+1);
2428 	if (sn) {
2429 		mpol_get(sn->policy);
2430 		pol = sn->policy;
2431 	}
2432 	read_unlock(&sp->lock);
2433 	return pol;
2434 }
2435 
2436 static void sp_free(struct sp_node *n)
2437 {
2438 	mpol_put(n->policy);
2439 	kmem_cache_free(sn_cache, n);
2440 }
2441 
2442 /**
2443  * mpol_misplaced - check whether current page node is valid in policy
2444  *
2445  * @page: page to be checked
2446  * @vma: vm area where page mapped
2447  * @addr: virtual address where page mapped
2448  *
2449  * Lookup current policy node id for vma,addr and "compare to" page's
2450  * node id.
2451  *
2452  * Returns:
2453  *	-1	- not misplaced, page is in the right node
2454  *	node	- node id where the page should be
2455  *
2456  * Policy determination "mimics" alloc_page_vma().
2457  * Called from fault path where we know the vma and faulting address.
2458  */
2459 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2460 {
2461 	struct mempolicy *pol;
2462 	struct zoneref *z;
2463 	int curnid = page_to_nid(page);
2464 	unsigned long pgoff;
2465 	int thiscpu = raw_smp_processor_id();
2466 	int thisnid = cpu_to_node(thiscpu);
2467 	int polnid = NUMA_NO_NODE;
2468 	int ret = -1;
2469 
2470 	pol = get_vma_policy(vma, addr);
2471 	if (!(pol->flags & MPOL_F_MOF))
2472 		goto out;
2473 
2474 	switch (pol->mode) {
2475 	case MPOL_INTERLEAVE:
2476 		pgoff = vma->vm_pgoff;
2477 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2478 		polnid = offset_il_node(pol, pgoff);
2479 		break;
2480 
2481 	case MPOL_PREFERRED:
2482 		if (pol->flags & MPOL_F_LOCAL)
2483 			polnid = numa_node_id();
2484 		else
2485 			polnid = pol->v.preferred_node;
2486 		break;
2487 
2488 	case MPOL_BIND:
2489 
2490 		/*
2491 		 * allows binding to multiple nodes.
2492 		 * use current page if in policy nodemask,
2493 		 * else select nearest allowed node, if any.
2494 		 * If no allowed nodes, use current [!misplaced].
2495 		 */
2496 		if (node_isset(curnid, pol->v.nodes))
2497 			goto out;
2498 		z = first_zones_zonelist(
2499 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2500 				gfp_zone(GFP_HIGHUSER),
2501 				&pol->v.nodes);
2502 		polnid = zone_to_nid(z->zone);
2503 		break;
2504 
2505 	default:
2506 		BUG();
2507 	}
2508 
2509 	/* Migrate the page towards the node whose CPU is referencing it */
2510 	if (pol->flags & MPOL_F_MORON) {
2511 		polnid = thisnid;
2512 
2513 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2514 			goto out;
2515 	}
2516 
2517 	if (curnid != polnid)
2518 		ret = polnid;
2519 out:
2520 	mpol_cond_put(pol);
2521 
2522 	return ret;
2523 }
2524 
2525 /*
2526  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2527  * dropped after task->mempolicy is set to NULL so that any allocation done as
2528  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2529  * policy.
2530  */
2531 void mpol_put_task_policy(struct task_struct *task)
2532 {
2533 	struct mempolicy *pol;
2534 
2535 	task_lock(task);
2536 	pol = task->mempolicy;
2537 	task->mempolicy = NULL;
2538 	task_unlock(task);
2539 	mpol_put(pol);
2540 }
2541 
2542 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2543 {
2544 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2545 	rb_erase(&n->nd, &sp->root);
2546 	sp_free(n);
2547 }
2548 
2549 static void sp_node_init(struct sp_node *node, unsigned long start,
2550 			unsigned long end, struct mempolicy *pol)
2551 {
2552 	node->start = start;
2553 	node->end = end;
2554 	node->policy = pol;
2555 }
2556 
2557 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2558 				struct mempolicy *pol)
2559 {
2560 	struct sp_node *n;
2561 	struct mempolicy *newpol;
2562 
2563 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2564 	if (!n)
2565 		return NULL;
2566 
2567 	newpol = mpol_dup(pol);
2568 	if (IS_ERR(newpol)) {
2569 		kmem_cache_free(sn_cache, n);
2570 		return NULL;
2571 	}
2572 	newpol->flags |= MPOL_F_SHARED;
2573 	sp_node_init(n, start, end, newpol);
2574 
2575 	return n;
2576 }
2577 
2578 /* Replace a policy range. */
2579 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2580 				 unsigned long end, struct sp_node *new)
2581 {
2582 	struct sp_node *n;
2583 	struct sp_node *n_new = NULL;
2584 	struct mempolicy *mpol_new = NULL;
2585 	int ret = 0;
2586 
2587 restart:
2588 	write_lock(&sp->lock);
2589 	n = sp_lookup(sp, start, end);
2590 	/* Take care of old policies in the same range. */
2591 	while (n && n->start < end) {
2592 		struct rb_node *next = rb_next(&n->nd);
2593 		if (n->start >= start) {
2594 			if (n->end <= end)
2595 				sp_delete(sp, n);
2596 			else
2597 				n->start = end;
2598 		} else {
2599 			/* Old policy spanning whole new range. */
2600 			if (n->end > end) {
2601 				if (!n_new)
2602 					goto alloc_new;
2603 
2604 				*mpol_new = *n->policy;
2605 				atomic_set(&mpol_new->refcnt, 1);
2606 				sp_node_init(n_new, end, n->end, mpol_new);
2607 				n->end = start;
2608 				sp_insert(sp, n_new);
2609 				n_new = NULL;
2610 				mpol_new = NULL;
2611 				break;
2612 			} else
2613 				n->end = start;
2614 		}
2615 		if (!next)
2616 			break;
2617 		n = rb_entry(next, struct sp_node, nd);
2618 	}
2619 	if (new)
2620 		sp_insert(sp, new);
2621 	write_unlock(&sp->lock);
2622 	ret = 0;
2623 
2624 err_out:
2625 	if (mpol_new)
2626 		mpol_put(mpol_new);
2627 	if (n_new)
2628 		kmem_cache_free(sn_cache, n_new);
2629 
2630 	return ret;
2631 
2632 alloc_new:
2633 	write_unlock(&sp->lock);
2634 	ret = -ENOMEM;
2635 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2636 	if (!n_new)
2637 		goto err_out;
2638 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2639 	if (!mpol_new)
2640 		goto err_out;
2641 	goto restart;
2642 }
2643 
2644 /**
2645  * mpol_shared_policy_init - initialize shared policy for inode
2646  * @sp: pointer to inode shared policy
2647  * @mpol:  struct mempolicy to install
2648  *
2649  * Install non-NULL @mpol in inode's shared policy rb-tree.
2650  * On entry, the current task has a reference on a non-NULL @mpol.
2651  * This must be released on exit.
2652  * This is called at get_inode() calls and we can use GFP_KERNEL.
2653  */
2654 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2655 {
2656 	int ret;
2657 
2658 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2659 	rwlock_init(&sp->lock);
2660 
2661 	if (mpol) {
2662 		struct vm_area_struct pvma;
2663 		struct mempolicy *new;
2664 		NODEMASK_SCRATCH(scratch);
2665 
2666 		if (!scratch)
2667 			goto put_mpol;
2668 		/* contextualize the tmpfs mount point mempolicy */
2669 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2670 		if (IS_ERR(new))
2671 			goto free_scratch; /* no valid nodemask intersection */
2672 
2673 		task_lock(current);
2674 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2675 		task_unlock(current);
2676 		if (ret)
2677 			goto put_new;
2678 
2679 		/* Create pseudo-vma that contains just the policy */
2680 		vma_init(&pvma, NULL);
2681 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2682 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2683 
2684 put_new:
2685 		mpol_put(new);			/* drop initial ref */
2686 free_scratch:
2687 		NODEMASK_SCRATCH_FREE(scratch);
2688 put_mpol:
2689 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2690 	}
2691 }
2692 
2693 int mpol_set_shared_policy(struct shared_policy *info,
2694 			struct vm_area_struct *vma, struct mempolicy *npol)
2695 {
2696 	int err;
2697 	struct sp_node *new = NULL;
2698 	unsigned long sz = vma_pages(vma);
2699 
2700 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2701 		 vma->vm_pgoff,
2702 		 sz, npol ? npol->mode : -1,
2703 		 npol ? npol->flags : -1,
2704 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2705 
2706 	if (npol) {
2707 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2708 		if (!new)
2709 			return -ENOMEM;
2710 	}
2711 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2712 	if (err && new)
2713 		sp_free(new);
2714 	return err;
2715 }
2716 
2717 /* Free a backing policy store on inode delete. */
2718 void mpol_free_shared_policy(struct shared_policy *p)
2719 {
2720 	struct sp_node *n;
2721 	struct rb_node *next;
2722 
2723 	if (!p->root.rb_node)
2724 		return;
2725 	write_lock(&p->lock);
2726 	next = rb_first(&p->root);
2727 	while (next) {
2728 		n = rb_entry(next, struct sp_node, nd);
2729 		next = rb_next(&n->nd);
2730 		sp_delete(p, n);
2731 	}
2732 	write_unlock(&p->lock);
2733 }
2734 
2735 #ifdef CONFIG_NUMA_BALANCING
2736 static int __initdata numabalancing_override;
2737 
2738 static void __init check_numabalancing_enable(void)
2739 {
2740 	bool numabalancing_default = false;
2741 
2742 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2743 		numabalancing_default = true;
2744 
2745 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2746 	if (numabalancing_override)
2747 		set_numabalancing_state(numabalancing_override == 1);
2748 
2749 	if (num_online_nodes() > 1 && !numabalancing_override) {
2750 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2751 			numabalancing_default ? "Enabling" : "Disabling");
2752 		set_numabalancing_state(numabalancing_default);
2753 	}
2754 }
2755 
2756 static int __init setup_numabalancing(char *str)
2757 {
2758 	int ret = 0;
2759 	if (!str)
2760 		goto out;
2761 
2762 	if (!strcmp(str, "enable")) {
2763 		numabalancing_override = 1;
2764 		ret = 1;
2765 	} else if (!strcmp(str, "disable")) {
2766 		numabalancing_override = -1;
2767 		ret = 1;
2768 	}
2769 out:
2770 	if (!ret)
2771 		pr_warn("Unable to parse numa_balancing=\n");
2772 
2773 	return ret;
2774 }
2775 __setup("numa_balancing=", setup_numabalancing);
2776 #else
2777 static inline void __init check_numabalancing_enable(void)
2778 {
2779 }
2780 #endif /* CONFIG_NUMA_BALANCING */
2781 
2782 /* assumes fs == KERNEL_DS */
2783 void __init numa_policy_init(void)
2784 {
2785 	nodemask_t interleave_nodes;
2786 	unsigned long largest = 0;
2787 	int nid, prefer = 0;
2788 
2789 	policy_cache = kmem_cache_create("numa_policy",
2790 					 sizeof(struct mempolicy),
2791 					 0, SLAB_PANIC, NULL);
2792 
2793 	sn_cache = kmem_cache_create("shared_policy_node",
2794 				     sizeof(struct sp_node),
2795 				     0, SLAB_PANIC, NULL);
2796 
2797 	for_each_node(nid) {
2798 		preferred_node_policy[nid] = (struct mempolicy) {
2799 			.refcnt = ATOMIC_INIT(1),
2800 			.mode = MPOL_PREFERRED,
2801 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2802 			.v = { .preferred_node = nid, },
2803 		};
2804 	}
2805 
2806 	/*
2807 	 * Set interleaving policy for system init. Interleaving is only
2808 	 * enabled across suitably sized nodes (default is >= 16MB), or
2809 	 * fall back to the largest node if they're all smaller.
2810 	 */
2811 	nodes_clear(interleave_nodes);
2812 	for_each_node_state(nid, N_MEMORY) {
2813 		unsigned long total_pages = node_present_pages(nid);
2814 
2815 		/* Preserve the largest node */
2816 		if (largest < total_pages) {
2817 			largest = total_pages;
2818 			prefer = nid;
2819 		}
2820 
2821 		/* Interleave this node? */
2822 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2823 			node_set(nid, interleave_nodes);
2824 	}
2825 
2826 	/* All too small, use the largest */
2827 	if (unlikely(nodes_empty(interleave_nodes)))
2828 		node_set(prefer, interleave_nodes);
2829 
2830 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2831 		pr_err("%s: interleaving failed\n", __func__);
2832 
2833 	check_numabalancing_enable();
2834 }
2835 
2836 /* Reset policy of current process to default */
2837 void numa_default_policy(void)
2838 {
2839 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2840 }
2841 
2842 /*
2843  * Parse and format mempolicy from/to strings
2844  */
2845 
2846 /*
2847  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2848  */
2849 static const char * const policy_modes[] =
2850 {
2851 	[MPOL_DEFAULT]    = "default",
2852 	[MPOL_PREFERRED]  = "prefer",
2853 	[MPOL_BIND]       = "bind",
2854 	[MPOL_INTERLEAVE] = "interleave",
2855 	[MPOL_LOCAL]      = "local",
2856 };
2857 
2858 
2859 #ifdef CONFIG_TMPFS
2860 /**
2861  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2862  * @str:  string containing mempolicy to parse
2863  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2864  *
2865  * Format of input:
2866  *	<mode>[=<flags>][:<nodelist>]
2867  *
2868  * On success, returns 0, else 1
2869  */
2870 int mpol_parse_str(char *str, struct mempolicy **mpol)
2871 {
2872 	struct mempolicy *new = NULL;
2873 	unsigned short mode_flags;
2874 	nodemask_t nodes;
2875 	char *nodelist = strchr(str, ':');
2876 	char *flags = strchr(str, '=');
2877 	int err = 1, mode;
2878 
2879 	if (flags)
2880 		*flags++ = '\0';	/* terminate mode string */
2881 
2882 	if (nodelist) {
2883 		/* NUL-terminate mode or flags string */
2884 		*nodelist++ = '\0';
2885 		if (nodelist_parse(nodelist, nodes))
2886 			goto out;
2887 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2888 			goto out;
2889 	} else
2890 		nodes_clear(nodes);
2891 
2892 	mode = match_string(policy_modes, MPOL_MAX, str);
2893 	if (mode < 0)
2894 		goto out;
2895 
2896 	switch (mode) {
2897 	case MPOL_PREFERRED:
2898 		/*
2899 		 * Insist on a nodelist of one node only, although later
2900 		 * we use first_node(nodes) to grab a single node, so here
2901 		 * nodelist (or nodes) cannot be empty.
2902 		 */
2903 		if (nodelist) {
2904 			char *rest = nodelist;
2905 			while (isdigit(*rest))
2906 				rest++;
2907 			if (*rest)
2908 				goto out;
2909 			if (nodes_empty(nodes))
2910 				goto out;
2911 		}
2912 		break;
2913 	case MPOL_INTERLEAVE:
2914 		/*
2915 		 * Default to online nodes with memory if no nodelist
2916 		 */
2917 		if (!nodelist)
2918 			nodes = node_states[N_MEMORY];
2919 		break;
2920 	case MPOL_LOCAL:
2921 		/*
2922 		 * Don't allow a nodelist;  mpol_new() checks flags
2923 		 */
2924 		if (nodelist)
2925 			goto out;
2926 		mode = MPOL_PREFERRED;
2927 		break;
2928 	case MPOL_DEFAULT:
2929 		/*
2930 		 * Insist on a empty nodelist
2931 		 */
2932 		if (!nodelist)
2933 			err = 0;
2934 		goto out;
2935 	case MPOL_BIND:
2936 		/*
2937 		 * Insist on a nodelist
2938 		 */
2939 		if (!nodelist)
2940 			goto out;
2941 	}
2942 
2943 	mode_flags = 0;
2944 	if (flags) {
2945 		/*
2946 		 * Currently, we only support two mutually exclusive
2947 		 * mode flags.
2948 		 */
2949 		if (!strcmp(flags, "static"))
2950 			mode_flags |= MPOL_F_STATIC_NODES;
2951 		else if (!strcmp(flags, "relative"))
2952 			mode_flags |= MPOL_F_RELATIVE_NODES;
2953 		else
2954 			goto out;
2955 	}
2956 
2957 	new = mpol_new(mode, mode_flags, &nodes);
2958 	if (IS_ERR(new))
2959 		goto out;
2960 
2961 	/*
2962 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2963 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2964 	 */
2965 	if (mode != MPOL_PREFERRED)
2966 		new->v.nodes = nodes;
2967 	else if (nodelist)
2968 		new->v.preferred_node = first_node(nodes);
2969 	else
2970 		new->flags |= MPOL_F_LOCAL;
2971 
2972 	/*
2973 	 * Save nodes for contextualization: this will be used to "clone"
2974 	 * the mempolicy in a specific context [cpuset] at a later time.
2975 	 */
2976 	new->w.user_nodemask = nodes;
2977 
2978 	err = 0;
2979 
2980 out:
2981 	/* Restore string for error message */
2982 	if (nodelist)
2983 		*--nodelist = ':';
2984 	if (flags)
2985 		*--flags = '=';
2986 	if (!err)
2987 		*mpol = new;
2988 	return err;
2989 }
2990 #endif /* CONFIG_TMPFS */
2991 
2992 /**
2993  * mpol_to_str - format a mempolicy structure for printing
2994  * @buffer:  to contain formatted mempolicy string
2995  * @maxlen:  length of @buffer
2996  * @pol:  pointer to mempolicy to be formatted
2997  *
2998  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2999  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3000  * longest flag, "relative", and to display at least a few node ids.
3001  */
3002 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3003 {
3004 	char *p = buffer;
3005 	nodemask_t nodes = NODE_MASK_NONE;
3006 	unsigned short mode = MPOL_DEFAULT;
3007 	unsigned short flags = 0;
3008 
3009 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3010 		mode = pol->mode;
3011 		flags = pol->flags;
3012 	}
3013 
3014 	switch (mode) {
3015 	case MPOL_DEFAULT:
3016 		break;
3017 	case MPOL_PREFERRED:
3018 		if (flags & MPOL_F_LOCAL)
3019 			mode = MPOL_LOCAL;
3020 		else
3021 			node_set(pol->v.preferred_node, nodes);
3022 		break;
3023 	case MPOL_BIND:
3024 	case MPOL_INTERLEAVE:
3025 		nodes = pol->v.nodes;
3026 		break;
3027 	default:
3028 		WARN_ON_ONCE(1);
3029 		snprintf(p, maxlen, "unknown");
3030 		return;
3031 	}
3032 
3033 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3034 
3035 	if (flags & MPOL_MODE_FLAGS) {
3036 		p += snprintf(p, buffer + maxlen - p, "=");
3037 
3038 		/*
3039 		 * Currently, the only defined flags are mutually exclusive
3040 		 */
3041 		if (flags & MPOL_F_STATIC_NODES)
3042 			p += snprintf(p, buffer + maxlen - p, "static");
3043 		else if (flags & MPOL_F_RELATIVE_NODES)
3044 			p += snprintf(p, buffer + maxlen - p, "relative");
3045 	}
3046 
3047 	if (!nodes_empty(nodes))
3048 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3049 			       nodemask_pr_args(&nodes));
3050 }
3051