1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support six policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * weighted interleave 23 * Allocate memory interleaved over a set of nodes based on 24 * a set of weights (per-node), with normal fallback if it 25 * fails. Otherwise operates the same as interleave. 26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated 27 * on node 0 for every 1 page allocated on node 1. 28 * 29 * bind Only allocate memory on a specific set of nodes, 30 * no fallback. 31 * FIXME: memory is allocated starting with the first node 32 * to the last. It would be better if bind would truly restrict 33 * the allocation to memory nodes instead 34 * 35 * preferred Try a specific node first before normal fallback. 36 * As a special case NUMA_NO_NODE here means do the allocation 37 * on the local CPU. This is normally identical to default, 38 * but useful to set in a VMA when you have a non default 39 * process policy. 40 * 41 * preferred many Try a set of nodes first before normal fallback. This is 42 * similar to preferred without the special case. 43 * 44 * default Allocate on the local node first, or when on a VMA 45 * use the process policy. This is what Linux always did 46 * in a NUMA aware kernel and still does by, ahem, default. 47 * 48 * The process policy is applied for most non interrupt memory allocations 49 * in that process' context. Interrupts ignore the policies and always 50 * try to allocate on the local CPU. The VMA policy is only applied for memory 51 * allocations for a VMA in the VM. 52 * 53 * Currently there are a few corner cases in swapping where the policy 54 * is not applied, but the majority should be handled. When process policy 55 * is used it is not remembered over swap outs/swap ins. 56 * 57 * Only the highest zone in the zone hierarchy gets policied. Allocations 58 * requesting a lower zone just use default policy. This implies that 59 * on systems with highmem kernel lowmem allocation don't get policied. 60 * Same with GFP_DMA allocations. 61 * 62 * For shmem/tmpfs shared memory the policy is shared between 63 * all users and remembered even when nobody has memory mapped. 64 */ 65 66 /* Notebook: 67 fix mmap readahead to honour policy and enable policy for any page cache 68 object 69 statistics for bigpages 70 global policy for page cache? currently it uses process policy. Requires 71 first item above. 72 handle mremap for shared memory (currently ignored for the policy) 73 grows down? 74 make bind policy root only? It can trigger oom much faster and the 75 kernel is not always grateful with that. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/mempolicy.h> 81 #include <linux/pagewalk.h> 82 #include <linux/highmem.h> 83 #include <linux/hugetlb.h> 84 #include <linux/kernel.h> 85 #include <linux/sched.h> 86 #include <linux/sched/mm.h> 87 #include <linux/sched/numa_balancing.h> 88 #include <linux/sched/task.h> 89 #include <linux/nodemask.h> 90 #include <linux/cpuset.h> 91 #include <linux/slab.h> 92 #include <linux/string.h> 93 #include <linux/export.h> 94 #include <linux/nsproxy.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compat.h> 98 #include <linux/ptrace.h> 99 #include <linux/swap.h> 100 #include <linux/seq_file.h> 101 #include <linux/proc_fs.h> 102 #include <linux/migrate.h> 103 #include <linux/ksm.h> 104 #include <linux/rmap.h> 105 #include <linux/security.h> 106 #include <linux/syscalls.h> 107 #include <linux/ctype.h> 108 #include <linux/mm_inline.h> 109 #include <linux/mmu_notifier.h> 110 #include <linux/printk.h> 111 #include <linux/swapops.h> 112 #include <linux/gcd.h> 113 114 #include <asm/tlbflush.h> 115 #include <asm/tlb.h> 116 #include <linux/uaccess.h> 117 #include <linux/memory.h> 118 119 #include "internal.h" 120 121 /* Internal flags */ 122 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 123 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 124 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */ 125 126 static struct kmem_cache *policy_cache; 127 static struct kmem_cache *sn_cache; 128 129 /* Highest zone. An specific allocation for a zone below that is not 130 policied. */ 131 enum zone_type policy_zone = 0; 132 133 /* 134 * run-time system-wide default policy => local allocation 135 */ 136 static struct mempolicy default_policy = { 137 .refcnt = ATOMIC_INIT(1), /* never free it */ 138 .mode = MPOL_LOCAL, 139 }; 140 141 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 142 143 /* 144 * weightiness balances the tradeoff between small weights (cycles through nodes 145 * faster, more fair/even distribution) and large weights (smaller errors 146 * between actual bandwidth ratios and weight ratios). 32 is a number that has 147 * been found to perform at a reasonable compromise between the two goals. 148 */ 149 static const int weightiness = 32; 150 151 /* 152 * A null weighted_interleave_state is interpreted as having .mode="auto", 153 * and .iw_table is interpreted as an array of 1s with length nr_node_ids. 154 */ 155 struct weighted_interleave_state { 156 bool mode_auto; 157 u8 iw_table[]; 158 }; 159 static struct weighted_interleave_state __rcu *wi_state; 160 static unsigned int *node_bw_table; 161 162 /* 163 * wi_state_lock protects both wi_state and node_bw_table. 164 * node_bw_table is only used by writers to update wi_state. 165 */ 166 static DEFINE_MUTEX(wi_state_lock); 167 168 static u8 get_il_weight(int node) 169 { 170 struct weighted_interleave_state *state; 171 u8 weight = 1; 172 173 rcu_read_lock(); 174 state = rcu_dereference(wi_state); 175 if (state) 176 weight = state->iw_table[node]; 177 rcu_read_unlock(); 178 return weight; 179 } 180 181 /* 182 * Convert bandwidth values into weighted interleave weights. 183 * Call with wi_state_lock. 184 */ 185 static void reduce_interleave_weights(unsigned int *bw, u8 *new_iw) 186 { 187 u64 sum_bw = 0; 188 unsigned int cast_sum_bw, scaling_factor = 1, iw_gcd = 0; 189 int nid; 190 191 for_each_node_state(nid, N_MEMORY) 192 sum_bw += bw[nid]; 193 194 /* Scale bandwidths to whole numbers in the range [1, weightiness] */ 195 for_each_node_state(nid, N_MEMORY) { 196 /* 197 * Try not to perform 64-bit division. 198 * If sum_bw < scaling_factor, then sum_bw < U32_MAX. 199 * If sum_bw > scaling_factor, then round the weight up to 1. 200 */ 201 scaling_factor = weightiness * bw[nid]; 202 if (bw[nid] && sum_bw < scaling_factor) { 203 cast_sum_bw = (unsigned int)sum_bw; 204 new_iw[nid] = scaling_factor / cast_sum_bw; 205 } else { 206 new_iw[nid] = 1; 207 } 208 if (!iw_gcd) 209 iw_gcd = new_iw[nid]; 210 iw_gcd = gcd(iw_gcd, new_iw[nid]); 211 } 212 213 /* 1:2 is strictly better than 16:32. Reduce by the weights' GCD. */ 214 for_each_node_state(nid, N_MEMORY) 215 new_iw[nid] /= iw_gcd; 216 } 217 218 int mempolicy_set_node_perf(unsigned int node, struct access_coordinate *coords) 219 { 220 struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL; 221 unsigned int *old_bw, *new_bw; 222 unsigned int bw_val; 223 int i; 224 225 bw_val = min(coords->read_bandwidth, coords->write_bandwidth); 226 new_bw = kcalloc(nr_node_ids, sizeof(unsigned int), GFP_KERNEL); 227 if (!new_bw) 228 return -ENOMEM; 229 230 new_wi_state = kmalloc(struct_size(new_wi_state, iw_table, nr_node_ids), 231 GFP_KERNEL); 232 if (!new_wi_state) { 233 kfree(new_bw); 234 return -ENOMEM; 235 } 236 new_wi_state->mode_auto = true; 237 for (i = 0; i < nr_node_ids; i++) 238 new_wi_state->iw_table[i] = 1; 239 240 /* 241 * Update bandwidth info, even in manual mode. That way, when switching 242 * to auto mode in the future, iw_table can be overwritten using 243 * accurate bw data. 244 */ 245 mutex_lock(&wi_state_lock); 246 247 old_bw = node_bw_table; 248 if (old_bw) 249 memcpy(new_bw, old_bw, nr_node_ids * sizeof(*old_bw)); 250 new_bw[node] = bw_val; 251 node_bw_table = new_bw; 252 253 old_wi_state = rcu_dereference_protected(wi_state, 254 lockdep_is_held(&wi_state_lock)); 255 if (old_wi_state && !old_wi_state->mode_auto) { 256 /* Manual mode; skip reducing weights and updating wi_state */ 257 mutex_unlock(&wi_state_lock); 258 kfree(new_wi_state); 259 goto out; 260 } 261 262 /* NULL wi_state assumes auto=true; reduce weights and update wi_state*/ 263 reduce_interleave_weights(new_bw, new_wi_state->iw_table); 264 rcu_assign_pointer(wi_state, new_wi_state); 265 266 mutex_unlock(&wi_state_lock); 267 if (old_wi_state) { 268 synchronize_rcu(); 269 kfree(old_wi_state); 270 } 271 out: 272 kfree(old_bw); 273 return 0; 274 } 275 276 /** 277 * numa_nearest_node - Find nearest node by state 278 * @node: Node id to start the search 279 * @state: State to filter the search 280 * 281 * Lookup the closest node by distance if @nid is not in state. 282 * 283 * Return: this @node if it is in state, otherwise the closest node by distance 284 */ 285 int numa_nearest_node(int node, unsigned int state) 286 { 287 int min_dist = INT_MAX, dist, n, min_node; 288 289 if (state >= NR_NODE_STATES) 290 return -EINVAL; 291 292 if (node == NUMA_NO_NODE || node_state(node, state)) 293 return node; 294 295 min_node = node; 296 for_each_node_state(n, state) { 297 dist = node_distance(node, n); 298 if (dist < min_dist) { 299 min_dist = dist; 300 min_node = n; 301 } 302 } 303 304 return min_node; 305 } 306 EXPORT_SYMBOL_GPL(numa_nearest_node); 307 308 /** 309 * nearest_node_nodemask - Find the node in @mask at the nearest distance 310 * from @node. 311 * 312 * @node: a valid node ID to start the search from. 313 * @mask: a pointer to a nodemask representing the allowed nodes. 314 * 315 * This function iterates over all nodes in @mask and calculates the 316 * distance from the starting @node, then it returns the node ID that is 317 * the closest to @node, or MAX_NUMNODES if no node is found. 318 * 319 * Note that @node must be a valid node ID usable with node_distance(), 320 * providing an invalid node ID (e.g., NUMA_NO_NODE) may result in crashes 321 * or unexpected behavior. 322 */ 323 int nearest_node_nodemask(int node, nodemask_t *mask) 324 { 325 int dist, n, min_dist = INT_MAX, min_node = MAX_NUMNODES; 326 327 for_each_node_mask(n, *mask) { 328 dist = node_distance(node, n); 329 if (dist < min_dist) { 330 min_dist = dist; 331 min_node = n; 332 } 333 } 334 335 return min_node; 336 } 337 EXPORT_SYMBOL_GPL(nearest_node_nodemask); 338 339 struct mempolicy *get_task_policy(struct task_struct *p) 340 { 341 struct mempolicy *pol = p->mempolicy; 342 int node; 343 344 if (pol) 345 return pol; 346 347 node = numa_node_id(); 348 if (node != NUMA_NO_NODE) { 349 pol = &preferred_node_policy[node]; 350 /* preferred_node_policy is not initialised early in boot */ 351 if (pol->mode) 352 return pol; 353 } 354 355 return &default_policy; 356 } 357 358 static const struct mempolicy_operations { 359 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 360 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 361 } mpol_ops[MPOL_MAX]; 362 363 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 364 { 365 return pol->flags & MPOL_MODE_FLAGS; 366 } 367 368 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 369 const nodemask_t *rel) 370 { 371 nodemask_t tmp; 372 nodes_fold(tmp, *orig, nodes_weight(*rel)); 373 nodes_onto(*ret, tmp, *rel); 374 } 375 376 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 377 { 378 if (nodes_empty(*nodes)) 379 return -EINVAL; 380 pol->nodes = *nodes; 381 return 0; 382 } 383 384 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 385 { 386 if (nodes_empty(*nodes)) 387 return -EINVAL; 388 389 nodes_clear(pol->nodes); 390 node_set(first_node(*nodes), pol->nodes); 391 return 0; 392 } 393 394 /* 395 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 396 * any, for the new policy. mpol_new() has already validated the nodes 397 * parameter with respect to the policy mode and flags. 398 * 399 * Must be called holding task's alloc_lock to protect task's mems_allowed 400 * and mempolicy. May also be called holding the mmap_lock for write. 401 */ 402 static int mpol_set_nodemask(struct mempolicy *pol, 403 const nodemask_t *nodes, struct nodemask_scratch *nsc) 404 { 405 int ret; 406 407 /* 408 * Default (pol==NULL) resp. local memory policies are not a 409 * subject of any remapping. They also do not need any special 410 * constructor. 411 */ 412 if (!pol || pol->mode == MPOL_LOCAL) 413 return 0; 414 415 /* Check N_MEMORY */ 416 nodes_and(nsc->mask1, 417 cpuset_current_mems_allowed, node_states[N_MEMORY]); 418 419 VM_BUG_ON(!nodes); 420 421 if (pol->flags & MPOL_F_RELATIVE_NODES) 422 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 423 else 424 nodes_and(nsc->mask2, *nodes, nsc->mask1); 425 426 if (mpol_store_user_nodemask(pol)) 427 pol->w.user_nodemask = *nodes; 428 else 429 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 430 431 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 432 return ret; 433 } 434 435 /* 436 * This function just creates a new policy, does some check and simple 437 * initialization. You must invoke mpol_set_nodemask() to set nodes. 438 */ 439 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 440 nodemask_t *nodes) 441 { 442 struct mempolicy *policy; 443 444 if (mode == MPOL_DEFAULT) { 445 if (nodes && !nodes_empty(*nodes)) 446 return ERR_PTR(-EINVAL); 447 return NULL; 448 } 449 VM_BUG_ON(!nodes); 450 451 /* 452 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 453 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 454 * All other modes require a valid pointer to a non-empty nodemask. 455 */ 456 if (mode == MPOL_PREFERRED) { 457 if (nodes_empty(*nodes)) { 458 if (((flags & MPOL_F_STATIC_NODES) || 459 (flags & MPOL_F_RELATIVE_NODES))) 460 return ERR_PTR(-EINVAL); 461 462 mode = MPOL_LOCAL; 463 } 464 } else if (mode == MPOL_LOCAL) { 465 if (!nodes_empty(*nodes) || 466 (flags & MPOL_F_STATIC_NODES) || 467 (flags & MPOL_F_RELATIVE_NODES)) 468 return ERR_PTR(-EINVAL); 469 } else if (nodes_empty(*nodes)) 470 return ERR_PTR(-EINVAL); 471 472 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 473 if (!policy) 474 return ERR_PTR(-ENOMEM); 475 atomic_set(&policy->refcnt, 1); 476 policy->mode = mode; 477 policy->flags = flags; 478 policy->home_node = NUMA_NO_NODE; 479 480 return policy; 481 } 482 483 /* Slow path of a mpol destructor. */ 484 void __mpol_put(struct mempolicy *pol) 485 { 486 if (!atomic_dec_and_test(&pol->refcnt)) 487 return; 488 kmem_cache_free(policy_cache, pol); 489 } 490 491 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 492 { 493 } 494 495 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 496 { 497 nodemask_t tmp; 498 499 if (pol->flags & MPOL_F_STATIC_NODES) 500 nodes_and(tmp, pol->w.user_nodemask, *nodes); 501 else if (pol->flags & MPOL_F_RELATIVE_NODES) 502 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 503 else { 504 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 505 *nodes); 506 pol->w.cpuset_mems_allowed = *nodes; 507 } 508 509 if (nodes_empty(tmp)) 510 tmp = *nodes; 511 512 pol->nodes = tmp; 513 } 514 515 static void mpol_rebind_preferred(struct mempolicy *pol, 516 const nodemask_t *nodes) 517 { 518 pol->w.cpuset_mems_allowed = *nodes; 519 } 520 521 /* 522 * mpol_rebind_policy - Migrate a policy to a different set of nodes 523 * 524 * Per-vma policies are protected by mmap_lock. Allocations using per-task 525 * policies are protected by task->mems_allowed_seq to prevent a premature 526 * OOM/allocation failure due to parallel nodemask modification. 527 */ 528 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 529 { 530 if (!pol || pol->mode == MPOL_LOCAL) 531 return; 532 if (!mpol_store_user_nodemask(pol) && 533 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 534 return; 535 536 mpol_ops[pol->mode].rebind(pol, newmask); 537 } 538 539 /* 540 * Wrapper for mpol_rebind_policy() that just requires task 541 * pointer, and updates task mempolicy. 542 * 543 * Called with task's alloc_lock held. 544 */ 545 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 546 { 547 mpol_rebind_policy(tsk->mempolicy, new); 548 } 549 550 /* 551 * Rebind each vma in mm to new nodemask. 552 * 553 * Call holding a reference to mm. Takes mm->mmap_lock during call. 554 */ 555 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 556 { 557 struct vm_area_struct *vma; 558 VMA_ITERATOR(vmi, mm, 0); 559 560 mmap_write_lock(mm); 561 for_each_vma(vmi, vma) { 562 vma_start_write(vma); 563 mpol_rebind_policy(vma->vm_policy, new); 564 } 565 mmap_write_unlock(mm); 566 } 567 568 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 569 [MPOL_DEFAULT] = { 570 .rebind = mpol_rebind_default, 571 }, 572 [MPOL_INTERLEAVE] = { 573 .create = mpol_new_nodemask, 574 .rebind = mpol_rebind_nodemask, 575 }, 576 [MPOL_PREFERRED] = { 577 .create = mpol_new_preferred, 578 .rebind = mpol_rebind_preferred, 579 }, 580 [MPOL_BIND] = { 581 .create = mpol_new_nodemask, 582 .rebind = mpol_rebind_nodemask, 583 }, 584 [MPOL_LOCAL] = { 585 .rebind = mpol_rebind_default, 586 }, 587 [MPOL_PREFERRED_MANY] = { 588 .create = mpol_new_nodemask, 589 .rebind = mpol_rebind_preferred, 590 }, 591 [MPOL_WEIGHTED_INTERLEAVE] = { 592 .create = mpol_new_nodemask, 593 .rebind = mpol_rebind_nodemask, 594 }, 595 }; 596 597 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 598 unsigned long flags); 599 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 600 pgoff_t ilx, int *nid); 601 602 static bool strictly_unmovable(unsigned long flags) 603 { 604 /* 605 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO 606 * if any misplaced page is found. 607 */ 608 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == 609 MPOL_MF_STRICT; 610 } 611 612 struct migration_mpol { /* for alloc_migration_target_by_mpol() */ 613 struct mempolicy *pol; 614 pgoff_t ilx; 615 }; 616 617 struct queue_pages { 618 struct list_head *pagelist; 619 unsigned long flags; 620 nodemask_t *nmask; 621 unsigned long start; 622 unsigned long end; 623 struct vm_area_struct *first; 624 struct folio *large; /* note last large folio encountered */ 625 long nr_failed; /* could not be isolated at this time */ 626 }; 627 628 /* 629 * Check if the folio's nid is in qp->nmask. 630 * 631 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 632 * in the invert of qp->nmask. 633 */ 634 static inline bool queue_folio_required(struct folio *folio, 635 struct queue_pages *qp) 636 { 637 int nid = folio_nid(folio); 638 unsigned long flags = qp->flags; 639 640 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 641 } 642 643 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) 644 { 645 struct folio *folio; 646 struct queue_pages *qp = walk->private; 647 648 if (unlikely(is_pmd_migration_entry(*pmd))) { 649 qp->nr_failed++; 650 return; 651 } 652 folio = pmd_folio(*pmd); 653 if (is_huge_zero_folio(folio)) { 654 walk->action = ACTION_CONTINUE; 655 return; 656 } 657 if (!queue_folio_required(folio, qp)) 658 return; 659 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 660 !vma_migratable(walk->vma) || 661 !migrate_folio_add(folio, qp->pagelist, qp->flags)) 662 qp->nr_failed++; 663 } 664 665 /* 666 * Scan through folios, checking if they satisfy the required conditions, 667 * moving them from LRU to local pagelist for migration if they do (or not). 668 * 669 * queue_folios_pte_range() has two possible return values: 670 * 0 - continue walking to scan for more, even if an existing folio on the 671 * wrong node could not be isolated and queued for migration. 672 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, 673 * and an existing folio was on a node that does not follow the policy. 674 */ 675 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 676 unsigned long end, struct mm_walk *walk) 677 { 678 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 679 struct vm_area_struct *vma = walk->vma; 680 struct folio *folio; 681 struct queue_pages *qp = walk->private; 682 unsigned long flags = qp->flags; 683 pte_t *pte, *mapped_pte; 684 pte_t ptent; 685 spinlock_t *ptl; 686 int max_nr, nr; 687 688 ptl = pmd_trans_huge_lock(pmd, vma); 689 if (ptl) { 690 queue_folios_pmd(pmd, walk); 691 spin_unlock(ptl); 692 goto out; 693 } 694 695 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 696 if (!pte) { 697 walk->action = ACTION_AGAIN; 698 return 0; 699 } 700 for (; addr != end; pte += nr, addr += nr * PAGE_SIZE) { 701 max_nr = (end - addr) >> PAGE_SHIFT; 702 nr = 1; 703 ptent = ptep_get(pte); 704 if (pte_none(ptent)) 705 continue; 706 if (!pte_present(ptent)) { 707 if (is_migration_entry(pte_to_swp_entry(ptent))) 708 qp->nr_failed++; 709 continue; 710 } 711 folio = vm_normal_folio(vma, addr, ptent); 712 if (!folio || folio_is_zone_device(folio)) 713 continue; 714 if (folio_test_large(folio) && max_nr != 1) 715 nr = folio_pte_batch(folio, addr, pte, ptent, 716 max_nr, fpb_flags, 717 NULL, NULL, NULL); 718 /* 719 * vm_normal_folio() filters out zero pages, but there might 720 * still be reserved folios to skip, perhaps in a VDSO. 721 */ 722 if (folio_test_reserved(folio)) 723 continue; 724 if (!queue_folio_required(folio, qp)) 725 continue; 726 if (folio_test_large(folio)) { 727 /* 728 * A large folio can only be isolated from LRU once, 729 * but may be mapped by many PTEs (and Copy-On-Write may 730 * intersperse PTEs of other, order 0, folios). This is 731 * a common case, so don't mistake it for failure (but 732 * there can be other cases of multi-mapped pages which 733 * this quick check does not help to filter out - and a 734 * search of the pagelist might grow to be prohibitive). 735 * 736 * migrate_pages(&pagelist) returns nr_failed folios, so 737 * check "large" now so that queue_pages_range() returns 738 * a comparable nr_failed folios. This does imply that 739 * if folio could not be isolated for some racy reason 740 * at its first PTE, later PTEs will not give it another 741 * chance of isolation; but keeps the accounting simple. 742 */ 743 if (folio == qp->large) 744 continue; 745 qp->large = folio; 746 } 747 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 748 !vma_migratable(vma) || 749 !migrate_folio_add(folio, qp->pagelist, flags)) { 750 qp->nr_failed += nr; 751 if (strictly_unmovable(flags)) 752 break; 753 } 754 } 755 pte_unmap_unlock(mapped_pte, ptl); 756 cond_resched(); 757 out: 758 if (qp->nr_failed && strictly_unmovable(flags)) 759 return -EIO; 760 return 0; 761 } 762 763 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 764 unsigned long addr, unsigned long end, 765 struct mm_walk *walk) 766 { 767 #ifdef CONFIG_HUGETLB_PAGE 768 struct queue_pages *qp = walk->private; 769 unsigned long flags = qp->flags; 770 struct folio *folio; 771 spinlock_t *ptl; 772 pte_t entry; 773 774 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 775 entry = huge_ptep_get(walk->mm, addr, pte); 776 if (!pte_present(entry)) { 777 if (unlikely(is_hugetlb_entry_migration(entry))) 778 qp->nr_failed++; 779 goto unlock; 780 } 781 folio = pfn_folio(pte_pfn(entry)); 782 if (!queue_folio_required(folio, qp)) 783 goto unlock; 784 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 785 !vma_migratable(walk->vma)) { 786 qp->nr_failed++; 787 goto unlock; 788 } 789 /* 790 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 791 * Choosing not to migrate a shared folio is not counted as a failure. 792 * 793 * See folio_maybe_mapped_shared() on possible imprecision when we 794 * cannot easily detect if a folio is shared. 795 */ 796 if ((flags & MPOL_MF_MOVE_ALL) || 797 (!folio_maybe_mapped_shared(folio) && !hugetlb_pmd_shared(pte))) 798 if (!folio_isolate_hugetlb(folio, qp->pagelist)) 799 qp->nr_failed++; 800 unlock: 801 spin_unlock(ptl); 802 if (qp->nr_failed && strictly_unmovable(flags)) 803 return -EIO; 804 #endif 805 return 0; 806 } 807 808 #ifdef CONFIG_NUMA_BALANCING 809 /* 810 * This is used to mark a range of virtual addresses to be inaccessible. 811 * These are later cleared by a NUMA hinting fault. Depending on these 812 * faults, pages may be migrated for better NUMA placement. 813 * 814 * This is assuming that NUMA faults are handled using PROT_NONE. If 815 * an architecture makes a different choice, it will need further 816 * changes to the core. 817 */ 818 unsigned long change_prot_numa(struct vm_area_struct *vma, 819 unsigned long addr, unsigned long end) 820 { 821 struct mmu_gather tlb; 822 long nr_updated; 823 824 tlb_gather_mmu(&tlb, vma->vm_mm); 825 826 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 827 if (nr_updated > 0) { 828 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 829 count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated); 830 } 831 832 tlb_finish_mmu(&tlb); 833 834 return nr_updated; 835 } 836 #endif /* CONFIG_NUMA_BALANCING */ 837 838 static int queue_pages_test_walk(unsigned long start, unsigned long end, 839 struct mm_walk *walk) 840 { 841 struct vm_area_struct *next, *vma = walk->vma; 842 struct queue_pages *qp = walk->private; 843 unsigned long flags = qp->flags; 844 845 /* range check first */ 846 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 847 848 if (!qp->first) { 849 qp->first = vma; 850 if (!(flags & MPOL_MF_DISCONTIG_OK) && 851 (qp->start < vma->vm_start)) 852 /* hole at head side of range */ 853 return -EFAULT; 854 } 855 next = find_vma(vma->vm_mm, vma->vm_end); 856 if (!(flags & MPOL_MF_DISCONTIG_OK) && 857 ((vma->vm_end < qp->end) && 858 (!next || vma->vm_end < next->vm_start))) 859 /* hole at middle or tail of range */ 860 return -EFAULT; 861 862 /* 863 * Need check MPOL_MF_STRICT to return -EIO if possible 864 * regardless of vma_migratable 865 */ 866 if (!vma_migratable(vma) && 867 !(flags & MPOL_MF_STRICT)) 868 return 1; 869 870 /* 871 * Check page nodes, and queue pages to move, in the current vma. 872 * But if no moving, and no strict checking, the scan can be skipped. 873 */ 874 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 875 return 0; 876 return 1; 877 } 878 879 static const struct mm_walk_ops queue_pages_walk_ops = { 880 .hugetlb_entry = queue_folios_hugetlb, 881 .pmd_entry = queue_folios_pte_range, 882 .test_walk = queue_pages_test_walk, 883 .walk_lock = PGWALK_RDLOCK, 884 }; 885 886 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 887 .hugetlb_entry = queue_folios_hugetlb, 888 .pmd_entry = queue_folios_pte_range, 889 .test_walk = queue_pages_test_walk, 890 .walk_lock = PGWALK_WRLOCK, 891 }; 892 893 /* 894 * Walk through page tables and collect pages to be migrated. 895 * 896 * If pages found in a given range are not on the required set of @nodes, 897 * and migration is allowed, they are isolated and queued to @pagelist. 898 * 899 * queue_pages_range() may return: 900 * 0 - all pages already on the right node, or successfully queued for moving 901 * (or neither strict checking nor moving requested: only range checking). 902 * >0 - this number of misplaced folios could not be queued for moving 903 * (a hugetlbfs page or a transparent huge page being counted as 1). 904 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. 905 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. 906 */ 907 static long 908 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 909 nodemask_t *nodes, unsigned long flags, 910 struct list_head *pagelist) 911 { 912 int err; 913 struct queue_pages qp = { 914 .pagelist = pagelist, 915 .flags = flags, 916 .nmask = nodes, 917 .start = start, 918 .end = end, 919 .first = NULL, 920 }; 921 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? 922 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 923 924 err = walk_page_range(mm, start, end, ops, &qp); 925 926 if (!qp.first) 927 /* whole range in hole */ 928 err = -EFAULT; 929 930 return err ? : qp.nr_failed; 931 } 932 933 /* 934 * Apply policy to a single VMA 935 * This must be called with the mmap_lock held for writing. 936 */ 937 static int vma_replace_policy(struct vm_area_struct *vma, 938 struct mempolicy *pol) 939 { 940 int err; 941 struct mempolicy *old; 942 struct mempolicy *new; 943 944 vma_assert_write_locked(vma); 945 946 new = mpol_dup(pol); 947 if (IS_ERR(new)) 948 return PTR_ERR(new); 949 950 if (vma->vm_ops && vma->vm_ops->set_policy) { 951 err = vma->vm_ops->set_policy(vma, new); 952 if (err) 953 goto err_out; 954 } 955 956 old = vma->vm_policy; 957 vma->vm_policy = new; /* protected by mmap_lock */ 958 mpol_put(old); 959 960 return 0; 961 err_out: 962 mpol_put(new); 963 return err; 964 } 965 966 /* Split or merge the VMA (if required) and apply the new policy */ 967 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 968 struct vm_area_struct **prev, unsigned long start, 969 unsigned long end, struct mempolicy *new_pol) 970 { 971 unsigned long vmstart, vmend; 972 973 vmend = min(end, vma->vm_end); 974 if (start > vma->vm_start) { 975 *prev = vma; 976 vmstart = start; 977 } else { 978 vmstart = vma->vm_start; 979 } 980 981 if (mpol_equal(vma->vm_policy, new_pol)) { 982 *prev = vma; 983 return 0; 984 } 985 986 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol); 987 if (IS_ERR(vma)) 988 return PTR_ERR(vma); 989 990 *prev = vma; 991 return vma_replace_policy(vma, new_pol); 992 } 993 994 /* Set the process memory policy */ 995 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 996 nodemask_t *nodes) 997 { 998 struct mempolicy *new, *old; 999 NODEMASK_SCRATCH(scratch); 1000 int ret; 1001 1002 if (!scratch) 1003 return -ENOMEM; 1004 1005 new = mpol_new(mode, flags, nodes); 1006 if (IS_ERR(new)) { 1007 ret = PTR_ERR(new); 1008 goto out; 1009 } 1010 1011 task_lock(current); 1012 ret = mpol_set_nodemask(new, nodes, scratch); 1013 if (ret) { 1014 task_unlock(current); 1015 mpol_put(new); 1016 goto out; 1017 } 1018 1019 old = current->mempolicy; 1020 current->mempolicy = new; 1021 if (new && (new->mode == MPOL_INTERLEAVE || 1022 new->mode == MPOL_WEIGHTED_INTERLEAVE)) { 1023 current->il_prev = MAX_NUMNODES-1; 1024 current->il_weight = 0; 1025 } 1026 task_unlock(current); 1027 mpol_put(old); 1028 ret = 0; 1029 out: 1030 NODEMASK_SCRATCH_FREE(scratch); 1031 return ret; 1032 } 1033 1034 /* 1035 * Return nodemask for policy for get_mempolicy() query 1036 * 1037 * Called with task's alloc_lock held 1038 */ 1039 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes) 1040 { 1041 nodes_clear(*nodes); 1042 if (pol == &default_policy) 1043 return; 1044 1045 switch (pol->mode) { 1046 case MPOL_BIND: 1047 case MPOL_INTERLEAVE: 1048 case MPOL_PREFERRED: 1049 case MPOL_PREFERRED_MANY: 1050 case MPOL_WEIGHTED_INTERLEAVE: 1051 *nodes = pol->nodes; 1052 break; 1053 case MPOL_LOCAL: 1054 /* return empty node mask for local allocation */ 1055 break; 1056 default: 1057 BUG(); 1058 } 1059 } 1060 1061 static int lookup_node(struct mm_struct *mm, unsigned long addr) 1062 { 1063 struct page *p = NULL; 1064 int ret; 1065 1066 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 1067 if (ret > 0) { 1068 ret = page_to_nid(p); 1069 put_page(p); 1070 } 1071 return ret; 1072 } 1073 1074 /* Retrieve NUMA policy */ 1075 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 1076 unsigned long addr, unsigned long flags) 1077 { 1078 int err; 1079 struct mm_struct *mm = current->mm; 1080 struct vm_area_struct *vma = NULL; 1081 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 1082 1083 if (flags & 1084 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 1085 return -EINVAL; 1086 1087 if (flags & MPOL_F_MEMS_ALLOWED) { 1088 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 1089 return -EINVAL; 1090 *policy = 0; /* just so it's initialized */ 1091 task_lock(current); 1092 *nmask = cpuset_current_mems_allowed; 1093 task_unlock(current); 1094 return 0; 1095 } 1096 1097 if (flags & MPOL_F_ADDR) { 1098 pgoff_t ilx; /* ignored here */ 1099 /* 1100 * Do NOT fall back to task policy if the 1101 * vma/shared policy at addr is NULL. We 1102 * want to return MPOL_DEFAULT in this case. 1103 */ 1104 mmap_read_lock(mm); 1105 vma = vma_lookup(mm, addr); 1106 if (!vma) { 1107 mmap_read_unlock(mm); 1108 return -EFAULT; 1109 } 1110 pol = __get_vma_policy(vma, addr, &ilx); 1111 } else if (addr) 1112 return -EINVAL; 1113 1114 if (!pol) 1115 pol = &default_policy; /* indicates default behavior */ 1116 1117 if (flags & MPOL_F_NODE) { 1118 if (flags & MPOL_F_ADDR) { 1119 /* 1120 * Take a refcount on the mpol, because we are about to 1121 * drop the mmap_lock, after which only "pol" remains 1122 * valid, "vma" is stale. 1123 */ 1124 pol_refcount = pol; 1125 vma = NULL; 1126 mpol_get(pol); 1127 mmap_read_unlock(mm); 1128 err = lookup_node(mm, addr); 1129 if (err < 0) 1130 goto out; 1131 *policy = err; 1132 } else if (pol == current->mempolicy && 1133 pol->mode == MPOL_INTERLEAVE) { 1134 *policy = next_node_in(current->il_prev, pol->nodes); 1135 } else if (pol == current->mempolicy && 1136 pol->mode == MPOL_WEIGHTED_INTERLEAVE) { 1137 if (current->il_weight) 1138 *policy = current->il_prev; 1139 else 1140 *policy = next_node_in(current->il_prev, 1141 pol->nodes); 1142 } else { 1143 err = -EINVAL; 1144 goto out; 1145 } 1146 } else { 1147 *policy = pol == &default_policy ? MPOL_DEFAULT : 1148 pol->mode; 1149 /* 1150 * Internal mempolicy flags must be masked off before exposing 1151 * the policy to userspace. 1152 */ 1153 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1154 } 1155 1156 err = 0; 1157 if (nmask) { 1158 if (mpol_store_user_nodemask(pol)) { 1159 *nmask = pol->w.user_nodemask; 1160 } else { 1161 task_lock(current); 1162 get_policy_nodemask(pol, nmask); 1163 task_unlock(current); 1164 } 1165 } 1166 1167 out: 1168 mpol_cond_put(pol); 1169 if (vma) 1170 mmap_read_unlock(mm); 1171 if (pol_refcount) 1172 mpol_put(pol_refcount); 1173 return err; 1174 } 1175 1176 #ifdef CONFIG_MIGRATION 1177 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1178 unsigned long flags) 1179 { 1180 /* 1181 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 1182 * Choosing not to migrate a shared folio is not counted as a failure. 1183 * 1184 * See folio_maybe_mapped_shared() on possible imprecision when we 1185 * cannot easily detect if a folio is shared. 1186 */ 1187 if ((flags & MPOL_MF_MOVE_ALL) || !folio_maybe_mapped_shared(folio)) { 1188 if (folio_isolate_lru(folio)) { 1189 list_add_tail(&folio->lru, foliolist); 1190 node_stat_mod_folio(folio, 1191 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1192 folio_nr_pages(folio)); 1193 } else { 1194 /* 1195 * Non-movable folio may reach here. And, there may be 1196 * temporary off LRU folios or non-LRU movable folios. 1197 * Treat them as unmovable folios since they can't be 1198 * isolated, so they can't be moved at the moment. 1199 */ 1200 return false; 1201 } 1202 } 1203 return true; 1204 } 1205 1206 /* 1207 * Migrate pages from one node to a target node. 1208 * Returns error or the number of pages not migrated. 1209 */ 1210 static long migrate_to_node(struct mm_struct *mm, int source, int dest, 1211 int flags) 1212 { 1213 nodemask_t nmask; 1214 struct vm_area_struct *vma; 1215 LIST_HEAD(pagelist); 1216 long nr_failed; 1217 long err = 0; 1218 struct migration_target_control mtc = { 1219 .nid = dest, 1220 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1221 .reason = MR_SYSCALL, 1222 }; 1223 1224 nodes_clear(nmask); 1225 node_set(source, nmask); 1226 1227 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1228 1229 mmap_read_lock(mm); 1230 vma = find_vma(mm, 0); 1231 if (unlikely(!vma)) { 1232 mmap_read_unlock(mm); 1233 return 0; 1234 } 1235 1236 /* 1237 * This does not migrate the range, but isolates all pages that 1238 * need migration. Between passing in the full user address 1239 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, 1240 * but passes back the count of pages which could not be isolated. 1241 */ 1242 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1243 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1244 mmap_read_unlock(mm); 1245 1246 if (!list_empty(&pagelist)) { 1247 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1248 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1249 if (err) 1250 putback_movable_pages(&pagelist); 1251 } 1252 1253 if (err >= 0) 1254 err += nr_failed; 1255 return err; 1256 } 1257 1258 /* 1259 * Move pages between the two nodesets so as to preserve the physical 1260 * layout as much as possible. 1261 * 1262 * Returns the number of page that could not be moved. 1263 */ 1264 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1265 const nodemask_t *to, int flags) 1266 { 1267 long nr_failed = 0; 1268 long err = 0; 1269 nodemask_t tmp; 1270 1271 lru_cache_disable(); 1272 1273 /* 1274 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1275 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1276 * bit in 'tmp', and return that <source, dest> pair for migration. 1277 * The pair of nodemasks 'to' and 'from' define the map. 1278 * 1279 * If no pair of bits is found that way, fallback to picking some 1280 * pair of 'source' and 'dest' bits that are not the same. If the 1281 * 'source' and 'dest' bits are the same, this represents a node 1282 * that will be migrating to itself, so no pages need move. 1283 * 1284 * If no bits are left in 'tmp', or if all remaining bits left 1285 * in 'tmp' correspond to the same bit in 'to', return false 1286 * (nothing left to migrate). 1287 * 1288 * This lets us pick a pair of nodes to migrate between, such that 1289 * if possible the dest node is not already occupied by some other 1290 * source node, minimizing the risk of overloading the memory on a 1291 * node that would happen if we migrated incoming memory to a node 1292 * before migrating outgoing memory source that same node. 1293 * 1294 * A single scan of tmp is sufficient. As we go, we remember the 1295 * most recent <s, d> pair that moved (s != d). If we find a pair 1296 * that not only moved, but what's better, moved to an empty slot 1297 * (d is not set in tmp), then we break out then, with that pair. 1298 * Otherwise when we finish scanning from_tmp, we at least have the 1299 * most recent <s, d> pair that moved. If we get all the way through 1300 * the scan of tmp without finding any node that moved, much less 1301 * moved to an empty node, then there is nothing left worth migrating. 1302 */ 1303 1304 tmp = *from; 1305 while (!nodes_empty(tmp)) { 1306 int s, d; 1307 int source = NUMA_NO_NODE; 1308 int dest = 0; 1309 1310 for_each_node_mask(s, tmp) { 1311 1312 /* 1313 * do_migrate_pages() tries to maintain the relative 1314 * node relationship of the pages established between 1315 * threads and memory areas. 1316 * 1317 * However if the number of source nodes is not equal to 1318 * the number of destination nodes we can not preserve 1319 * this node relative relationship. In that case, skip 1320 * copying memory from a node that is in the destination 1321 * mask. 1322 * 1323 * Example: [2,3,4] -> [3,4,5] moves everything. 1324 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1325 */ 1326 1327 if ((nodes_weight(*from) != nodes_weight(*to)) && 1328 (node_isset(s, *to))) 1329 continue; 1330 1331 d = node_remap(s, *from, *to); 1332 if (s == d) 1333 continue; 1334 1335 source = s; /* Node moved. Memorize */ 1336 dest = d; 1337 1338 /* dest not in remaining from nodes? */ 1339 if (!node_isset(dest, tmp)) 1340 break; 1341 } 1342 if (source == NUMA_NO_NODE) 1343 break; 1344 1345 node_clear(source, tmp); 1346 err = migrate_to_node(mm, source, dest, flags); 1347 if (err > 0) 1348 nr_failed += err; 1349 if (err < 0) 1350 break; 1351 } 1352 1353 lru_cache_enable(); 1354 if (err < 0) 1355 return err; 1356 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; 1357 } 1358 1359 /* 1360 * Allocate a new folio for page migration, according to NUMA mempolicy. 1361 */ 1362 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1363 unsigned long private) 1364 { 1365 struct migration_mpol *mmpol = (struct migration_mpol *)private; 1366 struct mempolicy *pol = mmpol->pol; 1367 pgoff_t ilx = mmpol->ilx; 1368 unsigned int order; 1369 int nid = numa_node_id(); 1370 gfp_t gfp; 1371 1372 order = folio_order(src); 1373 ilx += src->index >> order; 1374 1375 if (folio_test_hugetlb(src)) { 1376 nodemask_t *nodemask; 1377 struct hstate *h; 1378 1379 h = folio_hstate(src); 1380 gfp = htlb_alloc_mask(h); 1381 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 1382 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp, 1383 htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND)); 1384 } 1385 1386 if (folio_test_large(src)) 1387 gfp = GFP_TRANSHUGE; 1388 else 1389 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP; 1390 1391 return folio_alloc_mpol(gfp, order, pol, ilx, nid); 1392 } 1393 #else 1394 1395 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1396 unsigned long flags) 1397 { 1398 return false; 1399 } 1400 1401 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1402 const nodemask_t *to, int flags) 1403 { 1404 return -ENOSYS; 1405 } 1406 1407 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1408 unsigned long private) 1409 { 1410 return NULL; 1411 } 1412 #endif 1413 1414 static long do_mbind(unsigned long start, unsigned long len, 1415 unsigned short mode, unsigned short mode_flags, 1416 nodemask_t *nmask, unsigned long flags) 1417 { 1418 struct mm_struct *mm = current->mm; 1419 struct vm_area_struct *vma, *prev; 1420 struct vma_iterator vmi; 1421 struct migration_mpol mmpol; 1422 struct mempolicy *new; 1423 unsigned long end; 1424 long err; 1425 long nr_failed; 1426 LIST_HEAD(pagelist); 1427 1428 if (flags & ~(unsigned long)MPOL_MF_VALID) 1429 return -EINVAL; 1430 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1431 return -EPERM; 1432 1433 if (start & ~PAGE_MASK) 1434 return -EINVAL; 1435 1436 if (mode == MPOL_DEFAULT) 1437 flags &= ~MPOL_MF_STRICT; 1438 1439 len = PAGE_ALIGN(len); 1440 end = start + len; 1441 1442 if (end < start) 1443 return -EINVAL; 1444 if (end == start) 1445 return 0; 1446 1447 new = mpol_new(mode, mode_flags, nmask); 1448 if (IS_ERR(new)) 1449 return PTR_ERR(new); 1450 1451 /* 1452 * If we are using the default policy then operation 1453 * on discontinuous address spaces is okay after all 1454 */ 1455 if (!new) 1456 flags |= MPOL_MF_DISCONTIG_OK; 1457 1458 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1459 lru_cache_disable(); 1460 { 1461 NODEMASK_SCRATCH(scratch); 1462 if (scratch) { 1463 mmap_write_lock(mm); 1464 err = mpol_set_nodemask(new, nmask, scratch); 1465 if (err) 1466 mmap_write_unlock(mm); 1467 } else 1468 err = -ENOMEM; 1469 NODEMASK_SCRATCH_FREE(scratch); 1470 } 1471 if (err) 1472 goto mpol_out; 1473 1474 /* 1475 * Lock the VMAs before scanning for pages to migrate, 1476 * to ensure we don't miss a concurrently inserted page. 1477 */ 1478 nr_failed = queue_pages_range(mm, start, end, nmask, 1479 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); 1480 1481 if (nr_failed < 0) { 1482 err = nr_failed; 1483 nr_failed = 0; 1484 } else { 1485 vma_iter_init(&vmi, mm, start); 1486 prev = vma_prev(&vmi); 1487 for_each_vma_range(vmi, vma, end) { 1488 err = mbind_range(&vmi, vma, &prev, start, end, new); 1489 if (err) 1490 break; 1491 } 1492 } 1493 1494 if (!err && !list_empty(&pagelist)) { 1495 /* Convert MPOL_DEFAULT's NULL to task or default policy */ 1496 if (!new) { 1497 new = get_task_policy(current); 1498 mpol_get(new); 1499 } 1500 mmpol.pol = new; 1501 mmpol.ilx = 0; 1502 1503 /* 1504 * In the interleaved case, attempt to allocate on exactly the 1505 * targeted nodes, for the first VMA to be migrated; for later 1506 * VMAs, the nodes will still be interleaved from the targeted 1507 * nodemask, but one by one may be selected differently. 1508 */ 1509 if (new->mode == MPOL_INTERLEAVE || 1510 new->mode == MPOL_WEIGHTED_INTERLEAVE) { 1511 struct folio *folio; 1512 unsigned int order; 1513 unsigned long addr = -EFAULT; 1514 1515 list_for_each_entry(folio, &pagelist, lru) { 1516 if (!folio_test_ksm(folio)) 1517 break; 1518 } 1519 if (!list_entry_is_head(folio, &pagelist, lru)) { 1520 vma_iter_init(&vmi, mm, start); 1521 for_each_vma_range(vmi, vma, end) { 1522 addr = page_address_in_vma(folio, 1523 folio_page(folio, 0), vma); 1524 if (addr != -EFAULT) 1525 break; 1526 } 1527 } 1528 if (addr != -EFAULT) { 1529 order = folio_order(folio); 1530 /* We already know the pol, but not the ilx */ 1531 mpol_cond_put(get_vma_policy(vma, addr, order, 1532 &mmpol.ilx)); 1533 /* Set base from which to increment by index */ 1534 mmpol.ilx -= folio->index >> order; 1535 } 1536 } 1537 } 1538 1539 mmap_write_unlock(mm); 1540 1541 if (!err && !list_empty(&pagelist)) { 1542 nr_failed |= migrate_pages(&pagelist, 1543 alloc_migration_target_by_mpol, NULL, 1544 (unsigned long)&mmpol, MIGRATE_SYNC, 1545 MR_MEMPOLICY_MBIND, NULL); 1546 } 1547 1548 if (nr_failed && (flags & MPOL_MF_STRICT)) 1549 err = -EIO; 1550 if (!list_empty(&pagelist)) 1551 putback_movable_pages(&pagelist); 1552 mpol_out: 1553 mpol_put(new); 1554 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1555 lru_cache_enable(); 1556 return err; 1557 } 1558 1559 /* 1560 * User space interface with variable sized bitmaps for nodelists. 1561 */ 1562 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1563 unsigned long maxnode) 1564 { 1565 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1566 int ret; 1567 1568 if (in_compat_syscall()) 1569 ret = compat_get_bitmap(mask, 1570 (const compat_ulong_t __user *)nmask, 1571 maxnode); 1572 else 1573 ret = copy_from_user(mask, nmask, 1574 nlongs * sizeof(unsigned long)); 1575 1576 if (ret) 1577 return -EFAULT; 1578 1579 if (maxnode % BITS_PER_LONG) 1580 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1581 1582 return 0; 1583 } 1584 1585 /* Copy a node mask from user space. */ 1586 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1587 unsigned long maxnode) 1588 { 1589 --maxnode; 1590 nodes_clear(*nodes); 1591 if (maxnode == 0 || !nmask) 1592 return 0; 1593 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1594 return -EINVAL; 1595 1596 /* 1597 * When the user specified more nodes than supported just check 1598 * if the non supported part is all zero, one word at a time, 1599 * starting at the end. 1600 */ 1601 while (maxnode > MAX_NUMNODES) { 1602 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1603 unsigned long t; 1604 1605 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1606 return -EFAULT; 1607 1608 if (maxnode - bits >= MAX_NUMNODES) { 1609 maxnode -= bits; 1610 } else { 1611 maxnode = MAX_NUMNODES; 1612 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1613 } 1614 if (t) 1615 return -EINVAL; 1616 } 1617 1618 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1619 } 1620 1621 /* Copy a kernel node mask to user space */ 1622 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1623 nodemask_t *nodes) 1624 { 1625 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1626 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1627 bool compat = in_compat_syscall(); 1628 1629 if (compat) 1630 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1631 1632 if (copy > nbytes) { 1633 if (copy > PAGE_SIZE) 1634 return -EINVAL; 1635 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1636 return -EFAULT; 1637 copy = nbytes; 1638 maxnode = nr_node_ids; 1639 } 1640 1641 if (compat) 1642 return compat_put_bitmap((compat_ulong_t __user *)mask, 1643 nodes_addr(*nodes), maxnode); 1644 1645 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1646 } 1647 1648 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1649 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1650 { 1651 *flags = *mode & MPOL_MODE_FLAGS; 1652 *mode &= ~MPOL_MODE_FLAGS; 1653 1654 if ((unsigned int)(*mode) >= MPOL_MAX) 1655 return -EINVAL; 1656 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1657 return -EINVAL; 1658 if (*flags & MPOL_F_NUMA_BALANCING) { 1659 if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY) 1660 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1661 else 1662 return -EINVAL; 1663 } 1664 return 0; 1665 } 1666 1667 static long kernel_mbind(unsigned long start, unsigned long len, 1668 unsigned long mode, const unsigned long __user *nmask, 1669 unsigned long maxnode, unsigned int flags) 1670 { 1671 unsigned short mode_flags; 1672 nodemask_t nodes; 1673 int lmode = mode; 1674 int err; 1675 1676 start = untagged_addr(start); 1677 err = sanitize_mpol_flags(&lmode, &mode_flags); 1678 if (err) 1679 return err; 1680 1681 err = get_nodes(&nodes, nmask, maxnode); 1682 if (err) 1683 return err; 1684 1685 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1686 } 1687 1688 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1689 unsigned long, home_node, unsigned long, flags) 1690 { 1691 struct mm_struct *mm = current->mm; 1692 struct vm_area_struct *vma, *prev; 1693 struct mempolicy *new, *old; 1694 unsigned long end; 1695 int err = -ENOENT; 1696 VMA_ITERATOR(vmi, mm, start); 1697 1698 start = untagged_addr(start); 1699 if (start & ~PAGE_MASK) 1700 return -EINVAL; 1701 /* 1702 * flags is used for future extension if any. 1703 */ 1704 if (flags != 0) 1705 return -EINVAL; 1706 1707 /* 1708 * Check home_node is online to avoid accessing uninitialized 1709 * NODE_DATA. 1710 */ 1711 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1712 return -EINVAL; 1713 1714 len = PAGE_ALIGN(len); 1715 end = start + len; 1716 1717 if (end < start) 1718 return -EINVAL; 1719 if (end == start) 1720 return 0; 1721 mmap_write_lock(mm); 1722 prev = vma_prev(&vmi); 1723 for_each_vma_range(vmi, vma, end) { 1724 /* 1725 * If any vma in the range got policy other than MPOL_BIND 1726 * or MPOL_PREFERRED_MANY we return error. We don't reset 1727 * the home node for vmas we already updated before. 1728 */ 1729 old = vma_policy(vma); 1730 if (!old) { 1731 prev = vma; 1732 continue; 1733 } 1734 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1735 err = -EOPNOTSUPP; 1736 break; 1737 } 1738 new = mpol_dup(old); 1739 if (IS_ERR(new)) { 1740 err = PTR_ERR(new); 1741 break; 1742 } 1743 1744 vma_start_write(vma); 1745 new->home_node = home_node; 1746 err = mbind_range(&vmi, vma, &prev, start, end, new); 1747 mpol_put(new); 1748 if (err) 1749 break; 1750 } 1751 mmap_write_unlock(mm); 1752 return err; 1753 } 1754 1755 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1756 unsigned long, mode, const unsigned long __user *, nmask, 1757 unsigned long, maxnode, unsigned int, flags) 1758 { 1759 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1760 } 1761 1762 /* Set the process memory policy */ 1763 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1764 unsigned long maxnode) 1765 { 1766 unsigned short mode_flags; 1767 nodemask_t nodes; 1768 int lmode = mode; 1769 int err; 1770 1771 err = sanitize_mpol_flags(&lmode, &mode_flags); 1772 if (err) 1773 return err; 1774 1775 err = get_nodes(&nodes, nmask, maxnode); 1776 if (err) 1777 return err; 1778 1779 return do_set_mempolicy(lmode, mode_flags, &nodes); 1780 } 1781 1782 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1783 unsigned long, maxnode) 1784 { 1785 return kernel_set_mempolicy(mode, nmask, maxnode); 1786 } 1787 1788 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1789 const unsigned long __user *old_nodes, 1790 const unsigned long __user *new_nodes) 1791 { 1792 struct mm_struct *mm = NULL; 1793 struct task_struct *task; 1794 nodemask_t task_nodes; 1795 int err; 1796 nodemask_t *old; 1797 nodemask_t *new; 1798 NODEMASK_SCRATCH(scratch); 1799 1800 if (!scratch) 1801 return -ENOMEM; 1802 1803 old = &scratch->mask1; 1804 new = &scratch->mask2; 1805 1806 err = get_nodes(old, old_nodes, maxnode); 1807 if (err) 1808 goto out; 1809 1810 err = get_nodes(new, new_nodes, maxnode); 1811 if (err) 1812 goto out; 1813 1814 /* Find the mm_struct */ 1815 rcu_read_lock(); 1816 task = pid ? find_task_by_vpid(pid) : current; 1817 if (!task) { 1818 rcu_read_unlock(); 1819 err = -ESRCH; 1820 goto out; 1821 } 1822 get_task_struct(task); 1823 1824 err = -EINVAL; 1825 1826 /* 1827 * Check if this process has the right to modify the specified process. 1828 * Use the regular "ptrace_may_access()" checks. 1829 */ 1830 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1831 rcu_read_unlock(); 1832 err = -EPERM; 1833 goto out_put; 1834 } 1835 rcu_read_unlock(); 1836 1837 task_nodes = cpuset_mems_allowed(task); 1838 /* Is the user allowed to access the target nodes? */ 1839 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1840 err = -EPERM; 1841 goto out_put; 1842 } 1843 1844 task_nodes = cpuset_mems_allowed(current); 1845 nodes_and(*new, *new, task_nodes); 1846 if (nodes_empty(*new)) 1847 goto out_put; 1848 1849 err = security_task_movememory(task); 1850 if (err) 1851 goto out_put; 1852 1853 mm = get_task_mm(task); 1854 put_task_struct(task); 1855 1856 if (!mm) { 1857 err = -EINVAL; 1858 goto out; 1859 } 1860 1861 err = do_migrate_pages(mm, old, new, 1862 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1863 1864 mmput(mm); 1865 out: 1866 NODEMASK_SCRATCH_FREE(scratch); 1867 1868 return err; 1869 1870 out_put: 1871 put_task_struct(task); 1872 goto out; 1873 } 1874 1875 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1876 const unsigned long __user *, old_nodes, 1877 const unsigned long __user *, new_nodes) 1878 { 1879 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1880 } 1881 1882 /* Retrieve NUMA policy */ 1883 static int kernel_get_mempolicy(int __user *policy, 1884 unsigned long __user *nmask, 1885 unsigned long maxnode, 1886 unsigned long addr, 1887 unsigned long flags) 1888 { 1889 int err; 1890 int pval; 1891 nodemask_t nodes; 1892 1893 if (nmask != NULL && maxnode < nr_node_ids) 1894 return -EINVAL; 1895 1896 addr = untagged_addr(addr); 1897 1898 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1899 1900 if (err) 1901 return err; 1902 1903 if (policy && put_user(pval, policy)) 1904 return -EFAULT; 1905 1906 if (nmask) 1907 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1908 1909 return err; 1910 } 1911 1912 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1913 unsigned long __user *, nmask, unsigned long, maxnode, 1914 unsigned long, addr, unsigned long, flags) 1915 { 1916 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1917 } 1918 1919 bool vma_migratable(struct vm_area_struct *vma) 1920 { 1921 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1922 return false; 1923 1924 /* 1925 * DAX device mappings require predictable access latency, so avoid 1926 * incurring periodic faults. 1927 */ 1928 if (vma_is_dax(vma)) 1929 return false; 1930 1931 if (is_vm_hugetlb_page(vma) && 1932 !hugepage_migration_supported(hstate_vma(vma))) 1933 return false; 1934 1935 /* 1936 * Migration allocates pages in the highest zone. If we cannot 1937 * do so then migration (at least from node to node) is not 1938 * possible. 1939 */ 1940 if (vma->vm_file && 1941 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1942 < policy_zone) 1943 return false; 1944 return true; 1945 } 1946 1947 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1948 unsigned long addr, pgoff_t *ilx) 1949 { 1950 *ilx = 0; 1951 return (vma->vm_ops && vma->vm_ops->get_policy) ? 1952 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy; 1953 } 1954 1955 /* 1956 * get_vma_policy(@vma, @addr, @order, @ilx) 1957 * @vma: virtual memory area whose policy is sought 1958 * @addr: address in @vma for shared policy lookup 1959 * @order: 0, or appropriate huge_page_order for interleaving 1960 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or 1961 * MPOL_WEIGHTED_INTERLEAVE 1962 * 1963 * Returns effective policy for a VMA at specified address. 1964 * Falls back to current->mempolicy or system default policy, as necessary. 1965 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1966 * count--added by the get_policy() vm_op, as appropriate--to protect against 1967 * freeing by another task. It is the caller's responsibility to free the 1968 * extra reference for shared policies. 1969 */ 1970 struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1971 unsigned long addr, int order, pgoff_t *ilx) 1972 { 1973 struct mempolicy *pol; 1974 1975 pol = __get_vma_policy(vma, addr, ilx); 1976 if (!pol) 1977 pol = get_task_policy(current); 1978 if (pol->mode == MPOL_INTERLEAVE || 1979 pol->mode == MPOL_WEIGHTED_INTERLEAVE) { 1980 *ilx += vma->vm_pgoff >> order; 1981 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); 1982 } 1983 return pol; 1984 } 1985 1986 bool vma_policy_mof(struct vm_area_struct *vma) 1987 { 1988 struct mempolicy *pol; 1989 1990 if (vma->vm_ops && vma->vm_ops->get_policy) { 1991 bool ret = false; 1992 pgoff_t ilx; /* ignored here */ 1993 1994 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx); 1995 if (pol && (pol->flags & MPOL_F_MOF)) 1996 ret = true; 1997 mpol_cond_put(pol); 1998 1999 return ret; 2000 } 2001 2002 pol = vma->vm_policy; 2003 if (!pol) 2004 pol = get_task_policy(current); 2005 2006 return pol->flags & MPOL_F_MOF; 2007 } 2008 2009 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 2010 { 2011 enum zone_type dynamic_policy_zone = policy_zone; 2012 2013 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 2014 2015 /* 2016 * if policy->nodes has movable memory only, 2017 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 2018 * 2019 * policy->nodes is intersect with node_states[N_MEMORY]. 2020 * so if the following test fails, it implies 2021 * policy->nodes has movable memory only. 2022 */ 2023 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 2024 dynamic_policy_zone = ZONE_MOVABLE; 2025 2026 return zone >= dynamic_policy_zone; 2027 } 2028 2029 static unsigned int weighted_interleave_nodes(struct mempolicy *policy) 2030 { 2031 unsigned int node; 2032 unsigned int cpuset_mems_cookie; 2033 2034 retry: 2035 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */ 2036 cpuset_mems_cookie = read_mems_allowed_begin(); 2037 node = current->il_prev; 2038 if (!current->il_weight || !node_isset(node, policy->nodes)) { 2039 node = next_node_in(node, policy->nodes); 2040 if (read_mems_allowed_retry(cpuset_mems_cookie)) 2041 goto retry; 2042 if (node == MAX_NUMNODES) 2043 return node; 2044 current->il_prev = node; 2045 current->il_weight = get_il_weight(node); 2046 } 2047 current->il_weight--; 2048 return node; 2049 } 2050 2051 /* Do dynamic interleaving for a process */ 2052 static unsigned int interleave_nodes(struct mempolicy *policy) 2053 { 2054 unsigned int nid; 2055 unsigned int cpuset_mems_cookie; 2056 2057 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */ 2058 do { 2059 cpuset_mems_cookie = read_mems_allowed_begin(); 2060 nid = next_node_in(current->il_prev, policy->nodes); 2061 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2062 2063 if (nid < MAX_NUMNODES) 2064 current->il_prev = nid; 2065 return nid; 2066 } 2067 2068 /* 2069 * Depending on the memory policy provide a node from which to allocate the 2070 * next slab entry. 2071 */ 2072 unsigned int mempolicy_slab_node(void) 2073 { 2074 struct mempolicy *policy; 2075 int node = numa_mem_id(); 2076 2077 if (!in_task()) 2078 return node; 2079 2080 policy = current->mempolicy; 2081 if (!policy) 2082 return node; 2083 2084 switch (policy->mode) { 2085 case MPOL_PREFERRED: 2086 return first_node(policy->nodes); 2087 2088 case MPOL_INTERLEAVE: 2089 return interleave_nodes(policy); 2090 2091 case MPOL_WEIGHTED_INTERLEAVE: 2092 return weighted_interleave_nodes(policy); 2093 2094 case MPOL_BIND: 2095 case MPOL_PREFERRED_MANY: 2096 { 2097 struct zoneref *z; 2098 2099 /* 2100 * Follow bind policy behavior and start allocation at the 2101 * first node. 2102 */ 2103 struct zonelist *zonelist; 2104 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 2105 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 2106 z = first_zones_zonelist(zonelist, highest_zoneidx, 2107 &policy->nodes); 2108 return zonelist_zone(z) ? zonelist_node_idx(z) : node; 2109 } 2110 case MPOL_LOCAL: 2111 return node; 2112 2113 default: 2114 BUG(); 2115 } 2116 } 2117 2118 static unsigned int read_once_policy_nodemask(struct mempolicy *pol, 2119 nodemask_t *mask) 2120 { 2121 /* 2122 * barrier stabilizes the nodemask locally so that it can be iterated 2123 * over safely without concern for changes. Allocators validate node 2124 * selection does not violate mems_allowed, so this is safe. 2125 */ 2126 barrier(); 2127 memcpy(mask, &pol->nodes, sizeof(nodemask_t)); 2128 barrier(); 2129 return nodes_weight(*mask); 2130 } 2131 2132 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx) 2133 { 2134 struct weighted_interleave_state *state; 2135 nodemask_t nodemask; 2136 unsigned int target, nr_nodes; 2137 u8 *table = NULL; 2138 unsigned int weight_total = 0; 2139 u8 weight; 2140 int nid = 0; 2141 2142 nr_nodes = read_once_policy_nodemask(pol, &nodemask); 2143 if (!nr_nodes) 2144 return numa_node_id(); 2145 2146 rcu_read_lock(); 2147 2148 state = rcu_dereference(wi_state); 2149 /* Uninitialized wi_state means we should assume all weights are 1 */ 2150 if (state) 2151 table = state->iw_table; 2152 2153 /* calculate the total weight */ 2154 for_each_node_mask(nid, nodemask) 2155 weight_total += table ? table[nid] : 1; 2156 2157 /* Calculate the node offset based on totals */ 2158 target = ilx % weight_total; 2159 nid = first_node(nodemask); 2160 while (target) { 2161 /* detect system default usage */ 2162 weight = table ? table[nid] : 1; 2163 if (target < weight) 2164 break; 2165 target -= weight; 2166 nid = next_node_in(nid, nodemask); 2167 } 2168 rcu_read_unlock(); 2169 return nid; 2170 } 2171 2172 /* 2173 * Do static interleaving for interleave index @ilx. Returns the ilx'th 2174 * node in pol->nodes (starting from ilx=0), wrapping around if ilx 2175 * exceeds the number of present nodes. 2176 */ 2177 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx) 2178 { 2179 nodemask_t nodemask; 2180 unsigned int target, nnodes; 2181 int i; 2182 int nid; 2183 2184 nnodes = read_once_policy_nodemask(pol, &nodemask); 2185 if (!nnodes) 2186 return numa_node_id(); 2187 target = ilx % nnodes; 2188 nid = first_node(nodemask); 2189 for (i = 0; i < target; i++) 2190 nid = next_node(nid, nodemask); 2191 return nid; 2192 } 2193 2194 /* 2195 * Return a nodemask representing a mempolicy for filtering nodes for 2196 * page allocation, together with preferred node id (or the input node id). 2197 */ 2198 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 2199 pgoff_t ilx, int *nid) 2200 { 2201 nodemask_t *nodemask = NULL; 2202 2203 switch (pol->mode) { 2204 case MPOL_PREFERRED: 2205 /* Override input node id */ 2206 *nid = first_node(pol->nodes); 2207 break; 2208 case MPOL_PREFERRED_MANY: 2209 nodemask = &pol->nodes; 2210 if (pol->home_node != NUMA_NO_NODE) 2211 *nid = pol->home_node; 2212 break; 2213 case MPOL_BIND: 2214 /* Restrict to nodemask (but not on lower zones) */ 2215 if (apply_policy_zone(pol, gfp_zone(gfp)) && 2216 cpuset_nodemask_valid_mems_allowed(&pol->nodes)) 2217 nodemask = &pol->nodes; 2218 if (pol->home_node != NUMA_NO_NODE) 2219 *nid = pol->home_node; 2220 /* 2221 * __GFP_THISNODE shouldn't even be used with the bind policy 2222 * because we might easily break the expectation to stay on the 2223 * requested node and not break the policy. 2224 */ 2225 WARN_ON_ONCE(gfp & __GFP_THISNODE); 2226 break; 2227 case MPOL_INTERLEAVE: 2228 /* Override input node id */ 2229 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 2230 interleave_nodes(pol) : interleave_nid(pol, ilx); 2231 break; 2232 case MPOL_WEIGHTED_INTERLEAVE: 2233 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 2234 weighted_interleave_nodes(pol) : 2235 weighted_interleave_nid(pol, ilx); 2236 break; 2237 } 2238 2239 return nodemask; 2240 } 2241 2242 #ifdef CONFIG_HUGETLBFS 2243 /* 2244 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2245 * @vma: virtual memory area whose policy is sought 2246 * @addr: address in @vma for shared policy lookup and interleave policy 2247 * @gfp_flags: for requested zone 2248 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2249 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2250 * 2251 * Returns a nid suitable for a huge page allocation and a pointer 2252 * to the struct mempolicy for conditional unref after allocation. 2253 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2254 * to the mempolicy's @nodemask for filtering the zonelist. 2255 */ 2256 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2257 struct mempolicy **mpol, nodemask_t **nodemask) 2258 { 2259 pgoff_t ilx; 2260 int nid; 2261 2262 nid = numa_node_id(); 2263 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx); 2264 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid); 2265 return nid; 2266 } 2267 2268 /* 2269 * init_nodemask_of_mempolicy 2270 * 2271 * If the current task's mempolicy is "default" [NULL], return 'false' 2272 * to indicate default policy. Otherwise, extract the policy nodemask 2273 * for 'bind' or 'interleave' policy into the argument nodemask, or 2274 * initialize the argument nodemask to contain the single node for 2275 * 'preferred' or 'local' policy and return 'true' to indicate presence 2276 * of non-default mempolicy. 2277 * 2278 * We don't bother with reference counting the mempolicy [mpol_get/put] 2279 * because the current task is examining it's own mempolicy and a task's 2280 * mempolicy is only ever changed by the task itself. 2281 * 2282 * N.B., it is the caller's responsibility to free a returned nodemask. 2283 */ 2284 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2285 { 2286 struct mempolicy *mempolicy; 2287 2288 if (!(mask && current->mempolicy)) 2289 return false; 2290 2291 task_lock(current); 2292 mempolicy = current->mempolicy; 2293 switch (mempolicy->mode) { 2294 case MPOL_PREFERRED: 2295 case MPOL_PREFERRED_MANY: 2296 case MPOL_BIND: 2297 case MPOL_INTERLEAVE: 2298 case MPOL_WEIGHTED_INTERLEAVE: 2299 *mask = mempolicy->nodes; 2300 break; 2301 2302 case MPOL_LOCAL: 2303 init_nodemask_of_node(mask, numa_node_id()); 2304 break; 2305 2306 default: 2307 BUG(); 2308 } 2309 task_unlock(current); 2310 2311 return true; 2312 } 2313 #endif 2314 2315 /* 2316 * mempolicy_in_oom_domain 2317 * 2318 * If tsk's mempolicy is "bind", check for intersection between mask and 2319 * the policy nodemask. Otherwise, return true for all other policies 2320 * including "interleave", as a tsk with "interleave" policy may have 2321 * memory allocated from all nodes in system. 2322 * 2323 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2324 */ 2325 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2326 const nodemask_t *mask) 2327 { 2328 struct mempolicy *mempolicy; 2329 bool ret = true; 2330 2331 if (!mask) 2332 return ret; 2333 2334 task_lock(tsk); 2335 mempolicy = tsk->mempolicy; 2336 if (mempolicy && mempolicy->mode == MPOL_BIND) 2337 ret = nodes_intersects(mempolicy->nodes, *mask); 2338 task_unlock(tsk); 2339 2340 return ret; 2341 } 2342 2343 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2344 int nid, nodemask_t *nodemask) 2345 { 2346 struct page *page; 2347 gfp_t preferred_gfp; 2348 2349 /* 2350 * This is a two pass approach. The first pass will only try the 2351 * preferred nodes but skip the direct reclaim and allow the 2352 * allocation to fail, while the second pass will try all the 2353 * nodes in system. 2354 */ 2355 preferred_gfp = gfp | __GFP_NOWARN; 2356 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2357 page = __alloc_frozen_pages_noprof(preferred_gfp, order, nid, nodemask); 2358 if (!page) 2359 page = __alloc_frozen_pages_noprof(gfp, order, nid, NULL); 2360 2361 return page; 2362 } 2363 2364 /** 2365 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy. 2366 * @gfp: GFP flags. 2367 * @order: Order of the page allocation. 2368 * @pol: Pointer to the NUMA mempolicy. 2369 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()). 2370 * @nid: Preferred node (usually numa_node_id() but @mpol may override it). 2371 * 2372 * Return: The page on success or NULL if allocation fails. 2373 */ 2374 static struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, 2375 struct mempolicy *pol, pgoff_t ilx, int nid) 2376 { 2377 nodemask_t *nodemask; 2378 struct page *page; 2379 2380 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 2381 2382 if (pol->mode == MPOL_PREFERRED_MANY) 2383 return alloc_pages_preferred_many(gfp, order, nid, nodemask); 2384 2385 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2386 /* filter "hugepage" allocation, unless from alloc_pages() */ 2387 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) { 2388 /* 2389 * For hugepage allocation and non-interleave policy which 2390 * allows the current node (or other explicitly preferred 2391 * node) we only try to allocate from the current/preferred 2392 * node and don't fall back to other nodes, as the cost of 2393 * remote accesses would likely offset THP benefits. 2394 * 2395 * If the policy is interleave or does not allow the current 2396 * node in its nodemask, we allocate the standard way. 2397 */ 2398 if (pol->mode != MPOL_INTERLEAVE && 2399 pol->mode != MPOL_WEIGHTED_INTERLEAVE && 2400 (!nodemask || node_isset(nid, *nodemask))) { 2401 /* 2402 * First, try to allocate THP only on local node, but 2403 * don't reclaim unnecessarily, just compact. 2404 */ 2405 page = __alloc_frozen_pages_noprof( 2406 gfp | __GFP_THISNODE | __GFP_NORETRY, order, 2407 nid, NULL); 2408 if (page || !(gfp & __GFP_DIRECT_RECLAIM)) 2409 return page; 2410 /* 2411 * If hugepage allocations are configured to always 2412 * synchronous compact or the vma has been madvised 2413 * to prefer hugepage backing, retry allowing remote 2414 * memory with both reclaim and compact as well. 2415 */ 2416 } 2417 } 2418 2419 page = __alloc_frozen_pages_noprof(gfp, order, nid, nodemask); 2420 2421 if (unlikely(pol->mode == MPOL_INTERLEAVE || 2422 pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) { 2423 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */ 2424 if (static_branch_likely(&vm_numa_stat_key) && 2425 page_to_nid(page) == nid) { 2426 preempt_disable(); 2427 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2428 preempt_enable(); 2429 } 2430 } 2431 2432 return page; 2433 } 2434 2435 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order, 2436 struct mempolicy *pol, pgoff_t ilx, int nid) 2437 { 2438 struct page *page = alloc_pages_mpol(gfp | __GFP_COMP, order, pol, 2439 ilx, nid); 2440 if (!page) 2441 return NULL; 2442 2443 set_page_refcounted(page); 2444 return page_rmappable_folio(page); 2445 } 2446 2447 /** 2448 * vma_alloc_folio - Allocate a folio for a VMA. 2449 * @gfp: GFP flags. 2450 * @order: Order of the folio. 2451 * @vma: Pointer to VMA. 2452 * @addr: Virtual address of the allocation. Must be inside @vma. 2453 * 2454 * Allocate a folio for a specific address in @vma, using the appropriate 2455 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the 2456 * VMA to prevent it from going away. Should be used for all allocations 2457 * for folios that will be mapped into user space, excepting hugetlbfs, and 2458 * excepting where direct use of folio_alloc_mpol() is more appropriate. 2459 * 2460 * Return: The folio on success or NULL if allocation fails. 2461 */ 2462 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma, 2463 unsigned long addr) 2464 { 2465 struct mempolicy *pol; 2466 pgoff_t ilx; 2467 struct folio *folio; 2468 2469 if (vma->vm_flags & VM_DROPPABLE) 2470 gfp |= __GFP_NOWARN; 2471 2472 pol = get_vma_policy(vma, addr, order, &ilx); 2473 folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id()); 2474 mpol_cond_put(pol); 2475 return folio; 2476 } 2477 EXPORT_SYMBOL(vma_alloc_folio_noprof); 2478 2479 struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned order) 2480 { 2481 struct mempolicy *pol = &default_policy; 2482 2483 /* 2484 * No reference counting needed for current->mempolicy 2485 * nor system default_policy 2486 */ 2487 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2488 pol = get_task_policy(current); 2489 2490 return alloc_pages_mpol(gfp, order, pol, NO_INTERLEAVE_INDEX, 2491 numa_node_id()); 2492 } 2493 2494 /** 2495 * alloc_pages - Allocate pages. 2496 * @gfp: GFP flags. 2497 * @order: Power of two of number of pages to allocate. 2498 * 2499 * Allocate 1 << @order contiguous pages. The physical address of the 2500 * first page is naturally aligned (eg an order-3 allocation will be aligned 2501 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2502 * process is honoured when in process context. 2503 * 2504 * Context: Can be called from any context, providing the appropriate GFP 2505 * flags are used. 2506 * Return: The page on success or NULL if allocation fails. 2507 */ 2508 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order) 2509 { 2510 struct page *page = alloc_frozen_pages_noprof(gfp, order); 2511 2512 if (page) 2513 set_page_refcounted(page); 2514 return page; 2515 } 2516 EXPORT_SYMBOL(alloc_pages_noprof); 2517 2518 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order) 2519 { 2520 return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order)); 2521 } 2522 EXPORT_SYMBOL(folio_alloc_noprof); 2523 2524 static unsigned long alloc_pages_bulk_interleave(gfp_t gfp, 2525 struct mempolicy *pol, unsigned long nr_pages, 2526 struct page **page_array) 2527 { 2528 int nodes; 2529 unsigned long nr_pages_per_node; 2530 int delta; 2531 int i; 2532 unsigned long nr_allocated; 2533 unsigned long total_allocated = 0; 2534 2535 nodes = nodes_weight(pol->nodes); 2536 nr_pages_per_node = nr_pages / nodes; 2537 delta = nr_pages - nodes * nr_pages_per_node; 2538 2539 for (i = 0; i < nodes; i++) { 2540 if (delta) { 2541 nr_allocated = alloc_pages_bulk_noprof(gfp, 2542 interleave_nodes(pol), NULL, 2543 nr_pages_per_node + 1, 2544 page_array); 2545 delta--; 2546 } else { 2547 nr_allocated = alloc_pages_bulk_noprof(gfp, 2548 interleave_nodes(pol), NULL, 2549 nr_pages_per_node, page_array); 2550 } 2551 2552 page_array += nr_allocated; 2553 total_allocated += nr_allocated; 2554 } 2555 2556 return total_allocated; 2557 } 2558 2559 static unsigned long alloc_pages_bulk_weighted_interleave(gfp_t gfp, 2560 struct mempolicy *pol, unsigned long nr_pages, 2561 struct page **page_array) 2562 { 2563 struct weighted_interleave_state *state; 2564 struct task_struct *me = current; 2565 unsigned int cpuset_mems_cookie; 2566 unsigned long total_allocated = 0; 2567 unsigned long nr_allocated = 0; 2568 unsigned long rounds; 2569 unsigned long node_pages, delta; 2570 u8 *weights, weight; 2571 unsigned int weight_total = 0; 2572 unsigned long rem_pages = nr_pages; 2573 nodemask_t nodes; 2574 int nnodes, node; 2575 int resume_node = MAX_NUMNODES - 1; 2576 u8 resume_weight = 0; 2577 int prev_node; 2578 int i; 2579 2580 if (!nr_pages) 2581 return 0; 2582 2583 /* read the nodes onto the stack, retry if done during rebind */ 2584 do { 2585 cpuset_mems_cookie = read_mems_allowed_begin(); 2586 nnodes = read_once_policy_nodemask(pol, &nodes); 2587 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2588 2589 /* if the nodemask has become invalid, we cannot do anything */ 2590 if (!nnodes) 2591 return 0; 2592 2593 /* Continue allocating from most recent node and adjust the nr_pages */ 2594 node = me->il_prev; 2595 weight = me->il_weight; 2596 if (weight && node_isset(node, nodes)) { 2597 node_pages = min(rem_pages, weight); 2598 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, 2599 page_array); 2600 page_array += nr_allocated; 2601 total_allocated += nr_allocated; 2602 /* if that's all the pages, no need to interleave */ 2603 if (rem_pages <= weight) { 2604 me->il_weight -= rem_pages; 2605 return total_allocated; 2606 } 2607 /* Otherwise we adjust remaining pages, continue from there */ 2608 rem_pages -= weight; 2609 } 2610 /* clear active weight in case of an allocation failure */ 2611 me->il_weight = 0; 2612 prev_node = node; 2613 2614 /* create a local copy of node weights to operate on outside rcu */ 2615 weights = kzalloc(nr_node_ids, GFP_KERNEL); 2616 if (!weights) 2617 return total_allocated; 2618 2619 rcu_read_lock(); 2620 state = rcu_dereference(wi_state); 2621 if (state) { 2622 memcpy(weights, state->iw_table, nr_node_ids * sizeof(u8)); 2623 rcu_read_unlock(); 2624 } else { 2625 rcu_read_unlock(); 2626 for (i = 0; i < nr_node_ids; i++) 2627 weights[i] = 1; 2628 } 2629 2630 /* calculate total, detect system default usage */ 2631 for_each_node_mask(node, nodes) 2632 weight_total += weights[node]; 2633 2634 /* 2635 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls. 2636 * Track which node weighted interleave should resume from. 2637 * 2638 * if (rounds > 0) and (delta == 0), resume_node will always be 2639 * the node following prev_node and its weight. 2640 */ 2641 rounds = rem_pages / weight_total; 2642 delta = rem_pages % weight_total; 2643 resume_node = next_node_in(prev_node, nodes); 2644 resume_weight = weights[resume_node]; 2645 for (i = 0; i < nnodes; i++) { 2646 node = next_node_in(prev_node, nodes); 2647 weight = weights[node]; 2648 node_pages = weight * rounds; 2649 /* If a delta exists, add this node's portion of the delta */ 2650 if (delta > weight) { 2651 node_pages += weight; 2652 delta -= weight; 2653 } else if (delta) { 2654 /* when delta is depleted, resume from that node */ 2655 node_pages += delta; 2656 resume_node = node; 2657 resume_weight = weight - delta; 2658 delta = 0; 2659 } 2660 /* node_pages can be 0 if an allocation fails and rounds == 0 */ 2661 if (!node_pages) 2662 break; 2663 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, 2664 page_array); 2665 page_array += nr_allocated; 2666 total_allocated += nr_allocated; 2667 if (total_allocated == nr_pages) 2668 break; 2669 prev_node = node; 2670 } 2671 me->il_prev = resume_node; 2672 me->il_weight = resume_weight; 2673 kfree(weights); 2674 return total_allocated; 2675 } 2676 2677 static unsigned long alloc_pages_bulk_preferred_many(gfp_t gfp, int nid, 2678 struct mempolicy *pol, unsigned long nr_pages, 2679 struct page **page_array) 2680 { 2681 gfp_t preferred_gfp; 2682 unsigned long nr_allocated = 0; 2683 2684 preferred_gfp = gfp | __GFP_NOWARN; 2685 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2686 2687 nr_allocated = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes, 2688 nr_pages, page_array); 2689 2690 if (nr_allocated < nr_pages) 2691 nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL, 2692 nr_pages - nr_allocated, 2693 page_array + nr_allocated); 2694 return nr_allocated; 2695 } 2696 2697 /* alloc pages bulk and mempolicy should be considered at the 2698 * same time in some situation such as vmalloc. 2699 * 2700 * It can accelerate memory allocation especially interleaving 2701 * allocate memory. 2702 */ 2703 unsigned long alloc_pages_bulk_mempolicy_noprof(gfp_t gfp, 2704 unsigned long nr_pages, struct page **page_array) 2705 { 2706 struct mempolicy *pol = &default_policy; 2707 nodemask_t *nodemask; 2708 int nid; 2709 2710 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2711 pol = get_task_policy(current); 2712 2713 if (pol->mode == MPOL_INTERLEAVE) 2714 return alloc_pages_bulk_interleave(gfp, pol, 2715 nr_pages, page_array); 2716 2717 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE) 2718 return alloc_pages_bulk_weighted_interleave( 2719 gfp, pol, nr_pages, page_array); 2720 2721 if (pol->mode == MPOL_PREFERRED_MANY) 2722 return alloc_pages_bulk_preferred_many(gfp, 2723 numa_node_id(), pol, nr_pages, page_array); 2724 2725 nid = numa_node_id(); 2726 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid); 2727 return alloc_pages_bulk_noprof(gfp, nid, nodemask, 2728 nr_pages, page_array); 2729 } 2730 2731 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2732 { 2733 struct mempolicy *pol = mpol_dup(src->vm_policy); 2734 2735 if (IS_ERR(pol)) 2736 return PTR_ERR(pol); 2737 dst->vm_policy = pol; 2738 return 0; 2739 } 2740 2741 /* 2742 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2743 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2744 * with the mems_allowed returned by cpuset_mems_allowed(). This 2745 * keeps mempolicies cpuset relative after its cpuset moves. See 2746 * further kernel/cpuset.c update_nodemask(). 2747 * 2748 * current's mempolicy may be rebinded by the other task(the task that changes 2749 * cpuset's mems), so we needn't do rebind work for current task. 2750 */ 2751 2752 /* Slow path of a mempolicy duplicate */ 2753 struct mempolicy *__mpol_dup(struct mempolicy *old) 2754 { 2755 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2756 2757 if (!new) 2758 return ERR_PTR(-ENOMEM); 2759 2760 /* task's mempolicy is protected by alloc_lock */ 2761 if (old == current->mempolicy) { 2762 task_lock(current); 2763 *new = *old; 2764 task_unlock(current); 2765 } else 2766 *new = *old; 2767 2768 if (current_cpuset_is_being_rebound()) { 2769 nodemask_t mems = cpuset_mems_allowed(current); 2770 mpol_rebind_policy(new, &mems); 2771 } 2772 atomic_set(&new->refcnt, 1); 2773 return new; 2774 } 2775 2776 /* Slow path of a mempolicy comparison */ 2777 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2778 { 2779 if (!a || !b) 2780 return false; 2781 if (a->mode != b->mode) 2782 return false; 2783 if (a->flags != b->flags) 2784 return false; 2785 if (a->home_node != b->home_node) 2786 return false; 2787 if (mpol_store_user_nodemask(a)) 2788 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2789 return false; 2790 2791 switch (a->mode) { 2792 case MPOL_BIND: 2793 case MPOL_INTERLEAVE: 2794 case MPOL_PREFERRED: 2795 case MPOL_PREFERRED_MANY: 2796 case MPOL_WEIGHTED_INTERLEAVE: 2797 return !!nodes_equal(a->nodes, b->nodes); 2798 case MPOL_LOCAL: 2799 return true; 2800 default: 2801 BUG(); 2802 return false; 2803 } 2804 } 2805 2806 /* 2807 * Shared memory backing store policy support. 2808 * 2809 * Remember policies even when nobody has shared memory mapped. 2810 * The policies are kept in Red-Black tree linked from the inode. 2811 * They are protected by the sp->lock rwlock, which should be held 2812 * for any accesses to the tree. 2813 */ 2814 2815 /* 2816 * lookup first element intersecting start-end. Caller holds sp->lock for 2817 * reading or for writing 2818 */ 2819 static struct sp_node *sp_lookup(struct shared_policy *sp, 2820 pgoff_t start, pgoff_t end) 2821 { 2822 struct rb_node *n = sp->root.rb_node; 2823 2824 while (n) { 2825 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2826 2827 if (start >= p->end) 2828 n = n->rb_right; 2829 else if (end <= p->start) 2830 n = n->rb_left; 2831 else 2832 break; 2833 } 2834 if (!n) 2835 return NULL; 2836 for (;;) { 2837 struct sp_node *w = NULL; 2838 struct rb_node *prev = rb_prev(n); 2839 if (!prev) 2840 break; 2841 w = rb_entry(prev, struct sp_node, nd); 2842 if (w->end <= start) 2843 break; 2844 n = prev; 2845 } 2846 return rb_entry(n, struct sp_node, nd); 2847 } 2848 2849 /* 2850 * Insert a new shared policy into the list. Caller holds sp->lock for 2851 * writing. 2852 */ 2853 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2854 { 2855 struct rb_node **p = &sp->root.rb_node; 2856 struct rb_node *parent = NULL; 2857 struct sp_node *nd; 2858 2859 while (*p) { 2860 parent = *p; 2861 nd = rb_entry(parent, struct sp_node, nd); 2862 if (new->start < nd->start) 2863 p = &(*p)->rb_left; 2864 else if (new->end > nd->end) 2865 p = &(*p)->rb_right; 2866 else 2867 BUG(); 2868 } 2869 rb_link_node(&new->nd, parent, p); 2870 rb_insert_color(&new->nd, &sp->root); 2871 } 2872 2873 /* Find shared policy intersecting idx */ 2874 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, 2875 pgoff_t idx) 2876 { 2877 struct mempolicy *pol = NULL; 2878 struct sp_node *sn; 2879 2880 if (!sp->root.rb_node) 2881 return NULL; 2882 read_lock(&sp->lock); 2883 sn = sp_lookup(sp, idx, idx+1); 2884 if (sn) { 2885 mpol_get(sn->policy); 2886 pol = sn->policy; 2887 } 2888 read_unlock(&sp->lock); 2889 return pol; 2890 } 2891 2892 static void sp_free(struct sp_node *n) 2893 { 2894 mpol_put(n->policy); 2895 kmem_cache_free(sn_cache, n); 2896 } 2897 2898 /** 2899 * mpol_misplaced - check whether current folio node is valid in policy 2900 * 2901 * @folio: folio to be checked 2902 * @vmf: structure describing the fault 2903 * @addr: virtual address in @vma for shared policy lookup and interleave policy 2904 * 2905 * Lookup current policy node id for vma,addr and "compare to" folio's 2906 * node id. Policy determination "mimics" alloc_page_vma(). 2907 * Called from fault path where we know the vma and faulting address. 2908 * 2909 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2910 * policy, or a suitable node ID to allocate a replacement folio from. 2911 */ 2912 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf, 2913 unsigned long addr) 2914 { 2915 struct mempolicy *pol; 2916 pgoff_t ilx; 2917 struct zoneref *z; 2918 int curnid = folio_nid(folio); 2919 struct vm_area_struct *vma = vmf->vma; 2920 int thiscpu = raw_smp_processor_id(); 2921 int thisnid = numa_node_id(); 2922 int polnid = NUMA_NO_NODE; 2923 int ret = NUMA_NO_NODE; 2924 2925 /* 2926 * Make sure ptl is held so that we don't preempt and we 2927 * have a stable smp processor id 2928 */ 2929 lockdep_assert_held(vmf->ptl); 2930 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx); 2931 if (!(pol->flags & MPOL_F_MOF)) 2932 goto out; 2933 2934 switch (pol->mode) { 2935 case MPOL_INTERLEAVE: 2936 polnid = interleave_nid(pol, ilx); 2937 break; 2938 2939 case MPOL_WEIGHTED_INTERLEAVE: 2940 polnid = weighted_interleave_nid(pol, ilx); 2941 break; 2942 2943 case MPOL_PREFERRED: 2944 if (node_isset(curnid, pol->nodes)) 2945 goto out; 2946 polnid = first_node(pol->nodes); 2947 break; 2948 2949 case MPOL_LOCAL: 2950 polnid = numa_node_id(); 2951 break; 2952 2953 case MPOL_BIND: 2954 case MPOL_PREFERRED_MANY: 2955 /* 2956 * Even though MPOL_PREFERRED_MANY can allocate pages outside 2957 * policy nodemask we don't allow numa migration to nodes 2958 * outside policy nodemask for now. This is done so that if we 2959 * want demotion to slow memory to happen, before allocating 2960 * from some DRAM node say 'x', we will end up using a 2961 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario 2962 * we should not promote to node 'x' from slow memory node. 2963 */ 2964 if (pol->flags & MPOL_F_MORON) { 2965 /* 2966 * Optimize placement among multiple nodes 2967 * via NUMA balancing 2968 */ 2969 if (node_isset(thisnid, pol->nodes)) 2970 break; 2971 goto out; 2972 } 2973 2974 /* 2975 * use current page if in policy nodemask, 2976 * else select nearest allowed node, if any. 2977 * If no allowed nodes, use current [!misplaced]. 2978 */ 2979 if (node_isset(curnid, pol->nodes)) 2980 goto out; 2981 z = first_zones_zonelist( 2982 node_zonelist(thisnid, GFP_HIGHUSER), 2983 gfp_zone(GFP_HIGHUSER), 2984 &pol->nodes); 2985 polnid = zonelist_node_idx(z); 2986 break; 2987 2988 default: 2989 BUG(); 2990 } 2991 2992 /* Migrate the folio towards the node whose CPU is referencing it */ 2993 if (pol->flags & MPOL_F_MORON) { 2994 polnid = thisnid; 2995 2996 if (!should_numa_migrate_memory(current, folio, curnid, 2997 thiscpu)) 2998 goto out; 2999 } 3000 3001 if (curnid != polnid) 3002 ret = polnid; 3003 out: 3004 mpol_cond_put(pol); 3005 3006 return ret; 3007 } 3008 3009 /* 3010 * Drop the (possibly final) reference to task->mempolicy. It needs to be 3011 * dropped after task->mempolicy is set to NULL so that any allocation done as 3012 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 3013 * policy. 3014 */ 3015 void mpol_put_task_policy(struct task_struct *task) 3016 { 3017 struct mempolicy *pol; 3018 3019 task_lock(task); 3020 pol = task->mempolicy; 3021 task->mempolicy = NULL; 3022 task_unlock(task); 3023 mpol_put(pol); 3024 } 3025 3026 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 3027 { 3028 rb_erase(&n->nd, &sp->root); 3029 sp_free(n); 3030 } 3031 3032 static void sp_node_init(struct sp_node *node, unsigned long start, 3033 unsigned long end, struct mempolicy *pol) 3034 { 3035 node->start = start; 3036 node->end = end; 3037 node->policy = pol; 3038 } 3039 3040 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 3041 struct mempolicy *pol) 3042 { 3043 struct sp_node *n; 3044 struct mempolicy *newpol; 3045 3046 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 3047 if (!n) 3048 return NULL; 3049 3050 newpol = mpol_dup(pol); 3051 if (IS_ERR(newpol)) { 3052 kmem_cache_free(sn_cache, n); 3053 return NULL; 3054 } 3055 newpol->flags |= MPOL_F_SHARED; 3056 sp_node_init(n, start, end, newpol); 3057 3058 return n; 3059 } 3060 3061 /* Replace a policy range. */ 3062 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start, 3063 pgoff_t end, struct sp_node *new) 3064 { 3065 struct sp_node *n; 3066 struct sp_node *n_new = NULL; 3067 struct mempolicy *mpol_new = NULL; 3068 int ret = 0; 3069 3070 restart: 3071 write_lock(&sp->lock); 3072 n = sp_lookup(sp, start, end); 3073 /* Take care of old policies in the same range. */ 3074 while (n && n->start < end) { 3075 struct rb_node *next = rb_next(&n->nd); 3076 if (n->start >= start) { 3077 if (n->end <= end) 3078 sp_delete(sp, n); 3079 else 3080 n->start = end; 3081 } else { 3082 /* Old policy spanning whole new range. */ 3083 if (n->end > end) { 3084 if (!n_new) 3085 goto alloc_new; 3086 3087 *mpol_new = *n->policy; 3088 atomic_set(&mpol_new->refcnt, 1); 3089 sp_node_init(n_new, end, n->end, mpol_new); 3090 n->end = start; 3091 sp_insert(sp, n_new); 3092 n_new = NULL; 3093 mpol_new = NULL; 3094 break; 3095 } else 3096 n->end = start; 3097 } 3098 if (!next) 3099 break; 3100 n = rb_entry(next, struct sp_node, nd); 3101 } 3102 if (new) 3103 sp_insert(sp, new); 3104 write_unlock(&sp->lock); 3105 ret = 0; 3106 3107 err_out: 3108 if (mpol_new) 3109 mpol_put(mpol_new); 3110 if (n_new) 3111 kmem_cache_free(sn_cache, n_new); 3112 3113 return ret; 3114 3115 alloc_new: 3116 write_unlock(&sp->lock); 3117 ret = -ENOMEM; 3118 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 3119 if (!n_new) 3120 goto err_out; 3121 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 3122 if (!mpol_new) 3123 goto err_out; 3124 atomic_set(&mpol_new->refcnt, 1); 3125 goto restart; 3126 } 3127 3128 /** 3129 * mpol_shared_policy_init - initialize shared policy for inode 3130 * @sp: pointer to inode shared policy 3131 * @mpol: struct mempolicy to install 3132 * 3133 * Install non-NULL @mpol in inode's shared policy rb-tree. 3134 * On entry, the current task has a reference on a non-NULL @mpol. 3135 * This must be released on exit. 3136 * This is called at get_inode() calls and we can use GFP_KERNEL. 3137 */ 3138 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 3139 { 3140 int ret; 3141 3142 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 3143 rwlock_init(&sp->lock); 3144 3145 if (mpol) { 3146 struct sp_node *sn; 3147 struct mempolicy *npol; 3148 NODEMASK_SCRATCH(scratch); 3149 3150 if (!scratch) 3151 goto put_mpol; 3152 3153 /* contextualize the tmpfs mount point mempolicy to this file */ 3154 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 3155 if (IS_ERR(npol)) 3156 goto free_scratch; /* no valid nodemask intersection */ 3157 3158 task_lock(current); 3159 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch); 3160 task_unlock(current); 3161 if (ret) 3162 goto put_npol; 3163 3164 /* alloc node covering entire file; adds ref to file's npol */ 3165 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol); 3166 if (sn) 3167 sp_insert(sp, sn); 3168 put_npol: 3169 mpol_put(npol); /* drop initial ref on file's npol */ 3170 free_scratch: 3171 NODEMASK_SCRATCH_FREE(scratch); 3172 put_mpol: 3173 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 3174 } 3175 } 3176 3177 int mpol_set_shared_policy(struct shared_policy *sp, 3178 struct vm_area_struct *vma, struct mempolicy *pol) 3179 { 3180 int err; 3181 struct sp_node *new = NULL; 3182 unsigned long sz = vma_pages(vma); 3183 3184 if (pol) { 3185 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol); 3186 if (!new) 3187 return -ENOMEM; 3188 } 3189 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new); 3190 if (err && new) 3191 sp_free(new); 3192 return err; 3193 } 3194 3195 /* Free a backing policy store on inode delete. */ 3196 void mpol_free_shared_policy(struct shared_policy *sp) 3197 { 3198 struct sp_node *n; 3199 struct rb_node *next; 3200 3201 if (!sp->root.rb_node) 3202 return; 3203 write_lock(&sp->lock); 3204 next = rb_first(&sp->root); 3205 while (next) { 3206 n = rb_entry(next, struct sp_node, nd); 3207 next = rb_next(&n->nd); 3208 sp_delete(sp, n); 3209 } 3210 write_unlock(&sp->lock); 3211 } 3212 3213 #ifdef CONFIG_NUMA_BALANCING 3214 static int __initdata numabalancing_override; 3215 3216 static void __init check_numabalancing_enable(void) 3217 { 3218 bool numabalancing_default = false; 3219 3220 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 3221 numabalancing_default = true; 3222 3223 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 3224 if (numabalancing_override) 3225 set_numabalancing_state(numabalancing_override == 1); 3226 3227 if (num_online_nodes() > 1 && !numabalancing_override) { 3228 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 3229 numabalancing_default ? "Enabling" : "Disabling"); 3230 set_numabalancing_state(numabalancing_default); 3231 } 3232 } 3233 3234 static int __init setup_numabalancing(char *str) 3235 { 3236 int ret = 0; 3237 if (!str) 3238 goto out; 3239 3240 if (!strcmp(str, "enable")) { 3241 numabalancing_override = 1; 3242 ret = 1; 3243 } else if (!strcmp(str, "disable")) { 3244 numabalancing_override = -1; 3245 ret = 1; 3246 } 3247 out: 3248 if (!ret) 3249 pr_warn("Unable to parse numa_balancing=\n"); 3250 3251 return ret; 3252 } 3253 __setup("numa_balancing=", setup_numabalancing); 3254 #else 3255 static inline void __init check_numabalancing_enable(void) 3256 { 3257 } 3258 #endif /* CONFIG_NUMA_BALANCING */ 3259 3260 void __init numa_policy_init(void) 3261 { 3262 nodemask_t interleave_nodes; 3263 unsigned long largest = 0; 3264 int nid, prefer = 0; 3265 3266 policy_cache = kmem_cache_create("numa_policy", 3267 sizeof(struct mempolicy), 3268 0, SLAB_PANIC, NULL); 3269 3270 sn_cache = kmem_cache_create("shared_policy_node", 3271 sizeof(struct sp_node), 3272 0, SLAB_PANIC, NULL); 3273 3274 for_each_node(nid) { 3275 preferred_node_policy[nid] = (struct mempolicy) { 3276 .refcnt = ATOMIC_INIT(1), 3277 .mode = MPOL_PREFERRED, 3278 .flags = MPOL_F_MOF | MPOL_F_MORON, 3279 .nodes = nodemask_of_node(nid), 3280 }; 3281 } 3282 3283 /* 3284 * Set interleaving policy for system init. Interleaving is only 3285 * enabled across suitably sized nodes (default is >= 16MB), or 3286 * fall back to the largest node if they're all smaller. 3287 */ 3288 nodes_clear(interleave_nodes); 3289 for_each_node_state(nid, N_MEMORY) { 3290 unsigned long total_pages = node_present_pages(nid); 3291 3292 /* Preserve the largest node */ 3293 if (largest < total_pages) { 3294 largest = total_pages; 3295 prefer = nid; 3296 } 3297 3298 /* Interleave this node? */ 3299 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 3300 node_set(nid, interleave_nodes); 3301 } 3302 3303 /* All too small, use the largest */ 3304 if (unlikely(nodes_empty(interleave_nodes))) 3305 node_set(prefer, interleave_nodes); 3306 3307 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 3308 pr_err("%s: interleaving failed\n", __func__); 3309 3310 check_numabalancing_enable(); 3311 } 3312 3313 /* Reset policy of current process to default */ 3314 void numa_default_policy(void) 3315 { 3316 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 3317 } 3318 3319 /* 3320 * Parse and format mempolicy from/to strings 3321 */ 3322 static const char * const policy_modes[] = 3323 { 3324 [MPOL_DEFAULT] = "default", 3325 [MPOL_PREFERRED] = "prefer", 3326 [MPOL_BIND] = "bind", 3327 [MPOL_INTERLEAVE] = "interleave", 3328 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave", 3329 [MPOL_LOCAL] = "local", 3330 [MPOL_PREFERRED_MANY] = "prefer (many)", 3331 }; 3332 3333 #ifdef CONFIG_TMPFS 3334 /** 3335 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 3336 * @str: string containing mempolicy to parse 3337 * @mpol: pointer to struct mempolicy pointer, returned on success. 3338 * 3339 * Format of input: 3340 * <mode>[=<flags>][:<nodelist>] 3341 * 3342 * Return: %0 on success, else %1 3343 */ 3344 int mpol_parse_str(char *str, struct mempolicy **mpol) 3345 { 3346 struct mempolicy *new = NULL; 3347 unsigned short mode_flags; 3348 nodemask_t nodes; 3349 char *nodelist = strchr(str, ':'); 3350 char *flags = strchr(str, '='); 3351 int err = 1, mode; 3352 3353 if (flags) 3354 *flags++ = '\0'; /* terminate mode string */ 3355 3356 if (nodelist) { 3357 /* NUL-terminate mode or flags string */ 3358 *nodelist++ = '\0'; 3359 if (nodelist_parse(nodelist, nodes)) 3360 goto out; 3361 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3362 goto out; 3363 } else 3364 nodes_clear(nodes); 3365 3366 mode = match_string(policy_modes, MPOL_MAX, str); 3367 if (mode < 0) 3368 goto out; 3369 3370 switch (mode) { 3371 case MPOL_PREFERRED: 3372 /* 3373 * Insist on a nodelist of one node only, although later 3374 * we use first_node(nodes) to grab a single node, so here 3375 * nodelist (or nodes) cannot be empty. 3376 */ 3377 if (nodelist) { 3378 char *rest = nodelist; 3379 while (isdigit(*rest)) 3380 rest++; 3381 if (*rest) 3382 goto out; 3383 if (nodes_empty(nodes)) 3384 goto out; 3385 } 3386 break; 3387 case MPOL_INTERLEAVE: 3388 case MPOL_WEIGHTED_INTERLEAVE: 3389 /* 3390 * Default to online nodes with memory if no nodelist 3391 */ 3392 if (!nodelist) 3393 nodes = node_states[N_MEMORY]; 3394 break; 3395 case MPOL_LOCAL: 3396 /* 3397 * Don't allow a nodelist; mpol_new() checks flags 3398 */ 3399 if (nodelist) 3400 goto out; 3401 break; 3402 case MPOL_DEFAULT: 3403 /* 3404 * Insist on a empty nodelist 3405 */ 3406 if (!nodelist) 3407 err = 0; 3408 goto out; 3409 case MPOL_PREFERRED_MANY: 3410 case MPOL_BIND: 3411 /* 3412 * Insist on a nodelist 3413 */ 3414 if (!nodelist) 3415 goto out; 3416 } 3417 3418 mode_flags = 0; 3419 if (flags) { 3420 /* 3421 * Currently, we only support two mutually exclusive 3422 * mode flags. 3423 */ 3424 if (!strcmp(flags, "static")) 3425 mode_flags |= MPOL_F_STATIC_NODES; 3426 else if (!strcmp(flags, "relative")) 3427 mode_flags |= MPOL_F_RELATIVE_NODES; 3428 else 3429 goto out; 3430 } 3431 3432 new = mpol_new(mode, mode_flags, &nodes); 3433 if (IS_ERR(new)) 3434 goto out; 3435 3436 /* 3437 * Save nodes for mpol_to_str() to show the tmpfs mount options 3438 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3439 */ 3440 if (mode != MPOL_PREFERRED) { 3441 new->nodes = nodes; 3442 } else if (nodelist) { 3443 nodes_clear(new->nodes); 3444 node_set(first_node(nodes), new->nodes); 3445 } else { 3446 new->mode = MPOL_LOCAL; 3447 } 3448 3449 /* 3450 * Save nodes for contextualization: this will be used to "clone" 3451 * the mempolicy in a specific context [cpuset] at a later time. 3452 */ 3453 new->w.user_nodemask = nodes; 3454 3455 err = 0; 3456 3457 out: 3458 /* Restore string for error message */ 3459 if (nodelist) 3460 *--nodelist = ':'; 3461 if (flags) 3462 *--flags = '='; 3463 if (!err) 3464 *mpol = new; 3465 return err; 3466 } 3467 #endif /* CONFIG_TMPFS */ 3468 3469 /** 3470 * mpol_to_str - format a mempolicy structure for printing 3471 * @buffer: to contain formatted mempolicy string 3472 * @maxlen: length of @buffer 3473 * @pol: pointer to mempolicy to be formatted 3474 * 3475 * Convert @pol into a string. If @buffer is too short, truncate the string. 3476 * Recommend a @maxlen of at least 51 for the longest mode, "weighted 3477 * interleave", plus the longest flag flags, "relative|balancing", and to 3478 * display at least a few node ids. 3479 */ 3480 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3481 { 3482 char *p = buffer; 3483 nodemask_t nodes = NODE_MASK_NONE; 3484 unsigned short mode = MPOL_DEFAULT; 3485 unsigned short flags = 0; 3486 3487 if (pol && 3488 pol != &default_policy && 3489 !(pol >= &preferred_node_policy[0] && 3490 pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) { 3491 mode = pol->mode; 3492 flags = pol->flags; 3493 } 3494 3495 switch (mode) { 3496 case MPOL_DEFAULT: 3497 case MPOL_LOCAL: 3498 break; 3499 case MPOL_PREFERRED: 3500 case MPOL_PREFERRED_MANY: 3501 case MPOL_BIND: 3502 case MPOL_INTERLEAVE: 3503 case MPOL_WEIGHTED_INTERLEAVE: 3504 nodes = pol->nodes; 3505 break; 3506 default: 3507 WARN_ON_ONCE(1); 3508 snprintf(p, maxlen, "unknown"); 3509 return; 3510 } 3511 3512 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3513 3514 if (flags & MPOL_MODE_FLAGS) { 3515 p += snprintf(p, buffer + maxlen - p, "="); 3516 3517 /* 3518 * Static and relative are mutually exclusive. 3519 */ 3520 if (flags & MPOL_F_STATIC_NODES) 3521 p += snprintf(p, buffer + maxlen - p, "static"); 3522 else if (flags & MPOL_F_RELATIVE_NODES) 3523 p += snprintf(p, buffer + maxlen - p, "relative"); 3524 3525 if (flags & MPOL_F_NUMA_BALANCING) { 3526 if (!is_power_of_2(flags & MPOL_MODE_FLAGS)) 3527 p += snprintf(p, buffer + maxlen - p, "|"); 3528 p += snprintf(p, buffer + maxlen - p, "balancing"); 3529 } 3530 } 3531 3532 if (!nodes_empty(nodes)) 3533 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3534 nodemask_pr_args(&nodes)); 3535 } 3536 3537 #ifdef CONFIG_SYSFS 3538 struct iw_node_attr { 3539 struct kobj_attribute kobj_attr; 3540 int nid; 3541 }; 3542 3543 struct sysfs_wi_group { 3544 struct kobject wi_kobj; 3545 struct mutex kobj_lock; 3546 struct iw_node_attr *nattrs[]; 3547 }; 3548 3549 static struct sysfs_wi_group *wi_group; 3550 3551 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr, 3552 char *buf) 3553 { 3554 struct iw_node_attr *node_attr; 3555 u8 weight; 3556 3557 node_attr = container_of(attr, struct iw_node_attr, kobj_attr); 3558 weight = get_il_weight(node_attr->nid); 3559 return sysfs_emit(buf, "%d\n", weight); 3560 } 3561 3562 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr, 3563 const char *buf, size_t count) 3564 { 3565 struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL; 3566 struct iw_node_attr *node_attr; 3567 u8 weight = 0; 3568 int i; 3569 3570 node_attr = container_of(attr, struct iw_node_attr, kobj_attr); 3571 if (count == 0 || sysfs_streq(buf, "") || 3572 kstrtou8(buf, 0, &weight) || weight == 0) 3573 return -EINVAL; 3574 3575 new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids), 3576 GFP_KERNEL); 3577 if (!new_wi_state) 3578 return -ENOMEM; 3579 3580 mutex_lock(&wi_state_lock); 3581 old_wi_state = rcu_dereference_protected(wi_state, 3582 lockdep_is_held(&wi_state_lock)); 3583 if (old_wi_state) { 3584 memcpy(new_wi_state->iw_table, old_wi_state->iw_table, 3585 nr_node_ids * sizeof(u8)); 3586 } else { 3587 for (i = 0; i < nr_node_ids; i++) 3588 new_wi_state->iw_table[i] = 1; 3589 } 3590 new_wi_state->iw_table[node_attr->nid] = weight; 3591 new_wi_state->mode_auto = false; 3592 3593 rcu_assign_pointer(wi_state, new_wi_state); 3594 mutex_unlock(&wi_state_lock); 3595 if (old_wi_state) { 3596 synchronize_rcu(); 3597 kfree(old_wi_state); 3598 } 3599 return count; 3600 } 3601 3602 static ssize_t weighted_interleave_auto_show(struct kobject *kobj, 3603 struct kobj_attribute *attr, char *buf) 3604 { 3605 struct weighted_interleave_state *state; 3606 bool wi_auto = true; 3607 3608 rcu_read_lock(); 3609 state = rcu_dereference(wi_state); 3610 if (state) 3611 wi_auto = state->mode_auto; 3612 rcu_read_unlock(); 3613 3614 return sysfs_emit(buf, "%s\n", str_true_false(wi_auto)); 3615 } 3616 3617 static ssize_t weighted_interleave_auto_store(struct kobject *kobj, 3618 struct kobj_attribute *attr, const char *buf, size_t count) 3619 { 3620 struct weighted_interleave_state *new_wi_state, *old_wi_state = NULL; 3621 unsigned int *bw; 3622 bool input; 3623 int i; 3624 3625 if (kstrtobool(buf, &input)) 3626 return -EINVAL; 3627 3628 new_wi_state = kzalloc(struct_size(new_wi_state, iw_table, nr_node_ids), 3629 GFP_KERNEL); 3630 if (!new_wi_state) 3631 return -ENOMEM; 3632 for (i = 0; i < nr_node_ids; i++) 3633 new_wi_state->iw_table[i] = 1; 3634 3635 mutex_lock(&wi_state_lock); 3636 if (!input) { 3637 old_wi_state = rcu_dereference_protected(wi_state, 3638 lockdep_is_held(&wi_state_lock)); 3639 if (!old_wi_state) 3640 goto update_wi_state; 3641 if (input == old_wi_state->mode_auto) { 3642 mutex_unlock(&wi_state_lock); 3643 return count; 3644 } 3645 3646 memcpy(new_wi_state->iw_table, old_wi_state->iw_table, 3647 nr_node_ids * sizeof(u8)); 3648 goto update_wi_state; 3649 } 3650 3651 bw = node_bw_table; 3652 if (!bw) { 3653 mutex_unlock(&wi_state_lock); 3654 kfree(new_wi_state); 3655 return -ENODEV; 3656 } 3657 3658 new_wi_state->mode_auto = true; 3659 reduce_interleave_weights(bw, new_wi_state->iw_table); 3660 3661 update_wi_state: 3662 rcu_assign_pointer(wi_state, new_wi_state); 3663 mutex_unlock(&wi_state_lock); 3664 if (old_wi_state) { 3665 synchronize_rcu(); 3666 kfree(old_wi_state); 3667 } 3668 return count; 3669 } 3670 3671 static void sysfs_wi_node_delete(int nid) 3672 { 3673 struct iw_node_attr *attr; 3674 3675 if (nid < 0 || nid >= nr_node_ids) 3676 return; 3677 3678 mutex_lock(&wi_group->kobj_lock); 3679 attr = wi_group->nattrs[nid]; 3680 if (!attr) { 3681 mutex_unlock(&wi_group->kobj_lock); 3682 return; 3683 } 3684 3685 wi_group->nattrs[nid] = NULL; 3686 mutex_unlock(&wi_group->kobj_lock); 3687 3688 sysfs_remove_file(&wi_group->wi_kobj, &attr->kobj_attr.attr); 3689 kfree(attr->kobj_attr.attr.name); 3690 kfree(attr); 3691 } 3692 3693 static void sysfs_wi_node_delete_all(void) 3694 { 3695 int nid; 3696 3697 for (nid = 0; nid < nr_node_ids; nid++) 3698 sysfs_wi_node_delete(nid); 3699 } 3700 3701 static void wi_state_free(void) 3702 { 3703 struct weighted_interleave_state *old_wi_state; 3704 3705 mutex_lock(&wi_state_lock); 3706 3707 old_wi_state = rcu_dereference_protected(wi_state, 3708 lockdep_is_held(&wi_state_lock)); 3709 if (!old_wi_state) { 3710 mutex_unlock(&wi_state_lock); 3711 return; 3712 } 3713 3714 rcu_assign_pointer(wi_state, NULL); 3715 mutex_unlock(&wi_state_lock); 3716 synchronize_rcu(); 3717 kfree(old_wi_state); 3718 } 3719 3720 static struct kobj_attribute wi_auto_attr = 3721 __ATTR(auto, 0664, weighted_interleave_auto_show, 3722 weighted_interleave_auto_store); 3723 3724 static void wi_cleanup(void) { 3725 sysfs_remove_file(&wi_group->wi_kobj, &wi_auto_attr.attr); 3726 sysfs_wi_node_delete_all(); 3727 wi_state_free(); 3728 } 3729 3730 static void wi_kobj_release(struct kobject *wi_kobj) 3731 { 3732 kfree(wi_group); 3733 } 3734 3735 static const struct kobj_type wi_ktype = { 3736 .sysfs_ops = &kobj_sysfs_ops, 3737 .release = wi_kobj_release, 3738 }; 3739 3740 static int sysfs_wi_node_add(int nid) 3741 { 3742 int ret; 3743 char *name; 3744 struct iw_node_attr *new_attr; 3745 3746 if (nid < 0 || nid >= nr_node_ids) { 3747 pr_err("invalid node id: %d\n", nid); 3748 return -EINVAL; 3749 } 3750 3751 new_attr = kzalloc(sizeof(*new_attr), GFP_KERNEL); 3752 if (!new_attr) 3753 return -ENOMEM; 3754 3755 name = kasprintf(GFP_KERNEL, "node%d", nid); 3756 if (!name) { 3757 kfree(new_attr); 3758 return -ENOMEM; 3759 } 3760 3761 sysfs_attr_init(&new_attr->kobj_attr.attr); 3762 new_attr->kobj_attr.attr.name = name; 3763 new_attr->kobj_attr.attr.mode = 0644; 3764 new_attr->kobj_attr.show = node_show; 3765 new_attr->kobj_attr.store = node_store; 3766 new_attr->nid = nid; 3767 3768 mutex_lock(&wi_group->kobj_lock); 3769 if (wi_group->nattrs[nid]) { 3770 mutex_unlock(&wi_group->kobj_lock); 3771 ret = -EEXIST; 3772 goto out; 3773 } 3774 3775 ret = sysfs_create_file(&wi_group->wi_kobj, &new_attr->kobj_attr.attr); 3776 if (ret) { 3777 mutex_unlock(&wi_group->kobj_lock); 3778 goto out; 3779 } 3780 wi_group->nattrs[nid] = new_attr; 3781 mutex_unlock(&wi_group->kobj_lock); 3782 return 0; 3783 3784 out: 3785 kfree(new_attr->kobj_attr.attr.name); 3786 kfree(new_attr); 3787 return ret; 3788 } 3789 3790 static int wi_node_notifier(struct notifier_block *nb, 3791 unsigned long action, void *data) 3792 { 3793 int err; 3794 struct memory_notify *arg = data; 3795 int nid = arg->status_change_nid; 3796 3797 if (nid < 0) 3798 return NOTIFY_OK; 3799 3800 switch (action) { 3801 case MEM_ONLINE: 3802 err = sysfs_wi_node_add(nid); 3803 if (err) 3804 pr_err("failed to add sysfs for node%d during hotplug: %d\n", 3805 nid, err); 3806 break; 3807 case MEM_OFFLINE: 3808 sysfs_wi_node_delete(nid); 3809 break; 3810 } 3811 3812 return NOTIFY_OK; 3813 } 3814 3815 static int __init add_weighted_interleave_group(struct kobject *mempolicy_kobj) 3816 { 3817 int nid, err; 3818 3819 wi_group = kzalloc(struct_size(wi_group, nattrs, nr_node_ids), 3820 GFP_KERNEL); 3821 if (!wi_group) 3822 return -ENOMEM; 3823 mutex_init(&wi_group->kobj_lock); 3824 3825 err = kobject_init_and_add(&wi_group->wi_kobj, &wi_ktype, mempolicy_kobj, 3826 "weighted_interleave"); 3827 if (err) 3828 goto err_put_kobj; 3829 3830 err = sysfs_create_file(&wi_group->wi_kobj, &wi_auto_attr.attr); 3831 if (err) 3832 goto err_put_kobj; 3833 3834 for_each_online_node(nid) { 3835 if (!node_state(nid, N_MEMORY)) 3836 continue; 3837 3838 err = sysfs_wi_node_add(nid); 3839 if (err) { 3840 pr_err("failed to add sysfs for node%d during init: %d\n", 3841 nid, err); 3842 goto err_cleanup_kobj; 3843 } 3844 } 3845 3846 hotplug_memory_notifier(wi_node_notifier, DEFAULT_CALLBACK_PRI); 3847 return 0; 3848 3849 err_cleanup_kobj: 3850 wi_cleanup(); 3851 kobject_del(&wi_group->wi_kobj); 3852 err_put_kobj: 3853 kobject_put(&wi_group->wi_kobj); 3854 return err; 3855 } 3856 3857 static int __init mempolicy_sysfs_init(void) 3858 { 3859 int err; 3860 static struct kobject *mempolicy_kobj; 3861 3862 mempolicy_kobj = kobject_create_and_add("mempolicy", mm_kobj); 3863 if (!mempolicy_kobj) 3864 return -ENOMEM; 3865 3866 err = add_weighted_interleave_group(mempolicy_kobj); 3867 if (err) 3868 goto err_kobj; 3869 3870 return 0; 3871 3872 err_kobj: 3873 kobject_del(mempolicy_kobj); 3874 kobject_put(mempolicy_kobj); 3875 return err; 3876 } 3877 3878 late_initcall(mempolicy_sysfs_init); 3879 #endif /* CONFIG_SYSFS */ 3880