xref: /linux/mm/mempolicy.c (revision fba2689ee77e63b05e203b3f26079ef915e55660)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108 
109 #include "internal.h"
110 
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
114 
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117 
118 /* Highest zone. An specific allocation for a zone below that is not
119    policied. */
120 enum zone_type policy_zone = 0;
121 
122 /*
123  * run-time system-wide default policy => local allocation
124  */
125 static struct mempolicy default_policy = {
126 	.refcnt = ATOMIC_INIT(1), /* never free it */
127 	.mode = MPOL_LOCAL,
128 };
129 
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131 
132 /**
133  * numa_map_to_online_node - Find closest online node
134  * @node: Node id to start the search
135  *
136  * Lookup the next closest node by distance if @nid is not online.
137  *
138  * Return: this @node if it is online, otherwise the closest node by distance
139  */
140 int numa_map_to_online_node(int node)
141 {
142 	int min_dist = INT_MAX, dist, n, min_node;
143 
144 	if (node == NUMA_NO_NODE || node_online(node))
145 		return node;
146 
147 	min_node = node;
148 	for_each_online_node(n) {
149 		dist = node_distance(node, n);
150 		if (dist < min_dist) {
151 			min_dist = dist;
152 			min_node = n;
153 		}
154 	}
155 
156 	return min_node;
157 }
158 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
159 
160 struct mempolicy *get_task_policy(struct task_struct *p)
161 {
162 	struct mempolicy *pol = p->mempolicy;
163 	int node;
164 
165 	if (pol)
166 		return pol;
167 
168 	node = numa_node_id();
169 	if (node != NUMA_NO_NODE) {
170 		pol = &preferred_node_policy[node];
171 		/* preferred_node_policy is not initialised early in boot */
172 		if (pol->mode)
173 			return pol;
174 	}
175 
176 	return &default_policy;
177 }
178 
179 static const struct mempolicy_operations {
180 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
181 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
182 } mpol_ops[MPOL_MAX];
183 
184 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
185 {
186 	return pol->flags & MPOL_MODE_FLAGS;
187 }
188 
189 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
190 				   const nodemask_t *rel)
191 {
192 	nodemask_t tmp;
193 	nodes_fold(tmp, *orig, nodes_weight(*rel));
194 	nodes_onto(*ret, tmp, *rel);
195 }
196 
197 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->nodes = *nodes;
202 	return 0;
203 }
204 
205 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
206 {
207 	if (nodes_empty(*nodes))
208 		return -EINVAL;
209 
210 	nodes_clear(pol->nodes);
211 	node_set(first_node(*nodes), pol->nodes);
212 	return 0;
213 }
214 
215 /*
216  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
217  * any, for the new policy.  mpol_new() has already validated the nodes
218  * parameter with respect to the policy mode and flags.
219  *
220  * Must be called holding task's alloc_lock to protect task's mems_allowed
221  * and mempolicy.  May also be called holding the mmap_lock for write.
222  */
223 static int mpol_set_nodemask(struct mempolicy *pol,
224 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
225 {
226 	int ret;
227 
228 	/*
229 	 * Default (pol==NULL) resp. local memory policies are not a
230 	 * subject of any remapping. They also do not need any special
231 	 * constructor.
232 	 */
233 	if (!pol || pol->mode == MPOL_LOCAL)
234 		return 0;
235 
236 	/* Check N_MEMORY */
237 	nodes_and(nsc->mask1,
238 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
239 
240 	VM_BUG_ON(!nodes);
241 
242 	if (pol->flags & MPOL_F_RELATIVE_NODES)
243 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
244 	else
245 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
246 
247 	if (mpol_store_user_nodemask(pol))
248 		pol->w.user_nodemask = *nodes;
249 	else
250 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
251 
252 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
253 	return ret;
254 }
255 
256 /*
257  * This function just creates a new policy, does some check and simple
258  * initialization. You must invoke mpol_set_nodemask() to set nodes.
259  */
260 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
261 				  nodemask_t *nodes)
262 {
263 	struct mempolicy *policy;
264 
265 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
266 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
267 
268 	if (mode == MPOL_DEFAULT) {
269 		if (nodes && !nodes_empty(*nodes))
270 			return ERR_PTR(-EINVAL);
271 		return NULL;
272 	}
273 	VM_BUG_ON(!nodes);
274 
275 	/*
276 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
277 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
278 	 * All other modes require a valid pointer to a non-empty nodemask.
279 	 */
280 	if (mode == MPOL_PREFERRED) {
281 		if (nodes_empty(*nodes)) {
282 			if (((flags & MPOL_F_STATIC_NODES) ||
283 			     (flags & MPOL_F_RELATIVE_NODES)))
284 				return ERR_PTR(-EINVAL);
285 
286 			mode = MPOL_LOCAL;
287 		}
288 	} else if (mode == MPOL_LOCAL) {
289 		if (!nodes_empty(*nodes) ||
290 		    (flags & MPOL_F_STATIC_NODES) ||
291 		    (flags & MPOL_F_RELATIVE_NODES))
292 			return ERR_PTR(-EINVAL);
293 	} else if (nodes_empty(*nodes))
294 		return ERR_PTR(-EINVAL);
295 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
296 	if (!policy)
297 		return ERR_PTR(-ENOMEM);
298 	atomic_set(&policy->refcnt, 1);
299 	policy->mode = mode;
300 	policy->flags = flags;
301 	policy->home_node = NUMA_NO_NODE;
302 
303 	return policy;
304 }
305 
306 /* Slow path of a mpol destructor. */
307 void __mpol_put(struct mempolicy *p)
308 {
309 	if (!atomic_dec_and_test(&p->refcnt))
310 		return;
311 	kmem_cache_free(policy_cache, p);
312 }
313 
314 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
315 {
316 }
317 
318 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
319 {
320 	nodemask_t tmp;
321 
322 	if (pol->flags & MPOL_F_STATIC_NODES)
323 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
324 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
325 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
326 	else {
327 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
328 								*nodes);
329 		pol->w.cpuset_mems_allowed = *nodes;
330 	}
331 
332 	if (nodes_empty(tmp))
333 		tmp = *nodes;
334 
335 	pol->nodes = tmp;
336 }
337 
338 static void mpol_rebind_preferred(struct mempolicy *pol,
339 						const nodemask_t *nodes)
340 {
341 	pol->w.cpuset_mems_allowed = *nodes;
342 }
343 
344 /*
345  * mpol_rebind_policy - Migrate a policy to a different set of nodes
346  *
347  * Per-vma policies are protected by mmap_lock. Allocations using per-task
348  * policies are protected by task->mems_allowed_seq to prevent a premature
349  * OOM/allocation failure due to parallel nodemask modification.
350  */
351 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
352 {
353 	if (!pol)
354 		return;
355 	if (!mpol_store_user_nodemask(pol) &&
356 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
357 		return;
358 
359 	mpol_ops[pol->mode].rebind(pol, newmask);
360 }
361 
362 /*
363  * Wrapper for mpol_rebind_policy() that just requires task
364  * pointer, and updates task mempolicy.
365  *
366  * Called with task's alloc_lock held.
367  */
368 
369 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
370 {
371 	mpol_rebind_policy(tsk->mempolicy, new);
372 }
373 
374 /*
375  * Rebind each vma in mm to new nodemask.
376  *
377  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
378  */
379 
380 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
381 {
382 	struct vm_area_struct *vma;
383 
384 	mmap_write_lock(mm);
385 	for (vma = mm->mmap; vma; vma = vma->vm_next)
386 		mpol_rebind_policy(vma->vm_policy, new);
387 	mmap_write_unlock(mm);
388 }
389 
390 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
391 	[MPOL_DEFAULT] = {
392 		.rebind = mpol_rebind_default,
393 	},
394 	[MPOL_INTERLEAVE] = {
395 		.create = mpol_new_nodemask,
396 		.rebind = mpol_rebind_nodemask,
397 	},
398 	[MPOL_PREFERRED] = {
399 		.create = mpol_new_preferred,
400 		.rebind = mpol_rebind_preferred,
401 	},
402 	[MPOL_BIND] = {
403 		.create = mpol_new_nodemask,
404 		.rebind = mpol_rebind_nodemask,
405 	},
406 	[MPOL_LOCAL] = {
407 		.rebind = mpol_rebind_default,
408 	},
409 	[MPOL_PREFERRED_MANY] = {
410 		.create = mpol_new_nodemask,
411 		.rebind = mpol_rebind_preferred,
412 	},
413 };
414 
415 static int migrate_page_add(struct page *page, struct list_head *pagelist,
416 				unsigned long flags);
417 
418 struct queue_pages {
419 	struct list_head *pagelist;
420 	unsigned long flags;
421 	nodemask_t *nmask;
422 	unsigned long start;
423 	unsigned long end;
424 	struct vm_area_struct *first;
425 };
426 
427 /*
428  * Check if the page's nid is in qp->nmask.
429  *
430  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
431  * in the invert of qp->nmask.
432  */
433 static inline bool queue_pages_required(struct page *page,
434 					struct queue_pages *qp)
435 {
436 	int nid = page_to_nid(page);
437 	unsigned long flags = qp->flags;
438 
439 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
440 }
441 
442 /*
443  * queue_pages_pmd() has four possible return values:
444  * 0 - pages are placed on the right node or queued successfully, or
445  *     special page is met, i.e. huge zero page.
446  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
447  *     specified.
448  * 2 - THP was split.
449  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
450  *        existing page was already on a node that does not follow the
451  *        policy.
452  */
453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
454 				unsigned long end, struct mm_walk *walk)
455 	__releases(ptl)
456 {
457 	int ret = 0;
458 	struct page *page;
459 	struct queue_pages *qp = walk->private;
460 	unsigned long flags;
461 
462 	if (unlikely(is_pmd_migration_entry(*pmd))) {
463 		ret = -EIO;
464 		goto unlock;
465 	}
466 	page = pmd_page(*pmd);
467 	if (is_huge_zero_page(page)) {
468 		spin_unlock(ptl);
469 		walk->action = ACTION_CONTINUE;
470 		goto out;
471 	}
472 	if (!queue_pages_required(page, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to thp migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 out:
488 	return ret;
489 }
490 
491 /*
492  * Scan through pages checking if pages follow certain conditions,
493  * and move them to the pagelist if they do.
494  *
495  * queue_pages_pte_range() has three possible return values:
496  * 0 - pages are placed on the right node or queued successfully, or
497  *     special page is met, i.e. zero page.
498  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499  *     specified.
500  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
501  *        on a node that does not follow the policy.
502  */
503 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
504 			unsigned long end, struct mm_walk *walk)
505 {
506 	struct vm_area_struct *vma = walk->vma;
507 	struct page *page;
508 	struct queue_pages *qp = walk->private;
509 	unsigned long flags = qp->flags;
510 	int ret;
511 	bool has_unmovable = false;
512 	pte_t *pte, *mapped_pte;
513 	spinlock_t *ptl;
514 
515 	ptl = pmd_trans_huge_lock(pmd, vma);
516 	if (ptl) {
517 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
518 		if (ret != 2)
519 			return ret;
520 	}
521 	/* THP was split, fall through to pte walk */
522 
523 	if (pmd_trans_unstable(pmd))
524 		return 0;
525 
526 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
527 	for (; addr != end; pte++, addr += PAGE_SIZE) {
528 		if (!pte_present(*pte))
529 			continue;
530 		page = vm_normal_page(vma, addr, *pte);
531 		if (!page)
532 			continue;
533 		/*
534 		 * vm_normal_page() filters out zero pages, but there might
535 		 * still be PageReserved pages to skip, perhaps in a VDSO.
536 		 */
537 		if (PageReserved(page))
538 			continue;
539 		if (!queue_pages_required(page, qp))
540 			continue;
541 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
542 			/* MPOL_MF_STRICT must be specified if we get here */
543 			if (!vma_migratable(vma)) {
544 				has_unmovable = true;
545 				break;
546 			}
547 
548 			/*
549 			 * Do not abort immediately since there may be
550 			 * temporary off LRU pages in the range.  Still
551 			 * need migrate other LRU pages.
552 			 */
553 			if (migrate_page_add(page, qp->pagelist, flags))
554 				has_unmovable = true;
555 		} else
556 			break;
557 	}
558 	pte_unmap_unlock(mapped_pte, ptl);
559 	cond_resched();
560 
561 	if (has_unmovable)
562 		return 1;
563 
564 	return addr != end ? -EIO : 0;
565 }
566 
567 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
568 			       unsigned long addr, unsigned long end,
569 			       struct mm_walk *walk)
570 {
571 	int ret = 0;
572 #ifdef CONFIG_HUGETLB_PAGE
573 	struct queue_pages *qp = walk->private;
574 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
575 	struct page *page;
576 	spinlock_t *ptl;
577 	pte_t entry;
578 
579 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
580 	entry = huge_ptep_get(pte);
581 	if (!pte_present(entry))
582 		goto unlock;
583 	page = pte_page(entry);
584 	if (!queue_pages_required(page, qp))
585 		goto unlock;
586 
587 	if (flags == MPOL_MF_STRICT) {
588 		/*
589 		 * STRICT alone means only detecting misplaced page and no
590 		 * need to further check other vma.
591 		 */
592 		ret = -EIO;
593 		goto unlock;
594 	}
595 
596 	if (!vma_migratable(walk->vma)) {
597 		/*
598 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
599 		 * stopped walking current vma.
600 		 * Detecting misplaced page but allow migrating pages which
601 		 * have been queued.
602 		 */
603 		ret = 1;
604 		goto unlock;
605 	}
606 
607 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
608 	if (flags & (MPOL_MF_MOVE_ALL) ||
609 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
610 		if (!isolate_huge_page(page, qp->pagelist) &&
611 			(flags & MPOL_MF_STRICT))
612 			/*
613 			 * Failed to isolate page but allow migrating pages
614 			 * which have been queued.
615 			 */
616 			ret = 1;
617 	}
618 unlock:
619 	spin_unlock(ptl);
620 #else
621 	BUG();
622 #endif
623 	return ret;
624 }
625 
626 #ifdef CONFIG_NUMA_BALANCING
627 /*
628  * This is used to mark a range of virtual addresses to be inaccessible.
629  * These are later cleared by a NUMA hinting fault. Depending on these
630  * faults, pages may be migrated for better NUMA placement.
631  *
632  * This is assuming that NUMA faults are handled using PROT_NONE. If
633  * an architecture makes a different choice, it will need further
634  * changes to the core.
635  */
636 unsigned long change_prot_numa(struct vm_area_struct *vma,
637 			unsigned long addr, unsigned long end)
638 {
639 	int nr_updated;
640 
641 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
642 	if (nr_updated)
643 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
644 
645 	return nr_updated;
646 }
647 #else
648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 			unsigned long addr, unsigned long end)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_NUMA_BALANCING */
654 
655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 				struct mm_walk *walk)
657 {
658 	struct vm_area_struct *vma = walk->vma;
659 	struct queue_pages *qp = walk->private;
660 	unsigned long endvma = vma->vm_end;
661 	unsigned long flags = qp->flags;
662 
663 	/* range check first */
664 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 
666 	if (!qp->first) {
667 		qp->first = vma;
668 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 			(qp->start < vma->vm_start))
670 			/* hole at head side of range */
671 			return -EFAULT;
672 	}
673 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
674 		((vma->vm_end < qp->end) &&
675 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
676 		/* hole at middle or tail of range */
677 		return -EFAULT;
678 
679 	/*
680 	 * Need check MPOL_MF_STRICT to return -EIO if possible
681 	 * regardless of vma_migratable
682 	 */
683 	if (!vma_migratable(vma) &&
684 	    !(flags & MPOL_MF_STRICT))
685 		return 1;
686 
687 	if (endvma > end)
688 		endvma = end;
689 
690 	if (flags & MPOL_MF_LAZY) {
691 		/* Similar to task_numa_work, skip inaccessible VMAs */
692 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
693 			!(vma->vm_flags & VM_MIXEDMAP))
694 			change_prot_numa(vma, start, endvma);
695 		return 1;
696 	}
697 
698 	/* queue pages from current vma */
699 	if (flags & MPOL_MF_VALID)
700 		return 0;
701 	return 1;
702 }
703 
704 static const struct mm_walk_ops queue_pages_walk_ops = {
705 	.hugetlb_entry		= queue_pages_hugetlb,
706 	.pmd_entry		= queue_pages_pte_range,
707 	.test_walk		= queue_pages_test_walk,
708 };
709 
710 /*
711  * Walk through page tables and collect pages to be migrated.
712  *
713  * If pages found in a given range are on a set of nodes (determined by
714  * @nodes and @flags,) it's isolated and queued to the pagelist which is
715  * passed via @private.
716  *
717  * queue_pages_range() has three possible return values:
718  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
719  *     specified.
720  * 0 - queue pages successfully or no misplaced page.
721  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
722  *         memory range specified by nodemask and maxnode points outside
723  *         your accessible address space (-EFAULT)
724  */
725 static int
726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
727 		nodemask_t *nodes, unsigned long flags,
728 		struct list_head *pagelist)
729 {
730 	int err;
731 	struct queue_pages qp = {
732 		.pagelist = pagelist,
733 		.flags = flags,
734 		.nmask = nodes,
735 		.start = start,
736 		.end = end,
737 		.first = NULL,
738 	};
739 
740 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
741 
742 	if (!qp.first)
743 		/* whole range in hole */
744 		err = -EFAULT;
745 
746 	return err;
747 }
748 
749 /*
750  * Apply policy to a single VMA
751  * This must be called with the mmap_lock held for writing.
752  */
753 static int vma_replace_policy(struct vm_area_struct *vma,
754 						struct mempolicy *pol)
755 {
756 	int err;
757 	struct mempolicy *old;
758 	struct mempolicy *new;
759 
760 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
761 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
762 		 vma->vm_ops, vma->vm_file,
763 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
764 
765 	new = mpol_dup(pol);
766 	if (IS_ERR(new))
767 		return PTR_ERR(new);
768 
769 	if (vma->vm_ops && vma->vm_ops->set_policy) {
770 		err = vma->vm_ops->set_policy(vma, new);
771 		if (err)
772 			goto err_out;
773 	}
774 
775 	old = vma->vm_policy;
776 	vma->vm_policy = new; /* protected by mmap_lock */
777 	mpol_put(old);
778 
779 	return 0;
780  err_out:
781 	mpol_put(new);
782 	return err;
783 }
784 
785 /* Step 2: apply policy to a range and do splits. */
786 static int mbind_range(struct mm_struct *mm, unsigned long start,
787 		       unsigned long end, struct mempolicy *new_pol)
788 {
789 	struct vm_area_struct *prev;
790 	struct vm_area_struct *vma;
791 	int err = 0;
792 	pgoff_t pgoff;
793 	unsigned long vmstart;
794 	unsigned long vmend;
795 
796 	vma = find_vma(mm, start);
797 	VM_BUG_ON(!vma);
798 
799 	prev = vma->vm_prev;
800 	if (start > vma->vm_start)
801 		prev = vma;
802 
803 	for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
804 		vmstart = max(start, vma->vm_start);
805 		vmend   = min(end, vma->vm_end);
806 
807 		if (mpol_equal(vma_policy(vma), new_pol))
808 			continue;
809 
810 		pgoff = vma->vm_pgoff +
811 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
812 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
813 				 vma->anon_vma, vma->vm_file, pgoff,
814 				 new_pol, vma->vm_userfaultfd_ctx,
815 				 anon_vma_name(vma));
816 		if (prev) {
817 			vma = prev;
818 			goto replace;
819 		}
820 		if (vma->vm_start != vmstart) {
821 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
822 			if (err)
823 				goto out;
824 		}
825 		if (vma->vm_end != vmend) {
826 			err = split_vma(vma->vm_mm, vma, vmend, 0);
827 			if (err)
828 				goto out;
829 		}
830  replace:
831 		err = vma_replace_policy(vma, new_pol);
832 		if (err)
833 			goto out;
834 	}
835 
836  out:
837 	return err;
838 }
839 
840 /* Set the process memory policy */
841 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
842 			     nodemask_t *nodes)
843 {
844 	struct mempolicy *new, *old;
845 	NODEMASK_SCRATCH(scratch);
846 	int ret;
847 
848 	if (!scratch)
849 		return -ENOMEM;
850 
851 	new = mpol_new(mode, flags, nodes);
852 	if (IS_ERR(new)) {
853 		ret = PTR_ERR(new);
854 		goto out;
855 	}
856 
857 	ret = mpol_set_nodemask(new, nodes, scratch);
858 	if (ret) {
859 		mpol_put(new);
860 		goto out;
861 	}
862 	task_lock(current);
863 	old = current->mempolicy;
864 	current->mempolicy = new;
865 	if (new && new->mode == MPOL_INTERLEAVE)
866 		current->il_prev = MAX_NUMNODES-1;
867 	task_unlock(current);
868 	mpol_put(old);
869 	ret = 0;
870 out:
871 	NODEMASK_SCRATCH_FREE(scratch);
872 	return ret;
873 }
874 
875 /*
876  * Return nodemask for policy for get_mempolicy() query
877  *
878  * Called with task's alloc_lock held
879  */
880 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
881 {
882 	nodes_clear(*nodes);
883 	if (p == &default_policy)
884 		return;
885 
886 	switch (p->mode) {
887 	case MPOL_BIND:
888 	case MPOL_INTERLEAVE:
889 	case MPOL_PREFERRED:
890 	case MPOL_PREFERRED_MANY:
891 		*nodes = p->nodes;
892 		break;
893 	case MPOL_LOCAL:
894 		/* return empty node mask for local allocation */
895 		break;
896 	default:
897 		BUG();
898 	}
899 }
900 
901 static int lookup_node(struct mm_struct *mm, unsigned long addr)
902 {
903 	struct page *p = NULL;
904 	int ret;
905 
906 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
907 	if (ret > 0) {
908 		ret = page_to_nid(p);
909 		put_page(p);
910 	}
911 	return ret;
912 }
913 
914 /* Retrieve NUMA policy */
915 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
916 			     unsigned long addr, unsigned long flags)
917 {
918 	int err;
919 	struct mm_struct *mm = current->mm;
920 	struct vm_area_struct *vma = NULL;
921 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
922 
923 	if (flags &
924 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
925 		return -EINVAL;
926 
927 	if (flags & MPOL_F_MEMS_ALLOWED) {
928 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
929 			return -EINVAL;
930 		*policy = 0;	/* just so it's initialized */
931 		task_lock(current);
932 		*nmask  = cpuset_current_mems_allowed;
933 		task_unlock(current);
934 		return 0;
935 	}
936 
937 	if (flags & MPOL_F_ADDR) {
938 		/*
939 		 * Do NOT fall back to task policy if the
940 		 * vma/shared policy at addr is NULL.  We
941 		 * want to return MPOL_DEFAULT in this case.
942 		 */
943 		mmap_read_lock(mm);
944 		vma = vma_lookup(mm, addr);
945 		if (!vma) {
946 			mmap_read_unlock(mm);
947 			return -EFAULT;
948 		}
949 		if (vma->vm_ops && vma->vm_ops->get_policy)
950 			pol = vma->vm_ops->get_policy(vma, addr);
951 		else
952 			pol = vma->vm_policy;
953 	} else if (addr)
954 		return -EINVAL;
955 
956 	if (!pol)
957 		pol = &default_policy;	/* indicates default behavior */
958 
959 	if (flags & MPOL_F_NODE) {
960 		if (flags & MPOL_F_ADDR) {
961 			/*
962 			 * Take a refcount on the mpol, because we are about to
963 			 * drop the mmap_lock, after which only "pol" remains
964 			 * valid, "vma" is stale.
965 			 */
966 			pol_refcount = pol;
967 			vma = NULL;
968 			mpol_get(pol);
969 			mmap_read_unlock(mm);
970 			err = lookup_node(mm, addr);
971 			if (err < 0)
972 				goto out;
973 			*policy = err;
974 		} else if (pol == current->mempolicy &&
975 				pol->mode == MPOL_INTERLEAVE) {
976 			*policy = next_node_in(current->il_prev, pol->nodes);
977 		} else {
978 			err = -EINVAL;
979 			goto out;
980 		}
981 	} else {
982 		*policy = pol == &default_policy ? MPOL_DEFAULT :
983 						pol->mode;
984 		/*
985 		 * Internal mempolicy flags must be masked off before exposing
986 		 * the policy to userspace.
987 		 */
988 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
989 	}
990 
991 	err = 0;
992 	if (nmask) {
993 		if (mpol_store_user_nodemask(pol)) {
994 			*nmask = pol->w.user_nodemask;
995 		} else {
996 			task_lock(current);
997 			get_policy_nodemask(pol, nmask);
998 			task_unlock(current);
999 		}
1000 	}
1001 
1002  out:
1003 	mpol_cond_put(pol);
1004 	if (vma)
1005 		mmap_read_unlock(mm);
1006 	if (pol_refcount)
1007 		mpol_put(pol_refcount);
1008 	return err;
1009 }
1010 
1011 #ifdef CONFIG_MIGRATION
1012 /*
1013  * page migration, thp tail pages can be passed.
1014  */
1015 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1016 				unsigned long flags)
1017 {
1018 	struct page *head = compound_head(page);
1019 	/*
1020 	 * Avoid migrating a page that is shared with others.
1021 	 */
1022 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1023 		if (!isolate_lru_page(head)) {
1024 			list_add_tail(&head->lru, pagelist);
1025 			mod_node_page_state(page_pgdat(head),
1026 				NR_ISOLATED_ANON + page_is_file_lru(head),
1027 				thp_nr_pages(head));
1028 		} else if (flags & MPOL_MF_STRICT) {
1029 			/*
1030 			 * Non-movable page may reach here.  And, there may be
1031 			 * temporary off LRU pages or non-LRU movable pages.
1032 			 * Treat them as unmovable pages since they can't be
1033 			 * isolated, so they can't be moved at the moment.  It
1034 			 * should return -EIO for this case too.
1035 			 */
1036 			return -EIO;
1037 		}
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /*
1044  * Migrate pages from one node to a target node.
1045  * Returns error or the number of pages not migrated.
1046  */
1047 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1048 			   int flags)
1049 {
1050 	nodemask_t nmask;
1051 	LIST_HEAD(pagelist);
1052 	int err = 0;
1053 	struct migration_target_control mtc = {
1054 		.nid = dest,
1055 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1056 	};
1057 
1058 	nodes_clear(nmask);
1059 	node_set(source, nmask);
1060 
1061 	/*
1062 	 * This does not "check" the range but isolates all pages that
1063 	 * need migration.  Between passing in the full user address
1064 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1065 	 */
1066 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1067 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1068 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1069 
1070 	if (!list_empty(&pagelist)) {
1071 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1072 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1073 		if (err)
1074 			putback_movable_pages(&pagelist);
1075 	}
1076 
1077 	return err;
1078 }
1079 
1080 /*
1081  * Move pages between the two nodesets so as to preserve the physical
1082  * layout as much as possible.
1083  *
1084  * Returns the number of page that could not be moved.
1085  */
1086 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1087 		     const nodemask_t *to, int flags)
1088 {
1089 	int busy = 0;
1090 	int err = 0;
1091 	nodemask_t tmp;
1092 
1093 	lru_cache_disable();
1094 
1095 	mmap_read_lock(mm);
1096 
1097 	/*
1098 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1099 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1100 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1101 	 * The pair of nodemasks 'to' and 'from' define the map.
1102 	 *
1103 	 * If no pair of bits is found that way, fallback to picking some
1104 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1105 	 * 'source' and 'dest' bits are the same, this represents a node
1106 	 * that will be migrating to itself, so no pages need move.
1107 	 *
1108 	 * If no bits are left in 'tmp', or if all remaining bits left
1109 	 * in 'tmp' correspond to the same bit in 'to', return false
1110 	 * (nothing left to migrate).
1111 	 *
1112 	 * This lets us pick a pair of nodes to migrate between, such that
1113 	 * if possible the dest node is not already occupied by some other
1114 	 * source node, minimizing the risk of overloading the memory on a
1115 	 * node that would happen if we migrated incoming memory to a node
1116 	 * before migrating outgoing memory source that same node.
1117 	 *
1118 	 * A single scan of tmp is sufficient.  As we go, we remember the
1119 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1120 	 * that not only moved, but what's better, moved to an empty slot
1121 	 * (d is not set in tmp), then we break out then, with that pair.
1122 	 * Otherwise when we finish scanning from_tmp, we at least have the
1123 	 * most recent <s, d> pair that moved.  If we get all the way through
1124 	 * the scan of tmp without finding any node that moved, much less
1125 	 * moved to an empty node, then there is nothing left worth migrating.
1126 	 */
1127 
1128 	tmp = *from;
1129 	while (!nodes_empty(tmp)) {
1130 		int s, d;
1131 		int source = NUMA_NO_NODE;
1132 		int dest = 0;
1133 
1134 		for_each_node_mask(s, tmp) {
1135 
1136 			/*
1137 			 * do_migrate_pages() tries to maintain the relative
1138 			 * node relationship of the pages established between
1139 			 * threads and memory areas.
1140                          *
1141 			 * However if the number of source nodes is not equal to
1142 			 * the number of destination nodes we can not preserve
1143 			 * this node relative relationship.  In that case, skip
1144 			 * copying memory from a node that is in the destination
1145 			 * mask.
1146 			 *
1147 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1148 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1149 			 */
1150 
1151 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1152 						(node_isset(s, *to)))
1153 				continue;
1154 
1155 			d = node_remap(s, *from, *to);
1156 			if (s == d)
1157 				continue;
1158 
1159 			source = s;	/* Node moved. Memorize */
1160 			dest = d;
1161 
1162 			/* dest not in remaining from nodes? */
1163 			if (!node_isset(dest, tmp))
1164 				break;
1165 		}
1166 		if (source == NUMA_NO_NODE)
1167 			break;
1168 
1169 		node_clear(source, tmp);
1170 		err = migrate_to_node(mm, source, dest, flags);
1171 		if (err > 0)
1172 			busy += err;
1173 		if (err < 0)
1174 			break;
1175 	}
1176 	mmap_read_unlock(mm);
1177 
1178 	lru_cache_enable();
1179 	if (err < 0)
1180 		return err;
1181 	return busy;
1182 
1183 }
1184 
1185 /*
1186  * Allocate a new page for page migration based on vma policy.
1187  * Start by assuming the page is mapped by the same vma as contains @start.
1188  * Search forward from there, if not.  N.B., this assumes that the
1189  * list of pages handed to migrate_pages()--which is how we get here--
1190  * is in virtual address order.
1191  */
1192 static struct page *new_page(struct page *page, unsigned long start)
1193 {
1194 	struct vm_area_struct *vma;
1195 	unsigned long address;
1196 
1197 	vma = find_vma(current->mm, start);
1198 	while (vma) {
1199 		address = page_address_in_vma(page, vma);
1200 		if (address != -EFAULT)
1201 			break;
1202 		vma = vma->vm_next;
1203 	}
1204 
1205 	if (PageHuge(page)) {
1206 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1207 				vma, address);
1208 	} else if (PageTransHuge(page)) {
1209 		struct page *thp;
1210 
1211 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1212 					 HPAGE_PMD_ORDER);
1213 		if (!thp)
1214 			return NULL;
1215 		prep_transhuge_page(thp);
1216 		return thp;
1217 	}
1218 	/*
1219 	 * if !vma, alloc_page_vma() will use task or system default policy
1220 	 */
1221 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1222 			vma, address);
1223 }
1224 #else
1225 
1226 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1227 				unsigned long flags)
1228 {
1229 	return -EIO;
1230 }
1231 
1232 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1233 		     const nodemask_t *to, int flags)
1234 {
1235 	return -ENOSYS;
1236 }
1237 
1238 static struct page *new_page(struct page *page, unsigned long start)
1239 {
1240 	return NULL;
1241 }
1242 #endif
1243 
1244 static long do_mbind(unsigned long start, unsigned long len,
1245 		     unsigned short mode, unsigned short mode_flags,
1246 		     nodemask_t *nmask, unsigned long flags)
1247 {
1248 	struct mm_struct *mm = current->mm;
1249 	struct mempolicy *new;
1250 	unsigned long end;
1251 	int err;
1252 	int ret;
1253 	LIST_HEAD(pagelist);
1254 
1255 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1256 		return -EINVAL;
1257 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1258 		return -EPERM;
1259 
1260 	if (start & ~PAGE_MASK)
1261 		return -EINVAL;
1262 
1263 	if (mode == MPOL_DEFAULT)
1264 		flags &= ~MPOL_MF_STRICT;
1265 
1266 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1267 	end = start + len;
1268 
1269 	if (end < start)
1270 		return -EINVAL;
1271 	if (end == start)
1272 		return 0;
1273 
1274 	new = mpol_new(mode, mode_flags, nmask);
1275 	if (IS_ERR(new))
1276 		return PTR_ERR(new);
1277 
1278 	if (flags & MPOL_MF_LAZY)
1279 		new->flags |= MPOL_F_MOF;
1280 
1281 	/*
1282 	 * If we are using the default policy then operation
1283 	 * on discontinuous address spaces is okay after all
1284 	 */
1285 	if (!new)
1286 		flags |= MPOL_MF_DISCONTIG_OK;
1287 
1288 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1289 		 start, start + len, mode, mode_flags,
1290 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1291 
1292 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1293 
1294 		lru_cache_disable();
1295 	}
1296 	{
1297 		NODEMASK_SCRATCH(scratch);
1298 		if (scratch) {
1299 			mmap_write_lock(mm);
1300 			err = mpol_set_nodemask(new, nmask, scratch);
1301 			if (err)
1302 				mmap_write_unlock(mm);
1303 		} else
1304 			err = -ENOMEM;
1305 		NODEMASK_SCRATCH_FREE(scratch);
1306 	}
1307 	if (err)
1308 		goto mpol_out;
1309 
1310 	ret = queue_pages_range(mm, start, end, nmask,
1311 			  flags | MPOL_MF_INVERT, &pagelist);
1312 
1313 	if (ret < 0) {
1314 		err = ret;
1315 		goto up_out;
1316 	}
1317 
1318 	err = mbind_range(mm, start, end, new);
1319 
1320 	if (!err) {
1321 		int nr_failed = 0;
1322 
1323 		if (!list_empty(&pagelist)) {
1324 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1325 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1326 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1327 			if (nr_failed)
1328 				putback_movable_pages(&pagelist);
1329 		}
1330 
1331 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1332 			err = -EIO;
1333 	} else {
1334 up_out:
1335 		if (!list_empty(&pagelist))
1336 			putback_movable_pages(&pagelist);
1337 	}
1338 
1339 	mmap_write_unlock(mm);
1340 mpol_out:
1341 	mpol_put(new);
1342 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1343 		lru_cache_enable();
1344 	return err;
1345 }
1346 
1347 /*
1348  * User space interface with variable sized bitmaps for nodelists.
1349  */
1350 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1351 		      unsigned long maxnode)
1352 {
1353 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1354 	int ret;
1355 
1356 	if (in_compat_syscall())
1357 		ret = compat_get_bitmap(mask,
1358 					(const compat_ulong_t __user *)nmask,
1359 					maxnode);
1360 	else
1361 		ret = copy_from_user(mask, nmask,
1362 				     nlongs * sizeof(unsigned long));
1363 
1364 	if (ret)
1365 		return -EFAULT;
1366 
1367 	if (maxnode % BITS_PER_LONG)
1368 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1369 
1370 	return 0;
1371 }
1372 
1373 /* Copy a node mask from user space. */
1374 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1375 		     unsigned long maxnode)
1376 {
1377 	--maxnode;
1378 	nodes_clear(*nodes);
1379 	if (maxnode == 0 || !nmask)
1380 		return 0;
1381 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1382 		return -EINVAL;
1383 
1384 	/*
1385 	 * When the user specified more nodes than supported just check
1386 	 * if the non supported part is all zero, one word at a time,
1387 	 * starting at the end.
1388 	 */
1389 	while (maxnode > MAX_NUMNODES) {
1390 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1391 		unsigned long t;
1392 
1393 		if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1394 			return -EFAULT;
1395 
1396 		if (maxnode - bits >= MAX_NUMNODES) {
1397 			maxnode -= bits;
1398 		} else {
1399 			maxnode = MAX_NUMNODES;
1400 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1401 		}
1402 		if (t)
1403 			return -EINVAL;
1404 	}
1405 
1406 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1407 }
1408 
1409 /* Copy a kernel node mask to user space */
1410 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1411 			      nodemask_t *nodes)
1412 {
1413 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1414 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1415 	bool compat = in_compat_syscall();
1416 
1417 	if (compat)
1418 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1419 
1420 	if (copy > nbytes) {
1421 		if (copy > PAGE_SIZE)
1422 			return -EINVAL;
1423 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1424 			return -EFAULT;
1425 		copy = nbytes;
1426 		maxnode = nr_node_ids;
1427 	}
1428 
1429 	if (compat)
1430 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1431 					 nodes_addr(*nodes), maxnode);
1432 
1433 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1434 }
1435 
1436 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1437 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1438 {
1439 	*flags = *mode & MPOL_MODE_FLAGS;
1440 	*mode &= ~MPOL_MODE_FLAGS;
1441 
1442 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1443 		return -EINVAL;
1444 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1445 		return -EINVAL;
1446 	if (*flags & MPOL_F_NUMA_BALANCING) {
1447 		if (*mode != MPOL_BIND)
1448 			return -EINVAL;
1449 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1450 	}
1451 	return 0;
1452 }
1453 
1454 static long kernel_mbind(unsigned long start, unsigned long len,
1455 			 unsigned long mode, const unsigned long __user *nmask,
1456 			 unsigned long maxnode, unsigned int flags)
1457 {
1458 	unsigned short mode_flags;
1459 	nodemask_t nodes;
1460 	int lmode = mode;
1461 	int err;
1462 
1463 	start = untagged_addr(start);
1464 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1465 	if (err)
1466 		return err;
1467 
1468 	err = get_nodes(&nodes, nmask, maxnode);
1469 	if (err)
1470 		return err;
1471 
1472 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1473 }
1474 
1475 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1476 		unsigned long, home_node, unsigned long, flags)
1477 {
1478 	struct mm_struct *mm = current->mm;
1479 	struct vm_area_struct *vma;
1480 	struct mempolicy *new;
1481 	unsigned long vmstart;
1482 	unsigned long vmend;
1483 	unsigned long end;
1484 	int err = -ENOENT;
1485 
1486 	start = untagged_addr(start);
1487 	if (start & ~PAGE_MASK)
1488 		return -EINVAL;
1489 	/*
1490 	 * flags is used for future extension if any.
1491 	 */
1492 	if (flags != 0)
1493 		return -EINVAL;
1494 
1495 	/*
1496 	 * Check home_node is online to avoid accessing uninitialized
1497 	 * NODE_DATA.
1498 	 */
1499 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1500 		return -EINVAL;
1501 
1502 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1503 	end = start + len;
1504 
1505 	if (end < start)
1506 		return -EINVAL;
1507 	if (end == start)
1508 		return 0;
1509 	mmap_write_lock(mm);
1510 	vma = find_vma(mm, start);
1511 	for (; vma && vma->vm_start < end;  vma = vma->vm_next) {
1512 
1513 		vmstart = max(start, vma->vm_start);
1514 		vmend   = min(end, vma->vm_end);
1515 		new = mpol_dup(vma_policy(vma));
1516 		if (IS_ERR(new)) {
1517 			err = PTR_ERR(new);
1518 			break;
1519 		}
1520 		/*
1521 		 * Only update home node if there is an existing vma policy
1522 		 */
1523 		if (!new)
1524 			continue;
1525 
1526 		/*
1527 		 * If any vma in the range got policy other than MPOL_BIND
1528 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1529 		 * the home node for vmas we already updated before.
1530 		 */
1531 		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1532 			err = -EOPNOTSUPP;
1533 			break;
1534 		}
1535 
1536 		new->home_node = home_node;
1537 		err = mbind_range(mm, vmstart, vmend, new);
1538 		mpol_put(new);
1539 		if (err)
1540 			break;
1541 	}
1542 	mmap_write_unlock(mm);
1543 	return err;
1544 }
1545 
1546 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1547 		unsigned long, mode, const unsigned long __user *, nmask,
1548 		unsigned long, maxnode, unsigned int, flags)
1549 {
1550 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1551 }
1552 
1553 /* Set the process memory policy */
1554 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1555 				 unsigned long maxnode)
1556 {
1557 	unsigned short mode_flags;
1558 	nodemask_t nodes;
1559 	int lmode = mode;
1560 	int err;
1561 
1562 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1563 	if (err)
1564 		return err;
1565 
1566 	err = get_nodes(&nodes, nmask, maxnode);
1567 	if (err)
1568 		return err;
1569 
1570 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1571 }
1572 
1573 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1574 		unsigned long, maxnode)
1575 {
1576 	return kernel_set_mempolicy(mode, nmask, maxnode);
1577 }
1578 
1579 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1580 				const unsigned long __user *old_nodes,
1581 				const unsigned long __user *new_nodes)
1582 {
1583 	struct mm_struct *mm = NULL;
1584 	struct task_struct *task;
1585 	nodemask_t task_nodes;
1586 	int err;
1587 	nodemask_t *old;
1588 	nodemask_t *new;
1589 	NODEMASK_SCRATCH(scratch);
1590 
1591 	if (!scratch)
1592 		return -ENOMEM;
1593 
1594 	old = &scratch->mask1;
1595 	new = &scratch->mask2;
1596 
1597 	err = get_nodes(old, old_nodes, maxnode);
1598 	if (err)
1599 		goto out;
1600 
1601 	err = get_nodes(new, new_nodes, maxnode);
1602 	if (err)
1603 		goto out;
1604 
1605 	/* Find the mm_struct */
1606 	rcu_read_lock();
1607 	task = pid ? find_task_by_vpid(pid) : current;
1608 	if (!task) {
1609 		rcu_read_unlock();
1610 		err = -ESRCH;
1611 		goto out;
1612 	}
1613 	get_task_struct(task);
1614 
1615 	err = -EINVAL;
1616 
1617 	/*
1618 	 * Check if this process has the right to modify the specified process.
1619 	 * Use the regular "ptrace_may_access()" checks.
1620 	 */
1621 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1622 		rcu_read_unlock();
1623 		err = -EPERM;
1624 		goto out_put;
1625 	}
1626 	rcu_read_unlock();
1627 
1628 	task_nodes = cpuset_mems_allowed(task);
1629 	/* Is the user allowed to access the target nodes? */
1630 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1631 		err = -EPERM;
1632 		goto out_put;
1633 	}
1634 
1635 	task_nodes = cpuset_mems_allowed(current);
1636 	nodes_and(*new, *new, task_nodes);
1637 	if (nodes_empty(*new))
1638 		goto out_put;
1639 
1640 	err = security_task_movememory(task);
1641 	if (err)
1642 		goto out_put;
1643 
1644 	mm = get_task_mm(task);
1645 	put_task_struct(task);
1646 
1647 	if (!mm) {
1648 		err = -EINVAL;
1649 		goto out;
1650 	}
1651 
1652 	err = do_migrate_pages(mm, old, new,
1653 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1654 
1655 	mmput(mm);
1656 out:
1657 	NODEMASK_SCRATCH_FREE(scratch);
1658 
1659 	return err;
1660 
1661 out_put:
1662 	put_task_struct(task);
1663 	goto out;
1664 
1665 }
1666 
1667 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1668 		const unsigned long __user *, old_nodes,
1669 		const unsigned long __user *, new_nodes)
1670 {
1671 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1672 }
1673 
1674 
1675 /* Retrieve NUMA policy */
1676 static int kernel_get_mempolicy(int __user *policy,
1677 				unsigned long __user *nmask,
1678 				unsigned long maxnode,
1679 				unsigned long addr,
1680 				unsigned long flags)
1681 {
1682 	int err;
1683 	int pval;
1684 	nodemask_t nodes;
1685 
1686 	if (nmask != NULL && maxnode < nr_node_ids)
1687 		return -EINVAL;
1688 
1689 	addr = untagged_addr(addr);
1690 
1691 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1692 
1693 	if (err)
1694 		return err;
1695 
1696 	if (policy && put_user(pval, policy))
1697 		return -EFAULT;
1698 
1699 	if (nmask)
1700 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1701 
1702 	return err;
1703 }
1704 
1705 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1706 		unsigned long __user *, nmask, unsigned long, maxnode,
1707 		unsigned long, addr, unsigned long, flags)
1708 {
1709 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1710 }
1711 
1712 bool vma_migratable(struct vm_area_struct *vma)
1713 {
1714 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1715 		return false;
1716 
1717 	/*
1718 	 * DAX device mappings require predictable access latency, so avoid
1719 	 * incurring periodic faults.
1720 	 */
1721 	if (vma_is_dax(vma))
1722 		return false;
1723 
1724 	if (is_vm_hugetlb_page(vma) &&
1725 		!hugepage_migration_supported(hstate_vma(vma)))
1726 		return false;
1727 
1728 	/*
1729 	 * Migration allocates pages in the highest zone. If we cannot
1730 	 * do so then migration (at least from node to node) is not
1731 	 * possible.
1732 	 */
1733 	if (vma->vm_file &&
1734 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1735 			< policy_zone)
1736 		return false;
1737 	return true;
1738 }
1739 
1740 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1741 						unsigned long addr)
1742 {
1743 	struct mempolicy *pol = NULL;
1744 
1745 	if (vma) {
1746 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1747 			pol = vma->vm_ops->get_policy(vma, addr);
1748 		} else if (vma->vm_policy) {
1749 			pol = vma->vm_policy;
1750 
1751 			/*
1752 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1753 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1754 			 * count on these policies which will be dropped by
1755 			 * mpol_cond_put() later
1756 			 */
1757 			if (mpol_needs_cond_ref(pol))
1758 				mpol_get(pol);
1759 		}
1760 	}
1761 
1762 	return pol;
1763 }
1764 
1765 /*
1766  * get_vma_policy(@vma, @addr)
1767  * @vma: virtual memory area whose policy is sought
1768  * @addr: address in @vma for shared policy lookup
1769  *
1770  * Returns effective policy for a VMA at specified address.
1771  * Falls back to current->mempolicy or system default policy, as necessary.
1772  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1773  * count--added by the get_policy() vm_op, as appropriate--to protect against
1774  * freeing by another task.  It is the caller's responsibility to free the
1775  * extra reference for shared policies.
1776  */
1777 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1778 						unsigned long addr)
1779 {
1780 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1781 
1782 	if (!pol)
1783 		pol = get_task_policy(current);
1784 
1785 	return pol;
1786 }
1787 
1788 bool vma_policy_mof(struct vm_area_struct *vma)
1789 {
1790 	struct mempolicy *pol;
1791 
1792 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1793 		bool ret = false;
1794 
1795 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1796 		if (pol && (pol->flags & MPOL_F_MOF))
1797 			ret = true;
1798 		mpol_cond_put(pol);
1799 
1800 		return ret;
1801 	}
1802 
1803 	pol = vma->vm_policy;
1804 	if (!pol)
1805 		pol = get_task_policy(current);
1806 
1807 	return pol->flags & MPOL_F_MOF;
1808 }
1809 
1810 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1811 {
1812 	enum zone_type dynamic_policy_zone = policy_zone;
1813 
1814 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1815 
1816 	/*
1817 	 * if policy->nodes has movable memory only,
1818 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1819 	 *
1820 	 * policy->nodes is intersect with node_states[N_MEMORY].
1821 	 * so if the following test fails, it implies
1822 	 * policy->nodes has movable memory only.
1823 	 */
1824 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1825 		dynamic_policy_zone = ZONE_MOVABLE;
1826 
1827 	return zone >= dynamic_policy_zone;
1828 }
1829 
1830 /*
1831  * Return a nodemask representing a mempolicy for filtering nodes for
1832  * page allocation
1833  */
1834 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1835 {
1836 	int mode = policy->mode;
1837 
1838 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1839 	if (unlikely(mode == MPOL_BIND) &&
1840 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1841 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1842 		return &policy->nodes;
1843 
1844 	if (mode == MPOL_PREFERRED_MANY)
1845 		return &policy->nodes;
1846 
1847 	return NULL;
1848 }
1849 
1850 /*
1851  * Return the  preferred node id for 'prefer' mempolicy, and return
1852  * the given id for all other policies.
1853  *
1854  * policy_node() is always coupled with policy_nodemask(), which
1855  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1856  */
1857 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1858 {
1859 	if (policy->mode == MPOL_PREFERRED) {
1860 		nd = first_node(policy->nodes);
1861 	} else {
1862 		/*
1863 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1864 		 * because we might easily break the expectation to stay on the
1865 		 * requested node and not break the policy.
1866 		 */
1867 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1868 	}
1869 
1870 	if ((policy->mode == MPOL_BIND ||
1871 	     policy->mode == MPOL_PREFERRED_MANY) &&
1872 	    policy->home_node != NUMA_NO_NODE)
1873 		return policy->home_node;
1874 
1875 	return nd;
1876 }
1877 
1878 /* Do dynamic interleaving for a process */
1879 static unsigned interleave_nodes(struct mempolicy *policy)
1880 {
1881 	unsigned next;
1882 	struct task_struct *me = current;
1883 
1884 	next = next_node_in(me->il_prev, policy->nodes);
1885 	if (next < MAX_NUMNODES)
1886 		me->il_prev = next;
1887 	return next;
1888 }
1889 
1890 /*
1891  * Depending on the memory policy provide a node from which to allocate the
1892  * next slab entry.
1893  */
1894 unsigned int mempolicy_slab_node(void)
1895 {
1896 	struct mempolicy *policy;
1897 	int node = numa_mem_id();
1898 
1899 	if (!in_task())
1900 		return node;
1901 
1902 	policy = current->mempolicy;
1903 	if (!policy)
1904 		return node;
1905 
1906 	switch (policy->mode) {
1907 	case MPOL_PREFERRED:
1908 		return first_node(policy->nodes);
1909 
1910 	case MPOL_INTERLEAVE:
1911 		return interleave_nodes(policy);
1912 
1913 	case MPOL_BIND:
1914 	case MPOL_PREFERRED_MANY:
1915 	{
1916 		struct zoneref *z;
1917 
1918 		/*
1919 		 * Follow bind policy behavior and start allocation at the
1920 		 * first node.
1921 		 */
1922 		struct zonelist *zonelist;
1923 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1924 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1925 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1926 							&policy->nodes);
1927 		return z->zone ? zone_to_nid(z->zone) : node;
1928 	}
1929 	case MPOL_LOCAL:
1930 		return node;
1931 
1932 	default:
1933 		BUG();
1934 	}
1935 }
1936 
1937 /*
1938  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1939  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1940  * number of present nodes.
1941  */
1942 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1943 {
1944 	nodemask_t nodemask = pol->nodes;
1945 	unsigned int target, nnodes;
1946 	int i;
1947 	int nid;
1948 	/*
1949 	 * The barrier will stabilize the nodemask in a register or on
1950 	 * the stack so that it will stop changing under the code.
1951 	 *
1952 	 * Between first_node() and next_node(), pol->nodes could be changed
1953 	 * by other threads. So we put pol->nodes in a local stack.
1954 	 */
1955 	barrier();
1956 
1957 	nnodes = nodes_weight(nodemask);
1958 	if (!nnodes)
1959 		return numa_node_id();
1960 	target = (unsigned int)n % nnodes;
1961 	nid = first_node(nodemask);
1962 	for (i = 0; i < target; i++)
1963 		nid = next_node(nid, nodemask);
1964 	return nid;
1965 }
1966 
1967 /* Determine a node number for interleave */
1968 static inline unsigned interleave_nid(struct mempolicy *pol,
1969 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1970 {
1971 	if (vma) {
1972 		unsigned long off;
1973 
1974 		/*
1975 		 * for small pages, there is no difference between
1976 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1977 		 * for huge pages, since vm_pgoff is in units of small
1978 		 * pages, we need to shift off the always 0 bits to get
1979 		 * a useful offset.
1980 		 */
1981 		BUG_ON(shift < PAGE_SHIFT);
1982 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1983 		off += (addr - vma->vm_start) >> shift;
1984 		return offset_il_node(pol, off);
1985 	} else
1986 		return interleave_nodes(pol);
1987 }
1988 
1989 #ifdef CONFIG_HUGETLBFS
1990 /*
1991  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1992  * @vma: virtual memory area whose policy is sought
1993  * @addr: address in @vma for shared policy lookup and interleave policy
1994  * @gfp_flags: for requested zone
1995  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1996  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1997  *
1998  * Returns a nid suitable for a huge page allocation and a pointer
1999  * to the struct mempolicy for conditional unref after allocation.
2000  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2001  * to the mempolicy's @nodemask for filtering the zonelist.
2002  *
2003  * Must be protected by read_mems_allowed_begin()
2004  */
2005 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2006 				struct mempolicy **mpol, nodemask_t **nodemask)
2007 {
2008 	int nid;
2009 	int mode;
2010 
2011 	*mpol = get_vma_policy(vma, addr);
2012 	*nodemask = NULL;
2013 	mode = (*mpol)->mode;
2014 
2015 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2016 		nid = interleave_nid(*mpol, vma, addr,
2017 					huge_page_shift(hstate_vma(vma)));
2018 	} else {
2019 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2020 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2021 			*nodemask = &(*mpol)->nodes;
2022 	}
2023 	return nid;
2024 }
2025 
2026 /*
2027  * init_nodemask_of_mempolicy
2028  *
2029  * If the current task's mempolicy is "default" [NULL], return 'false'
2030  * to indicate default policy.  Otherwise, extract the policy nodemask
2031  * for 'bind' or 'interleave' policy into the argument nodemask, or
2032  * initialize the argument nodemask to contain the single node for
2033  * 'preferred' or 'local' policy and return 'true' to indicate presence
2034  * of non-default mempolicy.
2035  *
2036  * We don't bother with reference counting the mempolicy [mpol_get/put]
2037  * because the current task is examining it's own mempolicy and a task's
2038  * mempolicy is only ever changed by the task itself.
2039  *
2040  * N.B., it is the caller's responsibility to free a returned nodemask.
2041  */
2042 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2043 {
2044 	struct mempolicy *mempolicy;
2045 
2046 	if (!(mask && current->mempolicy))
2047 		return false;
2048 
2049 	task_lock(current);
2050 	mempolicy = current->mempolicy;
2051 	switch (mempolicy->mode) {
2052 	case MPOL_PREFERRED:
2053 	case MPOL_PREFERRED_MANY:
2054 	case MPOL_BIND:
2055 	case MPOL_INTERLEAVE:
2056 		*mask = mempolicy->nodes;
2057 		break;
2058 
2059 	case MPOL_LOCAL:
2060 		init_nodemask_of_node(mask, numa_node_id());
2061 		break;
2062 
2063 	default:
2064 		BUG();
2065 	}
2066 	task_unlock(current);
2067 
2068 	return true;
2069 }
2070 #endif
2071 
2072 /*
2073  * mempolicy_in_oom_domain
2074  *
2075  * If tsk's mempolicy is "bind", check for intersection between mask and
2076  * the policy nodemask. Otherwise, return true for all other policies
2077  * including "interleave", as a tsk with "interleave" policy may have
2078  * memory allocated from all nodes in system.
2079  *
2080  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2081  */
2082 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2083 					const nodemask_t *mask)
2084 {
2085 	struct mempolicy *mempolicy;
2086 	bool ret = true;
2087 
2088 	if (!mask)
2089 		return ret;
2090 
2091 	task_lock(tsk);
2092 	mempolicy = tsk->mempolicy;
2093 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2094 		ret = nodes_intersects(mempolicy->nodes, *mask);
2095 	task_unlock(tsk);
2096 
2097 	return ret;
2098 }
2099 
2100 /* Allocate a page in interleaved policy.
2101    Own path because it needs to do special accounting. */
2102 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2103 					unsigned nid)
2104 {
2105 	struct page *page;
2106 
2107 	page = __alloc_pages(gfp, order, nid, NULL);
2108 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2109 	if (!static_branch_likely(&vm_numa_stat_key))
2110 		return page;
2111 	if (page && page_to_nid(page) == nid) {
2112 		preempt_disable();
2113 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2114 		preempt_enable();
2115 	}
2116 	return page;
2117 }
2118 
2119 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2120 						int nid, struct mempolicy *pol)
2121 {
2122 	struct page *page;
2123 	gfp_t preferred_gfp;
2124 
2125 	/*
2126 	 * This is a two pass approach. The first pass will only try the
2127 	 * preferred nodes but skip the direct reclaim and allow the
2128 	 * allocation to fail, while the second pass will try all the
2129 	 * nodes in system.
2130 	 */
2131 	preferred_gfp = gfp | __GFP_NOWARN;
2132 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2133 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2134 	if (!page)
2135 		page = __alloc_pages(gfp, order, nid, NULL);
2136 
2137 	return page;
2138 }
2139 
2140 /**
2141  * alloc_pages_vma - Allocate a page for a VMA.
2142  * @gfp: GFP flags.
2143  * @order: Order of the GFP allocation.
2144  * @vma: Pointer to VMA or NULL if not available.
2145  * @addr: Virtual address of the allocation.  Must be inside @vma.
2146  * @hugepage: For hugepages try only the preferred node if possible.
2147  *
2148  * Allocate a page for a specific address in @vma, using the appropriate
2149  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2150  * of the mm_struct of the VMA to prevent it from going away.  Should be
2151  * used for all allocations for pages that will be mapped into user space.
2152  *
2153  * Return: The page on success or NULL if allocation fails.
2154  */
2155 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2156 		unsigned long addr, bool hugepage)
2157 {
2158 	struct mempolicy *pol;
2159 	int node = numa_node_id();
2160 	struct page *page;
2161 	int preferred_nid;
2162 	nodemask_t *nmask;
2163 
2164 	pol = get_vma_policy(vma, addr);
2165 
2166 	if (pol->mode == MPOL_INTERLEAVE) {
2167 		unsigned nid;
2168 
2169 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2170 		mpol_cond_put(pol);
2171 		page = alloc_page_interleave(gfp, order, nid);
2172 		goto out;
2173 	}
2174 
2175 	if (pol->mode == MPOL_PREFERRED_MANY) {
2176 		node = policy_node(gfp, pol, node);
2177 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2178 		mpol_cond_put(pol);
2179 		goto out;
2180 	}
2181 
2182 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2183 		int hpage_node = node;
2184 
2185 		/*
2186 		 * For hugepage allocation and non-interleave policy which
2187 		 * allows the current node (or other explicitly preferred
2188 		 * node) we only try to allocate from the current/preferred
2189 		 * node and don't fall back to other nodes, as the cost of
2190 		 * remote accesses would likely offset THP benefits.
2191 		 *
2192 		 * If the policy is interleave or does not allow the current
2193 		 * node in its nodemask, we allocate the standard way.
2194 		 */
2195 		if (pol->mode == MPOL_PREFERRED)
2196 			hpage_node = first_node(pol->nodes);
2197 
2198 		nmask = policy_nodemask(gfp, pol);
2199 		if (!nmask || node_isset(hpage_node, *nmask)) {
2200 			mpol_cond_put(pol);
2201 			/*
2202 			 * First, try to allocate THP only on local node, but
2203 			 * don't reclaim unnecessarily, just compact.
2204 			 */
2205 			page = __alloc_pages_node(hpage_node,
2206 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2207 
2208 			/*
2209 			 * If hugepage allocations are configured to always
2210 			 * synchronous compact or the vma has been madvised
2211 			 * to prefer hugepage backing, retry allowing remote
2212 			 * memory with both reclaim and compact as well.
2213 			 */
2214 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2215 				page = __alloc_pages(gfp, order, hpage_node, nmask);
2216 
2217 			goto out;
2218 		}
2219 	}
2220 
2221 	nmask = policy_nodemask(gfp, pol);
2222 	preferred_nid = policy_node(gfp, pol, node);
2223 	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2224 	mpol_cond_put(pol);
2225 out:
2226 	return page;
2227 }
2228 EXPORT_SYMBOL(alloc_pages_vma);
2229 
2230 /**
2231  * alloc_pages - Allocate pages.
2232  * @gfp: GFP flags.
2233  * @order: Power of two of number of pages to allocate.
2234  *
2235  * Allocate 1 << @order contiguous pages.  The physical address of the
2236  * first page is naturally aligned (eg an order-3 allocation will be aligned
2237  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2238  * process is honoured when in process context.
2239  *
2240  * Context: Can be called from any context, providing the appropriate GFP
2241  * flags are used.
2242  * Return: The page on success or NULL if allocation fails.
2243  */
2244 struct page *alloc_pages(gfp_t gfp, unsigned order)
2245 {
2246 	struct mempolicy *pol = &default_policy;
2247 	struct page *page;
2248 
2249 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2250 		pol = get_task_policy(current);
2251 
2252 	/*
2253 	 * No reference counting needed for current->mempolicy
2254 	 * nor system default_policy
2255 	 */
2256 	if (pol->mode == MPOL_INTERLEAVE)
2257 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2258 	else if (pol->mode == MPOL_PREFERRED_MANY)
2259 		page = alloc_pages_preferred_many(gfp, order,
2260 				  policy_node(gfp, pol, numa_node_id()), pol);
2261 	else
2262 		page = __alloc_pages(gfp, order,
2263 				policy_node(gfp, pol, numa_node_id()),
2264 				policy_nodemask(gfp, pol));
2265 
2266 	return page;
2267 }
2268 EXPORT_SYMBOL(alloc_pages);
2269 
2270 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2271 {
2272 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2273 
2274 	if (page && order > 1)
2275 		prep_transhuge_page(page);
2276 	return (struct folio *)page;
2277 }
2278 EXPORT_SYMBOL(folio_alloc);
2279 
2280 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2281 		struct mempolicy *pol, unsigned long nr_pages,
2282 		struct page **page_array)
2283 {
2284 	int nodes;
2285 	unsigned long nr_pages_per_node;
2286 	int delta;
2287 	int i;
2288 	unsigned long nr_allocated;
2289 	unsigned long total_allocated = 0;
2290 
2291 	nodes = nodes_weight(pol->nodes);
2292 	nr_pages_per_node = nr_pages / nodes;
2293 	delta = nr_pages - nodes * nr_pages_per_node;
2294 
2295 	for (i = 0; i < nodes; i++) {
2296 		if (delta) {
2297 			nr_allocated = __alloc_pages_bulk(gfp,
2298 					interleave_nodes(pol), NULL,
2299 					nr_pages_per_node + 1, NULL,
2300 					page_array);
2301 			delta--;
2302 		} else {
2303 			nr_allocated = __alloc_pages_bulk(gfp,
2304 					interleave_nodes(pol), NULL,
2305 					nr_pages_per_node, NULL, page_array);
2306 		}
2307 
2308 		page_array += nr_allocated;
2309 		total_allocated += nr_allocated;
2310 	}
2311 
2312 	return total_allocated;
2313 }
2314 
2315 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2316 		struct mempolicy *pol, unsigned long nr_pages,
2317 		struct page **page_array)
2318 {
2319 	gfp_t preferred_gfp;
2320 	unsigned long nr_allocated = 0;
2321 
2322 	preferred_gfp = gfp | __GFP_NOWARN;
2323 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2324 
2325 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2326 					   nr_pages, NULL, page_array);
2327 
2328 	if (nr_allocated < nr_pages)
2329 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2330 				nr_pages - nr_allocated, NULL,
2331 				page_array + nr_allocated);
2332 	return nr_allocated;
2333 }
2334 
2335 /* alloc pages bulk and mempolicy should be considered at the
2336  * same time in some situation such as vmalloc.
2337  *
2338  * It can accelerate memory allocation especially interleaving
2339  * allocate memory.
2340  */
2341 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2342 		unsigned long nr_pages, struct page **page_array)
2343 {
2344 	struct mempolicy *pol = &default_policy;
2345 
2346 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2347 		pol = get_task_policy(current);
2348 
2349 	if (pol->mode == MPOL_INTERLEAVE)
2350 		return alloc_pages_bulk_array_interleave(gfp, pol,
2351 							 nr_pages, page_array);
2352 
2353 	if (pol->mode == MPOL_PREFERRED_MANY)
2354 		return alloc_pages_bulk_array_preferred_many(gfp,
2355 				numa_node_id(), pol, nr_pages, page_array);
2356 
2357 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2358 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2359 				  page_array);
2360 }
2361 
2362 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2363 {
2364 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2365 
2366 	if (IS_ERR(pol))
2367 		return PTR_ERR(pol);
2368 	dst->vm_policy = pol;
2369 	return 0;
2370 }
2371 
2372 /*
2373  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2374  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2375  * with the mems_allowed returned by cpuset_mems_allowed().  This
2376  * keeps mempolicies cpuset relative after its cpuset moves.  See
2377  * further kernel/cpuset.c update_nodemask().
2378  *
2379  * current's mempolicy may be rebinded by the other task(the task that changes
2380  * cpuset's mems), so we needn't do rebind work for current task.
2381  */
2382 
2383 /* Slow path of a mempolicy duplicate */
2384 struct mempolicy *__mpol_dup(struct mempolicy *old)
2385 {
2386 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2387 
2388 	if (!new)
2389 		return ERR_PTR(-ENOMEM);
2390 
2391 	/* task's mempolicy is protected by alloc_lock */
2392 	if (old == current->mempolicy) {
2393 		task_lock(current);
2394 		*new = *old;
2395 		task_unlock(current);
2396 	} else
2397 		*new = *old;
2398 
2399 	if (current_cpuset_is_being_rebound()) {
2400 		nodemask_t mems = cpuset_mems_allowed(current);
2401 		mpol_rebind_policy(new, &mems);
2402 	}
2403 	atomic_set(&new->refcnt, 1);
2404 	return new;
2405 }
2406 
2407 /* Slow path of a mempolicy comparison */
2408 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2409 {
2410 	if (!a || !b)
2411 		return false;
2412 	if (a->mode != b->mode)
2413 		return false;
2414 	if (a->flags != b->flags)
2415 		return false;
2416 	if (a->home_node != b->home_node)
2417 		return false;
2418 	if (mpol_store_user_nodemask(a))
2419 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2420 			return false;
2421 
2422 	switch (a->mode) {
2423 	case MPOL_BIND:
2424 	case MPOL_INTERLEAVE:
2425 	case MPOL_PREFERRED:
2426 	case MPOL_PREFERRED_MANY:
2427 		return !!nodes_equal(a->nodes, b->nodes);
2428 	case MPOL_LOCAL:
2429 		return true;
2430 	default:
2431 		BUG();
2432 		return false;
2433 	}
2434 }
2435 
2436 /*
2437  * Shared memory backing store policy support.
2438  *
2439  * Remember policies even when nobody has shared memory mapped.
2440  * The policies are kept in Red-Black tree linked from the inode.
2441  * They are protected by the sp->lock rwlock, which should be held
2442  * for any accesses to the tree.
2443  */
2444 
2445 /*
2446  * lookup first element intersecting start-end.  Caller holds sp->lock for
2447  * reading or for writing
2448  */
2449 static struct sp_node *
2450 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2451 {
2452 	struct rb_node *n = sp->root.rb_node;
2453 
2454 	while (n) {
2455 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2456 
2457 		if (start >= p->end)
2458 			n = n->rb_right;
2459 		else if (end <= p->start)
2460 			n = n->rb_left;
2461 		else
2462 			break;
2463 	}
2464 	if (!n)
2465 		return NULL;
2466 	for (;;) {
2467 		struct sp_node *w = NULL;
2468 		struct rb_node *prev = rb_prev(n);
2469 		if (!prev)
2470 			break;
2471 		w = rb_entry(prev, struct sp_node, nd);
2472 		if (w->end <= start)
2473 			break;
2474 		n = prev;
2475 	}
2476 	return rb_entry(n, struct sp_node, nd);
2477 }
2478 
2479 /*
2480  * Insert a new shared policy into the list.  Caller holds sp->lock for
2481  * writing.
2482  */
2483 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2484 {
2485 	struct rb_node **p = &sp->root.rb_node;
2486 	struct rb_node *parent = NULL;
2487 	struct sp_node *nd;
2488 
2489 	while (*p) {
2490 		parent = *p;
2491 		nd = rb_entry(parent, struct sp_node, nd);
2492 		if (new->start < nd->start)
2493 			p = &(*p)->rb_left;
2494 		else if (new->end > nd->end)
2495 			p = &(*p)->rb_right;
2496 		else
2497 			BUG();
2498 	}
2499 	rb_link_node(&new->nd, parent, p);
2500 	rb_insert_color(&new->nd, &sp->root);
2501 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2502 		 new->policy ? new->policy->mode : 0);
2503 }
2504 
2505 /* Find shared policy intersecting idx */
2506 struct mempolicy *
2507 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2508 {
2509 	struct mempolicy *pol = NULL;
2510 	struct sp_node *sn;
2511 
2512 	if (!sp->root.rb_node)
2513 		return NULL;
2514 	read_lock(&sp->lock);
2515 	sn = sp_lookup(sp, idx, idx+1);
2516 	if (sn) {
2517 		mpol_get(sn->policy);
2518 		pol = sn->policy;
2519 	}
2520 	read_unlock(&sp->lock);
2521 	return pol;
2522 }
2523 
2524 static void sp_free(struct sp_node *n)
2525 {
2526 	mpol_put(n->policy);
2527 	kmem_cache_free(sn_cache, n);
2528 }
2529 
2530 /**
2531  * mpol_misplaced - check whether current page node is valid in policy
2532  *
2533  * @page: page to be checked
2534  * @vma: vm area where page mapped
2535  * @addr: virtual address where page mapped
2536  *
2537  * Lookup current policy node id for vma,addr and "compare to" page's
2538  * node id.  Policy determination "mimics" alloc_page_vma().
2539  * Called from fault path where we know the vma and faulting address.
2540  *
2541  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2542  * policy, or a suitable node ID to allocate a replacement page from.
2543  */
2544 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2545 {
2546 	struct mempolicy *pol;
2547 	struct zoneref *z;
2548 	int curnid = page_to_nid(page);
2549 	unsigned long pgoff;
2550 	int thiscpu = raw_smp_processor_id();
2551 	int thisnid = cpu_to_node(thiscpu);
2552 	int polnid = NUMA_NO_NODE;
2553 	int ret = NUMA_NO_NODE;
2554 
2555 	pol = get_vma_policy(vma, addr);
2556 	if (!(pol->flags & MPOL_F_MOF))
2557 		goto out;
2558 
2559 	switch (pol->mode) {
2560 	case MPOL_INTERLEAVE:
2561 		pgoff = vma->vm_pgoff;
2562 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2563 		polnid = offset_il_node(pol, pgoff);
2564 		break;
2565 
2566 	case MPOL_PREFERRED:
2567 		if (node_isset(curnid, pol->nodes))
2568 			goto out;
2569 		polnid = first_node(pol->nodes);
2570 		break;
2571 
2572 	case MPOL_LOCAL:
2573 		polnid = numa_node_id();
2574 		break;
2575 
2576 	case MPOL_BIND:
2577 		/* Optimize placement among multiple nodes via NUMA balancing */
2578 		if (pol->flags & MPOL_F_MORON) {
2579 			if (node_isset(thisnid, pol->nodes))
2580 				break;
2581 			goto out;
2582 		}
2583 		fallthrough;
2584 
2585 	case MPOL_PREFERRED_MANY:
2586 		/*
2587 		 * use current page if in policy nodemask,
2588 		 * else select nearest allowed node, if any.
2589 		 * If no allowed nodes, use current [!misplaced].
2590 		 */
2591 		if (node_isset(curnid, pol->nodes))
2592 			goto out;
2593 		z = first_zones_zonelist(
2594 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2595 				gfp_zone(GFP_HIGHUSER),
2596 				&pol->nodes);
2597 		polnid = zone_to_nid(z->zone);
2598 		break;
2599 
2600 	default:
2601 		BUG();
2602 	}
2603 
2604 	/* Migrate the page towards the node whose CPU is referencing it */
2605 	if (pol->flags & MPOL_F_MORON) {
2606 		polnid = thisnid;
2607 
2608 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2609 			goto out;
2610 	}
2611 
2612 	if (curnid != polnid)
2613 		ret = polnid;
2614 out:
2615 	mpol_cond_put(pol);
2616 
2617 	return ret;
2618 }
2619 
2620 /*
2621  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2622  * dropped after task->mempolicy is set to NULL so that any allocation done as
2623  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2624  * policy.
2625  */
2626 void mpol_put_task_policy(struct task_struct *task)
2627 {
2628 	struct mempolicy *pol;
2629 
2630 	task_lock(task);
2631 	pol = task->mempolicy;
2632 	task->mempolicy = NULL;
2633 	task_unlock(task);
2634 	mpol_put(pol);
2635 }
2636 
2637 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2638 {
2639 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2640 	rb_erase(&n->nd, &sp->root);
2641 	sp_free(n);
2642 }
2643 
2644 static void sp_node_init(struct sp_node *node, unsigned long start,
2645 			unsigned long end, struct mempolicy *pol)
2646 {
2647 	node->start = start;
2648 	node->end = end;
2649 	node->policy = pol;
2650 }
2651 
2652 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2653 				struct mempolicy *pol)
2654 {
2655 	struct sp_node *n;
2656 	struct mempolicy *newpol;
2657 
2658 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2659 	if (!n)
2660 		return NULL;
2661 
2662 	newpol = mpol_dup(pol);
2663 	if (IS_ERR(newpol)) {
2664 		kmem_cache_free(sn_cache, n);
2665 		return NULL;
2666 	}
2667 	newpol->flags |= MPOL_F_SHARED;
2668 	sp_node_init(n, start, end, newpol);
2669 
2670 	return n;
2671 }
2672 
2673 /* Replace a policy range. */
2674 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2675 				 unsigned long end, struct sp_node *new)
2676 {
2677 	struct sp_node *n;
2678 	struct sp_node *n_new = NULL;
2679 	struct mempolicy *mpol_new = NULL;
2680 	int ret = 0;
2681 
2682 restart:
2683 	write_lock(&sp->lock);
2684 	n = sp_lookup(sp, start, end);
2685 	/* Take care of old policies in the same range. */
2686 	while (n && n->start < end) {
2687 		struct rb_node *next = rb_next(&n->nd);
2688 		if (n->start >= start) {
2689 			if (n->end <= end)
2690 				sp_delete(sp, n);
2691 			else
2692 				n->start = end;
2693 		} else {
2694 			/* Old policy spanning whole new range. */
2695 			if (n->end > end) {
2696 				if (!n_new)
2697 					goto alloc_new;
2698 
2699 				*mpol_new = *n->policy;
2700 				atomic_set(&mpol_new->refcnt, 1);
2701 				sp_node_init(n_new, end, n->end, mpol_new);
2702 				n->end = start;
2703 				sp_insert(sp, n_new);
2704 				n_new = NULL;
2705 				mpol_new = NULL;
2706 				break;
2707 			} else
2708 				n->end = start;
2709 		}
2710 		if (!next)
2711 			break;
2712 		n = rb_entry(next, struct sp_node, nd);
2713 	}
2714 	if (new)
2715 		sp_insert(sp, new);
2716 	write_unlock(&sp->lock);
2717 	ret = 0;
2718 
2719 err_out:
2720 	if (mpol_new)
2721 		mpol_put(mpol_new);
2722 	if (n_new)
2723 		kmem_cache_free(sn_cache, n_new);
2724 
2725 	return ret;
2726 
2727 alloc_new:
2728 	write_unlock(&sp->lock);
2729 	ret = -ENOMEM;
2730 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2731 	if (!n_new)
2732 		goto err_out;
2733 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2734 	if (!mpol_new)
2735 		goto err_out;
2736 	goto restart;
2737 }
2738 
2739 /**
2740  * mpol_shared_policy_init - initialize shared policy for inode
2741  * @sp: pointer to inode shared policy
2742  * @mpol:  struct mempolicy to install
2743  *
2744  * Install non-NULL @mpol in inode's shared policy rb-tree.
2745  * On entry, the current task has a reference on a non-NULL @mpol.
2746  * This must be released on exit.
2747  * This is called at get_inode() calls and we can use GFP_KERNEL.
2748  */
2749 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2750 {
2751 	int ret;
2752 
2753 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2754 	rwlock_init(&sp->lock);
2755 
2756 	if (mpol) {
2757 		struct vm_area_struct pvma;
2758 		struct mempolicy *new;
2759 		NODEMASK_SCRATCH(scratch);
2760 
2761 		if (!scratch)
2762 			goto put_mpol;
2763 		/* contextualize the tmpfs mount point mempolicy */
2764 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2765 		if (IS_ERR(new))
2766 			goto free_scratch; /* no valid nodemask intersection */
2767 
2768 		task_lock(current);
2769 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2770 		task_unlock(current);
2771 		if (ret)
2772 			goto put_new;
2773 
2774 		/* Create pseudo-vma that contains just the policy */
2775 		vma_init(&pvma, NULL);
2776 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2777 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2778 
2779 put_new:
2780 		mpol_put(new);			/* drop initial ref */
2781 free_scratch:
2782 		NODEMASK_SCRATCH_FREE(scratch);
2783 put_mpol:
2784 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2785 	}
2786 }
2787 
2788 int mpol_set_shared_policy(struct shared_policy *info,
2789 			struct vm_area_struct *vma, struct mempolicy *npol)
2790 {
2791 	int err;
2792 	struct sp_node *new = NULL;
2793 	unsigned long sz = vma_pages(vma);
2794 
2795 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2796 		 vma->vm_pgoff,
2797 		 sz, npol ? npol->mode : -1,
2798 		 npol ? npol->flags : -1,
2799 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2800 
2801 	if (npol) {
2802 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2803 		if (!new)
2804 			return -ENOMEM;
2805 	}
2806 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2807 	if (err && new)
2808 		sp_free(new);
2809 	return err;
2810 }
2811 
2812 /* Free a backing policy store on inode delete. */
2813 void mpol_free_shared_policy(struct shared_policy *p)
2814 {
2815 	struct sp_node *n;
2816 	struct rb_node *next;
2817 
2818 	if (!p->root.rb_node)
2819 		return;
2820 	write_lock(&p->lock);
2821 	next = rb_first(&p->root);
2822 	while (next) {
2823 		n = rb_entry(next, struct sp_node, nd);
2824 		next = rb_next(&n->nd);
2825 		sp_delete(p, n);
2826 	}
2827 	write_unlock(&p->lock);
2828 }
2829 
2830 #ifdef CONFIG_NUMA_BALANCING
2831 static int __initdata numabalancing_override;
2832 
2833 static void __init check_numabalancing_enable(void)
2834 {
2835 	bool numabalancing_default = false;
2836 
2837 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2838 		numabalancing_default = true;
2839 
2840 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2841 	if (numabalancing_override)
2842 		set_numabalancing_state(numabalancing_override == 1);
2843 
2844 	if (num_online_nodes() > 1 && !numabalancing_override) {
2845 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2846 			numabalancing_default ? "Enabling" : "Disabling");
2847 		set_numabalancing_state(numabalancing_default);
2848 	}
2849 }
2850 
2851 static int __init setup_numabalancing(char *str)
2852 {
2853 	int ret = 0;
2854 	if (!str)
2855 		goto out;
2856 
2857 	if (!strcmp(str, "enable")) {
2858 		numabalancing_override = 1;
2859 		ret = 1;
2860 	} else if (!strcmp(str, "disable")) {
2861 		numabalancing_override = -1;
2862 		ret = 1;
2863 	}
2864 out:
2865 	if (!ret)
2866 		pr_warn("Unable to parse numa_balancing=\n");
2867 
2868 	return ret;
2869 }
2870 __setup("numa_balancing=", setup_numabalancing);
2871 #else
2872 static inline void __init check_numabalancing_enable(void)
2873 {
2874 }
2875 #endif /* CONFIG_NUMA_BALANCING */
2876 
2877 /* assumes fs == KERNEL_DS */
2878 void __init numa_policy_init(void)
2879 {
2880 	nodemask_t interleave_nodes;
2881 	unsigned long largest = 0;
2882 	int nid, prefer = 0;
2883 
2884 	policy_cache = kmem_cache_create("numa_policy",
2885 					 sizeof(struct mempolicy),
2886 					 0, SLAB_PANIC, NULL);
2887 
2888 	sn_cache = kmem_cache_create("shared_policy_node",
2889 				     sizeof(struct sp_node),
2890 				     0, SLAB_PANIC, NULL);
2891 
2892 	for_each_node(nid) {
2893 		preferred_node_policy[nid] = (struct mempolicy) {
2894 			.refcnt = ATOMIC_INIT(1),
2895 			.mode = MPOL_PREFERRED,
2896 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2897 			.nodes = nodemask_of_node(nid),
2898 		};
2899 	}
2900 
2901 	/*
2902 	 * Set interleaving policy for system init. Interleaving is only
2903 	 * enabled across suitably sized nodes (default is >= 16MB), or
2904 	 * fall back to the largest node if they're all smaller.
2905 	 */
2906 	nodes_clear(interleave_nodes);
2907 	for_each_node_state(nid, N_MEMORY) {
2908 		unsigned long total_pages = node_present_pages(nid);
2909 
2910 		/* Preserve the largest node */
2911 		if (largest < total_pages) {
2912 			largest = total_pages;
2913 			prefer = nid;
2914 		}
2915 
2916 		/* Interleave this node? */
2917 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2918 			node_set(nid, interleave_nodes);
2919 	}
2920 
2921 	/* All too small, use the largest */
2922 	if (unlikely(nodes_empty(interleave_nodes)))
2923 		node_set(prefer, interleave_nodes);
2924 
2925 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2926 		pr_err("%s: interleaving failed\n", __func__);
2927 
2928 	check_numabalancing_enable();
2929 }
2930 
2931 /* Reset policy of current process to default */
2932 void numa_default_policy(void)
2933 {
2934 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2935 }
2936 
2937 /*
2938  * Parse and format mempolicy from/to strings
2939  */
2940 
2941 static const char * const policy_modes[] =
2942 {
2943 	[MPOL_DEFAULT]    = "default",
2944 	[MPOL_PREFERRED]  = "prefer",
2945 	[MPOL_BIND]       = "bind",
2946 	[MPOL_INTERLEAVE] = "interleave",
2947 	[MPOL_LOCAL]      = "local",
2948 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2949 };
2950 
2951 
2952 #ifdef CONFIG_TMPFS
2953 /**
2954  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2955  * @str:  string containing mempolicy to parse
2956  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2957  *
2958  * Format of input:
2959  *	<mode>[=<flags>][:<nodelist>]
2960  *
2961  * Return: %0 on success, else %1
2962  */
2963 int mpol_parse_str(char *str, struct mempolicy **mpol)
2964 {
2965 	struct mempolicy *new = NULL;
2966 	unsigned short mode_flags;
2967 	nodemask_t nodes;
2968 	char *nodelist = strchr(str, ':');
2969 	char *flags = strchr(str, '=');
2970 	int err = 1, mode;
2971 
2972 	if (flags)
2973 		*flags++ = '\0';	/* terminate mode string */
2974 
2975 	if (nodelist) {
2976 		/* NUL-terminate mode or flags string */
2977 		*nodelist++ = '\0';
2978 		if (nodelist_parse(nodelist, nodes))
2979 			goto out;
2980 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2981 			goto out;
2982 	} else
2983 		nodes_clear(nodes);
2984 
2985 	mode = match_string(policy_modes, MPOL_MAX, str);
2986 	if (mode < 0)
2987 		goto out;
2988 
2989 	switch (mode) {
2990 	case MPOL_PREFERRED:
2991 		/*
2992 		 * Insist on a nodelist of one node only, although later
2993 		 * we use first_node(nodes) to grab a single node, so here
2994 		 * nodelist (or nodes) cannot be empty.
2995 		 */
2996 		if (nodelist) {
2997 			char *rest = nodelist;
2998 			while (isdigit(*rest))
2999 				rest++;
3000 			if (*rest)
3001 				goto out;
3002 			if (nodes_empty(nodes))
3003 				goto out;
3004 		}
3005 		break;
3006 	case MPOL_INTERLEAVE:
3007 		/*
3008 		 * Default to online nodes with memory if no nodelist
3009 		 */
3010 		if (!nodelist)
3011 			nodes = node_states[N_MEMORY];
3012 		break;
3013 	case MPOL_LOCAL:
3014 		/*
3015 		 * Don't allow a nodelist;  mpol_new() checks flags
3016 		 */
3017 		if (nodelist)
3018 			goto out;
3019 		break;
3020 	case MPOL_DEFAULT:
3021 		/*
3022 		 * Insist on a empty nodelist
3023 		 */
3024 		if (!nodelist)
3025 			err = 0;
3026 		goto out;
3027 	case MPOL_PREFERRED_MANY:
3028 	case MPOL_BIND:
3029 		/*
3030 		 * Insist on a nodelist
3031 		 */
3032 		if (!nodelist)
3033 			goto out;
3034 	}
3035 
3036 	mode_flags = 0;
3037 	if (flags) {
3038 		/*
3039 		 * Currently, we only support two mutually exclusive
3040 		 * mode flags.
3041 		 */
3042 		if (!strcmp(flags, "static"))
3043 			mode_flags |= MPOL_F_STATIC_NODES;
3044 		else if (!strcmp(flags, "relative"))
3045 			mode_flags |= MPOL_F_RELATIVE_NODES;
3046 		else
3047 			goto out;
3048 	}
3049 
3050 	new = mpol_new(mode, mode_flags, &nodes);
3051 	if (IS_ERR(new))
3052 		goto out;
3053 
3054 	/*
3055 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3056 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3057 	 */
3058 	if (mode != MPOL_PREFERRED) {
3059 		new->nodes = nodes;
3060 	} else if (nodelist) {
3061 		nodes_clear(new->nodes);
3062 		node_set(first_node(nodes), new->nodes);
3063 	} else {
3064 		new->mode = MPOL_LOCAL;
3065 	}
3066 
3067 	/*
3068 	 * Save nodes for contextualization: this will be used to "clone"
3069 	 * the mempolicy in a specific context [cpuset] at a later time.
3070 	 */
3071 	new->w.user_nodemask = nodes;
3072 
3073 	err = 0;
3074 
3075 out:
3076 	/* Restore string for error message */
3077 	if (nodelist)
3078 		*--nodelist = ':';
3079 	if (flags)
3080 		*--flags = '=';
3081 	if (!err)
3082 		*mpol = new;
3083 	return err;
3084 }
3085 #endif /* CONFIG_TMPFS */
3086 
3087 /**
3088  * mpol_to_str - format a mempolicy structure for printing
3089  * @buffer:  to contain formatted mempolicy string
3090  * @maxlen:  length of @buffer
3091  * @pol:  pointer to mempolicy to be formatted
3092  *
3093  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3094  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3095  * longest flag, "relative", and to display at least a few node ids.
3096  */
3097 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3098 {
3099 	char *p = buffer;
3100 	nodemask_t nodes = NODE_MASK_NONE;
3101 	unsigned short mode = MPOL_DEFAULT;
3102 	unsigned short flags = 0;
3103 
3104 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3105 		mode = pol->mode;
3106 		flags = pol->flags;
3107 	}
3108 
3109 	switch (mode) {
3110 	case MPOL_DEFAULT:
3111 	case MPOL_LOCAL:
3112 		break;
3113 	case MPOL_PREFERRED:
3114 	case MPOL_PREFERRED_MANY:
3115 	case MPOL_BIND:
3116 	case MPOL_INTERLEAVE:
3117 		nodes = pol->nodes;
3118 		break;
3119 	default:
3120 		WARN_ON_ONCE(1);
3121 		snprintf(p, maxlen, "unknown");
3122 		return;
3123 	}
3124 
3125 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3126 
3127 	if (flags & MPOL_MODE_FLAGS) {
3128 		p += snprintf(p, buffer + maxlen - p, "=");
3129 
3130 		/*
3131 		 * Currently, the only defined flags are mutually exclusive
3132 		 */
3133 		if (flags & MPOL_F_STATIC_NODES)
3134 			p += snprintf(p, buffer + maxlen - p, "static");
3135 		else if (flags & MPOL_F_RELATIVE_NODES)
3136 			p += snprintf(p, buffer + maxlen - p, "relative");
3137 	}
3138 
3139 	if (!nodes_empty(nodes))
3140 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3141 			       nodemask_pr_args(&nodes));
3142 }
3143