1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <linux/uaccess.h> 108 109 #include "internal.h" 110 111 /* Internal flags */ 112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 114 115 static struct kmem_cache *policy_cache; 116 static struct kmem_cache *sn_cache; 117 118 /* Highest zone. An specific allocation for a zone below that is not 119 policied. */ 120 enum zone_type policy_zone = 0; 121 122 /* 123 * run-time system-wide default policy => local allocation 124 */ 125 static struct mempolicy default_policy = { 126 .refcnt = ATOMIC_INIT(1), /* never free it */ 127 .mode = MPOL_LOCAL, 128 }; 129 130 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 131 132 /** 133 * numa_map_to_online_node - Find closest online node 134 * @node: Node id to start the search 135 * 136 * Lookup the next closest node by distance if @nid is not online. 137 * 138 * Return: this @node if it is online, otherwise the closest node by distance 139 */ 140 int numa_map_to_online_node(int node) 141 { 142 int min_dist = INT_MAX, dist, n, min_node; 143 144 if (node == NUMA_NO_NODE || node_online(node)) 145 return node; 146 147 min_node = node; 148 for_each_online_node(n) { 149 dist = node_distance(node, n); 150 if (dist < min_dist) { 151 min_dist = dist; 152 min_node = n; 153 } 154 } 155 156 return min_node; 157 } 158 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 159 160 struct mempolicy *get_task_policy(struct task_struct *p) 161 { 162 struct mempolicy *pol = p->mempolicy; 163 int node; 164 165 if (pol) 166 return pol; 167 168 node = numa_node_id(); 169 if (node != NUMA_NO_NODE) { 170 pol = &preferred_node_policy[node]; 171 /* preferred_node_policy is not initialised early in boot */ 172 if (pol->mode) 173 return pol; 174 } 175 176 return &default_policy; 177 } 178 179 static const struct mempolicy_operations { 180 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 181 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 182 } mpol_ops[MPOL_MAX]; 183 184 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 185 { 186 return pol->flags & MPOL_MODE_FLAGS; 187 } 188 189 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 190 const nodemask_t *rel) 191 { 192 nodemask_t tmp; 193 nodes_fold(tmp, *orig, nodes_weight(*rel)); 194 nodes_onto(*ret, tmp, *rel); 195 } 196 197 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 198 { 199 if (nodes_empty(*nodes)) 200 return -EINVAL; 201 pol->nodes = *nodes; 202 return 0; 203 } 204 205 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 206 { 207 if (nodes_empty(*nodes)) 208 return -EINVAL; 209 210 nodes_clear(pol->nodes); 211 node_set(first_node(*nodes), pol->nodes); 212 return 0; 213 } 214 215 /* 216 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 217 * any, for the new policy. mpol_new() has already validated the nodes 218 * parameter with respect to the policy mode and flags. 219 * 220 * Must be called holding task's alloc_lock to protect task's mems_allowed 221 * and mempolicy. May also be called holding the mmap_lock for write. 222 */ 223 static int mpol_set_nodemask(struct mempolicy *pol, 224 const nodemask_t *nodes, struct nodemask_scratch *nsc) 225 { 226 int ret; 227 228 /* 229 * Default (pol==NULL) resp. local memory policies are not a 230 * subject of any remapping. They also do not need any special 231 * constructor. 232 */ 233 if (!pol || pol->mode == MPOL_LOCAL) 234 return 0; 235 236 /* Check N_MEMORY */ 237 nodes_and(nsc->mask1, 238 cpuset_current_mems_allowed, node_states[N_MEMORY]); 239 240 VM_BUG_ON(!nodes); 241 242 if (pol->flags & MPOL_F_RELATIVE_NODES) 243 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 244 else 245 nodes_and(nsc->mask2, *nodes, nsc->mask1); 246 247 if (mpol_store_user_nodemask(pol)) 248 pol->w.user_nodemask = *nodes; 249 else 250 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 251 252 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 253 return ret; 254 } 255 256 /* 257 * This function just creates a new policy, does some check and simple 258 * initialization. You must invoke mpol_set_nodemask() to set nodes. 259 */ 260 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 261 nodemask_t *nodes) 262 { 263 struct mempolicy *policy; 264 265 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 266 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 267 268 if (mode == MPOL_DEFAULT) { 269 if (nodes && !nodes_empty(*nodes)) 270 return ERR_PTR(-EINVAL); 271 return NULL; 272 } 273 VM_BUG_ON(!nodes); 274 275 /* 276 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 277 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 278 * All other modes require a valid pointer to a non-empty nodemask. 279 */ 280 if (mode == MPOL_PREFERRED) { 281 if (nodes_empty(*nodes)) { 282 if (((flags & MPOL_F_STATIC_NODES) || 283 (flags & MPOL_F_RELATIVE_NODES))) 284 return ERR_PTR(-EINVAL); 285 286 mode = MPOL_LOCAL; 287 } 288 } else if (mode == MPOL_LOCAL) { 289 if (!nodes_empty(*nodes) || 290 (flags & MPOL_F_STATIC_NODES) || 291 (flags & MPOL_F_RELATIVE_NODES)) 292 return ERR_PTR(-EINVAL); 293 } else if (nodes_empty(*nodes)) 294 return ERR_PTR(-EINVAL); 295 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 296 if (!policy) 297 return ERR_PTR(-ENOMEM); 298 atomic_set(&policy->refcnt, 1); 299 policy->mode = mode; 300 policy->flags = flags; 301 policy->home_node = NUMA_NO_NODE; 302 303 return policy; 304 } 305 306 /* Slow path of a mpol destructor. */ 307 void __mpol_put(struct mempolicy *p) 308 { 309 if (!atomic_dec_and_test(&p->refcnt)) 310 return; 311 kmem_cache_free(policy_cache, p); 312 } 313 314 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 315 { 316 } 317 318 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 319 { 320 nodemask_t tmp; 321 322 if (pol->flags & MPOL_F_STATIC_NODES) 323 nodes_and(tmp, pol->w.user_nodemask, *nodes); 324 else if (pol->flags & MPOL_F_RELATIVE_NODES) 325 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 326 else { 327 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 328 *nodes); 329 pol->w.cpuset_mems_allowed = *nodes; 330 } 331 332 if (nodes_empty(tmp)) 333 tmp = *nodes; 334 335 pol->nodes = tmp; 336 } 337 338 static void mpol_rebind_preferred(struct mempolicy *pol, 339 const nodemask_t *nodes) 340 { 341 pol->w.cpuset_mems_allowed = *nodes; 342 } 343 344 /* 345 * mpol_rebind_policy - Migrate a policy to a different set of nodes 346 * 347 * Per-vma policies are protected by mmap_lock. Allocations using per-task 348 * policies are protected by task->mems_allowed_seq to prevent a premature 349 * OOM/allocation failure due to parallel nodemask modification. 350 */ 351 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 352 { 353 if (!pol) 354 return; 355 if (!mpol_store_user_nodemask(pol) && 356 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 357 return; 358 359 mpol_ops[pol->mode].rebind(pol, newmask); 360 } 361 362 /* 363 * Wrapper for mpol_rebind_policy() that just requires task 364 * pointer, and updates task mempolicy. 365 * 366 * Called with task's alloc_lock held. 367 */ 368 369 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 370 { 371 mpol_rebind_policy(tsk->mempolicy, new); 372 } 373 374 /* 375 * Rebind each vma in mm to new nodemask. 376 * 377 * Call holding a reference to mm. Takes mm->mmap_lock during call. 378 */ 379 380 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 381 { 382 struct vm_area_struct *vma; 383 384 mmap_write_lock(mm); 385 for (vma = mm->mmap; vma; vma = vma->vm_next) 386 mpol_rebind_policy(vma->vm_policy, new); 387 mmap_write_unlock(mm); 388 } 389 390 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 391 [MPOL_DEFAULT] = { 392 .rebind = mpol_rebind_default, 393 }, 394 [MPOL_INTERLEAVE] = { 395 .create = mpol_new_nodemask, 396 .rebind = mpol_rebind_nodemask, 397 }, 398 [MPOL_PREFERRED] = { 399 .create = mpol_new_preferred, 400 .rebind = mpol_rebind_preferred, 401 }, 402 [MPOL_BIND] = { 403 .create = mpol_new_nodemask, 404 .rebind = mpol_rebind_nodemask, 405 }, 406 [MPOL_LOCAL] = { 407 .rebind = mpol_rebind_default, 408 }, 409 [MPOL_PREFERRED_MANY] = { 410 .create = mpol_new_nodemask, 411 .rebind = mpol_rebind_preferred, 412 }, 413 }; 414 415 static int migrate_page_add(struct page *page, struct list_head *pagelist, 416 unsigned long flags); 417 418 struct queue_pages { 419 struct list_head *pagelist; 420 unsigned long flags; 421 nodemask_t *nmask; 422 unsigned long start; 423 unsigned long end; 424 struct vm_area_struct *first; 425 }; 426 427 /* 428 * Check if the page's nid is in qp->nmask. 429 * 430 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 431 * in the invert of qp->nmask. 432 */ 433 static inline bool queue_pages_required(struct page *page, 434 struct queue_pages *qp) 435 { 436 int nid = page_to_nid(page); 437 unsigned long flags = qp->flags; 438 439 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 440 } 441 442 /* 443 * queue_pages_pmd() has four possible return values: 444 * 0 - pages are placed on the right node or queued successfully, or 445 * special page is met, i.e. huge zero page. 446 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 447 * specified. 448 * 2 - THP was split. 449 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 450 * existing page was already on a node that does not follow the 451 * policy. 452 */ 453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 454 unsigned long end, struct mm_walk *walk) 455 __releases(ptl) 456 { 457 int ret = 0; 458 struct page *page; 459 struct queue_pages *qp = walk->private; 460 unsigned long flags; 461 462 if (unlikely(is_pmd_migration_entry(*pmd))) { 463 ret = -EIO; 464 goto unlock; 465 } 466 page = pmd_page(*pmd); 467 if (is_huge_zero_page(page)) { 468 spin_unlock(ptl); 469 walk->action = ACTION_CONTINUE; 470 goto out; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 out: 488 return ret; 489 } 490 491 /* 492 * Scan through pages checking if pages follow certain conditions, 493 * and move them to the pagelist if they do. 494 * 495 * queue_pages_pte_range() has three possible return values: 496 * 0 - pages are placed on the right node or queued successfully, or 497 * special page is met, i.e. zero page. 498 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 499 * specified. 500 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 501 * on a node that does not follow the policy. 502 */ 503 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 504 unsigned long end, struct mm_walk *walk) 505 { 506 struct vm_area_struct *vma = walk->vma; 507 struct page *page; 508 struct queue_pages *qp = walk->private; 509 unsigned long flags = qp->flags; 510 int ret; 511 bool has_unmovable = false; 512 pte_t *pte, *mapped_pte; 513 spinlock_t *ptl; 514 515 ptl = pmd_trans_huge_lock(pmd, vma); 516 if (ptl) { 517 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 518 if (ret != 2) 519 return ret; 520 } 521 /* THP was split, fall through to pte walk */ 522 523 if (pmd_trans_unstable(pmd)) 524 return 0; 525 526 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 527 for (; addr != end; pte++, addr += PAGE_SIZE) { 528 if (!pte_present(*pte)) 529 continue; 530 page = vm_normal_page(vma, addr, *pte); 531 if (!page) 532 continue; 533 /* 534 * vm_normal_page() filters out zero pages, but there might 535 * still be PageReserved pages to skip, perhaps in a VDSO. 536 */ 537 if (PageReserved(page)) 538 continue; 539 if (!queue_pages_required(page, qp)) 540 continue; 541 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 542 /* MPOL_MF_STRICT must be specified if we get here */ 543 if (!vma_migratable(vma)) { 544 has_unmovable = true; 545 break; 546 } 547 548 /* 549 * Do not abort immediately since there may be 550 * temporary off LRU pages in the range. Still 551 * need migrate other LRU pages. 552 */ 553 if (migrate_page_add(page, qp->pagelist, flags)) 554 has_unmovable = true; 555 } else 556 break; 557 } 558 pte_unmap_unlock(mapped_pte, ptl); 559 cond_resched(); 560 561 if (has_unmovable) 562 return 1; 563 564 return addr != end ? -EIO : 0; 565 } 566 567 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 568 unsigned long addr, unsigned long end, 569 struct mm_walk *walk) 570 { 571 int ret = 0; 572 #ifdef CONFIG_HUGETLB_PAGE 573 struct queue_pages *qp = walk->private; 574 unsigned long flags = (qp->flags & MPOL_MF_VALID); 575 struct page *page; 576 spinlock_t *ptl; 577 pte_t entry; 578 579 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 580 entry = huge_ptep_get(pte); 581 if (!pte_present(entry)) 582 goto unlock; 583 page = pte_page(entry); 584 if (!queue_pages_required(page, qp)) 585 goto unlock; 586 587 if (flags == MPOL_MF_STRICT) { 588 /* 589 * STRICT alone means only detecting misplaced page and no 590 * need to further check other vma. 591 */ 592 ret = -EIO; 593 goto unlock; 594 } 595 596 if (!vma_migratable(walk->vma)) { 597 /* 598 * Must be STRICT with MOVE*, otherwise .test_walk() have 599 * stopped walking current vma. 600 * Detecting misplaced page but allow migrating pages which 601 * have been queued. 602 */ 603 ret = 1; 604 goto unlock; 605 } 606 607 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 608 if (flags & (MPOL_MF_MOVE_ALL) || 609 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 610 if (!isolate_huge_page(page, qp->pagelist) && 611 (flags & MPOL_MF_STRICT)) 612 /* 613 * Failed to isolate page but allow migrating pages 614 * which have been queued. 615 */ 616 ret = 1; 617 } 618 unlock: 619 spin_unlock(ptl); 620 #else 621 BUG(); 622 #endif 623 return ret; 624 } 625 626 #ifdef CONFIG_NUMA_BALANCING 627 /* 628 * This is used to mark a range of virtual addresses to be inaccessible. 629 * These are later cleared by a NUMA hinting fault. Depending on these 630 * faults, pages may be migrated for better NUMA placement. 631 * 632 * This is assuming that NUMA faults are handled using PROT_NONE. If 633 * an architecture makes a different choice, it will need further 634 * changes to the core. 635 */ 636 unsigned long change_prot_numa(struct vm_area_struct *vma, 637 unsigned long addr, unsigned long end) 638 { 639 int nr_updated; 640 641 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 642 if (nr_updated) 643 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 644 645 return nr_updated; 646 } 647 #else 648 static unsigned long change_prot_numa(struct vm_area_struct *vma, 649 unsigned long addr, unsigned long end) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_NUMA_BALANCING */ 654 655 static int queue_pages_test_walk(unsigned long start, unsigned long end, 656 struct mm_walk *walk) 657 { 658 struct vm_area_struct *vma = walk->vma; 659 struct queue_pages *qp = walk->private; 660 unsigned long endvma = vma->vm_end; 661 unsigned long flags = qp->flags; 662 663 /* range check first */ 664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 665 666 if (!qp->first) { 667 qp->first = vma; 668 if (!(flags & MPOL_MF_DISCONTIG_OK) && 669 (qp->start < vma->vm_start)) 670 /* hole at head side of range */ 671 return -EFAULT; 672 } 673 if (!(flags & MPOL_MF_DISCONTIG_OK) && 674 ((vma->vm_end < qp->end) && 675 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 676 /* hole at middle or tail of range */ 677 return -EFAULT; 678 679 /* 680 * Need check MPOL_MF_STRICT to return -EIO if possible 681 * regardless of vma_migratable 682 */ 683 if (!vma_migratable(vma) && 684 !(flags & MPOL_MF_STRICT)) 685 return 1; 686 687 if (endvma > end) 688 endvma = end; 689 690 if (flags & MPOL_MF_LAZY) { 691 /* Similar to task_numa_work, skip inaccessible VMAs */ 692 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 693 !(vma->vm_flags & VM_MIXEDMAP)) 694 change_prot_numa(vma, start, endvma); 695 return 1; 696 } 697 698 /* queue pages from current vma */ 699 if (flags & MPOL_MF_VALID) 700 return 0; 701 return 1; 702 } 703 704 static const struct mm_walk_ops queue_pages_walk_ops = { 705 .hugetlb_entry = queue_pages_hugetlb, 706 .pmd_entry = queue_pages_pte_range, 707 .test_walk = queue_pages_test_walk, 708 }; 709 710 /* 711 * Walk through page tables and collect pages to be migrated. 712 * 713 * If pages found in a given range are on a set of nodes (determined by 714 * @nodes and @flags,) it's isolated and queued to the pagelist which is 715 * passed via @private. 716 * 717 * queue_pages_range() has three possible return values: 718 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 719 * specified. 720 * 0 - queue pages successfully or no misplaced page. 721 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 722 * memory range specified by nodemask and maxnode points outside 723 * your accessible address space (-EFAULT) 724 */ 725 static int 726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 727 nodemask_t *nodes, unsigned long flags, 728 struct list_head *pagelist) 729 { 730 int err; 731 struct queue_pages qp = { 732 .pagelist = pagelist, 733 .flags = flags, 734 .nmask = nodes, 735 .start = start, 736 .end = end, 737 .first = NULL, 738 }; 739 740 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 741 742 if (!qp.first) 743 /* whole range in hole */ 744 err = -EFAULT; 745 746 return err; 747 } 748 749 /* 750 * Apply policy to a single VMA 751 * This must be called with the mmap_lock held for writing. 752 */ 753 static int vma_replace_policy(struct vm_area_struct *vma, 754 struct mempolicy *pol) 755 { 756 int err; 757 struct mempolicy *old; 758 struct mempolicy *new; 759 760 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 761 vma->vm_start, vma->vm_end, vma->vm_pgoff, 762 vma->vm_ops, vma->vm_file, 763 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 764 765 new = mpol_dup(pol); 766 if (IS_ERR(new)) 767 return PTR_ERR(new); 768 769 if (vma->vm_ops && vma->vm_ops->set_policy) { 770 err = vma->vm_ops->set_policy(vma, new); 771 if (err) 772 goto err_out; 773 } 774 775 old = vma->vm_policy; 776 vma->vm_policy = new; /* protected by mmap_lock */ 777 mpol_put(old); 778 779 return 0; 780 err_out: 781 mpol_put(new); 782 return err; 783 } 784 785 /* Step 2: apply policy to a range and do splits. */ 786 static int mbind_range(struct mm_struct *mm, unsigned long start, 787 unsigned long end, struct mempolicy *new_pol) 788 { 789 struct vm_area_struct *prev; 790 struct vm_area_struct *vma; 791 int err = 0; 792 pgoff_t pgoff; 793 unsigned long vmstart; 794 unsigned long vmend; 795 796 vma = find_vma(mm, start); 797 VM_BUG_ON(!vma); 798 799 prev = vma->vm_prev; 800 if (start > vma->vm_start) 801 prev = vma; 802 803 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) { 804 vmstart = max(start, vma->vm_start); 805 vmend = min(end, vma->vm_end); 806 807 if (mpol_equal(vma_policy(vma), new_pol)) 808 continue; 809 810 pgoff = vma->vm_pgoff + 811 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 812 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 813 vma->anon_vma, vma->vm_file, pgoff, 814 new_pol, vma->vm_userfaultfd_ctx, 815 anon_vma_name(vma)); 816 if (prev) { 817 vma = prev; 818 goto replace; 819 } 820 if (vma->vm_start != vmstart) { 821 err = split_vma(vma->vm_mm, vma, vmstart, 1); 822 if (err) 823 goto out; 824 } 825 if (vma->vm_end != vmend) { 826 err = split_vma(vma->vm_mm, vma, vmend, 0); 827 if (err) 828 goto out; 829 } 830 replace: 831 err = vma_replace_policy(vma, new_pol); 832 if (err) 833 goto out; 834 } 835 836 out: 837 return err; 838 } 839 840 /* Set the process memory policy */ 841 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 842 nodemask_t *nodes) 843 { 844 struct mempolicy *new, *old; 845 NODEMASK_SCRATCH(scratch); 846 int ret; 847 848 if (!scratch) 849 return -ENOMEM; 850 851 new = mpol_new(mode, flags, nodes); 852 if (IS_ERR(new)) { 853 ret = PTR_ERR(new); 854 goto out; 855 } 856 857 ret = mpol_set_nodemask(new, nodes, scratch); 858 if (ret) { 859 mpol_put(new); 860 goto out; 861 } 862 task_lock(current); 863 old = current->mempolicy; 864 current->mempolicy = new; 865 if (new && new->mode == MPOL_INTERLEAVE) 866 current->il_prev = MAX_NUMNODES-1; 867 task_unlock(current); 868 mpol_put(old); 869 ret = 0; 870 out: 871 NODEMASK_SCRATCH_FREE(scratch); 872 return ret; 873 } 874 875 /* 876 * Return nodemask for policy for get_mempolicy() query 877 * 878 * Called with task's alloc_lock held 879 */ 880 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 881 { 882 nodes_clear(*nodes); 883 if (p == &default_policy) 884 return; 885 886 switch (p->mode) { 887 case MPOL_BIND: 888 case MPOL_INTERLEAVE: 889 case MPOL_PREFERRED: 890 case MPOL_PREFERRED_MANY: 891 *nodes = p->nodes; 892 break; 893 case MPOL_LOCAL: 894 /* return empty node mask for local allocation */ 895 break; 896 default: 897 BUG(); 898 } 899 } 900 901 static int lookup_node(struct mm_struct *mm, unsigned long addr) 902 { 903 struct page *p = NULL; 904 int ret; 905 906 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 907 if (ret > 0) { 908 ret = page_to_nid(p); 909 put_page(p); 910 } 911 return ret; 912 } 913 914 /* Retrieve NUMA policy */ 915 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 916 unsigned long addr, unsigned long flags) 917 { 918 int err; 919 struct mm_struct *mm = current->mm; 920 struct vm_area_struct *vma = NULL; 921 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 922 923 if (flags & 924 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 925 return -EINVAL; 926 927 if (flags & MPOL_F_MEMS_ALLOWED) { 928 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 929 return -EINVAL; 930 *policy = 0; /* just so it's initialized */ 931 task_lock(current); 932 *nmask = cpuset_current_mems_allowed; 933 task_unlock(current); 934 return 0; 935 } 936 937 if (flags & MPOL_F_ADDR) { 938 /* 939 * Do NOT fall back to task policy if the 940 * vma/shared policy at addr is NULL. We 941 * want to return MPOL_DEFAULT in this case. 942 */ 943 mmap_read_lock(mm); 944 vma = vma_lookup(mm, addr); 945 if (!vma) { 946 mmap_read_unlock(mm); 947 return -EFAULT; 948 } 949 if (vma->vm_ops && vma->vm_ops->get_policy) 950 pol = vma->vm_ops->get_policy(vma, addr); 951 else 952 pol = vma->vm_policy; 953 } else if (addr) 954 return -EINVAL; 955 956 if (!pol) 957 pol = &default_policy; /* indicates default behavior */ 958 959 if (flags & MPOL_F_NODE) { 960 if (flags & MPOL_F_ADDR) { 961 /* 962 * Take a refcount on the mpol, because we are about to 963 * drop the mmap_lock, after which only "pol" remains 964 * valid, "vma" is stale. 965 */ 966 pol_refcount = pol; 967 vma = NULL; 968 mpol_get(pol); 969 mmap_read_unlock(mm); 970 err = lookup_node(mm, addr); 971 if (err < 0) 972 goto out; 973 *policy = err; 974 } else if (pol == current->mempolicy && 975 pol->mode == MPOL_INTERLEAVE) { 976 *policy = next_node_in(current->il_prev, pol->nodes); 977 } else { 978 err = -EINVAL; 979 goto out; 980 } 981 } else { 982 *policy = pol == &default_policy ? MPOL_DEFAULT : 983 pol->mode; 984 /* 985 * Internal mempolicy flags must be masked off before exposing 986 * the policy to userspace. 987 */ 988 *policy |= (pol->flags & MPOL_MODE_FLAGS); 989 } 990 991 err = 0; 992 if (nmask) { 993 if (mpol_store_user_nodemask(pol)) { 994 *nmask = pol->w.user_nodemask; 995 } else { 996 task_lock(current); 997 get_policy_nodemask(pol, nmask); 998 task_unlock(current); 999 } 1000 } 1001 1002 out: 1003 mpol_cond_put(pol); 1004 if (vma) 1005 mmap_read_unlock(mm); 1006 if (pol_refcount) 1007 mpol_put(pol_refcount); 1008 return err; 1009 } 1010 1011 #ifdef CONFIG_MIGRATION 1012 /* 1013 * page migration, thp tail pages can be passed. 1014 */ 1015 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1016 unsigned long flags) 1017 { 1018 struct page *head = compound_head(page); 1019 /* 1020 * Avoid migrating a page that is shared with others. 1021 */ 1022 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1023 if (!isolate_lru_page(head)) { 1024 list_add_tail(&head->lru, pagelist); 1025 mod_node_page_state(page_pgdat(head), 1026 NR_ISOLATED_ANON + page_is_file_lru(head), 1027 thp_nr_pages(head)); 1028 } else if (flags & MPOL_MF_STRICT) { 1029 /* 1030 * Non-movable page may reach here. And, there may be 1031 * temporary off LRU pages or non-LRU movable pages. 1032 * Treat them as unmovable pages since they can't be 1033 * isolated, so they can't be moved at the moment. It 1034 * should return -EIO for this case too. 1035 */ 1036 return -EIO; 1037 } 1038 } 1039 1040 return 0; 1041 } 1042 1043 /* 1044 * Migrate pages from one node to a target node. 1045 * Returns error or the number of pages not migrated. 1046 */ 1047 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1048 int flags) 1049 { 1050 nodemask_t nmask; 1051 LIST_HEAD(pagelist); 1052 int err = 0; 1053 struct migration_target_control mtc = { 1054 .nid = dest, 1055 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1056 }; 1057 1058 nodes_clear(nmask); 1059 node_set(source, nmask); 1060 1061 /* 1062 * This does not "check" the range but isolates all pages that 1063 * need migration. Between passing in the full user address 1064 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1065 */ 1066 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1067 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1068 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1069 1070 if (!list_empty(&pagelist)) { 1071 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1072 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1073 if (err) 1074 putback_movable_pages(&pagelist); 1075 } 1076 1077 return err; 1078 } 1079 1080 /* 1081 * Move pages between the two nodesets so as to preserve the physical 1082 * layout as much as possible. 1083 * 1084 * Returns the number of page that could not be moved. 1085 */ 1086 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1087 const nodemask_t *to, int flags) 1088 { 1089 int busy = 0; 1090 int err = 0; 1091 nodemask_t tmp; 1092 1093 lru_cache_disable(); 1094 1095 mmap_read_lock(mm); 1096 1097 /* 1098 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1099 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1100 * bit in 'tmp', and return that <source, dest> pair for migration. 1101 * The pair of nodemasks 'to' and 'from' define the map. 1102 * 1103 * If no pair of bits is found that way, fallback to picking some 1104 * pair of 'source' and 'dest' bits that are not the same. If the 1105 * 'source' and 'dest' bits are the same, this represents a node 1106 * that will be migrating to itself, so no pages need move. 1107 * 1108 * If no bits are left in 'tmp', or if all remaining bits left 1109 * in 'tmp' correspond to the same bit in 'to', return false 1110 * (nothing left to migrate). 1111 * 1112 * This lets us pick a pair of nodes to migrate between, such that 1113 * if possible the dest node is not already occupied by some other 1114 * source node, minimizing the risk of overloading the memory on a 1115 * node that would happen if we migrated incoming memory to a node 1116 * before migrating outgoing memory source that same node. 1117 * 1118 * A single scan of tmp is sufficient. As we go, we remember the 1119 * most recent <s, d> pair that moved (s != d). If we find a pair 1120 * that not only moved, but what's better, moved to an empty slot 1121 * (d is not set in tmp), then we break out then, with that pair. 1122 * Otherwise when we finish scanning from_tmp, we at least have the 1123 * most recent <s, d> pair that moved. If we get all the way through 1124 * the scan of tmp without finding any node that moved, much less 1125 * moved to an empty node, then there is nothing left worth migrating. 1126 */ 1127 1128 tmp = *from; 1129 while (!nodes_empty(tmp)) { 1130 int s, d; 1131 int source = NUMA_NO_NODE; 1132 int dest = 0; 1133 1134 for_each_node_mask(s, tmp) { 1135 1136 /* 1137 * do_migrate_pages() tries to maintain the relative 1138 * node relationship of the pages established between 1139 * threads and memory areas. 1140 * 1141 * However if the number of source nodes is not equal to 1142 * the number of destination nodes we can not preserve 1143 * this node relative relationship. In that case, skip 1144 * copying memory from a node that is in the destination 1145 * mask. 1146 * 1147 * Example: [2,3,4] -> [3,4,5] moves everything. 1148 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1149 */ 1150 1151 if ((nodes_weight(*from) != nodes_weight(*to)) && 1152 (node_isset(s, *to))) 1153 continue; 1154 1155 d = node_remap(s, *from, *to); 1156 if (s == d) 1157 continue; 1158 1159 source = s; /* Node moved. Memorize */ 1160 dest = d; 1161 1162 /* dest not in remaining from nodes? */ 1163 if (!node_isset(dest, tmp)) 1164 break; 1165 } 1166 if (source == NUMA_NO_NODE) 1167 break; 1168 1169 node_clear(source, tmp); 1170 err = migrate_to_node(mm, source, dest, flags); 1171 if (err > 0) 1172 busy += err; 1173 if (err < 0) 1174 break; 1175 } 1176 mmap_read_unlock(mm); 1177 1178 lru_cache_enable(); 1179 if (err < 0) 1180 return err; 1181 return busy; 1182 1183 } 1184 1185 /* 1186 * Allocate a new page for page migration based on vma policy. 1187 * Start by assuming the page is mapped by the same vma as contains @start. 1188 * Search forward from there, if not. N.B., this assumes that the 1189 * list of pages handed to migrate_pages()--which is how we get here-- 1190 * is in virtual address order. 1191 */ 1192 static struct page *new_page(struct page *page, unsigned long start) 1193 { 1194 struct vm_area_struct *vma; 1195 unsigned long address; 1196 1197 vma = find_vma(current->mm, start); 1198 while (vma) { 1199 address = page_address_in_vma(page, vma); 1200 if (address != -EFAULT) 1201 break; 1202 vma = vma->vm_next; 1203 } 1204 1205 if (PageHuge(page)) { 1206 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1207 vma, address); 1208 } else if (PageTransHuge(page)) { 1209 struct page *thp; 1210 1211 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1212 HPAGE_PMD_ORDER); 1213 if (!thp) 1214 return NULL; 1215 prep_transhuge_page(thp); 1216 return thp; 1217 } 1218 /* 1219 * if !vma, alloc_page_vma() will use task or system default policy 1220 */ 1221 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1222 vma, address); 1223 } 1224 #else 1225 1226 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1227 unsigned long flags) 1228 { 1229 return -EIO; 1230 } 1231 1232 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1233 const nodemask_t *to, int flags) 1234 { 1235 return -ENOSYS; 1236 } 1237 1238 static struct page *new_page(struct page *page, unsigned long start) 1239 { 1240 return NULL; 1241 } 1242 #endif 1243 1244 static long do_mbind(unsigned long start, unsigned long len, 1245 unsigned short mode, unsigned short mode_flags, 1246 nodemask_t *nmask, unsigned long flags) 1247 { 1248 struct mm_struct *mm = current->mm; 1249 struct mempolicy *new; 1250 unsigned long end; 1251 int err; 1252 int ret; 1253 LIST_HEAD(pagelist); 1254 1255 if (flags & ~(unsigned long)MPOL_MF_VALID) 1256 return -EINVAL; 1257 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1258 return -EPERM; 1259 1260 if (start & ~PAGE_MASK) 1261 return -EINVAL; 1262 1263 if (mode == MPOL_DEFAULT) 1264 flags &= ~MPOL_MF_STRICT; 1265 1266 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1267 end = start + len; 1268 1269 if (end < start) 1270 return -EINVAL; 1271 if (end == start) 1272 return 0; 1273 1274 new = mpol_new(mode, mode_flags, nmask); 1275 if (IS_ERR(new)) 1276 return PTR_ERR(new); 1277 1278 if (flags & MPOL_MF_LAZY) 1279 new->flags |= MPOL_F_MOF; 1280 1281 /* 1282 * If we are using the default policy then operation 1283 * on discontinuous address spaces is okay after all 1284 */ 1285 if (!new) 1286 flags |= MPOL_MF_DISCONTIG_OK; 1287 1288 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1289 start, start + len, mode, mode_flags, 1290 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1291 1292 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1293 1294 lru_cache_disable(); 1295 } 1296 { 1297 NODEMASK_SCRATCH(scratch); 1298 if (scratch) { 1299 mmap_write_lock(mm); 1300 err = mpol_set_nodemask(new, nmask, scratch); 1301 if (err) 1302 mmap_write_unlock(mm); 1303 } else 1304 err = -ENOMEM; 1305 NODEMASK_SCRATCH_FREE(scratch); 1306 } 1307 if (err) 1308 goto mpol_out; 1309 1310 ret = queue_pages_range(mm, start, end, nmask, 1311 flags | MPOL_MF_INVERT, &pagelist); 1312 1313 if (ret < 0) { 1314 err = ret; 1315 goto up_out; 1316 } 1317 1318 err = mbind_range(mm, start, end, new); 1319 1320 if (!err) { 1321 int nr_failed = 0; 1322 1323 if (!list_empty(&pagelist)) { 1324 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1325 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1326 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1327 if (nr_failed) 1328 putback_movable_pages(&pagelist); 1329 } 1330 1331 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1332 err = -EIO; 1333 } else { 1334 up_out: 1335 if (!list_empty(&pagelist)) 1336 putback_movable_pages(&pagelist); 1337 } 1338 1339 mmap_write_unlock(mm); 1340 mpol_out: 1341 mpol_put(new); 1342 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1343 lru_cache_enable(); 1344 return err; 1345 } 1346 1347 /* 1348 * User space interface with variable sized bitmaps for nodelists. 1349 */ 1350 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1351 unsigned long maxnode) 1352 { 1353 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1354 int ret; 1355 1356 if (in_compat_syscall()) 1357 ret = compat_get_bitmap(mask, 1358 (const compat_ulong_t __user *)nmask, 1359 maxnode); 1360 else 1361 ret = copy_from_user(mask, nmask, 1362 nlongs * sizeof(unsigned long)); 1363 1364 if (ret) 1365 return -EFAULT; 1366 1367 if (maxnode % BITS_PER_LONG) 1368 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1369 1370 return 0; 1371 } 1372 1373 /* Copy a node mask from user space. */ 1374 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1375 unsigned long maxnode) 1376 { 1377 --maxnode; 1378 nodes_clear(*nodes); 1379 if (maxnode == 0 || !nmask) 1380 return 0; 1381 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1382 return -EINVAL; 1383 1384 /* 1385 * When the user specified more nodes than supported just check 1386 * if the non supported part is all zero, one word at a time, 1387 * starting at the end. 1388 */ 1389 while (maxnode > MAX_NUMNODES) { 1390 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1391 unsigned long t; 1392 1393 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits)) 1394 return -EFAULT; 1395 1396 if (maxnode - bits >= MAX_NUMNODES) { 1397 maxnode -= bits; 1398 } else { 1399 maxnode = MAX_NUMNODES; 1400 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1401 } 1402 if (t) 1403 return -EINVAL; 1404 } 1405 1406 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1407 } 1408 1409 /* Copy a kernel node mask to user space */ 1410 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1411 nodemask_t *nodes) 1412 { 1413 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1414 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1415 bool compat = in_compat_syscall(); 1416 1417 if (compat) 1418 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1419 1420 if (copy > nbytes) { 1421 if (copy > PAGE_SIZE) 1422 return -EINVAL; 1423 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1424 return -EFAULT; 1425 copy = nbytes; 1426 maxnode = nr_node_ids; 1427 } 1428 1429 if (compat) 1430 return compat_put_bitmap((compat_ulong_t __user *)mask, 1431 nodes_addr(*nodes), maxnode); 1432 1433 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1434 } 1435 1436 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1437 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1438 { 1439 *flags = *mode & MPOL_MODE_FLAGS; 1440 *mode &= ~MPOL_MODE_FLAGS; 1441 1442 if ((unsigned int)(*mode) >= MPOL_MAX) 1443 return -EINVAL; 1444 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1445 return -EINVAL; 1446 if (*flags & MPOL_F_NUMA_BALANCING) { 1447 if (*mode != MPOL_BIND) 1448 return -EINVAL; 1449 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1450 } 1451 return 0; 1452 } 1453 1454 static long kernel_mbind(unsigned long start, unsigned long len, 1455 unsigned long mode, const unsigned long __user *nmask, 1456 unsigned long maxnode, unsigned int flags) 1457 { 1458 unsigned short mode_flags; 1459 nodemask_t nodes; 1460 int lmode = mode; 1461 int err; 1462 1463 start = untagged_addr(start); 1464 err = sanitize_mpol_flags(&lmode, &mode_flags); 1465 if (err) 1466 return err; 1467 1468 err = get_nodes(&nodes, nmask, maxnode); 1469 if (err) 1470 return err; 1471 1472 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1473 } 1474 1475 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1476 unsigned long, home_node, unsigned long, flags) 1477 { 1478 struct mm_struct *mm = current->mm; 1479 struct vm_area_struct *vma; 1480 struct mempolicy *new; 1481 unsigned long vmstart; 1482 unsigned long vmend; 1483 unsigned long end; 1484 int err = -ENOENT; 1485 1486 start = untagged_addr(start); 1487 if (start & ~PAGE_MASK) 1488 return -EINVAL; 1489 /* 1490 * flags is used for future extension if any. 1491 */ 1492 if (flags != 0) 1493 return -EINVAL; 1494 1495 /* 1496 * Check home_node is online to avoid accessing uninitialized 1497 * NODE_DATA. 1498 */ 1499 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1500 return -EINVAL; 1501 1502 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1503 end = start + len; 1504 1505 if (end < start) 1506 return -EINVAL; 1507 if (end == start) 1508 return 0; 1509 mmap_write_lock(mm); 1510 vma = find_vma(mm, start); 1511 for (; vma && vma->vm_start < end; vma = vma->vm_next) { 1512 1513 vmstart = max(start, vma->vm_start); 1514 vmend = min(end, vma->vm_end); 1515 new = mpol_dup(vma_policy(vma)); 1516 if (IS_ERR(new)) { 1517 err = PTR_ERR(new); 1518 break; 1519 } 1520 /* 1521 * Only update home node if there is an existing vma policy 1522 */ 1523 if (!new) 1524 continue; 1525 1526 /* 1527 * If any vma in the range got policy other than MPOL_BIND 1528 * or MPOL_PREFERRED_MANY we return error. We don't reset 1529 * the home node for vmas we already updated before. 1530 */ 1531 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) { 1532 err = -EOPNOTSUPP; 1533 break; 1534 } 1535 1536 new->home_node = home_node; 1537 err = mbind_range(mm, vmstart, vmend, new); 1538 mpol_put(new); 1539 if (err) 1540 break; 1541 } 1542 mmap_write_unlock(mm); 1543 return err; 1544 } 1545 1546 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1547 unsigned long, mode, const unsigned long __user *, nmask, 1548 unsigned long, maxnode, unsigned int, flags) 1549 { 1550 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1551 } 1552 1553 /* Set the process memory policy */ 1554 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1555 unsigned long maxnode) 1556 { 1557 unsigned short mode_flags; 1558 nodemask_t nodes; 1559 int lmode = mode; 1560 int err; 1561 1562 err = sanitize_mpol_flags(&lmode, &mode_flags); 1563 if (err) 1564 return err; 1565 1566 err = get_nodes(&nodes, nmask, maxnode); 1567 if (err) 1568 return err; 1569 1570 return do_set_mempolicy(lmode, mode_flags, &nodes); 1571 } 1572 1573 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1574 unsigned long, maxnode) 1575 { 1576 return kernel_set_mempolicy(mode, nmask, maxnode); 1577 } 1578 1579 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1580 const unsigned long __user *old_nodes, 1581 const unsigned long __user *new_nodes) 1582 { 1583 struct mm_struct *mm = NULL; 1584 struct task_struct *task; 1585 nodemask_t task_nodes; 1586 int err; 1587 nodemask_t *old; 1588 nodemask_t *new; 1589 NODEMASK_SCRATCH(scratch); 1590 1591 if (!scratch) 1592 return -ENOMEM; 1593 1594 old = &scratch->mask1; 1595 new = &scratch->mask2; 1596 1597 err = get_nodes(old, old_nodes, maxnode); 1598 if (err) 1599 goto out; 1600 1601 err = get_nodes(new, new_nodes, maxnode); 1602 if (err) 1603 goto out; 1604 1605 /* Find the mm_struct */ 1606 rcu_read_lock(); 1607 task = pid ? find_task_by_vpid(pid) : current; 1608 if (!task) { 1609 rcu_read_unlock(); 1610 err = -ESRCH; 1611 goto out; 1612 } 1613 get_task_struct(task); 1614 1615 err = -EINVAL; 1616 1617 /* 1618 * Check if this process has the right to modify the specified process. 1619 * Use the regular "ptrace_may_access()" checks. 1620 */ 1621 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1622 rcu_read_unlock(); 1623 err = -EPERM; 1624 goto out_put; 1625 } 1626 rcu_read_unlock(); 1627 1628 task_nodes = cpuset_mems_allowed(task); 1629 /* Is the user allowed to access the target nodes? */ 1630 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1631 err = -EPERM; 1632 goto out_put; 1633 } 1634 1635 task_nodes = cpuset_mems_allowed(current); 1636 nodes_and(*new, *new, task_nodes); 1637 if (nodes_empty(*new)) 1638 goto out_put; 1639 1640 err = security_task_movememory(task); 1641 if (err) 1642 goto out_put; 1643 1644 mm = get_task_mm(task); 1645 put_task_struct(task); 1646 1647 if (!mm) { 1648 err = -EINVAL; 1649 goto out; 1650 } 1651 1652 err = do_migrate_pages(mm, old, new, 1653 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1654 1655 mmput(mm); 1656 out: 1657 NODEMASK_SCRATCH_FREE(scratch); 1658 1659 return err; 1660 1661 out_put: 1662 put_task_struct(task); 1663 goto out; 1664 1665 } 1666 1667 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1668 const unsigned long __user *, old_nodes, 1669 const unsigned long __user *, new_nodes) 1670 { 1671 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1672 } 1673 1674 1675 /* Retrieve NUMA policy */ 1676 static int kernel_get_mempolicy(int __user *policy, 1677 unsigned long __user *nmask, 1678 unsigned long maxnode, 1679 unsigned long addr, 1680 unsigned long flags) 1681 { 1682 int err; 1683 int pval; 1684 nodemask_t nodes; 1685 1686 if (nmask != NULL && maxnode < nr_node_ids) 1687 return -EINVAL; 1688 1689 addr = untagged_addr(addr); 1690 1691 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1692 1693 if (err) 1694 return err; 1695 1696 if (policy && put_user(pval, policy)) 1697 return -EFAULT; 1698 1699 if (nmask) 1700 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1701 1702 return err; 1703 } 1704 1705 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1706 unsigned long __user *, nmask, unsigned long, maxnode, 1707 unsigned long, addr, unsigned long, flags) 1708 { 1709 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1710 } 1711 1712 bool vma_migratable(struct vm_area_struct *vma) 1713 { 1714 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1715 return false; 1716 1717 /* 1718 * DAX device mappings require predictable access latency, so avoid 1719 * incurring periodic faults. 1720 */ 1721 if (vma_is_dax(vma)) 1722 return false; 1723 1724 if (is_vm_hugetlb_page(vma) && 1725 !hugepage_migration_supported(hstate_vma(vma))) 1726 return false; 1727 1728 /* 1729 * Migration allocates pages in the highest zone. If we cannot 1730 * do so then migration (at least from node to node) is not 1731 * possible. 1732 */ 1733 if (vma->vm_file && 1734 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1735 < policy_zone) 1736 return false; 1737 return true; 1738 } 1739 1740 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1741 unsigned long addr) 1742 { 1743 struct mempolicy *pol = NULL; 1744 1745 if (vma) { 1746 if (vma->vm_ops && vma->vm_ops->get_policy) { 1747 pol = vma->vm_ops->get_policy(vma, addr); 1748 } else if (vma->vm_policy) { 1749 pol = vma->vm_policy; 1750 1751 /* 1752 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1753 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1754 * count on these policies which will be dropped by 1755 * mpol_cond_put() later 1756 */ 1757 if (mpol_needs_cond_ref(pol)) 1758 mpol_get(pol); 1759 } 1760 } 1761 1762 return pol; 1763 } 1764 1765 /* 1766 * get_vma_policy(@vma, @addr) 1767 * @vma: virtual memory area whose policy is sought 1768 * @addr: address in @vma for shared policy lookup 1769 * 1770 * Returns effective policy for a VMA at specified address. 1771 * Falls back to current->mempolicy or system default policy, as necessary. 1772 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1773 * count--added by the get_policy() vm_op, as appropriate--to protect against 1774 * freeing by another task. It is the caller's responsibility to free the 1775 * extra reference for shared policies. 1776 */ 1777 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1778 unsigned long addr) 1779 { 1780 struct mempolicy *pol = __get_vma_policy(vma, addr); 1781 1782 if (!pol) 1783 pol = get_task_policy(current); 1784 1785 return pol; 1786 } 1787 1788 bool vma_policy_mof(struct vm_area_struct *vma) 1789 { 1790 struct mempolicy *pol; 1791 1792 if (vma->vm_ops && vma->vm_ops->get_policy) { 1793 bool ret = false; 1794 1795 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1796 if (pol && (pol->flags & MPOL_F_MOF)) 1797 ret = true; 1798 mpol_cond_put(pol); 1799 1800 return ret; 1801 } 1802 1803 pol = vma->vm_policy; 1804 if (!pol) 1805 pol = get_task_policy(current); 1806 1807 return pol->flags & MPOL_F_MOF; 1808 } 1809 1810 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1811 { 1812 enum zone_type dynamic_policy_zone = policy_zone; 1813 1814 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1815 1816 /* 1817 * if policy->nodes has movable memory only, 1818 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1819 * 1820 * policy->nodes is intersect with node_states[N_MEMORY]. 1821 * so if the following test fails, it implies 1822 * policy->nodes has movable memory only. 1823 */ 1824 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1825 dynamic_policy_zone = ZONE_MOVABLE; 1826 1827 return zone >= dynamic_policy_zone; 1828 } 1829 1830 /* 1831 * Return a nodemask representing a mempolicy for filtering nodes for 1832 * page allocation 1833 */ 1834 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1835 { 1836 int mode = policy->mode; 1837 1838 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1839 if (unlikely(mode == MPOL_BIND) && 1840 apply_policy_zone(policy, gfp_zone(gfp)) && 1841 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1842 return &policy->nodes; 1843 1844 if (mode == MPOL_PREFERRED_MANY) 1845 return &policy->nodes; 1846 1847 return NULL; 1848 } 1849 1850 /* 1851 * Return the preferred node id for 'prefer' mempolicy, and return 1852 * the given id for all other policies. 1853 * 1854 * policy_node() is always coupled with policy_nodemask(), which 1855 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1856 */ 1857 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1858 { 1859 if (policy->mode == MPOL_PREFERRED) { 1860 nd = first_node(policy->nodes); 1861 } else { 1862 /* 1863 * __GFP_THISNODE shouldn't even be used with the bind policy 1864 * because we might easily break the expectation to stay on the 1865 * requested node and not break the policy. 1866 */ 1867 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1868 } 1869 1870 if ((policy->mode == MPOL_BIND || 1871 policy->mode == MPOL_PREFERRED_MANY) && 1872 policy->home_node != NUMA_NO_NODE) 1873 return policy->home_node; 1874 1875 return nd; 1876 } 1877 1878 /* Do dynamic interleaving for a process */ 1879 static unsigned interleave_nodes(struct mempolicy *policy) 1880 { 1881 unsigned next; 1882 struct task_struct *me = current; 1883 1884 next = next_node_in(me->il_prev, policy->nodes); 1885 if (next < MAX_NUMNODES) 1886 me->il_prev = next; 1887 return next; 1888 } 1889 1890 /* 1891 * Depending on the memory policy provide a node from which to allocate the 1892 * next slab entry. 1893 */ 1894 unsigned int mempolicy_slab_node(void) 1895 { 1896 struct mempolicy *policy; 1897 int node = numa_mem_id(); 1898 1899 if (!in_task()) 1900 return node; 1901 1902 policy = current->mempolicy; 1903 if (!policy) 1904 return node; 1905 1906 switch (policy->mode) { 1907 case MPOL_PREFERRED: 1908 return first_node(policy->nodes); 1909 1910 case MPOL_INTERLEAVE: 1911 return interleave_nodes(policy); 1912 1913 case MPOL_BIND: 1914 case MPOL_PREFERRED_MANY: 1915 { 1916 struct zoneref *z; 1917 1918 /* 1919 * Follow bind policy behavior and start allocation at the 1920 * first node. 1921 */ 1922 struct zonelist *zonelist; 1923 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1924 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1925 z = first_zones_zonelist(zonelist, highest_zoneidx, 1926 &policy->nodes); 1927 return z->zone ? zone_to_nid(z->zone) : node; 1928 } 1929 case MPOL_LOCAL: 1930 return node; 1931 1932 default: 1933 BUG(); 1934 } 1935 } 1936 1937 /* 1938 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1939 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1940 * number of present nodes. 1941 */ 1942 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1943 { 1944 nodemask_t nodemask = pol->nodes; 1945 unsigned int target, nnodes; 1946 int i; 1947 int nid; 1948 /* 1949 * The barrier will stabilize the nodemask in a register or on 1950 * the stack so that it will stop changing under the code. 1951 * 1952 * Between first_node() and next_node(), pol->nodes could be changed 1953 * by other threads. So we put pol->nodes in a local stack. 1954 */ 1955 barrier(); 1956 1957 nnodes = nodes_weight(nodemask); 1958 if (!nnodes) 1959 return numa_node_id(); 1960 target = (unsigned int)n % nnodes; 1961 nid = first_node(nodemask); 1962 for (i = 0; i < target; i++) 1963 nid = next_node(nid, nodemask); 1964 return nid; 1965 } 1966 1967 /* Determine a node number for interleave */ 1968 static inline unsigned interleave_nid(struct mempolicy *pol, 1969 struct vm_area_struct *vma, unsigned long addr, int shift) 1970 { 1971 if (vma) { 1972 unsigned long off; 1973 1974 /* 1975 * for small pages, there is no difference between 1976 * shift and PAGE_SHIFT, so the bit-shift is safe. 1977 * for huge pages, since vm_pgoff is in units of small 1978 * pages, we need to shift off the always 0 bits to get 1979 * a useful offset. 1980 */ 1981 BUG_ON(shift < PAGE_SHIFT); 1982 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1983 off += (addr - vma->vm_start) >> shift; 1984 return offset_il_node(pol, off); 1985 } else 1986 return interleave_nodes(pol); 1987 } 1988 1989 #ifdef CONFIG_HUGETLBFS 1990 /* 1991 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1992 * @vma: virtual memory area whose policy is sought 1993 * @addr: address in @vma for shared policy lookup and interleave policy 1994 * @gfp_flags: for requested zone 1995 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1996 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 1997 * 1998 * Returns a nid suitable for a huge page allocation and a pointer 1999 * to the struct mempolicy for conditional unref after allocation. 2000 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2001 * to the mempolicy's @nodemask for filtering the zonelist. 2002 * 2003 * Must be protected by read_mems_allowed_begin() 2004 */ 2005 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2006 struct mempolicy **mpol, nodemask_t **nodemask) 2007 { 2008 int nid; 2009 int mode; 2010 2011 *mpol = get_vma_policy(vma, addr); 2012 *nodemask = NULL; 2013 mode = (*mpol)->mode; 2014 2015 if (unlikely(mode == MPOL_INTERLEAVE)) { 2016 nid = interleave_nid(*mpol, vma, addr, 2017 huge_page_shift(hstate_vma(vma))); 2018 } else { 2019 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2020 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2021 *nodemask = &(*mpol)->nodes; 2022 } 2023 return nid; 2024 } 2025 2026 /* 2027 * init_nodemask_of_mempolicy 2028 * 2029 * If the current task's mempolicy is "default" [NULL], return 'false' 2030 * to indicate default policy. Otherwise, extract the policy nodemask 2031 * for 'bind' or 'interleave' policy into the argument nodemask, or 2032 * initialize the argument nodemask to contain the single node for 2033 * 'preferred' or 'local' policy and return 'true' to indicate presence 2034 * of non-default mempolicy. 2035 * 2036 * We don't bother with reference counting the mempolicy [mpol_get/put] 2037 * because the current task is examining it's own mempolicy and a task's 2038 * mempolicy is only ever changed by the task itself. 2039 * 2040 * N.B., it is the caller's responsibility to free a returned nodemask. 2041 */ 2042 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2043 { 2044 struct mempolicy *mempolicy; 2045 2046 if (!(mask && current->mempolicy)) 2047 return false; 2048 2049 task_lock(current); 2050 mempolicy = current->mempolicy; 2051 switch (mempolicy->mode) { 2052 case MPOL_PREFERRED: 2053 case MPOL_PREFERRED_MANY: 2054 case MPOL_BIND: 2055 case MPOL_INTERLEAVE: 2056 *mask = mempolicy->nodes; 2057 break; 2058 2059 case MPOL_LOCAL: 2060 init_nodemask_of_node(mask, numa_node_id()); 2061 break; 2062 2063 default: 2064 BUG(); 2065 } 2066 task_unlock(current); 2067 2068 return true; 2069 } 2070 #endif 2071 2072 /* 2073 * mempolicy_in_oom_domain 2074 * 2075 * If tsk's mempolicy is "bind", check for intersection between mask and 2076 * the policy nodemask. Otherwise, return true for all other policies 2077 * including "interleave", as a tsk with "interleave" policy may have 2078 * memory allocated from all nodes in system. 2079 * 2080 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2081 */ 2082 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2083 const nodemask_t *mask) 2084 { 2085 struct mempolicy *mempolicy; 2086 bool ret = true; 2087 2088 if (!mask) 2089 return ret; 2090 2091 task_lock(tsk); 2092 mempolicy = tsk->mempolicy; 2093 if (mempolicy && mempolicy->mode == MPOL_BIND) 2094 ret = nodes_intersects(mempolicy->nodes, *mask); 2095 task_unlock(tsk); 2096 2097 return ret; 2098 } 2099 2100 /* Allocate a page in interleaved policy. 2101 Own path because it needs to do special accounting. */ 2102 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2103 unsigned nid) 2104 { 2105 struct page *page; 2106 2107 page = __alloc_pages(gfp, order, nid, NULL); 2108 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2109 if (!static_branch_likely(&vm_numa_stat_key)) 2110 return page; 2111 if (page && page_to_nid(page) == nid) { 2112 preempt_disable(); 2113 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2114 preempt_enable(); 2115 } 2116 return page; 2117 } 2118 2119 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2120 int nid, struct mempolicy *pol) 2121 { 2122 struct page *page; 2123 gfp_t preferred_gfp; 2124 2125 /* 2126 * This is a two pass approach. The first pass will only try the 2127 * preferred nodes but skip the direct reclaim and allow the 2128 * allocation to fail, while the second pass will try all the 2129 * nodes in system. 2130 */ 2131 preferred_gfp = gfp | __GFP_NOWARN; 2132 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2133 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2134 if (!page) 2135 page = __alloc_pages(gfp, order, nid, NULL); 2136 2137 return page; 2138 } 2139 2140 /** 2141 * alloc_pages_vma - Allocate a page for a VMA. 2142 * @gfp: GFP flags. 2143 * @order: Order of the GFP allocation. 2144 * @vma: Pointer to VMA or NULL if not available. 2145 * @addr: Virtual address of the allocation. Must be inside @vma. 2146 * @hugepage: For hugepages try only the preferred node if possible. 2147 * 2148 * Allocate a page for a specific address in @vma, using the appropriate 2149 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2150 * of the mm_struct of the VMA to prevent it from going away. Should be 2151 * used for all allocations for pages that will be mapped into user space. 2152 * 2153 * Return: The page on success or NULL if allocation fails. 2154 */ 2155 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2156 unsigned long addr, bool hugepage) 2157 { 2158 struct mempolicy *pol; 2159 int node = numa_node_id(); 2160 struct page *page; 2161 int preferred_nid; 2162 nodemask_t *nmask; 2163 2164 pol = get_vma_policy(vma, addr); 2165 2166 if (pol->mode == MPOL_INTERLEAVE) { 2167 unsigned nid; 2168 2169 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2170 mpol_cond_put(pol); 2171 page = alloc_page_interleave(gfp, order, nid); 2172 goto out; 2173 } 2174 2175 if (pol->mode == MPOL_PREFERRED_MANY) { 2176 node = policy_node(gfp, pol, node); 2177 page = alloc_pages_preferred_many(gfp, order, node, pol); 2178 mpol_cond_put(pol); 2179 goto out; 2180 } 2181 2182 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2183 int hpage_node = node; 2184 2185 /* 2186 * For hugepage allocation and non-interleave policy which 2187 * allows the current node (or other explicitly preferred 2188 * node) we only try to allocate from the current/preferred 2189 * node and don't fall back to other nodes, as the cost of 2190 * remote accesses would likely offset THP benefits. 2191 * 2192 * If the policy is interleave or does not allow the current 2193 * node in its nodemask, we allocate the standard way. 2194 */ 2195 if (pol->mode == MPOL_PREFERRED) 2196 hpage_node = first_node(pol->nodes); 2197 2198 nmask = policy_nodemask(gfp, pol); 2199 if (!nmask || node_isset(hpage_node, *nmask)) { 2200 mpol_cond_put(pol); 2201 /* 2202 * First, try to allocate THP only on local node, but 2203 * don't reclaim unnecessarily, just compact. 2204 */ 2205 page = __alloc_pages_node(hpage_node, 2206 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2207 2208 /* 2209 * If hugepage allocations are configured to always 2210 * synchronous compact or the vma has been madvised 2211 * to prefer hugepage backing, retry allowing remote 2212 * memory with both reclaim and compact as well. 2213 */ 2214 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2215 page = __alloc_pages(gfp, order, hpage_node, nmask); 2216 2217 goto out; 2218 } 2219 } 2220 2221 nmask = policy_nodemask(gfp, pol); 2222 preferred_nid = policy_node(gfp, pol, node); 2223 page = __alloc_pages(gfp, order, preferred_nid, nmask); 2224 mpol_cond_put(pol); 2225 out: 2226 return page; 2227 } 2228 EXPORT_SYMBOL(alloc_pages_vma); 2229 2230 /** 2231 * alloc_pages - Allocate pages. 2232 * @gfp: GFP flags. 2233 * @order: Power of two of number of pages to allocate. 2234 * 2235 * Allocate 1 << @order contiguous pages. The physical address of the 2236 * first page is naturally aligned (eg an order-3 allocation will be aligned 2237 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2238 * process is honoured when in process context. 2239 * 2240 * Context: Can be called from any context, providing the appropriate GFP 2241 * flags are used. 2242 * Return: The page on success or NULL if allocation fails. 2243 */ 2244 struct page *alloc_pages(gfp_t gfp, unsigned order) 2245 { 2246 struct mempolicy *pol = &default_policy; 2247 struct page *page; 2248 2249 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2250 pol = get_task_policy(current); 2251 2252 /* 2253 * No reference counting needed for current->mempolicy 2254 * nor system default_policy 2255 */ 2256 if (pol->mode == MPOL_INTERLEAVE) 2257 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2258 else if (pol->mode == MPOL_PREFERRED_MANY) 2259 page = alloc_pages_preferred_many(gfp, order, 2260 policy_node(gfp, pol, numa_node_id()), pol); 2261 else 2262 page = __alloc_pages(gfp, order, 2263 policy_node(gfp, pol, numa_node_id()), 2264 policy_nodemask(gfp, pol)); 2265 2266 return page; 2267 } 2268 EXPORT_SYMBOL(alloc_pages); 2269 2270 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2271 { 2272 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2273 2274 if (page && order > 1) 2275 prep_transhuge_page(page); 2276 return (struct folio *)page; 2277 } 2278 EXPORT_SYMBOL(folio_alloc); 2279 2280 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2281 struct mempolicy *pol, unsigned long nr_pages, 2282 struct page **page_array) 2283 { 2284 int nodes; 2285 unsigned long nr_pages_per_node; 2286 int delta; 2287 int i; 2288 unsigned long nr_allocated; 2289 unsigned long total_allocated = 0; 2290 2291 nodes = nodes_weight(pol->nodes); 2292 nr_pages_per_node = nr_pages / nodes; 2293 delta = nr_pages - nodes * nr_pages_per_node; 2294 2295 for (i = 0; i < nodes; i++) { 2296 if (delta) { 2297 nr_allocated = __alloc_pages_bulk(gfp, 2298 interleave_nodes(pol), NULL, 2299 nr_pages_per_node + 1, NULL, 2300 page_array); 2301 delta--; 2302 } else { 2303 nr_allocated = __alloc_pages_bulk(gfp, 2304 interleave_nodes(pol), NULL, 2305 nr_pages_per_node, NULL, page_array); 2306 } 2307 2308 page_array += nr_allocated; 2309 total_allocated += nr_allocated; 2310 } 2311 2312 return total_allocated; 2313 } 2314 2315 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2316 struct mempolicy *pol, unsigned long nr_pages, 2317 struct page **page_array) 2318 { 2319 gfp_t preferred_gfp; 2320 unsigned long nr_allocated = 0; 2321 2322 preferred_gfp = gfp | __GFP_NOWARN; 2323 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2324 2325 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2326 nr_pages, NULL, page_array); 2327 2328 if (nr_allocated < nr_pages) 2329 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2330 nr_pages - nr_allocated, NULL, 2331 page_array + nr_allocated); 2332 return nr_allocated; 2333 } 2334 2335 /* alloc pages bulk and mempolicy should be considered at the 2336 * same time in some situation such as vmalloc. 2337 * 2338 * It can accelerate memory allocation especially interleaving 2339 * allocate memory. 2340 */ 2341 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2342 unsigned long nr_pages, struct page **page_array) 2343 { 2344 struct mempolicy *pol = &default_policy; 2345 2346 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2347 pol = get_task_policy(current); 2348 2349 if (pol->mode == MPOL_INTERLEAVE) 2350 return alloc_pages_bulk_array_interleave(gfp, pol, 2351 nr_pages, page_array); 2352 2353 if (pol->mode == MPOL_PREFERRED_MANY) 2354 return alloc_pages_bulk_array_preferred_many(gfp, 2355 numa_node_id(), pol, nr_pages, page_array); 2356 2357 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2358 policy_nodemask(gfp, pol), nr_pages, NULL, 2359 page_array); 2360 } 2361 2362 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2363 { 2364 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2365 2366 if (IS_ERR(pol)) 2367 return PTR_ERR(pol); 2368 dst->vm_policy = pol; 2369 return 0; 2370 } 2371 2372 /* 2373 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2374 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2375 * with the mems_allowed returned by cpuset_mems_allowed(). This 2376 * keeps mempolicies cpuset relative after its cpuset moves. See 2377 * further kernel/cpuset.c update_nodemask(). 2378 * 2379 * current's mempolicy may be rebinded by the other task(the task that changes 2380 * cpuset's mems), so we needn't do rebind work for current task. 2381 */ 2382 2383 /* Slow path of a mempolicy duplicate */ 2384 struct mempolicy *__mpol_dup(struct mempolicy *old) 2385 { 2386 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2387 2388 if (!new) 2389 return ERR_PTR(-ENOMEM); 2390 2391 /* task's mempolicy is protected by alloc_lock */ 2392 if (old == current->mempolicy) { 2393 task_lock(current); 2394 *new = *old; 2395 task_unlock(current); 2396 } else 2397 *new = *old; 2398 2399 if (current_cpuset_is_being_rebound()) { 2400 nodemask_t mems = cpuset_mems_allowed(current); 2401 mpol_rebind_policy(new, &mems); 2402 } 2403 atomic_set(&new->refcnt, 1); 2404 return new; 2405 } 2406 2407 /* Slow path of a mempolicy comparison */ 2408 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2409 { 2410 if (!a || !b) 2411 return false; 2412 if (a->mode != b->mode) 2413 return false; 2414 if (a->flags != b->flags) 2415 return false; 2416 if (a->home_node != b->home_node) 2417 return false; 2418 if (mpol_store_user_nodemask(a)) 2419 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2420 return false; 2421 2422 switch (a->mode) { 2423 case MPOL_BIND: 2424 case MPOL_INTERLEAVE: 2425 case MPOL_PREFERRED: 2426 case MPOL_PREFERRED_MANY: 2427 return !!nodes_equal(a->nodes, b->nodes); 2428 case MPOL_LOCAL: 2429 return true; 2430 default: 2431 BUG(); 2432 return false; 2433 } 2434 } 2435 2436 /* 2437 * Shared memory backing store policy support. 2438 * 2439 * Remember policies even when nobody has shared memory mapped. 2440 * The policies are kept in Red-Black tree linked from the inode. 2441 * They are protected by the sp->lock rwlock, which should be held 2442 * for any accesses to the tree. 2443 */ 2444 2445 /* 2446 * lookup first element intersecting start-end. Caller holds sp->lock for 2447 * reading or for writing 2448 */ 2449 static struct sp_node * 2450 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2451 { 2452 struct rb_node *n = sp->root.rb_node; 2453 2454 while (n) { 2455 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2456 2457 if (start >= p->end) 2458 n = n->rb_right; 2459 else if (end <= p->start) 2460 n = n->rb_left; 2461 else 2462 break; 2463 } 2464 if (!n) 2465 return NULL; 2466 for (;;) { 2467 struct sp_node *w = NULL; 2468 struct rb_node *prev = rb_prev(n); 2469 if (!prev) 2470 break; 2471 w = rb_entry(prev, struct sp_node, nd); 2472 if (w->end <= start) 2473 break; 2474 n = prev; 2475 } 2476 return rb_entry(n, struct sp_node, nd); 2477 } 2478 2479 /* 2480 * Insert a new shared policy into the list. Caller holds sp->lock for 2481 * writing. 2482 */ 2483 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2484 { 2485 struct rb_node **p = &sp->root.rb_node; 2486 struct rb_node *parent = NULL; 2487 struct sp_node *nd; 2488 2489 while (*p) { 2490 parent = *p; 2491 nd = rb_entry(parent, struct sp_node, nd); 2492 if (new->start < nd->start) 2493 p = &(*p)->rb_left; 2494 else if (new->end > nd->end) 2495 p = &(*p)->rb_right; 2496 else 2497 BUG(); 2498 } 2499 rb_link_node(&new->nd, parent, p); 2500 rb_insert_color(&new->nd, &sp->root); 2501 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2502 new->policy ? new->policy->mode : 0); 2503 } 2504 2505 /* Find shared policy intersecting idx */ 2506 struct mempolicy * 2507 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2508 { 2509 struct mempolicy *pol = NULL; 2510 struct sp_node *sn; 2511 2512 if (!sp->root.rb_node) 2513 return NULL; 2514 read_lock(&sp->lock); 2515 sn = sp_lookup(sp, idx, idx+1); 2516 if (sn) { 2517 mpol_get(sn->policy); 2518 pol = sn->policy; 2519 } 2520 read_unlock(&sp->lock); 2521 return pol; 2522 } 2523 2524 static void sp_free(struct sp_node *n) 2525 { 2526 mpol_put(n->policy); 2527 kmem_cache_free(sn_cache, n); 2528 } 2529 2530 /** 2531 * mpol_misplaced - check whether current page node is valid in policy 2532 * 2533 * @page: page to be checked 2534 * @vma: vm area where page mapped 2535 * @addr: virtual address where page mapped 2536 * 2537 * Lookup current policy node id for vma,addr and "compare to" page's 2538 * node id. Policy determination "mimics" alloc_page_vma(). 2539 * Called from fault path where we know the vma and faulting address. 2540 * 2541 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2542 * policy, or a suitable node ID to allocate a replacement page from. 2543 */ 2544 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2545 { 2546 struct mempolicy *pol; 2547 struct zoneref *z; 2548 int curnid = page_to_nid(page); 2549 unsigned long pgoff; 2550 int thiscpu = raw_smp_processor_id(); 2551 int thisnid = cpu_to_node(thiscpu); 2552 int polnid = NUMA_NO_NODE; 2553 int ret = NUMA_NO_NODE; 2554 2555 pol = get_vma_policy(vma, addr); 2556 if (!(pol->flags & MPOL_F_MOF)) 2557 goto out; 2558 2559 switch (pol->mode) { 2560 case MPOL_INTERLEAVE: 2561 pgoff = vma->vm_pgoff; 2562 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2563 polnid = offset_il_node(pol, pgoff); 2564 break; 2565 2566 case MPOL_PREFERRED: 2567 if (node_isset(curnid, pol->nodes)) 2568 goto out; 2569 polnid = first_node(pol->nodes); 2570 break; 2571 2572 case MPOL_LOCAL: 2573 polnid = numa_node_id(); 2574 break; 2575 2576 case MPOL_BIND: 2577 /* Optimize placement among multiple nodes via NUMA balancing */ 2578 if (pol->flags & MPOL_F_MORON) { 2579 if (node_isset(thisnid, pol->nodes)) 2580 break; 2581 goto out; 2582 } 2583 fallthrough; 2584 2585 case MPOL_PREFERRED_MANY: 2586 /* 2587 * use current page if in policy nodemask, 2588 * else select nearest allowed node, if any. 2589 * If no allowed nodes, use current [!misplaced]. 2590 */ 2591 if (node_isset(curnid, pol->nodes)) 2592 goto out; 2593 z = first_zones_zonelist( 2594 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2595 gfp_zone(GFP_HIGHUSER), 2596 &pol->nodes); 2597 polnid = zone_to_nid(z->zone); 2598 break; 2599 2600 default: 2601 BUG(); 2602 } 2603 2604 /* Migrate the page towards the node whose CPU is referencing it */ 2605 if (pol->flags & MPOL_F_MORON) { 2606 polnid = thisnid; 2607 2608 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2609 goto out; 2610 } 2611 2612 if (curnid != polnid) 2613 ret = polnid; 2614 out: 2615 mpol_cond_put(pol); 2616 2617 return ret; 2618 } 2619 2620 /* 2621 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2622 * dropped after task->mempolicy is set to NULL so that any allocation done as 2623 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2624 * policy. 2625 */ 2626 void mpol_put_task_policy(struct task_struct *task) 2627 { 2628 struct mempolicy *pol; 2629 2630 task_lock(task); 2631 pol = task->mempolicy; 2632 task->mempolicy = NULL; 2633 task_unlock(task); 2634 mpol_put(pol); 2635 } 2636 2637 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2638 { 2639 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2640 rb_erase(&n->nd, &sp->root); 2641 sp_free(n); 2642 } 2643 2644 static void sp_node_init(struct sp_node *node, unsigned long start, 2645 unsigned long end, struct mempolicy *pol) 2646 { 2647 node->start = start; 2648 node->end = end; 2649 node->policy = pol; 2650 } 2651 2652 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2653 struct mempolicy *pol) 2654 { 2655 struct sp_node *n; 2656 struct mempolicy *newpol; 2657 2658 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2659 if (!n) 2660 return NULL; 2661 2662 newpol = mpol_dup(pol); 2663 if (IS_ERR(newpol)) { 2664 kmem_cache_free(sn_cache, n); 2665 return NULL; 2666 } 2667 newpol->flags |= MPOL_F_SHARED; 2668 sp_node_init(n, start, end, newpol); 2669 2670 return n; 2671 } 2672 2673 /* Replace a policy range. */ 2674 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2675 unsigned long end, struct sp_node *new) 2676 { 2677 struct sp_node *n; 2678 struct sp_node *n_new = NULL; 2679 struct mempolicy *mpol_new = NULL; 2680 int ret = 0; 2681 2682 restart: 2683 write_lock(&sp->lock); 2684 n = sp_lookup(sp, start, end); 2685 /* Take care of old policies in the same range. */ 2686 while (n && n->start < end) { 2687 struct rb_node *next = rb_next(&n->nd); 2688 if (n->start >= start) { 2689 if (n->end <= end) 2690 sp_delete(sp, n); 2691 else 2692 n->start = end; 2693 } else { 2694 /* Old policy spanning whole new range. */ 2695 if (n->end > end) { 2696 if (!n_new) 2697 goto alloc_new; 2698 2699 *mpol_new = *n->policy; 2700 atomic_set(&mpol_new->refcnt, 1); 2701 sp_node_init(n_new, end, n->end, mpol_new); 2702 n->end = start; 2703 sp_insert(sp, n_new); 2704 n_new = NULL; 2705 mpol_new = NULL; 2706 break; 2707 } else 2708 n->end = start; 2709 } 2710 if (!next) 2711 break; 2712 n = rb_entry(next, struct sp_node, nd); 2713 } 2714 if (new) 2715 sp_insert(sp, new); 2716 write_unlock(&sp->lock); 2717 ret = 0; 2718 2719 err_out: 2720 if (mpol_new) 2721 mpol_put(mpol_new); 2722 if (n_new) 2723 kmem_cache_free(sn_cache, n_new); 2724 2725 return ret; 2726 2727 alloc_new: 2728 write_unlock(&sp->lock); 2729 ret = -ENOMEM; 2730 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2731 if (!n_new) 2732 goto err_out; 2733 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2734 if (!mpol_new) 2735 goto err_out; 2736 goto restart; 2737 } 2738 2739 /** 2740 * mpol_shared_policy_init - initialize shared policy for inode 2741 * @sp: pointer to inode shared policy 2742 * @mpol: struct mempolicy to install 2743 * 2744 * Install non-NULL @mpol in inode's shared policy rb-tree. 2745 * On entry, the current task has a reference on a non-NULL @mpol. 2746 * This must be released on exit. 2747 * This is called at get_inode() calls and we can use GFP_KERNEL. 2748 */ 2749 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2750 { 2751 int ret; 2752 2753 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2754 rwlock_init(&sp->lock); 2755 2756 if (mpol) { 2757 struct vm_area_struct pvma; 2758 struct mempolicy *new; 2759 NODEMASK_SCRATCH(scratch); 2760 2761 if (!scratch) 2762 goto put_mpol; 2763 /* contextualize the tmpfs mount point mempolicy */ 2764 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2765 if (IS_ERR(new)) 2766 goto free_scratch; /* no valid nodemask intersection */ 2767 2768 task_lock(current); 2769 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2770 task_unlock(current); 2771 if (ret) 2772 goto put_new; 2773 2774 /* Create pseudo-vma that contains just the policy */ 2775 vma_init(&pvma, NULL); 2776 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2777 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2778 2779 put_new: 2780 mpol_put(new); /* drop initial ref */ 2781 free_scratch: 2782 NODEMASK_SCRATCH_FREE(scratch); 2783 put_mpol: 2784 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2785 } 2786 } 2787 2788 int mpol_set_shared_policy(struct shared_policy *info, 2789 struct vm_area_struct *vma, struct mempolicy *npol) 2790 { 2791 int err; 2792 struct sp_node *new = NULL; 2793 unsigned long sz = vma_pages(vma); 2794 2795 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2796 vma->vm_pgoff, 2797 sz, npol ? npol->mode : -1, 2798 npol ? npol->flags : -1, 2799 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2800 2801 if (npol) { 2802 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2803 if (!new) 2804 return -ENOMEM; 2805 } 2806 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2807 if (err && new) 2808 sp_free(new); 2809 return err; 2810 } 2811 2812 /* Free a backing policy store on inode delete. */ 2813 void mpol_free_shared_policy(struct shared_policy *p) 2814 { 2815 struct sp_node *n; 2816 struct rb_node *next; 2817 2818 if (!p->root.rb_node) 2819 return; 2820 write_lock(&p->lock); 2821 next = rb_first(&p->root); 2822 while (next) { 2823 n = rb_entry(next, struct sp_node, nd); 2824 next = rb_next(&n->nd); 2825 sp_delete(p, n); 2826 } 2827 write_unlock(&p->lock); 2828 } 2829 2830 #ifdef CONFIG_NUMA_BALANCING 2831 static int __initdata numabalancing_override; 2832 2833 static void __init check_numabalancing_enable(void) 2834 { 2835 bool numabalancing_default = false; 2836 2837 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2838 numabalancing_default = true; 2839 2840 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2841 if (numabalancing_override) 2842 set_numabalancing_state(numabalancing_override == 1); 2843 2844 if (num_online_nodes() > 1 && !numabalancing_override) { 2845 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2846 numabalancing_default ? "Enabling" : "Disabling"); 2847 set_numabalancing_state(numabalancing_default); 2848 } 2849 } 2850 2851 static int __init setup_numabalancing(char *str) 2852 { 2853 int ret = 0; 2854 if (!str) 2855 goto out; 2856 2857 if (!strcmp(str, "enable")) { 2858 numabalancing_override = 1; 2859 ret = 1; 2860 } else if (!strcmp(str, "disable")) { 2861 numabalancing_override = -1; 2862 ret = 1; 2863 } 2864 out: 2865 if (!ret) 2866 pr_warn("Unable to parse numa_balancing=\n"); 2867 2868 return ret; 2869 } 2870 __setup("numa_balancing=", setup_numabalancing); 2871 #else 2872 static inline void __init check_numabalancing_enable(void) 2873 { 2874 } 2875 #endif /* CONFIG_NUMA_BALANCING */ 2876 2877 /* assumes fs == KERNEL_DS */ 2878 void __init numa_policy_init(void) 2879 { 2880 nodemask_t interleave_nodes; 2881 unsigned long largest = 0; 2882 int nid, prefer = 0; 2883 2884 policy_cache = kmem_cache_create("numa_policy", 2885 sizeof(struct mempolicy), 2886 0, SLAB_PANIC, NULL); 2887 2888 sn_cache = kmem_cache_create("shared_policy_node", 2889 sizeof(struct sp_node), 2890 0, SLAB_PANIC, NULL); 2891 2892 for_each_node(nid) { 2893 preferred_node_policy[nid] = (struct mempolicy) { 2894 .refcnt = ATOMIC_INIT(1), 2895 .mode = MPOL_PREFERRED, 2896 .flags = MPOL_F_MOF | MPOL_F_MORON, 2897 .nodes = nodemask_of_node(nid), 2898 }; 2899 } 2900 2901 /* 2902 * Set interleaving policy for system init. Interleaving is only 2903 * enabled across suitably sized nodes (default is >= 16MB), or 2904 * fall back to the largest node if they're all smaller. 2905 */ 2906 nodes_clear(interleave_nodes); 2907 for_each_node_state(nid, N_MEMORY) { 2908 unsigned long total_pages = node_present_pages(nid); 2909 2910 /* Preserve the largest node */ 2911 if (largest < total_pages) { 2912 largest = total_pages; 2913 prefer = nid; 2914 } 2915 2916 /* Interleave this node? */ 2917 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2918 node_set(nid, interleave_nodes); 2919 } 2920 2921 /* All too small, use the largest */ 2922 if (unlikely(nodes_empty(interleave_nodes))) 2923 node_set(prefer, interleave_nodes); 2924 2925 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2926 pr_err("%s: interleaving failed\n", __func__); 2927 2928 check_numabalancing_enable(); 2929 } 2930 2931 /* Reset policy of current process to default */ 2932 void numa_default_policy(void) 2933 { 2934 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2935 } 2936 2937 /* 2938 * Parse and format mempolicy from/to strings 2939 */ 2940 2941 static const char * const policy_modes[] = 2942 { 2943 [MPOL_DEFAULT] = "default", 2944 [MPOL_PREFERRED] = "prefer", 2945 [MPOL_BIND] = "bind", 2946 [MPOL_INTERLEAVE] = "interleave", 2947 [MPOL_LOCAL] = "local", 2948 [MPOL_PREFERRED_MANY] = "prefer (many)", 2949 }; 2950 2951 2952 #ifdef CONFIG_TMPFS 2953 /** 2954 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2955 * @str: string containing mempolicy to parse 2956 * @mpol: pointer to struct mempolicy pointer, returned on success. 2957 * 2958 * Format of input: 2959 * <mode>[=<flags>][:<nodelist>] 2960 * 2961 * Return: %0 on success, else %1 2962 */ 2963 int mpol_parse_str(char *str, struct mempolicy **mpol) 2964 { 2965 struct mempolicy *new = NULL; 2966 unsigned short mode_flags; 2967 nodemask_t nodes; 2968 char *nodelist = strchr(str, ':'); 2969 char *flags = strchr(str, '='); 2970 int err = 1, mode; 2971 2972 if (flags) 2973 *flags++ = '\0'; /* terminate mode string */ 2974 2975 if (nodelist) { 2976 /* NUL-terminate mode or flags string */ 2977 *nodelist++ = '\0'; 2978 if (nodelist_parse(nodelist, nodes)) 2979 goto out; 2980 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2981 goto out; 2982 } else 2983 nodes_clear(nodes); 2984 2985 mode = match_string(policy_modes, MPOL_MAX, str); 2986 if (mode < 0) 2987 goto out; 2988 2989 switch (mode) { 2990 case MPOL_PREFERRED: 2991 /* 2992 * Insist on a nodelist of one node only, although later 2993 * we use first_node(nodes) to grab a single node, so here 2994 * nodelist (or nodes) cannot be empty. 2995 */ 2996 if (nodelist) { 2997 char *rest = nodelist; 2998 while (isdigit(*rest)) 2999 rest++; 3000 if (*rest) 3001 goto out; 3002 if (nodes_empty(nodes)) 3003 goto out; 3004 } 3005 break; 3006 case MPOL_INTERLEAVE: 3007 /* 3008 * Default to online nodes with memory if no nodelist 3009 */ 3010 if (!nodelist) 3011 nodes = node_states[N_MEMORY]; 3012 break; 3013 case MPOL_LOCAL: 3014 /* 3015 * Don't allow a nodelist; mpol_new() checks flags 3016 */ 3017 if (nodelist) 3018 goto out; 3019 break; 3020 case MPOL_DEFAULT: 3021 /* 3022 * Insist on a empty nodelist 3023 */ 3024 if (!nodelist) 3025 err = 0; 3026 goto out; 3027 case MPOL_PREFERRED_MANY: 3028 case MPOL_BIND: 3029 /* 3030 * Insist on a nodelist 3031 */ 3032 if (!nodelist) 3033 goto out; 3034 } 3035 3036 mode_flags = 0; 3037 if (flags) { 3038 /* 3039 * Currently, we only support two mutually exclusive 3040 * mode flags. 3041 */ 3042 if (!strcmp(flags, "static")) 3043 mode_flags |= MPOL_F_STATIC_NODES; 3044 else if (!strcmp(flags, "relative")) 3045 mode_flags |= MPOL_F_RELATIVE_NODES; 3046 else 3047 goto out; 3048 } 3049 3050 new = mpol_new(mode, mode_flags, &nodes); 3051 if (IS_ERR(new)) 3052 goto out; 3053 3054 /* 3055 * Save nodes for mpol_to_str() to show the tmpfs mount options 3056 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3057 */ 3058 if (mode != MPOL_PREFERRED) { 3059 new->nodes = nodes; 3060 } else if (nodelist) { 3061 nodes_clear(new->nodes); 3062 node_set(first_node(nodes), new->nodes); 3063 } else { 3064 new->mode = MPOL_LOCAL; 3065 } 3066 3067 /* 3068 * Save nodes for contextualization: this will be used to "clone" 3069 * the mempolicy in a specific context [cpuset] at a later time. 3070 */ 3071 new->w.user_nodemask = nodes; 3072 3073 err = 0; 3074 3075 out: 3076 /* Restore string for error message */ 3077 if (nodelist) 3078 *--nodelist = ':'; 3079 if (flags) 3080 *--flags = '='; 3081 if (!err) 3082 *mpol = new; 3083 return err; 3084 } 3085 #endif /* CONFIG_TMPFS */ 3086 3087 /** 3088 * mpol_to_str - format a mempolicy structure for printing 3089 * @buffer: to contain formatted mempolicy string 3090 * @maxlen: length of @buffer 3091 * @pol: pointer to mempolicy to be formatted 3092 * 3093 * Convert @pol into a string. If @buffer is too short, truncate the string. 3094 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3095 * longest flag, "relative", and to display at least a few node ids. 3096 */ 3097 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3098 { 3099 char *p = buffer; 3100 nodemask_t nodes = NODE_MASK_NONE; 3101 unsigned short mode = MPOL_DEFAULT; 3102 unsigned short flags = 0; 3103 3104 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3105 mode = pol->mode; 3106 flags = pol->flags; 3107 } 3108 3109 switch (mode) { 3110 case MPOL_DEFAULT: 3111 case MPOL_LOCAL: 3112 break; 3113 case MPOL_PREFERRED: 3114 case MPOL_PREFERRED_MANY: 3115 case MPOL_BIND: 3116 case MPOL_INTERLEAVE: 3117 nodes = pol->nodes; 3118 break; 3119 default: 3120 WARN_ON_ONCE(1); 3121 snprintf(p, maxlen, "unknown"); 3122 return; 3123 } 3124 3125 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3126 3127 if (flags & MPOL_MODE_FLAGS) { 3128 p += snprintf(p, buffer + maxlen - p, "="); 3129 3130 /* 3131 * Currently, the only defined flags are mutually exclusive 3132 */ 3133 if (flags & MPOL_F_STATIC_NODES) 3134 p += snprintf(p, buffer + maxlen - p, "static"); 3135 else if (flags & MPOL_F_RELATIVE_NODES) 3136 p += snprintf(p, buffer + maxlen - p, "relative"); 3137 } 3138 3139 if (!nodes_empty(nodes)) 3140 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3141 nodemask_pr_args(&nodes)); 3142 } 3143