1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) { 388 vma_start_write(vma); 389 mpol_rebind_policy(vma->vm_policy, new); 390 } 391 mmap_write_unlock(mm); 392 } 393 394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 395 [MPOL_DEFAULT] = { 396 .rebind = mpol_rebind_default, 397 }, 398 [MPOL_INTERLEAVE] = { 399 .create = mpol_new_nodemask, 400 .rebind = mpol_rebind_nodemask, 401 }, 402 [MPOL_PREFERRED] = { 403 .create = mpol_new_preferred, 404 .rebind = mpol_rebind_preferred, 405 }, 406 [MPOL_BIND] = { 407 .create = mpol_new_nodemask, 408 .rebind = mpol_rebind_nodemask, 409 }, 410 [MPOL_LOCAL] = { 411 .rebind = mpol_rebind_default, 412 }, 413 [MPOL_PREFERRED_MANY] = { 414 .create = mpol_new_nodemask, 415 .rebind = mpol_rebind_preferred, 416 }, 417 }; 418 419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 420 unsigned long flags); 421 422 struct queue_pages { 423 struct list_head *pagelist; 424 unsigned long flags; 425 nodemask_t *nmask; 426 unsigned long start; 427 unsigned long end; 428 struct vm_area_struct *first; 429 }; 430 431 /* 432 * Check if the folio's nid is in qp->nmask. 433 * 434 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 435 * in the invert of qp->nmask. 436 */ 437 static inline bool queue_folio_required(struct folio *folio, 438 struct queue_pages *qp) 439 { 440 int nid = folio_nid(folio); 441 unsigned long flags = qp->flags; 442 443 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 444 } 445 446 /* 447 * queue_folios_pmd() has three possible return values: 448 * 0 - folios are placed on the right node or queued successfully, or 449 * special page is met, i.e. huge zero page. 450 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 451 * specified. 452 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 453 * existing folio was already on a node that does not follow the 454 * policy. 455 */ 456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 457 unsigned long end, struct mm_walk *walk) 458 __releases(ptl) 459 { 460 int ret = 0; 461 struct folio *folio; 462 struct queue_pages *qp = walk->private; 463 unsigned long flags; 464 465 if (unlikely(is_pmd_migration_entry(*pmd))) { 466 ret = -EIO; 467 goto unlock; 468 } 469 folio = pfn_folio(pmd_pfn(*pmd)); 470 if (is_huge_zero_page(&folio->page)) { 471 walk->action = ACTION_CONTINUE; 472 goto unlock; 473 } 474 if (!queue_folio_required(folio, qp)) 475 goto unlock; 476 477 flags = qp->flags; 478 /* go to folio migration */ 479 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 480 if (!vma_migratable(walk->vma) || 481 migrate_folio_add(folio, qp->pagelist, flags)) { 482 ret = 1; 483 goto unlock; 484 } 485 } else 486 ret = -EIO; 487 unlock: 488 spin_unlock(ptl); 489 return ret; 490 } 491 492 /* 493 * Scan through pages checking if pages follow certain conditions, 494 * and move them to the pagelist if they do. 495 * 496 * queue_folios_pte_range() has three possible return values: 497 * 0 - folios are placed on the right node or queued successfully, or 498 * special page is met, i.e. zero page. 499 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 500 * specified. 501 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 502 * on a node that does not follow the policy. 503 */ 504 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 505 unsigned long end, struct mm_walk *walk) 506 { 507 struct vm_area_struct *vma = walk->vma; 508 struct folio *folio; 509 struct queue_pages *qp = walk->private; 510 unsigned long flags = qp->flags; 511 bool has_unmovable = false; 512 pte_t *pte, *mapped_pte; 513 pte_t ptent; 514 spinlock_t *ptl; 515 516 ptl = pmd_trans_huge_lock(pmd, vma); 517 if (ptl) 518 return queue_folios_pmd(pmd, ptl, addr, end, walk); 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 if (!pte) { 522 walk->action = ACTION_AGAIN; 523 return 0; 524 } 525 for (; addr != end; pte++, addr += PAGE_SIZE) { 526 ptent = ptep_get(pte); 527 if (!pte_present(ptent)) 528 continue; 529 folio = vm_normal_folio(vma, addr, ptent); 530 if (!folio || folio_is_zone_device(folio)) 531 continue; 532 /* 533 * vm_normal_folio() filters out zero pages, but there might 534 * still be reserved folios to skip, perhaps in a VDSO. 535 */ 536 if (folio_test_reserved(folio)) 537 continue; 538 if (!queue_folio_required(folio, qp)) 539 continue; 540 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 541 /* MPOL_MF_STRICT must be specified if we get here */ 542 if (!vma_migratable(vma)) { 543 has_unmovable = true; 544 break; 545 } 546 547 /* 548 * Do not abort immediately since there may be 549 * temporary off LRU pages in the range. Still 550 * need migrate other LRU pages. 551 */ 552 if (migrate_folio_add(folio, qp->pagelist, flags)) 553 has_unmovable = true; 554 } else 555 break; 556 } 557 pte_unmap_unlock(mapped_pte, ptl); 558 cond_resched(); 559 560 if (has_unmovable) 561 return 1; 562 563 return addr != end ? -EIO : 0; 564 } 565 566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 567 unsigned long addr, unsigned long end, 568 struct mm_walk *walk) 569 { 570 int ret = 0; 571 #ifdef CONFIG_HUGETLB_PAGE 572 struct queue_pages *qp = walk->private; 573 unsigned long flags = (qp->flags & MPOL_MF_VALID); 574 struct folio *folio; 575 spinlock_t *ptl; 576 pte_t entry; 577 578 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 579 entry = huge_ptep_get(pte); 580 if (!pte_present(entry)) 581 goto unlock; 582 folio = pfn_folio(pte_pfn(entry)); 583 if (!queue_folio_required(folio, qp)) 584 goto unlock; 585 586 if (flags == MPOL_MF_STRICT) { 587 /* 588 * STRICT alone means only detecting misplaced folio and no 589 * need to further check other vma. 590 */ 591 ret = -EIO; 592 goto unlock; 593 } 594 595 if (!vma_migratable(walk->vma)) { 596 /* 597 * Must be STRICT with MOVE*, otherwise .test_walk() have 598 * stopped walking current vma. 599 * Detecting misplaced folio but allow migrating folios which 600 * have been queued. 601 */ 602 ret = 1; 603 goto unlock; 604 } 605 606 /* 607 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 608 * is shared it is likely not worth migrating. 609 * 610 * To check if the folio is shared, ideally we want to make sure 611 * every page is mapped to the same process. Doing that is very 612 * expensive, so check the estimated mapcount of the folio instead. 613 */ 614 if (flags & (MPOL_MF_MOVE_ALL) || 615 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 616 !hugetlb_pmd_shared(pte))) { 617 if (!isolate_hugetlb(folio, qp->pagelist) && 618 (flags & MPOL_MF_STRICT)) 619 /* 620 * Failed to isolate folio but allow migrating pages 621 * which have been queued. 622 */ 623 ret = 1; 624 } 625 unlock: 626 spin_unlock(ptl); 627 #else 628 BUG(); 629 #endif 630 return ret; 631 } 632 633 #ifdef CONFIG_NUMA_BALANCING 634 /* 635 * This is used to mark a range of virtual addresses to be inaccessible. 636 * These are later cleared by a NUMA hinting fault. Depending on these 637 * faults, pages may be migrated for better NUMA placement. 638 * 639 * This is assuming that NUMA faults are handled using PROT_NONE. If 640 * an architecture makes a different choice, it will need further 641 * changes to the core. 642 */ 643 unsigned long change_prot_numa(struct vm_area_struct *vma, 644 unsigned long addr, unsigned long end) 645 { 646 struct mmu_gather tlb; 647 long nr_updated; 648 649 tlb_gather_mmu(&tlb, vma->vm_mm); 650 651 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 652 if (nr_updated > 0) 653 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 654 655 tlb_finish_mmu(&tlb); 656 657 return nr_updated; 658 } 659 #else 660 static unsigned long change_prot_numa(struct vm_area_struct *vma, 661 unsigned long addr, unsigned long end) 662 { 663 return 0; 664 } 665 #endif /* CONFIG_NUMA_BALANCING */ 666 667 static int queue_pages_test_walk(unsigned long start, unsigned long end, 668 struct mm_walk *walk) 669 { 670 struct vm_area_struct *next, *vma = walk->vma; 671 struct queue_pages *qp = walk->private; 672 unsigned long endvma = vma->vm_end; 673 unsigned long flags = qp->flags; 674 675 /* range check first */ 676 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 677 678 if (!qp->first) { 679 qp->first = vma; 680 if (!(flags & MPOL_MF_DISCONTIG_OK) && 681 (qp->start < vma->vm_start)) 682 /* hole at head side of range */ 683 return -EFAULT; 684 } 685 next = find_vma(vma->vm_mm, vma->vm_end); 686 if (!(flags & MPOL_MF_DISCONTIG_OK) && 687 ((vma->vm_end < qp->end) && 688 (!next || vma->vm_end < next->vm_start))) 689 /* hole at middle or tail of range */ 690 return -EFAULT; 691 692 /* 693 * Need check MPOL_MF_STRICT to return -EIO if possible 694 * regardless of vma_migratable 695 */ 696 if (!vma_migratable(vma) && 697 !(flags & MPOL_MF_STRICT)) 698 return 1; 699 700 if (endvma > end) 701 endvma = end; 702 703 if (flags & MPOL_MF_LAZY) { 704 /* Similar to task_numa_work, skip inaccessible VMAs */ 705 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 706 !(vma->vm_flags & VM_MIXEDMAP)) 707 change_prot_numa(vma, start, endvma); 708 return 1; 709 } 710 711 /* queue pages from current vma */ 712 if (flags & MPOL_MF_VALID) 713 return 0; 714 return 1; 715 } 716 717 static const struct mm_walk_ops queue_pages_walk_ops = { 718 .hugetlb_entry = queue_folios_hugetlb, 719 .pmd_entry = queue_folios_pte_range, 720 .test_walk = queue_pages_test_walk, 721 .walk_lock = PGWALK_RDLOCK, 722 }; 723 724 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 725 .hugetlb_entry = queue_folios_hugetlb, 726 .pmd_entry = queue_folios_pte_range, 727 .test_walk = queue_pages_test_walk, 728 .walk_lock = PGWALK_WRLOCK, 729 }; 730 731 /* 732 * Walk through page tables and collect pages to be migrated. 733 * 734 * If pages found in a given range are on a set of nodes (determined by 735 * @nodes and @flags,) it's isolated and queued to the pagelist which is 736 * passed via @private. 737 * 738 * queue_pages_range() has three possible return values: 739 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 740 * specified. 741 * 0 - queue pages successfully or no misplaced page. 742 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 743 * memory range specified by nodemask and maxnode points outside 744 * your accessible address space (-EFAULT) 745 */ 746 static int 747 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 748 nodemask_t *nodes, unsigned long flags, 749 struct list_head *pagelist, bool lock_vma) 750 { 751 int err; 752 struct queue_pages qp = { 753 .pagelist = pagelist, 754 .flags = flags, 755 .nmask = nodes, 756 .start = start, 757 .end = end, 758 .first = NULL, 759 }; 760 const struct mm_walk_ops *ops = lock_vma ? 761 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 762 763 err = walk_page_range(mm, start, end, ops, &qp); 764 765 if (!qp.first) 766 /* whole range in hole */ 767 err = -EFAULT; 768 769 return err; 770 } 771 772 /* 773 * Apply policy to a single VMA 774 * This must be called with the mmap_lock held for writing. 775 */ 776 static int vma_replace_policy(struct vm_area_struct *vma, 777 struct mempolicy *pol) 778 { 779 int err; 780 struct mempolicy *old; 781 struct mempolicy *new; 782 783 vma_assert_write_locked(vma); 784 785 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 786 vma->vm_start, vma->vm_end, vma->vm_pgoff, 787 vma->vm_ops, vma->vm_file, 788 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 789 790 new = mpol_dup(pol); 791 if (IS_ERR(new)) 792 return PTR_ERR(new); 793 794 if (vma->vm_ops && vma->vm_ops->set_policy) { 795 err = vma->vm_ops->set_policy(vma, new); 796 if (err) 797 goto err_out; 798 } 799 800 old = vma->vm_policy; 801 vma->vm_policy = new; /* protected by mmap_lock */ 802 mpol_put(old); 803 804 return 0; 805 err_out: 806 mpol_put(new); 807 return err; 808 } 809 810 /* Split or merge the VMA (if required) and apply the new policy */ 811 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 812 struct vm_area_struct **prev, unsigned long start, 813 unsigned long end, struct mempolicy *new_pol) 814 { 815 struct vm_area_struct *merged; 816 unsigned long vmstart, vmend; 817 pgoff_t pgoff; 818 int err; 819 820 vmend = min(end, vma->vm_end); 821 if (start > vma->vm_start) { 822 *prev = vma; 823 vmstart = start; 824 } else { 825 vmstart = vma->vm_start; 826 } 827 828 if (mpol_equal(vma_policy(vma), new_pol)) { 829 *prev = vma; 830 return 0; 831 } 832 833 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 834 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 835 vma->anon_vma, vma->vm_file, pgoff, new_pol, 836 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 837 if (merged) { 838 *prev = merged; 839 return vma_replace_policy(merged, new_pol); 840 } 841 842 if (vma->vm_start != vmstart) { 843 err = split_vma(vmi, vma, vmstart, 1); 844 if (err) 845 return err; 846 } 847 848 if (vma->vm_end != vmend) { 849 err = split_vma(vmi, vma, vmend, 0); 850 if (err) 851 return err; 852 } 853 854 *prev = vma; 855 return vma_replace_policy(vma, new_pol); 856 } 857 858 /* Set the process memory policy */ 859 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 860 nodemask_t *nodes) 861 { 862 struct mempolicy *new, *old; 863 NODEMASK_SCRATCH(scratch); 864 int ret; 865 866 if (!scratch) 867 return -ENOMEM; 868 869 new = mpol_new(mode, flags, nodes); 870 if (IS_ERR(new)) { 871 ret = PTR_ERR(new); 872 goto out; 873 } 874 875 task_lock(current); 876 ret = mpol_set_nodemask(new, nodes, scratch); 877 if (ret) { 878 task_unlock(current); 879 mpol_put(new); 880 goto out; 881 } 882 883 old = current->mempolicy; 884 current->mempolicy = new; 885 if (new && new->mode == MPOL_INTERLEAVE) 886 current->il_prev = MAX_NUMNODES-1; 887 task_unlock(current); 888 mpol_put(old); 889 ret = 0; 890 out: 891 NODEMASK_SCRATCH_FREE(scratch); 892 return ret; 893 } 894 895 /* 896 * Return nodemask for policy for get_mempolicy() query 897 * 898 * Called with task's alloc_lock held 899 */ 900 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 901 { 902 nodes_clear(*nodes); 903 if (p == &default_policy) 904 return; 905 906 switch (p->mode) { 907 case MPOL_BIND: 908 case MPOL_INTERLEAVE: 909 case MPOL_PREFERRED: 910 case MPOL_PREFERRED_MANY: 911 *nodes = p->nodes; 912 break; 913 case MPOL_LOCAL: 914 /* return empty node mask for local allocation */ 915 break; 916 default: 917 BUG(); 918 } 919 } 920 921 static int lookup_node(struct mm_struct *mm, unsigned long addr) 922 { 923 struct page *p = NULL; 924 int ret; 925 926 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 927 if (ret > 0) { 928 ret = page_to_nid(p); 929 put_page(p); 930 } 931 return ret; 932 } 933 934 /* Retrieve NUMA policy */ 935 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 936 unsigned long addr, unsigned long flags) 937 { 938 int err; 939 struct mm_struct *mm = current->mm; 940 struct vm_area_struct *vma = NULL; 941 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 942 943 if (flags & 944 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 945 return -EINVAL; 946 947 if (flags & MPOL_F_MEMS_ALLOWED) { 948 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 949 return -EINVAL; 950 *policy = 0; /* just so it's initialized */ 951 task_lock(current); 952 *nmask = cpuset_current_mems_allowed; 953 task_unlock(current); 954 return 0; 955 } 956 957 if (flags & MPOL_F_ADDR) { 958 /* 959 * Do NOT fall back to task policy if the 960 * vma/shared policy at addr is NULL. We 961 * want to return MPOL_DEFAULT in this case. 962 */ 963 mmap_read_lock(mm); 964 vma = vma_lookup(mm, addr); 965 if (!vma) { 966 mmap_read_unlock(mm); 967 return -EFAULT; 968 } 969 if (vma->vm_ops && vma->vm_ops->get_policy) 970 pol = vma->vm_ops->get_policy(vma, addr); 971 else 972 pol = vma->vm_policy; 973 } else if (addr) 974 return -EINVAL; 975 976 if (!pol) 977 pol = &default_policy; /* indicates default behavior */ 978 979 if (flags & MPOL_F_NODE) { 980 if (flags & MPOL_F_ADDR) { 981 /* 982 * Take a refcount on the mpol, because we are about to 983 * drop the mmap_lock, after which only "pol" remains 984 * valid, "vma" is stale. 985 */ 986 pol_refcount = pol; 987 vma = NULL; 988 mpol_get(pol); 989 mmap_read_unlock(mm); 990 err = lookup_node(mm, addr); 991 if (err < 0) 992 goto out; 993 *policy = err; 994 } else if (pol == current->mempolicy && 995 pol->mode == MPOL_INTERLEAVE) { 996 *policy = next_node_in(current->il_prev, pol->nodes); 997 } else { 998 err = -EINVAL; 999 goto out; 1000 } 1001 } else { 1002 *policy = pol == &default_policy ? MPOL_DEFAULT : 1003 pol->mode; 1004 /* 1005 * Internal mempolicy flags must be masked off before exposing 1006 * the policy to userspace. 1007 */ 1008 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1009 } 1010 1011 err = 0; 1012 if (nmask) { 1013 if (mpol_store_user_nodemask(pol)) { 1014 *nmask = pol->w.user_nodemask; 1015 } else { 1016 task_lock(current); 1017 get_policy_nodemask(pol, nmask); 1018 task_unlock(current); 1019 } 1020 } 1021 1022 out: 1023 mpol_cond_put(pol); 1024 if (vma) 1025 mmap_read_unlock(mm); 1026 if (pol_refcount) 1027 mpol_put(pol_refcount); 1028 return err; 1029 } 1030 1031 #ifdef CONFIG_MIGRATION 1032 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1033 unsigned long flags) 1034 { 1035 /* 1036 * We try to migrate only unshared folios. If it is shared it 1037 * is likely not worth migrating. 1038 * 1039 * To check if the folio is shared, ideally we want to make sure 1040 * every page is mapped to the same process. Doing that is very 1041 * expensive, so check the estimated mapcount of the folio instead. 1042 */ 1043 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1044 if (folio_isolate_lru(folio)) { 1045 list_add_tail(&folio->lru, foliolist); 1046 node_stat_mod_folio(folio, 1047 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1048 folio_nr_pages(folio)); 1049 } else if (flags & MPOL_MF_STRICT) { 1050 /* 1051 * Non-movable folio may reach here. And, there may be 1052 * temporary off LRU folios or non-LRU movable folios. 1053 * Treat them as unmovable folios since they can't be 1054 * isolated, so they can't be moved at the moment. It 1055 * should return -EIO for this case too. 1056 */ 1057 return -EIO; 1058 } 1059 } 1060 1061 return 0; 1062 } 1063 1064 /* 1065 * Migrate pages from one node to a target node. 1066 * Returns error or the number of pages not migrated. 1067 */ 1068 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1069 int flags) 1070 { 1071 nodemask_t nmask; 1072 struct vm_area_struct *vma; 1073 LIST_HEAD(pagelist); 1074 int err = 0; 1075 struct migration_target_control mtc = { 1076 .nid = dest, 1077 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1078 }; 1079 1080 nodes_clear(nmask); 1081 node_set(source, nmask); 1082 1083 /* 1084 * This does not "check" the range but isolates all pages that 1085 * need migration. Between passing in the full user address 1086 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1087 */ 1088 vma = find_vma(mm, 0); 1089 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1090 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1091 flags | MPOL_MF_DISCONTIG_OK, &pagelist, false); 1092 1093 if (!list_empty(&pagelist)) { 1094 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1095 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1096 if (err) 1097 putback_movable_pages(&pagelist); 1098 } 1099 1100 return err; 1101 } 1102 1103 /* 1104 * Move pages between the two nodesets so as to preserve the physical 1105 * layout as much as possible. 1106 * 1107 * Returns the number of page that could not be moved. 1108 */ 1109 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1110 const nodemask_t *to, int flags) 1111 { 1112 int busy = 0; 1113 int err = 0; 1114 nodemask_t tmp; 1115 1116 lru_cache_disable(); 1117 1118 mmap_read_lock(mm); 1119 1120 /* 1121 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1122 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1123 * bit in 'tmp', and return that <source, dest> pair for migration. 1124 * The pair of nodemasks 'to' and 'from' define the map. 1125 * 1126 * If no pair of bits is found that way, fallback to picking some 1127 * pair of 'source' and 'dest' bits that are not the same. If the 1128 * 'source' and 'dest' bits are the same, this represents a node 1129 * that will be migrating to itself, so no pages need move. 1130 * 1131 * If no bits are left in 'tmp', or if all remaining bits left 1132 * in 'tmp' correspond to the same bit in 'to', return false 1133 * (nothing left to migrate). 1134 * 1135 * This lets us pick a pair of nodes to migrate between, such that 1136 * if possible the dest node is not already occupied by some other 1137 * source node, minimizing the risk of overloading the memory on a 1138 * node that would happen if we migrated incoming memory to a node 1139 * before migrating outgoing memory source that same node. 1140 * 1141 * A single scan of tmp is sufficient. As we go, we remember the 1142 * most recent <s, d> pair that moved (s != d). If we find a pair 1143 * that not only moved, but what's better, moved to an empty slot 1144 * (d is not set in tmp), then we break out then, with that pair. 1145 * Otherwise when we finish scanning from_tmp, we at least have the 1146 * most recent <s, d> pair that moved. If we get all the way through 1147 * the scan of tmp without finding any node that moved, much less 1148 * moved to an empty node, then there is nothing left worth migrating. 1149 */ 1150 1151 tmp = *from; 1152 while (!nodes_empty(tmp)) { 1153 int s, d; 1154 int source = NUMA_NO_NODE; 1155 int dest = 0; 1156 1157 for_each_node_mask(s, tmp) { 1158 1159 /* 1160 * do_migrate_pages() tries to maintain the relative 1161 * node relationship of the pages established between 1162 * threads and memory areas. 1163 * 1164 * However if the number of source nodes is not equal to 1165 * the number of destination nodes we can not preserve 1166 * this node relative relationship. In that case, skip 1167 * copying memory from a node that is in the destination 1168 * mask. 1169 * 1170 * Example: [2,3,4] -> [3,4,5] moves everything. 1171 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1172 */ 1173 1174 if ((nodes_weight(*from) != nodes_weight(*to)) && 1175 (node_isset(s, *to))) 1176 continue; 1177 1178 d = node_remap(s, *from, *to); 1179 if (s == d) 1180 continue; 1181 1182 source = s; /* Node moved. Memorize */ 1183 dest = d; 1184 1185 /* dest not in remaining from nodes? */ 1186 if (!node_isset(dest, tmp)) 1187 break; 1188 } 1189 if (source == NUMA_NO_NODE) 1190 break; 1191 1192 node_clear(source, tmp); 1193 err = migrate_to_node(mm, source, dest, flags); 1194 if (err > 0) 1195 busy += err; 1196 if (err < 0) 1197 break; 1198 } 1199 mmap_read_unlock(mm); 1200 1201 lru_cache_enable(); 1202 if (err < 0) 1203 return err; 1204 return busy; 1205 1206 } 1207 1208 /* 1209 * Allocate a new page for page migration based on vma policy. 1210 * Start by assuming the page is mapped by the same vma as contains @start. 1211 * Search forward from there, if not. N.B., this assumes that the 1212 * list of pages handed to migrate_pages()--which is how we get here-- 1213 * is in virtual address order. 1214 */ 1215 static struct folio *new_folio(struct folio *src, unsigned long start) 1216 { 1217 struct vm_area_struct *vma; 1218 unsigned long address; 1219 VMA_ITERATOR(vmi, current->mm, start); 1220 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1221 1222 for_each_vma(vmi, vma) { 1223 address = page_address_in_vma(&src->page, vma); 1224 if (address != -EFAULT) 1225 break; 1226 } 1227 1228 if (folio_test_hugetlb(src)) { 1229 return alloc_hugetlb_folio_vma(folio_hstate(src), 1230 vma, address); 1231 } 1232 1233 if (folio_test_large(src)) 1234 gfp = GFP_TRANSHUGE; 1235 1236 /* 1237 * if !vma, vma_alloc_folio() will use task or system default policy 1238 */ 1239 return vma_alloc_folio(gfp, folio_order(src), vma, address, 1240 folio_test_large(src)); 1241 } 1242 #else 1243 1244 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1245 unsigned long flags) 1246 { 1247 return -EIO; 1248 } 1249 1250 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1251 const nodemask_t *to, int flags) 1252 { 1253 return -ENOSYS; 1254 } 1255 1256 static struct folio *new_folio(struct folio *src, unsigned long start) 1257 { 1258 return NULL; 1259 } 1260 #endif 1261 1262 static long do_mbind(unsigned long start, unsigned long len, 1263 unsigned short mode, unsigned short mode_flags, 1264 nodemask_t *nmask, unsigned long flags) 1265 { 1266 struct mm_struct *mm = current->mm; 1267 struct vm_area_struct *vma, *prev; 1268 struct vma_iterator vmi; 1269 struct mempolicy *new; 1270 unsigned long end; 1271 int err; 1272 int ret; 1273 LIST_HEAD(pagelist); 1274 1275 if (flags & ~(unsigned long)MPOL_MF_VALID) 1276 return -EINVAL; 1277 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1278 return -EPERM; 1279 1280 if (start & ~PAGE_MASK) 1281 return -EINVAL; 1282 1283 if (mode == MPOL_DEFAULT) 1284 flags &= ~MPOL_MF_STRICT; 1285 1286 len = PAGE_ALIGN(len); 1287 end = start + len; 1288 1289 if (end < start) 1290 return -EINVAL; 1291 if (end == start) 1292 return 0; 1293 1294 new = mpol_new(mode, mode_flags, nmask); 1295 if (IS_ERR(new)) 1296 return PTR_ERR(new); 1297 1298 if (flags & MPOL_MF_LAZY) 1299 new->flags |= MPOL_F_MOF; 1300 1301 /* 1302 * If we are using the default policy then operation 1303 * on discontinuous address spaces is okay after all 1304 */ 1305 if (!new) 1306 flags |= MPOL_MF_DISCONTIG_OK; 1307 1308 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1309 start, start + len, mode, mode_flags, 1310 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1311 1312 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1313 1314 lru_cache_disable(); 1315 } 1316 { 1317 NODEMASK_SCRATCH(scratch); 1318 if (scratch) { 1319 mmap_write_lock(mm); 1320 err = mpol_set_nodemask(new, nmask, scratch); 1321 if (err) 1322 mmap_write_unlock(mm); 1323 } else 1324 err = -ENOMEM; 1325 NODEMASK_SCRATCH_FREE(scratch); 1326 } 1327 if (err) 1328 goto mpol_out; 1329 1330 /* 1331 * Lock the VMAs before scanning for pages to migrate, to ensure we don't 1332 * miss a concurrently inserted page. 1333 */ 1334 ret = queue_pages_range(mm, start, end, nmask, 1335 flags | MPOL_MF_INVERT, &pagelist, true); 1336 1337 if (ret < 0) { 1338 err = ret; 1339 goto up_out; 1340 } 1341 1342 vma_iter_init(&vmi, mm, start); 1343 prev = vma_prev(&vmi); 1344 for_each_vma_range(vmi, vma, end) { 1345 err = mbind_range(&vmi, vma, &prev, start, end, new); 1346 if (err) 1347 break; 1348 } 1349 1350 if (!err) { 1351 int nr_failed = 0; 1352 1353 if (!list_empty(&pagelist)) { 1354 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1355 nr_failed = migrate_pages(&pagelist, new_folio, NULL, 1356 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1357 if (nr_failed) 1358 putback_movable_pages(&pagelist); 1359 } 1360 1361 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1362 err = -EIO; 1363 } else { 1364 up_out: 1365 if (!list_empty(&pagelist)) 1366 putback_movable_pages(&pagelist); 1367 } 1368 1369 mmap_write_unlock(mm); 1370 mpol_out: 1371 mpol_put(new); 1372 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1373 lru_cache_enable(); 1374 return err; 1375 } 1376 1377 /* 1378 * User space interface with variable sized bitmaps for nodelists. 1379 */ 1380 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1381 unsigned long maxnode) 1382 { 1383 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1384 int ret; 1385 1386 if (in_compat_syscall()) 1387 ret = compat_get_bitmap(mask, 1388 (const compat_ulong_t __user *)nmask, 1389 maxnode); 1390 else 1391 ret = copy_from_user(mask, nmask, 1392 nlongs * sizeof(unsigned long)); 1393 1394 if (ret) 1395 return -EFAULT; 1396 1397 if (maxnode % BITS_PER_LONG) 1398 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1399 1400 return 0; 1401 } 1402 1403 /* Copy a node mask from user space. */ 1404 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1405 unsigned long maxnode) 1406 { 1407 --maxnode; 1408 nodes_clear(*nodes); 1409 if (maxnode == 0 || !nmask) 1410 return 0; 1411 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1412 return -EINVAL; 1413 1414 /* 1415 * When the user specified more nodes than supported just check 1416 * if the non supported part is all zero, one word at a time, 1417 * starting at the end. 1418 */ 1419 while (maxnode > MAX_NUMNODES) { 1420 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1421 unsigned long t; 1422 1423 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1424 return -EFAULT; 1425 1426 if (maxnode - bits >= MAX_NUMNODES) { 1427 maxnode -= bits; 1428 } else { 1429 maxnode = MAX_NUMNODES; 1430 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1431 } 1432 if (t) 1433 return -EINVAL; 1434 } 1435 1436 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1437 } 1438 1439 /* Copy a kernel node mask to user space */ 1440 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1441 nodemask_t *nodes) 1442 { 1443 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1444 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1445 bool compat = in_compat_syscall(); 1446 1447 if (compat) 1448 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1449 1450 if (copy > nbytes) { 1451 if (copy > PAGE_SIZE) 1452 return -EINVAL; 1453 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1454 return -EFAULT; 1455 copy = nbytes; 1456 maxnode = nr_node_ids; 1457 } 1458 1459 if (compat) 1460 return compat_put_bitmap((compat_ulong_t __user *)mask, 1461 nodes_addr(*nodes), maxnode); 1462 1463 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1464 } 1465 1466 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1467 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1468 { 1469 *flags = *mode & MPOL_MODE_FLAGS; 1470 *mode &= ~MPOL_MODE_FLAGS; 1471 1472 if ((unsigned int)(*mode) >= MPOL_MAX) 1473 return -EINVAL; 1474 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1475 return -EINVAL; 1476 if (*flags & MPOL_F_NUMA_BALANCING) { 1477 if (*mode != MPOL_BIND) 1478 return -EINVAL; 1479 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1480 } 1481 return 0; 1482 } 1483 1484 static long kernel_mbind(unsigned long start, unsigned long len, 1485 unsigned long mode, const unsigned long __user *nmask, 1486 unsigned long maxnode, unsigned int flags) 1487 { 1488 unsigned short mode_flags; 1489 nodemask_t nodes; 1490 int lmode = mode; 1491 int err; 1492 1493 start = untagged_addr(start); 1494 err = sanitize_mpol_flags(&lmode, &mode_flags); 1495 if (err) 1496 return err; 1497 1498 err = get_nodes(&nodes, nmask, maxnode); 1499 if (err) 1500 return err; 1501 1502 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1503 } 1504 1505 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1506 unsigned long, home_node, unsigned long, flags) 1507 { 1508 struct mm_struct *mm = current->mm; 1509 struct vm_area_struct *vma, *prev; 1510 struct mempolicy *new, *old; 1511 unsigned long end; 1512 int err = -ENOENT; 1513 VMA_ITERATOR(vmi, mm, start); 1514 1515 start = untagged_addr(start); 1516 if (start & ~PAGE_MASK) 1517 return -EINVAL; 1518 /* 1519 * flags is used for future extension if any. 1520 */ 1521 if (flags != 0) 1522 return -EINVAL; 1523 1524 /* 1525 * Check home_node is online to avoid accessing uninitialized 1526 * NODE_DATA. 1527 */ 1528 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1529 return -EINVAL; 1530 1531 len = PAGE_ALIGN(len); 1532 end = start + len; 1533 1534 if (end < start) 1535 return -EINVAL; 1536 if (end == start) 1537 return 0; 1538 mmap_write_lock(mm); 1539 prev = vma_prev(&vmi); 1540 for_each_vma_range(vmi, vma, end) { 1541 /* 1542 * If any vma in the range got policy other than MPOL_BIND 1543 * or MPOL_PREFERRED_MANY we return error. We don't reset 1544 * the home node for vmas we already updated before. 1545 */ 1546 old = vma_policy(vma); 1547 if (!old) 1548 continue; 1549 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1550 err = -EOPNOTSUPP; 1551 break; 1552 } 1553 new = mpol_dup(old); 1554 if (IS_ERR(new)) { 1555 err = PTR_ERR(new); 1556 break; 1557 } 1558 1559 vma_start_write(vma); 1560 new->home_node = home_node; 1561 err = mbind_range(&vmi, vma, &prev, start, end, new); 1562 mpol_put(new); 1563 if (err) 1564 break; 1565 } 1566 mmap_write_unlock(mm); 1567 return err; 1568 } 1569 1570 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1571 unsigned long, mode, const unsigned long __user *, nmask, 1572 unsigned long, maxnode, unsigned int, flags) 1573 { 1574 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1575 } 1576 1577 /* Set the process memory policy */ 1578 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1579 unsigned long maxnode) 1580 { 1581 unsigned short mode_flags; 1582 nodemask_t nodes; 1583 int lmode = mode; 1584 int err; 1585 1586 err = sanitize_mpol_flags(&lmode, &mode_flags); 1587 if (err) 1588 return err; 1589 1590 err = get_nodes(&nodes, nmask, maxnode); 1591 if (err) 1592 return err; 1593 1594 return do_set_mempolicy(lmode, mode_flags, &nodes); 1595 } 1596 1597 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1598 unsigned long, maxnode) 1599 { 1600 return kernel_set_mempolicy(mode, nmask, maxnode); 1601 } 1602 1603 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1604 const unsigned long __user *old_nodes, 1605 const unsigned long __user *new_nodes) 1606 { 1607 struct mm_struct *mm = NULL; 1608 struct task_struct *task; 1609 nodemask_t task_nodes; 1610 int err; 1611 nodemask_t *old; 1612 nodemask_t *new; 1613 NODEMASK_SCRATCH(scratch); 1614 1615 if (!scratch) 1616 return -ENOMEM; 1617 1618 old = &scratch->mask1; 1619 new = &scratch->mask2; 1620 1621 err = get_nodes(old, old_nodes, maxnode); 1622 if (err) 1623 goto out; 1624 1625 err = get_nodes(new, new_nodes, maxnode); 1626 if (err) 1627 goto out; 1628 1629 /* Find the mm_struct */ 1630 rcu_read_lock(); 1631 task = pid ? find_task_by_vpid(pid) : current; 1632 if (!task) { 1633 rcu_read_unlock(); 1634 err = -ESRCH; 1635 goto out; 1636 } 1637 get_task_struct(task); 1638 1639 err = -EINVAL; 1640 1641 /* 1642 * Check if this process has the right to modify the specified process. 1643 * Use the regular "ptrace_may_access()" checks. 1644 */ 1645 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1646 rcu_read_unlock(); 1647 err = -EPERM; 1648 goto out_put; 1649 } 1650 rcu_read_unlock(); 1651 1652 task_nodes = cpuset_mems_allowed(task); 1653 /* Is the user allowed to access the target nodes? */ 1654 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1655 err = -EPERM; 1656 goto out_put; 1657 } 1658 1659 task_nodes = cpuset_mems_allowed(current); 1660 nodes_and(*new, *new, task_nodes); 1661 if (nodes_empty(*new)) 1662 goto out_put; 1663 1664 err = security_task_movememory(task); 1665 if (err) 1666 goto out_put; 1667 1668 mm = get_task_mm(task); 1669 put_task_struct(task); 1670 1671 if (!mm) { 1672 err = -EINVAL; 1673 goto out; 1674 } 1675 1676 err = do_migrate_pages(mm, old, new, 1677 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1678 1679 mmput(mm); 1680 out: 1681 NODEMASK_SCRATCH_FREE(scratch); 1682 1683 return err; 1684 1685 out_put: 1686 put_task_struct(task); 1687 goto out; 1688 1689 } 1690 1691 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1692 const unsigned long __user *, old_nodes, 1693 const unsigned long __user *, new_nodes) 1694 { 1695 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1696 } 1697 1698 1699 /* Retrieve NUMA policy */ 1700 static int kernel_get_mempolicy(int __user *policy, 1701 unsigned long __user *nmask, 1702 unsigned long maxnode, 1703 unsigned long addr, 1704 unsigned long flags) 1705 { 1706 int err; 1707 int pval; 1708 nodemask_t nodes; 1709 1710 if (nmask != NULL && maxnode < nr_node_ids) 1711 return -EINVAL; 1712 1713 addr = untagged_addr(addr); 1714 1715 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1716 1717 if (err) 1718 return err; 1719 1720 if (policy && put_user(pval, policy)) 1721 return -EFAULT; 1722 1723 if (nmask) 1724 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1725 1726 return err; 1727 } 1728 1729 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1730 unsigned long __user *, nmask, unsigned long, maxnode, 1731 unsigned long, addr, unsigned long, flags) 1732 { 1733 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1734 } 1735 1736 bool vma_migratable(struct vm_area_struct *vma) 1737 { 1738 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1739 return false; 1740 1741 /* 1742 * DAX device mappings require predictable access latency, so avoid 1743 * incurring periodic faults. 1744 */ 1745 if (vma_is_dax(vma)) 1746 return false; 1747 1748 if (is_vm_hugetlb_page(vma) && 1749 !hugepage_migration_supported(hstate_vma(vma))) 1750 return false; 1751 1752 /* 1753 * Migration allocates pages in the highest zone. If we cannot 1754 * do so then migration (at least from node to node) is not 1755 * possible. 1756 */ 1757 if (vma->vm_file && 1758 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1759 < policy_zone) 1760 return false; 1761 return true; 1762 } 1763 1764 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1765 unsigned long addr) 1766 { 1767 struct mempolicy *pol = NULL; 1768 1769 if (vma) { 1770 if (vma->vm_ops && vma->vm_ops->get_policy) { 1771 pol = vma->vm_ops->get_policy(vma, addr); 1772 } else if (vma->vm_policy) { 1773 pol = vma->vm_policy; 1774 1775 /* 1776 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1777 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1778 * count on these policies which will be dropped by 1779 * mpol_cond_put() later 1780 */ 1781 if (mpol_needs_cond_ref(pol)) 1782 mpol_get(pol); 1783 } 1784 } 1785 1786 return pol; 1787 } 1788 1789 /* 1790 * get_vma_policy(@vma, @addr) 1791 * @vma: virtual memory area whose policy is sought 1792 * @addr: address in @vma for shared policy lookup 1793 * 1794 * Returns effective policy for a VMA at specified address. 1795 * Falls back to current->mempolicy or system default policy, as necessary. 1796 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1797 * count--added by the get_policy() vm_op, as appropriate--to protect against 1798 * freeing by another task. It is the caller's responsibility to free the 1799 * extra reference for shared policies. 1800 */ 1801 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1802 unsigned long addr) 1803 { 1804 struct mempolicy *pol = __get_vma_policy(vma, addr); 1805 1806 if (!pol) 1807 pol = get_task_policy(current); 1808 1809 return pol; 1810 } 1811 1812 bool vma_policy_mof(struct vm_area_struct *vma) 1813 { 1814 struct mempolicy *pol; 1815 1816 if (vma->vm_ops && vma->vm_ops->get_policy) { 1817 bool ret = false; 1818 1819 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1820 if (pol && (pol->flags & MPOL_F_MOF)) 1821 ret = true; 1822 mpol_cond_put(pol); 1823 1824 return ret; 1825 } 1826 1827 pol = vma->vm_policy; 1828 if (!pol) 1829 pol = get_task_policy(current); 1830 1831 return pol->flags & MPOL_F_MOF; 1832 } 1833 1834 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1835 { 1836 enum zone_type dynamic_policy_zone = policy_zone; 1837 1838 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1839 1840 /* 1841 * if policy->nodes has movable memory only, 1842 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1843 * 1844 * policy->nodes is intersect with node_states[N_MEMORY]. 1845 * so if the following test fails, it implies 1846 * policy->nodes has movable memory only. 1847 */ 1848 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1849 dynamic_policy_zone = ZONE_MOVABLE; 1850 1851 return zone >= dynamic_policy_zone; 1852 } 1853 1854 /* 1855 * Return a nodemask representing a mempolicy for filtering nodes for 1856 * page allocation 1857 */ 1858 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1859 { 1860 int mode = policy->mode; 1861 1862 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1863 if (unlikely(mode == MPOL_BIND) && 1864 apply_policy_zone(policy, gfp_zone(gfp)) && 1865 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1866 return &policy->nodes; 1867 1868 if (mode == MPOL_PREFERRED_MANY) 1869 return &policy->nodes; 1870 1871 return NULL; 1872 } 1873 1874 /* 1875 * Return the preferred node id for 'prefer' mempolicy, and return 1876 * the given id for all other policies. 1877 * 1878 * policy_node() is always coupled with policy_nodemask(), which 1879 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1880 */ 1881 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1882 { 1883 if (policy->mode == MPOL_PREFERRED) { 1884 nd = first_node(policy->nodes); 1885 } else { 1886 /* 1887 * __GFP_THISNODE shouldn't even be used with the bind policy 1888 * because we might easily break the expectation to stay on the 1889 * requested node and not break the policy. 1890 */ 1891 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1892 } 1893 1894 if ((policy->mode == MPOL_BIND || 1895 policy->mode == MPOL_PREFERRED_MANY) && 1896 policy->home_node != NUMA_NO_NODE) 1897 return policy->home_node; 1898 1899 return nd; 1900 } 1901 1902 /* Do dynamic interleaving for a process */ 1903 static unsigned interleave_nodes(struct mempolicy *policy) 1904 { 1905 unsigned next; 1906 struct task_struct *me = current; 1907 1908 next = next_node_in(me->il_prev, policy->nodes); 1909 if (next < MAX_NUMNODES) 1910 me->il_prev = next; 1911 return next; 1912 } 1913 1914 /* 1915 * Depending on the memory policy provide a node from which to allocate the 1916 * next slab entry. 1917 */ 1918 unsigned int mempolicy_slab_node(void) 1919 { 1920 struct mempolicy *policy; 1921 int node = numa_mem_id(); 1922 1923 if (!in_task()) 1924 return node; 1925 1926 policy = current->mempolicy; 1927 if (!policy) 1928 return node; 1929 1930 switch (policy->mode) { 1931 case MPOL_PREFERRED: 1932 return first_node(policy->nodes); 1933 1934 case MPOL_INTERLEAVE: 1935 return interleave_nodes(policy); 1936 1937 case MPOL_BIND: 1938 case MPOL_PREFERRED_MANY: 1939 { 1940 struct zoneref *z; 1941 1942 /* 1943 * Follow bind policy behavior and start allocation at the 1944 * first node. 1945 */ 1946 struct zonelist *zonelist; 1947 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1948 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1949 z = first_zones_zonelist(zonelist, highest_zoneidx, 1950 &policy->nodes); 1951 return z->zone ? zone_to_nid(z->zone) : node; 1952 } 1953 case MPOL_LOCAL: 1954 return node; 1955 1956 default: 1957 BUG(); 1958 } 1959 } 1960 1961 /* 1962 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1963 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1964 * number of present nodes. 1965 */ 1966 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1967 { 1968 nodemask_t nodemask = pol->nodes; 1969 unsigned int target, nnodes; 1970 int i; 1971 int nid; 1972 /* 1973 * The barrier will stabilize the nodemask in a register or on 1974 * the stack so that it will stop changing under the code. 1975 * 1976 * Between first_node() and next_node(), pol->nodes could be changed 1977 * by other threads. So we put pol->nodes in a local stack. 1978 */ 1979 barrier(); 1980 1981 nnodes = nodes_weight(nodemask); 1982 if (!nnodes) 1983 return numa_node_id(); 1984 target = (unsigned int)n % nnodes; 1985 nid = first_node(nodemask); 1986 for (i = 0; i < target; i++) 1987 nid = next_node(nid, nodemask); 1988 return nid; 1989 } 1990 1991 /* Determine a node number for interleave */ 1992 static inline unsigned interleave_nid(struct mempolicy *pol, 1993 struct vm_area_struct *vma, unsigned long addr, int shift) 1994 { 1995 if (vma) { 1996 unsigned long off; 1997 1998 /* 1999 * for small pages, there is no difference between 2000 * shift and PAGE_SHIFT, so the bit-shift is safe. 2001 * for huge pages, since vm_pgoff is in units of small 2002 * pages, we need to shift off the always 0 bits to get 2003 * a useful offset. 2004 */ 2005 BUG_ON(shift < PAGE_SHIFT); 2006 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 2007 off += (addr - vma->vm_start) >> shift; 2008 return offset_il_node(pol, off); 2009 } else 2010 return interleave_nodes(pol); 2011 } 2012 2013 #ifdef CONFIG_HUGETLBFS 2014 /* 2015 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2016 * @vma: virtual memory area whose policy is sought 2017 * @addr: address in @vma for shared policy lookup and interleave policy 2018 * @gfp_flags: for requested zone 2019 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2020 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2021 * 2022 * Returns a nid suitable for a huge page allocation and a pointer 2023 * to the struct mempolicy for conditional unref after allocation. 2024 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2025 * to the mempolicy's @nodemask for filtering the zonelist. 2026 * 2027 * Must be protected by read_mems_allowed_begin() 2028 */ 2029 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2030 struct mempolicy **mpol, nodemask_t **nodemask) 2031 { 2032 int nid; 2033 int mode; 2034 2035 *mpol = get_vma_policy(vma, addr); 2036 *nodemask = NULL; 2037 mode = (*mpol)->mode; 2038 2039 if (unlikely(mode == MPOL_INTERLEAVE)) { 2040 nid = interleave_nid(*mpol, vma, addr, 2041 huge_page_shift(hstate_vma(vma))); 2042 } else { 2043 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2044 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2045 *nodemask = &(*mpol)->nodes; 2046 } 2047 return nid; 2048 } 2049 2050 /* 2051 * init_nodemask_of_mempolicy 2052 * 2053 * If the current task's mempolicy is "default" [NULL], return 'false' 2054 * to indicate default policy. Otherwise, extract the policy nodemask 2055 * for 'bind' or 'interleave' policy into the argument nodemask, or 2056 * initialize the argument nodemask to contain the single node for 2057 * 'preferred' or 'local' policy and return 'true' to indicate presence 2058 * of non-default mempolicy. 2059 * 2060 * We don't bother with reference counting the mempolicy [mpol_get/put] 2061 * because the current task is examining it's own mempolicy and a task's 2062 * mempolicy is only ever changed by the task itself. 2063 * 2064 * N.B., it is the caller's responsibility to free a returned nodemask. 2065 */ 2066 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2067 { 2068 struct mempolicy *mempolicy; 2069 2070 if (!(mask && current->mempolicy)) 2071 return false; 2072 2073 task_lock(current); 2074 mempolicy = current->mempolicy; 2075 switch (mempolicy->mode) { 2076 case MPOL_PREFERRED: 2077 case MPOL_PREFERRED_MANY: 2078 case MPOL_BIND: 2079 case MPOL_INTERLEAVE: 2080 *mask = mempolicy->nodes; 2081 break; 2082 2083 case MPOL_LOCAL: 2084 init_nodemask_of_node(mask, numa_node_id()); 2085 break; 2086 2087 default: 2088 BUG(); 2089 } 2090 task_unlock(current); 2091 2092 return true; 2093 } 2094 #endif 2095 2096 /* 2097 * mempolicy_in_oom_domain 2098 * 2099 * If tsk's mempolicy is "bind", check for intersection between mask and 2100 * the policy nodemask. Otherwise, return true for all other policies 2101 * including "interleave", as a tsk with "interleave" policy may have 2102 * memory allocated from all nodes in system. 2103 * 2104 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2105 */ 2106 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2107 const nodemask_t *mask) 2108 { 2109 struct mempolicy *mempolicy; 2110 bool ret = true; 2111 2112 if (!mask) 2113 return ret; 2114 2115 task_lock(tsk); 2116 mempolicy = tsk->mempolicy; 2117 if (mempolicy && mempolicy->mode == MPOL_BIND) 2118 ret = nodes_intersects(mempolicy->nodes, *mask); 2119 task_unlock(tsk); 2120 2121 return ret; 2122 } 2123 2124 /* Allocate a page in interleaved policy. 2125 Own path because it needs to do special accounting. */ 2126 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2127 unsigned nid) 2128 { 2129 struct page *page; 2130 2131 page = __alloc_pages(gfp, order, nid, NULL); 2132 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2133 if (!static_branch_likely(&vm_numa_stat_key)) 2134 return page; 2135 if (page && page_to_nid(page) == nid) { 2136 preempt_disable(); 2137 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2138 preempt_enable(); 2139 } 2140 return page; 2141 } 2142 2143 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2144 int nid, struct mempolicy *pol) 2145 { 2146 struct page *page; 2147 gfp_t preferred_gfp; 2148 2149 /* 2150 * This is a two pass approach. The first pass will only try the 2151 * preferred nodes but skip the direct reclaim and allow the 2152 * allocation to fail, while the second pass will try all the 2153 * nodes in system. 2154 */ 2155 preferred_gfp = gfp | __GFP_NOWARN; 2156 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2157 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2158 if (!page) 2159 page = __alloc_pages(gfp, order, nid, NULL); 2160 2161 return page; 2162 } 2163 2164 /** 2165 * vma_alloc_folio - Allocate a folio for a VMA. 2166 * @gfp: GFP flags. 2167 * @order: Order of the folio. 2168 * @vma: Pointer to VMA or NULL if not available. 2169 * @addr: Virtual address of the allocation. Must be inside @vma. 2170 * @hugepage: For hugepages try only the preferred node if possible. 2171 * 2172 * Allocate a folio for a specific address in @vma, using the appropriate 2173 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2174 * of the mm_struct of the VMA to prevent it from going away. Should be 2175 * used for all allocations for folios that will be mapped into user space. 2176 * 2177 * Return: The folio on success or NULL if allocation fails. 2178 */ 2179 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2180 unsigned long addr, bool hugepage) 2181 { 2182 struct mempolicy *pol; 2183 int node = numa_node_id(); 2184 struct folio *folio; 2185 int preferred_nid; 2186 nodemask_t *nmask; 2187 2188 pol = get_vma_policy(vma, addr); 2189 2190 if (pol->mode == MPOL_INTERLEAVE) { 2191 struct page *page; 2192 unsigned nid; 2193 2194 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2195 mpol_cond_put(pol); 2196 gfp |= __GFP_COMP; 2197 page = alloc_page_interleave(gfp, order, nid); 2198 folio = (struct folio *)page; 2199 if (folio && order > 1) 2200 folio_prep_large_rmappable(folio); 2201 goto out; 2202 } 2203 2204 if (pol->mode == MPOL_PREFERRED_MANY) { 2205 struct page *page; 2206 2207 node = policy_node(gfp, pol, node); 2208 gfp |= __GFP_COMP; 2209 page = alloc_pages_preferred_many(gfp, order, node, pol); 2210 mpol_cond_put(pol); 2211 folio = (struct folio *)page; 2212 if (folio && order > 1) 2213 folio_prep_large_rmappable(folio); 2214 goto out; 2215 } 2216 2217 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2218 int hpage_node = node; 2219 2220 /* 2221 * For hugepage allocation and non-interleave policy which 2222 * allows the current node (or other explicitly preferred 2223 * node) we only try to allocate from the current/preferred 2224 * node and don't fall back to other nodes, as the cost of 2225 * remote accesses would likely offset THP benefits. 2226 * 2227 * If the policy is interleave or does not allow the current 2228 * node in its nodemask, we allocate the standard way. 2229 */ 2230 if (pol->mode == MPOL_PREFERRED) 2231 hpage_node = first_node(pol->nodes); 2232 2233 nmask = policy_nodemask(gfp, pol); 2234 if (!nmask || node_isset(hpage_node, *nmask)) { 2235 mpol_cond_put(pol); 2236 /* 2237 * First, try to allocate THP only on local node, but 2238 * don't reclaim unnecessarily, just compact. 2239 */ 2240 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2241 __GFP_NORETRY, order, hpage_node); 2242 2243 /* 2244 * If hugepage allocations are configured to always 2245 * synchronous compact or the vma has been madvised 2246 * to prefer hugepage backing, retry allowing remote 2247 * memory with both reclaim and compact as well. 2248 */ 2249 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2250 folio = __folio_alloc(gfp, order, hpage_node, 2251 nmask); 2252 2253 goto out; 2254 } 2255 } 2256 2257 nmask = policy_nodemask(gfp, pol); 2258 preferred_nid = policy_node(gfp, pol, node); 2259 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2260 mpol_cond_put(pol); 2261 out: 2262 return folio; 2263 } 2264 EXPORT_SYMBOL(vma_alloc_folio); 2265 2266 /** 2267 * alloc_pages - Allocate pages. 2268 * @gfp: GFP flags. 2269 * @order: Power of two of number of pages to allocate. 2270 * 2271 * Allocate 1 << @order contiguous pages. The physical address of the 2272 * first page is naturally aligned (eg an order-3 allocation will be aligned 2273 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2274 * process is honoured when in process context. 2275 * 2276 * Context: Can be called from any context, providing the appropriate GFP 2277 * flags are used. 2278 * Return: The page on success or NULL if allocation fails. 2279 */ 2280 struct page *alloc_pages(gfp_t gfp, unsigned order) 2281 { 2282 struct mempolicy *pol = &default_policy; 2283 struct page *page; 2284 2285 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2286 pol = get_task_policy(current); 2287 2288 /* 2289 * No reference counting needed for current->mempolicy 2290 * nor system default_policy 2291 */ 2292 if (pol->mode == MPOL_INTERLEAVE) 2293 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2294 else if (pol->mode == MPOL_PREFERRED_MANY) 2295 page = alloc_pages_preferred_many(gfp, order, 2296 policy_node(gfp, pol, numa_node_id()), pol); 2297 else 2298 page = __alloc_pages(gfp, order, 2299 policy_node(gfp, pol, numa_node_id()), 2300 policy_nodemask(gfp, pol)); 2301 2302 return page; 2303 } 2304 EXPORT_SYMBOL(alloc_pages); 2305 2306 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2307 { 2308 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2309 struct folio *folio = (struct folio *)page; 2310 2311 if (folio && order > 1) 2312 folio_prep_large_rmappable(folio); 2313 return folio; 2314 } 2315 EXPORT_SYMBOL(folio_alloc); 2316 2317 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2318 struct mempolicy *pol, unsigned long nr_pages, 2319 struct page **page_array) 2320 { 2321 int nodes; 2322 unsigned long nr_pages_per_node; 2323 int delta; 2324 int i; 2325 unsigned long nr_allocated; 2326 unsigned long total_allocated = 0; 2327 2328 nodes = nodes_weight(pol->nodes); 2329 nr_pages_per_node = nr_pages / nodes; 2330 delta = nr_pages - nodes * nr_pages_per_node; 2331 2332 for (i = 0; i < nodes; i++) { 2333 if (delta) { 2334 nr_allocated = __alloc_pages_bulk(gfp, 2335 interleave_nodes(pol), NULL, 2336 nr_pages_per_node + 1, NULL, 2337 page_array); 2338 delta--; 2339 } else { 2340 nr_allocated = __alloc_pages_bulk(gfp, 2341 interleave_nodes(pol), NULL, 2342 nr_pages_per_node, NULL, page_array); 2343 } 2344 2345 page_array += nr_allocated; 2346 total_allocated += nr_allocated; 2347 } 2348 2349 return total_allocated; 2350 } 2351 2352 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2353 struct mempolicy *pol, unsigned long nr_pages, 2354 struct page **page_array) 2355 { 2356 gfp_t preferred_gfp; 2357 unsigned long nr_allocated = 0; 2358 2359 preferred_gfp = gfp | __GFP_NOWARN; 2360 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2361 2362 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2363 nr_pages, NULL, page_array); 2364 2365 if (nr_allocated < nr_pages) 2366 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2367 nr_pages - nr_allocated, NULL, 2368 page_array + nr_allocated); 2369 return nr_allocated; 2370 } 2371 2372 /* alloc pages bulk and mempolicy should be considered at the 2373 * same time in some situation such as vmalloc. 2374 * 2375 * It can accelerate memory allocation especially interleaving 2376 * allocate memory. 2377 */ 2378 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2379 unsigned long nr_pages, struct page **page_array) 2380 { 2381 struct mempolicy *pol = &default_policy; 2382 2383 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2384 pol = get_task_policy(current); 2385 2386 if (pol->mode == MPOL_INTERLEAVE) 2387 return alloc_pages_bulk_array_interleave(gfp, pol, 2388 nr_pages, page_array); 2389 2390 if (pol->mode == MPOL_PREFERRED_MANY) 2391 return alloc_pages_bulk_array_preferred_many(gfp, 2392 numa_node_id(), pol, nr_pages, page_array); 2393 2394 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2395 policy_nodemask(gfp, pol), nr_pages, NULL, 2396 page_array); 2397 } 2398 2399 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2400 { 2401 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2402 2403 if (IS_ERR(pol)) 2404 return PTR_ERR(pol); 2405 dst->vm_policy = pol; 2406 return 0; 2407 } 2408 2409 /* 2410 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2411 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2412 * with the mems_allowed returned by cpuset_mems_allowed(). This 2413 * keeps mempolicies cpuset relative after its cpuset moves. See 2414 * further kernel/cpuset.c update_nodemask(). 2415 * 2416 * current's mempolicy may be rebinded by the other task(the task that changes 2417 * cpuset's mems), so we needn't do rebind work for current task. 2418 */ 2419 2420 /* Slow path of a mempolicy duplicate */ 2421 struct mempolicy *__mpol_dup(struct mempolicy *old) 2422 { 2423 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2424 2425 if (!new) 2426 return ERR_PTR(-ENOMEM); 2427 2428 /* task's mempolicy is protected by alloc_lock */ 2429 if (old == current->mempolicy) { 2430 task_lock(current); 2431 *new = *old; 2432 task_unlock(current); 2433 } else 2434 *new = *old; 2435 2436 if (current_cpuset_is_being_rebound()) { 2437 nodemask_t mems = cpuset_mems_allowed(current); 2438 mpol_rebind_policy(new, &mems); 2439 } 2440 atomic_set(&new->refcnt, 1); 2441 return new; 2442 } 2443 2444 /* Slow path of a mempolicy comparison */ 2445 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2446 { 2447 if (!a || !b) 2448 return false; 2449 if (a->mode != b->mode) 2450 return false; 2451 if (a->flags != b->flags) 2452 return false; 2453 if (a->home_node != b->home_node) 2454 return false; 2455 if (mpol_store_user_nodemask(a)) 2456 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2457 return false; 2458 2459 switch (a->mode) { 2460 case MPOL_BIND: 2461 case MPOL_INTERLEAVE: 2462 case MPOL_PREFERRED: 2463 case MPOL_PREFERRED_MANY: 2464 return !!nodes_equal(a->nodes, b->nodes); 2465 case MPOL_LOCAL: 2466 return true; 2467 default: 2468 BUG(); 2469 return false; 2470 } 2471 } 2472 2473 /* 2474 * Shared memory backing store policy support. 2475 * 2476 * Remember policies even when nobody has shared memory mapped. 2477 * The policies are kept in Red-Black tree linked from the inode. 2478 * They are protected by the sp->lock rwlock, which should be held 2479 * for any accesses to the tree. 2480 */ 2481 2482 /* 2483 * lookup first element intersecting start-end. Caller holds sp->lock for 2484 * reading or for writing 2485 */ 2486 static struct sp_node * 2487 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2488 { 2489 struct rb_node *n = sp->root.rb_node; 2490 2491 while (n) { 2492 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2493 2494 if (start >= p->end) 2495 n = n->rb_right; 2496 else if (end <= p->start) 2497 n = n->rb_left; 2498 else 2499 break; 2500 } 2501 if (!n) 2502 return NULL; 2503 for (;;) { 2504 struct sp_node *w = NULL; 2505 struct rb_node *prev = rb_prev(n); 2506 if (!prev) 2507 break; 2508 w = rb_entry(prev, struct sp_node, nd); 2509 if (w->end <= start) 2510 break; 2511 n = prev; 2512 } 2513 return rb_entry(n, struct sp_node, nd); 2514 } 2515 2516 /* 2517 * Insert a new shared policy into the list. Caller holds sp->lock for 2518 * writing. 2519 */ 2520 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2521 { 2522 struct rb_node **p = &sp->root.rb_node; 2523 struct rb_node *parent = NULL; 2524 struct sp_node *nd; 2525 2526 while (*p) { 2527 parent = *p; 2528 nd = rb_entry(parent, struct sp_node, nd); 2529 if (new->start < nd->start) 2530 p = &(*p)->rb_left; 2531 else if (new->end > nd->end) 2532 p = &(*p)->rb_right; 2533 else 2534 BUG(); 2535 } 2536 rb_link_node(&new->nd, parent, p); 2537 rb_insert_color(&new->nd, &sp->root); 2538 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2539 new->policy ? new->policy->mode : 0); 2540 } 2541 2542 /* Find shared policy intersecting idx */ 2543 struct mempolicy * 2544 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2545 { 2546 struct mempolicy *pol = NULL; 2547 struct sp_node *sn; 2548 2549 if (!sp->root.rb_node) 2550 return NULL; 2551 read_lock(&sp->lock); 2552 sn = sp_lookup(sp, idx, idx+1); 2553 if (sn) { 2554 mpol_get(sn->policy); 2555 pol = sn->policy; 2556 } 2557 read_unlock(&sp->lock); 2558 return pol; 2559 } 2560 2561 static void sp_free(struct sp_node *n) 2562 { 2563 mpol_put(n->policy); 2564 kmem_cache_free(sn_cache, n); 2565 } 2566 2567 /** 2568 * mpol_misplaced - check whether current page node is valid in policy 2569 * 2570 * @page: page to be checked 2571 * @vma: vm area where page mapped 2572 * @addr: virtual address where page mapped 2573 * 2574 * Lookup current policy node id for vma,addr and "compare to" page's 2575 * node id. Policy determination "mimics" alloc_page_vma(). 2576 * Called from fault path where we know the vma and faulting address. 2577 * 2578 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2579 * policy, or a suitable node ID to allocate a replacement page from. 2580 */ 2581 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2582 { 2583 struct mempolicy *pol; 2584 struct zoneref *z; 2585 int curnid = page_to_nid(page); 2586 unsigned long pgoff; 2587 int thiscpu = raw_smp_processor_id(); 2588 int thisnid = cpu_to_node(thiscpu); 2589 int polnid = NUMA_NO_NODE; 2590 int ret = NUMA_NO_NODE; 2591 2592 pol = get_vma_policy(vma, addr); 2593 if (!(pol->flags & MPOL_F_MOF)) 2594 goto out; 2595 2596 switch (pol->mode) { 2597 case MPOL_INTERLEAVE: 2598 pgoff = vma->vm_pgoff; 2599 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2600 polnid = offset_il_node(pol, pgoff); 2601 break; 2602 2603 case MPOL_PREFERRED: 2604 if (node_isset(curnid, pol->nodes)) 2605 goto out; 2606 polnid = first_node(pol->nodes); 2607 break; 2608 2609 case MPOL_LOCAL: 2610 polnid = numa_node_id(); 2611 break; 2612 2613 case MPOL_BIND: 2614 /* Optimize placement among multiple nodes via NUMA balancing */ 2615 if (pol->flags & MPOL_F_MORON) { 2616 if (node_isset(thisnid, pol->nodes)) 2617 break; 2618 goto out; 2619 } 2620 fallthrough; 2621 2622 case MPOL_PREFERRED_MANY: 2623 /* 2624 * use current page if in policy nodemask, 2625 * else select nearest allowed node, if any. 2626 * If no allowed nodes, use current [!misplaced]. 2627 */ 2628 if (node_isset(curnid, pol->nodes)) 2629 goto out; 2630 z = first_zones_zonelist( 2631 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2632 gfp_zone(GFP_HIGHUSER), 2633 &pol->nodes); 2634 polnid = zone_to_nid(z->zone); 2635 break; 2636 2637 default: 2638 BUG(); 2639 } 2640 2641 /* Migrate the page towards the node whose CPU is referencing it */ 2642 if (pol->flags & MPOL_F_MORON) { 2643 polnid = thisnid; 2644 2645 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2646 goto out; 2647 } 2648 2649 if (curnid != polnid) 2650 ret = polnid; 2651 out: 2652 mpol_cond_put(pol); 2653 2654 return ret; 2655 } 2656 2657 /* 2658 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2659 * dropped after task->mempolicy is set to NULL so that any allocation done as 2660 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2661 * policy. 2662 */ 2663 void mpol_put_task_policy(struct task_struct *task) 2664 { 2665 struct mempolicy *pol; 2666 2667 task_lock(task); 2668 pol = task->mempolicy; 2669 task->mempolicy = NULL; 2670 task_unlock(task); 2671 mpol_put(pol); 2672 } 2673 2674 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2675 { 2676 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2677 rb_erase(&n->nd, &sp->root); 2678 sp_free(n); 2679 } 2680 2681 static void sp_node_init(struct sp_node *node, unsigned long start, 2682 unsigned long end, struct mempolicy *pol) 2683 { 2684 node->start = start; 2685 node->end = end; 2686 node->policy = pol; 2687 } 2688 2689 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2690 struct mempolicy *pol) 2691 { 2692 struct sp_node *n; 2693 struct mempolicy *newpol; 2694 2695 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2696 if (!n) 2697 return NULL; 2698 2699 newpol = mpol_dup(pol); 2700 if (IS_ERR(newpol)) { 2701 kmem_cache_free(sn_cache, n); 2702 return NULL; 2703 } 2704 newpol->flags |= MPOL_F_SHARED; 2705 sp_node_init(n, start, end, newpol); 2706 2707 return n; 2708 } 2709 2710 /* Replace a policy range. */ 2711 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2712 unsigned long end, struct sp_node *new) 2713 { 2714 struct sp_node *n; 2715 struct sp_node *n_new = NULL; 2716 struct mempolicy *mpol_new = NULL; 2717 int ret = 0; 2718 2719 restart: 2720 write_lock(&sp->lock); 2721 n = sp_lookup(sp, start, end); 2722 /* Take care of old policies in the same range. */ 2723 while (n && n->start < end) { 2724 struct rb_node *next = rb_next(&n->nd); 2725 if (n->start >= start) { 2726 if (n->end <= end) 2727 sp_delete(sp, n); 2728 else 2729 n->start = end; 2730 } else { 2731 /* Old policy spanning whole new range. */ 2732 if (n->end > end) { 2733 if (!n_new) 2734 goto alloc_new; 2735 2736 *mpol_new = *n->policy; 2737 atomic_set(&mpol_new->refcnt, 1); 2738 sp_node_init(n_new, end, n->end, mpol_new); 2739 n->end = start; 2740 sp_insert(sp, n_new); 2741 n_new = NULL; 2742 mpol_new = NULL; 2743 break; 2744 } else 2745 n->end = start; 2746 } 2747 if (!next) 2748 break; 2749 n = rb_entry(next, struct sp_node, nd); 2750 } 2751 if (new) 2752 sp_insert(sp, new); 2753 write_unlock(&sp->lock); 2754 ret = 0; 2755 2756 err_out: 2757 if (mpol_new) 2758 mpol_put(mpol_new); 2759 if (n_new) 2760 kmem_cache_free(sn_cache, n_new); 2761 2762 return ret; 2763 2764 alloc_new: 2765 write_unlock(&sp->lock); 2766 ret = -ENOMEM; 2767 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2768 if (!n_new) 2769 goto err_out; 2770 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2771 if (!mpol_new) 2772 goto err_out; 2773 atomic_set(&mpol_new->refcnt, 1); 2774 goto restart; 2775 } 2776 2777 /** 2778 * mpol_shared_policy_init - initialize shared policy for inode 2779 * @sp: pointer to inode shared policy 2780 * @mpol: struct mempolicy to install 2781 * 2782 * Install non-NULL @mpol in inode's shared policy rb-tree. 2783 * On entry, the current task has a reference on a non-NULL @mpol. 2784 * This must be released on exit. 2785 * This is called at get_inode() calls and we can use GFP_KERNEL. 2786 */ 2787 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2788 { 2789 int ret; 2790 2791 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2792 rwlock_init(&sp->lock); 2793 2794 if (mpol) { 2795 struct vm_area_struct pvma; 2796 struct mempolicy *new; 2797 NODEMASK_SCRATCH(scratch); 2798 2799 if (!scratch) 2800 goto put_mpol; 2801 /* contextualize the tmpfs mount point mempolicy */ 2802 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2803 if (IS_ERR(new)) 2804 goto free_scratch; /* no valid nodemask intersection */ 2805 2806 task_lock(current); 2807 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2808 task_unlock(current); 2809 if (ret) 2810 goto put_new; 2811 2812 /* Create pseudo-vma that contains just the policy */ 2813 vma_init(&pvma, NULL); 2814 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2815 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2816 2817 put_new: 2818 mpol_put(new); /* drop initial ref */ 2819 free_scratch: 2820 NODEMASK_SCRATCH_FREE(scratch); 2821 put_mpol: 2822 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2823 } 2824 } 2825 2826 int mpol_set_shared_policy(struct shared_policy *info, 2827 struct vm_area_struct *vma, struct mempolicy *npol) 2828 { 2829 int err; 2830 struct sp_node *new = NULL; 2831 unsigned long sz = vma_pages(vma); 2832 2833 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2834 vma->vm_pgoff, 2835 sz, npol ? npol->mode : -1, 2836 npol ? npol->flags : -1, 2837 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2838 2839 if (npol) { 2840 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2841 if (!new) 2842 return -ENOMEM; 2843 } 2844 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2845 if (err && new) 2846 sp_free(new); 2847 return err; 2848 } 2849 2850 /* Free a backing policy store on inode delete. */ 2851 void mpol_free_shared_policy(struct shared_policy *p) 2852 { 2853 struct sp_node *n; 2854 struct rb_node *next; 2855 2856 if (!p->root.rb_node) 2857 return; 2858 write_lock(&p->lock); 2859 next = rb_first(&p->root); 2860 while (next) { 2861 n = rb_entry(next, struct sp_node, nd); 2862 next = rb_next(&n->nd); 2863 sp_delete(p, n); 2864 } 2865 write_unlock(&p->lock); 2866 } 2867 2868 #ifdef CONFIG_NUMA_BALANCING 2869 static int __initdata numabalancing_override; 2870 2871 static void __init check_numabalancing_enable(void) 2872 { 2873 bool numabalancing_default = false; 2874 2875 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2876 numabalancing_default = true; 2877 2878 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2879 if (numabalancing_override) 2880 set_numabalancing_state(numabalancing_override == 1); 2881 2882 if (num_online_nodes() > 1 && !numabalancing_override) { 2883 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2884 numabalancing_default ? "Enabling" : "Disabling"); 2885 set_numabalancing_state(numabalancing_default); 2886 } 2887 } 2888 2889 static int __init setup_numabalancing(char *str) 2890 { 2891 int ret = 0; 2892 if (!str) 2893 goto out; 2894 2895 if (!strcmp(str, "enable")) { 2896 numabalancing_override = 1; 2897 ret = 1; 2898 } else if (!strcmp(str, "disable")) { 2899 numabalancing_override = -1; 2900 ret = 1; 2901 } 2902 out: 2903 if (!ret) 2904 pr_warn("Unable to parse numa_balancing=\n"); 2905 2906 return ret; 2907 } 2908 __setup("numa_balancing=", setup_numabalancing); 2909 #else 2910 static inline void __init check_numabalancing_enable(void) 2911 { 2912 } 2913 #endif /* CONFIG_NUMA_BALANCING */ 2914 2915 /* assumes fs == KERNEL_DS */ 2916 void __init numa_policy_init(void) 2917 { 2918 nodemask_t interleave_nodes; 2919 unsigned long largest = 0; 2920 int nid, prefer = 0; 2921 2922 policy_cache = kmem_cache_create("numa_policy", 2923 sizeof(struct mempolicy), 2924 0, SLAB_PANIC, NULL); 2925 2926 sn_cache = kmem_cache_create("shared_policy_node", 2927 sizeof(struct sp_node), 2928 0, SLAB_PANIC, NULL); 2929 2930 for_each_node(nid) { 2931 preferred_node_policy[nid] = (struct mempolicy) { 2932 .refcnt = ATOMIC_INIT(1), 2933 .mode = MPOL_PREFERRED, 2934 .flags = MPOL_F_MOF | MPOL_F_MORON, 2935 .nodes = nodemask_of_node(nid), 2936 }; 2937 } 2938 2939 /* 2940 * Set interleaving policy for system init. Interleaving is only 2941 * enabled across suitably sized nodes (default is >= 16MB), or 2942 * fall back to the largest node if they're all smaller. 2943 */ 2944 nodes_clear(interleave_nodes); 2945 for_each_node_state(nid, N_MEMORY) { 2946 unsigned long total_pages = node_present_pages(nid); 2947 2948 /* Preserve the largest node */ 2949 if (largest < total_pages) { 2950 largest = total_pages; 2951 prefer = nid; 2952 } 2953 2954 /* Interleave this node? */ 2955 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2956 node_set(nid, interleave_nodes); 2957 } 2958 2959 /* All too small, use the largest */ 2960 if (unlikely(nodes_empty(interleave_nodes))) 2961 node_set(prefer, interleave_nodes); 2962 2963 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2964 pr_err("%s: interleaving failed\n", __func__); 2965 2966 check_numabalancing_enable(); 2967 } 2968 2969 /* Reset policy of current process to default */ 2970 void numa_default_policy(void) 2971 { 2972 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2973 } 2974 2975 /* 2976 * Parse and format mempolicy from/to strings 2977 */ 2978 2979 static const char * const policy_modes[] = 2980 { 2981 [MPOL_DEFAULT] = "default", 2982 [MPOL_PREFERRED] = "prefer", 2983 [MPOL_BIND] = "bind", 2984 [MPOL_INTERLEAVE] = "interleave", 2985 [MPOL_LOCAL] = "local", 2986 [MPOL_PREFERRED_MANY] = "prefer (many)", 2987 }; 2988 2989 2990 #ifdef CONFIG_TMPFS 2991 /** 2992 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2993 * @str: string containing mempolicy to parse 2994 * @mpol: pointer to struct mempolicy pointer, returned on success. 2995 * 2996 * Format of input: 2997 * <mode>[=<flags>][:<nodelist>] 2998 * 2999 * Return: %0 on success, else %1 3000 */ 3001 int mpol_parse_str(char *str, struct mempolicy **mpol) 3002 { 3003 struct mempolicy *new = NULL; 3004 unsigned short mode_flags; 3005 nodemask_t nodes; 3006 char *nodelist = strchr(str, ':'); 3007 char *flags = strchr(str, '='); 3008 int err = 1, mode; 3009 3010 if (flags) 3011 *flags++ = '\0'; /* terminate mode string */ 3012 3013 if (nodelist) { 3014 /* NUL-terminate mode or flags string */ 3015 *nodelist++ = '\0'; 3016 if (nodelist_parse(nodelist, nodes)) 3017 goto out; 3018 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3019 goto out; 3020 } else 3021 nodes_clear(nodes); 3022 3023 mode = match_string(policy_modes, MPOL_MAX, str); 3024 if (mode < 0) 3025 goto out; 3026 3027 switch (mode) { 3028 case MPOL_PREFERRED: 3029 /* 3030 * Insist on a nodelist of one node only, although later 3031 * we use first_node(nodes) to grab a single node, so here 3032 * nodelist (or nodes) cannot be empty. 3033 */ 3034 if (nodelist) { 3035 char *rest = nodelist; 3036 while (isdigit(*rest)) 3037 rest++; 3038 if (*rest) 3039 goto out; 3040 if (nodes_empty(nodes)) 3041 goto out; 3042 } 3043 break; 3044 case MPOL_INTERLEAVE: 3045 /* 3046 * Default to online nodes with memory if no nodelist 3047 */ 3048 if (!nodelist) 3049 nodes = node_states[N_MEMORY]; 3050 break; 3051 case MPOL_LOCAL: 3052 /* 3053 * Don't allow a nodelist; mpol_new() checks flags 3054 */ 3055 if (nodelist) 3056 goto out; 3057 break; 3058 case MPOL_DEFAULT: 3059 /* 3060 * Insist on a empty nodelist 3061 */ 3062 if (!nodelist) 3063 err = 0; 3064 goto out; 3065 case MPOL_PREFERRED_MANY: 3066 case MPOL_BIND: 3067 /* 3068 * Insist on a nodelist 3069 */ 3070 if (!nodelist) 3071 goto out; 3072 } 3073 3074 mode_flags = 0; 3075 if (flags) { 3076 /* 3077 * Currently, we only support two mutually exclusive 3078 * mode flags. 3079 */ 3080 if (!strcmp(flags, "static")) 3081 mode_flags |= MPOL_F_STATIC_NODES; 3082 else if (!strcmp(flags, "relative")) 3083 mode_flags |= MPOL_F_RELATIVE_NODES; 3084 else 3085 goto out; 3086 } 3087 3088 new = mpol_new(mode, mode_flags, &nodes); 3089 if (IS_ERR(new)) 3090 goto out; 3091 3092 /* 3093 * Save nodes for mpol_to_str() to show the tmpfs mount options 3094 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3095 */ 3096 if (mode != MPOL_PREFERRED) { 3097 new->nodes = nodes; 3098 } else if (nodelist) { 3099 nodes_clear(new->nodes); 3100 node_set(first_node(nodes), new->nodes); 3101 } else { 3102 new->mode = MPOL_LOCAL; 3103 } 3104 3105 /* 3106 * Save nodes for contextualization: this will be used to "clone" 3107 * the mempolicy in a specific context [cpuset] at a later time. 3108 */ 3109 new->w.user_nodemask = nodes; 3110 3111 err = 0; 3112 3113 out: 3114 /* Restore string for error message */ 3115 if (nodelist) 3116 *--nodelist = ':'; 3117 if (flags) 3118 *--flags = '='; 3119 if (!err) 3120 *mpol = new; 3121 return err; 3122 } 3123 #endif /* CONFIG_TMPFS */ 3124 3125 /** 3126 * mpol_to_str - format a mempolicy structure for printing 3127 * @buffer: to contain formatted mempolicy string 3128 * @maxlen: length of @buffer 3129 * @pol: pointer to mempolicy to be formatted 3130 * 3131 * Convert @pol into a string. If @buffer is too short, truncate the string. 3132 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3133 * longest flag, "relative", and to display at least a few node ids. 3134 */ 3135 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3136 { 3137 char *p = buffer; 3138 nodemask_t nodes = NODE_MASK_NONE; 3139 unsigned short mode = MPOL_DEFAULT; 3140 unsigned short flags = 0; 3141 3142 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3143 mode = pol->mode; 3144 flags = pol->flags; 3145 } 3146 3147 switch (mode) { 3148 case MPOL_DEFAULT: 3149 case MPOL_LOCAL: 3150 break; 3151 case MPOL_PREFERRED: 3152 case MPOL_PREFERRED_MANY: 3153 case MPOL_BIND: 3154 case MPOL_INTERLEAVE: 3155 nodes = pol->nodes; 3156 break; 3157 default: 3158 WARN_ON_ONCE(1); 3159 snprintf(p, maxlen, "unknown"); 3160 return; 3161 } 3162 3163 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3164 3165 if (flags & MPOL_MODE_FLAGS) { 3166 p += snprintf(p, buffer + maxlen - p, "="); 3167 3168 /* 3169 * Currently, the only defined flags are mutually exclusive 3170 */ 3171 if (flags & MPOL_F_STATIC_NODES) 3172 p += snprintf(p, buffer + maxlen - p, "static"); 3173 else if (flags & MPOL_F_RELATIVE_NODES) 3174 p += snprintf(p, buffer + maxlen - p, "relative"); 3175 } 3176 3177 if (!nodes_empty(nodes)) 3178 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3179 nodemask_pr_args(&nodes)); 3180 } 3181