1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #include <linux/mempolicy.h> 69 #include <linux/mm.h> 70 #include <linux/highmem.h> 71 #include <linux/hugetlb.h> 72 #include <linux/kernel.h> 73 #include <linux/sched.h> 74 #include <linux/nodemask.h> 75 #include <linux/cpuset.h> 76 #include <linux/slab.h> 77 #include <linux/string.h> 78 #include <linux/export.h> 79 #include <linux/nsproxy.h> 80 #include <linux/interrupt.h> 81 #include <linux/init.h> 82 #include <linux/compat.h> 83 #include <linux/swap.h> 84 #include <linux/seq_file.h> 85 #include <linux/proc_fs.h> 86 #include <linux/migrate.h> 87 #include <linux/ksm.h> 88 #include <linux/rmap.h> 89 #include <linux/security.h> 90 #include <linux/syscalls.h> 91 #include <linux/ctype.h> 92 #include <linux/mm_inline.h> 93 94 #include <asm/tlbflush.h> 95 #include <asm/uaccess.h> 96 #include <linux/random.h> 97 98 #include "internal.h" 99 100 /* Internal flags */ 101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 103 104 static struct kmem_cache *policy_cache; 105 static struct kmem_cache *sn_cache; 106 107 /* Highest zone. An specific allocation for a zone below that is not 108 policied. */ 109 enum zone_type policy_zone = 0; 110 111 /* 112 * run-time system-wide default policy => local allocation 113 */ 114 static struct mempolicy default_policy = { 115 .refcnt = ATOMIC_INIT(1), /* never free it */ 116 .mode = MPOL_PREFERRED, 117 .flags = MPOL_F_LOCAL, 118 }; 119 120 static const struct mempolicy_operations { 121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 122 /* 123 * If read-side task has no lock to protect task->mempolicy, write-side 124 * task will rebind the task->mempolicy by two step. The first step is 125 * setting all the newly nodes, and the second step is cleaning all the 126 * disallowed nodes. In this way, we can avoid finding no node to alloc 127 * page. 128 * If we have a lock to protect task->mempolicy in read-side, we do 129 * rebind directly. 130 * 131 * step: 132 * MPOL_REBIND_ONCE - do rebind work at once 133 * MPOL_REBIND_STEP1 - set all the newly nodes 134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 135 */ 136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 137 enum mpol_rebind_step step); 138 } mpol_ops[MPOL_MAX]; 139 140 /* Check that the nodemask contains at least one populated zone */ 141 static int is_valid_nodemask(const nodemask_t *nodemask) 142 { 143 int nd, k; 144 145 for_each_node_mask(nd, *nodemask) { 146 struct zone *z; 147 148 for (k = 0; k <= policy_zone; k++) { 149 z = &NODE_DATA(nd)->node_zones[k]; 150 if (z->present_pages > 0) 151 return 1; 152 } 153 } 154 155 return 0; 156 } 157 158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 159 { 160 return pol->flags & MPOL_MODE_FLAGS; 161 } 162 163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 164 const nodemask_t *rel) 165 { 166 nodemask_t tmp; 167 nodes_fold(tmp, *orig, nodes_weight(*rel)); 168 nodes_onto(*ret, tmp, *rel); 169 } 170 171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 172 { 173 if (nodes_empty(*nodes)) 174 return -EINVAL; 175 pol->v.nodes = *nodes; 176 return 0; 177 } 178 179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 180 { 181 if (!nodes) 182 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 183 else if (nodes_empty(*nodes)) 184 return -EINVAL; /* no allowed nodes */ 185 else 186 pol->v.preferred_node = first_node(*nodes); 187 return 0; 188 } 189 190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 191 { 192 if (!is_valid_nodemask(nodes)) 193 return -EINVAL; 194 pol->v.nodes = *nodes; 195 return 0; 196 } 197 198 /* 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 200 * any, for the new policy. mpol_new() has already validated the nodes 201 * parameter with respect to the policy mode and flags. But, we need to 202 * handle an empty nodemask with MPOL_PREFERRED here. 203 * 204 * Must be called holding task's alloc_lock to protect task's mems_allowed 205 * and mempolicy. May also be called holding the mmap_semaphore for write. 206 */ 207 static int mpol_set_nodemask(struct mempolicy *pol, 208 const nodemask_t *nodes, struct nodemask_scratch *nsc) 209 { 210 int ret; 211 212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 213 if (pol == NULL) 214 return 0; 215 /* Check N_HIGH_MEMORY */ 216 nodes_and(nsc->mask1, 217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]); 218 219 VM_BUG_ON(!nodes); 220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 221 nodes = NULL; /* explicit local allocation */ 222 else { 223 if (pol->flags & MPOL_F_RELATIVE_NODES) 224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 225 else 226 nodes_and(nsc->mask2, *nodes, nsc->mask1); 227 228 if (mpol_store_user_nodemask(pol)) 229 pol->w.user_nodemask = *nodes; 230 else 231 pol->w.cpuset_mems_allowed = 232 cpuset_current_mems_allowed; 233 } 234 235 if (nodes) 236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 237 else 238 ret = mpol_ops[pol->mode].create(pol, NULL); 239 return ret; 240 } 241 242 /* 243 * This function just creates a new policy, does some check and simple 244 * initialization. You must invoke mpol_set_nodemask() to set nodes. 245 */ 246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 247 nodemask_t *nodes) 248 { 249 struct mempolicy *policy; 250 251 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); 253 254 if (mode == MPOL_DEFAULT) { 255 if (nodes && !nodes_empty(*nodes)) 256 return ERR_PTR(-EINVAL); 257 return NULL; /* simply delete any existing policy */ 258 } 259 VM_BUG_ON(!nodes); 260 261 /* 262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 264 * All other modes require a valid pointer to a non-empty nodemask. 265 */ 266 if (mode == MPOL_PREFERRED) { 267 if (nodes_empty(*nodes)) { 268 if (((flags & MPOL_F_STATIC_NODES) || 269 (flags & MPOL_F_RELATIVE_NODES))) 270 return ERR_PTR(-EINVAL); 271 } 272 } else if (nodes_empty(*nodes)) 273 return ERR_PTR(-EINVAL); 274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 275 if (!policy) 276 return ERR_PTR(-ENOMEM); 277 atomic_set(&policy->refcnt, 1); 278 policy->mode = mode; 279 policy->flags = flags; 280 281 return policy; 282 } 283 284 /* Slow path of a mpol destructor. */ 285 void __mpol_put(struct mempolicy *p) 286 { 287 if (!atomic_dec_and_test(&p->refcnt)) 288 return; 289 kmem_cache_free(policy_cache, p); 290 } 291 292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 293 enum mpol_rebind_step step) 294 { 295 } 296 297 /* 298 * step: 299 * MPOL_REBIND_ONCE - do rebind work at once 300 * MPOL_REBIND_STEP1 - set all the newly nodes 301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 302 */ 303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 nodemask_t tmp; 307 308 if (pol->flags & MPOL_F_STATIC_NODES) 309 nodes_and(tmp, pol->w.user_nodemask, *nodes); 310 else if (pol->flags & MPOL_F_RELATIVE_NODES) 311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 312 else { 313 /* 314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 315 * result 316 */ 317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 318 nodes_remap(tmp, pol->v.nodes, 319 pol->w.cpuset_mems_allowed, *nodes); 320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 321 } else if (step == MPOL_REBIND_STEP2) { 322 tmp = pol->w.cpuset_mems_allowed; 323 pol->w.cpuset_mems_allowed = *nodes; 324 } else 325 BUG(); 326 } 327 328 if (nodes_empty(tmp)) 329 tmp = *nodes; 330 331 if (step == MPOL_REBIND_STEP1) 332 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 334 pol->v.nodes = tmp; 335 else 336 BUG(); 337 338 if (!node_isset(current->il_next, tmp)) { 339 current->il_next = next_node(current->il_next, tmp); 340 if (current->il_next >= MAX_NUMNODES) 341 current->il_next = first_node(tmp); 342 if (current->il_next >= MAX_NUMNODES) 343 current->il_next = numa_node_id(); 344 } 345 } 346 347 static void mpol_rebind_preferred(struct mempolicy *pol, 348 const nodemask_t *nodes, 349 enum mpol_rebind_step step) 350 { 351 nodemask_t tmp; 352 353 if (pol->flags & MPOL_F_STATIC_NODES) { 354 int node = first_node(pol->w.user_nodemask); 355 356 if (node_isset(node, *nodes)) { 357 pol->v.preferred_node = node; 358 pol->flags &= ~MPOL_F_LOCAL; 359 } else 360 pol->flags |= MPOL_F_LOCAL; 361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 363 pol->v.preferred_node = first_node(tmp); 364 } else if (!(pol->flags & MPOL_F_LOCAL)) { 365 pol->v.preferred_node = node_remap(pol->v.preferred_node, 366 pol->w.cpuset_mems_allowed, 367 *nodes); 368 pol->w.cpuset_mems_allowed = *nodes; 369 } 370 } 371 372 /* 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes 374 * 375 * If read-side task has no lock to protect task->mempolicy, write-side 376 * task will rebind the task->mempolicy by two step. The first step is 377 * setting all the newly nodes, and the second step is cleaning all the 378 * disallowed nodes. In this way, we can avoid finding no node to alloc 379 * page. 380 * If we have a lock to protect task->mempolicy in read-side, we do 381 * rebind directly. 382 * 383 * step: 384 * MPOL_REBIND_ONCE - do rebind work at once 385 * MPOL_REBIND_STEP1 - set all the newly nodes 386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 387 */ 388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 389 enum mpol_rebind_step step) 390 { 391 if (!pol) 392 return; 393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 395 return; 396 397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 398 return; 399 400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 401 BUG(); 402 403 if (step == MPOL_REBIND_STEP1) 404 pol->flags |= MPOL_F_REBINDING; 405 else if (step == MPOL_REBIND_STEP2) 406 pol->flags &= ~MPOL_F_REBINDING; 407 else if (step >= MPOL_REBIND_NSTEP) 408 BUG(); 409 410 mpol_ops[pol->mode].rebind(pol, newmask, step); 411 } 412 413 /* 414 * Wrapper for mpol_rebind_policy() that just requires task 415 * pointer, and updates task mempolicy. 416 * 417 * Called with task's alloc_lock held. 418 */ 419 420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 421 enum mpol_rebind_step step) 422 { 423 mpol_rebind_policy(tsk->mempolicy, new, step); 424 } 425 426 /* 427 * Rebind each vma in mm to new nodemask. 428 * 429 * Call holding a reference to mm. Takes mm->mmap_sem during call. 430 */ 431 432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 433 { 434 struct vm_area_struct *vma; 435 436 down_write(&mm->mmap_sem); 437 for (vma = mm->mmap; vma; vma = vma->vm_next) 438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 439 up_write(&mm->mmap_sem); 440 } 441 442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 443 [MPOL_DEFAULT] = { 444 .rebind = mpol_rebind_default, 445 }, 446 [MPOL_INTERLEAVE] = { 447 .create = mpol_new_interleave, 448 .rebind = mpol_rebind_nodemask, 449 }, 450 [MPOL_PREFERRED] = { 451 .create = mpol_new_preferred, 452 .rebind = mpol_rebind_preferred, 453 }, 454 [MPOL_BIND] = { 455 .create = mpol_new_bind, 456 .rebind = mpol_rebind_nodemask, 457 }, 458 }; 459 460 static void migrate_page_add(struct page *page, struct list_head *pagelist, 461 unsigned long flags); 462 463 /* Scan through pages checking if pages follow certain conditions. */ 464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 465 unsigned long addr, unsigned long end, 466 const nodemask_t *nodes, unsigned long flags, 467 void *private) 468 { 469 pte_t *orig_pte; 470 pte_t *pte; 471 spinlock_t *ptl; 472 473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 474 do { 475 struct page *page; 476 int nid; 477 478 if (!pte_present(*pte)) 479 continue; 480 page = vm_normal_page(vma, addr, *pte); 481 if (!page) 482 continue; 483 /* 484 * vm_normal_page() filters out zero pages, but there might 485 * still be PageReserved pages to skip, perhaps in a VDSO. 486 * And we cannot move PageKsm pages sensibly or safely yet. 487 */ 488 if (PageReserved(page) || PageKsm(page)) 489 continue; 490 nid = page_to_nid(page); 491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 492 continue; 493 494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 495 migrate_page_add(page, private, flags); 496 else 497 break; 498 } while (pte++, addr += PAGE_SIZE, addr != end); 499 pte_unmap_unlock(orig_pte, ptl); 500 return addr != end; 501 } 502 503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 504 unsigned long addr, unsigned long end, 505 const nodemask_t *nodes, unsigned long flags, 506 void *private) 507 { 508 pmd_t *pmd; 509 unsigned long next; 510 511 pmd = pmd_offset(pud, addr); 512 do { 513 next = pmd_addr_end(addr, end); 514 split_huge_page_pmd(vma->vm_mm, pmd); 515 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 516 continue; 517 if (check_pte_range(vma, pmd, addr, next, nodes, 518 flags, private)) 519 return -EIO; 520 } while (pmd++, addr = next, addr != end); 521 return 0; 522 } 523 524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 525 unsigned long addr, unsigned long end, 526 const nodemask_t *nodes, unsigned long flags, 527 void *private) 528 { 529 pud_t *pud; 530 unsigned long next; 531 532 pud = pud_offset(pgd, addr); 533 do { 534 next = pud_addr_end(addr, end); 535 if (pud_none_or_clear_bad(pud)) 536 continue; 537 if (check_pmd_range(vma, pud, addr, next, nodes, 538 flags, private)) 539 return -EIO; 540 } while (pud++, addr = next, addr != end); 541 return 0; 542 } 543 544 static inline int check_pgd_range(struct vm_area_struct *vma, 545 unsigned long addr, unsigned long end, 546 const nodemask_t *nodes, unsigned long flags, 547 void *private) 548 { 549 pgd_t *pgd; 550 unsigned long next; 551 552 pgd = pgd_offset(vma->vm_mm, addr); 553 do { 554 next = pgd_addr_end(addr, end); 555 if (pgd_none_or_clear_bad(pgd)) 556 continue; 557 if (check_pud_range(vma, pgd, addr, next, nodes, 558 flags, private)) 559 return -EIO; 560 } while (pgd++, addr = next, addr != end); 561 return 0; 562 } 563 564 /* 565 * Check if all pages in a range are on a set of nodes. 566 * If pagelist != NULL then isolate pages from the LRU and 567 * put them on the pagelist. 568 */ 569 static struct vm_area_struct * 570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 571 const nodemask_t *nodes, unsigned long flags, void *private) 572 { 573 int err; 574 struct vm_area_struct *first, *vma, *prev; 575 576 577 first = find_vma(mm, start); 578 if (!first) 579 return ERR_PTR(-EFAULT); 580 prev = NULL; 581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 582 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 583 if (!vma->vm_next && vma->vm_end < end) 584 return ERR_PTR(-EFAULT); 585 if (prev && prev->vm_end < vma->vm_start) 586 return ERR_PTR(-EFAULT); 587 } 588 if (!is_vm_hugetlb_page(vma) && 589 ((flags & MPOL_MF_STRICT) || 590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 591 vma_migratable(vma)))) { 592 unsigned long endvma = vma->vm_end; 593 594 if (endvma > end) 595 endvma = end; 596 if (vma->vm_start > start) 597 start = vma->vm_start; 598 err = check_pgd_range(vma, start, endvma, nodes, 599 flags, private); 600 if (err) { 601 first = ERR_PTR(err); 602 break; 603 } 604 } 605 prev = vma; 606 } 607 return first; 608 } 609 610 /* 611 * Apply policy to a single VMA 612 * This must be called with the mmap_sem held for writing. 613 */ 614 static int vma_replace_policy(struct vm_area_struct *vma, 615 struct mempolicy *pol) 616 { 617 int err; 618 struct mempolicy *old; 619 struct mempolicy *new; 620 621 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 622 vma->vm_start, vma->vm_end, vma->vm_pgoff, 623 vma->vm_ops, vma->vm_file, 624 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 625 626 new = mpol_dup(pol); 627 if (IS_ERR(new)) 628 return PTR_ERR(new); 629 630 if (vma->vm_ops && vma->vm_ops->set_policy) { 631 err = vma->vm_ops->set_policy(vma, new); 632 if (err) 633 goto err_out; 634 } 635 636 old = vma->vm_policy; 637 vma->vm_policy = new; /* protected by mmap_sem */ 638 mpol_put(old); 639 640 return 0; 641 err_out: 642 mpol_put(new); 643 return err; 644 } 645 646 /* Step 2: apply policy to a range and do splits. */ 647 static int mbind_range(struct mm_struct *mm, unsigned long start, 648 unsigned long end, struct mempolicy *new_pol) 649 { 650 struct vm_area_struct *next; 651 struct vm_area_struct *prev; 652 struct vm_area_struct *vma; 653 int err = 0; 654 pgoff_t pgoff; 655 unsigned long vmstart; 656 unsigned long vmend; 657 658 vma = find_vma(mm, start); 659 if (!vma || vma->vm_start > start) 660 return -EFAULT; 661 662 prev = vma->vm_prev; 663 if (start > vma->vm_start) 664 prev = vma; 665 666 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 667 next = vma->vm_next; 668 vmstart = max(start, vma->vm_start); 669 vmend = min(end, vma->vm_end); 670 671 if (mpol_equal(vma_policy(vma), new_pol)) 672 continue; 673 674 pgoff = vma->vm_pgoff + 675 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 676 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 677 vma->anon_vma, vma->vm_file, pgoff, 678 new_pol); 679 if (prev) { 680 vma = prev; 681 next = vma->vm_next; 682 continue; 683 } 684 if (vma->vm_start != vmstart) { 685 err = split_vma(vma->vm_mm, vma, vmstart, 1); 686 if (err) 687 goto out; 688 } 689 if (vma->vm_end != vmend) { 690 err = split_vma(vma->vm_mm, vma, vmend, 0); 691 if (err) 692 goto out; 693 } 694 err = vma_replace_policy(vma, new_pol); 695 if (err) 696 goto out; 697 } 698 699 out: 700 return err; 701 } 702 703 /* 704 * Update task->flags PF_MEMPOLICY bit: set iff non-default 705 * mempolicy. Allows more rapid checking of this (combined perhaps 706 * with other PF_* flag bits) on memory allocation hot code paths. 707 * 708 * If called from outside this file, the task 'p' should -only- be 709 * a newly forked child not yet visible on the task list, because 710 * manipulating the task flags of a visible task is not safe. 711 * 712 * The above limitation is why this routine has the funny name 713 * mpol_fix_fork_child_flag(). 714 * 715 * It is also safe to call this with a task pointer of current, 716 * which the static wrapper mpol_set_task_struct_flag() does, 717 * for use within this file. 718 */ 719 720 void mpol_fix_fork_child_flag(struct task_struct *p) 721 { 722 if (p->mempolicy) 723 p->flags |= PF_MEMPOLICY; 724 else 725 p->flags &= ~PF_MEMPOLICY; 726 } 727 728 static void mpol_set_task_struct_flag(void) 729 { 730 mpol_fix_fork_child_flag(current); 731 } 732 733 /* Set the process memory policy */ 734 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 735 nodemask_t *nodes) 736 { 737 struct mempolicy *new, *old; 738 struct mm_struct *mm = current->mm; 739 NODEMASK_SCRATCH(scratch); 740 int ret; 741 742 if (!scratch) 743 return -ENOMEM; 744 745 new = mpol_new(mode, flags, nodes); 746 if (IS_ERR(new)) { 747 ret = PTR_ERR(new); 748 goto out; 749 } 750 /* 751 * prevent changing our mempolicy while show_numa_maps() 752 * is using it. 753 * Note: do_set_mempolicy() can be called at init time 754 * with no 'mm'. 755 */ 756 if (mm) 757 down_write(&mm->mmap_sem); 758 task_lock(current); 759 ret = mpol_set_nodemask(new, nodes, scratch); 760 if (ret) { 761 task_unlock(current); 762 if (mm) 763 up_write(&mm->mmap_sem); 764 mpol_put(new); 765 goto out; 766 } 767 old = current->mempolicy; 768 current->mempolicy = new; 769 mpol_set_task_struct_flag(); 770 if (new && new->mode == MPOL_INTERLEAVE && 771 nodes_weight(new->v.nodes)) 772 current->il_next = first_node(new->v.nodes); 773 task_unlock(current); 774 if (mm) 775 up_write(&mm->mmap_sem); 776 777 mpol_put(old); 778 ret = 0; 779 out: 780 NODEMASK_SCRATCH_FREE(scratch); 781 return ret; 782 } 783 784 /* 785 * Return nodemask for policy for get_mempolicy() query 786 * 787 * Called with task's alloc_lock held 788 */ 789 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 790 { 791 nodes_clear(*nodes); 792 if (p == &default_policy) 793 return; 794 795 switch (p->mode) { 796 case MPOL_BIND: 797 /* Fall through */ 798 case MPOL_INTERLEAVE: 799 *nodes = p->v.nodes; 800 break; 801 case MPOL_PREFERRED: 802 if (!(p->flags & MPOL_F_LOCAL)) 803 node_set(p->v.preferred_node, *nodes); 804 /* else return empty node mask for local allocation */ 805 break; 806 default: 807 BUG(); 808 } 809 } 810 811 static int lookup_node(struct mm_struct *mm, unsigned long addr) 812 { 813 struct page *p; 814 int err; 815 816 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 817 if (err >= 0) { 818 err = page_to_nid(p); 819 put_page(p); 820 } 821 return err; 822 } 823 824 /* Retrieve NUMA policy */ 825 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 826 unsigned long addr, unsigned long flags) 827 { 828 int err; 829 struct mm_struct *mm = current->mm; 830 struct vm_area_struct *vma = NULL; 831 struct mempolicy *pol = current->mempolicy; 832 833 if (flags & 834 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 835 return -EINVAL; 836 837 if (flags & MPOL_F_MEMS_ALLOWED) { 838 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 839 return -EINVAL; 840 *policy = 0; /* just so it's initialized */ 841 task_lock(current); 842 *nmask = cpuset_current_mems_allowed; 843 task_unlock(current); 844 return 0; 845 } 846 847 if (flags & MPOL_F_ADDR) { 848 /* 849 * Do NOT fall back to task policy if the 850 * vma/shared policy at addr is NULL. We 851 * want to return MPOL_DEFAULT in this case. 852 */ 853 down_read(&mm->mmap_sem); 854 vma = find_vma_intersection(mm, addr, addr+1); 855 if (!vma) { 856 up_read(&mm->mmap_sem); 857 return -EFAULT; 858 } 859 if (vma->vm_ops && vma->vm_ops->get_policy) 860 pol = vma->vm_ops->get_policy(vma, addr); 861 else 862 pol = vma->vm_policy; 863 } else if (addr) 864 return -EINVAL; 865 866 if (!pol) 867 pol = &default_policy; /* indicates default behavior */ 868 869 if (flags & MPOL_F_NODE) { 870 if (flags & MPOL_F_ADDR) { 871 err = lookup_node(mm, addr); 872 if (err < 0) 873 goto out; 874 *policy = err; 875 } else if (pol == current->mempolicy && 876 pol->mode == MPOL_INTERLEAVE) { 877 *policy = current->il_next; 878 } else { 879 err = -EINVAL; 880 goto out; 881 } 882 } else { 883 *policy = pol == &default_policy ? MPOL_DEFAULT : 884 pol->mode; 885 /* 886 * Internal mempolicy flags must be masked off before exposing 887 * the policy to userspace. 888 */ 889 *policy |= (pol->flags & MPOL_MODE_FLAGS); 890 } 891 892 if (vma) { 893 up_read(¤t->mm->mmap_sem); 894 vma = NULL; 895 } 896 897 err = 0; 898 if (nmask) { 899 if (mpol_store_user_nodemask(pol)) { 900 *nmask = pol->w.user_nodemask; 901 } else { 902 task_lock(current); 903 get_policy_nodemask(pol, nmask); 904 task_unlock(current); 905 } 906 } 907 908 out: 909 mpol_cond_put(pol); 910 if (vma) 911 up_read(¤t->mm->mmap_sem); 912 return err; 913 } 914 915 #ifdef CONFIG_MIGRATION 916 /* 917 * page migration 918 */ 919 static void migrate_page_add(struct page *page, struct list_head *pagelist, 920 unsigned long flags) 921 { 922 /* 923 * Avoid migrating a page that is shared with others. 924 */ 925 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 926 if (!isolate_lru_page(page)) { 927 list_add_tail(&page->lru, pagelist); 928 inc_zone_page_state(page, NR_ISOLATED_ANON + 929 page_is_file_cache(page)); 930 } 931 } 932 } 933 934 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 935 { 936 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 937 } 938 939 /* 940 * Migrate pages from one node to a target node. 941 * Returns error or the number of pages not migrated. 942 */ 943 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 944 int flags) 945 { 946 nodemask_t nmask; 947 LIST_HEAD(pagelist); 948 int err = 0; 949 950 nodes_clear(nmask); 951 node_set(source, nmask); 952 953 /* 954 * This does not "check" the range but isolates all pages that 955 * need migration. Between passing in the full user address 956 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 957 */ 958 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 959 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 960 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 961 962 if (!list_empty(&pagelist)) { 963 err = migrate_pages(&pagelist, new_node_page, dest, 964 false, MIGRATE_SYNC); 965 if (err) 966 putback_lru_pages(&pagelist); 967 } 968 969 return err; 970 } 971 972 /* 973 * Move pages between the two nodesets so as to preserve the physical 974 * layout as much as possible. 975 * 976 * Returns the number of page that could not be moved. 977 */ 978 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 979 const nodemask_t *to, int flags) 980 { 981 int busy = 0; 982 int err; 983 nodemask_t tmp; 984 985 err = migrate_prep(); 986 if (err) 987 return err; 988 989 down_read(&mm->mmap_sem); 990 991 err = migrate_vmas(mm, from, to, flags); 992 if (err) 993 goto out; 994 995 /* 996 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 997 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 998 * bit in 'tmp', and return that <source, dest> pair for migration. 999 * The pair of nodemasks 'to' and 'from' define the map. 1000 * 1001 * If no pair of bits is found that way, fallback to picking some 1002 * pair of 'source' and 'dest' bits that are not the same. If the 1003 * 'source' and 'dest' bits are the same, this represents a node 1004 * that will be migrating to itself, so no pages need move. 1005 * 1006 * If no bits are left in 'tmp', or if all remaining bits left 1007 * in 'tmp' correspond to the same bit in 'to', return false 1008 * (nothing left to migrate). 1009 * 1010 * This lets us pick a pair of nodes to migrate between, such that 1011 * if possible the dest node is not already occupied by some other 1012 * source node, minimizing the risk of overloading the memory on a 1013 * node that would happen if we migrated incoming memory to a node 1014 * before migrating outgoing memory source that same node. 1015 * 1016 * A single scan of tmp is sufficient. As we go, we remember the 1017 * most recent <s, d> pair that moved (s != d). If we find a pair 1018 * that not only moved, but what's better, moved to an empty slot 1019 * (d is not set in tmp), then we break out then, with that pair. 1020 * Otherwise when we finish scanning from_tmp, we at least have the 1021 * most recent <s, d> pair that moved. If we get all the way through 1022 * the scan of tmp without finding any node that moved, much less 1023 * moved to an empty node, then there is nothing left worth migrating. 1024 */ 1025 1026 tmp = *from; 1027 while (!nodes_empty(tmp)) { 1028 int s,d; 1029 int source = -1; 1030 int dest = 0; 1031 1032 for_each_node_mask(s, tmp) { 1033 1034 /* 1035 * do_migrate_pages() tries to maintain the relative 1036 * node relationship of the pages established between 1037 * threads and memory areas. 1038 * 1039 * However if the number of source nodes is not equal to 1040 * the number of destination nodes we can not preserve 1041 * this node relative relationship. In that case, skip 1042 * copying memory from a node that is in the destination 1043 * mask. 1044 * 1045 * Example: [2,3,4] -> [3,4,5] moves everything. 1046 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1047 */ 1048 1049 if ((nodes_weight(*from) != nodes_weight(*to)) && 1050 (node_isset(s, *to))) 1051 continue; 1052 1053 d = node_remap(s, *from, *to); 1054 if (s == d) 1055 continue; 1056 1057 source = s; /* Node moved. Memorize */ 1058 dest = d; 1059 1060 /* dest not in remaining from nodes? */ 1061 if (!node_isset(dest, tmp)) 1062 break; 1063 } 1064 if (source == -1) 1065 break; 1066 1067 node_clear(source, tmp); 1068 err = migrate_to_node(mm, source, dest, flags); 1069 if (err > 0) 1070 busy += err; 1071 if (err < 0) 1072 break; 1073 } 1074 out: 1075 up_read(&mm->mmap_sem); 1076 if (err < 0) 1077 return err; 1078 return busy; 1079 1080 } 1081 1082 /* 1083 * Allocate a new page for page migration based on vma policy. 1084 * Start assuming that page is mapped by vma pointed to by @private. 1085 * Search forward from there, if not. N.B., this assumes that the 1086 * list of pages handed to migrate_pages()--which is how we get here-- 1087 * is in virtual address order. 1088 */ 1089 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1090 { 1091 struct vm_area_struct *vma = (struct vm_area_struct *)private; 1092 unsigned long uninitialized_var(address); 1093 1094 while (vma) { 1095 address = page_address_in_vma(page, vma); 1096 if (address != -EFAULT) 1097 break; 1098 vma = vma->vm_next; 1099 } 1100 1101 /* 1102 * if !vma, alloc_page_vma() will use task or system default policy 1103 */ 1104 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1105 } 1106 #else 1107 1108 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1109 unsigned long flags) 1110 { 1111 } 1112 1113 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1114 const nodemask_t *to, int flags) 1115 { 1116 return -ENOSYS; 1117 } 1118 1119 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1120 { 1121 return NULL; 1122 } 1123 #endif 1124 1125 static long do_mbind(unsigned long start, unsigned long len, 1126 unsigned short mode, unsigned short mode_flags, 1127 nodemask_t *nmask, unsigned long flags) 1128 { 1129 struct vm_area_struct *vma; 1130 struct mm_struct *mm = current->mm; 1131 struct mempolicy *new; 1132 unsigned long end; 1133 int err; 1134 LIST_HEAD(pagelist); 1135 1136 if (flags & ~(unsigned long)(MPOL_MF_STRICT | 1137 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1138 return -EINVAL; 1139 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1140 return -EPERM; 1141 1142 if (start & ~PAGE_MASK) 1143 return -EINVAL; 1144 1145 if (mode == MPOL_DEFAULT) 1146 flags &= ~MPOL_MF_STRICT; 1147 1148 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1149 end = start + len; 1150 1151 if (end < start) 1152 return -EINVAL; 1153 if (end == start) 1154 return 0; 1155 1156 new = mpol_new(mode, mode_flags, nmask); 1157 if (IS_ERR(new)) 1158 return PTR_ERR(new); 1159 1160 /* 1161 * If we are using the default policy then operation 1162 * on discontinuous address spaces is okay after all 1163 */ 1164 if (!new) 1165 flags |= MPOL_MF_DISCONTIG_OK; 1166 1167 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1168 start, start + len, mode, mode_flags, 1169 nmask ? nodes_addr(*nmask)[0] : -1); 1170 1171 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1172 1173 err = migrate_prep(); 1174 if (err) 1175 goto mpol_out; 1176 } 1177 { 1178 NODEMASK_SCRATCH(scratch); 1179 if (scratch) { 1180 down_write(&mm->mmap_sem); 1181 task_lock(current); 1182 err = mpol_set_nodemask(new, nmask, scratch); 1183 task_unlock(current); 1184 if (err) 1185 up_write(&mm->mmap_sem); 1186 } else 1187 err = -ENOMEM; 1188 NODEMASK_SCRATCH_FREE(scratch); 1189 } 1190 if (err) 1191 goto mpol_out; 1192 1193 vma = check_range(mm, start, end, nmask, 1194 flags | MPOL_MF_INVERT, &pagelist); 1195 1196 err = PTR_ERR(vma); 1197 if (!IS_ERR(vma)) { 1198 int nr_failed = 0; 1199 1200 err = mbind_range(mm, start, end, new); 1201 1202 if (!list_empty(&pagelist)) { 1203 nr_failed = migrate_pages(&pagelist, new_vma_page, 1204 (unsigned long)vma, 1205 false, MIGRATE_SYNC); 1206 if (nr_failed) 1207 putback_lru_pages(&pagelist); 1208 } 1209 1210 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 1211 err = -EIO; 1212 } else 1213 putback_lru_pages(&pagelist); 1214 1215 up_write(&mm->mmap_sem); 1216 mpol_out: 1217 mpol_put(new); 1218 return err; 1219 } 1220 1221 /* 1222 * User space interface with variable sized bitmaps for nodelists. 1223 */ 1224 1225 /* Copy a node mask from user space. */ 1226 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1227 unsigned long maxnode) 1228 { 1229 unsigned long k; 1230 unsigned long nlongs; 1231 unsigned long endmask; 1232 1233 --maxnode; 1234 nodes_clear(*nodes); 1235 if (maxnode == 0 || !nmask) 1236 return 0; 1237 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1238 return -EINVAL; 1239 1240 nlongs = BITS_TO_LONGS(maxnode); 1241 if ((maxnode % BITS_PER_LONG) == 0) 1242 endmask = ~0UL; 1243 else 1244 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1245 1246 /* When the user specified more nodes than supported just check 1247 if the non supported part is all zero. */ 1248 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1249 if (nlongs > PAGE_SIZE/sizeof(long)) 1250 return -EINVAL; 1251 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1252 unsigned long t; 1253 if (get_user(t, nmask + k)) 1254 return -EFAULT; 1255 if (k == nlongs - 1) { 1256 if (t & endmask) 1257 return -EINVAL; 1258 } else if (t) 1259 return -EINVAL; 1260 } 1261 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1262 endmask = ~0UL; 1263 } 1264 1265 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1266 return -EFAULT; 1267 nodes_addr(*nodes)[nlongs-1] &= endmask; 1268 return 0; 1269 } 1270 1271 /* Copy a kernel node mask to user space */ 1272 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1273 nodemask_t *nodes) 1274 { 1275 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1276 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1277 1278 if (copy > nbytes) { 1279 if (copy > PAGE_SIZE) 1280 return -EINVAL; 1281 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1282 return -EFAULT; 1283 copy = nbytes; 1284 } 1285 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1286 } 1287 1288 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1289 unsigned long, mode, unsigned long __user *, nmask, 1290 unsigned long, maxnode, unsigned, flags) 1291 { 1292 nodemask_t nodes; 1293 int err; 1294 unsigned short mode_flags; 1295 1296 mode_flags = mode & MPOL_MODE_FLAGS; 1297 mode &= ~MPOL_MODE_FLAGS; 1298 if (mode >= MPOL_MAX) 1299 return -EINVAL; 1300 if ((mode_flags & MPOL_F_STATIC_NODES) && 1301 (mode_flags & MPOL_F_RELATIVE_NODES)) 1302 return -EINVAL; 1303 err = get_nodes(&nodes, nmask, maxnode); 1304 if (err) 1305 return err; 1306 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1307 } 1308 1309 /* Set the process memory policy */ 1310 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1311 unsigned long, maxnode) 1312 { 1313 int err; 1314 nodemask_t nodes; 1315 unsigned short flags; 1316 1317 flags = mode & MPOL_MODE_FLAGS; 1318 mode &= ~MPOL_MODE_FLAGS; 1319 if ((unsigned int)mode >= MPOL_MAX) 1320 return -EINVAL; 1321 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1322 return -EINVAL; 1323 err = get_nodes(&nodes, nmask, maxnode); 1324 if (err) 1325 return err; 1326 return do_set_mempolicy(mode, flags, &nodes); 1327 } 1328 1329 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1330 const unsigned long __user *, old_nodes, 1331 const unsigned long __user *, new_nodes) 1332 { 1333 const struct cred *cred = current_cred(), *tcred; 1334 struct mm_struct *mm = NULL; 1335 struct task_struct *task; 1336 nodemask_t task_nodes; 1337 int err; 1338 nodemask_t *old; 1339 nodemask_t *new; 1340 NODEMASK_SCRATCH(scratch); 1341 1342 if (!scratch) 1343 return -ENOMEM; 1344 1345 old = &scratch->mask1; 1346 new = &scratch->mask2; 1347 1348 err = get_nodes(old, old_nodes, maxnode); 1349 if (err) 1350 goto out; 1351 1352 err = get_nodes(new, new_nodes, maxnode); 1353 if (err) 1354 goto out; 1355 1356 /* Find the mm_struct */ 1357 rcu_read_lock(); 1358 task = pid ? find_task_by_vpid(pid) : current; 1359 if (!task) { 1360 rcu_read_unlock(); 1361 err = -ESRCH; 1362 goto out; 1363 } 1364 get_task_struct(task); 1365 1366 err = -EINVAL; 1367 1368 /* 1369 * Check if this process has the right to modify the specified 1370 * process. The right exists if the process has administrative 1371 * capabilities, superuser privileges or the same 1372 * userid as the target process. 1373 */ 1374 tcred = __task_cred(task); 1375 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1376 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1377 !capable(CAP_SYS_NICE)) { 1378 rcu_read_unlock(); 1379 err = -EPERM; 1380 goto out_put; 1381 } 1382 rcu_read_unlock(); 1383 1384 task_nodes = cpuset_mems_allowed(task); 1385 /* Is the user allowed to access the target nodes? */ 1386 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1387 err = -EPERM; 1388 goto out_put; 1389 } 1390 1391 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) { 1392 err = -EINVAL; 1393 goto out_put; 1394 } 1395 1396 err = security_task_movememory(task); 1397 if (err) 1398 goto out_put; 1399 1400 mm = get_task_mm(task); 1401 put_task_struct(task); 1402 1403 if (!mm) { 1404 err = -EINVAL; 1405 goto out; 1406 } 1407 1408 err = do_migrate_pages(mm, old, new, 1409 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1410 1411 mmput(mm); 1412 out: 1413 NODEMASK_SCRATCH_FREE(scratch); 1414 1415 return err; 1416 1417 out_put: 1418 put_task_struct(task); 1419 goto out; 1420 1421 } 1422 1423 1424 /* Retrieve NUMA policy */ 1425 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1426 unsigned long __user *, nmask, unsigned long, maxnode, 1427 unsigned long, addr, unsigned long, flags) 1428 { 1429 int err; 1430 int uninitialized_var(pval); 1431 nodemask_t nodes; 1432 1433 if (nmask != NULL && maxnode < MAX_NUMNODES) 1434 return -EINVAL; 1435 1436 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1437 1438 if (err) 1439 return err; 1440 1441 if (policy && put_user(pval, policy)) 1442 return -EFAULT; 1443 1444 if (nmask) 1445 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1446 1447 return err; 1448 } 1449 1450 #ifdef CONFIG_COMPAT 1451 1452 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1453 compat_ulong_t __user *nmask, 1454 compat_ulong_t maxnode, 1455 compat_ulong_t addr, compat_ulong_t flags) 1456 { 1457 long err; 1458 unsigned long __user *nm = NULL; 1459 unsigned long nr_bits, alloc_size; 1460 DECLARE_BITMAP(bm, MAX_NUMNODES); 1461 1462 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1463 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1464 1465 if (nmask) 1466 nm = compat_alloc_user_space(alloc_size); 1467 1468 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1469 1470 if (!err && nmask) { 1471 unsigned long copy_size; 1472 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1473 err = copy_from_user(bm, nm, copy_size); 1474 /* ensure entire bitmap is zeroed */ 1475 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1476 err |= compat_put_bitmap(nmask, bm, nr_bits); 1477 } 1478 1479 return err; 1480 } 1481 1482 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1483 compat_ulong_t maxnode) 1484 { 1485 long err = 0; 1486 unsigned long __user *nm = NULL; 1487 unsigned long nr_bits, alloc_size; 1488 DECLARE_BITMAP(bm, MAX_NUMNODES); 1489 1490 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1491 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1492 1493 if (nmask) { 1494 err = compat_get_bitmap(bm, nmask, nr_bits); 1495 nm = compat_alloc_user_space(alloc_size); 1496 err |= copy_to_user(nm, bm, alloc_size); 1497 } 1498 1499 if (err) 1500 return -EFAULT; 1501 1502 return sys_set_mempolicy(mode, nm, nr_bits+1); 1503 } 1504 1505 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1506 compat_ulong_t mode, compat_ulong_t __user *nmask, 1507 compat_ulong_t maxnode, compat_ulong_t flags) 1508 { 1509 long err = 0; 1510 unsigned long __user *nm = NULL; 1511 unsigned long nr_bits, alloc_size; 1512 nodemask_t bm; 1513 1514 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1515 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1516 1517 if (nmask) { 1518 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1519 nm = compat_alloc_user_space(alloc_size); 1520 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1521 } 1522 1523 if (err) 1524 return -EFAULT; 1525 1526 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1527 } 1528 1529 #endif 1530 1531 /* 1532 * get_vma_policy(@task, @vma, @addr) 1533 * @task - task for fallback if vma policy == default 1534 * @vma - virtual memory area whose policy is sought 1535 * @addr - address in @vma for shared policy lookup 1536 * 1537 * Returns effective policy for a VMA at specified address. 1538 * Falls back to @task or system default policy, as necessary. 1539 * Current or other task's task mempolicy and non-shared vma policies must be 1540 * protected by task_lock(task) by the caller. 1541 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1542 * count--added by the get_policy() vm_op, as appropriate--to protect against 1543 * freeing by another task. It is the caller's responsibility to free the 1544 * extra reference for shared policies. 1545 */ 1546 struct mempolicy *get_vma_policy(struct task_struct *task, 1547 struct vm_area_struct *vma, unsigned long addr) 1548 { 1549 struct mempolicy *pol = task->mempolicy; 1550 1551 if (vma) { 1552 if (vma->vm_ops && vma->vm_ops->get_policy) { 1553 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1554 addr); 1555 if (vpol) 1556 pol = vpol; 1557 } else if (vma->vm_policy) { 1558 pol = vma->vm_policy; 1559 1560 /* 1561 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1562 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1563 * count on these policies which will be dropped by 1564 * mpol_cond_put() later 1565 */ 1566 if (mpol_needs_cond_ref(pol)) 1567 mpol_get(pol); 1568 } 1569 } 1570 if (!pol) 1571 pol = &default_policy; 1572 return pol; 1573 } 1574 1575 /* 1576 * Return a nodemask representing a mempolicy for filtering nodes for 1577 * page allocation 1578 */ 1579 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1580 { 1581 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1582 if (unlikely(policy->mode == MPOL_BIND) && 1583 gfp_zone(gfp) >= policy_zone && 1584 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1585 return &policy->v.nodes; 1586 1587 return NULL; 1588 } 1589 1590 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1591 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1592 int nd) 1593 { 1594 switch (policy->mode) { 1595 case MPOL_PREFERRED: 1596 if (!(policy->flags & MPOL_F_LOCAL)) 1597 nd = policy->v.preferred_node; 1598 break; 1599 case MPOL_BIND: 1600 /* 1601 * Normally, MPOL_BIND allocations are node-local within the 1602 * allowed nodemask. However, if __GFP_THISNODE is set and the 1603 * current node isn't part of the mask, we use the zonelist for 1604 * the first node in the mask instead. 1605 */ 1606 if (unlikely(gfp & __GFP_THISNODE) && 1607 unlikely(!node_isset(nd, policy->v.nodes))) 1608 nd = first_node(policy->v.nodes); 1609 break; 1610 default: 1611 BUG(); 1612 } 1613 return node_zonelist(nd, gfp); 1614 } 1615 1616 /* Do dynamic interleaving for a process */ 1617 static unsigned interleave_nodes(struct mempolicy *policy) 1618 { 1619 unsigned nid, next; 1620 struct task_struct *me = current; 1621 1622 nid = me->il_next; 1623 next = next_node(nid, policy->v.nodes); 1624 if (next >= MAX_NUMNODES) 1625 next = first_node(policy->v.nodes); 1626 if (next < MAX_NUMNODES) 1627 me->il_next = next; 1628 return nid; 1629 } 1630 1631 /* 1632 * Depending on the memory policy provide a node from which to allocate the 1633 * next slab entry. 1634 * @policy must be protected by freeing by the caller. If @policy is 1635 * the current task's mempolicy, this protection is implicit, as only the 1636 * task can change it's policy. The system default policy requires no 1637 * such protection. 1638 */ 1639 unsigned slab_node(void) 1640 { 1641 struct mempolicy *policy; 1642 1643 if (in_interrupt()) 1644 return numa_node_id(); 1645 1646 policy = current->mempolicy; 1647 if (!policy || policy->flags & MPOL_F_LOCAL) 1648 return numa_node_id(); 1649 1650 switch (policy->mode) { 1651 case MPOL_PREFERRED: 1652 /* 1653 * handled MPOL_F_LOCAL above 1654 */ 1655 return policy->v.preferred_node; 1656 1657 case MPOL_INTERLEAVE: 1658 return interleave_nodes(policy); 1659 1660 case MPOL_BIND: { 1661 /* 1662 * Follow bind policy behavior and start allocation at the 1663 * first node. 1664 */ 1665 struct zonelist *zonelist; 1666 struct zone *zone; 1667 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1668 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1669 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1670 &policy->v.nodes, 1671 &zone); 1672 return zone ? zone->node : numa_node_id(); 1673 } 1674 1675 default: 1676 BUG(); 1677 } 1678 } 1679 1680 /* Do static interleaving for a VMA with known offset. */ 1681 static unsigned offset_il_node(struct mempolicy *pol, 1682 struct vm_area_struct *vma, unsigned long off) 1683 { 1684 unsigned nnodes = nodes_weight(pol->v.nodes); 1685 unsigned target; 1686 int c; 1687 int nid = -1; 1688 1689 if (!nnodes) 1690 return numa_node_id(); 1691 target = (unsigned int)off % nnodes; 1692 c = 0; 1693 do { 1694 nid = next_node(nid, pol->v.nodes); 1695 c++; 1696 } while (c <= target); 1697 return nid; 1698 } 1699 1700 /* Determine a node number for interleave */ 1701 static inline unsigned interleave_nid(struct mempolicy *pol, 1702 struct vm_area_struct *vma, unsigned long addr, int shift) 1703 { 1704 if (vma) { 1705 unsigned long off; 1706 1707 /* 1708 * for small pages, there is no difference between 1709 * shift and PAGE_SHIFT, so the bit-shift is safe. 1710 * for huge pages, since vm_pgoff is in units of small 1711 * pages, we need to shift off the always 0 bits to get 1712 * a useful offset. 1713 */ 1714 BUG_ON(shift < PAGE_SHIFT); 1715 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1716 off += (addr - vma->vm_start) >> shift; 1717 return offset_il_node(pol, vma, off); 1718 } else 1719 return interleave_nodes(pol); 1720 } 1721 1722 /* 1723 * Return the bit number of a random bit set in the nodemask. 1724 * (returns -1 if nodemask is empty) 1725 */ 1726 int node_random(const nodemask_t *maskp) 1727 { 1728 int w, bit = -1; 1729 1730 w = nodes_weight(*maskp); 1731 if (w) 1732 bit = bitmap_ord_to_pos(maskp->bits, 1733 get_random_int() % w, MAX_NUMNODES); 1734 return bit; 1735 } 1736 1737 #ifdef CONFIG_HUGETLBFS 1738 /* 1739 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1740 * @vma = virtual memory area whose policy is sought 1741 * @addr = address in @vma for shared policy lookup and interleave policy 1742 * @gfp_flags = for requested zone 1743 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1744 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1745 * 1746 * Returns a zonelist suitable for a huge page allocation and a pointer 1747 * to the struct mempolicy for conditional unref after allocation. 1748 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1749 * @nodemask for filtering the zonelist. 1750 * 1751 * Must be protected by get_mems_allowed() 1752 */ 1753 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1754 gfp_t gfp_flags, struct mempolicy **mpol, 1755 nodemask_t **nodemask) 1756 { 1757 struct zonelist *zl; 1758 1759 *mpol = get_vma_policy(current, vma, addr); 1760 *nodemask = NULL; /* assume !MPOL_BIND */ 1761 1762 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1763 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1764 huge_page_shift(hstate_vma(vma))), gfp_flags); 1765 } else { 1766 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1767 if ((*mpol)->mode == MPOL_BIND) 1768 *nodemask = &(*mpol)->v.nodes; 1769 } 1770 return zl; 1771 } 1772 1773 /* 1774 * init_nodemask_of_mempolicy 1775 * 1776 * If the current task's mempolicy is "default" [NULL], return 'false' 1777 * to indicate default policy. Otherwise, extract the policy nodemask 1778 * for 'bind' or 'interleave' policy into the argument nodemask, or 1779 * initialize the argument nodemask to contain the single node for 1780 * 'preferred' or 'local' policy and return 'true' to indicate presence 1781 * of non-default mempolicy. 1782 * 1783 * We don't bother with reference counting the mempolicy [mpol_get/put] 1784 * because the current task is examining it's own mempolicy and a task's 1785 * mempolicy is only ever changed by the task itself. 1786 * 1787 * N.B., it is the caller's responsibility to free a returned nodemask. 1788 */ 1789 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1790 { 1791 struct mempolicy *mempolicy; 1792 int nid; 1793 1794 if (!(mask && current->mempolicy)) 1795 return false; 1796 1797 task_lock(current); 1798 mempolicy = current->mempolicy; 1799 switch (mempolicy->mode) { 1800 case MPOL_PREFERRED: 1801 if (mempolicy->flags & MPOL_F_LOCAL) 1802 nid = numa_node_id(); 1803 else 1804 nid = mempolicy->v.preferred_node; 1805 init_nodemask_of_node(mask, nid); 1806 break; 1807 1808 case MPOL_BIND: 1809 /* Fall through */ 1810 case MPOL_INTERLEAVE: 1811 *mask = mempolicy->v.nodes; 1812 break; 1813 1814 default: 1815 BUG(); 1816 } 1817 task_unlock(current); 1818 1819 return true; 1820 } 1821 #endif 1822 1823 /* 1824 * mempolicy_nodemask_intersects 1825 * 1826 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1827 * policy. Otherwise, check for intersection between mask and the policy 1828 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1829 * policy, always return true since it may allocate elsewhere on fallback. 1830 * 1831 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1832 */ 1833 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1834 const nodemask_t *mask) 1835 { 1836 struct mempolicy *mempolicy; 1837 bool ret = true; 1838 1839 if (!mask) 1840 return ret; 1841 task_lock(tsk); 1842 mempolicy = tsk->mempolicy; 1843 if (!mempolicy) 1844 goto out; 1845 1846 switch (mempolicy->mode) { 1847 case MPOL_PREFERRED: 1848 /* 1849 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1850 * allocate from, they may fallback to other nodes when oom. 1851 * Thus, it's possible for tsk to have allocated memory from 1852 * nodes in mask. 1853 */ 1854 break; 1855 case MPOL_BIND: 1856 case MPOL_INTERLEAVE: 1857 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1858 break; 1859 default: 1860 BUG(); 1861 } 1862 out: 1863 task_unlock(tsk); 1864 return ret; 1865 } 1866 1867 /* Allocate a page in interleaved policy. 1868 Own path because it needs to do special accounting. */ 1869 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1870 unsigned nid) 1871 { 1872 struct zonelist *zl; 1873 struct page *page; 1874 1875 zl = node_zonelist(nid, gfp); 1876 page = __alloc_pages(gfp, order, zl); 1877 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1878 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1879 return page; 1880 } 1881 1882 /** 1883 * alloc_pages_vma - Allocate a page for a VMA. 1884 * 1885 * @gfp: 1886 * %GFP_USER user allocation. 1887 * %GFP_KERNEL kernel allocations, 1888 * %GFP_HIGHMEM highmem/user allocations, 1889 * %GFP_FS allocation should not call back into a file system. 1890 * %GFP_ATOMIC don't sleep. 1891 * 1892 * @order:Order of the GFP allocation. 1893 * @vma: Pointer to VMA or NULL if not available. 1894 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1895 * 1896 * This function allocates a page from the kernel page pool and applies 1897 * a NUMA policy associated with the VMA or the current process. 1898 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1899 * mm_struct of the VMA to prevent it from going away. Should be used for 1900 * all allocations for pages that will be mapped into 1901 * user space. Returns NULL when no page can be allocated. 1902 * 1903 * Should be called with the mm_sem of the vma hold. 1904 */ 1905 struct page * 1906 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1907 unsigned long addr, int node) 1908 { 1909 struct mempolicy *pol; 1910 struct zonelist *zl; 1911 struct page *page; 1912 unsigned int cpuset_mems_cookie; 1913 1914 retry_cpuset: 1915 pol = get_vma_policy(current, vma, addr); 1916 cpuset_mems_cookie = get_mems_allowed(); 1917 1918 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 1919 unsigned nid; 1920 1921 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1922 mpol_cond_put(pol); 1923 page = alloc_page_interleave(gfp, order, nid); 1924 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1925 goto retry_cpuset; 1926 1927 return page; 1928 } 1929 zl = policy_zonelist(gfp, pol, node); 1930 if (unlikely(mpol_needs_cond_ref(pol))) { 1931 /* 1932 * slow path: ref counted shared policy 1933 */ 1934 struct page *page = __alloc_pages_nodemask(gfp, order, 1935 zl, policy_nodemask(gfp, pol)); 1936 __mpol_put(pol); 1937 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1938 goto retry_cpuset; 1939 return page; 1940 } 1941 /* 1942 * fast path: default or task policy 1943 */ 1944 page = __alloc_pages_nodemask(gfp, order, zl, 1945 policy_nodemask(gfp, pol)); 1946 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1947 goto retry_cpuset; 1948 return page; 1949 } 1950 1951 /** 1952 * alloc_pages_current - Allocate pages. 1953 * 1954 * @gfp: 1955 * %GFP_USER user allocation, 1956 * %GFP_KERNEL kernel allocation, 1957 * %GFP_HIGHMEM highmem allocation, 1958 * %GFP_FS don't call back into a file system. 1959 * %GFP_ATOMIC don't sleep. 1960 * @order: Power of two of allocation size in pages. 0 is a single page. 1961 * 1962 * Allocate a page from the kernel page pool. When not in 1963 * interrupt context and apply the current process NUMA policy. 1964 * Returns NULL when no page can be allocated. 1965 * 1966 * Don't call cpuset_update_task_memory_state() unless 1967 * 1) it's ok to take cpuset_sem (can WAIT), and 1968 * 2) allocating for current task (not interrupt). 1969 */ 1970 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1971 { 1972 struct mempolicy *pol = current->mempolicy; 1973 struct page *page; 1974 unsigned int cpuset_mems_cookie; 1975 1976 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1977 pol = &default_policy; 1978 1979 retry_cpuset: 1980 cpuset_mems_cookie = get_mems_allowed(); 1981 1982 /* 1983 * No reference counting needed for current->mempolicy 1984 * nor system default_policy 1985 */ 1986 if (pol->mode == MPOL_INTERLEAVE) 1987 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1988 else 1989 page = __alloc_pages_nodemask(gfp, order, 1990 policy_zonelist(gfp, pol, numa_node_id()), 1991 policy_nodemask(gfp, pol)); 1992 1993 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1994 goto retry_cpuset; 1995 1996 return page; 1997 } 1998 EXPORT_SYMBOL(alloc_pages_current); 1999 2000 /* 2001 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2002 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2003 * with the mems_allowed returned by cpuset_mems_allowed(). This 2004 * keeps mempolicies cpuset relative after its cpuset moves. See 2005 * further kernel/cpuset.c update_nodemask(). 2006 * 2007 * current's mempolicy may be rebinded by the other task(the task that changes 2008 * cpuset's mems), so we needn't do rebind work for current task. 2009 */ 2010 2011 /* Slow path of a mempolicy duplicate */ 2012 struct mempolicy *__mpol_dup(struct mempolicy *old) 2013 { 2014 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2015 2016 if (!new) 2017 return ERR_PTR(-ENOMEM); 2018 2019 /* task's mempolicy is protected by alloc_lock */ 2020 if (old == current->mempolicy) { 2021 task_lock(current); 2022 *new = *old; 2023 task_unlock(current); 2024 } else 2025 *new = *old; 2026 2027 rcu_read_lock(); 2028 if (current_cpuset_is_being_rebound()) { 2029 nodemask_t mems = cpuset_mems_allowed(current); 2030 if (new->flags & MPOL_F_REBINDING) 2031 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2032 else 2033 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2034 } 2035 rcu_read_unlock(); 2036 atomic_set(&new->refcnt, 1); 2037 return new; 2038 } 2039 2040 /* 2041 * If *frompol needs [has] an extra ref, copy *frompol to *tompol , 2042 * eliminate the * MPOL_F_* flags that require conditional ref and 2043 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly 2044 * after return. Use the returned value. 2045 * 2046 * Allows use of a mempolicy for, e.g., multiple allocations with a single 2047 * policy lookup, even if the policy needs/has extra ref on lookup. 2048 * shmem_readahead needs this. 2049 */ 2050 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, 2051 struct mempolicy *frompol) 2052 { 2053 if (!mpol_needs_cond_ref(frompol)) 2054 return frompol; 2055 2056 *tompol = *frompol; 2057 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ 2058 __mpol_put(frompol); 2059 return tompol; 2060 } 2061 2062 /* Slow path of a mempolicy comparison */ 2063 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2064 { 2065 if (!a || !b) 2066 return false; 2067 if (a->mode != b->mode) 2068 return false; 2069 if (a->flags != b->flags) 2070 return false; 2071 if (mpol_store_user_nodemask(a)) 2072 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2073 return false; 2074 2075 switch (a->mode) { 2076 case MPOL_BIND: 2077 /* Fall through */ 2078 case MPOL_INTERLEAVE: 2079 return !!nodes_equal(a->v.nodes, b->v.nodes); 2080 case MPOL_PREFERRED: 2081 return a->v.preferred_node == b->v.preferred_node; 2082 default: 2083 BUG(); 2084 return false; 2085 } 2086 } 2087 2088 /* 2089 * Shared memory backing store policy support. 2090 * 2091 * Remember policies even when nobody has shared memory mapped. 2092 * The policies are kept in Red-Black tree linked from the inode. 2093 * They are protected by the sp->lock spinlock, which should be held 2094 * for any accesses to the tree. 2095 */ 2096 2097 /* lookup first element intersecting start-end */ 2098 /* Caller holds sp->mutex */ 2099 static struct sp_node * 2100 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2101 { 2102 struct rb_node *n = sp->root.rb_node; 2103 2104 while (n) { 2105 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2106 2107 if (start >= p->end) 2108 n = n->rb_right; 2109 else if (end <= p->start) 2110 n = n->rb_left; 2111 else 2112 break; 2113 } 2114 if (!n) 2115 return NULL; 2116 for (;;) { 2117 struct sp_node *w = NULL; 2118 struct rb_node *prev = rb_prev(n); 2119 if (!prev) 2120 break; 2121 w = rb_entry(prev, struct sp_node, nd); 2122 if (w->end <= start) 2123 break; 2124 n = prev; 2125 } 2126 return rb_entry(n, struct sp_node, nd); 2127 } 2128 2129 /* Insert a new shared policy into the list. */ 2130 /* Caller holds sp->lock */ 2131 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2132 { 2133 struct rb_node **p = &sp->root.rb_node; 2134 struct rb_node *parent = NULL; 2135 struct sp_node *nd; 2136 2137 while (*p) { 2138 parent = *p; 2139 nd = rb_entry(parent, struct sp_node, nd); 2140 if (new->start < nd->start) 2141 p = &(*p)->rb_left; 2142 else if (new->end > nd->end) 2143 p = &(*p)->rb_right; 2144 else 2145 BUG(); 2146 } 2147 rb_link_node(&new->nd, parent, p); 2148 rb_insert_color(&new->nd, &sp->root); 2149 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2150 new->policy ? new->policy->mode : 0); 2151 } 2152 2153 /* Find shared policy intersecting idx */ 2154 struct mempolicy * 2155 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2156 { 2157 struct mempolicy *pol = NULL; 2158 struct sp_node *sn; 2159 2160 if (!sp->root.rb_node) 2161 return NULL; 2162 mutex_lock(&sp->mutex); 2163 sn = sp_lookup(sp, idx, idx+1); 2164 if (sn) { 2165 mpol_get(sn->policy); 2166 pol = sn->policy; 2167 } 2168 mutex_unlock(&sp->mutex); 2169 return pol; 2170 } 2171 2172 static void sp_free(struct sp_node *n) 2173 { 2174 mpol_put(n->policy); 2175 kmem_cache_free(sn_cache, n); 2176 } 2177 2178 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2179 { 2180 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2181 rb_erase(&n->nd, &sp->root); 2182 sp_free(n); 2183 } 2184 2185 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2186 struct mempolicy *pol) 2187 { 2188 struct sp_node *n; 2189 struct mempolicy *newpol; 2190 2191 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2192 if (!n) 2193 return NULL; 2194 2195 newpol = mpol_dup(pol); 2196 if (IS_ERR(newpol)) { 2197 kmem_cache_free(sn_cache, n); 2198 return NULL; 2199 } 2200 newpol->flags |= MPOL_F_SHARED; 2201 2202 n->start = start; 2203 n->end = end; 2204 n->policy = newpol; 2205 2206 return n; 2207 } 2208 2209 /* Replace a policy range. */ 2210 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2211 unsigned long end, struct sp_node *new) 2212 { 2213 struct sp_node *n; 2214 int ret = 0; 2215 2216 mutex_lock(&sp->mutex); 2217 n = sp_lookup(sp, start, end); 2218 /* Take care of old policies in the same range. */ 2219 while (n && n->start < end) { 2220 struct rb_node *next = rb_next(&n->nd); 2221 if (n->start >= start) { 2222 if (n->end <= end) 2223 sp_delete(sp, n); 2224 else 2225 n->start = end; 2226 } else { 2227 /* Old policy spanning whole new range. */ 2228 if (n->end > end) { 2229 struct sp_node *new2; 2230 new2 = sp_alloc(end, n->end, n->policy); 2231 if (!new2) { 2232 ret = -ENOMEM; 2233 goto out; 2234 } 2235 n->end = start; 2236 sp_insert(sp, new2); 2237 break; 2238 } else 2239 n->end = start; 2240 } 2241 if (!next) 2242 break; 2243 n = rb_entry(next, struct sp_node, nd); 2244 } 2245 if (new) 2246 sp_insert(sp, new); 2247 out: 2248 mutex_unlock(&sp->mutex); 2249 return ret; 2250 } 2251 2252 /** 2253 * mpol_shared_policy_init - initialize shared policy for inode 2254 * @sp: pointer to inode shared policy 2255 * @mpol: struct mempolicy to install 2256 * 2257 * Install non-NULL @mpol in inode's shared policy rb-tree. 2258 * On entry, the current task has a reference on a non-NULL @mpol. 2259 * This must be released on exit. 2260 * This is called at get_inode() calls and we can use GFP_KERNEL. 2261 */ 2262 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2263 { 2264 int ret; 2265 2266 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2267 mutex_init(&sp->mutex); 2268 2269 if (mpol) { 2270 struct vm_area_struct pvma; 2271 struct mempolicy *new; 2272 NODEMASK_SCRATCH(scratch); 2273 2274 if (!scratch) 2275 goto put_mpol; 2276 /* contextualize the tmpfs mount point mempolicy */ 2277 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2278 if (IS_ERR(new)) 2279 goto free_scratch; /* no valid nodemask intersection */ 2280 2281 task_lock(current); 2282 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2283 task_unlock(current); 2284 if (ret) 2285 goto put_new; 2286 2287 /* Create pseudo-vma that contains just the policy */ 2288 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2289 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2290 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2291 2292 put_new: 2293 mpol_put(new); /* drop initial ref */ 2294 free_scratch: 2295 NODEMASK_SCRATCH_FREE(scratch); 2296 put_mpol: 2297 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2298 } 2299 } 2300 2301 int mpol_set_shared_policy(struct shared_policy *info, 2302 struct vm_area_struct *vma, struct mempolicy *npol) 2303 { 2304 int err; 2305 struct sp_node *new = NULL; 2306 unsigned long sz = vma_pages(vma); 2307 2308 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2309 vma->vm_pgoff, 2310 sz, npol ? npol->mode : -1, 2311 npol ? npol->flags : -1, 2312 npol ? nodes_addr(npol->v.nodes)[0] : -1); 2313 2314 if (npol) { 2315 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2316 if (!new) 2317 return -ENOMEM; 2318 } 2319 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2320 if (err && new) 2321 sp_free(new); 2322 return err; 2323 } 2324 2325 /* Free a backing policy store on inode delete. */ 2326 void mpol_free_shared_policy(struct shared_policy *p) 2327 { 2328 struct sp_node *n; 2329 struct rb_node *next; 2330 2331 if (!p->root.rb_node) 2332 return; 2333 mutex_lock(&p->mutex); 2334 next = rb_first(&p->root); 2335 while (next) { 2336 n = rb_entry(next, struct sp_node, nd); 2337 next = rb_next(&n->nd); 2338 sp_delete(p, n); 2339 } 2340 mutex_unlock(&p->mutex); 2341 } 2342 2343 /* assumes fs == KERNEL_DS */ 2344 void __init numa_policy_init(void) 2345 { 2346 nodemask_t interleave_nodes; 2347 unsigned long largest = 0; 2348 int nid, prefer = 0; 2349 2350 policy_cache = kmem_cache_create("numa_policy", 2351 sizeof(struct mempolicy), 2352 0, SLAB_PANIC, NULL); 2353 2354 sn_cache = kmem_cache_create("shared_policy_node", 2355 sizeof(struct sp_node), 2356 0, SLAB_PANIC, NULL); 2357 2358 /* 2359 * Set interleaving policy for system init. Interleaving is only 2360 * enabled across suitably sized nodes (default is >= 16MB), or 2361 * fall back to the largest node if they're all smaller. 2362 */ 2363 nodes_clear(interleave_nodes); 2364 for_each_node_state(nid, N_HIGH_MEMORY) { 2365 unsigned long total_pages = node_present_pages(nid); 2366 2367 /* Preserve the largest node */ 2368 if (largest < total_pages) { 2369 largest = total_pages; 2370 prefer = nid; 2371 } 2372 2373 /* Interleave this node? */ 2374 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2375 node_set(nid, interleave_nodes); 2376 } 2377 2378 /* All too small, use the largest */ 2379 if (unlikely(nodes_empty(interleave_nodes))) 2380 node_set(prefer, interleave_nodes); 2381 2382 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2383 printk("numa_policy_init: interleaving failed\n"); 2384 } 2385 2386 /* Reset policy of current process to default */ 2387 void numa_default_policy(void) 2388 { 2389 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2390 } 2391 2392 /* 2393 * Parse and format mempolicy from/to strings 2394 */ 2395 2396 /* 2397 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag 2398 * Used only for mpol_parse_str() and mpol_to_str() 2399 */ 2400 #define MPOL_LOCAL MPOL_MAX 2401 static const char * const policy_modes[] = 2402 { 2403 [MPOL_DEFAULT] = "default", 2404 [MPOL_PREFERRED] = "prefer", 2405 [MPOL_BIND] = "bind", 2406 [MPOL_INTERLEAVE] = "interleave", 2407 [MPOL_LOCAL] = "local" 2408 }; 2409 2410 2411 #ifdef CONFIG_TMPFS 2412 /** 2413 * mpol_parse_str - parse string to mempolicy 2414 * @str: string containing mempolicy to parse 2415 * @mpol: pointer to struct mempolicy pointer, returned on success. 2416 * @no_context: flag whether to "contextualize" the mempolicy 2417 * 2418 * Format of input: 2419 * <mode>[=<flags>][:<nodelist>] 2420 * 2421 * if @no_context is true, save the input nodemask in w.user_nodemask in 2422 * the returned mempolicy. This will be used to "clone" the mempolicy in 2423 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol 2424 * mount option. Note that if 'static' or 'relative' mode flags were 2425 * specified, the input nodemask will already have been saved. Saving 2426 * it again is redundant, but safe. 2427 * 2428 * On success, returns 0, else 1 2429 */ 2430 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) 2431 { 2432 struct mempolicy *new = NULL; 2433 unsigned short mode; 2434 unsigned short uninitialized_var(mode_flags); 2435 nodemask_t nodes; 2436 char *nodelist = strchr(str, ':'); 2437 char *flags = strchr(str, '='); 2438 int err = 1; 2439 2440 if (nodelist) { 2441 /* NUL-terminate mode or flags string */ 2442 *nodelist++ = '\0'; 2443 if (nodelist_parse(nodelist, nodes)) 2444 goto out; 2445 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) 2446 goto out; 2447 } else 2448 nodes_clear(nodes); 2449 2450 if (flags) 2451 *flags++ = '\0'; /* terminate mode string */ 2452 2453 for (mode = 0; mode <= MPOL_LOCAL; mode++) { 2454 if (!strcmp(str, policy_modes[mode])) { 2455 break; 2456 } 2457 } 2458 if (mode > MPOL_LOCAL) 2459 goto out; 2460 2461 switch (mode) { 2462 case MPOL_PREFERRED: 2463 /* 2464 * Insist on a nodelist of one node only 2465 */ 2466 if (nodelist) { 2467 char *rest = nodelist; 2468 while (isdigit(*rest)) 2469 rest++; 2470 if (*rest) 2471 goto out; 2472 } 2473 break; 2474 case MPOL_INTERLEAVE: 2475 /* 2476 * Default to online nodes with memory if no nodelist 2477 */ 2478 if (!nodelist) 2479 nodes = node_states[N_HIGH_MEMORY]; 2480 break; 2481 case MPOL_LOCAL: 2482 /* 2483 * Don't allow a nodelist; mpol_new() checks flags 2484 */ 2485 if (nodelist) 2486 goto out; 2487 mode = MPOL_PREFERRED; 2488 break; 2489 case MPOL_DEFAULT: 2490 /* 2491 * Insist on a empty nodelist 2492 */ 2493 if (!nodelist) 2494 err = 0; 2495 goto out; 2496 case MPOL_BIND: 2497 /* 2498 * Insist on a nodelist 2499 */ 2500 if (!nodelist) 2501 goto out; 2502 } 2503 2504 mode_flags = 0; 2505 if (flags) { 2506 /* 2507 * Currently, we only support two mutually exclusive 2508 * mode flags. 2509 */ 2510 if (!strcmp(flags, "static")) 2511 mode_flags |= MPOL_F_STATIC_NODES; 2512 else if (!strcmp(flags, "relative")) 2513 mode_flags |= MPOL_F_RELATIVE_NODES; 2514 else 2515 goto out; 2516 } 2517 2518 new = mpol_new(mode, mode_flags, &nodes); 2519 if (IS_ERR(new)) 2520 goto out; 2521 2522 if (no_context) { 2523 /* save for contextualization */ 2524 new->w.user_nodemask = nodes; 2525 } else { 2526 int ret; 2527 NODEMASK_SCRATCH(scratch); 2528 if (scratch) { 2529 task_lock(current); 2530 ret = mpol_set_nodemask(new, &nodes, scratch); 2531 task_unlock(current); 2532 } else 2533 ret = -ENOMEM; 2534 NODEMASK_SCRATCH_FREE(scratch); 2535 if (ret) { 2536 mpol_put(new); 2537 goto out; 2538 } 2539 } 2540 err = 0; 2541 2542 out: 2543 /* Restore string for error message */ 2544 if (nodelist) 2545 *--nodelist = ':'; 2546 if (flags) 2547 *--flags = '='; 2548 if (!err) 2549 *mpol = new; 2550 return err; 2551 } 2552 #endif /* CONFIG_TMPFS */ 2553 2554 /** 2555 * mpol_to_str - format a mempolicy structure for printing 2556 * @buffer: to contain formatted mempolicy string 2557 * @maxlen: length of @buffer 2558 * @pol: pointer to mempolicy to be formatted 2559 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask 2560 * 2561 * Convert a mempolicy into a string. 2562 * Returns the number of characters in buffer (if positive) 2563 * or an error (negative) 2564 */ 2565 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) 2566 { 2567 char *p = buffer; 2568 int l; 2569 nodemask_t nodes; 2570 unsigned short mode; 2571 unsigned short flags = pol ? pol->flags : 0; 2572 2573 /* 2574 * Sanity check: room for longest mode, flag and some nodes 2575 */ 2576 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); 2577 2578 if (!pol || pol == &default_policy) 2579 mode = MPOL_DEFAULT; 2580 else 2581 mode = pol->mode; 2582 2583 switch (mode) { 2584 case MPOL_DEFAULT: 2585 nodes_clear(nodes); 2586 break; 2587 2588 case MPOL_PREFERRED: 2589 nodes_clear(nodes); 2590 if (flags & MPOL_F_LOCAL) 2591 mode = MPOL_LOCAL; /* pseudo-policy */ 2592 else 2593 node_set(pol->v.preferred_node, nodes); 2594 break; 2595 2596 case MPOL_BIND: 2597 /* Fall through */ 2598 case MPOL_INTERLEAVE: 2599 if (no_context) 2600 nodes = pol->w.user_nodemask; 2601 else 2602 nodes = pol->v.nodes; 2603 break; 2604 2605 default: 2606 return -EINVAL; 2607 } 2608 2609 l = strlen(policy_modes[mode]); 2610 if (buffer + maxlen < p + l + 1) 2611 return -ENOSPC; 2612 2613 strcpy(p, policy_modes[mode]); 2614 p += l; 2615 2616 if (flags & MPOL_MODE_FLAGS) { 2617 if (buffer + maxlen < p + 2) 2618 return -ENOSPC; 2619 *p++ = '='; 2620 2621 /* 2622 * Currently, the only defined flags are mutually exclusive 2623 */ 2624 if (flags & MPOL_F_STATIC_NODES) 2625 p += snprintf(p, buffer + maxlen - p, "static"); 2626 else if (flags & MPOL_F_RELATIVE_NODES) 2627 p += snprintf(p, buffer + maxlen - p, "relative"); 2628 } 2629 2630 if (!nodes_empty(nodes)) { 2631 if (buffer + maxlen < p + 2) 2632 return -ENOSPC; 2633 *p++ = ':'; 2634 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2635 } 2636 return p - buffer; 2637 } 2638