xref: /linux/mm/mempolicy.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /*
611  * Apply policy to a single VMA
612  * This must be called with the mmap_sem held for writing.
613  */
614 static int vma_replace_policy(struct vm_area_struct *vma,
615 						struct mempolicy *pol)
616 {
617 	int err;
618 	struct mempolicy *old;
619 	struct mempolicy *new;
620 
621 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
622 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
623 		 vma->vm_ops, vma->vm_file,
624 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
625 
626 	new = mpol_dup(pol);
627 	if (IS_ERR(new))
628 		return PTR_ERR(new);
629 
630 	if (vma->vm_ops && vma->vm_ops->set_policy) {
631 		err = vma->vm_ops->set_policy(vma, new);
632 		if (err)
633 			goto err_out;
634 	}
635 
636 	old = vma->vm_policy;
637 	vma->vm_policy = new; /* protected by mmap_sem */
638 	mpol_put(old);
639 
640 	return 0;
641  err_out:
642 	mpol_put(new);
643 	return err;
644 }
645 
646 /* Step 2: apply policy to a range and do splits. */
647 static int mbind_range(struct mm_struct *mm, unsigned long start,
648 		       unsigned long end, struct mempolicy *new_pol)
649 {
650 	struct vm_area_struct *next;
651 	struct vm_area_struct *prev;
652 	struct vm_area_struct *vma;
653 	int err = 0;
654 	pgoff_t pgoff;
655 	unsigned long vmstart;
656 	unsigned long vmend;
657 
658 	vma = find_vma(mm, start);
659 	if (!vma || vma->vm_start > start)
660 		return -EFAULT;
661 
662 	prev = vma->vm_prev;
663 	if (start > vma->vm_start)
664 		prev = vma;
665 
666 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
667 		next = vma->vm_next;
668 		vmstart = max(start, vma->vm_start);
669 		vmend   = min(end, vma->vm_end);
670 
671 		if (mpol_equal(vma_policy(vma), new_pol))
672 			continue;
673 
674 		pgoff = vma->vm_pgoff +
675 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
676 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
677 				  vma->anon_vma, vma->vm_file, pgoff,
678 				  new_pol);
679 		if (prev) {
680 			vma = prev;
681 			next = vma->vm_next;
682 			continue;
683 		}
684 		if (vma->vm_start != vmstart) {
685 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
686 			if (err)
687 				goto out;
688 		}
689 		if (vma->vm_end != vmend) {
690 			err = split_vma(vma->vm_mm, vma, vmend, 0);
691 			if (err)
692 				goto out;
693 		}
694 		err = vma_replace_policy(vma, new_pol);
695 		if (err)
696 			goto out;
697 	}
698 
699  out:
700 	return err;
701 }
702 
703 /*
704  * Update task->flags PF_MEMPOLICY bit: set iff non-default
705  * mempolicy.  Allows more rapid checking of this (combined perhaps
706  * with other PF_* flag bits) on memory allocation hot code paths.
707  *
708  * If called from outside this file, the task 'p' should -only- be
709  * a newly forked child not yet visible on the task list, because
710  * manipulating the task flags of a visible task is not safe.
711  *
712  * The above limitation is why this routine has the funny name
713  * mpol_fix_fork_child_flag().
714  *
715  * It is also safe to call this with a task pointer of current,
716  * which the static wrapper mpol_set_task_struct_flag() does,
717  * for use within this file.
718  */
719 
720 void mpol_fix_fork_child_flag(struct task_struct *p)
721 {
722 	if (p->mempolicy)
723 		p->flags |= PF_MEMPOLICY;
724 	else
725 		p->flags &= ~PF_MEMPOLICY;
726 }
727 
728 static void mpol_set_task_struct_flag(void)
729 {
730 	mpol_fix_fork_child_flag(current);
731 }
732 
733 /* Set the process memory policy */
734 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
735 			     nodemask_t *nodes)
736 {
737 	struct mempolicy *new, *old;
738 	struct mm_struct *mm = current->mm;
739 	NODEMASK_SCRATCH(scratch);
740 	int ret;
741 
742 	if (!scratch)
743 		return -ENOMEM;
744 
745 	new = mpol_new(mode, flags, nodes);
746 	if (IS_ERR(new)) {
747 		ret = PTR_ERR(new);
748 		goto out;
749 	}
750 	/*
751 	 * prevent changing our mempolicy while show_numa_maps()
752 	 * is using it.
753 	 * Note:  do_set_mempolicy() can be called at init time
754 	 * with no 'mm'.
755 	 */
756 	if (mm)
757 		down_write(&mm->mmap_sem);
758 	task_lock(current);
759 	ret = mpol_set_nodemask(new, nodes, scratch);
760 	if (ret) {
761 		task_unlock(current);
762 		if (mm)
763 			up_write(&mm->mmap_sem);
764 		mpol_put(new);
765 		goto out;
766 	}
767 	old = current->mempolicy;
768 	current->mempolicy = new;
769 	mpol_set_task_struct_flag();
770 	if (new && new->mode == MPOL_INTERLEAVE &&
771 	    nodes_weight(new->v.nodes))
772 		current->il_next = first_node(new->v.nodes);
773 	task_unlock(current);
774 	if (mm)
775 		up_write(&mm->mmap_sem);
776 
777 	mpol_put(old);
778 	ret = 0;
779 out:
780 	NODEMASK_SCRATCH_FREE(scratch);
781 	return ret;
782 }
783 
784 /*
785  * Return nodemask for policy for get_mempolicy() query
786  *
787  * Called with task's alloc_lock held
788  */
789 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
790 {
791 	nodes_clear(*nodes);
792 	if (p == &default_policy)
793 		return;
794 
795 	switch (p->mode) {
796 	case MPOL_BIND:
797 		/* Fall through */
798 	case MPOL_INTERLEAVE:
799 		*nodes = p->v.nodes;
800 		break;
801 	case MPOL_PREFERRED:
802 		if (!(p->flags & MPOL_F_LOCAL))
803 			node_set(p->v.preferred_node, *nodes);
804 		/* else return empty node mask for local allocation */
805 		break;
806 	default:
807 		BUG();
808 	}
809 }
810 
811 static int lookup_node(struct mm_struct *mm, unsigned long addr)
812 {
813 	struct page *p;
814 	int err;
815 
816 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
817 	if (err >= 0) {
818 		err = page_to_nid(p);
819 		put_page(p);
820 	}
821 	return err;
822 }
823 
824 /* Retrieve NUMA policy */
825 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
826 			     unsigned long addr, unsigned long flags)
827 {
828 	int err;
829 	struct mm_struct *mm = current->mm;
830 	struct vm_area_struct *vma = NULL;
831 	struct mempolicy *pol = current->mempolicy;
832 
833 	if (flags &
834 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
835 		return -EINVAL;
836 
837 	if (flags & MPOL_F_MEMS_ALLOWED) {
838 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
839 			return -EINVAL;
840 		*policy = 0;	/* just so it's initialized */
841 		task_lock(current);
842 		*nmask  = cpuset_current_mems_allowed;
843 		task_unlock(current);
844 		return 0;
845 	}
846 
847 	if (flags & MPOL_F_ADDR) {
848 		/*
849 		 * Do NOT fall back to task policy if the
850 		 * vma/shared policy at addr is NULL.  We
851 		 * want to return MPOL_DEFAULT in this case.
852 		 */
853 		down_read(&mm->mmap_sem);
854 		vma = find_vma_intersection(mm, addr, addr+1);
855 		if (!vma) {
856 			up_read(&mm->mmap_sem);
857 			return -EFAULT;
858 		}
859 		if (vma->vm_ops && vma->vm_ops->get_policy)
860 			pol = vma->vm_ops->get_policy(vma, addr);
861 		else
862 			pol = vma->vm_policy;
863 	} else if (addr)
864 		return -EINVAL;
865 
866 	if (!pol)
867 		pol = &default_policy;	/* indicates default behavior */
868 
869 	if (flags & MPOL_F_NODE) {
870 		if (flags & MPOL_F_ADDR) {
871 			err = lookup_node(mm, addr);
872 			if (err < 0)
873 				goto out;
874 			*policy = err;
875 		} else if (pol == current->mempolicy &&
876 				pol->mode == MPOL_INTERLEAVE) {
877 			*policy = current->il_next;
878 		} else {
879 			err = -EINVAL;
880 			goto out;
881 		}
882 	} else {
883 		*policy = pol == &default_policy ? MPOL_DEFAULT :
884 						pol->mode;
885 		/*
886 		 * Internal mempolicy flags must be masked off before exposing
887 		 * the policy to userspace.
888 		 */
889 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
890 	}
891 
892 	if (vma) {
893 		up_read(&current->mm->mmap_sem);
894 		vma = NULL;
895 	}
896 
897 	err = 0;
898 	if (nmask) {
899 		if (mpol_store_user_nodemask(pol)) {
900 			*nmask = pol->w.user_nodemask;
901 		} else {
902 			task_lock(current);
903 			get_policy_nodemask(pol, nmask);
904 			task_unlock(current);
905 		}
906 	}
907 
908  out:
909 	mpol_cond_put(pol);
910 	if (vma)
911 		up_read(&current->mm->mmap_sem);
912 	return err;
913 }
914 
915 #ifdef CONFIG_MIGRATION
916 /*
917  * page migration
918  */
919 static void migrate_page_add(struct page *page, struct list_head *pagelist,
920 				unsigned long flags)
921 {
922 	/*
923 	 * Avoid migrating a page that is shared with others.
924 	 */
925 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
926 		if (!isolate_lru_page(page)) {
927 			list_add_tail(&page->lru, pagelist);
928 			inc_zone_page_state(page, NR_ISOLATED_ANON +
929 					    page_is_file_cache(page));
930 		}
931 	}
932 }
933 
934 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
935 {
936 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
937 }
938 
939 /*
940  * Migrate pages from one node to a target node.
941  * Returns error or the number of pages not migrated.
942  */
943 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
944 			   int flags)
945 {
946 	nodemask_t nmask;
947 	LIST_HEAD(pagelist);
948 	int err = 0;
949 
950 	nodes_clear(nmask);
951 	node_set(source, nmask);
952 
953 	/*
954 	 * This does not "check" the range but isolates all pages that
955 	 * need migration.  Between passing in the full user address
956 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
957 	 */
958 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
959 	check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
960 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
961 
962 	if (!list_empty(&pagelist)) {
963 		err = migrate_pages(&pagelist, new_node_page, dest,
964 							false, MIGRATE_SYNC);
965 		if (err)
966 			putback_lru_pages(&pagelist);
967 	}
968 
969 	return err;
970 }
971 
972 /*
973  * Move pages between the two nodesets so as to preserve the physical
974  * layout as much as possible.
975  *
976  * Returns the number of page that could not be moved.
977  */
978 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
979 		     const nodemask_t *to, int flags)
980 {
981 	int busy = 0;
982 	int err;
983 	nodemask_t tmp;
984 
985 	err = migrate_prep();
986 	if (err)
987 		return err;
988 
989 	down_read(&mm->mmap_sem);
990 
991 	err = migrate_vmas(mm, from, to, flags);
992 	if (err)
993 		goto out;
994 
995 	/*
996 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
997 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
998 	 * bit in 'tmp', and return that <source, dest> pair for migration.
999 	 * The pair of nodemasks 'to' and 'from' define the map.
1000 	 *
1001 	 * If no pair of bits is found that way, fallback to picking some
1002 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1003 	 * 'source' and 'dest' bits are the same, this represents a node
1004 	 * that will be migrating to itself, so no pages need move.
1005 	 *
1006 	 * If no bits are left in 'tmp', or if all remaining bits left
1007 	 * in 'tmp' correspond to the same bit in 'to', return false
1008 	 * (nothing left to migrate).
1009 	 *
1010 	 * This lets us pick a pair of nodes to migrate between, such that
1011 	 * if possible the dest node is not already occupied by some other
1012 	 * source node, minimizing the risk of overloading the memory on a
1013 	 * node that would happen if we migrated incoming memory to a node
1014 	 * before migrating outgoing memory source that same node.
1015 	 *
1016 	 * A single scan of tmp is sufficient.  As we go, we remember the
1017 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1018 	 * that not only moved, but what's better, moved to an empty slot
1019 	 * (d is not set in tmp), then we break out then, with that pair.
1020 	 * Otherwise when we finish scanning from_tmp, we at least have the
1021 	 * most recent <s, d> pair that moved.  If we get all the way through
1022 	 * the scan of tmp without finding any node that moved, much less
1023 	 * moved to an empty node, then there is nothing left worth migrating.
1024 	 */
1025 
1026 	tmp = *from;
1027 	while (!nodes_empty(tmp)) {
1028 		int s,d;
1029 		int source = -1;
1030 		int dest = 0;
1031 
1032 		for_each_node_mask(s, tmp) {
1033 
1034 			/*
1035 			 * do_migrate_pages() tries to maintain the relative
1036 			 * node relationship of the pages established between
1037 			 * threads and memory areas.
1038                          *
1039 			 * However if the number of source nodes is not equal to
1040 			 * the number of destination nodes we can not preserve
1041 			 * this node relative relationship.  In that case, skip
1042 			 * copying memory from a node that is in the destination
1043 			 * mask.
1044 			 *
1045 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1046 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1047 			 */
1048 
1049 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1050 						(node_isset(s, *to)))
1051 				continue;
1052 
1053 			d = node_remap(s, *from, *to);
1054 			if (s == d)
1055 				continue;
1056 
1057 			source = s;	/* Node moved. Memorize */
1058 			dest = d;
1059 
1060 			/* dest not in remaining from nodes? */
1061 			if (!node_isset(dest, tmp))
1062 				break;
1063 		}
1064 		if (source == -1)
1065 			break;
1066 
1067 		node_clear(source, tmp);
1068 		err = migrate_to_node(mm, source, dest, flags);
1069 		if (err > 0)
1070 			busy += err;
1071 		if (err < 0)
1072 			break;
1073 	}
1074 out:
1075 	up_read(&mm->mmap_sem);
1076 	if (err < 0)
1077 		return err;
1078 	return busy;
1079 
1080 }
1081 
1082 /*
1083  * Allocate a new page for page migration based on vma policy.
1084  * Start assuming that page is mapped by vma pointed to by @private.
1085  * Search forward from there, if not.  N.B., this assumes that the
1086  * list of pages handed to migrate_pages()--which is how we get here--
1087  * is in virtual address order.
1088  */
1089 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1090 {
1091 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1092 	unsigned long uninitialized_var(address);
1093 
1094 	while (vma) {
1095 		address = page_address_in_vma(page, vma);
1096 		if (address != -EFAULT)
1097 			break;
1098 		vma = vma->vm_next;
1099 	}
1100 
1101 	/*
1102 	 * if !vma, alloc_page_vma() will use task or system default policy
1103 	 */
1104 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1105 }
1106 #else
1107 
1108 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1109 				unsigned long flags)
1110 {
1111 }
1112 
1113 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1114 		     const nodemask_t *to, int flags)
1115 {
1116 	return -ENOSYS;
1117 }
1118 
1119 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1120 {
1121 	return NULL;
1122 }
1123 #endif
1124 
1125 static long do_mbind(unsigned long start, unsigned long len,
1126 		     unsigned short mode, unsigned short mode_flags,
1127 		     nodemask_t *nmask, unsigned long flags)
1128 {
1129 	struct vm_area_struct *vma;
1130 	struct mm_struct *mm = current->mm;
1131 	struct mempolicy *new;
1132 	unsigned long end;
1133 	int err;
1134 	LIST_HEAD(pagelist);
1135 
1136 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1137 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1138 		return -EINVAL;
1139 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1140 		return -EPERM;
1141 
1142 	if (start & ~PAGE_MASK)
1143 		return -EINVAL;
1144 
1145 	if (mode == MPOL_DEFAULT)
1146 		flags &= ~MPOL_MF_STRICT;
1147 
1148 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1149 	end = start + len;
1150 
1151 	if (end < start)
1152 		return -EINVAL;
1153 	if (end == start)
1154 		return 0;
1155 
1156 	new = mpol_new(mode, mode_flags, nmask);
1157 	if (IS_ERR(new))
1158 		return PTR_ERR(new);
1159 
1160 	/*
1161 	 * If we are using the default policy then operation
1162 	 * on discontinuous address spaces is okay after all
1163 	 */
1164 	if (!new)
1165 		flags |= MPOL_MF_DISCONTIG_OK;
1166 
1167 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1168 		 start, start + len, mode, mode_flags,
1169 		 nmask ? nodes_addr(*nmask)[0] : -1);
1170 
1171 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1172 
1173 		err = migrate_prep();
1174 		if (err)
1175 			goto mpol_out;
1176 	}
1177 	{
1178 		NODEMASK_SCRATCH(scratch);
1179 		if (scratch) {
1180 			down_write(&mm->mmap_sem);
1181 			task_lock(current);
1182 			err = mpol_set_nodemask(new, nmask, scratch);
1183 			task_unlock(current);
1184 			if (err)
1185 				up_write(&mm->mmap_sem);
1186 		} else
1187 			err = -ENOMEM;
1188 		NODEMASK_SCRATCH_FREE(scratch);
1189 	}
1190 	if (err)
1191 		goto mpol_out;
1192 
1193 	vma = check_range(mm, start, end, nmask,
1194 			  flags | MPOL_MF_INVERT, &pagelist);
1195 
1196 	err = PTR_ERR(vma);
1197 	if (!IS_ERR(vma)) {
1198 		int nr_failed = 0;
1199 
1200 		err = mbind_range(mm, start, end, new);
1201 
1202 		if (!list_empty(&pagelist)) {
1203 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1204 						(unsigned long)vma,
1205 						false, MIGRATE_SYNC);
1206 			if (nr_failed)
1207 				putback_lru_pages(&pagelist);
1208 		}
1209 
1210 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1211 			err = -EIO;
1212 	} else
1213 		putback_lru_pages(&pagelist);
1214 
1215 	up_write(&mm->mmap_sem);
1216  mpol_out:
1217 	mpol_put(new);
1218 	return err;
1219 }
1220 
1221 /*
1222  * User space interface with variable sized bitmaps for nodelists.
1223  */
1224 
1225 /* Copy a node mask from user space. */
1226 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1227 		     unsigned long maxnode)
1228 {
1229 	unsigned long k;
1230 	unsigned long nlongs;
1231 	unsigned long endmask;
1232 
1233 	--maxnode;
1234 	nodes_clear(*nodes);
1235 	if (maxnode == 0 || !nmask)
1236 		return 0;
1237 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1238 		return -EINVAL;
1239 
1240 	nlongs = BITS_TO_LONGS(maxnode);
1241 	if ((maxnode % BITS_PER_LONG) == 0)
1242 		endmask = ~0UL;
1243 	else
1244 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1245 
1246 	/* When the user specified more nodes than supported just check
1247 	   if the non supported part is all zero. */
1248 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1249 		if (nlongs > PAGE_SIZE/sizeof(long))
1250 			return -EINVAL;
1251 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1252 			unsigned long t;
1253 			if (get_user(t, nmask + k))
1254 				return -EFAULT;
1255 			if (k == nlongs - 1) {
1256 				if (t & endmask)
1257 					return -EINVAL;
1258 			} else if (t)
1259 				return -EINVAL;
1260 		}
1261 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1262 		endmask = ~0UL;
1263 	}
1264 
1265 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1266 		return -EFAULT;
1267 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1268 	return 0;
1269 }
1270 
1271 /* Copy a kernel node mask to user space */
1272 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1273 			      nodemask_t *nodes)
1274 {
1275 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1276 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1277 
1278 	if (copy > nbytes) {
1279 		if (copy > PAGE_SIZE)
1280 			return -EINVAL;
1281 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1282 			return -EFAULT;
1283 		copy = nbytes;
1284 	}
1285 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1286 }
1287 
1288 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1289 		unsigned long, mode, unsigned long __user *, nmask,
1290 		unsigned long, maxnode, unsigned, flags)
1291 {
1292 	nodemask_t nodes;
1293 	int err;
1294 	unsigned short mode_flags;
1295 
1296 	mode_flags = mode & MPOL_MODE_FLAGS;
1297 	mode &= ~MPOL_MODE_FLAGS;
1298 	if (mode >= MPOL_MAX)
1299 		return -EINVAL;
1300 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1301 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1302 		return -EINVAL;
1303 	err = get_nodes(&nodes, nmask, maxnode);
1304 	if (err)
1305 		return err;
1306 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1307 }
1308 
1309 /* Set the process memory policy */
1310 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1311 		unsigned long, maxnode)
1312 {
1313 	int err;
1314 	nodemask_t nodes;
1315 	unsigned short flags;
1316 
1317 	flags = mode & MPOL_MODE_FLAGS;
1318 	mode &= ~MPOL_MODE_FLAGS;
1319 	if ((unsigned int)mode >= MPOL_MAX)
1320 		return -EINVAL;
1321 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1322 		return -EINVAL;
1323 	err = get_nodes(&nodes, nmask, maxnode);
1324 	if (err)
1325 		return err;
1326 	return do_set_mempolicy(mode, flags, &nodes);
1327 }
1328 
1329 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1330 		const unsigned long __user *, old_nodes,
1331 		const unsigned long __user *, new_nodes)
1332 {
1333 	const struct cred *cred = current_cred(), *tcred;
1334 	struct mm_struct *mm = NULL;
1335 	struct task_struct *task;
1336 	nodemask_t task_nodes;
1337 	int err;
1338 	nodemask_t *old;
1339 	nodemask_t *new;
1340 	NODEMASK_SCRATCH(scratch);
1341 
1342 	if (!scratch)
1343 		return -ENOMEM;
1344 
1345 	old = &scratch->mask1;
1346 	new = &scratch->mask2;
1347 
1348 	err = get_nodes(old, old_nodes, maxnode);
1349 	if (err)
1350 		goto out;
1351 
1352 	err = get_nodes(new, new_nodes, maxnode);
1353 	if (err)
1354 		goto out;
1355 
1356 	/* Find the mm_struct */
1357 	rcu_read_lock();
1358 	task = pid ? find_task_by_vpid(pid) : current;
1359 	if (!task) {
1360 		rcu_read_unlock();
1361 		err = -ESRCH;
1362 		goto out;
1363 	}
1364 	get_task_struct(task);
1365 
1366 	err = -EINVAL;
1367 
1368 	/*
1369 	 * Check if this process has the right to modify the specified
1370 	 * process. The right exists if the process has administrative
1371 	 * capabilities, superuser privileges or the same
1372 	 * userid as the target process.
1373 	 */
1374 	tcred = __task_cred(task);
1375 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1376 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1377 	    !capable(CAP_SYS_NICE)) {
1378 		rcu_read_unlock();
1379 		err = -EPERM;
1380 		goto out_put;
1381 	}
1382 	rcu_read_unlock();
1383 
1384 	task_nodes = cpuset_mems_allowed(task);
1385 	/* Is the user allowed to access the target nodes? */
1386 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1387 		err = -EPERM;
1388 		goto out_put;
1389 	}
1390 
1391 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1392 		err = -EINVAL;
1393 		goto out_put;
1394 	}
1395 
1396 	err = security_task_movememory(task);
1397 	if (err)
1398 		goto out_put;
1399 
1400 	mm = get_task_mm(task);
1401 	put_task_struct(task);
1402 
1403 	if (!mm) {
1404 		err = -EINVAL;
1405 		goto out;
1406 	}
1407 
1408 	err = do_migrate_pages(mm, old, new,
1409 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1410 
1411 	mmput(mm);
1412 out:
1413 	NODEMASK_SCRATCH_FREE(scratch);
1414 
1415 	return err;
1416 
1417 out_put:
1418 	put_task_struct(task);
1419 	goto out;
1420 
1421 }
1422 
1423 
1424 /* Retrieve NUMA policy */
1425 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1426 		unsigned long __user *, nmask, unsigned long, maxnode,
1427 		unsigned long, addr, unsigned long, flags)
1428 {
1429 	int err;
1430 	int uninitialized_var(pval);
1431 	nodemask_t nodes;
1432 
1433 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1434 		return -EINVAL;
1435 
1436 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1437 
1438 	if (err)
1439 		return err;
1440 
1441 	if (policy && put_user(pval, policy))
1442 		return -EFAULT;
1443 
1444 	if (nmask)
1445 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1446 
1447 	return err;
1448 }
1449 
1450 #ifdef CONFIG_COMPAT
1451 
1452 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1453 				     compat_ulong_t __user *nmask,
1454 				     compat_ulong_t maxnode,
1455 				     compat_ulong_t addr, compat_ulong_t flags)
1456 {
1457 	long err;
1458 	unsigned long __user *nm = NULL;
1459 	unsigned long nr_bits, alloc_size;
1460 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1461 
1462 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1463 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1464 
1465 	if (nmask)
1466 		nm = compat_alloc_user_space(alloc_size);
1467 
1468 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1469 
1470 	if (!err && nmask) {
1471 		unsigned long copy_size;
1472 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1473 		err = copy_from_user(bm, nm, copy_size);
1474 		/* ensure entire bitmap is zeroed */
1475 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1476 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1477 	}
1478 
1479 	return err;
1480 }
1481 
1482 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1483 				     compat_ulong_t maxnode)
1484 {
1485 	long err = 0;
1486 	unsigned long __user *nm = NULL;
1487 	unsigned long nr_bits, alloc_size;
1488 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1489 
1490 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1491 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1492 
1493 	if (nmask) {
1494 		err = compat_get_bitmap(bm, nmask, nr_bits);
1495 		nm = compat_alloc_user_space(alloc_size);
1496 		err |= copy_to_user(nm, bm, alloc_size);
1497 	}
1498 
1499 	if (err)
1500 		return -EFAULT;
1501 
1502 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1503 }
1504 
1505 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1506 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1507 			     compat_ulong_t maxnode, compat_ulong_t flags)
1508 {
1509 	long err = 0;
1510 	unsigned long __user *nm = NULL;
1511 	unsigned long nr_bits, alloc_size;
1512 	nodemask_t bm;
1513 
1514 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1515 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1516 
1517 	if (nmask) {
1518 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1519 		nm = compat_alloc_user_space(alloc_size);
1520 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1521 	}
1522 
1523 	if (err)
1524 		return -EFAULT;
1525 
1526 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1527 }
1528 
1529 #endif
1530 
1531 /*
1532  * get_vma_policy(@task, @vma, @addr)
1533  * @task - task for fallback if vma policy == default
1534  * @vma   - virtual memory area whose policy is sought
1535  * @addr  - address in @vma for shared policy lookup
1536  *
1537  * Returns effective policy for a VMA at specified address.
1538  * Falls back to @task or system default policy, as necessary.
1539  * Current or other task's task mempolicy and non-shared vma policies must be
1540  * protected by task_lock(task) by the caller.
1541  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1542  * count--added by the get_policy() vm_op, as appropriate--to protect against
1543  * freeing by another task.  It is the caller's responsibility to free the
1544  * extra reference for shared policies.
1545  */
1546 struct mempolicy *get_vma_policy(struct task_struct *task,
1547 		struct vm_area_struct *vma, unsigned long addr)
1548 {
1549 	struct mempolicy *pol = task->mempolicy;
1550 
1551 	if (vma) {
1552 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1553 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1554 									addr);
1555 			if (vpol)
1556 				pol = vpol;
1557 		} else if (vma->vm_policy) {
1558 			pol = vma->vm_policy;
1559 
1560 			/*
1561 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1562 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1563 			 * count on these policies which will be dropped by
1564 			 * mpol_cond_put() later
1565 			 */
1566 			if (mpol_needs_cond_ref(pol))
1567 				mpol_get(pol);
1568 		}
1569 	}
1570 	if (!pol)
1571 		pol = &default_policy;
1572 	return pol;
1573 }
1574 
1575 /*
1576  * Return a nodemask representing a mempolicy for filtering nodes for
1577  * page allocation
1578  */
1579 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1580 {
1581 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1582 	if (unlikely(policy->mode == MPOL_BIND) &&
1583 			gfp_zone(gfp) >= policy_zone &&
1584 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1585 		return &policy->v.nodes;
1586 
1587 	return NULL;
1588 }
1589 
1590 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1591 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1592 	int nd)
1593 {
1594 	switch (policy->mode) {
1595 	case MPOL_PREFERRED:
1596 		if (!(policy->flags & MPOL_F_LOCAL))
1597 			nd = policy->v.preferred_node;
1598 		break;
1599 	case MPOL_BIND:
1600 		/*
1601 		 * Normally, MPOL_BIND allocations are node-local within the
1602 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1603 		 * current node isn't part of the mask, we use the zonelist for
1604 		 * the first node in the mask instead.
1605 		 */
1606 		if (unlikely(gfp & __GFP_THISNODE) &&
1607 				unlikely(!node_isset(nd, policy->v.nodes)))
1608 			nd = first_node(policy->v.nodes);
1609 		break;
1610 	default:
1611 		BUG();
1612 	}
1613 	return node_zonelist(nd, gfp);
1614 }
1615 
1616 /* Do dynamic interleaving for a process */
1617 static unsigned interleave_nodes(struct mempolicy *policy)
1618 {
1619 	unsigned nid, next;
1620 	struct task_struct *me = current;
1621 
1622 	nid = me->il_next;
1623 	next = next_node(nid, policy->v.nodes);
1624 	if (next >= MAX_NUMNODES)
1625 		next = first_node(policy->v.nodes);
1626 	if (next < MAX_NUMNODES)
1627 		me->il_next = next;
1628 	return nid;
1629 }
1630 
1631 /*
1632  * Depending on the memory policy provide a node from which to allocate the
1633  * next slab entry.
1634  * @policy must be protected by freeing by the caller.  If @policy is
1635  * the current task's mempolicy, this protection is implicit, as only the
1636  * task can change it's policy.  The system default policy requires no
1637  * such protection.
1638  */
1639 unsigned slab_node(void)
1640 {
1641 	struct mempolicy *policy;
1642 
1643 	if (in_interrupt())
1644 		return numa_node_id();
1645 
1646 	policy = current->mempolicy;
1647 	if (!policy || policy->flags & MPOL_F_LOCAL)
1648 		return numa_node_id();
1649 
1650 	switch (policy->mode) {
1651 	case MPOL_PREFERRED:
1652 		/*
1653 		 * handled MPOL_F_LOCAL above
1654 		 */
1655 		return policy->v.preferred_node;
1656 
1657 	case MPOL_INTERLEAVE:
1658 		return interleave_nodes(policy);
1659 
1660 	case MPOL_BIND: {
1661 		/*
1662 		 * Follow bind policy behavior and start allocation at the
1663 		 * first node.
1664 		 */
1665 		struct zonelist *zonelist;
1666 		struct zone *zone;
1667 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1668 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1669 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1670 							&policy->v.nodes,
1671 							&zone);
1672 		return zone ? zone->node : numa_node_id();
1673 	}
1674 
1675 	default:
1676 		BUG();
1677 	}
1678 }
1679 
1680 /* Do static interleaving for a VMA with known offset. */
1681 static unsigned offset_il_node(struct mempolicy *pol,
1682 		struct vm_area_struct *vma, unsigned long off)
1683 {
1684 	unsigned nnodes = nodes_weight(pol->v.nodes);
1685 	unsigned target;
1686 	int c;
1687 	int nid = -1;
1688 
1689 	if (!nnodes)
1690 		return numa_node_id();
1691 	target = (unsigned int)off % nnodes;
1692 	c = 0;
1693 	do {
1694 		nid = next_node(nid, pol->v.nodes);
1695 		c++;
1696 	} while (c <= target);
1697 	return nid;
1698 }
1699 
1700 /* Determine a node number for interleave */
1701 static inline unsigned interleave_nid(struct mempolicy *pol,
1702 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1703 {
1704 	if (vma) {
1705 		unsigned long off;
1706 
1707 		/*
1708 		 * for small pages, there is no difference between
1709 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1710 		 * for huge pages, since vm_pgoff is in units of small
1711 		 * pages, we need to shift off the always 0 bits to get
1712 		 * a useful offset.
1713 		 */
1714 		BUG_ON(shift < PAGE_SHIFT);
1715 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1716 		off += (addr - vma->vm_start) >> shift;
1717 		return offset_il_node(pol, vma, off);
1718 	} else
1719 		return interleave_nodes(pol);
1720 }
1721 
1722 /*
1723  * Return the bit number of a random bit set in the nodemask.
1724  * (returns -1 if nodemask is empty)
1725  */
1726 int node_random(const nodemask_t *maskp)
1727 {
1728 	int w, bit = -1;
1729 
1730 	w = nodes_weight(*maskp);
1731 	if (w)
1732 		bit = bitmap_ord_to_pos(maskp->bits,
1733 			get_random_int() % w, MAX_NUMNODES);
1734 	return bit;
1735 }
1736 
1737 #ifdef CONFIG_HUGETLBFS
1738 /*
1739  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1740  * @vma = virtual memory area whose policy is sought
1741  * @addr = address in @vma for shared policy lookup and interleave policy
1742  * @gfp_flags = for requested zone
1743  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1744  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1745  *
1746  * Returns a zonelist suitable for a huge page allocation and a pointer
1747  * to the struct mempolicy for conditional unref after allocation.
1748  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1749  * @nodemask for filtering the zonelist.
1750  *
1751  * Must be protected by get_mems_allowed()
1752  */
1753 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1754 				gfp_t gfp_flags, struct mempolicy **mpol,
1755 				nodemask_t **nodemask)
1756 {
1757 	struct zonelist *zl;
1758 
1759 	*mpol = get_vma_policy(current, vma, addr);
1760 	*nodemask = NULL;	/* assume !MPOL_BIND */
1761 
1762 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1763 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1764 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1765 	} else {
1766 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1767 		if ((*mpol)->mode == MPOL_BIND)
1768 			*nodemask = &(*mpol)->v.nodes;
1769 	}
1770 	return zl;
1771 }
1772 
1773 /*
1774  * init_nodemask_of_mempolicy
1775  *
1776  * If the current task's mempolicy is "default" [NULL], return 'false'
1777  * to indicate default policy.  Otherwise, extract the policy nodemask
1778  * for 'bind' or 'interleave' policy into the argument nodemask, or
1779  * initialize the argument nodemask to contain the single node for
1780  * 'preferred' or 'local' policy and return 'true' to indicate presence
1781  * of non-default mempolicy.
1782  *
1783  * We don't bother with reference counting the mempolicy [mpol_get/put]
1784  * because the current task is examining it's own mempolicy and a task's
1785  * mempolicy is only ever changed by the task itself.
1786  *
1787  * N.B., it is the caller's responsibility to free a returned nodemask.
1788  */
1789 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1790 {
1791 	struct mempolicy *mempolicy;
1792 	int nid;
1793 
1794 	if (!(mask && current->mempolicy))
1795 		return false;
1796 
1797 	task_lock(current);
1798 	mempolicy = current->mempolicy;
1799 	switch (mempolicy->mode) {
1800 	case MPOL_PREFERRED:
1801 		if (mempolicy->flags & MPOL_F_LOCAL)
1802 			nid = numa_node_id();
1803 		else
1804 			nid = mempolicy->v.preferred_node;
1805 		init_nodemask_of_node(mask, nid);
1806 		break;
1807 
1808 	case MPOL_BIND:
1809 		/* Fall through */
1810 	case MPOL_INTERLEAVE:
1811 		*mask =  mempolicy->v.nodes;
1812 		break;
1813 
1814 	default:
1815 		BUG();
1816 	}
1817 	task_unlock(current);
1818 
1819 	return true;
1820 }
1821 #endif
1822 
1823 /*
1824  * mempolicy_nodemask_intersects
1825  *
1826  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1827  * policy.  Otherwise, check for intersection between mask and the policy
1828  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1829  * policy, always return true since it may allocate elsewhere on fallback.
1830  *
1831  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1832  */
1833 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1834 					const nodemask_t *mask)
1835 {
1836 	struct mempolicy *mempolicy;
1837 	bool ret = true;
1838 
1839 	if (!mask)
1840 		return ret;
1841 	task_lock(tsk);
1842 	mempolicy = tsk->mempolicy;
1843 	if (!mempolicy)
1844 		goto out;
1845 
1846 	switch (mempolicy->mode) {
1847 	case MPOL_PREFERRED:
1848 		/*
1849 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1850 		 * allocate from, they may fallback to other nodes when oom.
1851 		 * Thus, it's possible for tsk to have allocated memory from
1852 		 * nodes in mask.
1853 		 */
1854 		break;
1855 	case MPOL_BIND:
1856 	case MPOL_INTERLEAVE:
1857 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1858 		break;
1859 	default:
1860 		BUG();
1861 	}
1862 out:
1863 	task_unlock(tsk);
1864 	return ret;
1865 }
1866 
1867 /* Allocate a page in interleaved policy.
1868    Own path because it needs to do special accounting. */
1869 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1870 					unsigned nid)
1871 {
1872 	struct zonelist *zl;
1873 	struct page *page;
1874 
1875 	zl = node_zonelist(nid, gfp);
1876 	page = __alloc_pages(gfp, order, zl);
1877 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1878 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1879 	return page;
1880 }
1881 
1882 /**
1883  * 	alloc_pages_vma	- Allocate a page for a VMA.
1884  *
1885  * 	@gfp:
1886  *      %GFP_USER    user allocation.
1887  *      %GFP_KERNEL  kernel allocations,
1888  *      %GFP_HIGHMEM highmem/user allocations,
1889  *      %GFP_FS      allocation should not call back into a file system.
1890  *      %GFP_ATOMIC  don't sleep.
1891  *
1892  *	@order:Order of the GFP allocation.
1893  * 	@vma:  Pointer to VMA or NULL if not available.
1894  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1895  *
1896  * 	This function allocates a page from the kernel page pool and applies
1897  *	a NUMA policy associated with the VMA or the current process.
1898  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1899  *	mm_struct of the VMA to prevent it from going away. Should be used for
1900  *	all allocations for pages that will be mapped into
1901  * 	user space. Returns NULL when no page can be allocated.
1902  *
1903  *	Should be called with the mm_sem of the vma hold.
1904  */
1905 struct page *
1906 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1907 		unsigned long addr, int node)
1908 {
1909 	struct mempolicy *pol;
1910 	struct zonelist *zl;
1911 	struct page *page;
1912 	unsigned int cpuset_mems_cookie;
1913 
1914 retry_cpuset:
1915 	pol = get_vma_policy(current, vma, addr);
1916 	cpuset_mems_cookie = get_mems_allowed();
1917 
1918 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1919 		unsigned nid;
1920 
1921 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1922 		mpol_cond_put(pol);
1923 		page = alloc_page_interleave(gfp, order, nid);
1924 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1925 			goto retry_cpuset;
1926 
1927 		return page;
1928 	}
1929 	zl = policy_zonelist(gfp, pol, node);
1930 	if (unlikely(mpol_needs_cond_ref(pol))) {
1931 		/*
1932 		 * slow path: ref counted shared policy
1933 		 */
1934 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1935 						zl, policy_nodemask(gfp, pol));
1936 		__mpol_put(pol);
1937 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1938 			goto retry_cpuset;
1939 		return page;
1940 	}
1941 	/*
1942 	 * fast path:  default or task policy
1943 	 */
1944 	page = __alloc_pages_nodemask(gfp, order, zl,
1945 				      policy_nodemask(gfp, pol));
1946 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1947 		goto retry_cpuset;
1948 	return page;
1949 }
1950 
1951 /**
1952  * 	alloc_pages_current - Allocate pages.
1953  *
1954  *	@gfp:
1955  *		%GFP_USER   user allocation,
1956  *      	%GFP_KERNEL kernel allocation,
1957  *      	%GFP_HIGHMEM highmem allocation,
1958  *      	%GFP_FS     don't call back into a file system.
1959  *      	%GFP_ATOMIC don't sleep.
1960  *	@order: Power of two of allocation size in pages. 0 is a single page.
1961  *
1962  *	Allocate a page from the kernel page pool.  When not in
1963  *	interrupt context and apply the current process NUMA policy.
1964  *	Returns NULL when no page can be allocated.
1965  *
1966  *	Don't call cpuset_update_task_memory_state() unless
1967  *	1) it's ok to take cpuset_sem (can WAIT), and
1968  *	2) allocating for current task (not interrupt).
1969  */
1970 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1971 {
1972 	struct mempolicy *pol = current->mempolicy;
1973 	struct page *page;
1974 	unsigned int cpuset_mems_cookie;
1975 
1976 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1977 		pol = &default_policy;
1978 
1979 retry_cpuset:
1980 	cpuset_mems_cookie = get_mems_allowed();
1981 
1982 	/*
1983 	 * No reference counting needed for current->mempolicy
1984 	 * nor system default_policy
1985 	 */
1986 	if (pol->mode == MPOL_INTERLEAVE)
1987 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1988 	else
1989 		page = __alloc_pages_nodemask(gfp, order,
1990 				policy_zonelist(gfp, pol, numa_node_id()),
1991 				policy_nodemask(gfp, pol));
1992 
1993 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1994 		goto retry_cpuset;
1995 
1996 	return page;
1997 }
1998 EXPORT_SYMBOL(alloc_pages_current);
1999 
2000 /*
2001  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2002  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2003  * with the mems_allowed returned by cpuset_mems_allowed().  This
2004  * keeps mempolicies cpuset relative after its cpuset moves.  See
2005  * further kernel/cpuset.c update_nodemask().
2006  *
2007  * current's mempolicy may be rebinded by the other task(the task that changes
2008  * cpuset's mems), so we needn't do rebind work for current task.
2009  */
2010 
2011 /* Slow path of a mempolicy duplicate */
2012 struct mempolicy *__mpol_dup(struct mempolicy *old)
2013 {
2014 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2015 
2016 	if (!new)
2017 		return ERR_PTR(-ENOMEM);
2018 
2019 	/* task's mempolicy is protected by alloc_lock */
2020 	if (old == current->mempolicy) {
2021 		task_lock(current);
2022 		*new = *old;
2023 		task_unlock(current);
2024 	} else
2025 		*new = *old;
2026 
2027 	rcu_read_lock();
2028 	if (current_cpuset_is_being_rebound()) {
2029 		nodemask_t mems = cpuset_mems_allowed(current);
2030 		if (new->flags & MPOL_F_REBINDING)
2031 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2032 		else
2033 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2034 	}
2035 	rcu_read_unlock();
2036 	atomic_set(&new->refcnt, 1);
2037 	return new;
2038 }
2039 
2040 /*
2041  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2042  * eliminate the * MPOL_F_* flags that require conditional ref and
2043  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
2044  * after return.  Use the returned value.
2045  *
2046  * Allows use of a mempolicy for, e.g., multiple allocations with a single
2047  * policy lookup, even if the policy needs/has extra ref on lookup.
2048  * shmem_readahead needs this.
2049  */
2050 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2051 						struct mempolicy *frompol)
2052 {
2053 	if (!mpol_needs_cond_ref(frompol))
2054 		return frompol;
2055 
2056 	*tompol = *frompol;
2057 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
2058 	__mpol_put(frompol);
2059 	return tompol;
2060 }
2061 
2062 /* Slow path of a mempolicy comparison */
2063 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2064 {
2065 	if (!a || !b)
2066 		return false;
2067 	if (a->mode != b->mode)
2068 		return false;
2069 	if (a->flags != b->flags)
2070 		return false;
2071 	if (mpol_store_user_nodemask(a))
2072 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2073 			return false;
2074 
2075 	switch (a->mode) {
2076 	case MPOL_BIND:
2077 		/* Fall through */
2078 	case MPOL_INTERLEAVE:
2079 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2080 	case MPOL_PREFERRED:
2081 		return a->v.preferred_node == b->v.preferred_node;
2082 	default:
2083 		BUG();
2084 		return false;
2085 	}
2086 }
2087 
2088 /*
2089  * Shared memory backing store policy support.
2090  *
2091  * Remember policies even when nobody has shared memory mapped.
2092  * The policies are kept in Red-Black tree linked from the inode.
2093  * They are protected by the sp->lock spinlock, which should be held
2094  * for any accesses to the tree.
2095  */
2096 
2097 /* lookup first element intersecting start-end */
2098 /* Caller holds sp->mutex */
2099 static struct sp_node *
2100 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2101 {
2102 	struct rb_node *n = sp->root.rb_node;
2103 
2104 	while (n) {
2105 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2106 
2107 		if (start >= p->end)
2108 			n = n->rb_right;
2109 		else if (end <= p->start)
2110 			n = n->rb_left;
2111 		else
2112 			break;
2113 	}
2114 	if (!n)
2115 		return NULL;
2116 	for (;;) {
2117 		struct sp_node *w = NULL;
2118 		struct rb_node *prev = rb_prev(n);
2119 		if (!prev)
2120 			break;
2121 		w = rb_entry(prev, struct sp_node, nd);
2122 		if (w->end <= start)
2123 			break;
2124 		n = prev;
2125 	}
2126 	return rb_entry(n, struct sp_node, nd);
2127 }
2128 
2129 /* Insert a new shared policy into the list. */
2130 /* Caller holds sp->lock */
2131 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2132 {
2133 	struct rb_node **p = &sp->root.rb_node;
2134 	struct rb_node *parent = NULL;
2135 	struct sp_node *nd;
2136 
2137 	while (*p) {
2138 		parent = *p;
2139 		nd = rb_entry(parent, struct sp_node, nd);
2140 		if (new->start < nd->start)
2141 			p = &(*p)->rb_left;
2142 		else if (new->end > nd->end)
2143 			p = &(*p)->rb_right;
2144 		else
2145 			BUG();
2146 	}
2147 	rb_link_node(&new->nd, parent, p);
2148 	rb_insert_color(&new->nd, &sp->root);
2149 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2150 		 new->policy ? new->policy->mode : 0);
2151 }
2152 
2153 /* Find shared policy intersecting idx */
2154 struct mempolicy *
2155 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2156 {
2157 	struct mempolicy *pol = NULL;
2158 	struct sp_node *sn;
2159 
2160 	if (!sp->root.rb_node)
2161 		return NULL;
2162 	mutex_lock(&sp->mutex);
2163 	sn = sp_lookup(sp, idx, idx+1);
2164 	if (sn) {
2165 		mpol_get(sn->policy);
2166 		pol = sn->policy;
2167 	}
2168 	mutex_unlock(&sp->mutex);
2169 	return pol;
2170 }
2171 
2172 static void sp_free(struct sp_node *n)
2173 {
2174 	mpol_put(n->policy);
2175 	kmem_cache_free(sn_cache, n);
2176 }
2177 
2178 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2179 {
2180 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2181 	rb_erase(&n->nd, &sp->root);
2182 	sp_free(n);
2183 }
2184 
2185 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2186 				struct mempolicy *pol)
2187 {
2188 	struct sp_node *n;
2189 	struct mempolicy *newpol;
2190 
2191 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2192 	if (!n)
2193 		return NULL;
2194 
2195 	newpol = mpol_dup(pol);
2196 	if (IS_ERR(newpol)) {
2197 		kmem_cache_free(sn_cache, n);
2198 		return NULL;
2199 	}
2200 	newpol->flags |= MPOL_F_SHARED;
2201 
2202 	n->start = start;
2203 	n->end = end;
2204 	n->policy = newpol;
2205 
2206 	return n;
2207 }
2208 
2209 /* Replace a policy range. */
2210 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2211 				 unsigned long end, struct sp_node *new)
2212 {
2213 	struct sp_node *n;
2214 	int ret = 0;
2215 
2216 	mutex_lock(&sp->mutex);
2217 	n = sp_lookup(sp, start, end);
2218 	/* Take care of old policies in the same range. */
2219 	while (n && n->start < end) {
2220 		struct rb_node *next = rb_next(&n->nd);
2221 		if (n->start >= start) {
2222 			if (n->end <= end)
2223 				sp_delete(sp, n);
2224 			else
2225 				n->start = end;
2226 		} else {
2227 			/* Old policy spanning whole new range. */
2228 			if (n->end > end) {
2229 				struct sp_node *new2;
2230 				new2 = sp_alloc(end, n->end, n->policy);
2231 				if (!new2) {
2232 					ret = -ENOMEM;
2233 					goto out;
2234 				}
2235 				n->end = start;
2236 				sp_insert(sp, new2);
2237 				break;
2238 			} else
2239 				n->end = start;
2240 		}
2241 		if (!next)
2242 			break;
2243 		n = rb_entry(next, struct sp_node, nd);
2244 	}
2245 	if (new)
2246 		sp_insert(sp, new);
2247 out:
2248 	mutex_unlock(&sp->mutex);
2249 	return ret;
2250 }
2251 
2252 /**
2253  * mpol_shared_policy_init - initialize shared policy for inode
2254  * @sp: pointer to inode shared policy
2255  * @mpol:  struct mempolicy to install
2256  *
2257  * Install non-NULL @mpol in inode's shared policy rb-tree.
2258  * On entry, the current task has a reference on a non-NULL @mpol.
2259  * This must be released on exit.
2260  * This is called at get_inode() calls and we can use GFP_KERNEL.
2261  */
2262 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2263 {
2264 	int ret;
2265 
2266 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2267 	mutex_init(&sp->mutex);
2268 
2269 	if (mpol) {
2270 		struct vm_area_struct pvma;
2271 		struct mempolicy *new;
2272 		NODEMASK_SCRATCH(scratch);
2273 
2274 		if (!scratch)
2275 			goto put_mpol;
2276 		/* contextualize the tmpfs mount point mempolicy */
2277 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2278 		if (IS_ERR(new))
2279 			goto free_scratch; /* no valid nodemask intersection */
2280 
2281 		task_lock(current);
2282 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2283 		task_unlock(current);
2284 		if (ret)
2285 			goto put_new;
2286 
2287 		/* Create pseudo-vma that contains just the policy */
2288 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2289 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2290 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2291 
2292 put_new:
2293 		mpol_put(new);			/* drop initial ref */
2294 free_scratch:
2295 		NODEMASK_SCRATCH_FREE(scratch);
2296 put_mpol:
2297 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2298 	}
2299 }
2300 
2301 int mpol_set_shared_policy(struct shared_policy *info,
2302 			struct vm_area_struct *vma, struct mempolicy *npol)
2303 {
2304 	int err;
2305 	struct sp_node *new = NULL;
2306 	unsigned long sz = vma_pages(vma);
2307 
2308 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2309 		 vma->vm_pgoff,
2310 		 sz, npol ? npol->mode : -1,
2311 		 npol ? npol->flags : -1,
2312 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2313 
2314 	if (npol) {
2315 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2316 		if (!new)
2317 			return -ENOMEM;
2318 	}
2319 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2320 	if (err && new)
2321 		sp_free(new);
2322 	return err;
2323 }
2324 
2325 /* Free a backing policy store on inode delete. */
2326 void mpol_free_shared_policy(struct shared_policy *p)
2327 {
2328 	struct sp_node *n;
2329 	struct rb_node *next;
2330 
2331 	if (!p->root.rb_node)
2332 		return;
2333 	mutex_lock(&p->mutex);
2334 	next = rb_first(&p->root);
2335 	while (next) {
2336 		n = rb_entry(next, struct sp_node, nd);
2337 		next = rb_next(&n->nd);
2338 		sp_delete(p, n);
2339 	}
2340 	mutex_unlock(&p->mutex);
2341 }
2342 
2343 /* assumes fs == KERNEL_DS */
2344 void __init numa_policy_init(void)
2345 {
2346 	nodemask_t interleave_nodes;
2347 	unsigned long largest = 0;
2348 	int nid, prefer = 0;
2349 
2350 	policy_cache = kmem_cache_create("numa_policy",
2351 					 sizeof(struct mempolicy),
2352 					 0, SLAB_PANIC, NULL);
2353 
2354 	sn_cache = kmem_cache_create("shared_policy_node",
2355 				     sizeof(struct sp_node),
2356 				     0, SLAB_PANIC, NULL);
2357 
2358 	/*
2359 	 * Set interleaving policy for system init. Interleaving is only
2360 	 * enabled across suitably sized nodes (default is >= 16MB), or
2361 	 * fall back to the largest node if they're all smaller.
2362 	 */
2363 	nodes_clear(interleave_nodes);
2364 	for_each_node_state(nid, N_HIGH_MEMORY) {
2365 		unsigned long total_pages = node_present_pages(nid);
2366 
2367 		/* Preserve the largest node */
2368 		if (largest < total_pages) {
2369 			largest = total_pages;
2370 			prefer = nid;
2371 		}
2372 
2373 		/* Interleave this node? */
2374 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2375 			node_set(nid, interleave_nodes);
2376 	}
2377 
2378 	/* All too small, use the largest */
2379 	if (unlikely(nodes_empty(interleave_nodes)))
2380 		node_set(prefer, interleave_nodes);
2381 
2382 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2383 		printk("numa_policy_init: interleaving failed\n");
2384 }
2385 
2386 /* Reset policy of current process to default */
2387 void numa_default_policy(void)
2388 {
2389 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2390 }
2391 
2392 /*
2393  * Parse and format mempolicy from/to strings
2394  */
2395 
2396 /*
2397  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2398  * Used only for mpol_parse_str() and mpol_to_str()
2399  */
2400 #define MPOL_LOCAL MPOL_MAX
2401 static const char * const policy_modes[] =
2402 {
2403 	[MPOL_DEFAULT]    = "default",
2404 	[MPOL_PREFERRED]  = "prefer",
2405 	[MPOL_BIND]       = "bind",
2406 	[MPOL_INTERLEAVE] = "interleave",
2407 	[MPOL_LOCAL]      = "local"
2408 };
2409 
2410 
2411 #ifdef CONFIG_TMPFS
2412 /**
2413  * mpol_parse_str - parse string to mempolicy
2414  * @str:  string containing mempolicy to parse
2415  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2416  * @no_context:  flag whether to "contextualize" the mempolicy
2417  *
2418  * Format of input:
2419  *	<mode>[=<flags>][:<nodelist>]
2420  *
2421  * if @no_context is true, save the input nodemask in w.user_nodemask in
2422  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2423  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2424  * mount option.  Note that if 'static' or 'relative' mode flags were
2425  * specified, the input nodemask will already have been saved.  Saving
2426  * it again is redundant, but safe.
2427  *
2428  * On success, returns 0, else 1
2429  */
2430 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2431 {
2432 	struct mempolicy *new = NULL;
2433 	unsigned short mode;
2434 	unsigned short uninitialized_var(mode_flags);
2435 	nodemask_t nodes;
2436 	char *nodelist = strchr(str, ':');
2437 	char *flags = strchr(str, '=');
2438 	int err = 1;
2439 
2440 	if (nodelist) {
2441 		/* NUL-terminate mode or flags string */
2442 		*nodelist++ = '\0';
2443 		if (nodelist_parse(nodelist, nodes))
2444 			goto out;
2445 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2446 			goto out;
2447 	} else
2448 		nodes_clear(nodes);
2449 
2450 	if (flags)
2451 		*flags++ = '\0';	/* terminate mode string */
2452 
2453 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2454 		if (!strcmp(str, policy_modes[mode])) {
2455 			break;
2456 		}
2457 	}
2458 	if (mode > MPOL_LOCAL)
2459 		goto out;
2460 
2461 	switch (mode) {
2462 	case MPOL_PREFERRED:
2463 		/*
2464 		 * Insist on a nodelist of one node only
2465 		 */
2466 		if (nodelist) {
2467 			char *rest = nodelist;
2468 			while (isdigit(*rest))
2469 				rest++;
2470 			if (*rest)
2471 				goto out;
2472 		}
2473 		break;
2474 	case MPOL_INTERLEAVE:
2475 		/*
2476 		 * Default to online nodes with memory if no nodelist
2477 		 */
2478 		if (!nodelist)
2479 			nodes = node_states[N_HIGH_MEMORY];
2480 		break;
2481 	case MPOL_LOCAL:
2482 		/*
2483 		 * Don't allow a nodelist;  mpol_new() checks flags
2484 		 */
2485 		if (nodelist)
2486 			goto out;
2487 		mode = MPOL_PREFERRED;
2488 		break;
2489 	case MPOL_DEFAULT:
2490 		/*
2491 		 * Insist on a empty nodelist
2492 		 */
2493 		if (!nodelist)
2494 			err = 0;
2495 		goto out;
2496 	case MPOL_BIND:
2497 		/*
2498 		 * Insist on a nodelist
2499 		 */
2500 		if (!nodelist)
2501 			goto out;
2502 	}
2503 
2504 	mode_flags = 0;
2505 	if (flags) {
2506 		/*
2507 		 * Currently, we only support two mutually exclusive
2508 		 * mode flags.
2509 		 */
2510 		if (!strcmp(flags, "static"))
2511 			mode_flags |= MPOL_F_STATIC_NODES;
2512 		else if (!strcmp(flags, "relative"))
2513 			mode_flags |= MPOL_F_RELATIVE_NODES;
2514 		else
2515 			goto out;
2516 	}
2517 
2518 	new = mpol_new(mode, mode_flags, &nodes);
2519 	if (IS_ERR(new))
2520 		goto out;
2521 
2522 	if (no_context) {
2523 		/* save for contextualization */
2524 		new->w.user_nodemask = nodes;
2525 	} else {
2526 		int ret;
2527 		NODEMASK_SCRATCH(scratch);
2528 		if (scratch) {
2529 			task_lock(current);
2530 			ret = mpol_set_nodemask(new, &nodes, scratch);
2531 			task_unlock(current);
2532 		} else
2533 			ret = -ENOMEM;
2534 		NODEMASK_SCRATCH_FREE(scratch);
2535 		if (ret) {
2536 			mpol_put(new);
2537 			goto out;
2538 		}
2539 	}
2540 	err = 0;
2541 
2542 out:
2543 	/* Restore string for error message */
2544 	if (nodelist)
2545 		*--nodelist = ':';
2546 	if (flags)
2547 		*--flags = '=';
2548 	if (!err)
2549 		*mpol = new;
2550 	return err;
2551 }
2552 #endif /* CONFIG_TMPFS */
2553 
2554 /**
2555  * mpol_to_str - format a mempolicy structure for printing
2556  * @buffer:  to contain formatted mempolicy string
2557  * @maxlen:  length of @buffer
2558  * @pol:  pointer to mempolicy to be formatted
2559  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2560  *
2561  * Convert a mempolicy into a string.
2562  * Returns the number of characters in buffer (if positive)
2563  * or an error (negative)
2564  */
2565 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2566 {
2567 	char *p = buffer;
2568 	int l;
2569 	nodemask_t nodes;
2570 	unsigned short mode;
2571 	unsigned short flags = pol ? pol->flags : 0;
2572 
2573 	/*
2574 	 * Sanity check:  room for longest mode, flag and some nodes
2575 	 */
2576 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2577 
2578 	if (!pol || pol == &default_policy)
2579 		mode = MPOL_DEFAULT;
2580 	else
2581 		mode = pol->mode;
2582 
2583 	switch (mode) {
2584 	case MPOL_DEFAULT:
2585 		nodes_clear(nodes);
2586 		break;
2587 
2588 	case MPOL_PREFERRED:
2589 		nodes_clear(nodes);
2590 		if (flags & MPOL_F_LOCAL)
2591 			mode = MPOL_LOCAL;	/* pseudo-policy */
2592 		else
2593 			node_set(pol->v.preferred_node, nodes);
2594 		break;
2595 
2596 	case MPOL_BIND:
2597 		/* Fall through */
2598 	case MPOL_INTERLEAVE:
2599 		if (no_context)
2600 			nodes = pol->w.user_nodemask;
2601 		else
2602 			nodes = pol->v.nodes;
2603 		break;
2604 
2605 	default:
2606 		return -EINVAL;
2607 	}
2608 
2609 	l = strlen(policy_modes[mode]);
2610 	if (buffer + maxlen < p + l + 1)
2611 		return -ENOSPC;
2612 
2613 	strcpy(p, policy_modes[mode]);
2614 	p += l;
2615 
2616 	if (flags & MPOL_MODE_FLAGS) {
2617 		if (buffer + maxlen < p + 2)
2618 			return -ENOSPC;
2619 		*p++ = '=';
2620 
2621 		/*
2622 		 * Currently, the only defined flags are mutually exclusive
2623 		 */
2624 		if (flags & MPOL_F_STATIC_NODES)
2625 			p += snprintf(p, buffer + maxlen - p, "static");
2626 		else if (flags & MPOL_F_RELATIVE_NODES)
2627 			p += snprintf(p, buffer + maxlen - p, "relative");
2628 	}
2629 
2630 	if (!nodes_empty(nodes)) {
2631 		if (buffer + maxlen < p + 2)
2632 			return -ENOSPC;
2633 		*p++ = ':';
2634 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2635 	}
2636 	return p - buffer;
2637 }
2638