xref: /linux/mm/mempolicy.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 	int err = 0;
614 	struct mempolicy *old = vma->vm_policy;
615 
616 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 		 vma->vm_ops, vma->vm_file,
619 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620 
621 	if (vma->vm_ops && vma->vm_ops->set_policy)
622 		err = vma->vm_ops->set_policy(vma, new);
623 	if (!err) {
624 		mpol_get(new);
625 		vma->vm_policy = new;
626 		mpol_put(old);
627 	}
628 	return err;
629 }
630 
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 		       unsigned long end, struct mempolicy *new_pol)
634 {
635 	struct vm_area_struct *next;
636 	struct vm_area_struct *prev;
637 	struct vm_area_struct *vma;
638 	int err = 0;
639 	pgoff_t pgoff;
640 	unsigned long vmstart;
641 	unsigned long vmend;
642 
643 	vma = find_vma(mm, start);
644 	if (!vma || vma->vm_start > start)
645 		return -EFAULT;
646 
647 	prev = vma->vm_prev;
648 	if (start > vma->vm_start)
649 		prev = vma;
650 
651 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
652 		next = vma->vm_next;
653 		vmstart = max(start, vma->vm_start);
654 		vmend   = min(end, vma->vm_end);
655 
656 		if (mpol_equal(vma_policy(vma), new_pol))
657 			continue;
658 
659 		pgoff = vma->vm_pgoff +
660 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
661 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
662 				  vma->anon_vma, vma->vm_file, pgoff,
663 				  new_pol);
664 		if (prev) {
665 			vma = prev;
666 			next = vma->vm_next;
667 			continue;
668 		}
669 		if (vma->vm_start != vmstart) {
670 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
671 			if (err)
672 				goto out;
673 		}
674 		if (vma->vm_end != vmend) {
675 			err = split_vma(vma->vm_mm, vma, vmend, 0);
676 			if (err)
677 				goto out;
678 		}
679 		err = policy_vma(vma, new_pol);
680 		if (err)
681 			goto out;
682 	}
683 
684  out:
685 	return err;
686 }
687 
688 /*
689  * Update task->flags PF_MEMPOLICY bit: set iff non-default
690  * mempolicy.  Allows more rapid checking of this (combined perhaps
691  * with other PF_* flag bits) on memory allocation hot code paths.
692  *
693  * If called from outside this file, the task 'p' should -only- be
694  * a newly forked child not yet visible on the task list, because
695  * manipulating the task flags of a visible task is not safe.
696  *
697  * The above limitation is why this routine has the funny name
698  * mpol_fix_fork_child_flag().
699  *
700  * It is also safe to call this with a task pointer of current,
701  * which the static wrapper mpol_set_task_struct_flag() does,
702  * for use within this file.
703  */
704 
705 void mpol_fix_fork_child_flag(struct task_struct *p)
706 {
707 	if (p->mempolicy)
708 		p->flags |= PF_MEMPOLICY;
709 	else
710 		p->flags &= ~PF_MEMPOLICY;
711 }
712 
713 static void mpol_set_task_struct_flag(void)
714 {
715 	mpol_fix_fork_child_flag(current);
716 }
717 
718 /* Set the process memory policy */
719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
720 			     nodemask_t *nodes)
721 {
722 	struct mempolicy *new, *old;
723 	struct mm_struct *mm = current->mm;
724 	NODEMASK_SCRATCH(scratch);
725 	int ret;
726 
727 	if (!scratch)
728 		return -ENOMEM;
729 
730 	new = mpol_new(mode, flags, nodes);
731 	if (IS_ERR(new)) {
732 		ret = PTR_ERR(new);
733 		goto out;
734 	}
735 	/*
736 	 * prevent changing our mempolicy while show_numa_maps()
737 	 * is using it.
738 	 * Note:  do_set_mempolicy() can be called at init time
739 	 * with no 'mm'.
740 	 */
741 	if (mm)
742 		down_write(&mm->mmap_sem);
743 	task_lock(current);
744 	ret = mpol_set_nodemask(new, nodes, scratch);
745 	if (ret) {
746 		task_unlock(current);
747 		if (mm)
748 			up_write(&mm->mmap_sem);
749 		mpol_put(new);
750 		goto out;
751 	}
752 	old = current->mempolicy;
753 	current->mempolicy = new;
754 	mpol_set_task_struct_flag();
755 	if (new && new->mode == MPOL_INTERLEAVE &&
756 	    nodes_weight(new->v.nodes))
757 		current->il_next = first_node(new->v.nodes);
758 	task_unlock(current);
759 	if (mm)
760 		up_write(&mm->mmap_sem);
761 
762 	mpol_put(old);
763 	ret = 0;
764 out:
765 	NODEMASK_SCRATCH_FREE(scratch);
766 	return ret;
767 }
768 
769 /*
770  * Return nodemask for policy for get_mempolicy() query
771  *
772  * Called with task's alloc_lock held
773  */
774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
775 {
776 	nodes_clear(*nodes);
777 	if (p == &default_policy)
778 		return;
779 
780 	switch (p->mode) {
781 	case MPOL_BIND:
782 		/* Fall through */
783 	case MPOL_INTERLEAVE:
784 		*nodes = p->v.nodes;
785 		break;
786 	case MPOL_PREFERRED:
787 		if (!(p->flags & MPOL_F_LOCAL))
788 			node_set(p->v.preferred_node, *nodes);
789 		/* else return empty node mask for local allocation */
790 		break;
791 	default:
792 		BUG();
793 	}
794 }
795 
796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
797 {
798 	struct page *p;
799 	int err;
800 
801 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
802 	if (err >= 0) {
803 		err = page_to_nid(p);
804 		put_page(p);
805 	}
806 	return err;
807 }
808 
809 /* Retrieve NUMA policy */
810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
811 			     unsigned long addr, unsigned long flags)
812 {
813 	int err;
814 	struct mm_struct *mm = current->mm;
815 	struct vm_area_struct *vma = NULL;
816 	struct mempolicy *pol = current->mempolicy;
817 
818 	if (flags &
819 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
820 		return -EINVAL;
821 
822 	if (flags & MPOL_F_MEMS_ALLOWED) {
823 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
824 			return -EINVAL;
825 		*policy = 0;	/* just so it's initialized */
826 		task_lock(current);
827 		*nmask  = cpuset_current_mems_allowed;
828 		task_unlock(current);
829 		return 0;
830 	}
831 
832 	if (flags & MPOL_F_ADDR) {
833 		/*
834 		 * Do NOT fall back to task policy if the
835 		 * vma/shared policy at addr is NULL.  We
836 		 * want to return MPOL_DEFAULT in this case.
837 		 */
838 		down_read(&mm->mmap_sem);
839 		vma = find_vma_intersection(mm, addr, addr+1);
840 		if (!vma) {
841 			up_read(&mm->mmap_sem);
842 			return -EFAULT;
843 		}
844 		if (vma->vm_ops && vma->vm_ops->get_policy)
845 			pol = vma->vm_ops->get_policy(vma, addr);
846 		else
847 			pol = vma->vm_policy;
848 	} else if (addr)
849 		return -EINVAL;
850 
851 	if (!pol)
852 		pol = &default_policy;	/* indicates default behavior */
853 
854 	if (flags & MPOL_F_NODE) {
855 		if (flags & MPOL_F_ADDR) {
856 			err = lookup_node(mm, addr);
857 			if (err < 0)
858 				goto out;
859 			*policy = err;
860 		} else if (pol == current->mempolicy &&
861 				pol->mode == MPOL_INTERLEAVE) {
862 			*policy = current->il_next;
863 		} else {
864 			err = -EINVAL;
865 			goto out;
866 		}
867 	} else {
868 		*policy = pol == &default_policy ? MPOL_DEFAULT :
869 						pol->mode;
870 		/*
871 		 * Internal mempolicy flags must be masked off before exposing
872 		 * the policy to userspace.
873 		 */
874 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
875 	}
876 
877 	if (vma) {
878 		up_read(&current->mm->mmap_sem);
879 		vma = NULL;
880 	}
881 
882 	err = 0;
883 	if (nmask) {
884 		if (mpol_store_user_nodemask(pol)) {
885 			*nmask = pol->w.user_nodemask;
886 		} else {
887 			task_lock(current);
888 			get_policy_nodemask(pol, nmask);
889 			task_unlock(current);
890 		}
891 	}
892 
893  out:
894 	mpol_cond_put(pol);
895 	if (vma)
896 		up_read(&current->mm->mmap_sem);
897 	return err;
898 }
899 
900 #ifdef CONFIG_MIGRATION
901 /*
902  * page migration
903  */
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 				unsigned long flags)
906 {
907 	/*
908 	 * Avoid migrating a page that is shared with others.
909 	 */
910 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
911 		if (!isolate_lru_page(page)) {
912 			list_add_tail(&page->lru, pagelist);
913 			inc_zone_page_state(page, NR_ISOLATED_ANON +
914 					    page_is_file_cache(page));
915 		}
916 	}
917 }
918 
919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
920 {
921 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
922 }
923 
924 /*
925  * Migrate pages from one node to a target node.
926  * Returns error or the number of pages not migrated.
927  */
928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
929 			   int flags)
930 {
931 	nodemask_t nmask;
932 	LIST_HEAD(pagelist);
933 	int err = 0;
934 	struct vm_area_struct *vma;
935 
936 	nodes_clear(nmask);
937 	node_set(source, nmask);
938 
939 	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
940 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
941 	if (IS_ERR(vma))
942 		return PTR_ERR(vma);
943 
944 	if (!list_empty(&pagelist)) {
945 		err = migrate_pages(&pagelist, new_node_page, dest,
946 							false, MIGRATE_SYNC);
947 		if (err)
948 			putback_lru_pages(&pagelist);
949 	}
950 
951 	return err;
952 }
953 
954 /*
955  * Move pages between the two nodesets so as to preserve the physical
956  * layout as much as possible.
957  *
958  * Returns the number of page that could not be moved.
959  */
960 int do_migrate_pages(struct mm_struct *mm,
961 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
962 {
963 	int busy = 0;
964 	int err;
965 	nodemask_t tmp;
966 
967 	err = migrate_prep();
968 	if (err)
969 		return err;
970 
971 	down_read(&mm->mmap_sem);
972 
973 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
974 	if (err)
975 		goto out;
976 
977 	/*
978 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
979 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
980 	 * bit in 'tmp', and return that <source, dest> pair for migration.
981 	 * The pair of nodemasks 'to' and 'from' define the map.
982 	 *
983 	 * If no pair of bits is found that way, fallback to picking some
984 	 * pair of 'source' and 'dest' bits that are not the same.  If the
985 	 * 'source' and 'dest' bits are the same, this represents a node
986 	 * that will be migrating to itself, so no pages need move.
987 	 *
988 	 * If no bits are left in 'tmp', or if all remaining bits left
989 	 * in 'tmp' correspond to the same bit in 'to', return false
990 	 * (nothing left to migrate).
991 	 *
992 	 * This lets us pick a pair of nodes to migrate between, such that
993 	 * if possible the dest node is not already occupied by some other
994 	 * source node, minimizing the risk of overloading the memory on a
995 	 * node that would happen if we migrated incoming memory to a node
996 	 * before migrating outgoing memory source that same node.
997 	 *
998 	 * A single scan of tmp is sufficient.  As we go, we remember the
999 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1000 	 * that not only moved, but what's better, moved to an empty slot
1001 	 * (d is not set in tmp), then we break out then, with that pair.
1002 	 * Otherwise when we finish scanning from_tmp, we at least have the
1003 	 * most recent <s, d> pair that moved.  If we get all the way through
1004 	 * the scan of tmp without finding any node that moved, much less
1005 	 * moved to an empty node, then there is nothing left worth migrating.
1006 	 */
1007 
1008 	tmp = *from_nodes;
1009 	while (!nodes_empty(tmp)) {
1010 		int s,d;
1011 		int source = -1;
1012 		int dest = 0;
1013 
1014 		for_each_node_mask(s, tmp) {
1015 			d = node_remap(s, *from_nodes, *to_nodes);
1016 			if (s == d)
1017 				continue;
1018 
1019 			source = s;	/* Node moved. Memorize */
1020 			dest = d;
1021 
1022 			/* dest not in remaining from nodes? */
1023 			if (!node_isset(dest, tmp))
1024 				break;
1025 		}
1026 		if (source == -1)
1027 			break;
1028 
1029 		node_clear(source, tmp);
1030 		err = migrate_to_node(mm, source, dest, flags);
1031 		if (err > 0)
1032 			busy += err;
1033 		if (err < 0)
1034 			break;
1035 	}
1036 out:
1037 	up_read(&mm->mmap_sem);
1038 	if (err < 0)
1039 		return err;
1040 	return busy;
1041 
1042 }
1043 
1044 /*
1045  * Allocate a new page for page migration based on vma policy.
1046  * Start assuming that page is mapped by vma pointed to by @private.
1047  * Search forward from there, if not.  N.B., this assumes that the
1048  * list of pages handed to migrate_pages()--which is how we get here--
1049  * is in virtual address order.
1050  */
1051 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1052 {
1053 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1054 	unsigned long uninitialized_var(address);
1055 
1056 	while (vma) {
1057 		address = page_address_in_vma(page, vma);
1058 		if (address != -EFAULT)
1059 			break;
1060 		vma = vma->vm_next;
1061 	}
1062 
1063 	/*
1064 	 * if !vma, alloc_page_vma() will use task or system default policy
1065 	 */
1066 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1067 }
1068 #else
1069 
1070 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1071 				unsigned long flags)
1072 {
1073 }
1074 
1075 int do_migrate_pages(struct mm_struct *mm,
1076 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1077 {
1078 	return -ENOSYS;
1079 }
1080 
1081 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1082 {
1083 	return NULL;
1084 }
1085 #endif
1086 
1087 static long do_mbind(unsigned long start, unsigned long len,
1088 		     unsigned short mode, unsigned short mode_flags,
1089 		     nodemask_t *nmask, unsigned long flags)
1090 {
1091 	struct vm_area_struct *vma;
1092 	struct mm_struct *mm = current->mm;
1093 	struct mempolicy *new;
1094 	unsigned long end;
1095 	int err;
1096 	LIST_HEAD(pagelist);
1097 
1098 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1099 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1100 		return -EINVAL;
1101 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1102 		return -EPERM;
1103 
1104 	if (start & ~PAGE_MASK)
1105 		return -EINVAL;
1106 
1107 	if (mode == MPOL_DEFAULT)
1108 		flags &= ~MPOL_MF_STRICT;
1109 
1110 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111 	end = start + len;
1112 
1113 	if (end < start)
1114 		return -EINVAL;
1115 	if (end == start)
1116 		return 0;
1117 
1118 	new = mpol_new(mode, mode_flags, nmask);
1119 	if (IS_ERR(new))
1120 		return PTR_ERR(new);
1121 
1122 	/*
1123 	 * If we are using the default policy then operation
1124 	 * on discontinuous address spaces is okay after all
1125 	 */
1126 	if (!new)
1127 		flags |= MPOL_MF_DISCONTIG_OK;
1128 
1129 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1130 		 start, start + len, mode, mode_flags,
1131 		 nmask ? nodes_addr(*nmask)[0] : -1);
1132 
1133 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1134 
1135 		err = migrate_prep();
1136 		if (err)
1137 			goto mpol_out;
1138 	}
1139 	{
1140 		NODEMASK_SCRATCH(scratch);
1141 		if (scratch) {
1142 			down_write(&mm->mmap_sem);
1143 			task_lock(current);
1144 			err = mpol_set_nodemask(new, nmask, scratch);
1145 			task_unlock(current);
1146 			if (err)
1147 				up_write(&mm->mmap_sem);
1148 		} else
1149 			err = -ENOMEM;
1150 		NODEMASK_SCRATCH_FREE(scratch);
1151 	}
1152 	if (err)
1153 		goto mpol_out;
1154 
1155 	vma = check_range(mm, start, end, nmask,
1156 			  flags | MPOL_MF_INVERT, &pagelist);
1157 
1158 	err = PTR_ERR(vma);
1159 	if (!IS_ERR(vma)) {
1160 		int nr_failed = 0;
1161 
1162 		err = mbind_range(mm, start, end, new);
1163 
1164 		if (!list_empty(&pagelist)) {
1165 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1166 						(unsigned long)vma,
1167 						false, true);
1168 			if (nr_failed)
1169 				putback_lru_pages(&pagelist);
1170 		}
1171 
1172 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1173 			err = -EIO;
1174 	} else
1175 		putback_lru_pages(&pagelist);
1176 
1177 	up_write(&mm->mmap_sem);
1178  mpol_out:
1179 	mpol_put(new);
1180 	return err;
1181 }
1182 
1183 /*
1184  * User space interface with variable sized bitmaps for nodelists.
1185  */
1186 
1187 /* Copy a node mask from user space. */
1188 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1189 		     unsigned long maxnode)
1190 {
1191 	unsigned long k;
1192 	unsigned long nlongs;
1193 	unsigned long endmask;
1194 
1195 	--maxnode;
1196 	nodes_clear(*nodes);
1197 	if (maxnode == 0 || !nmask)
1198 		return 0;
1199 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1200 		return -EINVAL;
1201 
1202 	nlongs = BITS_TO_LONGS(maxnode);
1203 	if ((maxnode % BITS_PER_LONG) == 0)
1204 		endmask = ~0UL;
1205 	else
1206 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1207 
1208 	/* When the user specified more nodes than supported just check
1209 	   if the non supported part is all zero. */
1210 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1211 		if (nlongs > PAGE_SIZE/sizeof(long))
1212 			return -EINVAL;
1213 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1214 			unsigned long t;
1215 			if (get_user(t, nmask + k))
1216 				return -EFAULT;
1217 			if (k == nlongs - 1) {
1218 				if (t & endmask)
1219 					return -EINVAL;
1220 			} else if (t)
1221 				return -EINVAL;
1222 		}
1223 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1224 		endmask = ~0UL;
1225 	}
1226 
1227 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1228 		return -EFAULT;
1229 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1230 	return 0;
1231 }
1232 
1233 /* Copy a kernel node mask to user space */
1234 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1235 			      nodemask_t *nodes)
1236 {
1237 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1238 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1239 
1240 	if (copy > nbytes) {
1241 		if (copy > PAGE_SIZE)
1242 			return -EINVAL;
1243 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1244 			return -EFAULT;
1245 		copy = nbytes;
1246 	}
1247 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1248 }
1249 
1250 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1251 		unsigned long, mode, unsigned long __user *, nmask,
1252 		unsigned long, maxnode, unsigned, flags)
1253 {
1254 	nodemask_t nodes;
1255 	int err;
1256 	unsigned short mode_flags;
1257 
1258 	mode_flags = mode & MPOL_MODE_FLAGS;
1259 	mode &= ~MPOL_MODE_FLAGS;
1260 	if (mode >= MPOL_MAX)
1261 		return -EINVAL;
1262 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1263 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1264 		return -EINVAL;
1265 	err = get_nodes(&nodes, nmask, maxnode);
1266 	if (err)
1267 		return err;
1268 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1269 }
1270 
1271 /* Set the process memory policy */
1272 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1273 		unsigned long, maxnode)
1274 {
1275 	int err;
1276 	nodemask_t nodes;
1277 	unsigned short flags;
1278 
1279 	flags = mode & MPOL_MODE_FLAGS;
1280 	mode &= ~MPOL_MODE_FLAGS;
1281 	if ((unsigned int)mode >= MPOL_MAX)
1282 		return -EINVAL;
1283 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1284 		return -EINVAL;
1285 	err = get_nodes(&nodes, nmask, maxnode);
1286 	if (err)
1287 		return err;
1288 	return do_set_mempolicy(mode, flags, &nodes);
1289 }
1290 
1291 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1292 		const unsigned long __user *, old_nodes,
1293 		const unsigned long __user *, new_nodes)
1294 {
1295 	const struct cred *cred = current_cred(), *tcred;
1296 	struct mm_struct *mm = NULL;
1297 	struct task_struct *task;
1298 	nodemask_t task_nodes;
1299 	int err;
1300 	nodemask_t *old;
1301 	nodemask_t *new;
1302 	NODEMASK_SCRATCH(scratch);
1303 
1304 	if (!scratch)
1305 		return -ENOMEM;
1306 
1307 	old = &scratch->mask1;
1308 	new = &scratch->mask2;
1309 
1310 	err = get_nodes(old, old_nodes, maxnode);
1311 	if (err)
1312 		goto out;
1313 
1314 	err = get_nodes(new, new_nodes, maxnode);
1315 	if (err)
1316 		goto out;
1317 
1318 	/* Find the mm_struct */
1319 	rcu_read_lock();
1320 	task = pid ? find_task_by_vpid(pid) : current;
1321 	if (!task) {
1322 		rcu_read_unlock();
1323 		err = -ESRCH;
1324 		goto out;
1325 	}
1326 	get_task_struct(task);
1327 
1328 	err = -EINVAL;
1329 
1330 	/*
1331 	 * Check if this process has the right to modify the specified
1332 	 * process. The right exists if the process has administrative
1333 	 * capabilities, superuser privileges or the same
1334 	 * userid as the target process.
1335 	 */
1336 	tcred = __task_cred(task);
1337 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1338 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1339 	    !capable(CAP_SYS_NICE)) {
1340 		rcu_read_unlock();
1341 		err = -EPERM;
1342 		goto out_put;
1343 	}
1344 	rcu_read_unlock();
1345 
1346 	task_nodes = cpuset_mems_allowed(task);
1347 	/* Is the user allowed to access the target nodes? */
1348 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1349 		err = -EPERM;
1350 		goto out_put;
1351 	}
1352 
1353 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1354 		err = -EINVAL;
1355 		goto out_put;
1356 	}
1357 
1358 	err = security_task_movememory(task);
1359 	if (err)
1360 		goto out_put;
1361 
1362 	mm = get_task_mm(task);
1363 	put_task_struct(task);
1364 	if (mm)
1365 		err = do_migrate_pages(mm, old, new,
1366 			capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1367 	else
1368 		err = -EINVAL;
1369 
1370 	mmput(mm);
1371 out:
1372 	NODEMASK_SCRATCH_FREE(scratch);
1373 
1374 	return err;
1375 
1376 out_put:
1377 	put_task_struct(task);
1378 	goto out;
1379 
1380 }
1381 
1382 
1383 /* Retrieve NUMA policy */
1384 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1385 		unsigned long __user *, nmask, unsigned long, maxnode,
1386 		unsigned long, addr, unsigned long, flags)
1387 {
1388 	int err;
1389 	int uninitialized_var(pval);
1390 	nodemask_t nodes;
1391 
1392 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1393 		return -EINVAL;
1394 
1395 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1396 
1397 	if (err)
1398 		return err;
1399 
1400 	if (policy && put_user(pval, policy))
1401 		return -EFAULT;
1402 
1403 	if (nmask)
1404 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1405 
1406 	return err;
1407 }
1408 
1409 #ifdef CONFIG_COMPAT
1410 
1411 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1412 				     compat_ulong_t __user *nmask,
1413 				     compat_ulong_t maxnode,
1414 				     compat_ulong_t addr, compat_ulong_t flags)
1415 {
1416 	long err;
1417 	unsigned long __user *nm = NULL;
1418 	unsigned long nr_bits, alloc_size;
1419 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1420 
1421 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1422 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1423 
1424 	if (nmask)
1425 		nm = compat_alloc_user_space(alloc_size);
1426 
1427 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1428 
1429 	if (!err && nmask) {
1430 		unsigned long copy_size;
1431 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1432 		err = copy_from_user(bm, nm, copy_size);
1433 		/* ensure entire bitmap is zeroed */
1434 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1435 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1436 	}
1437 
1438 	return err;
1439 }
1440 
1441 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1442 				     compat_ulong_t maxnode)
1443 {
1444 	long err = 0;
1445 	unsigned long __user *nm = NULL;
1446 	unsigned long nr_bits, alloc_size;
1447 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1448 
1449 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1450 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1451 
1452 	if (nmask) {
1453 		err = compat_get_bitmap(bm, nmask, nr_bits);
1454 		nm = compat_alloc_user_space(alloc_size);
1455 		err |= copy_to_user(nm, bm, alloc_size);
1456 	}
1457 
1458 	if (err)
1459 		return -EFAULT;
1460 
1461 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1462 }
1463 
1464 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1465 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1466 			     compat_ulong_t maxnode, compat_ulong_t flags)
1467 {
1468 	long err = 0;
1469 	unsigned long __user *nm = NULL;
1470 	unsigned long nr_bits, alloc_size;
1471 	nodemask_t bm;
1472 
1473 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1474 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1475 
1476 	if (nmask) {
1477 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1478 		nm = compat_alloc_user_space(alloc_size);
1479 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1480 	}
1481 
1482 	if (err)
1483 		return -EFAULT;
1484 
1485 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1486 }
1487 
1488 #endif
1489 
1490 /*
1491  * get_vma_policy(@task, @vma, @addr)
1492  * @task - task for fallback if vma policy == default
1493  * @vma   - virtual memory area whose policy is sought
1494  * @addr  - address in @vma for shared policy lookup
1495  *
1496  * Returns effective policy for a VMA at specified address.
1497  * Falls back to @task or system default policy, as necessary.
1498  * Current or other task's task mempolicy and non-shared vma policies
1499  * are protected by the task's mmap_sem, which must be held for read by
1500  * the caller.
1501  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1502  * count--added by the get_policy() vm_op, as appropriate--to protect against
1503  * freeing by another task.  It is the caller's responsibility to free the
1504  * extra reference for shared policies.
1505  */
1506 struct mempolicy *get_vma_policy(struct task_struct *task,
1507 		struct vm_area_struct *vma, unsigned long addr)
1508 {
1509 	struct mempolicy *pol = task->mempolicy;
1510 
1511 	if (vma) {
1512 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1513 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1514 									addr);
1515 			if (vpol)
1516 				pol = vpol;
1517 		} else if (vma->vm_policy)
1518 			pol = vma->vm_policy;
1519 	}
1520 	if (!pol)
1521 		pol = &default_policy;
1522 	return pol;
1523 }
1524 
1525 /*
1526  * Return a nodemask representing a mempolicy for filtering nodes for
1527  * page allocation
1528  */
1529 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1530 {
1531 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1532 	if (unlikely(policy->mode == MPOL_BIND) &&
1533 			gfp_zone(gfp) >= policy_zone &&
1534 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1535 		return &policy->v.nodes;
1536 
1537 	return NULL;
1538 }
1539 
1540 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1541 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1542 	int nd)
1543 {
1544 	switch (policy->mode) {
1545 	case MPOL_PREFERRED:
1546 		if (!(policy->flags & MPOL_F_LOCAL))
1547 			nd = policy->v.preferred_node;
1548 		break;
1549 	case MPOL_BIND:
1550 		/*
1551 		 * Normally, MPOL_BIND allocations are node-local within the
1552 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1553 		 * current node isn't part of the mask, we use the zonelist for
1554 		 * the first node in the mask instead.
1555 		 */
1556 		if (unlikely(gfp & __GFP_THISNODE) &&
1557 				unlikely(!node_isset(nd, policy->v.nodes)))
1558 			nd = first_node(policy->v.nodes);
1559 		break;
1560 	default:
1561 		BUG();
1562 	}
1563 	return node_zonelist(nd, gfp);
1564 }
1565 
1566 /* Do dynamic interleaving for a process */
1567 static unsigned interleave_nodes(struct mempolicy *policy)
1568 {
1569 	unsigned nid, next;
1570 	struct task_struct *me = current;
1571 
1572 	nid = me->il_next;
1573 	next = next_node(nid, policy->v.nodes);
1574 	if (next >= MAX_NUMNODES)
1575 		next = first_node(policy->v.nodes);
1576 	if (next < MAX_NUMNODES)
1577 		me->il_next = next;
1578 	return nid;
1579 }
1580 
1581 /*
1582  * Depending on the memory policy provide a node from which to allocate the
1583  * next slab entry.
1584  * @policy must be protected by freeing by the caller.  If @policy is
1585  * the current task's mempolicy, this protection is implicit, as only the
1586  * task can change it's policy.  The system default policy requires no
1587  * such protection.
1588  */
1589 unsigned slab_node(struct mempolicy *policy)
1590 {
1591 	if (!policy || policy->flags & MPOL_F_LOCAL)
1592 		return numa_node_id();
1593 
1594 	switch (policy->mode) {
1595 	case MPOL_PREFERRED:
1596 		/*
1597 		 * handled MPOL_F_LOCAL above
1598 		 */
1599 		return policy->v.preferred_node;
1600 
1601 	case MPOL_INTERLEAVE:
1602 		return interleave_nodes(policy);
1603 
1604 	case MPOL_BIND: {
1605 		/*
1606 		 * Follow bind policy behavior and start allocation at the
1607 		 * first node.
1608 		 */
1609 		struct zonelist *zonelist;
1610 		struct zone *zone;
1611 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1612 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1613 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1614 							&policy->v.nodes,
1615 							&zone);
1616 		return zone ? zone->node : numa_node_id();
1617 	}
1618 
1619 	default:
1620 		BUG();
1621 	}
1622 }
1623 
1624 /* Do static interleaving for a VMA with known offset. */
1625 static unsigned offset_il_node(struct mempolicy *pol,
1626 		struct vm_area_struct *vma, unsigned long off)
1627 {
1628 	unsigned nnodes = nodes_weight(pol->v.nodes);
1629 	unsigned target;
1630 	int c;
1631 	int nid = -1;
1632 
1633 	if (!nnodes)
1634 		return numa_node_id();
1635 	target = (unsigned int)off % nnodes;
1636 	c = 0;
1637 	do {
1638 		nid = next_node(nid, pol->v.nodes);
1639 		c++;
1640 	} while (c <= target);
1641 	return nid;
1642 }
1643 
1644 /* Determine a node number for interleave */
1645 static inline unsigned interleave_nid(struct mempolicy *pol,
1646 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1647 {
1648 	if (vma) {
1649 		unsigned long off;
1650 
1651 		/*
1652 		 * for small pages, there is no difference between
1653 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1654 		 * for huge pages, since vm_pgoff is in units of small
1655 		 * pages, we need to shift off the always 0 bits to get
1656 		 * a useful offset.
1657 		 */
1658 		BUG_ON(shift < PAGE_SHIFT);
1659 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1660 		off += (addr - vma->vm_start) >> shift;
1661 		return offset_il_node(pol, vma, off);
1662 	} else
1663 		return interleave_nodes(pol);
1664 }
1665 
1666 /*
1667  * Return the bit number of a random bit set in the nodemask.
1668  * (returns -1 if nodemask is empty)
1669  */
1670 int node_random(const nodemask_t *maskp)
1671 {
1672 	int w, bit = -1;
1673 
1674 	w = nodes_weight(*maskp);
1675 	if (w)
1676 		bit = bitmap_ord_to_pos(maskp->bits,
1677 			get_random_int() % w, MAX_NUMNODES);
1678 	return bit;
1679 }
1680 
1681 #ifdef CONFIG_HUGETLBFS
1682 /*
1683  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1684  * @vma = virtual memory area whose policy is sought
1685  * @addr = address in @vma for shared policy lookup and interleave policy
1686  * @gfp_flags = for requested zone
1687  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1688  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1689  *
1690  * Returns a zonelist suitable for a huge page allocation and a pointer
1691  * to the struct mempolicy for conditional unref after allocation.
1692  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1693  * @nodemask for filtering the zonelist.
1694  *
1695  * Must be protected by get_mems_allowed()
1696  */
1697 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1698 				gfp_t gfp_flags, struct mempolicy **mpol,
1699 				nodemask_t **nodemask)
1700 {
1701 	struct zonelist *zl;
1702 
1703 	*mpol = get_vma_policy(current, vma, addr);
1704 	*nodemask = NULL;	/* assume !MPOL_BIND */
1705 
1706 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1707 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1708 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1709 	} else {
1710 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1711 		if ((*mpol)->mode == MPOL_BIND)
1712 			*nodemask = &(*mpol)->v.nodes;
1713 	}
1714 	return zl;
1715 }
1716 
1717 /*
1718  * init_nodemask_of_mempolicy
1719  *
1720  * If the current task's mempolicy is "default" [NULL], return 'false'
1721  * to indicate default policy.  Otherwise, extract the policy nodemask
1722  * for 'bind' or 'interleave' policy into the argument nodemask, or
1723  * initialize the argument nodemask to contain the single node for
1724  * 'preferred' or 'local' policy and return 'true' to indicate presence
1725  * of non-default mempolicy.
1726  *
1727  * We don't bother with reference counting the mempolicy [mpol_get/put]
1728  * because the current task is examining it's own mempolicy and a task's
1729  * mempolicy is only ever changed by the task itself.
1730  *
1731  * N.B., it is the caller's responsibility to free a returned nodemask.
1732  */
1733 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1734 {
1735 	struct mempolicy *mempolicy;
1736 	int nid;
1737 
1738 	if (!(mask && current->mempolicy))
1739 		return false;
1740 
1741 	task_lock(current);
1742 	mempolicy = current->mempolicy;
1743 	switch (mempolicy->mode) {
1744 	case MPOL_PREFERRED:
1745 		if (mempolicy->flags & MPOL_F_LOCAL)
1746 			nid = numa_node_id();
1747 		else
1748 			nid = mempolicy->v.preferred_node;
1749 		init_nodemask_of_node(mask, nid);
1750 		break;
1751 
1752 	case MPOL_BIND:
1753 		/* Fall through */
1754 	case MPOL_INTERLEAVE:
1755 		*mask =  mempolicy->v.nodes;
1756 		break;
1757 
1758 	default:
1759 		BUG();
1760 	}
1761 	task_unlock(current);
1762 
1763 	return true;
1764 }
1765 #endif
1766 
1767 /*
1768  * mempolicy_nodemask_intersects
1769  *
1770  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1771  * policy.  Otherwise, check for intersection between mask and the policy
1772  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1773  * policy, always return true since it may allocate elsewhere on fallback.
1774  *
1775  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1776  */
1777 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1778 					const nodemask_t *mask)
1779 {
1780 	struct mempolicy *mempolicy;
1781 	bool ret = true;
1782 
1783 	if (!mask)
1784 		return ret;
1785 	task_lock(tsk);
1786 	mempolicy = tsk->mempolicy;
1787 	if (!mempolicy)
1788 		goto out;
1789 
1790 	switch (mempolicy->mode) {
1791 	case MPOL_PREFERRED:
1792 		/*
1793 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1794 		 * allocate from, they may fallback to other nodes when oom.
1795 		 * Thus, it's possible for tsk to have allocated memory from
1796 		 * nodes in mask.
1797 		 */
1798 		break;
1799 	case MPOL_BIND:
1800 	case MPOL_INTERLEAVE:
1801 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1802 		break;
1803 	default:
1804 		BUG();
1805 	}
1806 out:
1807 	task_unlock(tsk);
1808 	return ret;
1809 }
1810 
1811 /* Allocate a page in interleaved policy.
1812    Own path because it needs to do special accounting. */
1813 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1814 					unsigned nid)
1815 {
1816 	struct zonelist *zl;
1817 	struct page *page;
1818 
1819 	zl = node_zonelist(nid, gfp);
1820 	page = __alloc_pages(gfp, order, zl);
1821 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1822 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1823 	return page;
1824 }
1825 
1826 /**
1827  * 	alloc_pages_vma	- Allocate a page for a VMA.
1828  *
1829  * 	@gfp:
1830  *      %GFP_USER    user allocation.
1831  *      %GFP_KERNEL  kernel allocations,
1832  *      %GFP_HIGHMEM highmem/user allocations,
1833  *      %GFP_FS      allocation should not call back into a file system.
1834  *      %GFP_ATOMIC  don't sleep.
1835  *
1836  *	@order:Order of the GFP allocation.
1837  * 	@vma:  Pointer to VMA or NULL if not available.
1838  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1839  *
1840  * 	This function allocates a page from the kernel page pool and applies
1841  *	a NUMA policy associated with the VMA or the current process.
1842  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1843  *	mm_struct of the VMA to prevent it from going away. Should be used for
1844  *	all allocations for pages that will be mapped into
1845  * 	user space. Returns NULL when no page can be allocated.
1846  *
1847  *	Should be called with the mm_sem of the vma hold.
1848  */
1849 struct page *
1850 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1851 		unsigned long addr, int node)
1852 {
1853 	struct mempolicy *pol;
1854 	struct zonelist *zl;
1855 	struct page *page;
1856 	unsigned int cpuset_mems_cookie;
1857 
1858 retry_cpuset:
1859 	pol = get_vma_policy(current, vma, addr);
1860 	cpuset_mems_cookie = get_mems_allowed();
1861 
1862 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1863 		unsigned nid;
1864 
1865 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1866 		mpol_cond_put(pol);
1867 		page = alloc_page_interleave(gfp, order, nid);
1868 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1869 			goto retry_cpuset;
1870 
1871 		return page;
1872 	}
1873 	zl = policy_zonelist(gfp, pol, node);
1874 	if (unlikely(mpol_needs_cond_ref(pol))) {
1875 		/*
1876 		 * slow path: ref counted shared policy
1877 		 */
1878 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1879 						zl, policy_nodemask(gfp, pol));
1880 		__mpol_put(pol);
1881 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1882 			goto retry_cpuset;
1883 		return page;
1884 	}
1885 	/*
1886 	 * fast path:  default or task policy
1887 	 */
1888 	page = __alloc_pages_nodemask(gfp, order, zl,
1889 				      policy_nodemask(gfp, pol));
1890 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1891 		goto retry_cpuset;
1892 	return page;
1893 }
1894 
1895 /**
1896  * 	alloc_pages_current - Allocate pages.
1897  *
1898  *	@gfp:
1899  *		%GFP_USER   user allocation,
1900  *      	%GFP_KERNEL kernel allocation,
1901  *      	%GFP_HIGHMEM highmem allocation,
1902  *      	%GFP_FS     don't call back into a file system.
1903  *      	%GFP_ATOMIC don't sleep.
1904  *	@order: Power of two of allocation size in pages. 0 is a single page.
1905  *
1906  *	Allocate a page from the kernel page pool.  When not in
1907  *	interrupt context and apply the current process NUMA policy.
1908  *	Returns NULL when no page can be allocated.
1909  *
1910  *	Don't call cpuset_update_task_memory_state() unless
1911  *	1) it's ok to take cpuset_sem (can WAIT), and
1912  *	2) allocating for current task (not interrupt).
1913  */
1914 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1915 {
1916 	struct mempolicy *pol = current->mempolicy;
1917 	struct page *page;
1918 	unsigned int cpuset_mems_cookie;
1919 
1920 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1921 		pol = &default_policy;
1922 
1923 retry_cpuset:
1924 	cpuset_mems_cookie = get_mems_allowed();
1925 
1926 	/*
1927 	 * No reference counting needed for current->mempolicy
1928 	 * nor system default_policy
1929 	 */
1930 	if (pol->mode == MPOL_INTERLEAVE)
1931 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1932 	else
1933 		page = __alloc_pages_nodemask(gfp, order,
1934 				policy_zonelist(gfp, pol, numa_node_id()),
1935 				policy_nodemask(gfp, pol));
1936 
1937 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1938 		goto retry_cpuset;
1939 
1940 	return page;
1941 }
1942 EXPORT_SYMBOL(alloc_pages_current);
1943 
1944 /*
1945  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1946  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1947  * with the mems_allowed returned by cpuset_mems_allowed().  This
1948  * keeps mempolicies cpuset relative after its cpuset moves.  See
1949  * further kernel/cpuset.c update_nodemask().
1950  *
1951  * current's mempolicy may be rebinded by the other task(the task that changes
1952  * cpuset's mems), so we needn't do rebind work for current task.
1953  */
1954 
1955 /* Slow path of a mempolicy duplicate */
1956 struct mempolicy *__mpol_dup(struct mempolicy *old)
1957 {
1958 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1959 
1960 	if (!new)
1961 		return ERR_PTR(-ENOMEM);
1962 
1963 	/* task's mempolicy is protected by alloc_lock */
1964 	if (old == current->mempolicy) {
1965 		task_lock(current);
1966 		*new = *old;
1967 		task_unlock(current);
1968 	} else
1969 		*new = *old;
1970 
1971 	rcu_read_lock();
1972 	if (current_cpuset_is_being_rebound()) {
1973 		nodemask_t mems = cpuset_mems_allowed(current);
1974 		if (new->flags & MPOL_F_REBINDING)
1975 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1976 		else
1977 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1978 	}
1979 	rcu_read_unlock();
1980 	atomic_set(&new->refcnt, 1);
1981 	return new;
1982 }
1983 
1984 /*
1985  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1986  * eliminate the * MPOL_F_* flags that require conditional ref and
1987  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1988  * after return.  Use the returned value.
1989  *
1990  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1991  * policy lookup, even if the policy needs/has extra ref on lookup.
1992  * shmem_readahead needs this.
1993  */
1994 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1995 						struct mempolicy *frompol)
1996 {
1997 	if (!mpol_needs_cond_ref(frompol))
1998 		return frompol;
1999 
2000 	*tompol = *frompol;
2001 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
2002 	__mpol_put(frompol);
2003 	return tompol;
2004 }
2005 
2006 /* Slow path of a mempolicy comparison */
2007 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2008 {
2009 	if (!a || !b)
2010 		return false;
2011 	if (a->mode != b->mode)
2012 		return false;
2013 	if (a->flags != b->flags)
2014 		return false;
2015 	if (mpol_store_user_nodemask(a))
2016 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2017 			return false;
2018 
2019 	switch (a->mode) {
2020 	case MPOL_BIND:
2021 		/* Fall through */
2022 	case MPOL_INTERLEAVE:
2023 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2024 	case MPOL_PREFERRED:
2025 		return a->v.preferred_node == b->v.preferred_node;
2026 	default:
2027 		BUG();
2028 		return false;
2029 	}
2030 }
2031 
2032 /*
2033  * Shared memory backing store policy support.
2034  *
2035  * Remember policies even when nobody has shared memory mapped.
2036  * The policies are kept in Red-Black tree linked from the inode.
2037  * They are protected by the sp->lock spinlock, which should be held
2038  * for any accesses to the tree.
2039  */
2040 
2041 /* lookup first element intersecting start-end */
2042 /* Caller holds sp->lock */
2043 static struct sp_node *
2044 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2045 {
2046 	struct rb_node *n = sp->root.rb_node;
2047 
2048 	while (n) {
2049 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2050 
2051 		if (start >= p->end)
2052 			n = n->rb_right;
2053 		else if (end <= p->start)
2054 			n = n->rb_left;
2055 		else
2056 			break;
2057 	}
2058 	if (!n)
2059 		return NULL;
2060 	for (;;) {
2061 		struct sp_node *w = NULL;
2062 		struct rb_node *prev = rb_prev(n);
2063 		if (!prev)
2064 			break;
2065 		w = rb_entry(prev, struct sp_node, nd);
2066 		if (w->end <= start)
2067 			break;
2068 		n = prev;
2069 	}
2070 	return rb_entry(n, struct sp_node, nd);
2071 }
2072 
2073 /* Insert a new shared policy into the list. */
2074 /* Caller holds sp->lock */
2075 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2076 {
2077 	struct rb_node **p = &sp->root.rb_node;
2078 	struct rb_node *parent = NULL;
2079 	struct sp_node *nd;
2080 
2081 	while (*p) {
2082 		parent = *p;
2083 		nd = rb_entry(parent, struct sp_node, nd);
2084 		if (new->start < nd->start)
2085 			p = &(*p)->rb_left;
2086 		else if (new->end > nd->end)
2087 			p = &(*p)->rb_right;
2088 		else
2089 			BUG();
2090 	}
2091 	rb_link_node(&new->nd, parent, p);
2092 	rb_insert_color(&new->nd, &sp->root);
2093 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2094 		 new->policy ? new->policy->mode : 0);
2095 }
2096 
2097 /* Find shared policy intersecting idx */
2098 struct mempolicy *
2099 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2100 {
2101 	struct mempolicy *pol = NULL;
2102 	struct sp_node *sn;
2103 
2104 	if (!sp->root.rb_node)
2105 		return NULL;
2106 	spin_lock(&sp->lock);
2107 	sn = sp_lookup(sp, idx, idx+1);
2108 	if (sn) {
2109 		mpol_get(sn->policy);
2110 		pol = sn->policy;
2111 	}
2112 	spin_unlock(&sp->lock);
2113 	return pol;
2114 }
2115 
2116 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2117 {
2118 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2119 	rb_erase(&n->nd, &sp->root);
2120 	mpol_put(n->policy);
2121 	kmem_cache_free(sn_cache, n);
2122 }
2123 
2124 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2125 				struct mempolicy *pol)
2126 {
2127 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2128 
2129 	if (!n)
2130 		return NULL;
2131 	n->start = start;
2132 	n->end = end;
2133 	mpol_get(pol);
2134 	pol->flags |= MPOL_F_SHARED;	/* for unref */
2135 	n->policy = pol;
2136 	return n;
2137 }
2138 
2139 /* Replace a policy range. */
2140 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2141 				 unsigned long end, struct sp_node *new)
2142 {
2143 	struct sp_node *n, *new2 = NULL;
2144 
2145 restart:
2146 	spin_lock(&sp->lock);
2147 	n = sp_lookup(sp, start, end);
2148 	/* Take care of old policies in the same range. */
2149 	while (n && n->start < end) {
2150 		struct rb_node *next = rb_next(&n->nd);
2151 		if (n->start >= start) {
2152 			if (n->end <= end)
2153 				sp_delete(sp, n);
2154 			else
2155 				n->start = end;
2156 		} else {
2157 			/* Old policy spanning whole new range. */
2158 			if (n->end > end) {
2159 				if (!new2) {
2160 					spin_unlock(&sp->lock);
2161 					new2 = sp_alloc(end, n->end, n->policy);
2162 					if (!new2)
2163 						return -ENOMEM;
2164 					goto restart;
2165 				}
2166 				n->end = start;
2167 				sp_insert(sp, new2);
2168 				new2 = NULL;
2169 				break;
2170 			} else
2171 				n->end = start;
2172 		}
2173 		if (!next)
2174 			break;
2175 		n = rb_entry(next, struct sp_node, nd);
2176 	}
2177 	if (new)
2178 		sp_insert(sp, new);
2179 	spin_unlock(&sp->lock);
2180 	if (new2) {
2181 		mpol_put(new2->policy);
2182 		kmem_cache_free(sn_cache, new2);
2183 	}
2184 	return 0;
2185 }
2186 
2187 /**
2188  * mpol_shared_policy_init - initialize shared policy for inode
2189  * @sp: pointer to inode shared policy
2190  * @mpol:  struct mempolicy to install
2191  *
2192  * Install non-NULL @mpol in inode's shared policy rb-tree.
2193  * On entry, the current task has a reference on a non-NULL @mpol.
2194  * This must be released on exit.
2195  * This is called at get_inode() calls and we can use GFP_KERNEL.
2196  */
2197 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2198 {
2199 	int ret;
2200 
2201 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2202 	spin_lock_init(&sp->lock);
2203 
2204 	if (mpol) {
2205 		struct vm_area_struct pvma;
2206 		struct mempolicy *new;
2207 		NODEMASK_SCRATCH(scratch);
2208 
2209 		if (!scratch)
2210 			goto put_mpol;
2211 		/* contextualize the tmpfs mount point mempolicy */
2212 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2213 		if (IS_ERR(new))
2214 			goto free_scratch; /* no valid nodemask intersection */
2215 
2216 		task_lock(current);
2217 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2218 		task_unlock(current);
2219 		if (ret)
2220 			goto put_new;
2221 
2222 		/* Create pseudo-vma that contains just the policy */
2223 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2224 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2225 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2226 
2227 put_new:
2228 		mpol_put(new);			/* drop initial ref */
2229 free_scratch:
2230 		NODEMASK_SCRATCH_FREE(scratch);
2231 put_mpol:
2232 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2233 	}
2234 }
2235 
2236 int mpol_set_shared_policy(struct shared_policy *info,
2237 			struct vm_area_struct *vma, struct mempolicy *npol)
2238 {
2239 	int err;
2240 	struct sp_node *new = NULL;
2241 	unsigned long sz = vma_pages(vma);
2242 
2243 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2244 		 vma->vm_pgoff,
2245 		 sz, npol ? npol->mode : -1,
2246 		 npol ? npol->flags : -1,
2247 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2248 
2249 	if (npol) {
2250 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2251 		if (!new)
2252 			return -ENOMEM;
2253 	}
2254 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2255 	if (err && new)
2256 		kmem_cache_free(sn_cache, new);
2257 	return err;
2258 }
2259 
2260 /* Free a backing policy store on inode delete. */
2261 void mpol_free_shared_policy(struct shared_policy *p)
2262 {
2263 	struct sp_node *n;
2264 	struct rb_node *next;
2265 
2266 	if (!p->root.rb_node)
2267 		return;
2268 	spin_lock(&p->lock);
2269 	next = rb_first(&p->root);
2270 	while (next) {
2271 		n = rb_entry(next, struct sp_node, nd);
2272 		next = rb_next(&n->nd);
2273 		rb_erase(&n->nd, &p->root);
2274 		mpol_put(n->policy);
2275 		kmem_cache_free(sn_cache, n);
2276 	}
2277 	spin_unlock(&p->lock);
2278 }
2279 
2280 /* assumes fs == KERNEL_DS */
2281 void __init numa_policy_init(void)
2282 {
2283 	nodemask_t interleave_nodes;
2284 	unsigned long largest = 0;
2285 	int nid, prefer = 0;
2286 
2287 	policy_cache = kmem_cache_create("numa_policy",
2288 					 sizeof(struct mempolicy),
2289 					 0, SLAB_PANIC, NULL);
2290 
2291 	sn_cache = kmem_cache_create("shared_policy_node",
2292 				     sizeof(struct sp_node),
2293 				     0, SLAB_PANIC, NULL);
2294 
2295 	/*
2296 	 * Set interleaving policy for system init. Interleaving is only
2297 	 * enabled across suitably sized nodes (default is >= 16MB), or
2298 	 * fall back to the largest node if they're all smaller.
2299 	 */
2300 	nodes_clear(interleave_nodes);
2301 	for_each_node_state(nid, N_HIGH_MEMORY) {
2302 		unsigned long total_pages = node_present_pages(nid);
2303 
2304 		/* Preserve the largest node */
2305 		if (largest < total_pages) {
2306 			largest = total_pages;
2307 			prefer = nid;
2308 		}
2309 
2310 		/* Interleave this node? */
2311 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2312 			node_set(nid, interleave_nodes);
2313 	}
2314 
2315 	/* All too small, use the largest */
2316 	if (unlikely(nodes_empty(interleave_nodes)))
2317 		node_set(prefer, interleave_nodes);
2318 
2319 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2320 		printk("numa_policy_init: interleaving failed\n");
2321 }
2322 
2323 /* Reset policy of current process to default */
2324 void numa_default_policy(void)
2325 {
2326 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2327 }
2328 
2329 /*
2330  * Parse and format mempolicy from/to strings
2331  */
2332 
2333 /*
2334  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2335  * Used only for mpol_parse_str() and mpol_to_str()
2336  */
2337 #define MPOL_LOCAL MPOL_MAX
2338 static const char * const policy_modes[] =
2339 {
2340 	[MPOL_DEFAULT]    = "default",
2341 	[MPOL_PREFERRED]  = "prefer",
2342 	[MPOL_BIND]       = "bind",
2343 	[MPOL_INTERLEAVE] = "interleave",
2344 	[MPOL_LOCAL]      = "local"
2345 };
2346 
2347 
2348 #ifdef CONFIG_TMPFS
2349 /**
2350  * mpol_parse_str - parse string to mempolicy
2351  * @str:  string containing mempolicy to parse
2352  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2353  * @no_context:  flag whether to "contextualize" the mempolicy
2354  *
2355  * Format of input:
2356  *	<mode>[=<flags>][:<nodelist>]
2357  *
2358  * if @no_context is true, save the input nodemask in w.user_nodemask in
2359  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2360  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2361  * mount option.  Note that if 'static' or 'relative' mode flags were
2362  * specified, the input nodemask will already have been saved.  Saving
2363  * it again is redundant, but safe.
2364  *
2365  * On success, returns 0, else 1
2366  */
2367 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2368 {
2369 	struct mempolicy *new = NULL;
2370 	unsigned short mode;
2371 	unsigned short uninitialized_var(mode_flags);
2372 	nodemask_t nodes;
2373 	char *nodelist = strchr(str, ':');
2374 	char *flags = strchr(str, '=');
2375 	int err = 1;
2376 
2377 	if (nodelist) {
2378 		/* NUL-terminate mode or flags string */
2379 		*nodelist++ = '\0';
2380 		if (nodelist_parse(nodelist, nodes))
2381 			goto out;
2382 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2383 			goto out;
2384 	} else
2385 		nodes_clear(nodes);
2386 
2387 	if (flags)
2388 		*flags++ = '\0';	/* terminate mode string */
2389 
2390 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2391 		if (!strcmp(str, policy_modes[mode])) {
2392 			break;
2393 		}
2394 	}
2395 	if (mode > MPOL_LOCAL)
2396 		goto out;
2397 
2398 	switch (mode) {
2399 	case MPOL_PREFERRED:
2400 		/*
2401 		 * Insist on a nodelist of one node only
2402 		 */
2403 		if (nodelist) {
2404 			char *rest = nodelist;
2405 			while (isdigit(*rest))
2406 				rest++;
2407 			if (*rest)
2408 				goto out;
2409 		}
2410 		break;
2411 	case MPOL_INTERLEAVE:
2412 		/*
2413 		 * Default to online nodes with memory if no nodelist
2414 		 */
2415 		if (!nodelist)
2416 			nodes = node_states[N_HIGH_MEMORY];
2417 		break;
2418 	case MPOL_LOCAL:
2419 		/*
2420 		 * Don't allow a nodelist;  mpol_new() checks flags
2421 		 */
2422 		if (nodelist)
2423 			goto out;
2424 		mode = MPOL_PREFERRED;
2425 		break;
2426 	case MPOL_DEFAULT:
2427 		/*
2428 		 * Insist on a empty nodelist
2429 		 */
2430 		if (!nodelist)
2431 			err = 0;
2432 		goto out;
2433 	case MPOL_BIND:
2434 		/*
2435 		 * Insist on a nodelist
2436 		 */
2437 		if (!nodelist)
2438 			goto out;
2439 	}
2440 
2441 	mode_flags = 0;
2442 	if (flags) {
2443 		/*
2444 		 * Currently, we only support two mutually exclusive
2445 		 * mode flags.
2446 		 */
2447 		if (!strcmp(flags, "static"))
2448 			mode_flags |= MPOL_F_STATIC_NODES;
2449 		else if (!strcmp(flags, "relative"))
2450 			mode_flags |= MPOL_F_RELATIVE_NODES;
2451 		else
2452 			goto out;
2453 	}
2454 
2455 	new = mpol_new(mode, mode_flags, &nodes);
2456 	if (IS_ERR(new))
2457 		goto out;
2458 
2459 	if (no_context) {
2460 		/* save for contextualization */
2461 		new->w.user_nodemask = nodes;
2462 	} else {
2463 		int ret;
2464 		NODEMASK_SCRATCH(scratch);
2465 		if (scratch) {
2466 			task_lock(current);
2467 			ret = mpol_set_nodemask(new, &nodes, scratch);
2468 			task_unlock(current);
2469 		} else
2470 			ret = -ENOMEM;
2471 		NODEMASK_SCRATCH_FREE(scratch);
2472 		if (ret) {
2473 			mpol_put(new);
2474 			goto out;
2475 		}
2476 	}
2477 	err = 0;
2478 
2479 out:
2480 	/* Restore string for error message */
2481 	if (nodelist)
2482 		*--nodelist = ':';
2483 	if (flags)
2484 		*--flags = '=';
2485 	if (!err)
2486 		*mpol = new;
2487 	return err;
2488 }
2489 #endif /* CONFIG_TMPFS */
2490 
2491 /**
2492  * mpol_to_str - format a mempolicy structure for printing
2493  * @buffer:  to contain formatted mempolicy string
2494  * @maxlen:  length of @buffer
2495  * @pol:  pointer to mempolicy to be formatted
2496  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2497  *
2498  * Convert a mempolicy into a string.
2499  * Returns the number of characters in buffer (if positive)
2500  * or an error (negative)
2501  */
2502 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2503 {
2504 	char *p = buffer;
2505 	int l;
2506 	nodemask_t nodes;
2507 	unsigned short mode;
2508 	unsigned short flags = pol ? pol->flags : 0;
2509 
2510 	/*
2511 	 * Sanity check:  room for longest mode, flag and some nodes
2512 	 */
2513 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2514 
2515 	if (!pol || pol == &default_policy)
2516 		mode = MPOL_DEFAULT;
2517 	else
2518 		mode = pol->mode;
2519 
2520 	switch (mode) {
2521 	case MPOL_DEFAULT:
2522 		nodes_clear(nodes);
2523 		break;
2524 
2525 	case MPOL_PREFERRED:
2526 		nodes_clear(nodes);
2527 		if (flags & MPOL_F_LOCAL)
2528 			mode = MPOL_LOCAL;	/* pseudo-policy */
2529 		else
2530 			node_set(pol->v.preferred_node, nodes);
2531 		break;
2532 
2533 	case MPOL_BIND:
2534 		/* Fall through */
2535 	case MPOL_INTERLEAVE:
2536 		if (no_context)
2537 			nodes = pol->w.user_nodemask;
2538 		else
2539 			nodes = pol->v.nodes;
2540 		break;
2541 
2542 	default:
2543 		BUG();
2544 	}
2545 
2546 	l = strlen(policy_modes[mode]);
2547 	if (buffer + maxlen < p + l + 1)
2548 		return -ENOSPC;
2549 
2550 	strcpy(p, policy_modes[mode]);
2551 	p += l;
2552 
2553 	if (flags & MPOL_MODE_FLAGS) {
2554 		if (buffer + maxlen < p + 2)
2555 			return -ENOSPC;
2556 		*p++ = '=';
2557 
2558 		/*
2559 		 * Currently, the only defined flags are mutually exclusive
2560 		 */
2561 		if (flags & MPOL_F_STATIC_NODES)
2562 			p += snprintf(p, buffer + maxlen - p, "static");
2563 		else if (flags & MPOL_F_RELATIVE_NODES)
2564 			p += snprintf(p, buffer + maxlen - p, "relative");
2565 	}
2566 
2567 	if (!nodes_empty(nodes)) {
2568 		if (buffer + maxlen < p + 2)
2569 			return -ENOSPC;
2570 		*p++ = ':';
2571 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2572 	}
2573 	return p - buffer;
2574 }
2575