1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * weighted interleave 23 * Allocate memory interleaved over a set of nodes based on 24 * a set of weights (per-node), with normal fallback if it 25 * fails. Otherwise operates the same as interleave. 26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated 27 * on node 0 for every 1 page allocated on node 1. 28 * 29 * bind Only allocate memory on a specific set of nodes, 30 * no fallback. 31 * FIXME: memory is allocated starting with the first node 32 * to the last. It would be better if bind would truly restrict 33 * the allocation to memory nodes instead 34 * 35 * preferred Try a specific node first before normal fallback. 36 * As a special case NUMA_NO_NODE here means do the allocation 37 * on the local CPU. This is normally identical to default, 38 * but useful to set in a VMA when you have a non default 39 * process policy. 40 * 41 * preferred many Try a set of nodes first before normal fallback. This is 42 * similar to preferred without the special case. 43 * 44 * default Allocate on the local node first, or when on a VMA 45 * use the process policy. This is what Linux always did 46 * in a NUMA aware kernel and still does by, ahem, default. 47 * 48 * The process policy is applied for most non interrupt memory allocations 49 * in that process' context. Interrupts ignore the policies and always 50 * try to allocate on the local CPU. The VMA policy is only applied for memory 51 * allocations for a VMA in the VM. 52 * 53 * Currently there are a few corner cases in swapping where the policy 54 * is not applied, but the majority should be handled. When process policy 55 * is used it is not remembered over swap outs/swap ins. 56 * 57 * Only the highest zone in the zone hierarchy gets policied. Allocations 58 * requesting a lower zone just use default policy. This implies that 59 * on systems with highmem kernel lowmem allocation don't get policied. 60 * Same with GFP_DMA allocations. 61 * 62 * For shmem/tmpfs shared memory the policy is shared between 63 * all users and remembered even when nobody has memory mapped. 64 */ 65 66 /* Notebook: 67 fix mmap readahead to honour policy and enable policy for any page cache 68 object 69 statistics for bigpages 70 global policy for page cache? currently it uses process policy. Requires 71 first item above. 72 handle mremap for shared memory (currently ignored for the policy) 73 grows down? 74 make bind policy root only? It can trigger oom much faster and the 75 kernel is not always grateful with that. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/mempolicy.h> 81 #include <linux/pagewalk.h> 82 #include <linux/highmem.h> 83 #include <linux/hugetlb.h> 84 #include <linux/kernel.h> 85 #include <linux/sched.h> 86 #include <linux/sched/mm.h> 87 #include <linux/sched/numa_balancing.h> 88 #include <linux/sched/task.h> 89 #include <linux/nodemask.h> 90 #include <linux/cpuset.h> 91 #include <linux/slab.h> 92 #include <linux/string.h> 93 #include <linux/export.h> 94 #include <linux/nsproxy.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compat.h> 98 #include <linux/ptrace.h> 99 #include <linux/swap.h> 100 #include <linux/seq_file.h> 101 #include <linux/proc_fs.h> 102 #include <linux/migrate.h> 103 #include <linux/ksm.h> 104 #include <linux/rmap.h> 105 #include <linux/security.h> 106 #include <linux/syscalls.h> 107 #include <linux/ctype.h> 108 #include <linux/mm_inline.h> 109 #include <linux/mmu_notifier.h> 110 #include <linux/printk.h> 111 #include <linux/swapops.h> 112 113 #include <asm/tlbflush.h> 114 #include <asm/tlb.h> 115 #include <linux/uaccess.h> 116 117 #include "internal.h" 118 119 /* Internal flags */ 120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 121 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 122 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */ 123 124 static struct kmem_cache *policy_cache; 125 static struct kmem_cache *sn_cache; 126 127 /* Highest zone. An specific allocation for a zone below that is not 128 policied. */ 129 enum zone_type policy_zone = 0; 130 131 /* 132 * run-time system-wide default policy => local allocation 133 */ 134 static struct mempolicy default_policy = { 135 .refcnt = ATOMIC_INIT(1), /* never free it */ 136 .mode = MPOL_LOCAL, 137 }; 138 139 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 140 141 /* 142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes 143 * system-default value should be used. A NULL iw_table also denotes that 144 * system-default values should be used. Until the system-default table 145 * is implemented, the system-default is always 1. 146 * 147 * iw_table is RCU protected 148 */ 149 static u8 __rcu *iw_table; 150 static DEFINE_MUTEX(iw_table_lock); 151 152 static u8 get_il_weight(int node) 153 { 154 u8 *table; 155 u8 weight; 156 157 rcu_read_lock(); 158 table = rcu_dereference(iw_table); 159 /* if no iw_table, use system default */ 160 weight = table ? table[node] : 1; 161 /* if value in iw_table is 0, use system default */ 162 weight = weight ? weight : 1; 163 rcu_read_unlock(); 164 return weight; 165 } 166 167 /** 168 * numa_nearest_node - Find nearest node by state 169 * @node: Node id to start the search 170 * @state: State to filter the search 171 * 172 * Lookup the closest node by distance if @nid is not in state. 173 * 174 * Return: this @node if it is in state, otherwise the closest node by distance 175 */ 176 int numa_nearest_node(int node, unsigned int state) 177 { 178 int min_dist = INT_MAX, dist, n, min_node; 179 180 if (state >= NR_NODE_STATES) 181 return -EINVAL; 182 183 if (node == NUMA_NO_NODE || node_state(node, state)) 184 return node; 185 186 min_node = node; 187 for_each_node_state(n, state) { 188 dist = node_distance(node, n); 189 if (dist < min_dist) { 190 min_dist = dist; 191 min_node = n; 192 } 193 } 194 195 return min_node; 196 } 197 EXPORT_SYMBOL_GPL(numa_nearest_node); 198 199 struct mempolicy *get_task_policy(struct task_struct *p) 200 { 201 struct mempolicy *pol = p->mempolicy; 202 int node; 203 204 if (pol) 205 return pol; 206 207 node = numa_node_id(); 208 if (node != NUMA_NO_NODE) { 209 pol = &preferred_node_policy[node]; 210 /* preferred_node_policy is not initialised early in boot */ 211 if (pol->mode) 212 return pol; 213 } 214 215 return &default_policy; 216 } 217 218 static const struct mempolicy_operations { 219 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 220 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 221 } mpol_ops[MPOL_MAX]; 222 223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 224 { 225 return pol->flags & MPOL_MODE_FLAGS; 226 } 227 228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 229 const nodemask_t *rel) 230 { 231 nodemask_t tmp; 232 nodes_fold(tmp, *orig, nodes_weight(*rel)); 233 nodes_onto(*ret, tmp, *rel); 234 } 235 236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 237 { 238 if (nodes_empty(*nodes)) 239 return -EINVAL; 240 pol->nodes = *nodes; 241 return 0; 242 } 243 244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 245 { 246 if (nodes_empty(*nodes)) 247 return -EINVAL; 248 249 nodes_clear(pol->nodes); 250 node_set(first_node(*nodes), pol->nodes); 251 return 0; 252 } 253 254 /* 255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 256 * any, for the new policy. mpol_new() has already validated the nodes 257 * parameter with respect to the policy mode and flags. 258 * 259 * Must be called holding task's alloc_lock to protect task's mems_allowed 260 * and mempolicy. May also be called holding the mmap_lock for write. 261 */ 262 static int mpol_set_nodemask(struct mempolicy *pol, 263 const nodemask_t *nodes, struct nodemask_scratch *nsc) 264 { 265 int ret; 266 267 /* 268 * Default (pol==NULL) resp. local memory policies are not a 269 * subject of any remapping. They also do not need any special 270 * constructor. 271 */ 272 if (!pol || pol->mode == MPOL_LOCAL) 273 return 0; 274 275 /* Check N_MEMORY */ 276 nodes_and(nsc->mask1, 277 cpuset_current_mems_allowed, node_states[N_MEMORY]); 278 279 VM_BUG_ON(!nodes); 280 281 if (pol->flags & MPOL_F_RELATIVE_NODES) 282 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 283 else 284 nodes_and(nsc->mask2, *nodes, nsc->mask1); 285 286 if (mpol_store_user_nodemask(pol)) 287 pol->w.user_nodemask = *nodes; 288 else 289 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 290 291 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 292 return ret; 293 } 294 295 /* 296 * This function just creates a new policy, does some check and simple 297 * initialization. You must invoke mpol_set_nodemask() to set nodes. 298 */ 299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 300 nodemask_t *nodes) 301 { 302 struct mempolicy *policy; 303 304 if (mode == MPOL_DEFAULT) { 305 if (nodes && !nodes_empty(*nodes)) 306 return ERR_PTR(-EINVAL); 307 return NULL; 308 } 309 VM_BUG_ON(!nodes); 310 311 /* 312 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 313 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 314 * All other modes require a valid pointer to a non-empty nodemask. 315 */ 316 if (mode == MPOL_PREFERRED) { 317 if (nodes_empty(*nodes)) { 318 if (((flags & MPOL_F_STATIC_NODES) || 319 (flags & MPOL_F_RELATIVE_NODES))) 320 return ERR_PTR(-EINVAL); 321 322 mode = MPOL_LOCAL; 323 } 324 } else if (mode == MPOL_LOCAL) { 325 if (!nodes_empty(*nodes) || 326 (flags & MPOL_F_STATIC_NODES) || 327 (flags & MPOL_F_RELATIVE_NODES)) 328 return ERR_PTR(-EINVAL); 329 } else if (nodes_empty(*nodes)) 330 return ERR_PTR(-EINVAL); 331 332 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 333 if (!policy) 334 return ERR_PTR(-ENOMEM); 335 atomic_set(&policy->refcnt, 1); 336 policy->mode = mode; 337 policy->flags = flags; 338 policy->home_node = NUMA_NO_NODE; 339 340 return policy; 341 } 342 343 /* Slow path of a mpol destructor. */ 344 void __mpol_put(struct mempolicy *pol) 345 { 346 if (!atomic_dec_and_test(&pol->refcnt)) 347 return; 348 kmem_cache_free(policy_cache, pol); 349 } 350 351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 352 { 353 } 354 355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 356 { 357 nodemask_t tmp; 358 359 if (pol->flags & MPOL_F_STATIC_NODES) 360 nodes_and(tmp, pol->w.user_nodemask, *nodes); 361 else if (pol->flags & MPOL_F_RELATIVE_NODES) 362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 363 else { 364 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 365 *nodes); 366 pol->w.cpuset_mems_allowed = *nodes; 367 } 368 369 if (nodes_empty(tmp)) 370 tmp = *nodes; 371 372 pol->nodes = tmp; 373 } 374 375 static void mpol_rebind_preferred(struct mempolicy *pol, 376 const nodemask_t *nodes) 377 { 378 pol->w.cpuset_mems_allowed = *nodes; 379 } 380 381 /* 382 * mpol_rebind_policy - Migrate a policy to a different set of nodes 383 * 384 * Per-vma policies are protected by mmap_lock. Allocations using per-task 385 * policies are protected by task->mems_allowed_seq to prevent a premature 386 * OOM/allocation failure due to parallel nodemask modification. 387 */ 388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 389 { 390 if (!pol || pol->mode == MPOL_LOCAL) 391 return; 392 if (!mpol_store_user_nodemask(pol) && 393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 394 return; 395 396 mpol_ops[pol->mode].rebind(pol, newmask); 397 } 398 399 /* 400 * Wrapper for mpol_rebind_policy() that just requires task 401 * pointer, and updates task mempolicy. 402 * 403 * Called with task's alloc_lock held. 404 */ 405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 406 { 407 mpol_rebind_policy(tsk->mempolicy, new); 408 } 409 410 /* 411 * Rebind each vma in mm to new nodemask. 412 * 413 * Call holding a reference to mm. Takes mm->mmap_lock during call. 414 */ 415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 416 { 417 struct vm_area_struct *vma; 418 VMA_ITERATOR(vmi, mm, 0); 419 420 mmap_write_lock(mm); 421 for_each_vma(vmi, vma) { 422 vma_start_write(vma); 423 mpol_rebind_policy(vma->vm_policy, new); 424 } 425 mmap_write_unlock(mm); 426 } 427 428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 429 [MPOL_DEFAULT] = { 430 .rebind = mpol_rebind_default, 431 }, 432 [MPOL_INTERLEAVE] = { 433 .create = mpol_new_nodemask, 434 .rebind = mpol_rebind_nodemask, 435 }, 436 [MPOL_PREFERRED] = { 437 .create = mpol_new_preferred, 438 .rebind = mpol_rebind_preferred, 439 }, 440 [MPOL_BIND] = { 441 .create = mpol_new_nodemask, 442 .rebind = mpol_rebind_nodemask, 443 }, 444 [MPOL_LOCAL] = { 445 .rebind = mpol_rebind_default, 446 }, 447 [MPOL_PREFERRED_MANY] = { 448 .create = mpol_new_nodemask, 449 .rebind = mpol_rebind_preferred, 450 }, 451 [MPOL_WEIGHTED_INTERLEAVE] = { 452 .create = mpol_new_nodemask, 453 .rebind = mpol_rebind_nodemask, 454 }, 455 }; 456 457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 458 unsigned long flags); 459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 460 pgoff_t ilx, int *nid); 461 462 static bool strictly_unmovable(unsigned long flags) 463 { 464 /* 465 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO 466 * if any misplaced page is found. 467 */ 468 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == 469 MPOL_MF_STRICT; 470 } 471 472 struct migration_mpol { /* for alloc_migration_target_by_mpol() */ 473 struct mempolicy *pol; 474 pgoff_t ilx; 475 }; 476 477 struct queue_pages { 478 struct list_head *pagelist; 479 unsigned long flags; 480 nodemask_t *nmask; 481 unsigned long start; 482 unsigned long end; 483 struct vm_area_struct *first; 484 struct folio *large; /* note last large folio encountered */ 485 long nr_failed; /* could not be isolated at this time */ 486 }; 487 488 /* 489 * Check if the folio's nid is in qp->nmask. 490 * 491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 492 * in the invert of qp->nmask. 493 */ 494 static inline bool queue_folio_required(struct folio *folio, 495 struct queue_pages *qp) 496 { 497 int nid = folio_nid(folio); 498 unsigned long flags = qp->flags; 499 500 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 501 } 502 503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) 504 { 505 struct folio *folio; 506 struct queue_pages *qp = walk->private; 507 508 if (unlikely(is_pmd_migration_entry(*pmd))) { 509 qp->nr_failed++; 510 return; 511 } 512 folio = pfn_folio(pmd_pfn(*pmd)); 513 if (is_huge_zero_page(&folio->page)) { 514 walk->action = ACTION_CONTINUE; 515 return; 516 } 517 if (!queue_folio_required(folio, qp)) 518 return; 519 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 520 !vma_migratable(walk->vma) || 521 !migrate_folio_add(folio, qp->pagelist, qp->flags)) 522 qp->nr_failed++; 523 } 524 525 /* 526 * Scan through folios, checking if they satisfy the required conditions, 527 * moving them from LRU to local pagelist for migration if they do (or not). 528 * 529 * queue_folios_pte_range() has two possible return values: 530 * 0 - continue walking to scan for more, even if an existing folio on the 531 * wrong node could not be isolated and queued for migration. 532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, 533 * and an existing folio was on a node that does not follow the policy. 534 */ 535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 536 unsigned long end, struct mm_walk *walk) 537 { 538 struct vm_area_struct *vma = walk->vma; 539 struct folio *folio; 540 struct queue_pages *qp = walk->private; 541 unsigned long flags = qp->flags; 542 pte_t *pte, *mapped_pte; 543 pte_t ptent; 544 spinlock_t *ptl; 545 546 ptl = pmd_trans_huge_lock(pmd, vma); 547 if (ptl) { 548 queue_folios_pmd(pmd, walk); 549 spin_unlock(ptl); 550 goto out; 551 } 552 553 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 554 if (!pte) { 555 walk->action = ACTION_AGAIN; 556 return 0; 557 } 558 for (; addr != end; pte++, addr += PAGE_SIZE) { 559 ptent = ptep_get(pte); 560 if (pte_none(ptent)) 561 continue; 562 if (!pte_present(ptent)) { 563 if (is_migration_entry(pte_to_swp_entry(ptent))) 564 qp->nr_failed++; 565 continue; 566 } 567 folio = vm_normal_folio(vma, addr, ptent); 568 if (!folio || folio_is_zone_device(folio)) 569 continue; 570 /* 571 * vm_normal_folio() filters out zero pages, but there might 572 * still be reserved folios to skip, perhaps in a VDSO. 573 */ 574 if (folio_test_reserved(folio)) 575 continue; 576 if (!queue_folio_required(folio, qp)) 577 continue; 578 if (folio_test_large(folio)) { 579 /* 580 * A large folio can only be isolated from LRU once, 581 * but may be mapped by many PTEs (and Copy-On-Write may 582 * intersperse PTEs of other, order 0, folios). This is 583 * a common case, so don't mistake it for failure (but 584 * there can be other cases of multi-mapped pages which 585 * this quick check does not help to filter out - and a 586 * search of the pagelist might grow to be prohibitive). 587 * 588 * migrate_pages(&pagelist) returns nr_failed folios, so 589 * check "large" now so that queue_pages_range() returns 590 * a comparable nr_failed folios. This does imply that 591 * if folio could not be isolated for some racy reason 592 * at its first PTE, later PTEs will not give it another 593 * chance of isolation; but keeps the accounting simple. 594 */ 595 if (folio == qp->large) 596 continue; 597 qp->large = folio; 598 } 599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 600 !vma_migratable(vma) || 601 !migrate_folio_add(folio, qp->pagelist, flags)) { 602 qp->nr_failed++; 603 if (strictly_unmovable(flags)) 604 break; 605 } 606 } 607 pte_unmap_unlock(mapped_pte, ptl); 608 cond_resched(); 609 out: 610 if (qp->nr_failed && strictly_unmovable(flags)) 611 return -EIO; 612 return 0; 613 } 614 615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 616 unsigned long addr, unsigned long end, 617 struct mm_walk *walk) 618 { 619 #ifdef CONFIG_HUGETLB_PAGE 620 struct queue_pages *qp = walk->private; 621 unsigned long flags = qp->flags; 622 struct folio *folio; 623 spinlock_t *ptl; 624 pte_t entry; 625 626 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 627 entry = huge_ptep_get(pte); 628 if (!pte_present(entry)) { 629 if (unlikely(is_hugetlb_entry_migration(entry))) 630 qp->nr_failed++; 631 goto unlock; 632 } 633 folio = pfn_folio(pte_pfn(entry)); 634 if (!queue_folio_required(folio, qp)) 635 goto unlock; 636 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 637 !vma_migratable(walk->vma)) { 638 qp->nr_failed++; 639 goto unlock; 640 } 641 /* 642 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 643 * Choosing not to migrate a shared folio is not counted as a failure. 644 * 645 * To check if the folio is shared, ideally we want to make sure 646 * every page is mapped to the same process. Doing that is very 647 * expensive, so check the estimated sharers of the folio instead. 648 */ 649 if ((flags & MPOL_MF_MOVE_ALL) || 650 (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte))) 651 if (!isolate_hugetlb(folio, qp->pagelist)) 652 qp->nr_failed++; 653 unlock: 654 spin_unlock(ptl); 655 if (qp->nr_failed && strictly_unmovable(flags)) 656 return -EIO; 657 #endif 658 return 0; 659 } 660 661 #ifdef CONFIG_NUMA_BALANCING 662 /* 663 * This is used to mark a range of virtual addresses to be inaccessible. 664 * These are later cleared by a NUMA hinting fault. Depending on these 665 * faults, pages may be migrated for better NUMA placement. 666 * 667 * This is assuming that NUMA faults are handled using PROT_NONE. If 668 * an architecture makes a different choice, it will need further 669 * changes to the core. 670 */ 671 unsigned long change_prot_numa(struct vm_area_struct *vma, 672 unsigned long addr, unsigned long end) 673 { 674 struct mmu_gather tlb; 675 long nr_updated; 676 677 tlb_gather_mmu(&tlb, vma->vm_mm); 678 679 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 680 if (nr_updated > 0) 681 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 682 683 tlb_finish_mmu(&tlb); 684 685 return nr_updated; 686 } 687 #endif /* CONFIG_NUMA_BALANCING */ 688 689 static int queue_pages_test_walk(unsigned long start, unsigned long end, 690 struct mm_walk *walk) 691 { 692 struct vm_area_struct *next, *vma = walk->vma; 693 struct queue_pages *qp = walk->private; 694 unsigned long flags = qp->flags; 695 696 /* range check first */ 697 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 698 699 if (!qp->first) { 700 qp->first = vma; 701 if (!(flags & MPOL_MF_DISCONTIG_OK) && 702 (qp->start < vma->vm_start)) 703 /* hole at head side of range */ 704 return -EFAULT; 705 } 706 next = find_vma(vma->vm_mm, vma->vm_end); 707 if (!(flags & MPOL_MF_DISCONTIG_OK) && 708 ((vma->vm_end < qp->end) && 709 (!next || vma->vm_end < next->vm_start))) 710 /* hole at middle or tail of range */ 711 return -EFAULT; 712 713 /* 714 * Need check MPOL_MF_STRICT to return -EIO if possible 715 * regardless of vma_migratable 716 */ 717 if (!vma_migratable(vma) && 718 !(flags & MPOL_MF_STRICT)) 719 return 1; 720 721 /* 722 * Check page nodes, and queue pages to move, in the current vma. 723 * But if no moving, and no strict checking, the scan can be skipped. 724 */ 725 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 726 return 0; 727 return 1; 728 } 729 730 static const struct mm_walk_ops queue_pages_walk_ops = { 731 .hugetlb_entry = queue_folios_hugetlb, 732 .pmd_entry = queue_folios_pte_range, 733 .test_walk = queue_pages_test_walk, 734 .walk_lock = PGWALK_RDLOCK, 735 }; 736 737 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 738 .hugetlb_entry = queue_folios_hugetlb, 739 .pmd_entry = queue_folios_pte_range, 740 .test_walk = queue_pages_test_walk, 741 .walk_lock = PGWALK_WRLOCK, 742 }; 743 744 /* 745 * Walk through page tables and collect pages to be migrated. 746 * 747 * If pages found in a given range are not on the required set of @nodes, 748 * and migration is allowed, they are isolated and queued to @pagelist. 749 * 750 * queue_pages_range() may return: 751 * 0 - all pages already on the right node, or successfully queued for moving 752 * (or neither strict checking nor moving requested: only range checking). 753 * >0 - this number of misplaced folios could not be queued for moving 754 * (a hugetlbfs page or a transparent huge page being counted as 1). 755 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. 756 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. 757 */ 758 static long 759 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 760 nodemask_t *nodes, unsigned long flags, 761 struct list_head *pagelist) 762 { 763 int err; 764 struct queue_pages qp = { 765 .pagelist = pagelist, 766 .flags = flags, 767 .nmask = nodes, 768 .start = start, 769 .end = end, 770 .first = NULL, 771 }; 772 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? 773 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 774 775 err = walk_page_range(mm, start, end, ops, &qp); 776 777 if (!qp.first) 778 /* whole range in hole */ 779 err = -EFAULT; 780 781 return err ? : qp.nr_failed; 782 } 783 784 /* 785 * Apply policy to a single VMA 786 * This must be called with the mmap_lock held for writing. 787 */ 788 static int vma_replace_policy(struct vm_area_struct *vma, 789 struct mempolicy *pol) 790 { 791 int err; 792 struct mempolicy *old; 793 struct mempolicy *new; 794 795 vma_assert_write_locked(vma); 796 797 new = mpol_dup(pol); 798 if (IS_ERR(new)) 799 return PTR_ERR(new); 800 801 if (vma->vm_ops && vma->vm_ops->set_policy) { 802 err = vma->vm_ops->set_policy(vma, new); 803 if (err) 804 goto err_out; 805 } 806 807 old = vma->vm_policy; 808 vma->vm_policy = new; /* protected by mmap_lock */ 809 mpol_put(old); 810 811 return 0; 812 err_out: 813 mpol_put(new); 814 return err; 815 } 816 817 /* Split or merge the VMA (if required) and apply the new policy */ 818 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 819 struct vm_area_struct **prev, unsigned long start, 820 unsigned long end, struct mempolicy *new_pol) 821 { 822 unsigned long vmstart, vmend; 823 824 vmend = min(end, vma->vm_end); 825 if (start > vma->vm_start) { 826 *prev = vma; 827 vmstart = start; 828 } else { 829 vmstart = vma->vm_start; 830 } 831 832 if (mpol_equal(vma->vm_policy, new_pol)) { 833 *prev = vma; 834 return 0; 835 } 836 837 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol); 838 if (IS_ERR(vma)) 839 return PTR_ERR(vma); 840 841 *prev = vma; 842 return vma_replace_policy(vma, new_pol); 843 } 844 845 /* Set the process memory policy */ 846 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 847 nodemask_t *nodes) 848 { 849 struct mempolicy *new, *old; 850 NODEMASK_SCRATCH(scratch); 851 int ret; 852 853 if (!scratch) 854 return -ENOMEM; 855 856 new = mpol_new(mode, flags, nodes); 857 if (IS_ERR(new)) { 858 ret = PTR_ERR(new); 859 goto out; 860 } 861 862 task_lock(current); 863 ret = mpol_set_nodemask(new, nodes, scratch); 864 if (ret) { 865 task_unlock(current); 866 mpol_put(new); 867 goto out; 868 } 869 870 old = current->mempolicy; 871 current->mempolicy = new; 872 if (new && (new->mode == MPOL_INTERLEAVE || 873 new->mode == MPOL_WEIGHTED_INTERLEAVE)) { 874 current->il_prev = MAX_NUMNODES-1; 875 current->il_weight = 0; 876 } 877 task_unlock(current); 878 mpol_put(old); 879 ret = 0; 880 out: 881 NODEMASK_SCRATCH_FREE(scratch); 882 return ret; 883 } 884 885 /* 886 * Return nodemask for policy for get_mempolicy() query 887 * 888 * Called with task's alloc_lock held 889 */ 890 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes) 891 { 892 nodes_clear(*nodes); 893 if (pol == &default_policy) 894 return; 895 896 switch (pol->mode) { 897 case MPOL_BIND: 898 case MPOL_INTERLEAVE: 899 case MPOL_PREFERRED: 900 case MPOL_PREFERRED_MANY: 901 case MPOL_WEIGHTED_INTERLEAVE: 902 *nodes = pol->nodes; 903 break; 904 case MPOL_LOCAL: 905 /* return empty node mask for local allocation */ 906 break; 907 default: 908 BUG(); 909 } 910 } 911 912 static int lookup_node(struct mm_struct *mm, unsigned long addr) 913 { 914 struct page *p = NULL; 915 int ret; 916 917 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 918 if (ret > 0) { 919 ret = page_to_nid(p); 920 put_page(p); 921 } 922 return ret; 923 } 924 925 /* Retrieve NUMA policy */ 926 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 927 unsigned long addr, unsigned long flags) 928 { 929 int err; 930 struct mm_struct *mm = current->mm; 931 struct vm_area_struct *vma = NULL; 932 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 933 934 if (flags & 935 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 936 return -EINVAL; 937 938 if (flags & MPOL_F_MEMS_ALLOWED) { 939 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 940 return -EINVAL; 941 *policy = 0; /* just so it's initialized */ 942 task_lock(current); 943 *nmask = cpuset_current_mems_allowed; 944 task_unlock(current); 945 return 0; 946 } 947 948 if (flags & MPOL_F_ADDR) { 949 pgoff_t ilx; /* ignored here */ 950 /* 951 * Do NOT fall back to task policy if the 952 * vma/shared policy at addr is NULL. We 953 * want to return MPOL_DEFAULT in this case. 954 */ 955 mmap_read_lock(mm); 956 vma = vma_lookup(mm, addr); 957 if (!vma) { 958 mmap_read_unlock(mm); 959 return -EFAULT; 960 } 961 pol = __get_vma_policy(vma, addr, &ilx); 962 } else if (addr) 963 return -EINVAL; 964 965 if (!pol) 966 pol = &default_policy; /* indicates default behavior */ 967 968 if (flags & MPOL_F_NODE) { 969 if (flags & MPOL_F_ADDR) { 970 /* 971 * Take a refcount on the mpol, because we are about to 972 * drop the mmap_lock, after which only "pol" remains 973 * valid, "vma" is stale. 974 */ 975 pol_refcount = pol; 976 vma = NULL; 977 mpol_get(pol); 978 mmap_read_unlock(mm); 979 err = lookup_node(mm, addr); 980 if (err < 0) 981 goto out; 982 *policy = err; 983 } else if (pol == current->mempolicy && 984 pol->mode == MPOL_INTERLEAVE) { 985 *policy = next_node_in(current->il_prev, pol->nodes); 986 } else if (pol == current->mempolicy && 987 pol->mode == MPOL_WEIGHTED_INTERLEAVE) { 988 if (current->il_weight) 989 *policy = current->il_prev; 990 else 991 *policy = next_node_in(current->il_prev, 992 pol->nodes); 993 } else { 994 err = -EINVAL; 995 goto out; 996 } 997 } else { 998 *policy = pol == &default_policy ? MPOL_DEFAULT : 999 pol->mode; 1000 /* 1001 * Internal mempolicy flags must be masked off before exposing 1002 * the policy to userspace. 1003 */ 1004 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1005 } 1006 1007 err = 0; 1008 if (nmask) { 1009 if (mpol_store_user_nodemask(pol)) { 1010 *nmask = pol->w.user_nodemask; 1011 } else { 1012 task_lock(current); 1013 get_policy_nodemask(pol, nmask); 1014 task_unlock(current); 1015 } 1016 } 1017 1018 out: 1019 mpol_cond_put(pol); 1020 if (vma) 1021 mmap_read_unlock(mm); 1022 if (pol_refcount) 1023 mpol_put(pol_refcount); 1024 return err; 1025 } 1026 1027 #ifdef CONFIG_MIGRATION 1028 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1029 unsigned long flags) 1030 { 1031 /* 1032 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 1033 * Choosing not to migrate a shared folio is not counted as a failure. 1034 * 1035 * To check if the folio is shared, ideally we want to make sure 1036 * every page is mapped to the same process. Doing that is very 1037 * expensive, so check the estimated sharers of the folio instead. 1038 */ 1039 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1040 if (folio_isolate_lru(folio)) { 1041 list_add_tail(&folio->lru, foliolist); 1042 node_stat_mod_folio(folio, 1043 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1044 folio_nr_pages(folio)); 1045 } else { 1046 /* 1047 * Non-movable folio may reach here. And, there may be 1048 * temporary off LRU folios or non-LRU movable folios. 1049 * Treat them as unmovable folios since they can't be 1050 * isolated, so they can't be moved at the moment. 1051 */ 1052 return false; 1053 } 1054 } 1055 return true; 1056 } 1057 1058 /* 1059 * Migrate pages from one node to a target node. 1060 * Returns error or the number of pages not migrated. 1061 */ 1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest, 1063 int flags) 1064 { 1065 nodemask_t nmask; 1066 struct vm_area_struct *vma; 1067 LIST_HEAD(pagelist); 1068 long nr_failed; 1069 long err = 0; 1070 struct migration_target_control mtc = { 1071 .nid = dest, 1072 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1073 }; 1074 1075 nodes_clear(nmask); 1076 node_set(source, nmask); 1077 1078 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1079 1080 mmap_read_lock(mm); 1081 vma = find_vma(mm, 0); 1082 1083 /* 1084 * This does not migrate the range, but isolates all pages that 1085 * need migration. Between passing in the full user address 1086 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, 1087 * but passes back the count of pages which could not be isolated. 1088 */ 1089 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1090 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1091 mmap_read_unlock(mm); 1092 1093 if (!list_empty(&pagelist)) { 1094 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1095 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1096 if (err) 1097 putback_movable_pages(&pagelist); 1098 } 1099 1100 if (err >= 0) 1101 err += nr_failed; 1102 return err; 1103 } 1104 1105 /* 1106 * Move pages between the two nodesets so as to preserve the physical 1107 * layout as much as possible. 1108 * 1109 * Returns the number of page that could not be moved. 1110 */ 1111 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1112 const nodemask_t *to, int flags) 1113 { 1114 long nr_failed = 0; 1115 long err = 0; 1116 nodemask_t tmp; 1117 1118 lru_cache_disable(); 1119 1120 /* 1121 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1122 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1123 * bit in 'tmp', and return that <source, dest> pair for migration. 1124 * The pair of nodemasks 'to' and 'from' define the map. 1125 * 1126 * If no pair of bits is found that way, fallback to picking some 1127 * pair of 'source' and 'dest' bits that are not the same. If the 1128 * 'source' and 'dest' bits are the same, this represents a node 1129 * that will be migrating to itself, so no pages need move. 1130 * 1131 * If no bits are left in 'tmp', or if all remaining bits left 1132 * in 'tmp' correspond to the same bit in 'to', return false 1133 * (nothing left to migrate). 1134 * 1135 * This lets us pick a pair of nodes to migrate between, such that 1136 * if possible the dest node is not already occupied by some other 1137 * source node, minimizing the risk of overloading the memory on a 1138 * node that would happen if we migrated incoming memory to a node 1139 * before migrating outgoing memory source that same node. 1140 * 1141 * A single scan of tmp is sufficient. As we go, we remember the 1142 * most recent <s, d> pair that moved (s != d). If we find a pair 1143 * that not only moved, but what's better, moved to an empty slot 1144 * (d is not set in tmp), then we break out then, with that pair. 1145 * Otherwise when we finish scanning from_tmp, we at least have the 1146 * most recent <s, d> pair that moved. If we get all the way through 1147 * the scan of tmp without finding any node that moved, much less 1148 * moved to an empty node, then there is nothing left worth migrating. 1149 */ 1150 1151 tmp = *from; 1152 while (!nodes_empty(tmp)) { 1153 int s, d; 1154 int source = NUMA_NO_NODE; 1155 int dest = 0; 1156 1157 for_each_node_mask(s, tmp) { 1158 1159 /* 1160 * do_migrate_pages() tries to maintain the relative 1161 * node relationship of the pages established between 1162 * threads and memory areas. 1163 * 1164 * However if the number of source nodes is not equal to 1165 * the number of destination nodes we can not preserve 1166 * this node relative relationship. In that case, skip 1167 * copying memory from a node that is in the destination 1168 * mask. 1169 * 1170 * Example: [2,3,4] -> [3,4,5] moves everything. 1171 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1172 */ 1173 1174 if ((nodes_weight(*from) != nodes_weight(*to)) && 1175 (node_isset(s, *to))) 1176 continue; 1177 1178 d = node_remap(s, *from, *to); 1179 if (s == d) 1180 continue; 1181 1182 source = s; /* Node moved. Memorize */ 1183 dest = d; 1184 1185 /* dest not in remaining from nodes? */ 1186 if (!node_isset(dest, tmp)) 1187 break; 1188 } 1189 if (source == NUMA_NO_NODE) 1190 break; 1191 1192 node_clear(source, tmp); 1193 err = migrate_to_node(mm, source, dest, flags); 1194 if (err > 0) 1195 nr_failed += err; 1196 if (err < 0) 1197 break; 1198 } 1199 1200 lru_cache_enable(); 1201 if (err < 0) 1202 return err; 1203 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; 1204 } 1205 1206 /* 1207 * Allocate a new folio for page migration, according to NUMA mempolicy. 1208 */ 1209 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1210 unsigned long private) 1211 { 1212 struct migration_mpol *mmpol = (struct migration_mpol *)private; 1213 struct mempolicy *pol = mmpol->pol; 1214 pgoff_t ilx = mmpol->ilx; 1215 struct page *page; 1216 unsigned int order; 1217 int nid = numa_node_id(); 1218 gfp_t gfp; 1219 1220 order = folio_order(src); 1221 ilx += src->index >> order; 1222 1223 if (folio_test_hugetlb(src)) { 1224 nodemask_t *nodemask; 1225 struct hstate *h; 1226 1227 h = folio_hstate(src); 1228 gfp = htlb_alloc_mask(h); 1229 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 1230 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp); 1231 } 1232 1233 if (folio_test_large(src)) 1234 gfp = GFP_TRANSHUGE; 1235 else 1236 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP; 1237 1238 page = alloc_pages_mpol(gfp, order, pol, ilx, nid); 1239 return page_rmappable_folio(page); 1240 } 1241 #else 1242 1243 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1244 unsigned long flags) 1245 { 1246 return false; 1247 } 1248 1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1250 const nodemask_t *to, int flags) 1251 { 1252 return -ENOSYS; 1253 } 1254 1255 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1256 unsigned long private) 1257 { 1258 return NULL; 1259 } 1260 #endif 1261 1262 static long do_mbind(unsigned long start, unsigned long len, 1263 unsigned short mode, unsigned short mode_flags, 1264 nodemask_t *nmask, unsigned long flags) 1265 { 1266 struct mm_struct *mm = current->mm; 1267 struct vm_area_struct *vma, *prev; 1268 struct vma_iterator vmi; 1269 struct migration_mpol mmpol; 1270 struct mempolicy *new; 1271 unsigned long end; 1272 long err; 1273 long nr_failed; 1274 LIST_HEAD(pagelist); 1275 1276 if (flags & ~(unsigned long)MPOL_MF_VALID) 1277 return -EINVAL; 1278 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1279 return -EPERM; 1280 1281 if (start & ~PAGE_MASK) 1282 return -EINVAL; 1283 1284 if (mode == MPOL_DEFAULT) 1285 flags &= ~MPOL_MF_STRICT; 1286 1287 len = PAGE_ALIGN(len); 1288 end = start + len; 1289 1290 if (end < start) 1291 return -EINVAL; 1292 if (end == start) 1293 return 0; 1294 1295 new = mpol_new(mode, mode_flags, nmask); 1296 if (IS_ERR(new)) 1297 return PTR_ERR(new); 1298 1299 /* 1300 * If we are using the default policy then operation 1301 * on discontinuous address spaces is okay after all 1302 */ 1303 if (!new) 1304 flags |= MPOL_MF_DISCONTIG_OK; 1305 1306 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1307 lru_cache_disable(); 1308 { 1309 NODEMASK_SCRATCH(scratch); 1310 if (scratch) { 1311 mmap_write_lock(mm); 1312 err = mpol_set_nodemask(new, nmask, scratch); 1313 if (err) 1314 mmap_write_unlock(mm); 1315 } else 1316 err = -ENOMEM; 1317 NODEMASK_SCRATCH_FREE(scratch); 1318 } 1319 if (err) 1320 goto mpol_out; 1321 1322 /* 1323 * Lock the VMAs before scanning for pages to migrate, 1324 * to ensure we don't miss a concurrently inserted page. 1325 */ 1326 nr_failed = queue_pages_range(mm, start, end, nmask, 1327 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); 1328 1329 if (nr_failed < 0) { 1330 err = nr_failed; 1331 nr_failed = 0; 1332 } else { 1333 vma_iter_init(&vmi, mm, start); 1334 prev = vma_prev(&vmi); 1335 for_each_vma_range(vmi, vma, end) { 1336 err = mbind_range(&vmi, vma, &prev, start, end, new); 1337 if (err) 1338 break; 1339 } 1340 } 1341 1342 if (!err && !list_empty(&pagelist)) { 1343 /* Convert MPOL_DEFAULT's NULL to task or default policy */ 1344 if (!new) { 1345 new = get_task_policy(current); 1346 mpol_get(new); 1347 } 1348 mmpol.pol = new; 1349 mmpol.ilx = 0; 1350 1351 /* 1352 * In the interleaved case, attempt to allocate on exactly the 1353 * targeted nodes, for the first VMA to be migrated; for later 1354 * VMAs, the nodes will still be interleaved from the targeted 1355 * nodemask, but one by one may be selected differently. 1356 */ 1357 if (new->mode == MPOL_INTERLEAVE || 1358 new->mode == MPOL_WEIGHTED_INTERLEAVE) { 1359 struct folio *folio; 1360 unsigned int order; 1361 unsigned long addr = -EFAULT; 1362 1363 list_for_each_entry(folio, &pagelist, lru) { 1364 if (!folio_test_ksm(folio)) 1365 break; 1366 } 1367 if (!list_entry_is_head(folio, &pagelist, lru)) { 1368 vma_iter_init(&vmi, mm, start); 1369 for_each_vma_range(vmi, vma, end) { 1370 addr = page_address_in_vma( 1371 folio_page(folio, 0), vma); 1372 if (addr != -EFAULT) 1373 break; 1374 } 1375 } 1376 if (addr != -EFAULT) { 1377 order = folio_order(folio); 1378 /* We already know the pol, but not the ilx */ 1379 mpol_cond_put(get_vma_policy(vma, addr, order, 1380 &mmpol.ilx)); 1381 /* Set base from which to increment by index */ 1382 mmpol.ilx -= folio->index >> order; 1383 } 1384 } 1385 } 1386 1387 mmap_write_unlock(mm); 1388 1389 if (!err && !list_empty(&pagelist)) { 1390 nr_failed |= migrate_pages(&pagelist, 1391 alloc_migration_target_by_mpol, NULL, 1392 (unsigned long)&mmpol, MIGRATE_SYNC, 1393 MR_MEMPOLICY_MBIND, NULL); 1394 } 1395 1396 if (nr_failed && (flags & MPOL_MF_STRICT)) 1397 err = -EIO; 1398 if (!list_empty(&pagelist)) 1399 putback_movable_pages(&pagelist); 1400 mpol_out: 1401 mpol_put(new); 1402 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1403 lru_cache_enable(); 1404 return err; 1405 } 1406 1407 /* 1408 * User space interface with variable sized bitmaps for nodelists. 1409 */ 1410 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1411 unsigned long maxnode) 1412 { 1413 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1414 int ret; 1415 1416 if (in_compat_syscall()) 1417 ret = compat_get_bitmap(mask, 1418 (const compat_ulong_t __user *)nmask, 1419 maxnode); 1420 else 1421 ret = copy_from_user(mask, nmask, 1422 nlongs * sizeof(unsigned long)); 1423 1424 if (ret) 1425 return -EFAULT; 1426 1427 if (maxnode % BITS_PER_LONG) 1428 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1429 1430 return 0; 1431 } 1432 1433 /* Copy a node mask from user space. */ 1434 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1435 unsigned long maxnode) 1436 { 1437 --maxnode; 1438 nodes_clear(*nodes); 1439 if (maxnode == 0 || !nmask) 1440 return 0; 1441 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1442 return -EINVAL; 1443 1444 /* 1445 * When the user specified more nodes than supported just check 1446 * if the non supported part is all zero, one word at a time, 1447 * starting at the end. 1448 */ 1449 while (maxnode > MAX_NUMNODES) { 1450 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1451 unsigned long t; 1452 1453 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1454 return -EFAULT; 1455 1456 if (maxnode - bits >= MAX_NUMNODES) { 1457 maxnode -= bits; 1458 } else { 1459 maxnode = MAX_NUMNODES; 1460 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1461 } 1462 if (t) 1463 return -EINVAL; 1464 } 1465 1466 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1467 } 1468 1469 /* Copy a kernel node mask to user space */ 1470 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1471 nodemask_t *nodes) 1472 { 1473 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1474 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1475 bool compat = in_compat_syscall(); 1476 1477 if (compat) 1478 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1479 1480 if (copy > nbytes) { 1481 if (copy > PAGE_SIZE) 1482 return -EINVAL; 1483 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1484 return -EFAULT; 1485 copy = nbytes; 1486 maxnode = nr_node_ids; 1487 } 1488 1489 if (compat) 1490 return compat_put_bitmap((compat_ulong_t __user *)mask, 1491 nodes_addr(*nodes), maxnode); 1492 1493 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1494 } 1495 1496 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1497 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1498 { 1499 *flags = *mode & MPOL_MODE_FLAGS; 1500 *mode &= ~MPOL_MODE_FLAGS; 1501 1502 if ((unsigned int)(*mode) >= MPOL_MAX) 1503 return -EINVAL; 1504 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1505 return -EINVAL; 1506 if (*flags & MPOL_F_NUMA_BALANCING) { 1507 if (*mode != MPOL_BIND) 1508 return -EINVAL; 1509 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1510 } 1511 return 0; 1512 } 1513 1514 static long kernel_mbind(unsigned long start, unsigned long len, 1515 unsigned long mode, const unsigned long __user *nmask, 1516 unsigned long maxnode, unsigned int flags) 1517 { 1518 unsigned short mode_flags; 1519 nodemask_t nodes; 1520 int lmode = mode; 1521 int err; 1522 1523 start = untagged_addr(start); 1524 err = sanitize_mpol_flags(&lmode, &mode_flags); 1525 if (err) 1526 return err; 1527 1528 err = get_nodes(&nodes, nmask, maxnode); 1529 if (err) 1530 return err; 1531 1532 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1533 } 1534 1535 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1536 unsigned long, home_node, unsigned long, flags) 1537 { 1538 struct mm_struct *mm = current->mm; 1539 struct vm_area_struct *vma, *prev; 1540 struct mempolicy *new, *old; 1541 unsigned long end; 1542 int err = -ENOENT; 1543 VMA_ITERATOR(vmi, mm, start); 1544 1545 start = untagged_addr(start); 1546 if (start & ~PAGE_MASK) 1547 return -EINVAL; 1548 /* 1549 * flags is used for future extension if any. 1550 */ 1551 if (flags != 0) 1552 return -EINVAL; 1553 1554 /* 1555 * Check home_node is online to avoid accessing uninitialized 1556 * NODE_DATA. 1557 */ 1558 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1559 return -EINVAL; 1560 1561 len = PAGE_ALIGN(len); 1562 end = start + len; 1563 1564 if (end < start) 1565 return -EINVAL; 1566 if (end == start) 1567 return 0; 1568 mmap_write_lock(mm); 1569 prev = vma_prev(&vmi); 1570 for_each_vma_range(vmi, vma, end) { 1571 /* 1572 * If any vma in the range got policy other than MPOL_BIND 1573 * or MPOL_PREFERRED_MANY we return error. We don't reset 1574 * the home node for vmas we already updated before. 1575 */ 1576 old = vma_policy(vma); 1577 if (!old) { 1578 prev = vma; 1579 continue; 1580 } 1581 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1582 err = -EOPNOTSUPP; 1583 break; 1584 } 1585 new = mpol_dup(old); 1586 if (IS_ERR(new)) { 1587 err = PTR_ERR(new); 1588 break; 1589 } 1590 1591 vma_start_write(vma); 1592 new->home_node = home_node; 1593 err = mbind_range(&vmi, vma, &prev, start, end, new); 1594 mpol_put(new); 1595 if (err) 1596 break; 1597 } 1598 mmap_write_unlock(mm); 1599 return err; 1600 } 1601 1602 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1603 unsigned long, mode, const unsigned long __user *, nmask, 1604 unsigned long, maxnode, unsigned int, flags) 1605 { 1606 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1607 } 1608 1609 /* Set the process memory policy */ 1610 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1611 unsigned long maxnode) 1612 { 1613 unsigned short mode_flags; 1614 nodemask_t nodes; 1615 int lmode = mode; 1616 int err; 1617 1618 err = sanitize_mpol_flags(&lmode, &mode_flags); 1619 if (err) 1620 return err; 1621 1622 err = get_nodes(&nodes, nmask, maxnode); 1623 if (err) 1624 return err; 1625 1626 return do_set_mempolicy(lmode, mode_flags, &nodes); 1627 } 1628 1629 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1630 unsigned long, maxnode) 1631 { 1632 return kernel_set_mempolicy(mode, nmask, maxnode); 1633 } 1634 1635 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1636 const unsigned long __user *old_nodes, 1637 const unsigned long __user *new_nodes) 1638 { 1639 struct mm_struct *mm = NULL; 1640 struct task_struct *task; 1641 nodemask_t task_nodes; 1642 int err; 1643 nodemask_t *old; 1644 nodemask_t *new; 1645 NODEMASK_SCRATCH(scratch); 1646 1647 if (!scratch) 1648 return -ENOMEM; 1649 1650 old = &scratch->mask1; 1651 new = &scratch->mask2; 1652 1653 err = get_nodes(old, old_nodes, maxnode); 1654 if (err) 1655 goto out; 1656 1657 err = get_nodes(new, new_nodes, maxnode); 1658 if (err) 1659 goto out; 1660 1661 /* Find the mm_struct */ 1662 rcu_read_lock(); 1663 task = pid ? find_task_by_vpid(pid) : current; 1664 if (!task) { 1665 rcu_read_unlock(); 1666 err = -ESRCH; 1667 goto out; 1668 } 1669 get_task_struct(task); 1670 1671 err = -EINVAL; 1672 1673 /* 1674 * Check if this process has the right to modify the specified process. 1675 * Use the regular "ptrace_may_access()" checks. 1676 */ 1677 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1678 rcu_read_unlock(); 1679 err = -EPERM; 1680 goto out_put; 1681 } 1682 rcu_read_unlock(); 1683 1684 task_nodes = cpuset_mems_allowed(task); 1685 /* Is the user allowed to access the target nodes? */ 1686 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1687 err = -EPERM; 1688 goto out_put; 1689 } 1690 1691 task_nodes = cpuset_mems_allowed(current); 1692 nodes_and(*new, *new, task_nodes); 1693 if (nodes_empty(*new)) 1694 goto out_put; 1695 1696 err = security_task_movememory(task); 1697 if (err) 1698 goto out_put; 1699 1700 mm = get_task_mm(task); 1701 put_task_struct(task); 1702 1703 if (!mm) { 1704 err = -EINVAL; 1705 goto out; 1706 } 1707 1708 err = do_migrate_pages(mm, old, new, 1709 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1710 1711 mmput(mm); 1712 out: 1713 NODEMASK_SCRATCH_FREE(scratch); 1714 1715 return err; 1716 1717 out_put: 1718 put_task_struct(task); 1719 goto out; 1720 } 1721 1722 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1723 const unsigned long __user *, old_nodes, 1724 const unsigned long __user *, new_nodes) 1725 { 1726 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1727 } 1728 1729 /* Retrieve NUMA policy */ 1730 static int kernel_get_mempolicy(int __user *policy, 1731 unsigned long __user *nmask, 1732 unsigned long maxnode, 1733 unsigned long addr, 1734 unsigned long flags) 1735 { 1736 int err; 1737 int pval; 1738 nodemask_t nodes; 1739 1740 if (nmask != NULL && maxnode < nr_node_ids) 1741 return -EINVAL; 1742 1743 addr = untagged_addr(addr); 1744 1745 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1746 1747 if (err) 1748 return err; 1749 1750 if (policy && put_user(pval, policy)) 1751 return -EFAULT; 1752 1753 if (nmask) 1754 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1755 1756 return err; 1757 } 1758 1759 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1760 unsigned long __user *, nmask, unsigned long, maxnode, 1761 unsigned long, addr, unsigned long, flags) 1762 { 1763 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1764 } 1765 1766 bool vma_migratable(struct vm_area_struct *vma) 1767 { 1768 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1769 return false; 1770 1771 /* 1772 * DAX device mappings require predictable access latency, so avoid 1773 * incurring periodic faults. 1774 */ 1775 if (vma_is_dax(vma)) 1776 return false; 1777 1778 if (is_vm_hugetlb_page(vma) && 1779 !hugepage_migration_supported(hstate_vma(vma))) 1780 return false; 1781 1782 /* 1783 * Migration allocates pages in the highest zone. If we cannot 1784 * do so then migration (at least from node to node) is not 1785 * possible. 1786 */ 1787 if (vma->vm_file && 1788 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1789 < policy_zone) 1790 return false; 1791 return true; 1792 } 1793 1794 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1795 unsigned long addr, pgoff_t *ilx) 1796 { 1797 *ilx = 0; 1798 return (vma->vm_ops && vma->vm_ops->get_policy) ? 1799 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy; 1800 } 1801 1802 /* 1803 * get_vma_policy(@vma, @addr, @order, @ilx) 1804 * @vma: virtual memory area whose policy is sought 1805 * @addr: address in @vma for shared policy lookup 1806 * @order: 0, or appropriate huge_page_order for interleaving 1807 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or 1808 * MPOL_WEIGHTED_INTERLEAVE 1809 * 1810 * Returns effective policy for a VMA at specified address. 1811 * Falls back to current->mempolicy or system default policy, as necessary. 1812 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1813 * count--added by the get_policy() vm_op, as appropriate--to protect against 1814 * freeing by another task. It is the caller's responsibility to free the 1815 * extra reference for shared policies. 1816 */ 1817 struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1818 unsigned long addr, int order, pgoff_t *ilx) 1819 { 1820 struct mempolicy *pol; 1821 1822 pol = __get_vma_policy(vma, addr, ilx); 1823 if (!pol) 1824 pol = get_task_policy(current); 1825 if (pol->mode == MPOL_INTERLEAVE || 1826 pol->mode == MPOL_WEIGHTED_INTERLEAVE) { 1827 *ilx += vma->vm_pgoff >> order; 1828 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); 1829 } 1830 return pol; 1831 } 1832 1833 bool vma_policy_mof(struct vm_area_struct *vma) 1834 { 1835 struct mempolicy *pol; 1836 1837 if (vma->vm_ops && vma->vm_ops->get_policy) { 1838 bool ret = false; 1839 pgoff_t ilx; /* ignored here */ 1840 1841 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx); 1842 if (pol && (pol->flags & MPOL_F_MOF)) 1843 ret = true; 1844 mpol_cond_put(pol); 1845 1846 return ret; 1847 } 1848 1849 pol = vma->vm_policy; 1850 if (!pol) 1851 pol = get_task_policy(current); 1852 1853 return pol->flags & MPOL_F_MOF; 1854 } 1855 1856 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1857 { 1858 enum zone_type dynamic_policy_zone = policy_zone; 1859 1860 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1861 1862 /* 1863 * if policy->nodes has movable memory only, 1864 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1865 * 1866 * policy->nodes is intersect with node_states[N_MEMORY]. 1867 * so if the following test fails, it implies 1868 * policy->nodes has movable memory only. 1869 */ 1870 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1871 dynamic_policy_zone = ZONE_MOVABLE; 1872 1873 return zone >= dynamic_policy_zone; 1874 } 1875 1876 static unsigned int weighted_interleave_nodes(struct mempolicy *policy) 1877 { 1878 unsigned int node; 1879 unsigned int cpuset_mems_cookie; 1880 1881 retry: 1882 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */ 1883 cpuset_mems_cookie = read_mems_allowed_begin(); 1884 node = current->il_prev; 1885 if (!current->il_weight || !node_isset(node, policy->nodes)) { 1886 node = next_node_in(node, policy->nodes); 1887 if (read_mems_allowed_retry(cpuset_mems_cookie)) 1888 goto retry; 1889 if (node == MAX_NUMNODES) 1890 return node; 1891 current->il_prev = node; 1892 current->il_weight = get_il_weight(node); 1893 } 1894 current->il_weight--; 1895 return node; 1896 } 1897 1898 /* Do dynamic interleaving for a process */ 1899 static unsigned int interleave_nodes(struct mempolicy *policy) 1900 { 1901 unsigned int nid; 1902 unsigned int cpuset_mems_cookie; 1903 1904 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */ 1905 do { 1906 cpuset_mems_cookie = read_mems_allowed_begin(); 1907 nid = next_node_in(current->il_prev, policy->nodes); 1908 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1909 1910 if (nid < MAX_NUMNODES) 1911 current->il_prev = nid; 1912 return nid; 1913 } 1914 1915 /* 1916 * Depending on the memory policy provide a node from which to allocate the 1917 * next slab entry. 1918 */ 1919 unsigned int mempolicy_slab_node(void) 1920 { 1921 struct mempolicy *policy; 1922 int node = numa_mem_id(); 1923 1924 if (!in_task()) 1925 return node; 1926 1927 policy = current->mempolicy; 1928 if (!policy) 1929 return node; 1930 1931 switch (policy->mode) { 1932 case MPOL_PREFERRED: 1933 return first_node(policy->nodes); 1934 1935 case MPOL_INTERLEAVE: 1936 return interleave_nodes(policy); 1937 1938 case MPOL_WEIGHTED_INTERLEAVE: 1939 return weighted_interleave_nodes(policy); 1940 1941 case MPOL_BIND: 1942 case MPOL_PREFERRED_MANY: 1943 { 1944 struct zoneref *z; 1945 1946 /* 1947 * Follow bind policy behavior and start allocation at the 1948 * first node. 1949 */ 1950 struct zonelist *zonelist; 1951 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1952 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1953 z = first_zones_zonelist(zonelist, highest_zoneidx, 1954 &policy->nodes); 1955 return z->zone ? zone_to_nid(z->zone) : node; 1956 } 1957 case MPOL_LOCAL: 1958 return node; 1959 1960 default: 1961 BUG(); 1962 } 1963 } 1964 1965 static unsigned int read_once_policy_nodemask(struct mempolicy *pol, 1966 nodemask_t *mask) 1967 { 1968 /* 1969 * barrier stabilizes the nodemask locally so that it can be iterated 1970 * over safely without concern for changes. Allocators validate node 1971 * selection does not violate mems_allowed, so this is safe. 1972 */ 1973 barrier(); 1974 memcpy(mask, &pol->nodes, sizeof(nodemask_t)); 1975 barrier(); 1976 return nodes_weight(*mask); 1977 } 1978 1979 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx) 1980 { 1981 nodemask_t nodemask; 1982 unsigned int target, nr_nodes; 1983 u8 *table; 1984 unsigned int weight_total = 0; 1985 u8 weight; 1986 int nid; 1987 1988 nr_nodes = read_once_policy_nodemask(pol, &nodemask); 1989 if (!nr_nodes) 1990 return numa_node_id(); 1991 1992 rcu_read_lock(); 1993 table = rcu_dereference(iw_table); 1994 /* calculate the total weight */ 1995 for_each_node_mask(nid, nodemask) { 1996 /* detect system default usage */ 1997 weight = table ? table[nid] : 1; 1998 weight = weight ? weight : 1; 1999 weight_total += weight; 2000 } 2001 2002 /* Calculate the node offset based on totals */ 2003 target = ilx % weight_total; 2004 nid = first_node(nodemask); 2005 while (target) { 2006 /* detect system default usage */ 2007 weight = table ? table[nid] : 1; 2008 weight = weight ? weight : 1; 2009 if (target < weight) 2010 break; 2011 target -= weight; 2012 nid = next_node_in(nid, nodemask); 2013 } 2014 rcu_read_unlock(); 2015 return nid; 2016 } 2017 2018 /* 2019 * Do static interleaving for interleave index @ilx. Returns the ilx'th 2020 * node in pol->nodes (starting from ilx=0), wrapping around if ilx 2021 * exceeds the number of present nodes. 2022 */ 2023 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx) 2024 { 2025 nodemask_t nodemask; 2026 unsigned int target, nnodes; 2027 int i; 2028 int nid; 2029 2030 nnodes = read_once_policy_nodemask(pol, &nodemask); 2031 if (!nnodes) 2032 return numa_node_id(); 2033 target = ilx % nnodes; 2034 nid = first_node(nodemask); 2035 for (i = 0; i < target; i++) 2036 nid = next_node(nid, nodemask); 2037 return nid; 2038 } 2039 2040 /* 2041 * Return a nodemask representing a mempolicy for filtering nodes for 2042 * page allocation, together with preferred node id (or the input node id). 2043 */ 2044 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 2045 pgoff_t ilx, int *nid) 2046 { 2047 nodemask_t *nodemask = NULL; 2048 2049 switch (pol->mode) { 2050 case MPOL_PREFERRED: 2051 /* Override input node id */ 2052 *nid = first_node(pol->nodes); 2053 break; 2054 case MPOL_PREFERRED_MANY: 2055 nodemask = &pol->nodes; 2056 if (pol->home_node != NUMA_NO_NODE) 2057 *nid = pol->home_node; 2058 break; 2059 case MPOL_BIND: 2060 /* Restrict to nodemask (but not on lower zones) */ 2061 if (apply_policy_zone(pol, gfp_zone(gfp)) && 2062 cpuset_nodemask_valid_mems_allowed(&pol->nodes)) 2063 nodemask = &pol->nodes; 2064 if (pol->home_node != NUMA_NO_NODE) 2065 *nid = pol->home_node; 2066 /* 2067 * __GFP_THISNODE shouldn't even be used with the bind policy 2068 * because we might easily break the expectation to stay on the 2069 * requested node and not break the policy. 2070 */ 2071 WARN_ON_ONCE(gfp & __GFP_THISNODE); 2072 break; 2073 case MPOL_INTERLEAVE: 2074 /* Override input node id */ 2075 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 2076 interleave_nodes(pol) : interleave_nid(pol, ilx); 2077 break; 2078 case MPOL_WEIGHTED_INTERLEAVE: 2079 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 2080 weighted_interleave_nodes(pol) : 2081 weighted_interleave_nid(pol, ilx); 2082 break; 2083 } 2084 2085 return nodemask; 2086 } 2087 2088 #ifdef CONFIG_HUGETLBFS 2089 /* 2090 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2091 * @vma: virtual memory area whose policy is sought 2092 * @addr: address in @vma for shared policy lookup and interleave policy 2093 * @gfp_flags: for requested zone 2094 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2095 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2096 * 2097 * Returns a nid suitable for a huge page allocation and a pointer 2098 * to the struct mempolicy for conditional unref after allocation. 2099 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2100 * to the mempolicy's @nodemask for filtering the zonelist. 2101 */ 2102 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2103 struct mempolicy **mpol, nodemask_t **nodemask) 2104 { 2105 pgoff_t ilx; 2106 int nid; 2107 2108 nid = numa_node_id(); 2109 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx); 2110 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid); 2111 return nid; 2112 } 2113 2114 /* 2115 * init_nodemask_of_mempolicy 2116 * 2117 * If the current task's mempolicy is "default" [NULL], return 'false' 2118 * to indicate default policy. Otherwise, extract the policy nodemask 2119 * for 'bind' or 'interleave' policy into the argument nodemask, or 2120 * initialize the argument nodemask to contain the single node for 2121 * 'preferred' or 'local' policy and return 'true' to indicate presence 2122 * of non-default mempolicy. 2123 * 2124 * We don't bother with reference counting the mempolicy [mpol_get/put] 2125 * because the current task is examining it's own mempolicy and a task's 2126 * mempolicy is only ever changed by the task itself. 2127 * 2128 * N.B., it is the caller's responsibility to free a returned nodemask. 2129 */ 2130 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2131 { 2132 struct mempolicy *mempolicy; 2133 2134 if (!(mask && current->mempolicy)) 2135 return false; 2136 2137 task_lock(current); 2138 mempolicy = current->mempolicy; 2139 switch (mempolicy->mode) { 2140 case MPOL_PREFERRED: 2141 case MPOL_PREFERRED_MANY: 2142 case MPOL_BIND: 2143 case MPOL_INTERLEAVE: 2144 case MPOL_WEIGHTED_INTERLEAVE: 2145 *mask = mempolicy->nodes; 2146 break; 2147 2148 case MPOL_LOCAL: 2149 init_nodemask_of_node(mask, numa_node_id()); 2150 break; 2151 2152 default: 2153 BUG(); 2154 } 2155 task_unlock(current); 2156 2157 return true; 2158 } 2159 #endif 2160 2161 /* 2162 * mempolicy_in_oom_domain 2163 * 2164 * If tsk's mempolicy is "bind", check for intersection between mask and 2165 * the policy nodemask. Otherwise, return true for all other policies 2166 * including "interleave", as a tsk with "interleave" policy may have 2167 * memory allocated from all nodes in system. 2168 * 2169 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2170 */ 2171 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2172 const nodemask_t *mask) 2173 { 2174 struct mempolicy *mempolicy; 2175 bool ret = true; 2176 2177 if (!mask) 2178 return ret; 2179 2180 task_lock(tsk); 2181 mempolicy = tsk->mempolicy; 2182 if (mempolicy && mempolicy->mode == MPOL_BIND) 2183 ret = nodes_intersects(mempolicy->nodes, *mask); 2184 task_unlock(tsk); 2185 2186 return ret; 2187 } 2188 2189 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2190 int nid, nodemask_t *nodemask) 2191 { 2192 struct page *page; 2193 gfp_t preferred_gfp; 2194 2195 /* 2196 * This is a two pass approach. The first pass will only try the 2197 * preferred nodes but skip the direct reclaim and allow the 2198 * allocation to fail, while the second pass will try all the 2199 * nodes in system. 2200 */ 2201 preferred_gfp = gfp | __GFP_NOWARN; 2202 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2203 page = __alloc_pages(preferred_gfp, order, nid, nodemask); 2204 if (!page) 2205 page = __alloc_pages(gfp, order, nid, NULL); 2206 2207 return page; 2208 } 2209 2210 /** 2211 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy. 2212 * @gfp: GFP flags. 2213 * @order: Order of the page allocation. 2214 * @pol: Pointer to the NUMA mempolicy. 2215 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()). 2216 * @nid: Preferred node (usually numa_node_id() but @mpol may override it). 2217 * 2218 * Return: The page on success or NULL if allocation fails. 2219 */ 2220 struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, 2221 struct mempolicy *pol, pgoff_t ilx, int nid) 2222 { 2223 nodemask_t *nodemask; 2224 struct page *page; 2225 2226 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 2227 2228 if (pol->mode == MPOL_PREFERRED_MANY) 2229 return alloc_pages_preferred_many(gfp, order, nid, nodemask); 2230 2231 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2232 /* filter "hugepage" allocation, unless from alloc_pages() */ 2233 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) { 2234 /* 2235 * For hugepage allocation and non-interleave policy which 2236 * allows the current node (or other explicitly preferred 2237 * node) we only try to allocate from the current/preferred 2238 * node and don't fall back to other nodes, as the cost of 2239 * remote accesses would likely offset THP benefits. 2240 * 2241 * If the policy is interleave or does not allow the current 2242 * node in its nodemask, we allocate the standard way. 2243 */ 2244 if (pol->mode != MPOL_INTERLEAVE && 2245 pol->mode != MPOL_WEIGHTED_INTERLEAVE && 2246 (!nodemask || node_isset(nid, *nodemask))) { 2247 /* 2248 * First, try to allocate THP only on local node, but 2249 * don't reclaim unnecessarily, just compact. 2250 */ 2251 page = __alloc_pages_node(nid, 2252 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2253 if (page || !(gfp & __GFP_DIRECT_RECLAIM)) 2254 return page; 2255 /* 2256 * If hugepage allocations are configured to always 2257 * synchronous compact or the vma has been madvised 2258 * to prefer hugepage backing, retry allowing remote 2259 * memory with both reclaim and compact as well. 2260 */ 2261 } 2262 } 2263 2264 page = __alloc_pages(gfp, order, nid, nodemask); 2265 2266 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) { 2267 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */ 2268 if (static_branch_likely(&vm_numa_stat_key) && 2269 page_to_nid(page) == nid) { 2270 preempt_disable(); 2271 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2272 preempt_enable(); 2273 } 2274 } 2275 2276 return page; 2277 } 2278 2279 /** 2280 * vma_alloc_folio - Allocate a folio for a VMA. 2281 * @gfp: GFP flags. 2282 * @order: Order of the folio. 2283 * @vma: Pointer to VMA. 2284 * @addr: Virtual address of the allocation. Must be inside @vma. 2285 * @hugepage: Unused (was: For hugepages try only preferred node if possible). 2286 * 2287 * Allocate a folio for a specific address in @vma, using the appropriate 2288 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the 2289 * VMA to prevent it from going away. Should be used for all allocations 2290 * for folios that will be mapped into user space, excepting hugetlbfs, and 2291 * excepting where direct use of alloc_pages_mpol() is more appropriate. 2292 * 2293 * Return: The folio on success or NULL if allocation fails. 2294 */ 2295 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2296 unsigned long addr, bool hugepage) 2297 { 2298 struct mempolicy *pol; 2299 pgoff_t ilx; 2300 struct page *page; 2301 2302 pol = get_vma_policy(vma, addr, order, &ilx); 2303 page = alloc_pages_mpol(gfp | __GFP_COMP, order, 2304 pol, ilx, numa_node_id()); 2305 mpol_cond_put(pol); 2306 return page_rmappable_folio(page); 2307 } 2308 EXPORT_SYMBOL(vma_alloc_folio); 2309 2310 /** 2311 * alloc_pages - Allocate pages. 2312 * @gfp: GFP flags. 2313 * @order: Power of two of number of pages to allocate. 2314 * 2315 * Allocate 1 << @order contiguous pages. The physical address of the 2316 * first page is naturally aligned (eg an order-3 allocation will be aligned 2317 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2318 * process is honoured when in process context. 2319 * 2320 * Context: Can be called from any context, providing the appropriate GFP 2321 * flags are used. 2322 * Return: The page on success or NULL if allocation fails. 2323 */ 2324 struct page *alloc_pages(gfp_t gfp, unsigned int order) 2325 { 2326 struct mempolicy *pol = &default_policy; 2327 2328 /* 2329 * No reference counting needed for current->mempolicy 2330 * nor system default_policy 2331 */ 2332 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2333 pol = get_task_policy(current); 2334 2335 return alloc_pages_mpol(gfp, order, 2336 pol, NO_INTERLEAVE_INDEX, numa_node_id()); 2337 } 2338 EXPORT_SYMBOL(alloc_pages); 2339 2340 struct folio *folio_alloc(gfp_t gfp, unsigned int order) 2341 { 2342 return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order)); 2343 } 2344 EXPORT_SYMBOL(folio_alloc); 2345 2346 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2347 struct mempolicy *pol, unsigned long nr_pages, 2348 struct page **page_array) 2349 { 2350 int nodes; 2351 unsigned long nr_pages_per_node; 2352 int delta; 2353 int i; 2354 unsigned long nr_allocated; 2355 unsigned long total_allocated = 0; 2356 2357 nodes = nodes_weight(pol->nodes); 2358 nr_pages_per_node = nr_pages / nodes; 2359 delta = nr_pages - nodes * nr_pages_per_node; 2360 2361 for (i = 0; i < nodes; i++) { 2362 if (delta) { 2363 nr_allocated = __alloc_pages_bulk(gfp, 2364 interleave_nodes(pol), NULL, 2365 nr_pages_per_node + 1, NULL, 2366 page_array); 2367 delta--; 2368 } else { 2369 nr_allocated = __alloc_pages_bulk(gfp, 2370 interleave_nodes(pol), NULL, 2371 nr_pages_per_node, NULL, page_array); 2372 } 2373 2374 page_array += nr_allocated; 2375 total_allocated += nr_allocated; 2376 } 2377 2378 return total_allocated; 2379 } 2380 2381 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp, 2382 struct mempolicy *pol, unsigned long nr_pages, 2383 struct page **page_array) 2384 { 2385 struct task_struct *me = current; 2386 unsigned int cpuset_mems_cookie; 2387 unsigned long total_allocated = 0; 2388 unsigned long nr_allocated = 0; 2389 unsigned long rounds; 2390 unsigned long node_pages, delta; 2391 u8 *table, *weights, weight; 2392 unsigned int weight_total = 0; 2393 unsigned long rem_pages = nr_pages; 2394 nodemask_t nodes; 2395 int nnodes, node; 2396 int resume_node = MAX_NUMNODES - 1; 2397 u8 resume_weight = 0; 2398 int prev_node; 2399 int i; 2400 2401 if (!nr_pages) 2402 return 0; 2403 2404 /* read the nodes onto the stack, retry if done during rebind */ 2405 do { 2406 cpuset_mems_cookie = read_mems_allowed_begin(); 2407 nnodes = read_once_policy_nodemask(pol, &nodes); 2408 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2409 2410 /* if the nodemask has become invalid, we cannot do anything */ 2411 if (!nnodes) 2412 return 0; 2413 2414 /* Continue allocating from most recent node and adjust the nr_pages */ 2415 node = me->il_prev; 2416 weight = me->il_weight; 2417 if (weight && node_isset(node, nodes)) { 2418 node_pages = min(rem_pages, weight); 2419 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, 2420 NULL, page_array); 2421 page_array += nr_allocated; 2422 total_allocated += nr_allocated; 2423 /* if that's all the pages, no need to interleave */ 2424 if (rem_pages <= weight) { 2425 me->il_weight -= rem_pages; 2426 return total_allocated; 2427 } 2428 /* Otherwise we adjust remaining pages, continue from there */ 2429 rem_pages -= weight; 2430 } 2431 /* clear active weight in case of an allocation failure */ 2432 me->il_weight = 0; 2433 prev_node = node; 2434 2435 /* create a local copy of node weights to operate on outside rcu */ 2436 weights = kzalloc(nr_node_ids, GFP_KERNEL); 2437 if (!weights) 2438 return total_allocated; 2439 2440 rcu_read_lock(); 2441 table = rcu_dereference(iw_table); 2442 if (table) 2443 memcpy(weights, table, nr_node_ids); 2444 rcu_read_unlock(); 2445 2446 /* calculate total, detect system default usage */ 2447 for_each_node_mask(node, nodes) { 2448 if (!weights[node]) 2449 weights[node] = 1; 2450 weight_total += weights[node]; 2451 } 2452 2453 /* 2454 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls. 2455 * Track which node weighted interleave should resume from. 2456 * 2457 * if (rounds > 0) and (delta == 0), resume_node will always be 2458 * the node following prev_node and its weight. 2459 */ 2460 rounds = rem_pages / weight_total; 2461 delta = rem_pages % weight_total; 2462 resume_node = next_node_in(prev_node, nodes); 2463 resume_weight = weights[resume_node]; 2464 for (i = 0; i < nnodes; i++) { 2465 node = next_node_in(prev_node, nodes); 2466 weight = weights[node]; 2467 node_pages = weight * rounds; 2468 /* If a delta exists, add this node's portion of the delta */ 2469 if (delta > weight) { 2470 node_pages += weight; 2471 delta -= weight; 2472 } else if (delta) { 2473 /* when delta is depleted, resume from that node */ 2474 node_pages += delta; 2475 resume_node = node; 2476 resume_weight = weight - delta; 2477 delta = 0; 2478 } 2479 /* node_pages can be 0 if an allocation fails and rounds == 0 */ 2480 if (!node_pages) 2481 break; 2482 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, 2483 NULL, page_array); 2484 page_array += nr_allocated; 2485 total_allocated += nr_allocated; 2486 if (total_allocated == nr_pages) 2487 break; 2488 prev_node = node; 2489 } 2490 me->il_prev = resume_node; 2491 me->il_weight = resume_weight; 2492 kfree(weights); 2493 return total_allocated; 2494 } 2495 2496 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2497 struct mempolicy *pol, unsigned long nr_pages, 2498 struct page **page_array) 2499 { 2500 gfp_t preferred_gfp; 2501 unsigned long nr_allocated = 0; 2502 2503 preferred_gfp = gfp | __GFP_NOWARN; 2504 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2505 2506 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2507 nr_pages, NULL, page_array); 2508 2509 if (nr_allocated < nr_pages) 2510 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2511 nr_pages - nr_allocated, NULL, 2512 page_array + nr_allocated); 2513 return nr_allocated; 2514 } 2515 2516 /* alloc pages bulk and mempolicy should be considered at the 2517 * same time in some situation such as vmalloc. 2518 * 2519 * It can accelerate memory allocation especially interleaving 2520 * allocate memory. 2521 */ 2522 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2523 unsigned long nr_pages, struct page **page_array) 2524 { 2525 struct mempolicy *pol = &default_policy; 2526 nodemask_t *nodemask; 2527 int nid; 2528 2529 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2530 pol = get_task_policy(current); 2531 2532 if (pol->mode == MPOL_INTERLEAVE) 2533 return alloc_pages_bulk_array_interleave(gfp, pol, 2534 nr_pages, page_array); 2535 2536 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE) 2537 return alloc_pages_bulk_array_weighted_interleave( 2538 gfp, pol, nr_pages, page_array); 2539 2540 if (pol->mode == MPOL_PREFERRED_MANY) 2541 return alloc_pages_bulk_array_preferred_many(gfp, 2542 numa_node_id(), pol, nr_pages, page_array); 2543 2544 nid = numa_node_id(); 2545 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid); 2546 return __alloc_pages_bulk(gfp, nid, nodemask, 2547 nr_pages, NULL, page_array); 2548 } 2549 2550 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2551 { 2552 struct mempolicy *pol = mpol_dup(src->vm_policy); 2553 2554 if (IS_ERR(pol)) 2555 return PTR_ERR(pol); 2556 dst->vm_policy = pol; 2557 return 0; 2558 } 2559 2560 /* 2561 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2562 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2563 * with the mems_allowed returned by cpuset_mems_allowed(). This 2564 * keeps mempolicies cpuset relative after its cpuset moves. See 2565 * further kernel/cpuset.c update_nodemask(). 2566 * 2567 * current's mempolicy may be rebinded by the other task(the task that changes 2568 * cpuset's mems), so we needn't do rebind work for current task. 2569 */ 2570 2571 /* Slow path of a mempolicy duplicate */ 2572 struct mempolicy *__mpol_dup(struct mempolicy *old) 2573 { 2574 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2575 2576 if (!new) 2577 return ERR_PTR(-ENOMEM); 2578 2579 /* task's mempolicy is protected by alloc_lock */ 2580 if (old == current->mempolicy) { 2581 task_lock(current); 2582 *new = *old; 2583 task_unlock(current); 2584 } else 2585 *new = *old; 2586 2587 if (current_cpuset_is_being_rebound()) { 2588 nodemask_t mems = cpuset_mems_allowed(current); 2589 mpol_rebind_policy(new, &mems); 2590 } 2591 atomic_set(&new->refcnt, 1); 2592 return new; 2593 } 2594 2595 /* Slow path of a mempolicy comparison */ 2596 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2597 { 2598 if (!a || !b) 2599 return false; 2600 if (a->mode != b->mode) 2601 return false; 2602 if (a->flags != b->flags) 2603 return false; 2604 if (a->home_node != b->home_node) 2605 return false; 2606 if (mpol_store_user_nodemask(a)) 2607 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2608 return false; 2609 2610 switch (a->mode) { 2611 case MPOL_BIND: 2612 case MPOL_INTERLEAVE: 2613 case MPOL_PREFERRED: 2614 case MPOL_PREFERRED_MANY: 2615 case MPOL_WEIGHTED_INTERLEAVE: 2616 return !!nodes_equal(a->nodes, b->nodes); 2617 case MPOL_LOCAL: 2618 return true; 2619 default: 2620 BUG(); 2621 return false; 2622 } 2623 } 2624 2625 /* 2626 * Shared memory backing store policy support. 2627 * 2628 * Remember policies even when nobody has shared memory mapped. 2629 * The policies are kept in Red-Black tree linked from the inode. 2630 * They are protected by the sp->lock rwlock, which should be held 2631 * for any accesses to the tree. 2632 */ 2633 2634 /* 2635 * lookup first element intersecting start-end. Caller holds sp->lock for 2636 * reading or for writing 2637 */ 2638 static struct sp_node *sp_lookup(struct shared_policy *sp, 2639 pgoff_t start, pgoff_t end) 2640 { 2641 struct rb_node *n = sp->root.rb_node; 2642 2643 while (n) { 2644 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2645 2646 if (start >= p->end) 2647 n = n->rb_right; 2648 else if (end <= p->start) 2649 n = n->rb_left; 2650 else 2651 break; 2652 } 2653 if (!n) 2654 return NULL; 2655 for (;;) { 2656 struct sp_node *w = NULL; 2657 struct rb_node *prev = rb_prev(n); 2658 if (!prev) 2659 break; 2660 w = rb_entry(prev, struct sp_node, nd); 2661 if (w->end <= start) 2662 break; 2663 n = prev; 2664 } 2665 return rb_entry(n, struct sp_node, nd); 2666 } 2667 2668 /* 2669 * Insert a new shared policy into the list. Caller holds sp->lock for 2670 * writing. 2671 */ 2672 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2673 { 2674 struct rb_node **p = &sp->root.rb_node; 2675 struct rb_node *parent = NULL; 2676 struct sp_node *nd; 2677 2678 while (*p) { 2679 parent = *p; 2680 nd = rb_entry(parent, struct sp_node, nd); 2681 if (new->start < nd->start) 2682 p = &(*p)->rb_left; 2683 else if (new->end > nd->end) 2684 p = &(*p)->rb_right; 2685 else 2686 BUG(); 2687 } 2688 rb_link_node(&new->nd, parent, p); 2689 rb_insert_color(&new->nd, &sp->root); 2690 } 2691 2692 /* Find shared policy intersecting idx */ 2693 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, 2694 pgoff_t idx) 2695 { 2696 struct mempolicy *pol = NULL; 2697 struct sp_node *sn; 2698 2699 if (!sp->root.rb_node) 2700 return NULL; 2701 read_lock(&sp->lock); 2702 sn = sp_lookup(sp, idx, idx+1); 2703 if (sn) { 2704 mpol_get(sn->policy); 2705 pol = sn->policy; 2706 } 2707 read_unlock(&sp->lock); 2708 return pol; 2709 } 2710 2711 static void sp_free(struct sp_node *n) 2712 { 2713 mpol_put(n->policy); 2714 kmem_cache_free(sn_cache, n); 2715 } 2716 2717 /** 2718 * mpol_misplaced - check whether current folio node is valid in policy 2719 * 2720 * @folio: folio to be checked 2721 * @vma: vm area where folio mapped 2722 * @addr: virtual address in @vma for shared policy lookup and interleave policy 2723 * 2724 * Lookup current policy node id for vma,addr and "compare to" folio's 2725 * node id. Policy determination "mimics" alloc_page_vma(). 2726 * Called from fault path where we know the vma and faulting address. 2727 * 2728 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2729 * policy, or a suitable node ID to allocate a replacement folio from. 2730 */ 2731 int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma, 2732 unsigned long addr) 2733 { 2734 struct mempolicy *pol; 2735 pgoff_t ilx; 2736 struct zoneref *z; 2737 int curnid = folio_nid(folio); 2738 int thiscpu = raw_smp_processor_id(); 2739 int thisnid = cpu_to_node(thiscpu); 2740 int polnid = NUMA_NO_NODE; 2741 int ret = NUMA_NO_NODE; 2742 2743 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx); 2744 if (!(pol->flags & MPOL_F_MOF)) 2745 goto out; 2746 2747 switch (pol->mode) { 2748 case MPOL_INTERLEAVE: 2749 polnid = interleave_nid(pol, ilx); 2750 break; 2751 2752 case MPOL_WEIGHTED_INTERLEAVE: 2753 polnid = weighted_interleave_nid(pol, ilx); 2754 break; 2755 2756 case MPOL_PREFERRED: 2757 if (node_isset(curnid, pol->nodes)) 2758 goto out; 2759 polnid = first_node(pol->nodes); 2760 break; 2761 2762 case MPOL_LOCAL: 2763 polnid = numa_node_id(); 2764 break; 2765 2766 case MPOL_BIND: 2767 /* Optimize placement among multiple nodes via NUMA balancing */ 2768 if (pol->flags & MPOL_F_MORON) { 2769 if (node_isset(thisnid, pol->nodes)) 2770 break; 2771 goto out; 2772 } 2773 fallthrough; 2774 2775 case MPOL_PREFERRED_MANY: 2776 /* 2777 * use current page if in policy nodemask, 2778 * else select nearest allowed node, if any. 2779 * If no allowed nodes, use current [!misplaced]. 2780 */ 2781 if (node_isset(curnid, pol->nodes)) 2782 goto out; 2783 z = first_zones_zonelist( 2784 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2785 gfp_zone(GFP_HIGHUSER), 2786 &pol->nodes); 2787 polnid = zone_to_nid(z->zone); 2788 break; 2789 2790 default: 2791 BUG(); 2792 } 2793 2794 /* Migrate the folio towards the node whose CPU is referencing it */ 2795 if (pol->flags & MPOL_F_MORON) { 2796 polnid = thisnid; 2797 2798 if (!should_numa_migrate_memory(current, folio, curnid, 2799 thiscpu)) 2800 goto out; 2801 } 2802 2803 if (curnid != polnid) 2804 ret = polnid; 2805 out: 2806 mpol_cond_put(pol); 2807 2808 return ret; 2809 } 2810 2811 /* 2812 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2813 * dropped after task->mempolicy is set to NULL so that any allocation done as 2814 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2815 * policy. 2816 */ 2817 void mpol_put_task_policy(struct task_struct *task) 2818 { 2819 struct mempolicy *pol; 2820 2821 task_lock(task); 2822 pol = task->mempolicy; 2823 task->mempolicy = NULL; 2824 task_unlock(task); 2825 mpol_put(pol); 2826 } 2827 2828 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2829 { 2830 rb_erase(&n->nd, &sp->root); 2831 sp_free(n); 2832 } 2833 2834 static void sp_node_init(struct sp_node *node, unsigned long start, 2835 unsigned long end, struct mempolicy *pol) 2836 { 2837 node->start = start; 2838 node->end = end; 2839 node->policy = pol; 2840 } 2841 2842 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2843 struct mempolicy *pol) 2844 { 2845 struct sp_node *n; 2846 struct mempolicy *newpol; 2847 2848 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2849 if (!n) 2850 return NULL; 2851 2852 newpol = mpol_dup(pol); 2853 if (IS_ERR(newpol)) { 2854 kmem_cache_free(sn_cache, n); 2855 return NULL; 2856 } 2857 newpol->flags |= MPOL_F_SHARED; 2858 sp_node_init(n, start, end, newpol); 2859 2860 return n; 2861 } 2862 2863 /* Replace a policy range. */ 2864 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start, 2865 pgoff_t end, struct sp_node *new) 2866 { 2867 struct sp_node *n; 2868 struct sp_node *n_new = NULL; 2869 struct mempolicy *mpol_new = NULL; 2870 int ret = 0; 2871 2872 restart: 2873 write_lock(&sp->lock); 2874 n = sp_lookup(sp, start, end); 2875 /* Take care of old policies in the same range. */ 2876 while (n && n->start < end) { 2877 struct rb_node *next = rb_next(&n->nd); 2878 if (n->start >= start) { 2879 if (n->end <= end) 2880 sp_delete(sp, n); 2881 else 2882 n->start = end; 2883 } else { 2884 /* Old policy spanning whole new range. */ 2885 if (n->end > end) { 2886 if (!n_new) 2887 goto alloc_new; 2888 2889 *mpol_new = *n->policy; 2890 atomic_set(&mpol_new->refcnt, 1); 2891 sp_node_init(n_new, end, n->end, mpol_new); 2892 n->end = start; 2893 sp_insert(sp, n_new); 2894 n_new = NULL; 2895 mpol_new = NULL; 2896 break; 2897 } else 2898 n->end = start; 2899 } 2900 if (!next) 2901 break; 2902 n = rb_entry(next, struct sp_node, nd); 2903 } 2904 if (new) 2905 sp_insert(sp, new); 2906 write_unlock(&sp->lock); 2907 ret = 0; 2908 2909 err_out: 2910 if (mpol_new) 2911 mpol_put(mpol_new); 2912 if (n_new) 2913 kmem_cache_free(sn_cache, n_new); 2914 2915 return ret; 2916 2917 alloc_new: 2918 write_unlock(&sp->lock); 2919 ret = -ENOMEM; 2920 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2921 if (!n_new) 2922 goto err_out; 2923 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2924 if (!mpol_new) 2925 goto err_out; 2926 atomic_set(&mpol_new->refcnt, 1); 2927 goto restart; 2928 } 2929 2930 /** 2931 * mpol_shared_policy_init - initialize shared policy for inode 2932 * @sp: pointer to inode shared policy 2933 * @mpol: struct mempolicy to install 2934 * 2935 * Install non-NULL @mpol in inode's shared policy rb-tree. 2936 * On entry, the current task has a reference on a non-NULL @mpol. 2937 * This must be released on exit. 2938 * This is called at get_inode() calls and we can use GFP_KERNEL. 2939 */ 2940 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2941 { 2942 int ret; 2943 2944 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2945 rwlock_init(&sp->lock); 2946 2947 if (mpol) { 2948 struct sp_node *sn; 2949 struct mempolicy *npol; 2950 NODEMASK_SCRATCH(scratch); 2951 2952 if (!scratch) 2953 goto put_mpol; 2954 2955 /* contextualize the tmpfs mount point mempolicy to this file */ 2956 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2957 if (IS_ERR(npol)) 2958 goto free_scratch; /* no valid nodemask intersection */ 2959 2960 task_lock(current); 2961 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch); 2962 task_unlock(current); 2963 if (ret) 2964 goto put_npol; 2965 2966 /* alloc node covering entire file; adds ref to file's npol */ 2967 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol); 2968 if (sn) 2969 sp_insert(sp, sn); 2970 put_npol: 2971 mpol_put(npol); /* drop initial ref on file's npol */ 2972 free_scratch: 2973 NODEMASK_SCRATCH_FREE(scratch); 2974 put_mpol: 2975 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2976 } 2977 } 2978 2979 int mpol_set_shared_policy(struct shared_policy *sp, 2980 struct vm_area_struct *vma, struct mempolicy *pol) 2981 { 2982 int err; 2983 struct sp_node *new = NULL; 2984 unsigned long sz = vma_pages(vma); 2985 2986 if (pol) { 2987 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol); 2988 if (!new) 2989 return -ENOMEM; 2990 } 2991 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new); 2992 if (err && new) 2993 sp_free(new); 2994 return err; 2995 } 2996 2997 /* Free a backing policy store on inode delete. */ 2998 void mpol_free_shared_policy(struct shared_policy *sp) 2999 { 3000 struct sp_node *n; 3001 struct rb_node *next; 3002 3003 if (!sp->root.rb_node) 3004 return; 3005 write_lock(&sp->lock); 3006 next = rb_first(&sp->root); 3007 while (next) { 3008 n = rb_entry(next, struct sp_node, nd); 3009 next = rb_next(&n->nd); 3010 sp_delete(sp, n); 3011 } 3012 write_unlock(&sp->lock); 3013 } 3014 3015 #ifdef CONFIG_NUMA_BALANCING 3016 static int __initdata numabalancing_override; 3017 3018 static void __init check_numabalancing_enable(void) 3019 { 3020 bool numabalancing_default = false; 3021 3022 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 3023 numabalancing_default = true; 3024 3025 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 3026 if (numabalancing_override) 3027 set_numabalancing_state(numabalancing_override == 1); 3028 3029 if (num_online_nodes() > 1 && !numabalancing_override) { 3030 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 3031 numabalancing_default ? "Enabling" : "Disabling"); 3032 set_numabalancing_state(numabalancing_default); 3033 } 3034 } 3035 3036 static int __init setup_numabalancing(char *str) 3037 { 3038 int ret = 0; 3039 if (!str) 3040 goto out; 3041 3042 if (!strcmp(str, "enable")) { 3043 numabalancing_override = 1; 3044 ret = 1; 3045 } else if (!strcmp(str, "disable")) { 3046 numabalancing_override = -1; 3047 ret = 1; 3048 } 3049 out: 3050 if (!ret) 3051 pr_warn("Unable to parse numa_balancing=\n"); 3052 3053 return ret; 3054 } 3055 __setup("numa_balancing=", setup_numabalancing); 3056 #else 3057 static inline void __init check_numabalancing_enable(void) 3058 { 3059 } 3060 #endif /* CONFIG_NUMA_BALANCING */ 3061 3062 void __init numa_policy_init(void) 3063 { 3064 nodemask_t interleave_nodes; 3065 unsigned long largest = 0; 3066 int nid, prefer = 0; 3067 3068 policy_cache = kmem_cache_create("numa_policy", 3069 sizeof(struct mempolicy), 3070 0, SLAB_PANIC, NULL); 3071 3072 sn_cache = kmem_cache_create("shared_policy_node", 3073 sizeof(struct sp_node), 3074 0, SLAB_PANIC, NULL); 3075 3076 for_each_node(nid) { 3077 preferred_node_policy[nid] = (struct mempolicy) { 3078 .refcnt = ATOMIC_INIT(1), 3079 .mode = MPOL_PREFERRED, 3080 .flags = MPOL_F_MOF | MPOL_F_MORON, 3081 .nodes = nodemask_of_node(nid), 3082 }; 3083 } 3084 3085 /* 3086 * Set interleaving policy for system init. Interleaving is only 3087 * enabled across suitably sized nodes (default is >= 16MB), or 3088 * fall back to the largest node if they're all smaller. 3089 */ 3090 nodes_clear(interleave_nodes); 3091 for_each_node_state(nid, N_MEMORY) { 3092 unsigned long total_pages = node_present_pages(nid); 3093 3094 /* Preserve the largest node */ 3095 if (largest < total_pages) { 3096 largest = total_pages; 3097 prefer = nid; 3098 } 3099 3100 /* Interleave this node? */ 3101 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 3102 node_set(nid, interleave_nodes); 3103 } 3104 3105 /* All too small, use the largest */ 3106 if (unlikely(nodes_empty(interleave_nodes))) 3107 node_set(prefer, interleave_nodes); 3108 3109 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 3110 pr_err("%s: interleaving failed\n", __func__); 3111 3112 check_numabalancing_enable(); 3113 } 3114 3115 /* Reset policy of current process to default */ 3116 void numa_default_policy(void) 3117 { 3118 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 3119 } 3120 3121 /* 3122 * Parse and format mempolicy from/to strings 3123 */ 3124 static const char * const policy_modes[] = 3125 { 3126 [MPOL_DEFAULT] = "default", 3127 [MPOL_PREFERRED] = "prefer", 3128 [MPOL_BIND] = "bind", 3129 [MPOL_INTERLEAVE] = "interleave", 3130 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave", 3131 [MPOL_LOCAL] = "local", 3132 [MPOL_PREFERRED_MANY] = "prefer (many)", 3133 }; 3134 3135 #ifdef CONFIG_TMPFS 3136 /** 3137 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 3138 * @str: string containing mempolicy to parse 3139 * @mpol: pointer to struct mempolicy pointer, returned on success. 3140 * 3141 * Format of input: 3142 * <mode>[=<flags>][:<nodelist>] 3143 * 3144 * Return: %0 on success, else %1 3145 */ 3146 int mpol_parse_str(char *str, struct mempolicy **mpol) 3147 { 3148 struct mempolicy *new = NULL; 3149 unsigned short mode_flags; 3150 nodemask_t nodes; 3151 char *nodelist = strchr(str, ':'); 3152 char *flags = strchr(str, '='); 3153 int err = 1, mode; 3154 3155 if (flags) 3156 *flags++ = '\0'; /* terminate mode string */ 3157 3158 if (nodelist) { 3159 /* NUL-terminate mode or flags string */ 3160 *nodelist++ = '\0'; 3161 if (nodelist_parse(nodelist, nodes)) 3162 goto out; 3163 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3164 goto out; 3165 } else 3166 nodes_clear(nodes); 3167 3168 mode = match_string(policy_modes, MPOL_MAX, str); 3169 if (mode < 0) 3170 goto out; 3171 3172 switch (mode) { 3173 case MPOL_PREFERRED: 3174 /* 3175 * Insist on a nodelist of one node only, although later 3176 * we use first_node(nodes) to grab a single node, so here 3177 * nodelist (or nodes) cannot be empty. 3178 */ 3179 if (nodelist) { 3180 char *rest = nodelist; 3181 while (isdigit(*rest)) 3182 rest++; 3183 if (*rest) 3184 goto out; 3185 if (nodes_empty(nodes)) 3186 goto out; 3187 } 3188 break; 3189 case MPOL_INTERLEAVE: 3190 case MPOL_WEIGHTED_INTERLEAVE: 3191 /* 3192 * Default to online nodes with memory if no nodelist 3193 */ 3194 if (!nodelist) 3195 nodes = node_states[N_MEMORY]; 3196 break; 3197 case MPOL_LOCAL: 3198 /* 3199 * Don't allow a nodelist; mpol_new() checks flags 3200 */ 3201 if (nodelist) 3202 goto out; 3203 break; 3204 case MPOL_DEFAULT: 3205 /* 3206 * Insist on a empty nodelist 3207 */ 3208 if (!nodelist) 3209 err = 0; 3210 goto out; 3211 case MPOL_PREFERRED_MANY: 3212 case MPOL_BIND: 3213 /* 3214 * Insist on a nodelist 3215 */ 3216 if (!nodelist) 3217 goto out; 3218 } 3219 3220 mode_flags = 0; 3221 if (flags) { 3222 /* 3223 * Currently, we only support two mutually exclusive 3224 * mode flags. 3225 */ 3226 if (!strcmp(flags, "static")) 3227 mode_flags |= MPOL_F_STATIC_NODES; 3228 else if (!strcmp(flags, "relative")) 3229 mode_flags |= MPOL_F_RELATIVE_NODES; 3230 else 3231 goto out; 3232 } 3233 3234 new = mpol_new(mode, mode_flags, &nodes); 3235 if (IS_ERR(new)) 3236 goto out; 3237 3238 /* 3239 * Save nodes for mpol_to_str() to show the tmpfs mount options 3240 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3241 */ 3242 if (mode != MPOL_PREFERRED) { 3243 new->nodes = nodes; 3244 } else if (nodelist) { 3245 nodes_clear(new->nodes); 3246 node_set(first_node(nodes), new->nodes); 3247 } else { 3248 new->mode = MPOL_LOCAL; 3249 } 3250 3251 /* 3252 * Save nodes for contextualization: this will be used to "clone" 3253 * the mempolicy in a specific context [cpuset] at a later time. 3254 */ 3255 new->w.user_nodemask = nodes; 3256 3257 err = 0; 3258 3259 out: 3260 /* Restore string for error message */ 3261 if (nodelist) 3262 *--nodelist = ':'; 3263 if (flags) 3264 *--flags = '='; 3265 if (!err) 3266 *mpol = new; 3267 return err; 3268 } 3269 #endif /* CONFIG_TMPFS */ 3270 3271 /** 3272 * mpol_to_str - format a mempolicy structure for printing 3273 * @buffer: to contain formatted mempolicy string 3274 * @maxlen: length of @buffer 3275 * @pol: pointer to mempolicy to be formatted 3276 * 3277 * Convert @pol into a string. If @buffer is too short, truncate the string. 3278 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3279 * longest flag, "relative", and to display at least a few node ids. 3280 */ 3281 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3282 { 3283 char *p = buffer; 3284 nodemask_t nodes = NODE_MASK_NONE; 3285 unsigned short mode = MPOL_DEFAULT; 3286 unsigned short flags = 0; 3287 3288 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3289 mode = pol->mode; 3290 flags = pol->flags; 3291 } 3292 3293 switch (mode) { 3294 case MPOL_DEFAULT: 3295 case MPOL_LOCAL: 3296 break; 3297 case MPOL_PREFERRED: 3298 case MPOL_PREFERRED_MANY: 3299 case MPOL_BIND: 3300 case MPOL_INTERLEAVE: 3301 case MPOL_WEIGHTED_INTERLEAVE: 3302 nodes = pol->nodes; 3303 break; 3304 default: 3305 WARN_ON_ONCE(1); 3306 snprintf(p, maxlen, "unknown"); 3307 return; 3308 } 3309 3310 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3311 3312 if (flags & MPOL_MODE_FLAGS) { 3313 p += snprintf(p, buffer + maxlen - p, "="); 3314 3315 /* 3316 * Currently, the only defined flags are mutually exclusive 3317 */ 3318 if (flags & MPOL_F_STATIC_NODES) 3319 p += snprintf(p, buffer + maxlen - p, "static"); 3320 else if (flags & MPOL_F_RELATIVE_NODES) 3321 p += snprintf(p, buffer + maxlen - p, "relative"); 3322 } 3323 3324 if (!nodes_empty(nodes)) 3325 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3326 nodemask_pr_args(&nodes)); 3327 } 3328 3329 #ifdef CONFIG_SYSFS 3330 struct iw_node_attr { 3331 struct kobj_attribute kobj_attr; 3332 int nid; 3333 }; 3334 3335 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr, 3336 char *buf) 3337 { 3338 struct iw_node_attr *node_attr; 3339 u8 weight; 3340 3341 node_attr = container_of(attr, struct iw_node_attr, kobj_attr); 3342 weight = get_il_weight(node_attr->nid); 3343 return sysfs_emit(buf, "%d\n", weight); 3344 } 3345 3346 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr, 3347 const char *buf, size_t count) 3348 { 3349 struct iw_node_attr *node_attr; 3350 u8 *new; 3351 u8 *old; 3352 u8 weight = 0; 3353 3354 node_attr = container_of(attr, struct iw_node_attr, kobj_attr); 3355 if (count == 0 || sysfs_streq(buf, "")) 3356 weight = 0; 3357 else if (kstrtou8(buf, 0, &weight)) 3358 return -EINVAL; 3359 3360 new = kzalloc(nr_node_ids, GFP_KERNEL); 3361 if (!new) 3362 return -ENOMEM; 3363 3364 mutex_lock(&iw_table_lock); 3365 old = rcu_dereference_protected(iw_table, 3366 lockdep_is_held(&iw_table_lock)); 3367 if (old) 3368 memcpy(new, old, nr_node_ids); 3369 new[node_attr->nid] = weight; 3370 rcu_assign_pointer(iw_table, new); 3371 mutex_unlock(&iw_table_lock); 3372 synchronize_rcu(); 3373 kfree(old); 3374 return count; 3375 } 3376 3377 static struct iw_node_attr **node_attrs; 3378 3379 static void sysfs_wi_node_release(struct iw_node_attr *node_attr, 3380 struct kobject *parent) 3381 { 3382 if (!node_attr) 3383 return; 3384 sysfs_remove_file(parent, &node_attr->kobj_attr.attr); 3385 kfree(node_attr->kobj_attr.attr.name); 3386 kfree(node_attr); 3387 } 3388 3389 static void sysfs_wi_release(struct kobject *wi_kobj) 3390 { 3391 int i; 3392 3393 for (i = 0; i < nr_node_ids; i++) 3394 sysfs_wi_node_release(node_attrs[i], wi_kobj); 3395 kobject_put(wi_kobj); 3396 } 3397 3398 static const struct kobj_type wi_ktype = { 3399 .sysfs_ops = &kobj_sysfs_ops, 3400 .release = sysfs_wi_release, 3401 }; 3402 3403 static int add_weight_node(int nid, struct kobject *wi_kobj) 3404 { 3405 struct iw_node_attr *node_attr; 3406 char *name; 3407 3408 node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL); 3409 if (!node_attr) 3410 return -ENOMEM; 3411 3412 name = kasprintf(GFP_KERNEL, "node%d", nid); 3413 if (!name) { 3414 kfree(node_attr); 3415 return -ENOMEM; 3416 } 3417 3418 sysfs_attr_init(&node_attr->kobj_attr.attr); 3419 node_attr->kobj_attr.attr.name = name; 3420 node_attr->kobj_attr.attr.mode = 0644; 3421 node_attr->kobj_attr.show = node_show; 3422 node_attr->kobj_attr.store = node_store; 3423 node_attr->nid = nid; 3424 3425 if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) { 3426 kfree(node_attr->kobj_attr.attr.name); 3427 kfree(node_attr); 3428 pr_err("failed to add attribute to weighted_interleave\n"); 3429 return -ENOMEM; 3430 } 3431 3432 node_attrs[nid] = node_attr; 3433 return 0; 3434 } 3435 3436 static int add_weighted_interleave_group(struct kobject *root_kobj) 3437 { 3438 struct kobject *wi_kobj; 3439 int nid, err; 3440 3441 wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 3442 if (!wi_kobj) 3443 return -ENOMEM; 3444 3445 err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj, 3446 "weighted_interleave"); 3447 if (err) { 3448 kfree(wi_kobj); 3449 return err; 3450 } 3451 3452 for_each_node_state(nid, N_POSSIBLE) { 3453 err = add_weight_node(nid, wi_kobj); 3454 if (err) { 3455 pr_err("failed to add sysfs [node%d]\n", nid); 3456 break; 3457 } 3458 } 3459 if (err) 3460 kobject_put(wi_kobj); 3461 return 0; 3462 } 3463 3464 static void mempolicy_kobj_release(struct kobject *kobj) 3465 { 3466 u8 *old; 3467 3468 mutex_lock(&iw_table_lock); 3469 old = rcu_dereference_protected(iw_table, 3470 lockdep_is_held(&iw_table_lock)); 3471 rcu_assign_pointer(iw_table, NULL); 3472 mutex_unlock(&iw_table_lock); 3473 synchronize_rcu(); 3474 kfree(old); 3475 kfree(node_attrs); 3476 kfree(kobj); 3477 } 3478 3479 static const struct kobj_type mempolicy_ktype = { 3480 .release = mempolicy_kobj_release 3481 }; 3482 3483 static int __init mempolicy_sysfs_init(void) 3484 { 3485 int err; 3486 static struct kobject *mempolicy_kobj; 3487 3488 mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL); 3489 if (!mempolicy_kobj) { 3490 err = -ENOMEM; 3491 goto err_out; 3492 } 3493 3494 node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *), 3495 GFP_KERNEL); 3496 if (!node_attrs) { 3497 err = -ENOMEM; 3498 goto mempol_out; 3499 } 3500 3501 err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj, 3502 "mempolicy"); 3503 if (err) 3504 goto node_out; 3505 3506 err = add_weighted_interleave_group(mempolicy_kobj); 3507 if (err) { 3508 pr_err("mempolicy sysfs structure failed to initialize\n"); 3509 kobject_put(mempolicy_kobj); 3510 return err; 3511 } 3512 3513 return err; 3514 node_out: 3515 kfree(node_attrs); 3516 mempol_out: 3517 kfree(mempolicy_kobj); 3518 err_out: 3519 pr_err("failed to add mempolicy kobject to the system\n"); 3520 return err; 3521 } 3522 3523 late_initcall(mempolicy_sysfs_init); 3524 #endif /* CONFIG_SYSFS */ 3525