1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the folio's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_folio_required(struct folio *folio, 436 struct queue_pages *qp) 437 { 438 int nid = folio_nid(folio); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_folios_pmd() has three possible return values: 446 * 0 - folios are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing folio was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct folio *folio; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 folio = pfn_folio(pmd_pfn(*pmd)); 468 if (is_huge_zero_page(&folio->page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_folio_required(folio, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to folio migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_folio_add(folio, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_folios_pte_range() has three possible return values: 495 * 0 - folios are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct folio *folio; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_folios_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 folio = vm_normal_folio(vma, addr, *pte); 525 if (!folio || folio_is_zone_device(folio)) 526 continue; 527 /* 528 * vm_normal_folio() filters out zero pages, but there might 529 * still be reserved folios to skip, perhaps in a VDSO. 530 */ 531 if (folio_test_reserved(folio)) 532 continue; 533 if (!queue_folio_required(folio, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_folio_add(folio, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct folio *folio; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 folio = pfn_folio(pte_pfn(entry)); 578 if (!queue_folio_required(folio, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced folio and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced folio but allow migrating folios which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* 602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 603 * is shared it is likely not worth migrating. 604 * 605 * To check if the folio is shared, ideally we want to make sure 606 * every page is mapped to the same process. Doing that is very 607 * expensive, so check the estimated mapcount of the folio instead. 608 */ 609 if (flags & (MPOL_MF_MOVE_ALL) || 610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 611 !hugetlb_pmd_shared(pte))) { 612 if (!isolate_hugetlb(folio, qp->pagelist) && 613 (flags & MPOL_MF_STRICT)) 614 /* 615 * Failed to isolate folio but allow migrating pages 616 * which have been queued. 617 */ 618 ret = 1; 619 } 620 unlock: 621 spin_unlock(ptl); 622 #else 623 BUG(); 624 #endif 625 return ret; 626 } 627 628 #ifdef CONFIG_NUMA_BALANCING 629 /* 630 * This is used to mark a range of virtual addresses to be inaccessible. 631 * These are later cleared by a NUMA hinting fault. Depending on these 632 * faults, pages may be migrated for better NUMA placement. 633 * 634 * This is assuming that NUMA faults are handled using PROT_NONE. If 635 * an architecture makes a different choice, it will need further 636 * changes to the core. 637 */ 638 unsigned long change_prot_numa(struct vm_area_struct *vma, 639 unsigned long addr, unsigned long end) 640 { 641 struct mmu_gather tlb; 642 long nr_updated; 643 644 tlb_gather_mmu(&tlb, vma->vm_mm); 645 646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 647 if (nr_updated > 0) 648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 649 650 tlb_finish_mmu(&tlb); 651 652 return nr_updated; 653 } 654 #else 655 static unsigned long change_prot_numa(struct vm_area_struct *vma, 656 unsigned long addr, unsigned long end) 657 { 658 return 0; 659 } 660 #endif /* CONFIG_NUMA_BALANCING */ 661 662 static int queue_pages_test_walk(unsigned long start, unsigned long end, 663 struct mm_walk *walk) 664 { 665 struct vm_area_struct *next, *vma = walk->vma; 666 struct queue_pages *qp = walk->private; 667 unsigned long endvma = vma->vm_end; 668 unsigned long flags = qp->flags; 669 670 /* range check first */ 671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 672 673 if (!qp->first) { 674 qp->first = vma; 675 if (!(flags & MPOL_MF_DISCONTIG_OK) && 676 (qp->start < vma->vm_start)) 677 /* hole at head side of range */ 678 return -EFAULT; 679 } 680 next = find_vma(vma->vm_mm, vma->vm_end); 681 if (!(flags & MPOL_MF_DISCONTIG_OK) && 682 ((vma->vm_end < qp->end) && 683 (!next || vma->vm_end < next->vm_start))) 684 /* hole at middle or tail of range */ 685 return -EFAULT; 686 687 /* 688 * Need check MPOL_MF_STRICT to return -EIO if possible 689 * regardless of vma_migratable 690 */ 691 if (!vma_migratable(vma) && 692 !(flags & MPOL_MF_STRICT)) 693 return 1; 694 695 if (endvma > end) 696 endvma = end; 697 698 if (flags & MPOL_MF_LAZY) { 699 /* Similar to task_numa_work, skip inaccessible VMAs */ 700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 701 !(vma->vm_flags & VM_MIXEDMAP)) 702 change_prot_numa(vma, start, endvma); 703 return 1; 704 } 705 706 /* queue pages from current vma */ 707 if (flags & MPOL_MF_VALID) 708 return 0; 709 return 1; 710 } 711 712 static const struct mm_walk_ops queue_pages_walk_ops = { 713 .hugetlb_entry = queue_folios_hugetlb, 714 .pmd_entry = queue_folios_pte_range, 715 .test_walk = queue_pages_test_walk, 716 }; 717 718 /* 719 * Walk through page tables and collect pages to be migrated. 720 * 721 * If pages found in a given range are on a set of nodes (determined by 722 * @nodes and @flags,) it's isolated and queued to the pagelist which is 723 * passed via @private. 724 * 725 * queue_pages_range() has three possible return values: 726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 727 * specified. 728 * 0 - queue pages successfully or no misplaced page. 729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 730 * memory range specified by nodemask and maxnode points outside 731 * your accessible address space (-EFAULT) 732 */ 733 static int 734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 735 nodemask_t *nodes, unsigned long flags, 736 struct list_head *pagelist) 737 { 738 int err; 739 struct queue_pages qp = { 740 .pagelist = pagelist, 741 .flags = flags, 742 .nmask = nodes, 743 .start = start, 744 .end = end, 745 .first = NULL, 746 }; 747 748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 749 750 if (!qp.first) 751 /* whole range in hole */ 752 err = -EFAULT; 753 754 return err; 755 } 756 757 /* 758 * Apply policy to a single VMA 759 * This must be called with the mmap_lock held for writing. 760 */ 761 static int vma_replace_policy(struct vm_area_struct *vma, 762 struct mempolicy *pol) 763 { 764 int err; 765 struct mempolicy *old; 766 struct mempolicy *new; 767 768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 769 vma->vm_start, vma->vm_end, vma->vm_pgoff, 770 vma->vm_ops, vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 772 773 new = mpol_dup(pol); 774 if (IS_ERR(new)) 775 return PTR_ERR(new); 776 777 if (vma->vm_ops && vma->vm_ops->set_policy) { 778 err = vma->vm_ops->set_policy(vma, new); 779 if (err) 780 goto err_out; 781 } 782 783 old = vma->vm_policy; 784 vma->vm_policy = new; /* protected by mmap_lock */ 785 mpol_put(old); 786 787 return 0; 788 err_out: 789 mpol_put(new); 790 return err; 791 } 792 793 /* Split or merge the VMA (if required) and apply the new policy */ 794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 795 struct vm_area_struct **prev, unsigned long start, 796 unsigned long end, struct mempolicy *new_pol) 797 { 798 struct vm_area_struct *merged; 799 unsigned long vmstart, vmend; 800 pgoff_t pgoff; 801 int err; 802 803 vmend = min(end, vma->vm_end); 804 if (start > vma->vm_start) { 805 *prev = vma; 806 vmstart = start; 807 } else { 808 vmstart = vma->vm_start; 809 } 810 811 if (mpol_equal(vma_policy(vma), new_pol)) { 812 *prev = vma; 813 return 0; 814 } 815 816 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); 817 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags, 818 vma->anon_vma, vma->vm_file, pgoff, new_pol, 819 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 820 if (merged) { 821 *prev = merged; 822 return vma_replace_policy(merged, new_pol); 823 } 824 825 if (vma->vm_start != vmstart) { 826 err = split_vma(vmi, vma, vmstart, 1); 827 if (err) 828 return err; 829 } 830 831 if (vma->vm_end != vmend) { 832 err = split_vma(vmi, vma, vmend, 0); 833 if (err) 834 return err; 835 } 836 837 *prev = vma; 838 return vma_replace_policy(vma, new_pol); 839 } 840 841 /* Set the process memory policy */ 842 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 843 nodemask_t *nodes) 844 { 845 struct mempolicy *new, *old; 846 NODEMASK_SCRATCH(scratch); 847 int ret; 848 849 if (!scratch) 850 return -ENOMEM; 851 852 new = mpol_new(mode, flags, nodes); 853 if (IS_ERR(new)) { 854 ret = PTR_ERR(new); 855 goto out; 856 } 857 858 task_lock(current); 859 ret = mpol_set_nodemask(new, nodes, scratch); 860 if (ret) { 861 task_unlock(current); 862 mpol_put(new); 863 goto out; 864 } 865 866 old = current->mempolicy; 867 current->mempolicy = new; 868 if (new && new->mode == MPOL_INTERLEAVE) 869 current->il_prev = MAX_NUMNODES-1; 870 task_unlock(current); 871 mpol_put(old); 872 ret = 0; 873 out: 874 NODEMASK_SCRATCH_FREE(scratch); 875 return ret; 876 } 877 878 /* 879 * Return nodemask for policy for get_mempolicy() query 880 * 881 * Called with task's alloc_lock held 882 */ 883 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 884 { 885 nodes_clear(*nodes); 886 if (p == &default_policy) 887 return; 888 889 switch (p->mode) { 890 case MPOL_BIND: 891 case MPOL_INTERLEAVE: 892 case MPOL_PREFERRED: 893 case MPOL_PREFERRED_MANY: 894 *nodes = p->nodes; 895 break; 896 case MPOL_LOCAL: 897 /* return empty node mask for local allocation */ 898 break; 899 default: 900 BUG(); 901 } 902 } 903 904 static int lookup_node(struct mm_struct *mm, unsigned long addr) 905 { 906 struct page *p = NULL; 907 int ret; 908 909 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 910 if (ret > 0) { 911 ret = page_to_nid(p); 912 put_page(p); 913 } 914 return ret; 915 } 916 917 /* Retrieve NUMA policy */ 918 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 919 unsigned long addr, unsigned long flags) 920 { 921 int err; 922 struct mm_struct *mm = current->mm; 923 struct vm_area_struct *vma = NULL; 924 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 925 926 if (flags & 927 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 928 return -EINVAL; 929 930 if (flags & MPOL_F_MEMS_ALLOWED) { 931 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 932 return -EINVAL; 933 *policy = 0; /* just so it's initialized */ 934 task_lock(current); 935 *nmask = cpuset_current_mems_allowed; 936 task_unlock(current); 937 return 0; 938 } 939 940 if (flags & MPOL_F_ADDR) { 941 /* 942 * Do NOT fall back to task policy if the 943 * vma/shared policy at addr is NULL. We 944 * want to return MPOL_DEFAULT in this case. 945 */ 946 mmap_read_lock(mm); 947 vma = vma_lookup(mm, addr); 948 if (!vma) { 949 mmap_read_unlock(mm); 950 return -EFAULT; 951 } 952 if (vma->vm_ops && vma->vm_ops->get_policy) 953 pol = vma->vm_ops->get_policy(vma, addr); 954 else 955 pol = vma->vm_policy; 956 } else if (addr) 957 return -EINVAL; 958 959 if (!pol) 960 pol = &default_policy; /* indicates default behavior */ 961 962 if (flags & MPOL_F_NODE) { 963 if (flags & MPOL_F_ADDR) { 964 /* 965 * Take a refcount on the mpol, because we are about to 966 * drop the mmap_lock, after which only "pol" remains 967 * valid, "vma" is stale. 968 */ 969 pol_refcount = pol; 970 vma = NULL; 971 mpol_get(pol); 972 mmap_read_unlock(mm); 973 err = lookup_node(mm, addr); 974 if (err < 0) 975 goto out; 976 *policy = err; 977 } else if (pol == current->mempolicy && 978 pol->mode == MPOL_INTERLEAVE) { 979 *policy = next_node_in(current->il_prev, pol->nodes); 980 } else { 981 err = -EINVAL; 982 goto out; 983 } 984 } else { 985 *policy = pol == &default_policy ? MPOL_DEFAULT : 986 pol->mode; 987 /* 988 * Internal mempolicy flags must be masked off before exposing 989 * the policy to userspace. 990 */ 991 *policy |= (pol->flags & MPOL_MODE_FLAGS); 992 } 993 994 err = 0; 995 if (nmask) { 996 if (mpol_store_user_nodemask(pol)) { 997 *nmask = pol->w.user_nodemask; 998 } else { 999 task_lock(current); 1000 get_policy_nodemask(pol, nmask); 1001 task_unlock(current); 1002 } 1003 } 1004 1005 out: 1006 mpol_cond_put(pol); 1007 if (vma) 1008 mmap_read_unlock(mm); 1009 if (pol_refcount) 1010 mpol_put(pol_refcount); 1011 return err; 1012 } 1013 1014 #ifdef CONFIG_MIGRATION 1015 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1016 unsigned long flags) 1017 { 1018 /* 1019 * We try to migrate only unshared folios. If it is shared it 1020 * is likely not worth migrating. 1021 * 1022 * To check if the folio is shared, ideally we want to make sure 1023 * every page is mapped to the same process. Doing that is very 1024 * expensive, so check the estimated mapcount of the folio instead. 1025 */ 1026 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1027 if (folio_isolate_lru(folio)) { 1028 list_add_tail(&folio->lru, foliolist); 1029 node_stat_mod_folio(folio, 1030 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1031 folio_nr_pages(folio)); 1032 } else if (flags & MPOL_MF_STRICT) { 1033 /* 1034 * Non-movable folio may reach here. And, there may be 1035 * temporary off LRU folios or non-LRU movable folios. 1036 * Treat them as unmovable folios since they can't be 1037 * isolated, so they can't be moved at the moment. It 1038 * should return -EIO for this case too. 1039 */ 1040 return -EIO; 1041 } 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * Migrate pages from one node to a target node. 1049 * Returns error or the number of pages not migrated. 1050 */ 1051 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1052 int flags) 1053 { 1054 nodemask_t nmask; 1055 struct vm_area_struct *vma; 1056 LIST_HEAD(pagelist); 1057 int err = 0; 1058 struct migration_target_control mtc = { 1059 .nid = dest, 1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1061 }; 1062 1063 nodes_clear(nmask); 1064 node_set(source, nmask); 1065 1066 /* 1067 * This does not "check" the range but isolates all pages that 1068 * need migration. Between passing in the full user address 1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1070 */ 1071 vma = find_vma(mm, 0); 1072 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1073 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1074 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1075 1076 if (!list_empty(&pagelist)) { 1077 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1078 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1079 if (err) 1080 putback_movable_pages(&pagelist); 1081 } 1082 1083 return err; 1084 } 1085 1086 /* 1087 * Move pages between the two nodesets so as to preserve the physical 1088 * layout as much as possible. 1089 * 1090 * Returns the number of page that could not be moved. 1091 */ 1092 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1093 const nodemask_t *to, int flags) 1094 { 1095 int busy = 0; 1096 int err = 0; 1097 nodemask_t tmp; 1098 1099 lru_cache_disable(); 1100 1101 mmap_read_lock(mm); 1102 1103 /* 1104 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1105 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1106 * bit in 'tmp', and return that <source, dest> pair for migration. 1107 * The pair of nodemasks 'to' and 'from' define the map. 1108 * 1109 * If no pair of bits is found that way, fallback to picking some 1110 * pair of 'source' and 'dest' bits that are not the same. If the 1111 * 'source' and 'dest' bits are the same, this represents a node 1112 * that will be migrating to itself, so no pages need move. 1113 * 1114 * If no bits are left in 'tmp', or if all remaining bits left 1115 * in 'tmp' correspond to the same bit in 'to', return false 1116 * (nothing left to migrate). 1117 * 1118 * This lets us pick a pair of nodes to migrate between, such that 1119 * if possible the dest node is not already occupied by some other 1120 * source node, minimizing the risk of overloading the memory on a 1121 * node that would happen if we migrated incoming memory to a node 1122 * before migrating outgoing memory source that same node. 1123 * 1124 * A single scan of tmp is sufficient. As we go, we remember the 1125 * most recent <s, d> pair that moved (s != d). If we find a pair 1126 * that not only moved, but what's better, moved to an empty slot 1127 * (d is not set in tmp), then we break out then, with that pair. 1128 * Otherwise when we finish scanning from_tmp, we at least have the 1129 * most recent <s, d> pair that moved. If we get all the way through 1130 * the scan of tmp without finding any node that moved, much less 1131 * moved to an empty node, then there is nothing left worth migrating. 1132 */ 1133 1134 tmp = *from; 1135 while (!nodes_empty(tmp)) { 1136 int s, d; 1137 int source = NUMA_NO_NODE; 1138 int dest = 0; 1139 1140 for_each_node_mask(s, tmp) { 1141 1142 /* 1143 * do_migrate_pages() tries to maintain the relative 1144 * node relationship of the pages established between 1145 * threads and memory areas. 1146 * 1147 * However if the number of source nodes is not equal to 1148 * the number of destination nodes we can not preserve 1149 * this node relative relationship. In that case, skip 1150 * copying memory from a node that is in the destination 1151 * mask. 1152 * 1153 * Example: [2,3,4] -> [3,4,5] moves everything. 1154 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1155 */ 1156 1157 if ((nodes_weight(*from) != nodes_weight(*to)) && 1158 (node_isset(s, *to))) 1159 continue; 1160 1161 d = node_remap(s, *from, *to); 1162 if (s == d) 1163 continue; 1164 1165 source = s; /* Node moved. Memorize */ 1166 dest = d; 1167 1168 /* dest not in remaining from nodes? */ 1169 if (!node_isset(dest, tmp)) 1170 break; 1171 } 1172 if (source == NUMA_NO_NODE) 1173 break; 1174 1175 node_clear(source, tmp); 1176 err = migrate_to_node(mm, source, dest, flags); 1177 if (err > 0) 1178 busy += err; 1179 if (err < 0) 1180 break; 1181 } 1182 mmap_read_unlock(mm); 1183 1184 lru_cache_enable(); 1185 if (err < 0) 1186 return err; 1187 return busy; 1188 1189 } 1190 1191 /* 1192 * Allocate a new page for page migration based on vma policy. 1193 * Start by assuming the page is mapped by the same vma as contains @start. 1194 * Search forward from there, if not. N.B., this assumes that the 1195 * list of pages handed to migrate_pages()--which is how we get here-- 1196 * is in virtual address order. 1197 */ 1198 static struct folio *new_folio(struct folio *src, unsigned long start) 1199 { 1200 struct vm_area_struct *vma; 1201 unsigned long address; 1202 VMA_ITERATOR(vmi, current->mm, start); 1203 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1204 1205 for_each_vma(vmi, vma) { 1206 address = page_address_in_vma(&src->page, vma); 1207 if (address != -EFAULT) 1208 break; 1209 } 1210 1211 if (folio_test_hugetlb(src)) { 1212 return alloc_hugetlb_folio_vma(folio_hstate(src), 1213 vma, address); 1214 } 1215 1216 if (folio_test_large(src)) 1217 gfp = GFP_TRANSHUGE; 1218 1219 /* 1220 * if !vma, vma_alloc_folio() will use task or system default policy 1221 */ 1222 return vma_alloc_folio(gfp, folio_order(src), vma, address, 1223 folio_test_large(src)); 1224 } 1225 #else 1226 1227 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1228 unsigned long flags) 1229 { 1230 return -EIO; 1231 } 1232 1233 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1234 const nodemask_t *to, int flags) 1235 { 1236 return -ENOSYS; 1237 } 1238 1239 static struct folio *new_folio(struct folio *src, unsigned long start) 1240 { 1241 return NULL; 1242 } 1243 #endif 1244 1245 static long do_mbind(unsigned long start, unsigned long len, 1246 unsigned short mode, unsigned short mode_flags, 1247 nodemask_t *nmask, unsigned long flags) 1248 { 1249 struct mm_struct *mm = current->mm; 1250 struct vm_area_struct *vma, *prev; 1251 struct vma_iterator vmi; 1252 struct mempolicy *new; 1253 unsigned long end; 1254 int err; 1255 int ret; 1256 LIST_HEAD(pagelist); 1257 1258 if (flags & ~(unsigned long)MPOL_MF_VALID) 1259 return -EINVAL; 1260 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1261 return -EPERM; 1262 1263 if (start & ~PAGE_MASK) 1264 return -EINVAL; 1265 1266 if (mode == MPOL_DEFAULT) 1267 flags &= ~MPOL_MF_STRICT; 1268 1269 len = PAGE_ALIGN(len); 1270 end = start + len; 1271 1272 if (end < start) 1273 return -EINVAL; 1274 if (end == start) 1275 return 0; 1276 1277 new = mpol_new(mode, mode_flags, nmask); 1278 if (IS_ERR(new)) 1279 return PTR_ERR(new); 1280 1281 if (flags & MPOL_MF_LAZY) 1282 new->flags |= MPOL_F_MOF; 1283 1284 /* 1285 * If we are using the default policy then operation 1286 * on discontinuous address spaces is okay after all 1287 */ 1288 if (!new) 1289 flags |= MPOL_MF_DISCONTIG_OK; 1290 1291 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1292 start, start + len, mode, mode_flags, 1293 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1294 1295 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1296 1297 lru_cache_disable(); 1298 } 1299 { 1300 NODEMASK_SCRATCH(scratch); 1301 if (scratch) { 1302 mmap_write_lock(mm); 1303 err = mpol_set_nodemask(new, nmask, scratch); 1304 if (err) 1305 mmap_write_unlock(mm); 1306 } else 1307 err = -ENOMEM; 1308 NODEMASK_SCRATCH_FREE(scratch); 1309 } 1310 if (err) 1311 goto mpol_out; 1312 1313 ret = queue_pages_range(mm, start, end, nmask, 1314 flags | MPOL_MF_INVERT, &pagelist); 1315 1316 if (ret < 0) { 1317 err = ret; 1318 goto up_out; 1319 } 1320 1321 vma_iter_init(&vmi, mm, start); 1322 prev = vma_prev(&vmi); 1323 for_each_vma_range(vmi, vma, end) { 1324 err = mbind_range(&vmi, vma, &prev, start, end, new); 1325 if (err) 1326 break; 1327 } 1328 1329 if (!err) { 1330 int nr_failed = 0; 1331 1332 if (!list_empty(&pagelist)) { 1333 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1334 nr_failed = migrate_pages(&pagelist, new_folio, NULL, 1335 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1336 if (nr_failed) 1337 putback_movable_pages(&pagelist); 1338 } 1339 1340 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1341 err = -EIO; 1342 } else { 1343 up_out: 1344 if (!list_empty(&pagelist)) 1345 putback_movable_pages(&pagelist); 1346 } 1347 1348 mmap_write_unlock(mm); 1349 mpol_out: 1350 mpol_put(new); 1351 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1352 lru_cache_enable(); 1353 return err; 1354 } 1355 1356 /* 1357 * User space interface with variable sized bitmaps for nodelists. 1358 */ 1359 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1360 unsigned long maxnode) 1361 { 1362 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1363 int ret; 1364 1365 if (in_compat_syscall()) 1366 ret = compat_get_bitmap(mask, 1367 (const compat_ulong_t __user *)nmask, 1368 maxnode); 1369 else 1370 ret = copy_from_user(mask, nmask, 1371 nlongs * sizeof(unsigned long)); 1372 1373 if (ret) 1374 return -EFAULT; 1375 1376 if (maxnode % BITS_PER_LONG) 1377 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1378 1379 return 0; 1380 } 1381 1382 /* Copy a node mask from user space. */ 1383 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1384 unsigned long maxnode) 1385 { 1386 --maxnode; 1387 nodes_clear(*nodes); 1388 if (maxnode == 0 || !nmask) 1389 return 0; 1390 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1391 return -EINVAL; 1392 1393 /* 1394 * When the user specified more nodes than supported just check 1395 * if the non supported part is all zero, one word at a time, 1396 * starting at the end. 1397 */ 1398 while (maxnode > MAX_NUMNODES) { 1399 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1400 unsigned long t; 1401 1402 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1403 return -EFAULT; 1404 1405 if (maxnode - bits >= MAX_NUMNODES) { 1406 maxnode -= bits; 1407 } else { 1408 maxnode = MAX_NUMNODES; 1409 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1410 } 1411 if (t) 1412 return -EINVAL; 1413 } 1414 1415 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1416 } 1417 1418 /* Copy a kernel node mask to user space */ 1419 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1420 nodemask_t *nodes) 1421 { 1422 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1423 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1424 bool compat = in_compat_syscall(); 1425 1426 if (compat) 1427 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1428 1429 if (copy > nbytes) { 1430 if (copy > PAGE_SIZE) 1431 return -EINVAL; 1432 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1433 return -EFAULT; 1434 copy = nbytes; 1435 maxnode = nr_node_ids; 1436 } 1437 1438 if (compat) 1439 return compat_put_bitmap((compat_ulong_t __user *)mask, 1440 nodes_addr(*nodes), maxnode); 1441 1442 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1443 } 1444 1445 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1446 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1447 { 1448 *flags = *mode & MPOL_MODE_FLAGS; 1449 *mode &= ~MPOL_MODE_FLAGS; 1450 1451 if ((unsigned int)(*mode) >= MPOL_MAX) 1452 return -EINVAL; 1453 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1454 return -EINVAL; 1455 if (*flags & MPOL_F_NUMA_BALANCING) { 1456 if (*mode != MPOL_BIND) 1457 return -EINVAL; 1458 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1459 } 1460 return 0; 1461 } 1462 1463 static long kernel_mbind(unsigned long start, unsigned long len, 1464 unsigned long mode, const unsigned long __user *nmask, 1465 unsigned long maxnode, unsigned int flags) 1466 { 1467 unsigned short mode_flags; 1468 nodemask_t nodes; 1469 int lmode = mode; 1470 int err; 1471 1472 start = untagged_addr(start); 1473 err = sanitize_mpol_flags(&lmode, &mode_flags); 1474 if (err) 1475 return err; 1476 1477 err = get_nodes(&nodes, nmask, maxnode); 1478 if (err) 1479 return err; 1480 1481 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1482 } 1483 1484 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1485 unsigned long, home_node, unsigned long, flags) 1486 { 1487 struct mm_struct *mm = current->mm; 1488 struct vm_area_struct *vma, *prev; 1489 struct mempolicy *new, *old; 1490 unsigned long end; 1491 int err = -ENOENT; 1492 VMA_ITERATOR(vmi, mm, start); 1493 1494 start = untagged_addr(start); 1495 if (start & ~PAGE_MASK) 1496 return -EINVAL; 1497 /* 1498 * flags is used for future extension if any. 1499 */ 1500 if (flags != 0) 1501 return -EINVAL; 1502 1503 /* 1504 * Check home_node is online to avoid accessing uninitialized 1505 * NODE_DATA. 1506 */ 1507 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1508 return -EINVAL; 1509 1510 len = PAGE_ALIGN(len); 1511 end = start + len; 1512 1513 if (end < start) 1514 return -EINVAL; 1515 if (end == start) 1516 return 0; 1517 mmap_write_lock(mm); 1518 prev = vma_prev(&vmi); 1519 for_each_vma_range(vmi, vma, end) { 1520 /* 1521 * If any vma in the range got policy other than MPOL_BIND 1522 * or MPOL_PREFERRED_MANY we return error. We don't reset 1523 * the home node for vmas we already updated before. 1524 */ 1525 old = vma_policy(vma); 1526 if (!old) 1527 continue; 1528 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1529 err = -EOPNOTSUPP; 1530 break; 1531 } 1532 new = mpol_dup(old); 1533 if (IS_ERR(new)) { 1534 err = PTR_ERR(new); 1535 break; 1536 } 1537 1538 new->home_node = home_node; 1539 err = mbind_range(&vmi, vma, &prev, start, end, new); 1540 mpol_put(new); 1541 if (err) 1542 break; 1543 } 1544 mmap_write_unlock(mm); 1545 return err; 1546 } 1547 1548 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1549 unsigned long, mode, const unsigned long __user *, nmask, 1550 unsigned long, maxnode, unsigned int, flags) 1551 { 1552 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1553 } 1554 1555 /* Set the process memory policy */ 1556 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1557 unsigned long maxnode) 1558 { 1559 unsigned short mode_flags; 1560 nodemask_t nodes; 1561 int lmode = mode; 1562 int err; 1563 1564 err = sanitize_mpol_flags(&lmode, &mode_flags); 1565 if (err) 1566 return err; 1567 1568 err = get_nodes(&nodes, nmask, maxnode); 1569 if (err) 1570 return err; 1571 1572 return do_set_mempolicy(lmode, mode_flags, &nodes); 1573 } 1574 1575 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1576 unsigned long, maxnode) 1577 { 1578 return kernel_set_mempolicy(mode, nmask, maxnode); 1579 } 1580 1581 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1582 const unsigned long __user *old_nodes, 1583 const unsigned long __user *new_nodes) 1584 { 1585 struct mm_struct *mm = NULL; 1586 struct task_struct *task; 1587 nodemask_t task_nodes; 1588 int err; 1589 nodemask_t *old; 1590 nodemask_t *new; 1591 NODEMASK_SCRATCH(scratch); 1592 1593 if (!scratch) 1594 return -ENOMEM; 1595 1596 old = &scratch->mask1; 1597 new = &scratch->mask2; 1598 1599 err = get_nodes(old, old_nodes, maxnode); 1600 if (err) 1601 goto out; 1602 1603 err = get_nodes(new, new_nodes, maxnode); 1604 if (err) 1605 goto out; 1606 1607 /* Find the mm_struct */ 1608 rcu_read_lock(); 1609 task = pid ? find_task_by_vpid(pid) : current; 1610 if (!task) { 1611 rcu_read_unlock(); 1612 err = -ESRCH; 1613 goto out; 1614 } 1615 get_task_struct(task); 1616 1617 err = -EINVAL; 1618 1619 /* 1620 * Check if this process has the right to modify the specified process. 1621 * Use the regular "ptrace_may_access()" checks. 1622 */ 1623 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1624 rcu_read_unlock(); 1625 err = -EPERM; 1626 goto out_put; 1627 } 1628 rcu_read_unlock(); 1629 1630 task_nodes = cpuset_mems_allowed(task); 1631 /* Is the user allowed to access the target nodes? */ 1632 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1633 err = -EPERM; 1634 goto out_put; 1635 } 1636 1637 task_nodes = cpuset_mems_allowed(current); 1638 nodes_and(*new, *new, task_nodes); 1639 if (nodes_empty(*new)) 1640 goto out_put; 1641 1642 err = security_task_movememory(task); 1643 if (err) 1644 goto out_put; 1645 1646 mm = get_task_mm(task); 1647 put_task_struct(task); 1648 1649 if (!mm) { 1650 err = -EINVAL; 1651 goto out; 1652 } 1653 1654 err = do_migrate_pages(mm, old, new, 1655 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1656 1657 mmput(mm); 1658 out: 1659 NODEMASK_SCRATCH_FREE(scratch); 1660 1661 return err; 1662 1663 out_put: 1664 put_task_struct(task); 1665 goto out; 1666 1667 } 1668 1669 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1670 const unsigned long __user *, old_nodes, 1671 const unsigned long __user *, new_nodes) 1672 { 1673 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1674 } 1675 1676 1677 /* Retrieve NUMA policy */ 1678 static int kernel_get_mempolicy(int __user *policy, 1679 unsigned long __user *nmask, 1680 unsigned long maxnode, 1681 unsigned long addr, 1682 unsigned long flags) 1683 { 1684 int err; 1685 int pval; 1686 nodemask_t nodes; 1687 1688 if (nmask != NULL && maxnode < nr_node_ids) 1689 return -EINVAL; 1690 1691 addr = untagged_addr(addr); 1692 1693 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1694 1695 if (err) 1696 return err; 1697 1698 if (policy && put_user(pval, policy)) 1699 return -EFAULT; 1700 1701 if (nmask) 1702 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1703 1704 return err; 1705 } 1706 1707 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1708 unsigned long __user *, nmask, unsigned long, maxnode, 1709 unsigned long, addr, unsigned long, flags) 1710 { 1711 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1712 } 1713 1714 bool vma_migratable(struct vm_area_struct *vma) 1715 { 1716 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1717 return false; 1718 1719 /* 1720 * DAX device mappings require predictable access latency, so avoid 1721 * incurring periodic faults. 1722 */ 1723 if (vma_is_dax(vma)) 1724 return false; 1725 1726 if (is_vm_hugetlb_page(vma) && 1727 !hugepage_migration_supported(hstate_vma(vma))) 1728 return false; 1729 1730 /* 1731 * Migration allocates pages in the highest zone. If we cannot 1732 * do so then migration (at least from node to node) is not 1733 * possible. 1734 */ 1735 if (vma->vm_file && 1736 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1737 < policy_zone) 1738 return false; 1739 return true; 1740 } 1741 1742 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1743 unsigned long addr) 1744 { 1745 struct mempolicy *pol = NULL; 1746 1747 if (vma) { 1748 if (vma->vm_ops && vma->vm_ops->get_policy) { 1749 pol = vma->vm_ops->get_policy(vma, addr); 1750 } else if (vma->vm_policy) { 1751 pol = vma->vm_policy; 1752 1753 /* 1754 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1755 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1756 * count on these policies which will be dropped by 1757 * mpol_cond_put() later 1758 */ 1759 if (mpol_needs_cond_ref(pol)) 1760 mpol_get(pol); 1761 } 1762 } 1763 1764 return pol; 1765 } 1766 1767 /* 1768 * get_vma_policy(@vma, @addr) 1769 * @vma: virtual memory area whose policy is sought 1770 * @addr: address in @vma for shared policy lookup 1771 * 1772 * Returns effective policy for a VMA at specified address. 1773 * Falls back to current->mempolicy or system default policy, as necessary. 1774 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1775 * count--added by the get_policy() vm_op, as appropriate--to protect against 1776 * freeing by another task. It is the caller's responsibility to free the 1777 * extra reference for shared policies. 1778 */ 1779 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1780 unsigned long addr) 1781 { 1782 struct mempolicy *pol = __get_vma_policy(vma, addr); 1783 1784 if (!pol) 1785 pol = get_task_policy(current); 1786 1787 return pol; 1788 } 1789 1790 bool vma_policy_mof(struct vm_area_struct *vma) 1791 { 1792 struct mempolicy *pol; 1793 1794 if (vma->vm_ops && vma->vm_ops->get_policy) { 1795 bool ret = false; 1796 1797 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1798 if (pol && (pol->flags & MPOL_F_MOF)) 1799 ret = true; 1800 mpol_cond_put(pol); 1801 1802 return ret; 1803 } 1804 1805 pol = vma->vm_policy; 1806 if (!pol) 1807 pol = get_task_policy(current); 1808 1809 return pol->flags & MPOL_F_MOF; 1810 } 1811 1812 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1813 { 1814 enum zone_type dynamic_policy_zone = policy_zone; 1815 1816 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1817 1818 /* 1819 * if policy->nodes has movable memory only, 1820 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1821 * 1822 * policy->nodes is intersect with node_states[N_MEMORY]. 1823 * so if the following test fails, it implies 1824 * policy->nodes has movable memory only. 1825 */ 1826 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1827 dynamic_policy_zone = ZONE_MOVABLE; 1828 1829 return zone >= dynamic_policy_zone; 1830 } 1831 1832 /* 1833 * Return a nodemask representing a mempolicy for filtering nodes for 1834 * page allocation 1835 */ 1836 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1837 { 1838 int mode = policy->mode; 1839 1840 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1841 if (unlikely(mode == MPOL_BIND) && 1842 apply_policy_zone(policy, gfp_zone(gfp)) && 1843 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1844 return &policy->nodes; 1845 1846 if (mode == MPOL_PREFERRED_MANY) 1847 return &policy->nodes; 1848 1849 return NULL; 1850 } 1851 1852 /* 1853 * Return the preferred node id for 'prefer' mempolicy, and return 1854 * the given id for all other policies. 1855 * 1856 * policy_node() is always coupled with policy_nodemask(), which 1857 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1858 */ 1859 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1860 { 1861 if (policy->mode == MPOL_PREFERRED) { 1862 nd = first_node(policy->nodes); 1863 } else { 1864 /* 1865 * __GFP_THISNODE shouldn't even be used with the bind policy 1866 * because we might easily break the expectation to stay on the 1867 * requested node and not break the policy. 1868 */ 1869 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1870 } 1871 1872 if ((policy->mode == MPOL_BIND || 1873 policy->mode == MPOL_PREFERRED_MANY) && 1874 policy->home_node != NUMA_NO_NODE) 1875 return policy->home_node; 1876 1877 return nd; 1878 } 1879 1880 /* Do dynamic interleaving for a process */ 1881 static unsigned interleave_nodes(struct mempolicy *policy) 1882 { 1883 unsigned next; 1884 struct task_struct *me = current; 1885 1886 next = next_node_in(me->il_prev, policy->nodes); 1887 if (next < MAX_NUMNODES) 1888 me->il_prev = next; 1889 return next; 1890 } 1891 1892 /* 1893 * Depending on the memory policy provide a node from which to allocate the 1894 * next slab entry. 1895 */ 1896 unsigned int mempolicy_slab_node(void) 1897 { 1898 struct mempolicy *policy; 1899 int node = numa_mem_id(); 1900 1901 if (!in_task()) 1902 return node; 1903 1904 policy = current->mempolicy; 1905 if (!policy) 1906 return node; 1907 1908 switch (policy->mode) { 1909 case MPOL_PREFERRED: 1910 return first_node(policy->nodes); 1911 1912 case MPOL_INTERLEAVE: 1913 return interleave_nodes(policy); 1914 1915 case MPOL_BIND: 1916 case MPOL_PREFERRED_MANY: 1917 { 1918 struct zoneref *z; 1919 1920 /* 1921 * Follow bind policy behavior and start allocation at the 1922 * first node. 1923 */ 1924 struct zonelist *zonelist; 1925 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1926 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1927 z = first_zones_zonelist(zonelist, highest_zoneidx, 1928 &policy->nodes); 1929 return z->zone ? zone_to_nid(z->zone) : node; 1930 } 1931 case MPOL_LOCAL: 1932 return node; 1933 1934 default: 1935 BUG(); 1936 } 1937 } 1938 1939 /* 1940 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1941 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1942 * number of present nodes. 1943 */ 1944 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1945 { 1946 nodemask_t nodemask = pol->nodes; 1947 unsigned int target, nnodes; 1948 int i; 1949 int nid; 1950 /* 1951 * The barrier will stabilize the nodemask in a register or on 1952 * the stack so that it will stop changing under the code. 1953 * 1954 * Between first_node() and next_node(), pol->nodes could be changed 1955 * by other threads. So we put pol->nodes in a local stack. 1956 */ 1957 barrier(); 1958 1959 nnodes = nodes_weight(nodemask); 1960 if (!nnodes) 1961 return numa_node_id(); 1962 target = (unsigned int)n % nnodes; 1963 nid = first_node(nodemask); 1964 for (i = 0; i < target; i++) 1965 nid = next_node(nid, nodemask); 1966 return nid; 1967 } 1968 1969 /* Determine a node number for interleave */ 1970 static inline unsigned interleave_nid(struct mempolicy *pol, 1971 struct vm_area_struct *vma, unsigned long addr, int shift) 1972 { 1973 if (vma) { 1974 unsigned long off; 1975 1976 /* 1977 * for small pages, there is no difference between 1978 * shift and PAGE_SHIFT, so the bit-shift is safe. 1979 * for huge pages, since vm_pgoff is in units of small 1980 * pages, we need to shift off the always 0 bits to get 1981 * a useful offset. 1982 */ 1983 BUG_ON(shift < PAGE_SHIFT); 1984 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1985 off += (addr - vma->vm_start) >> shift; 1986 return offset_il_node(pol, off); 1987 } else 1988 return interleave_nodes(pol); 1989 } 1990 1991 #ifdef CONFIG_HUGETLBFS 1992 /* 1993 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1994 * @vma: virtual memory area whose policy is sought 1995 * @addr: address in @vma for shared policy lookup and interleave policy 1996 * @gfp_flags: for requested zone 1997 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1998 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 1999 * 2000 * Returns a nid suitable for a huge page allocation and a pointer 2001 * to the struct mempolicy for conditional unref after allocation. 2002 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2003 * to the mempolicy's @nodemask for filtering the zonelist. 2004 * 2005 * Must be protected by read_mems_allowed_begin() 2006 */ 2007 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2008 struct mempolicy **mpol, nodemask_t **nodemask) 2009 { 2010 int nid; 2011 int mode; 2012 2013 *mpol = get_vma_policy(vma, addr); 2014 *nodemask = NULL; 2015 mode = (*mpol)->mode; 2016 2017 if (unlikely(mode == MPOL_INTERLEAVE)) { 2018 nid = interleave_nid(*mpol, vma, addr, 2019 huge_page_shift(hstate_vma(vma))); 2020 } else { 2021 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2022 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2023 *nodemask = &(*mpol)->nodes; 2024 } 2025 return nid; 2026 } 2027 2028 /* 2029 * init_nodemask_of_mempolicy 2030 * 2031 * If the current task's mempolicy is "default" [NULL], return 'false' 2032 * to indicate default policy. Otherwise, extract the policy nodemask 2033 * for 'bind' or 'interleave' policy into the argument nodemask, or 2034 * initialize the argument nodemask to contain the single node for 2035 * 'preferred' or 'local' policy and return 'true' to indicate presence 2036 * of non-default mempolicy. 2037 * 2038 * We don't bother with reference counting the mempolicy [mpol_get/put] 2039 * because the current task is examining it's own mempolicy and a task's 2040 * mempolicy is only ever changed by the task itself. 2041 * 2042 * N.B., it is the caller's responsibility to free a returned nodemask. 2043 */ 2044 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2045 { 2046 struct mempolicy *mempolicy; 2047 2048 if (!(mask && current->mempolicy)) 2049 return false; 2050 2051 task_lock(current); 2052 mempolicy = current->mempolicy; 2053 switch (mempolicy->mode) { 2054 case MPOL_PREFERRED: 2055 case MPOL_PREFERRED_MANY: 2056 case MPOL_BIND: 2057 case MPOL_INTERLEAVE: 2058 *mask = mempolicy->nodes; 2059 break; 2060 2061 case MPOL_LOCAL: 2062 init_nodemask_of_node(mask, numa_node_id()); 2063 break; 2064 2065 default: 2066 BUG(); 2067 } 2068 task_unlock(current); 2069 2070 return true; 2071 } 2072 #endif 2073 2074 /* 2075 * mempolicy_in_oom_domain 2076 * 2077 * If tsk's mempolicy is "bind", check for intersection between mask and 2078 * the policy nodemask. Otherwise, return true for all other policies 2079 * including "interleave", as a tsk with "interleave" policy may have 2080 * memory allocated from all nodes in system. 2081 * 2082 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2083 */ 2084 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2085 const nodemask_t *mask) 2086 { 2087 struct mempolicy *mempolicy; 2088 bool ret = true; 2089 2090 if (!mask) 2091 return ret; 2092 2093 task_lock(tsk); 2094 mempolicy = tsk->mempolicy; 2095 if (mempolicy && mempolicy->mode == MPOL_BIND) 2096 ret = nodes_intersects(mempolicy->nodes, *mask); 2097 task_unlock(tsk); 2098 2099 return ret; 2100 } 2101 2102 /* Allocate a page in interleaved policy. 2103 Own path because it needs to do special accounting. */ 2104 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2105 unsigned nid) 2106 { 2107 struct page *page; 2108 2109 page = __alloc_pages(gfp, order, nid, NULL); 2110 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2111 if (!static_branch_likely(&vm_numa_stat_key)) 2112 return page; 2113 if (page && page_to_nid(page) == nid) { 2114 preempt_disable(); 2115 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2116 preempt_enable(); 2117 } 2118 return page; 2119 } 2120 2121 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2122 int nid, struct mempolicy *pol) 2123 { 2124 struct page *page; 2125 gfp_t preferred_gfp; 2126 2127 /* 2128 * This is a two pass approach. The first pass will only try the 2129 * preferred nodes but skip the direct reclaim and allow the 2130 * allocation to fail, while the second pass will try all the 2131 * nodes in system. 2132 */ 2133 preferred_gfp = gfp | __GFP_NOWARN; 2134 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2135 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2136 if (!page) 2137 page = __alloc_pages(gfp, order, nid, NULL); 2138 2139 return page; 2140 } 2141 2142 /** 2143 * vma_alloc_folio - Allocate a folio for a VMA. 2144 * @gfp: GFP flags. 2145 * @order: Order of the folio. 2146 * @vma: Pointer to VMA or NULL if not available. 2147 * @addr: Virtual address of the allocation. Must be inside @vma. 2148 * @hugepage: For hugepages try only the preferred node if possible. 2149 * 2150 * Allocate a folio for a specific address in @vma, using the appropriate 2151 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2152 * of the mm_struct of the VMA to prevent it from going away. Should be 2153 * used for all allocations for folios that will be mapped into user space. 2154 * 2155 * Return: The folio on success or NULL if allocation fails. 2156 */ 2157 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2158 unsigned long addr, bool hugepage) 2159 { 2160 struct mempolicy *pol; 2161 int node = numa_node_id(); 2162 struct folio *folio; 2163 int preferred_nid; 2164 nodemask_t *nmask; 2165 2166 pol = get_vma_policy(vma, addr); 2167 2168 if (pol->mode == MPOL_INTERLEAVE) { 2169 struct page *page; 2170 unsigned nid; 2171 2172 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2173 mpol_cond_put(pol); 2174 gfp |= __GFP_COMP; 2175 page = alloc_page_interleave(gfp, order, nid); 2176 if (page && order > 1) 2177 prep_transhuge_page(page); 2178 folio = (struct folio *)page; 2179 goto out; 2180 } 2181 2182 if (pol->mode == MPOL_PREFERRED_MANY) { 2183 struct page *page; 2184 2185 node = policy_node(gfp, pol, node); 2186 gfp |= __GFP_COMP; 2187 page = alloc_pages_preferred_many(gfp, order, node, pol); 2188 mpol_cond_put(pol); 2189 if (page && order > 1) 2190 prep_transhuge_page(page); 2191 folio = (struct folio *)page; 2192 goto out; 2193 } 2194 2195 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2196 int hpage_node = node; 2197 2198 /* 2199 * For hugepage allocation and non-interleave policy which 2200 * allows the current node (or other explicitly preferred 2201 * node) we only try to allocate from the current/preferred 2202 * node and don't fall back to other nodes, as the cost of 2203 * remote accesses would likely offset THP benefits. 2204 * 2205 * If the policy is interleave or does not allow the current 2206 * node in its nodemask, we allocate the standard way. 2207 */ 2208 if (pol->mode == MPOL_PREFERRED) 2209 hpage_node = first_node(pol->nodes); 2210 2211 nmask = policy_nodemask(gfp, pol); 2212 if (!nmask || node_isset(hpage_node, *nmask)) { 2213 mpol_cond_put(pol); 2214 /* 2215 * First, try to allocate THP only on local node, but 2216 * don't reclaim unnecessarily, just compact. 2217 */ 2218 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2219 __GFP_NORETRY, order, hpage_node); 2220 2221 /* 2222 * If hugepage allocations are configured to always 2223 * synchronous compact or the vma has been madvised 2224 * to prefer hugepage backing, retry allowing remote 2225 * memory with both reclaim and compact as well. 2226 */ 2227 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2228 folio = __folio_alloc(gfp, order, hpage_node, 2229 nmask); 2230 2231 goto out; 2232 } 2233 } 2234 2235 nmask = policy_nodemask(gfp, pol); 2236 preferred_nid = policy_node(gfp, pol, node); 2237 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2238 mpol_cond_put(pol); 2239 out: 2240 return folio; 2241 } 2242 EXPORT_SYMBOL(vma_alloc_folio); 2243 2244 /** 2245 * alloc_pages - Allocate pages. 2246 * @gfp: GFP flags. 2247 * @order: Power of two of number of pages to allocate. 2248 * 2249 * Allocate 1 << @order contiguous pages. The physical address of the 2250 * first page is naturally aligned (eg an order-3 allocation will be aligned 2251 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2252 * process is honoured when in process context. 2253 * 2254 * Context: Can be called from any context, providing the appropriate GFP 2255 * flags are used. 2256 * Return: The page on success or NULL if allocation fails. 2257 */ 2258 struct page *alloc_pages(gfp_t gfp, unsigned order) 2259 { 2260 struct mempolicy *pol = &default_policy; 2261 struct page *page; 2262 2263 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2264 pol = get_task_policy(current); 2265 2266 /* 2267 * No reference counting needed for current->mempolicy 2268 * nor system default_policy 2269 */ 2270 if (pol->mode == MPOL_INTERLEAVE) 2271 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2272 else if (pol->mode == MPOL_PREFERRED_MANY) 2273 page = alloc_pages_preferred_many(gfp, order, 2274 policy_node(gfp, pol, numa_node_id()), pol); 2275 else 2276 page = __alloc_pages(gfp, order, 2277 policy_node(gfp, pol, numa_node_id()), 2278 policy_nodemask(gfp, pol)); 2279 2280 return page; 2281 } 2282 EXPORT_SYMBOL(alloc_pages); 2283 2284 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2285 { 2286 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2287 2288 if (page && order > 1) 2289 prep_transhuge_page(page); 2290 return (struct folio *)page; 2291 } 2292 EXPORT_SYMBOL(folio_alloc); 2293 2294 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2295 struct mempolicy *pol, unsigned long nr_pages, 2296 struct page **page_array) 2297 { 2298 int nodes; 2299 unsigned long nr_pages_per_node; 2300 int delta; 2301 int i; 2302 unsigned long nr_allocated; 2303 unsigned long total_allocated = 0; 2304 2305 nodes = nodes_weight(pol->nodes); 2306 nr_pages_per_node = nr_pages / nodes; 2307 delta = nr_pages - nodes * nr_pages_per_node; 2308 2309 for (i = 0; i < nodes; i++) { 2310 if (delta) { 2311 nr_allocated = __alloc_pages_bulk(gfp, 2312 interleave_nodes(pol), NULL, 2313 nr_pages_per_node + 1, NULL, 2314 page_array); 2315 delta--; 2316 } else { 2317 nr_allocated = __alloc_pages_bulk(gfp, 2318 interleave_nodes(pol), NULL, 2319 nr_pages_per_node, NULL, page_array); 2320 } 2321 2322 page_array += nr_allocated; 2323 total_allocated += nr_allocated; 2324 } 2325 2326 return total_allocated; 2327 } 2328 2329 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2330 struct mempolicy *pol, unsigned long nr_pages, 2331 struct page **page_array) 2332 { 2333 gfp_t preferred_gfp; 2334 unsigned long nr_allocated = 0; 2335 2336 preferred_gfp = gfp | __GFP_NOWARN; 2337 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2338 2339 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2340 nr_pages, NULL, page_array); 2341 2342 if (nr_allocated < nr_pages) 2343 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2344 nr_pages - nr_allocated, NULL, 2345 page_array + nr_allocated); 2346 return nr_allocated; 2347 } 2348 2349 /* alloc pages bulk and mempolicy should be considered at the 2350 * same time in some situation such as vmalloc. 2351 * 2352 * It can accelerate memory allocation especially interleaving 2353 * allocate memory. 2354 */ 2355 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2356 unsigned long nr_pages, struct page **page_array) 2357 { 2358 struct mempolicy *pol = &default_policy; 2359 2360 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2361 pol = get_task_policy(current); 2362 2363 if (pol->mode == MPOL_INTERLEAVE) 2364 return alloc_pages_bulk_array_interleave(gfp, pol, 2365 nr_pages, page_array); 2366 2367 if (pol->mode == MPOL_PREFERRED_MANY) 2368 return alloc_pages_bulk_array_preferred_many(gfp, 2369 numa_node_id(), pol, nr_pages, page_array); 2370 2371 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2372 policy_nodemask(gfp, pol), nr_pages, NULL, 2373 page_array); 2374 } 2375 2376 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2377 { 2378 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2379 2380 if (IS_ERR(pol)) 2381 return PTR_ERR(pol); 2382 dst->vm_policy = pol; 2383 return 0; 2384 } 2385 2386 /* 2387 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2388 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2389 * with the mems_allowed returned by cpuset_mems_allowed(). This 2390 * keeps mempolicies cpuset relative after its cpuset moves. See 2391 * further kernel/cpuset.c update_nodemask(). 2392 * 2393 * current's mempolicy may be rebinded by the other task(the task that changes 2394 * cpuset's mems), so we needn't do rebind work for current task. 2395 */ 2396 2397 /* Slow path of a mempolicy duplicate */ 2398 struct mempolicy *__mpol_dup(struct mempolicy *old) 2399 { 2400 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2401 2402 if (!new) 2403 return ERR_PTR(-ENOMEM); 2404 2405 /* task's mempolicy is protected by alloc_lock */ 2406 if (old == current->mempolicy) { 2407 task_lock(current); 2408 *new = *old; 2409 task_unlock(current); 2410 } else 2411 *new = *old; 2412 2413 if (current_cpuset_is_being_rebound()) { 2414 nodemask_t mems = cpuset_mems_allowed(current); 2415 mpol_rebind_policy(new, &mems); 2416 } 2417 atomic_set(&new->refcnt, 1); 2418 return new; 2419 } 2420 2421 /* Slow path of a mempolicy comparison */ 2422 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2423 { 2424 if (!a || !b) 2425 return false; 2426 if (a->mode != b->mode) 2427 return false; 2428 if (a->flags != b->flags) 2429 return false; 2430 if (a->home_node != b->home_node) 2431 return false; 2432 if (mpol_store_user_nodemask(a)) 2433 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2434 return false; 2435 2436 switch (a->mode) { 2437 case MPOL_BIND: 2438 case MPOL_INTERLEAVE: 2439 case MPOL_PREFERRED: 2440 case MPOL_PREFERRED_MANY: 2441 return !!nodes_equal(a->nodes, b->nodes); 2442 case MPOL_LOCAL: 2443 return true; 2444 default: 2445 BUG(); 2446 return false; 2447 } 2448 } 2449 2450 /* 2451 * Shared memory backing store policy support. 2452 * 2453 * Remember policies even when nobody has shared memory mapped. 2454 * The policies are kept in Red-Black tree linked from the inode. 2455 * They are protected by the sp->lock rwlock, which should be held 2456 * for any accesses to the tree. 2457 */ 2458 2459 /* 2460 * lookup first element intersecting start-end. Caller holds sp->lock for 2461 * reading or for writing 2462 */ 2463 static struct sp_node * 2464 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2465 { 2466 struct rb_node *n = sp->root.rb_node; 2467 2468 while (n) { 2469 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2470 2471 if (start >= p->end) 2472 n = n->rb_right; 2473 else if (end <= p->start) 2474 n = n->rb_left; 2475 else 2476 break; 2477 } 2478 if (!n) 2479 return NULL; 2480 for (;;) { 2481 struct sp_node *w = NULL; 2482 struct rb_node *prev = rb_prev(n); 2483 if (!prev) 2484 break; 2485 w = rb_entry(prev, struct sp_node, nd); 2486 if (w->end <= start) 2487 break; 2488 n = prev; 2489 } 2490 return rb_entry(n, struct sp_node, nd); 2491 } 2492 2493 /* 2494 * Insert a new shared policy into the list. Caller holds sp->lock for 2495 * writing. 2496 */ 2497 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2498 { 2499 struct rb_node **p = &sp->root.rb_node; 2500 struct rb_node *parent = NULL; 2501 struct sp_node *nd; 2502 2503 while (*p) { 2504 parent = *p; 2505 nd = rb_entry(parent, struct sp_node, nd); 2506 if (new->start < nd->start) 2507 p = &(*p)->rb_left; 2508 else if (new->end > nd->end) 2509 p = &(*p)->rb_right; 2510 else 2511 BUG(); 2512 } 2513 rb_link_node(&new->nd, parent, p); 2514 rb_insert_color(&new->nd, &sp->root); 2515 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2516 new->policy ? new->policy->mode : 0); 2517 } 2518 2519 /* Find shared policy intersecting idx */ 2520 struct mempolicy * 2521 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2522 { 2523 struct mempolicy *pol = NULL; 2524 struct sp_node *sn; 2525 2526 if (!sp->root.rb_node) 2527 return NULL; 2528 read_lock(&sp->lock); 2529 sn = sp_lookup(sp, idx, idx+1); 2530 if (sn) { 2531 mpol_get(sn->policy); 2532 pol = sn->policy; 2533 } 2534 read_unlock(&sp->lock); 2535 return pol; 2536 } 2537 2538 static void sp_free(struct sp_node *n) 2539 { 2540 mpol_put(n->policy); 2541 kmem_cache_free(sn_cache, n); 2542 } 2543 2544 /** 2545 * mpol_misplaced - check whether current page node is valid in policy 2546 * 2547 * @page: page to be checked 2548 * @vma: vm area where page mapped 2549 * @addr: virtual address where page mapped 2550 * 2551 * Lookup current policy node id for vma,addr and "compare to" page's 2552 * node id. Policy determination "mimics" alloc_page_vma(). 2553 * Called from fault path where we know the vma and faulting address. 2554 * 2555 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2556 * policy, or a suitable node ID to allocate a replacement page from. 2557 */ 2558 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2559 { 2560 struct mempolicy *pol; 2561 struct zoneref *z; 2562 int curnid = page_to_nid(page); 2563 unsigned long pgoff; 2564 int thiscpu = raw_smp_processor_id(); 2565 int thisnid = cpu_to_node(thiscpu); 2566 int polnid = NUMA_NO_NODE; 2567 int ret = NUMA_NO_NODE; 2568 2569 pol = get_vma_policy(vma, addr); 2570 if (!(pol->flags & MPOL_F_MOF)) 2571 goto out; 2572 2573 switch (pol->mode) { 2574 case MPOL_INTERLEAVE: 2575 pgoff = vma->vm_pgoff; 2576 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2577 polnid = offset_il_node(pol, pgoff); 2578 break; 2579 2580 case MPOL_PREFERRED: 2581 if (node_isset(curnid, pol->nodes)) 2582 goto out; 2583 polnid = first_node(pol->nodes); 2584 break; 2585 2586 case MPOL_LOCAL: 2587 polnid = numa_node_id(); 2588 break; 2589 2590 case MPOL_BIND: 2591 /* Optimize placement among multiple nodes via NUMA balancing */ 2592 if (pol->flags & MPOL_F_MORON) { 2593 if (node_isset(thisnid, pol->nodes)) 2594 break; 2595 goto out; 2596 } 2597 fallthrough; 2598 2599 case MPOL_PREFERRED_MANY: 2600 /* 2601 * use current page if in policy nodemask, 2602 * else select nearest allowed node, if any. 2603 * If no allowed nodes, use current [!misplaced]. 2604 */ 2605 if (node_isset(curnid, pol->nodes)) 2606 goto out; 2607 z = first_zones_zonelist( 2608 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2609 gfp_zone(GFP_HIGHUSER), 2610 &pol->nodes); 2611 polnid = zone_to_nid(z->zone); 2612 break; 2613 2614 default: 2615 BUG(); 2616 } 2617 2618 /* Migrate the page towards the node whose CPU is referencing it */ 2619 if (pol->flags & MPOL_F_MORON) { 2620 polnid = thisnid; 2621 2622 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2623 goto out; 2624 } 2625 2626 if (curnid != polnid) 2627 ret = polnid; 2628 out: 2629 mpol_cond_put(pol); 2630 2631 return ret; 2632 } 2633 2634 /* 2635 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2636 * dropped after task->mempolicy is set to NULL so that any allocation done as 2637 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2638 * policy. 2639 */ 2640 void mpol_put_task_policy(struct task_struct *task) 2641 { 2642 struct mempolicy *pol; 2643 2644 task_lock(task); 2645 pol = task->mempolicy; 2646 task->mempolicy = NULL; 2647 task_unlock(task); 2648 mpol_put(pol); 2649 } 2650 2651 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2652 { 2653 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2654 rb_erase(&n->nd, &sp->root); 2655 sp_free(n); 2656 } 2657 2658 static void sp_node_init(struct sp_node *node, unsigned long start, 2659 unsigned long end, struct mempolicy *pol) 2660 { 2661 node->start = start; 2662 node->end = end; 2663 node->policy = pol; 2664 } 2665 2666 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2667 struct mempolicy *pol) 2668 { 2669 struct sp_node *n; 2670 struct mempolicy *newpol; 2671 2672 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2673 if (!n) 2674 return NULL; 2675 2676 newpol = mpol_dup(pol); 2677 if (IS_ERR(newpol)) { 2678 kmem_cache_free(sn_cache, n); 2679 return NULL; 2680 } 2681 newpol->flags |= MPOL_F_SHARED; 2682 sp_node_init(n, start, end, newpol); 2683 2684 return n; 2685 } 2686 2687 /* Replace a policy range. */ 2688 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2689 unsigned long end, struct sp_node *new) 2690 { 2691 struct sp_node *n; 2692 struct sp_node *n_new = NULL; 2693 struct mempolicy *mpol_new = NULL; 2694 int ret = 0; 2695 2696 restart: 2697 write_lock(&sp->lock); 2698 n = sp_lookup(sp, start, end); 2699 /* Take care of old policies in the same range. */ 2700 while (n && n->start < end) { 2701 struct rb_node *next = rb_next(&n->nd); 2702 if (n->start >= start) { 2703 if (n->end <= end) 2704 sp_delete(sp, n); 2705 else 2706 n->start = end; 2707 } else { 2708 /* Old policy spanning whole new range. */ 2709 if (n->end > end) { 2710 if (!n_new) 2711 goto alloc_new; 2712 2713 *mpol_new = *n->policy; 2714 atomic_set(&mpol_new->refcnt, 1); 2715 sp_node_init(n_new, end, n->end, mpol_new); 2716 n->end = start; 2717 sp_insert(sp, n_new); 2718 n_new = NULL; 2719 mpol_new = NULL; 2720 break; 2721 } else 2722 n->end = start; 2723 } 2724 if (!next) 2725 break; 2726 n = rb_entry(next, struct sp_node, nd); 2727 } 2728 if (new) 2729 sp_insert(sp, new); 2730 write_unlock(&sp->lock); 2731 ret = 0; 2732 2733 err_out: 2734 if (mpol_new) 2735 mpol_put(mpol_new); 2736 if (n_new) 2737 kmem_cache_free(sn_cache, n_new); 2738 2739 return ret; 2740 2741 alloc_new: 2742 write_unlock(&sp->lock); 2743 ret = -ENOMEM; 2744 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2745 if (!n_new) 2746 goto err_out; 2747 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2748 if (!mpol_new) 2749 goto err_out; 2750 atomic_set(&mpol_new->refcnt, 1); 2751 goto restart; 2752 } 2753 2754 /** 2755 * mpol_shared_policy_init - initialize shared policy for inode 2756 * @sp: pointer to inode shared policy 2757 * @mpol: struct mempolicy to install 2758 * 2759 * Install non-NULL @mpol in inode's shared policy rb-tree. 2760 * On entry, the current task has a reference on a non-NULL @mpol. 2761 * This must be released on exit. 2762 * This is called at get_inode() calls and we can use GFP_KERNEL. 2763 */ 2764 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2765 { 2766 int ret; 2767 2768 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2769 rwlock_init(&sp->lock); 2770 2771 if (mpol) { 2772 struct vm_area_struct pvma; 2773 struct mempolicy *new; 2774 NODEMASK_SCRATCH(scratch); 2775 2776 if (!scratch) 2777 goto put_mpol; 2778 /* contextualize the tmpfs mount point mempolicy */ 2779 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2780 if (IS_ERR(new)) 2781 goto free_scratch; /* no valid nodemask intersection */ 2782 2783 task_lock(current); 2784 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2785 task_unlock(current); 2786 if (ret) 2787 goto put_new; 2788 2789 /* Create pseudo-vma that contains just the policy */ 2790 vma_init(&pvma, NULL); 2791 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2792 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2793 2794 put_new: 2795 mpol_put(new); /* drop initial ref */ 2796 free_scratch: 2797 NODEMASK_SCRATCH_FREE(scratch); 2798 put_mpol: 2799 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2800 } 2801 } 2802 2803 int mpol_set_shared_policy(struct shared_policy *info, 2804 struct vm_area_struct *vma, struct mempolicy *npol) 2805 { 2806 int err; 2807 struct sp_node *new = NULL; 2808 unsigned long sz = vma_pages(vma); 2809 2810 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2811 vma->vm_pgoff, 2812 sz, npol ? npol->mode : -1, 2813 npol ? npol->flags : -1, 2814 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2815 2816 if (npol) { 2817 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2818 if (!new) 2819 return -ENOMEM; 2820 } 2821 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2822 if (err && new) 2823 sp_free(new); 2824 return err; 2825 } 2826 2827 /* Free a backing policy store on inode delete. */ 2828 void mpol_free_shared_policy(struct shared_policy *p) 2829 { 2830 struct sp_node *n; 2831 struct rb_node *next; 2832 2833 if (!p->root.rb_node) 2834 return; 2835 write_lock(&p->lock); 2836 next = rb_first(&p->root); 2837 while (next) { 2838 n = rb_entry(next, struct sp_node, nd); 2839 next = rb_next(&n->nd); 2840 sp_delete(p, n); 2841 } 2842 write_unlock(&p->lock); 2843 } 2844 2845 #ifdef CONFIG_NUMA_BALANCING 2846 static int __initdata numabalancing_override; 2847 2848 static void __init check_numabalancing_enable(void) 2849 { 2850 bool numabalancing_default = false; 2851 2852 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2853 numabalancing_default = true; 2854 2855 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2856 if (numabalancing_override) 2857 set_numabalancing_state(numabalancing_override == 1); 2858 2859 if (num_online_nodes() > 1 && !numabalancing_override) { 2860 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2861 numabalancing_default ? "Enabling" : "Disabling"); 2862 set_numabalancing_state(numabalancing_default); 2863 } 2864 } 2865 2866 static int __init setup_numabalancing(char *str) 2867 { 2868 int ret = 0; 2869 if (!str) 2870 goto out; 2871 2872 if (!strcmp(str, "enable")) { 2873 numabalancing_override = 1; 2874 ret = 1; 2875 } else if (!strcmp(str, "disable")) { 2876 numabalancing_override = -1; 2877 ret = 1; 2878 } 2879 out: 2880 if (!ret) 2881 pr_warn("Unable to parse numa_balancing=\n"); 2882 2883 return ret; 2884 } 2885 __setup("numa_balancing=", setup_numabalancing); 2886 #else 2887 static inline void __init check_numabalancing_enable(void) 2888 { 2889 } 2890 #endif /* CONFIG_NUMA_BALANCING */ 2891 2892 /* assumes fs == KERNEL_DS */ 2893 void __init numa_policy_init(void) 2894 { 2895 nodemask_t interleave_nodes; 2896 unsigned long largest = 0; 2897 int nid, prefer = 0; 2898 2899 policy_cache = kmem_cache_create("numa_policy", 2900 sizeof(struct mempolicy), 2901 0, SLAB_PANIC, NULL); 2902 2903 sn_cache = kmem_cache_create("shared_policy_node", 2904 sizeof(struct sp_node), 2905 0, SLAB_PANIC, NULL); 2906 2907 for_each_node(nid) { 2908 preferred_node_policy[nid] = (struct mempolicy) { 2909 .refcnt = ATOMIC_INIT(1), 2910 .mode = MPOL_PREFERRED, 2911 .flags = MPOL_F_MOF | MPOL_F_MORON, 2912 .nodes = nodemask_of_node(nid), 2913 }; 2914 } 2915 2916 /* 2917 * Set interleaving policy for system init. Interleaving is only 2918 * enabled across suitably sized nodes (default is >= 16MB), or 2919 * fall back to the largest node if they're all smaller. 2920 */ 2921 nodes_clear(interleave_nodes); 2922 for_each_node_state(nid, N_MEMORY) { 2923 unsigned long total_pages = node_present_pages(nid); 2924 2925 /* Preserve the largest node */ 2926 if (largest < total_pages) { 2927 largest = total_pages; 2928 prefer = nid; 2929 } 2930 2931 /* Interleave this node? */ 2932 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2933 node_set(nid, interleave_nodes); 2934 } 2935 2936 /* All too small, use the largest */ 2937 if (unlikely(nodes_empty(interleave_nodes))) 2938 node_set(prefer, interleave_nodes); 2939 2940 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2941 pr_err("%s: interleaving failed\n", __func__); 2942 2943 check_numabalancing_enable(); 2944 } 2945 2946 /* Reset policy of current process to default */ 2947 void numa_default_policy(void) 2948 { 2949 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2950 } 2951 2952 /* 2953 * Parse and format mempolicy from/to strings 2954 */ 2955 2956 static const char * const policy_modes[] = 2957 { 2958 [MPOL_DEFAULT] = "default", 2959 [MPOL_PREFERRED] = "prefer", 2960 [MPOL_BIND] = "bind", 2961 [MPOL_INTERLEAVE] = "interleave", 2962 [MPOL_LOCAL] = "local", 2963 [MPOL_PREFERRED_MANY] = "prefer (many)", 2964 }; 2965 2966 2967 #ifdef CONFIG_TMPFS 2968 /** 2969 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2970 * @str: string containing mempolicy to parse 2971 * @mpol: pointer to struct mempolicy pointer, returned on success. 2972 * 2973 * Format of input: 2974 * <mode>[=<flags>][:<nodelist>] 2975 * 2976 * Return: %0 on success, else %1 2977 */ 2978 int mpol_parse_str(char *str, struct mempolicy **mpol) 2979 { 2980 struct mempolicy *new = NULL; 2981 unsigned short mode_flags; 2982 nodemask_t nodes; 2983 char *nodelist = strchr(str, ':'); 2984 char *flags = strchr(str, '='); 2985 int err = 1, mode; 2986 2987 if (flags) 2988 *flags++ = '\0'; /* terminate mode string */ 2989 2990 if (nodelist) { 2991 /* NUL-terminate mode or flags string */ 2992 *nodelist++ = '\0'; 2993 if (nodelist_parse(nodelist, nodes)) 2994 goto out; 2995 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2996 goto out; 2997 } else 2998 nodes_clear(nodes); 2999 3000 mode = match_string(policy_modes, MPOL_MAX, str); 3001 if (mode < 0) 3002 goto out; 3003 3004 switch (mode) { 3005 case MPOL_PREFERRED: 3006 /* 3007 * Insist on a nodelist of one node only, although later 3008 * we use first_node(nodes) to grab a single node, so here 3009 * nodelist (or nodes) cannot be empty. 3010 */ 3011 if (nodelist) { 3012 char *rest = nodelist; 3013 while (isdigit(*rest)) 3014 rest++; 3015 if (*rest) 3016 goto out; 3017 if (nodes_empty(nodes)) 3018 goto out; 3019 } 3020 break; 3021 case MPOL_INTERLEAVE: 3022 /* 3023 * Default to online nodes with memory if no nodelist 3024 */ 3025 if (!nodelist) 3026 nodes = node_states[N_MEMORY]; 3027 break; 3028 case MPOL_LOCAL: 3029 /* 3030 * Don't allow a nodelist; mpol_new() checks flags 3031 */ 3032 if (nodelist) 3033 goto out; 3034 break; 3035 case MPOL_DEFAULT: 3036 /* 3037 * Insist on a empty nodelist 3038 */ 3039 if (!nodelist) 3040 err = 0; 3041 goto out; 3042 case MPOL_PREFERRED_MANY: 3043 case MPOL_BIND: 3044 /* 3045 * Insist on a nodelist 3046 */ 3047 if (!nodelist) 3048 goto out; 3049 } 3050 3051 mode_flags = 0; 3052 if (flags) { 3053 /* 3054 * Currently, we only support two mutually exclusive 3055 * mode flags. 3056 */ 3057 if (!strcmp(flags, "static")) 3058 mode_flags |= MPOL_F_STATIC_NODES; 3059 else if (!strcmp(flags, "relative")) 3060 mode_flags |= MPOL_F_RELATIVE_NODES; 3061 else 3062 goto out; 3063 } 3064 3065 new = mpol_new(mode, mode_flags, &nodes); 3066 if (IS_ERR(new)) 3067 goto out; 3068 3069 /* 3070 * Save nodes for mpol_to_str() to show the tmpfs mount options 3071 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3072 */ 3073 if (mode != MPOL_PREFERRED) { 3074 new->nodes = nodes; 3075 } else if (nodelist) { 3076 nodes_clear(new->nodes); 3077 node_set(first_node(nodes), new->nodes); 3078 } else { 3079 new->mode = MPOL_LOCAL; 3080 } 3081 3082 /* 3083 * Save nodes for contextualization: this will be used to "clone" 3084 * the mempolicy in a specific context [cpuset] at a later time. 3085 */ 3086 new->w.user_nodemask = nodes; 3087 3088 err = 0; 3089 3090 out: 3091 /* Restore string for error message */ 3092 if (nodelist) 3093 *--nodelist = ':'; 3094 if (flags) 3095 *--flags = '='; 3096 if (!err) 3097 *mpol = new; 3098 return err; 3099 } 3100 #endif /* CONFIG_TMPFS */ 3101 3102 /** 3103 * mpol_to_str - format a mempolicy structure for printing 3104 * @buffer: to contain formatted mempolicy string 3105 * @maxlen: length of @buffer 3106 * @pol: pointer to mempolicy to be formatted 3107 * 3108 * Convert @pol into a string. If @buffer is too short, truncate the string. 3109 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3110 * longest flag, "relative", and to display at least a few node ids. 3111 */ 3112 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3113 { 3114 char *p = buffer; 3115 nodemask_t nodes = NODE_MASK_NONE; 3116 unsigned short mode = MPOL_DEFAULT; 3117 unsigned short flags = 0; 3118 3119 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3120 mode = pol->mode; 3121 flags = pol->flags; 3122 } 3123 3124 switch (mode) { 3125 case MPOL_DEFAULT: 3126 case MPOL_LOCAL: 3127 break; 3128 case MPOL_PREFERRED: 3129 case MPOL_PREFERRED_MANY: 3130 case MPOL_BIND: 3131 case MPOL_INTERLEAVE: 3132 nodes = pol->nodes; 3133 break; 3134 default: 3135 WARN_ON_ONCE(1); 3136 snprintf(p, maxlen, "unknown"); 3137 return; 3138 } 3139 3140 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3141 3142 if (flags & MPOL_MODE_FLAGS) { 3143 p += snprintf(p, buffer + maxlen - p, "="); 3144 3145 /* 3146 * Currently, the only defined flags are mutually exclusive 3147 */ 3148 if (flags & MPOL_F_STATIC_NODES) 3149 p += snprintf(p, buffer + maxlen - p, "static"); 3150 else if (flags & MPOL_F_RELATIVE_NODES) 3151 p += snprintf(p, buffer + maxlen - p, "relative"); 3152 } 3153 3154 if (!nodes_empty(nodes)) 3155 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3156 nodemask_pr_args(&nodes)); 3157 } 3158