xref: /linux/mm/mempolicy.c (revision dcb8cbb58a218c99aab0dbf3f76cf06a04d44f37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the folio's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_folio_required(struct folio *folio,
436 					struct queue_pages *qp)
437 {
438 	int nid = folio_nid(folio);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_folios_pmd() has three possible return values:
446  * 0 - folios are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing folio was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct folio *folio;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	folio = pfn_folio(pmd_pfn(*pmd));
468 	if (is_huge_zero_page(&folio->page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_folio_required(folio, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to folio migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_folio_add(folio, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_folios_pte_range() has three possible return values:
495  * 0 - folios are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct folio *folio;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		folio = vm_normal_folio(vma, addr, *pte);
525 		if (!folio || folio_is_zone_device(folio))
526 			continue;
527 		/*
528 		 * vm_normal_folio() filters out zero pages, but there might
529 		 * still be reserved folios to skip, perhaps in a VDSO.
530 		 */
531 		if (folio_test_reserved(folio))
532 			continue;
533 		if (!queue_folio_required(folio, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_folio_add(folio, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct folio *folio;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	folio = pfn_folio(pte_pfn(entry));
578 	if (!queue_folio_required(folio, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced folio and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced folio but allow migrating folios which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/*
602 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 	 * is shared it is likely not worth migrating.
604 	 *
605 	 * To check if the folio is shared, ideally we want to make sure
606 	 * every page is mapped to the same process. Doing that is very
607 	 * expensive, so check the estimated mapcount of the folio instead.
608 	 */
609 	if (flags & (MPOL_MF_MOVE_ALL) ||
610 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 	     !hugetlb_pmd_shared(pte))) {
612 		if (!isolate_hugetlb(folio, qp->pagelist) &&
613 			(flags & MPOL_MF_STRICT))
614 			/*
615 			 * Failed to isolate folio but allow migrating pages
616 			 * which have been queued.
617 			 */
618 			ret = 1;
619 	}
620 unlock:
621 	spin_unlock(ptl);
622 #else
623 	BUG();
624 #endif
625 	return ret;
626 }
627 
628 #ifdef CONFIG_NUMA_BALANCING
629 /*
630  * This is used to mark a range of virtual addresses to be inaccessible.
631  * These are later cleared by a NUMA hinting fault. Depending on these
632  * faults, pages may be migrated for better NUMA placement.
633  *
634  * This is assuming that NUMA faults are handled using PROT_NONE. If
635  * an architecture makes a different choice, it will need further
636  * changes to the core.
637  */
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 			unsigned long addr, unsigned long end)
640 {
641 	struct mmu_gather tlb;
642 	long nr_updated;
643 
644 	tlb_gather_mmu(&tlb, vma->vm_mm);
645 
646 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
647 	if (nr_updated > 0)
648 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
649 
650 	tlb_finish_mmu(&tlb);
651 
652 	return nr_updated;
653 }
654 #else
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 			unsigned long addr, unsigned long end)
657 {
658 	return 0;
659 }
660 #endif /* CONFIG_NUMA_BALANCING */
661 
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 				struct mm_walk *walk)
664 {
665 	struct vm_area_struct *next, *vma = walk->vma;
666 	struct queue_pages *qp = walk->private;
667 	unsigned long endvma = vma->vm_end;
668 	unsigned long flags = qp->flags;
669 
670 	/* range check first */
671 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
672 
673 	if (!qp->first) {
674 		qp->first = vma;
675 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 			(qp->start < vma->vm_start))
677 			/* hole at head side of range */
678 			return -EFAULT;
679 	}
680 	next = find_vma(vma->vm_mm, vma->vm_end);
681 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 		((vma->vm_end < qp->end) &&
683 		(!next || vma->vm_end < next->vm_start)))
684 		/* hole at middle or tail of range */
685 		return -EFAULT;
686 
687 	/*
688 	 * Need check MPOL_MF_STRICT to return -EIO if possible
689 	 * regardless of vma_migratable
690 	 */
691 	if (!vma_migratable(vma) &&
692 	    !(flags & MPOL_MF_STRICT))
693 		return 1;
694 
695 	if (endvma > end)
696 		endvma = end;
697 
698 	if (flags & MPOL_MF_LAZY) {
699 		/* Similar to task_numa_work, skip inaccessible VMAs */
700 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 			!(vma->vm_flags & VM_MIXEDMAP))
702 			change_prot_numa(vma, start, endvma);
703 		return 1;
704 	}
705 
706 	/* queue pages from current vma */
707 	if (flags & MPOL_MF_VALID)
708 		return 0;
709 	return 1;
710 }
711 
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 	.hugetlb_entry		= queue_folios_hugetlb,
714 	.pmd_entry		= queue_folios_pte_range,
715 	.test_walk		= queue_pages_test_walk,
716 };
717 
718 /*
719  * Walk through page tables and collect pages to be migrated.
720  *
721  * If pages found in a given range are on a set of nodes (determined by
722  * @nodes and @flags,) it's isolated and queued to the pagelist which is
723  * passed via @private.
724  *
725  * queue_pages_range() has three possible return values:
726  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
727  *     specified.
728  * 0 - queue pages successfully or no misplaced page.
729  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730  *         memory range specified by nodemask and maxnode points outside
731  *         your accessible address space (-EFAULT)
732  */
733 static int
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 		nodemask_t *nodes, unsigned long flags,
736 		struct list_head *pagelist)
737 {
738 	int err;
739 	struct queue_pages qp = {
740 		.pagelist = pagelist,
741 		.flags = flags,
742 		.nmask = nodes,
743 		.start = start,
744 		.end = end,
745 		.first = NULL,
746 	};
747 
748 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
749 
750 	if (!qp.first)
751 		/* whole range in hole */
752 		err = -EFAULT;
753 
754 	return err;
755 }
756 
757 /*
758  * Apply policy to a single VMA
759  * This must be called with the mmap_lock held for writing.
760  */
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 						struct mempolicy *pol)
763 {
764 	int err;
765 	struct mempolicy *old;
766 	struct mempolicy *new;
767 
768 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 		 vma->vm_ops, vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
772 
773 	new = mpol_dup(pol);
774 	if (IS_ERR(new))
775 		return PTR_ERR(new);
776 
777 	if (vma->vm_ops && vma->vm_ops->set_policy) {
778 		err = vma->vm_ops->set_policy(vma, new);
779 		if (err)
780 			goto err_out;
781 	}
782 
783 	old = vma->vm_policy;
784 	vma->vm_policy = new; /* protected by mmap_lock */
785 	mpol_put(old);
786 
787 	return 0;
788  err_out:
789 	mpol_put(new);
790 	return err;
791 }
792 
793 /* Split or merge the VMA (if required) and apply the new policy */
794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
795 		struct vm_area_struct **prev, unsigned long start,
796 		unsigned long end, struct mempolicy *new_pol)
797 {
798 	struct vm_area_struct *merged;
799 	unsigned long vmstart, vmend;
800 	pgoff_t pgoff;
801 	int err;
802 
803 	vmend = min(end, vma->vm_end);
804 	if (start > vma->vm_start) {
805 		*prev = vma;
806 		vmstart = start;
807 	} else {
808 		vmstart = vma->vm_start;
809 	}
810 
811 	if (mpol_equal(vma_policy(vma), new_pol)) {
812 		*prev = vma;
813 		return 0;
814 	}
815 
816 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
817 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
818 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
819 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
820 	if (merged) {
821 		*prev = merged;
822 		return vma_replace_policy(merged, new_pol);
823 	}
824 
825 	if (vma->vm_start != vmstart) {
826 		err = split_vma(vmi, vma, vmstart, 1);
827 		if (err)
828 			return err;
829 	}
830 
831 	if (vma->vm_end != vmend) {
832 		err = split_vma(vmi, vma, vmend, 0);
833 		if (err)
834 			return err;
835 	}
836 
837 	*prev = vma;
838 	return vma_replace_policy(vma, new_pol);
839 }
840 
841 /* Set the process memory policy */
842 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
843 			     nodemask_t *nodes)
844 {
845 	struct mempolicy *new, *old;
846 	NODEMASK_SCRATCH(scratch);
847 	int ret;
848 
849 	if (!scratch)
850 		return -ENOMEM;
851 
852 	new = mpol_new(mode, flags, nodes);
853 	if (IS_ERR(new)) {
854 		ret = PTR_ERR(new);
855 		goto out;
856 	}
857 
858 	task_lock(current);
859 	ret = mpol_set_nodemask(new, nodes, scratch);
860 	if (ret) {
861 		task_unlock(current);
862 		mpol_put(new);
863 		goto out;
864 	}
865 
866 	old = current->mempolicy;
867 	current->mempolicy = new;
868 	if (new && new->mode == MPOL_INTERLEAVE)
869 		current->il_prev = MAX_NUMNODES-1;
870 	task_unlock(current);
871 	mpol_put(old);
872 	ret = 0;
873 out:
874 	NODEMASK_SCRATCH_FREE(scratch);
875 	return ret;
876 }
877 
878 /*
879  * Return nodemask for policy for get_mempolicy() query
880  *
881  * Called with task's alloc_lock held
882  */
883 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
884 {
885 	nodes_clear(*nodes);
886 	if (p == &default_policy)
887 		return;
888 
889 	switch (p->mode) {
890 	case MPOL_BIND:
891 	case MPOL_INTERLEAVE:
892 	case MPOL_PREFERRED:
893 	case MPOL_PREFERRED_MANY:
894 		*nodes = p->nodes;
895 		break;
896 	case MPOL_LOCAL:
897 		/* return empty node mask for local allocation */
898 		break;
899 	default:
900 		BUG();
901 	}
902 }
903 
904 static int lookup_node(struct mm_struct *mm, unsigned long addr)
905 {
906 	struct page *p = NULL;
907 	int ret;
908 
909 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
910 	if (ret > 0) {
911 		ret = page_to_nid(p);
912 		put_page(p);
913 	}
914 	return ret;
915 }
916 
917 /* Retrieve NUMA policy */
918 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
919 			     unsigned long addr, unsigned long flags)
920 {
921 	int err;
922 	struct mm_struct *mm = current->mm;
923 	struct vm_area_struct *vma = NULL;
924 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
925 
926 	if (flags &
927 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
928 		return -EINVAL;
929 
930 	if (flags & MPOL_F_MEMS_ALLOWED) {
931 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
932 			return -EINVAL;
933 		*policy = 0;	/* just so it's initialized */
934 		task_lock(current);
935 		*nmask  = cpuset_current_mems_allowed;
936 		task_unlock(current);
937 		return 0;
938 	}
939 
940 	if (flags & MPOL_F_ADDR) {
941 		/*
942 		 * Do NOT fall back to task policy if the
943 		 * vma/shared policy at addr is NULL.  We
944 		 * want to return MPOL_DEFAULT in this case.
945 		 */
946 		mmap_read_lock(mm);
947 		vma = vma_lookup(mm, addr);
948 		if (!vma) {
949 			mmap_read_unlock(mm);
950 			return -EFAULT;
951 		}
952 		if (vma->vm_ops && vma->vm_ops->get_policy)
953 			pol = vma->vm_ops->get_policy(vma, addr);
954 		else
955 			pol = vma->vm_policy;
956 	} else if (addr)
957 		return -EINVAL;
958 
959 	if (!pol)
960 		pol = &default_policy;	/* indicates default behavior */
961 
962 	if (flags & MPOL_F_NODE) {
963 		if (flags & MPOL_F_ADDR) {
964 			/*
965 			 * Take a refcount on the mpol, because we are about to
966 			 * drop the mmap_lock, after which only "pol" remains
967 			 * valid, "vma" is stale.
968 			 */
969 			pol_refcount = pol;
970 			vma = NULL;
971 			mpol_get(pol);
972 			mmap_read_unlock(mm);
973 			err = lookup_node(mm, addr);
974 			if (err < 0)
975 				goto out;
976 			*policy = err;
977 		} else if (pol == current->mempolicy &&
978 				pol->mode == MPOL_INTERLEAVE) {
979 			*policy = next_node_in(current->il_prev, pol->nodes);
980 		} else {
981 			err = -EINVAL;
982 			goto out;
983 		}
984 	} else {
985 		*policy = pol == &default_policy ? MPOL_DEFAULT :
986 						pol->mode;
987 		/*
988 		 * Internal mempolicy flags must be masked off before exposing
989 		 * the policy to userspace.
990 		 */
991 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
992 	}
993 
994 	err = 0;
995 	if (nmask) {
996 		if (mpol_store_user_nodemask(pol)) {
997 			*nmask = pol->w.user_nodemask;
998 		} else {
999 			task_lock(current);
1000 			get_policy_nodemask(pol, nmask);
1001 			task_unlock(current);
1002 		}
1003 	}
1004 
1005  out:
1006 	mpol_cond_put(pol);
1007 	if (vma)
1008 		mmap_read_unlock(mm);
1009 	if (pol_refcount)
1010 		mpol_put(pol_refcount);
1011 	return err;
1012 }
1013 
1014 #ifdef CONFIG_MIGRATION
1015 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1016 				unsigned long flags)
1017 {
1018 	/*
1019 	 * We try to migrate only unshared folios. If it is shared it
1020 	 * is likely not worth migrating.
1021 	 *
1022 	 * To check if the folio is shared, ideally we want to make sure
1023 	 * every page is mapped to the same process. Doing that is very
1024 	 * expensive, so check the estimated mapcount of the folio instead.
1025 	 */
1026 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1027 		if (folio_isolate_lru(folio)) {
1028 			list_add_tail(&folio->lru, foliolist);
1029 			node_stat_mod_folio(folio,
1030 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1031 				folio_nr_pages(folio));
1032 		} else if (flags & MPOL_MF_STRICT) {
1033 			/*
1034 			 * Non-movable folio may reach here.  And, there may be
1035 			 * temporary off LRU folios or non-LRU movable folios.
1036 			 * Treat them as unmovable folios since they can't be
1037 			 * isolated, so they can't be moved at the moment.  It
1038 			 * should return -EIO for this case too.
1039 			 */
1040 			return -EIO;
1041 		}
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Migrate pages from one node to a target node.
1049  * Returns error or the number of pages not migrated.
1050  */
1051 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1052 			   int flags)
1053 {
1054 	nodemask_t nmask;
1055 	struct vm_area_struct *vma;
1056 	LIST_HEAD(pagelist);
1057 	int err = 0;
1058 	struct migration_target_control mtc = {
1059 		.nid = dest,
1060 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1061 	};
1062 
1063 	nodes_clear(nmask);
1064 	node_set(source, nmask);
1065 
1066 	/*
1067 	 * This does not "check" the range but isolates all pages that
1068 	 * need migration.  Between passing in the full user address
1069 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1070 	 */
1071 	vma = find_vma(mm, 0);
1072 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1073 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1074 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1075 
1076 	if (!list_empty(&pagelist)) {
1077 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1078 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1079 		if (err)
1080 			putback_movable_pages(&pagelist);
1081 	}
1082 
1083 	return err;
1084 }
1085 
1086 /*
1087  * Move pages between the two nodesets so as to preserve the physical
1088  * layout as much as possible.
1089  *
1090  * Returns the number of page that could not be moved.
1091  */
1092 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1093 		     const nodemask_t *to, int flags)
1094 {
1095 	int busy = 0;
1096 	int err = 0;
1097 	nodemask_t tmp;
1098 
1099 	lru_cache_disable();
1100 
1101 	mmap_read_lock(mm);
1102 
1103 	/*
1104 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1105 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1106 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1107 	 * The pair of nodemasks 'to' and 'from' define the map.
1108 	 *
1109 	 * If no pair of bits is found that way, fallback to picking some
1110 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1111 	 * 'source' and 'dest' bits are the same, this represents a node
1112 	 * that will be migrating to itself, so no pages need move.
1113 	 *
1114 	 * If no bits are left in 'tmp', or if all remaining bits left
1115 	 * in 'tmp' correspond to the same bit in 'to', return false
1116 	 * (nothing left to migrate).
1117 	 *
1118 	 * This lets us pick a pair of nodes to migrate between, such that
1119 	 * if possible the dest node is not already occupied by some other
1120 	 * source node, minimizing the risk of overloading the memory on a
1121 	 * node that would happen if we migrated incoming memory to a node
1122 	 * before migrating outgoing memory source that same node.
1123 	 *
1124 	 * A single scan of tmp is sufficient.  As we go, we remember the
1125 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1126 	 * that not only moved, but what's better, moved to an empty slot
1127 	 * (d is not set in tmp), then we break out then, with that pair.
1128 	 * Otherwise when we finish scanning from_tmp, we at least have the
1129 	 * most recent <s, d> pair that moved.  If we get all the way through
1130 	 * the scan of tmp without finding any node that moved, much less
1131 	 * moved to an empty node, then there is nothing left worth migrating.
1132 	 */
1133 
1134 	tmp = *from;
1135 	while (!nodes_empty(tmp)) {
1136 		int s, d;
1137 		int source = NUMA_NO_NODE;
1138 		int dest = 0;
1139 
1140 		for_each_node_mask(s, tmp) {
1141 
1142 			/*
1143 			 * do_migrate_pages() tries to maintain the relative
1144 			 * node relationship of the pages established between
1145 			 * threads and memory areas.
1146                          *
1147 			 * However if the number of source nodes is not equal to
1148 			 * the number of destination nodes we can not preserve
1149 			 * this node relative relationship.  In that case, skip
1150 			 * copying memory from a node that is in the destination
1151 			 * mask.
1152 			 *
1153 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1154 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1155 			 */
1156 
1157 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1158 						(node_isset(s, *to)))
1159 				continue;
1160 
1161 			d = node_remap(s, *from, *to);
1162 			if (s == d)
1163 				continue;
1164 
1165 			source = s;	/* Node moved. Memorize */
1166 			dest = d;
1167 
1168 			/* dest not in remaining from nodes? */
1169 			if (!node_isset(dest, tmp))
1170 				break;
1171 		}
1172 		if (source == NUMA_NO_NODE)
1173 			break;
1174 
1175 		node_clear(source, tmp);
1176 		err = migrate_to_node(mm, source, dest, flags);
1177 		if (err > 0)
1178 			busy += err;
1179 		if (err < 0)
1180 			break;
1181 	}
1182 	mmap_read_unlock(mm);
1183 
1184 	lru_cache_enable();
1185 	if (err < 0)
1186 		return err;
1187 	return busy;
1188 
1189 }
1190 
1191 /*
1192  * Allocate a new page for page migration based on vma policy.
1193  * Start by assuming the page is mapped by the same vma as contains @start.
1194  * Search forward from there, if not.  N.B., this assumes that the
1195  * list of pages handed to migrate_pages()--which is how we get here--
1196  * is in virtual address order.
1197  */
1198 static struct folio *new_folio(struct folio *src, unsigned long start)
1199 {
1200 	struct vm_area_struct *vma;
1201 	unsigned long address;
1202 	VMA_ITERATOR(vmi, current->mm, start);
1203 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1204 
1205 	for_each_vma(vmi, vma) {
1206 		address = page_address_in_vma(&src->page, vma);
1207 		if (address != -EFAULT)
1208 			break;
1209 	}
1210 
1211 	if (folio_test_hugetlb(src)) {
1212 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1213 				vma, address);
1214 	}
1215 
1216 	if (folio_test_large(src))
1217 		gfp = GFP_TRANSHUGE;
1218 
1219 	/*
1220 	 * if !vma, vma_alloc_folio() will use task or system default policy
1221 	 */
1222 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1223 			folio_test_large(src));
1224 }
1225 #else
1226 
1227 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1228 				unsigned long flags)
1229 {
1230 	return -EIO;
1231 }
1232 
1233 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1234 		     const nodemask_t *to, int flags)
1235 {
1236 	return -ENOSYS;
1237 }
1238 
1239 static struct folio *new_folio(struct folio *src, unsigned long start)
1240 {
1241 	return NULL;
1242 }
1243 #endif
1244 
1245 static long do_mbind(unsigned long start, unsigned long len,
1246 		     unsigned short mode, unsigned short mode_flags,
1247 		     nodemask_t *nmask, unsigned long flags)
1248 {
1249 	struct mm_struct *mm = current->mm;
1250 	struct vm_area_struct *vma, *prev;
1251 	struct vma_iterator vmi;
1252 	struct mempolicy *new;
1253 	unsigned long end;
1254 	int err;
1255 	int ret;
1256 	LIST_HEAD(pagelist);
1257 
1258 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1259 		return -EINVAL;
1260 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1261 		return -EPERM;
1262 
1263 	if (start & ~PAGE_MASK)
1264 		return -EINVAL;
1265 
1266 	if (mode == MPOL_DEFAULT)
1267 		flags &= ~MPOL_MF_STRICT;
1268 
1269 	len = PAGE_ALIGN(len);
1270 	end = start + len;
1271 
1272 	if (end < start)
1273 		return -EINVAL;
1274 	if (end == start)
1275 		return 0;
1276 
1277 	new = mpol_new(mode, mode_flags, nmask);
1278 	if (IS_ERR(new))
1279 		return PTR_ERR(new);
1280 
1281 	if (flags & MPOL_MF_LAZY)
1282 		new->flags |= MPOL_F_MOF;
1283 
1284 	/*
1285 	 * If we are using the default policy then operation
1286 	 * on discontinuous address spaces is okay after all
1287 	 */
1288 	if (!new)
1289 		flags |= MPOL_MF_DISCONTIG_OK;
1290 
1291 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1292 		 start, start + len, mode, mode_flags,
1293 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1294 
1295 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1296 
1297 		lru_cache_disable();
1298 	}
1299 	{
1300 		NODEMASK_SCRATCH(scratch);
1301 		if (scratch) {
1302 			mmap_write_lock(mm);
1303 			err = mpol_set_nodemask(new, nmask, scratch);
1304 			if (err)
1305 				mmap_write_unlock(mm);
1306 		} else
1307 			err = -ENOMEM;
1308 		NODEMASK_SCRATCH_FREE(scratch);
1309 	}
1310 	if (err)
1311 		goto mpol_out;
1312 
1313 	ret = queue_pages_range(mm, start, end, nmask,
1314 			  flags | MPOL_MF_INVERT, &pagelist);
1315 
1316 	if (ret < 0) {
1317 		err = ret;
1318 		goto up_out;
1319 	}
1320 
1321 	vma_iter_init(&vmi, mm, start);
1322 	prev = vma_prev(&vmi);
1323 	for_each_vma_range(vmi, vma, end) {
1324 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1325 		if (err)
1326 			break;
1327 	}
1328 
1329 	if (!err) {
1330 		int nr_failed = 0;
1331 
1332 		if (!list_empty(&pagelist)) {
1333 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1334 			nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1335 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1336 			if (nr_failed)
1337 				putback_movable_pages(&pagelist);
1338 		}
1339 
1340 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1341 			err = -EIO;
1342 	} else {
1343 up_out:
1344 		if (!list_empty(&pagelist))
1345 			putback_movable_pages(&pagelist);
1346 	}
1347 
1348 	mmap_write_unlock(mm);
1349 mpol_out:
1350 	mpol_put(new);
1351 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1352 		lru_cache_enable();
1353 	return err;
1354 }
1355 
1356 /*
1357  * User space interface with variable sized bitmaps for nodelists.
1358  */
1359 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1360 		      unsigned long maxnode)
1361 {
1362 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1363 	int ret;
1364 
1365 	if (in_compat_syscall())
1366 		ret = compat_get_bitmap(mask,
1367 					(const compat_ulong_t __user *)nmask,
1368 					maxnode);
1369 	else
1370 		ret = copy_from_user(mask, nmask,
1371 				     nlongs * sizeof(unsigned long));
1372 
1373 	if (ret)
1374 		return -EFAULT;
1375 
1376 	if (maxnode % BITS_PER_LONG)
1377 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1378 
1379 	return 0;
1380 }
1381 
1382 /* Copy a node mask from user space. */
1383 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1384 		     unsigned long maxnode)
1385 {
1386 	--maxnode;
1387 	nodes_clear(*nodes);
1388 	if (maxnode == 0 || !nmask)
1389 		return 0;
1390 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1391 		return -EINVAL;
1392 
1393 	/*
1394 	 * When the user specified more nodes than supported just check
1395 	 * if the non supported part is all zero, one word at a time,
1396 	 * starting at the end.
1397 	 */
1398 	while (maxnode > MAX_NUMNODES) {
1399 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1400 		unsigned long t;
1401 
1402 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1403 			return -EFAULT;
1404 
1405 		if (maxnode - bits >= MAX_NUMNODES) {
1406 			maxnode -= bits;
1407 		} else {
1408 			maxnode = MAX_NUMNODES;
1409 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1410 		}
1411 		if (t)
1412 			return -EINVAL;
1413 	}
1414 
1415 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1416 }
1417 
1418 /* Copy a kernel node mask to user space */
1419 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1420 			      nodemask_t *nodes)
1421 {
1422 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1423 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1424 	bool compat = in_compat_syscall();
1425 
1426 	if (compat)
1427 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1428 
1429 	if (copy > nbytes) {
1430 		if (copy > PAGE_SIZE)
1431 			return -EINVAL;
1432 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1433 			return -EFAULT;
1434 		copy = nbytes;
1435 		maxnode = nr_node_ids;
1436 	}
1437 
1438 	if (compat)
1439 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1440 					 nodes_addr(*nodes), maxnode);
1441 
1442 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1443 }
1444 
1445 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1446 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1447 {
1448 	*flags = *mode & MPOL_MODE_FLAGS;
1449 	*mode &= ~MPOL_MODE_FLAGS;
1450 
1451 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1452 		return -EINVAL;
1453 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1454 		return -EINVAL;
1455 	if (*flags & MPOL_F_NUMA_BALANCING) {
1456 		if (*mode != MPOL_BIND)
1457 			return -EINVAL;
1458 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1459 	}
1460 	return 0;
1461 }
1462 
1463 static long kernel_mbind(unsigned long start, unsigned long len,
1464 			 unsigned long mode, const unsigned long __user *nmask,
1465 			 unsigned long maxnode, unsigned int flags)
1466 {
1467 	unsigned short mode_flags;
1468 	nodemask_t nodes;
1469 	int lmode = mode;
1470 	int err;
1471 
1472 	start = untagged_addr(start);
1473 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1474 	if (err)
1475 		return err;
1476 
1477 	err = get_nodes(&nodes, nmask, maxnode);
1478 	if (err)
1479 		return err;
1480 
1481 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1482 }
1483 
1484 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1485 		unsigned long, home_node, unsigned long, flags)
1486 {
1487 	struct mm_struct *mm = current->mm;
1488 	struct vm_area_struct *vma, *prev;
1489 	struct mempolicy *new, *old;
1490 	unsigned long end;
1491 	int err = -ENOENT;
1492 	VMA_ITERATOR(vmi, mm, start);
1493 
1494 	start = untagged_addr(start);
1495 	if (start & ~PAGE_MASK)
1496 		return -EINVAL;
1497 	/*
1498 	 * flags is used for future extension if any.
1499 	 */
1500 	if (flags != 0)
1501 		return -EINVAL;
1502 
1503 	/*
1504 	 * Check home_node is online to avoid accessing uninitialized
1505 	 * NODE_DATA.
1506 	 */
1507 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1508 		return -EINVAL;
1509 
1510 	len = PAGE_ALIGN(len);
1511 	end = start + len;
1512 
1513 	if (end < start)
1514 		return -EINVAL;
1515 	if (end == start)
1516 		return 0;
1517 	mmap_write_lock(mm);
1518 	prev = vma_prev(&vmi);
1519 	for_each_vma_range(vmi, vma, end) {
1520 		/*
1521 		 * If any vma in the range got policy other than MPOL_BIND
1522 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1523 		 * the home node for vmas we already updated before.
1524 		 */
1525 		old = vma_policy(vma);
1526 		if (!old)
1527 			continue;
1528 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1529 			err = -EOPNOTSUPP;
1530 			break;
1531 		}
1532 		new = mpol_dup(old);
1533 		if (IS_ERR(new)) {
1534 			err = PTR_ERR(new);
1535 			break;
1536 		}
1537 
1538 		new->home_node = home_node;
1539 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1540 		mpol_put(new);
1541 		if (err)
1542 			break;
1543 	}
1544 	mmap_write_unlock(mm);
1545 	return err;
1546 }
1547 
1548 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1549 		unsigned long, mode, const unsigned long __user *, nmask,
1550 		unsigned long, maxnode, unsigned int, flags)
1551 {
1552 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1553 }
1554 
1555 /* Set the process memory policy */
1556 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1557 				 unsigned long maxnode)
1558 {
1559 	unsigned short mode_flags;
1560 	nodemask_t nodes;
1561 	int lmode = mode;
1562 	int err;
1563 
1564 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1565 	if (err)
1566 		return err;
1567 
1568 	err = get_nodes(&nodes, nmask, maxnode);
1569 	if (err)
1570 		return err;
1571 
1572 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1573 }
1574 
1575 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1576 		unsigned long, maxnode)
1577 {
1578 	return kernel_set_mempolicy(mode, nmask, maxnode);
1579 }
1580 
1581 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1582 				const unsigned long __user *old_nodes,
1583 				const unsigned long __user *new_nodes)
1584 {
1585 	struct mm_struct *mm = NULL;
1586 	struct task_struct *task;
1587 	nodemask_t task_nodes;
1588 	int err;
1589 	nodemask_t *old;
1590 	nodemask_t *new;
1591 	NODEMASK_SCRATCH(scratch);
1592 
1593 	if (!scratch)
1594 		return -ENOMEM;
1595 
1596 	old = &scratch->mask1;
1597 	new = &scratch->mask2;
1598 
1599 	err = get_nodes(old, old_nodes, maxnode);
1600 	if (err)
1601 		goto out;
1602 
1603 	err = get_nodes(new, new_nodes, maxnode);
1604 	if (err)
1605 		goto out;
1606 
1607 	/* Find the mm_struct */
1608 	rcu_read_lock();
1609 	task = pid ? find_task_by_vpid(pid) : current;
1610 	if (!task) {
1611 		rcu_read_unlock();
1612 		err = -ESRCH;
1613 		goto out;
1614 	}
1615 	get_task_struct(task);
1616 
1617 	err = -EINVAL;
1618 
1619 	/*
1620 	 * Check if this process has the right to modify the specified process.
1621 	 * Use the regular "ptrace_may_access()" checks.
1622 	 */
1623 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1624 		rcu_read_unlock();
1625 		err = -EPERM;
1626 		goto out_put;
1627 	}
1628 	rcu_read_unlock();
1629 
1630 	task_nodes = cpuset_mems_allowed(task);
1631 	/* Is the user allowed to access the target nodes? */
1632 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1633 		err = -EPERM;
1634 		goto out_put;
1635 	}
1636 
1637 	task_nodes = cpuset_mems_allowed(current);
1638 	nodes_and(*new, *new, task_nodes);
1639 	if (nodes_empty(*new))
1640 		goto out_put;
1641 
1642 	err = security_task_movememory(task);
1643 	if (err)
1644 		goto out_put;
1645 
1646 	mm = get_task_mm(task);
1647 	put_task_struct(task);
1648 
1649 	if (!mm) {
1650 		err = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	err = do_migrate_pages(mm, old, new,
1655 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1656 
1657 	mmput(mm);
1658 out:
1659 	NODEMASK_SCRATCH_FREE(scratch);
1660 
1661 	return err;
1662 
1663 out_put:
1664 	put_task_struct(task);
1665 	goto out;
1666 
1667 }
1668 
1669 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1670 		const unsigned long __user *, old_nodes,
1671 		const unsigned long __user *, new_nodes)
1672 {
1673 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1674 }
1675 
1676 
1677 /* Retrieve NUMA policy */
1678 static int kernel_get_mempolicy(int __user *policy,
1679 				unsigned long __user *nmask,
1680 				unsigned long maxnode,
1681 				unsigned long addr,
1682 				unsigned long flags)
1683 {
1684 	int err;
1685 	int pval;
1686 	nodemask_t nodes;
1687 
1688 	if (nmask != NULL && maxnode < nr_node_ids)
1689 		return -EINVAL;
1690 
1691 	addr = untagged_addr(addr);
1692 
1693 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1694 
1695 	if (err)
1696 		return err;
1697 
1698 	if (policy && put_user(pval, policy))
1699 		return -EFAULT;
1700 
1701 	if (nmask)
1702 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1703 
1704 	return err;
1705 }
1706 
1707 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1708 		unsigned long __user *, nmask, unsigned long, maxnode,
1709 		unsigned long, addr, unsigned long, flags)
1710 {
1711 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1712 }
1713 
1714 bool vma_migratable(struct vm_area_struct *vma)
1715 {
1716 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1717 		return false;
1718 
1719 	/*
1720 	 * DAX device mappings require predictable access latency, so avoid
1721 	 * incurring periodic faults.
1722 	 */
1723 	if (vma_is_dax(vma))
1724 		return false;
1725 
1726 	if (is_vm_hugetlb_page(vma) &&
1727 		!hugepage_migration_supported(hstate_vma(vma)))
1728 		return false;
1729 
1730 	/*
1731 	 * Migration allocates pages in the highest zone. If we cannot
1732 	 * do so then migration (at least from node to node) is not
1733 	 * possible.
1734 	 */
1735 	if (vma->vm_file &&
1736 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1737 			< policy_zone)
1738 		return false;
1739 	return true;
1740 }
1741 
1742 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1743 						unsigned long addr)
1744 {
1745 	struct mempolicy *pol = NULL;
1746 
1747 	if (vma) {
1748 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1749 			pol = vma->vm_ops->get_policy(vma, addr);
1750 		} else if (vma->vm_policy) {
1751 			pol = vma->vm_policy;
1752 
1753 			/*
1754 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1755 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1756 			 * count on these policies which will be dropped by
1757 			 * mpol_cond_put() later
1758 			 */
1759 			if (mpol_needs_cond_ref(pol))
1760 				mpol_get(pol);
1761 		}
1762 	}
1763 
1764 	return pol;
1765 }
1766 
1767 /*
1768  * get_vma_policy(@vma, @addr)
1769  * @vma: virtual memory area whose policy is sought
1770  * @addr: address in @vma for shared policy lookup
1771  *
1772  * Returns effective policy for a VMA at specified address.
1773  * Falls back to current->mempolicy or system default policy, as necessary.
1774  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1775  * count--added by the get_policy() vm_op, as appropriate--to protect against
1776  * freeing by another task.  It is the caller's responsibility to free the
1777  * extra reference for shared policies.
1778  */
1779 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1780 						unsigned long addr)
1781 {
1782 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1783 
1784 	if (!pol)
1785 		pol = get_task_policy(current);
1786 
1787 	return pol;
1788 }
1789 
1790 bool vma_policy_mof(struct vm_area_struct *vma)
1791 {
1792 	struct mempolicy *pol;
1793 
1794 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1795 		bool ret = false;
1796 
1797 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1798 		if (pol && (pol->flags & MPOL_F_MOF))
1799 			ret = true;
1800 		mpol_cond_put(pol);
1801 
1802 		return ret;
1803 	}
1804 
1805 	pol = vma->vm_policy;
1806 	if (!pol)
1807 		pol = get_task_policy(current);
1808 
1809 	return pol->flags & MPOL_F_MOF;
1810 }
1811 
1812 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1813 {
1814 	enum zone_type dynamic_policy_zone = policy_zone;
1815 
1816 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1817 
1818 	/*
1819 	 * if policy->nodes has movable memory only,
1820 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1821 	 *
1822 	 * policy->nodes is intersect with node_states[N_MEMORY].
1823 	 * so if the following test fails, it implies
1824 	 * policy->nodes has movable memory only.
1825 	 */
1826 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1827 		dynamic_policy_zone = ZONE_MOVABLE;
1828 
1829 	return zone >= dynamic_policy_zone;
1830 }
1831 
1832 /*
1833  * Return a nodemask representing a mempolicy for filtering nodes for
1834  * page allocation
1835  */
1836 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1837 {
1838 	int mode = policy->mode;
1839 
1840 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1841 	if (unlikely(mode == MPOL_BIND) &&
1842 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1843 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1844 		return &policy->nodes;
1845 
1846 	if (mode == MPOL_PREFERRED_MANY)
1847 		return &policy->nodes;
1848 
1849 	return NULL;
1850 }
1851 
1852 /*
1853  * Return the  preferred node id for 'prefer' mempolicy, and return
1854  * the given id for all other policies.
1855  *
1856  * policy_node() is always coupled with policy_nodemask(), which
1857  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1858  */
1859 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1860 {
1861 	if (policy->mode == MPOL_PREFERRED) {
1862 		nd = first_node(policy->nodes);
1863 	} else {
1864 		/*
1865 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1866 		 * because we might easily break the expectation to stay on the
1867 		 * requested node and not break the policy.
1868 		 */
1869 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1870 	}
1871 
1872 	if ((policy->mode == MPOL_BIND ||
1873 	     policy->mode == MPOL_PREFERRED_MANY) &&
1874 	    policy->home_node != NUMA_NO_NODE)
1875 		return policy->home_node;
1876 
1877 	return nd;
1878 }
1879 
1880 /* Do dynamic interleaving for a process */
1881 static unsigned interleave_nodes(struct mempolicy *policy)
1882 {
1883 	unsigned next;
1884 	struct task_struct *me = current;
1885 
1886 	next = next_node_in(me->il_prev, policy->nodes);
1887 	if (next < MAX_NUMNODES)
1888 		me->il_prev = next;
1889 	return next;
1890 }
1891 
1892 /*
1893  * Depending on the memory policy provide a node from which to allocate the
1894  * next slab entry.
1895  */
1896 unsigned int mempolicy_slab_node(void)
1897 {
1898 	struct mempolicy *policy;
1899 	int node = numa_mem_id();
1900 
1901 	if (!in_task())
1902 		return node;
1903 
1904 	policy = current->mempolicy;
1905 	if (!policy)
1906 		return node;
1907 
1908 	switch (policy->mode) {
1909 	case MPOL_PREFERRED:
1910 		return first_node(policy->nodes);
1911 
1912 	case MPOL_INTERLEAVE:
1913 		return interleave_nodes(policy);
1914 
1915 	case MPOL_BIND:
1916 	case MPOL_PREFERRED_MANY:
1917 	{
1918 		struct zoneref *z;
1919 
1920 		/*
1921 		 * Follow bind policy behavior and start allocation at the
1922 		 * first node.
1923 		 */
1924 		struct zonelist *zonelist;
1925 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1926 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1927 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1928 							&policy->nodes);
1929 		return z->zone ? zone_to_nid(z->zone) : node;
1930 	}
1931 	case MPOL_LOCAL:
1932 		return node;
1933 
1934 	default:
1935 		BUG();
1936 	}
1937 }
1938 
1939 /*
1940  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1941  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1942  * number of present nodes.
1943  */
1944 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1945 {
1946 	nodemask_t nodemask = pol->nodes;
1947 	unsigned int target, nnodes;
1948 	int i;
1949 	int nid;
1950 	/*
1951 	 * The barrier will stabilize the nodemask in a register or on
1952 	 * the stack so that it will stop changing under the code.
1953 	 *
1954 	 * Between first_node() and next_node(), pol->nodes could be changed
1955 	 * by other threads. So we put pol->nodes in a local stack.
1956 	 */
1957 	barrier();
1958 
1959 	nnodes = nodes_weight(nodemask);
1960 	if (!nnodes)
1961 		return numa_node_id();
1962 	target = (unsigned int)n % nnodes;
1963 	nid = first_node(nodemask);
1964 	for (i = 0; i < target; i++)
1965 		nid = next_node(nid, nodemask);
1966 	return nid;
1967 }
1968 
1969 /* Determine a node number for interleave */
1970 static inline unsigned interleave_nid(struct mempolicy *pol,
1971 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1972 {
1973 	if (vma) {
1974 		unsigned long off;
1975 
1976 		/*
1977 		 * for small pages, there is no difference between
1978 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1979 		 * for huge pages, since vm_pgoff is in units of small
1980 		 * pages, we need to shift off the always 0 bits to get
1981 		 * a useful offset.
1982 		 */
1983 		BUG_ON(shift < PAGE_SHIFT);
1984 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1985 		off += (addr - vma->vm_start) >> shift;
1986 		return offset_il_node(pol, off);
1987 	} else
1988 		return interleave_nodes(pol);
1989 }
1990 
1991 #ifdef CONFIG_HUGETLBFS
1992 /*
1993  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1994  * @vma: virtual memory area whose policy is sought
1995  * @addr: address in @vma for shared policy lookup and interleave policy
1996  * @gfp_flags: for requested zone
1997  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1998  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1999  *
2000  * Returns a nid suitable for a huge page allocation and a pointer
2001  * to the struct mempolicy for conditional unref after allocation.
2002  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2003  * to the mempolicy's @nodemask for filtering the zonelist.
2004  *
2005  * Must be protected by read_mems_allowed_begin()
2006  */
2007 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2008 				struct mempolicy **mpol, nodemask_t **nodemask)
2009 {
2010 	int nid;
2011 	int mode;
2012 
2013 	*mpol = get_vma_policy(vma, addr);
2014 	*nodemask = NULL;
2015 	mode = (*mpol)->mode;
2016 
2017 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2018 		nid = interleave_nid(*mpol, vma, addr,
2019 					huge_page_shift(hstate_vma(vma)));
2020 	} else {
2021 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2022 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2023 			*nodemask = &(*mpol)->nodes;
2024 	}
2025 	return nid;
2026 }
2027 
2028 /*
2029  * init_nodemask_of_mempolicy
2030  *
2031  * If the current task's mempolicy is "default" [NULL], return 'false'
2032  * to indicate default policy.  Otherwise, extract the policy nodemask
2033  * for 'bind' or 'interleave' policy into the argument nodemask, or
2034  * initialize the argument nodemask to contain the single node for
2035  * 'preferred' or 'local' policy and return 'true' to indicate presence
2036  * of non-default mempolicy.
2037  *
2038  * We don't bother with reference counting the mempolicy [mpol_get/put]
2039  * because the current task is examining it's own mempolicy and a task's
2040  * mempolicy is only ever changed by the task itself.
2041  *
2042  * N.B., it is the caller's responsibility to free a returned nodemask.
2043  */
2044 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2045 {
2046 	struct mempolicy *mempolicy;
2047 
2048 	if (!(mask && current->mempolicy))
2049 		return false;
2050 
2051 	task_lock(current);
2052 	mempolicy = current->mempolicy;
2053 	switch (mempolicy->mode) {
2054 	case MPOL_PREFERRED:
2055 	case MPOL_PREFERRED_MANY:
2056 	case MPOL_BIND:
2057 	case MPOL_INTERLEAVE:
2058 		*mask = mempolicy->nodes;
2059 		break;
2060 
2061 	case MPOL_LOCAL:
2062 		init_nodemask_of_node(mask, numa_node_id());
2063 		break;
2064 
2065 	default:
2066 		BUG();
2067 	}
2068 	task_unlock(current);
2069 
2070 	return true;
2071 }
2072 #endif
2073 
2074 /*
2075  * mempolicy_in_oom_domain
2076  *
2077  * If tsk's mempolicy is "bind", check for intersection between mask and
2078  * the policy nodemask. Otherwise, return true for all other policies
2079  * including "interleave", as a tsk with "interleave" policy may have
2080  * memory allocated from all nodes in system.
2081  *
2082  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2083  */
2084 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2085 					const nodemask_t *mask)
2086 {
2087 	struct mempolicy *mempolicy;
2088 	bool ret = true;
2089 
2090 	if (!mask)
2091 		return ret;
2092 
2093 	task_lock(tsk);
2094 	mempolicy = tsk->mempolicy;
2095 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2096 		ret = nodes_intersects(mempolicy->nodes, *mask);
2097 	task_unlock(tsk);
2098 
2099 	return ret;
2100 }
2101 
2102 /* Allocate a page in interleaved policy.
2103    Own path because it needs to do special accounting. */
2104 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2105 					unsigned nid)
2106 {
2107 	struct page *page;
2108 
2109 	page = __alloc_pages(gfp, order, nid, NULL);
2110 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2111 	if (!static_branch_likely(&vm_numa_stat_key))
2112 		return page;
2113 	if (page && page_to_nid(page) == nid) {
2114 		preempt_disable();
2115 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2116 		preempt_enable();
2117 	}
2118 	return page;
2119 }
2120 
2121 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2122 						int nid, struct mempolicy *pol)
2123 {
2124 	struct page *page;
2125 	gfp_t preferred_gfp;
2126 
2127 	/*
2128 	 * This is a two pass approach. The first pass will only try the
2129 	 * preferred nodes but skip the direct reclaim and allow the
2130 	 * allocation to fail, while the second pass will try all the
2131 	 * nodes in system.
2132 	 */
2133 	preferred_gfp = gfp | __GFP_NOWARN;
2134 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2135 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2136 	if (!page)
2137 		page = __alloc_pages(gfp, order, nid, NULL);
2138 
2139 	return page;
2140 }
2141 
2142 /**
2143  * vma_alloc_folio - Allocate a folio for a VMA.
2144  * @gfp: GFP flags.
2145  * @order: Order of the folio.
2146  * @vma: Pointer to VMA or NULL if not available.
2147  * @addr: Virtual address of the allocation.  Must be inside @vma.
2148  * @hugepage: For hugepages try only the preferred node if possible.
2149  *
2150  * Allocate a folio for a specific address in @vma, using the appropriate
2151  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2152  * of the mm_struct of the VMA to prevent it from going away.  Should be
2153  * used for all allocations for folios that will be mapped into user space.
2154  *
2155  * Return: The folio on success or NULL if allocation fails.
2156  */
2157 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2158 		unsigned long addr, bool hugepage)
2159 {
2160 	struct mempolicy *pol;
2161 	int node = numa_node_id();
2162 	struct folio *folio;
2163 	int preferred_nid;
2164 	nodemask_t *nmask;
2165 
2166 	pol = get_vma_policy(vma, addr);
2167 
2168 	if (pol->mode == MPOL_INTERLEAVE) {
2169 		struct page *page;
2170 		unsigned nid;
2171 
2172 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2173 		mpol_cond_put(pol);
2174 		gfp |= __GFP_COMP;
2175 		page = alloc_page_interleave(gfp, order, nid);
2176 		if (page && order > 1)
2177 			prep_transhuge_page(page);
2178 		folio = (struct folio *)page;
2179 		goto out;
2180 	}
2181 
2182 	if (pol->mode == MPOL_PREFERRED_MANY) {
2183 		struct page *page;
2184 
2185 		node = policy_node(gfp, pol, node);
2186 		gfp |= __GFP_COMP;
2187 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2188 		mpol_cond_put(pol);
2189 		if (page && order > 1)
2190 			prep_transhuge_page(page);
2191 		folio = (struct folio *)page;
2192 		goto out;
2193 	}
2194 
2195 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2196 		int hpage_node = node;
2197 
2198 		/*
2199 		 * For hugepage allocation and non-interleave policy which
2200 		 * allows the current node (or other explicitly preferred
2201 		 * node) we only try to allocate from the current/preferred
2202 		 * node and don't fall back to other nodes, as the cost of
2203 		 * remote accesses would likely offset THP benefits.
2204 		 *
2205 		 * If the policy is interleave or does not allow the current
2206 		 * node in its nodemask, we allocate the standard way.
2207 		 */
2208 		if (pol->mode == MPOL_PREFERRED)
2209 			hpage_node = first_node(pol->nodes);
2210 
2211 		nmask = policy_nodemask(gfp, pol);
2212 		if (!nmask || node_isset(hpage_node, *nmask)) {
2213 			mpol_cond_put(pol);
2214 			/*
2215 			 * First, try to allocate THP only on local node, but
2216 			 * don't reclaim unnecessarily, just compact.
2217 			 */
2218 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2219 					__GFP_NORETRY, order, hpage_node);
2220 
2221 			/*
2222 			 * If hugepage allocations are configured to always
2223 			 * synchronous compact or the vma has been madvised
2224 			 * to prefer hugepage backing, retry allowing remote
2225 			 * memory with both reclaim and compact as well.
2226 			 */
2227 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2228 				folio = __folio_alloc(gfp, order, hpage_node,
2229 						      nmask);
2230 
2231 			goto out;
2232 		}
2233 	}
2234 
2235 	nmask = policy_nodemask(gfp, pol);
2236 	preferred_nid = policy_node(gfp, pol, node);
2237 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2238 	mpol_cond_put(pol);
2239 out:
2240 	return folio;
2241 }
2242 EXPORT_SYMBOL(vma_alloc_folio);
2243 
2244 /**
2245  * alloc_pages - Allocate pages.
2246  * @gfp: GFP flags.
2247  * @order: Power of two of number of pages to allocate.
2248  *
2249  * Allocate 1 << @order contiguous pages.  The physical address of the
2250  * first page is naturally aligned (eg an order-3 allocation will be aligned
2251  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2252  * process is honoured when in process context.
2253  *
2254  * Context: Can be called from any context, providing the appropriate GFP
2255  * flags are used.
2256  * Return: The page on success or NULL if allocation fails.
2257  */
2258 struct page *alloc_pages(gfp_t gfp, unsigned order)
2259 {
2260 	struct mempolicy *pol = &default_policy;
2261 	struct page *page;
2262 
2263 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2264 		pol = get_task_policy(current);
2265 
2266 	/*
2267 	 * No reference counting needed for current->mempolicy
2268 	 * nor system default_policy
2269 	 */
2270 	if (pol->mode == MPOL_INTERLEAVE)
2271 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2272 	else if (pol->mode == MPOL_PREFERRED_MANY)
2273 		page = alloc_pages_preferred_many(gfp, order,
2274 				  policy_node(gfp, pol, numa_node_id()), pol);
2275 	else
2276 		page = __alloc_pages(gfp, order,
2277 				policy_node(gfp, pol, numa_node_id()),
2278 				policy_nodemask(gfp, pol));
2279 
2280 	return page;
2281 }
2282 EXPORT_SYMBOL(alloc_pages);
2283 
2284 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2285 {
2286 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2287 
2288 	if (page && order > 1)
2289 		prep_transhuge_page(page);
2290 	return (struct folio *)page;
2291 }
2292 EXPORT_SYMBOL(folio_alloc);
2293 
2294 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2295 		struct mempolicy *pol, unsigned long nr_pages,
2296 		struct page **page_array)
2297 {
2298 	int nodes;
2299 	unsigned long nr_pages_per_node;
2300 	int delta;
2301 	int i;
2302 	unsigned long nr_allocated;
2303 	unsigned long total_allocated = 0;
2304 
2305 	nodes = nodes_weight(pol->nodes);
2306 	nr_pages_per_node = nr_pages / nodes;
2307 	delta = nr_pages - nodes * nr_pages_per_node;
2308 
2309 	for (i = 0; i < nodes; i++) {
2310 		if (delta) {
2311 			nr_allocated = __alloc_pages_bulk(gfp,
2312 					interleave_nodes(pol), NULL,
2313 					nr_pages_per_node + 1, NULL,
2314 					page_array);
2315 			delta--;
2316 		} else {
2317 			nr_allocated = __alloc_pages_bulk(gfp,
2318 					interleave_nodes(pol), NULL,
2319 					nr_pages_per_node, NULL, page_array);
2320 		}
2321 
2322 		page_array += nr_allocated;
2323 		total_allocated += nr_allocated;
2324 	}
2325 
2326 	return total_allocated;
2327 }
2328 
2329 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2330 		struct mempolicy *pol, unsigned long nr_pages,
2331 		struct page **page_array)
2332 {
2333 	gfp_t preferred_gfp;
2334 	unsigned long nr_allocated = 0;
2335 
2336 	preferred_gfp = gfp | __GFP_NOWARN;
2337 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2338 
2339 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2340 					   nr_pages, NULL, page_array);
2341 
2342 	if (nr_allocated < nr_pages)
2343 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2344 				nr_pages - nr_allocated, NULL,
2345 				page_array + nr_allocated);
2346 	return nr_allocated;
2347 }
2348 
2349 /* alloc pages bulk and mempolicy should be considered at the
2350  * same time in some situation such as vmalloc.
2351  *
2352  * It can accelerate memory allocation especially interleaving
2353  * allocate memory.
2354  */
2355 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2356 		unsigned long nr_pages, struct page **page_array)
2357 {
2358 	struct mempolicy *pol = &default_policy;
2359 
2360 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2361 		pol = get_task_policy(current);
2362 
2363 	if (pol->mode == MPOL_INTERLEAVE)
2364 		return alloc_pages_bulk_array_interleave(gfp, pol,
2365 							 nr_pages, page_array);
2366 
2367 	if (pol->mode == MPOL_PREFERRED_MANY)
2368 		return alloc_pages_bulk_array_preferred_many(gfp,
2369 				numa_node_id(), pol, nr_pages, page_array);
2370 
2371 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2372 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2373 				  page_array);
2374 }
2375 
2376 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2377 {
2378 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2379 
2380 	if (IS_ERR(pol))
2381 		return PTR_ERR(pol);
2382 	dst->vm_policy = pol;
2383 	return 0;
2384 }
2385 
2386 /*
2387  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2388  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2389  * with the mems_allowed returned by cpuset_mems_allowed().  This
2390  * keeps mempolicies cpuset relative after its cpuset moves.  See
2391  * further kernel/cpuset.c update_nodemask().
2392  *
2393  * current's mempolicy may be rebinded by the other task(the task that changes
2394  * cpuset's mems), so we needn't do rebind work for current task.
2395  */
2396 
2397 /* Slow path of a mempolicy duplicate */
2398 struct mempolicy *__mpol_dup(struct mempolicy *old)
2399 {
2400 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2401 
2402 	if (!new)
2403 		return ERR_PTR(-ENOMEM);
2404 
2405 	/* task's mempolicy is protected by alloc_lock */
2406 	if (old == current->mempolicy) {
2407 		task_lock(current);
2408 		*new = *old;
2409 		task_unlock(current);
2410 	} else
2411 		*new = *old;
2412 
2413 	if (current_cpuset_is_being_rebound()) {
2414 		nodemask_t mems = cpuset_mems_allowed(current);
2415 		mpol_rebind_policy(new, &mems);
2416 	}
2417 	atomic_set(&new->refcnt, 1);
2418 	return new;
2419 }
2420 
2421 /* Slow path of a mempolicy comparison */
2422 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2423 {
2424 	if (!a || !b)
2425 		return false;
2426 	if (a->mode != b->mode)
2427 		return false;
2428 	if (a->flags != b->flags)
2429 		return false;
2430 	if (a->home_node != b->home_node)
2431 		return false;
2432 	if (mpol_store_user_nodemask(a))
2433 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2434 			return false;
2435 
2436 	switch (a->mode) {
2437 	case MPOL_BIND:
2438 	case MPOL_INTERLEAVE:
2439 	case MPOL_PREFERRED:
2440 	case MPOL_PREFERRED_MANY:
2441 		return !!nodes_equal(a->nodes, b->nodes);
2442 	case MPOL_LOCAL:
2443 		return true;
2444 	default:
2445 		BUG();
2446 		return false;
2447 	}
2448 }
2449 
2450 /*
2451  * Shared memory backing store policy support.
2452  *
2453  * Remember policies even when nobody has shared memory mapped.
2454  * The policies are kept in Red-Black tree linked from the inode.
2455  * They are protected by the sp->lock rwlock, which should be held
2456  * for any accesses to the tree.
2457  */
2458 
2459 /*
2460  * lookup first element intersecting start-end.  Caller holds sp->lock for
2461  * reading or for writing
2462  */
2463 static struct sp_node *
2464 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2465 {
2466 	struct rb_node *n = sp->root.rb_node;
2467 
2468 	while (n) {
2469 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2470 
2471 		if (start >= p->end)
2472 			n = n->rb_right;
2473 		else if (end <= p->start)
2474 			n = n->rb_left;
2475 		else
2476 			break;
2477 	}
2478 	if (!n)
2479 		return NULL;
2480 	for (;;) {
2481 		struct sp_node *w = NULL;
2482 		struct rb_node *prev = rb_prev(n);
2483 		if (!prev)
2484 			break;
2485 		w = rb_entry(prev, struct sp_node, nd);
2486 		if (w->end <= start)
2487 			break;
2488 		n = prev;
2489 	}
2490 	return rb_entry(n, struct sp_node, nd);
2491 }
2492 
2493 /*
2494  * Insert a new shared policy into the list.  Caller holds sp->lock for
2495  * writing.
2496  */
2497 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2498 {
2499 	struct rb_node **p = &sp->root.rb_node;
2500 	struct rb_node *parent = NULL;
2501 	struct sp_node *nd;
2502 
2503 	while (*p) {
2504 		parent = *p;
2505 		nd = rb_entry(parent, struct sp_node, nd);
2506 		if (new->start < nd->start)
2507 			p = &(*p)->rb_left;
2508 		else if (new->end > nd->end)
2509 			p = &(*p)->rb_right;
2510 		else
2511 			BUG();
2512 	}
2513 	rb_link_node(&new->nd, parent, p);
2514 	rb_insert_color(&new->nd, &sp->root);
2515 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2516 		 new->policy ? new->policy->mode : 0);
2517 }
2518 
2519 /* Find shared policy intersecting idx */
2520 struct mempolicy *
2521 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2522 {
2523 	struct mempolicy *pol = NULL;
2524 	struct sp_node *sn;
2525 
2526 	if (!sp->root.rb_node)
2527 		return NULL;
2528 	read_lock(&sp->lock);
2529 	sn = sp_lookup(sp, idx, idx+1);
2530 	if (sn) {
2531 		mpol_get(sn->policy);
2532 		pol = sn->policy;
2533 	}
2534 	read_unlock(&sp->lock);
2535 	return pol;
2536 }
2537 
2538 static void sp_free(struct sp_node *n)
2539 {
2540 	mpol_put(n->policy);
2541 	kmem_cache_free(sn_cache, n);
2542 }
2543 
2544 /**
2545  * mpol_misplaced - check whether current page node is valid in policy
2546  *
2547  * @page: page to be checked
2548  * @vma: vm area where page mapped
2549  * @addr: virtual address where page mapped
2550  *
2551  * Lookup current policy node id for vma,addr and "compare to" page's
2552  * node id.  Policy determination "mimics" alloc_page_vma().
2553  * Called from fault path where we know the vma and faulting address.
2554  *
2555  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2556  * policy, or a suitable node ID to allocate a replacement page from.
2557  */
2558 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2559 {
2560 	struct mempolicy *pol;
2561 	struct zoneref *z;
2562 	int curnid = page_to_nid(page);
2563 	unsigned long pgoff;
2564 	int thiscpu = raw_smp_processor_id();
2565 	int thisnid = cpu_to_node(thiscpu);
2566 	int polnid = NUMA_NO_NODE;
2567 	int ret = NUMA_NO_NODE;
2568 
2569 	pol = get_vma_policy(vma, addr);
2570 	if (!(pol->flags & MPOL_F_MOF))
2571 		goto out;
2572 
2573 	switch (pol->mode) {
2574 	case MPOL_INTERLEAVE:
2575 		pgoff = vma->vm_pgoff;
2576 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2577 		polnid = offset_il_node(pol, pgoff);
2578 		break;
2579 
2580 	case MPOL_PREFERRED:
2581 		if (node_isset(curnid, pol->nodes))
2582 			goto out;
2583 		polnid = first_node(pol->nodes);
2584 		break;
2585 
2586 	case MPOL_LOCAL:
2587 		polnid = numa_node_id();
2588 		break;
2589 
2590 	case MPOL_BIND:
2591 		/* Optimize placement among multiple nodes via NUMA balancing */
2592 		if (pol->flags & MPOL_F_MORON) {
2593 			if (node_isset(thisnid, pol->nodes))
2594 				break;
2595 			goto out;
2596 		}
2597 		fallthrough;
2598 
2599 	case MPOL_PREFERRED_MANY:
2600 		/*
2601 		 * use current page if in policy nodemask,
2602 		 * else select nearest allowed node, if any.
2603 		 * If no allowed nodes, use current [!misplaced].
2604 		 */
2605 		if (node_isset(curnid, pol->nodes))
2606 			goto out;
2607 		z = first_zones_zonelist(
2608 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2609 				gfp_zone(GFP_HIGHUSER),
2610 				&pol->nodes);
2611 		polnid = zone_to_nid(z->zone);
2612 		break;
2613 
2614 	default:
2615 		BUG();
2616 	}
2617 
2618 	/* Migrate the page towards the node whose CPU is referencing it */
2619 	if (pol->flags & MPOL_F_MORON) {
2620 		polnid = thisnid;
2621 
2622 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2623 			goto out;
2624 	}
2625 
2626 	if (curnid != polnid)
2627 		ret = polnid;
2628 out:
2629 	mpol_cond_put(pol);
2630 
2631 	return ret;
2632 }
2633 
2634 /*
2635  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2636  * dropped after task->mempolicy is set to NULL so that any allocation done as
2637  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2638  * policy.
2639  */
2640 void mpol_put_task_policy(struct task_struct *task)
2641 {
2642 	struct mempolicy *pol;
2643 
2644 	task_lock(task);
2645 	pol = task->mempolicy;
2646 	task->mempolicy = NULL;
2647 	task_unlock(task);
2648 	mpol_put(pol);
2649 }
2650 
2651 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2652 {
2653 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2654 	rb_erase(&n->nd, &sp->root);
2655 	sp_free(n);
2656 }
2657 
2658 static void sp_node_init(struct sp_node *node, unsigned long start,
2659 			unsigned long end, struct mempolicy *pol)
2660 {
2661 	node->start = start;
2662 	node->end = end;
2663 	node->policy = pol;
2664 }
2665 
2666 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2667 				struct mempolicy *pol)
2668 {
2669 	struct sp_node *n;
2670 	struct mempolicy *newpol;
2671 
2672 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2673 	if (!n)
2674 		return NULL;
2675 
2676 	newpol = mpol_dup(pol);
2677 	if (IS_ERR(newpol)) {
2678 		kmem_cache_free(sn_cache, n);
2679 		return NULL;
2680 	}
2681 	newpol->flags |= MPOL_F_SHARED;
2682 	sp_node_init(n, start, end, newpol);
2683 
2684 	return n;
2685 }
2686 
2687 /* Replace a policy range. */
2688 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2689 				 unsigned long end, struct sp_node *new)
2690 {
2691 	struct sp_node *n;
2692 	struct sp_node *n_new = NULL;
2693 	struct mempolicy *mpol_new = NULL;
2694 	int ret = 0;
2695 
2696 restart:
2697 	write_lock(&sp->lock);
2698 	n = sp_lookup(sp, start, end);
2699 	/* Take care of old policies in the same range. */
2700 	while (n && n->start < end) {
2701 		struct rb_node *next = rb_next(&n->nd);
2702 		if (n->start >= start) {
2703 			if (n->end <= end)
2704 				sp_delete(sp, n);
2705 			else
2706 				n->start = end;
2707 		} else {
2708 			/* Old policy spanning whole new range. */
2709 			if (n->end > end) {
2710 				if (!n_new)
2711 					goto alloc_new;
2712 
2713 				*mpol_new = *n->policy;
2714 				atomic_set(&mpol_new->refcnt, 1);
2715 				sp_node_init(n_new, end, n->end, mpol_new);
2716 				n->end = start;
2717 				sp_insert(sp, n_new);
2718 				n_new = NULL;
2719 				mpol_new = NULL;
2720 				break;
2721 			} else
2722 				n->end = start;
2723 		}
2724 		if (!next)
2725 			break;
2726 		n = rb_entry(next, struct sp_node, nd);
2727 	}
2728 	if (new)
2729 		sp_insert(sp, new);
2730 	write_unlock(&sp->lock);
2731 	ret = 0;
2732 
2733 err_out:
2734 	if (mpol_new)
2735 		mpol_put(mpol_new);
2736 	if (n_new)
2737 		kmem_cache_free(sn_cache, n_new);
2738 
2739 	return ret;
2740 
2741 alloc_new:
2742 	write_unlock(&sp->lock);
2743 	ret = -ENOMEM;
2744 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2745 	if (!n_new)
2746 		goto err_out;
2747 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2748 	if (!mpol_new)
2749 		goto err_out;
2750 	atomic_set(&mpol_new->refcnt, 1);
2751 	goto restart;
2752 }
2753 
2754 /**
2755  * mpol_shared_policy_init - initialize shared policy for inode
2756  * @sp: pointer to inode shared policy
2757  * @mpol:  struct mempolicy to install
2758  *
2759  * Install non-NULL @mpol in inode's shared policy rb-tree.
2760  * On entry, the current task has a reference on a non-NULL @mpol.
2761  * This must be released on exit.
2762  * This is called at get_inode() calls and we can use GFP_KERNEL.
2763  */
2764 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2765 {
2766 	int ret;
2767 
2768 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2769 	rwlock_init(&sp->lock);
2770 
2771 	if (mpol) {
2772 		struct vm_area_struct pvma;
2773 		struct mempolicy *new;
2774 		NODEMASK_SCRATCH(scratch);
2775 
2776 		if (!scratch)
2777 			goto put_mpol;
2778 		/* contextualize the tmpfs mount point mempolicy */
2779 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2780 		if (IS_ERR(new))
2781 			goto free_scratch; /* no valid nodemask intersection */
2782 
2783 		task_lock(current);
2784 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2785 		task_unlock(current);
2786 		if (ret)
2787 			goto put_new;
2788 
2789 		/* Create pseudo-vma that contains just the policy */
2790 		vma_init(&pvma, NULL);
2791 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2792 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2793 
2794 put_new:
2795 		mpol_put(new);			/* drop initial ref */
2796 free_scratch:
2797 		NODEMASK_SCRATCH_FREE(scratch);
2798 put_mpol:
2799 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2800 	}
2801 }
2802 
2803 int mpol_set_shared_policy(struct shared_policy *info,
2804 			struct vm_area_struct *vma, struct mempolicy *npol)
2805 {
2806 	int err;
2807 	struct sp_node *new = NULL;
2808 	unsigned long sz = vma_pages(vma);
2809 
2810 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2811 		 vma->vm_pgoff,
2812 		 sz, npol ? npol->mode : -1,
2813 		 npol ? npol->flags : -1,
2814 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2815 
2816 	if (npol) {
2817 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2818 		if (!new)
2819 			return -ENOMEM;
2820 	}
2821 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2822 	if (err && new)
2823 		sp_free(new);
2824 	return err;
2825 }
2826 
2827 /* Free a backing policy store on inode delete. */
2828 void mpol_free_shared_policy(struct shared_policy *p)
2829 {
2830 	struct sp_node *n;
2831 	struct rb_node *next;
2832 
2833 	if (!p->root.rb_node)
2834 		return;
2835 	write_lock(&p->lock);
2836 	next = rb_first(&p->root);
2837 	while (next) {
2838 		n = rb_entry(next, struct sp_node, nd);
2839 		next = rb_next(&n->nd);
2840 		sp_delete(p, n);
2841 	}
2842 	write_unlock(&p->lock);
2843 }
2844 
2845 #ifdef CONFIG_NUMA_BALANCING
2846 static int __initdata numabalancing_override;
2847 
2848 static void __init check_numabalancing_enable(void)
2849 {
2850 	bool numabalancing_default = false;
2851 
2852 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2853 		numabalancing_default = true;
2854 
2855 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2856 	if (numabalancing_override)
2857 		set_numabalancing_state(numabalancing_override == 1);
2858 
2859 	if (num_online_nodes() > 1 && !numabalancing_override) {
2860 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2861 			numabalancing_default ? "Enabling" : "Disabling");
2862 		set_numabalancing_state(numabalancing_default);
2863 	}
2864 }
2865 
2866 static int __init setup_numabalancing(char *str)
2867 {
2868 	int ret = 0;
2869 	if (!str)
2870 		goto out;
2871 
2872 	if (!strcmp(str, "enable")) {
2873 		numabalancing_override = 1;
2874 		ret = 1;
2875 	} else if (!strcmp(str, "disable")) {
2876 		numabalancing_override = -1;
2877 		ret = 1;
2878 	}
2879 out:
2880 	if (!ret)
2881 		pr_warn("Unable to parse numa_balancing=\n");
2882 
2883 	return ret;
2884 }
2885 __setup("numa_balancing=", setup_numabalancing);
2886 #else
2887 static inline void __init check_numabalancing_enable(void)
2888 {
2889 }
2890 #endif /* CONFIG_NUMA_BALANCING */
2891 
2892 /* assumes fs == KERNEL_DS */
2893 void __init numa_policy_init(void)
2894 {
2895 	nodemask_t interleave_nodes;
2896 	unsigned long largest = 0;
2897 	int nid, prefer = 0;
2898 
2899 	policy_cache = kmem_cache_create("numa_policy",
2900 					 sizeof(struct mempolicy),
2901 					 0, SLAB_PANIC, NULL);
2902 
2903 	sn_cache = kmem_cache_create("shared_policy_node",
2904 				     sizeof(struct sp_node),
2905 				     0, SLAB_PANIC, NULL);
2906 
2907 	for_each_node(nid) {
2908 		preferred_node_policy[nid] = (struct mempolicy) {
2909 			.refcnt = ATOMIC_INIT(1),
2910 			.mode = MPOL_PREFERRED,
2911 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2912 			.nodes = nodemask_of_node(nid),
2913 		};
2914 	}
2915 
2916 	/*
2917 	 * Set interleaving policy for system init. Interleaving is only
2918 	 * enabled across suitably sized nodes (default is >= 16MB), or
2919 	 * fall back to the largest node if they're all smaller.
2920 	 */
2921 	nodes_clear(interleave_nodes);
2922 	for_each_node_state(nid, N_MEMORY) {
2923 		unsigned long total_pages = node_present_pages(nid);
2924 
2925 		/* Preserve the largest node */
2926 		if (largest < total_pages) {
2927 			largest = total_pages;
2928 			prefer = nid;
2929 		}
2930 
2931 		/* Interleave this node? */
2932 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2933 			node_set(nid, interleave_nodes);
2934 	}
2935 
2936 	/* All too small, use the largest */
2937 	if (unlikely(nodes_empty(interleave_nodes)))
2938 		node_set(prefer, interleave_nodes);
2939 
2940 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2941 		pr_err("%s: interleaving failed\n", __func__);
2942 
2943 	check_numabalancing_enable();
2944 }
2945 
2946 /* Reset policy of current process to default */
2947 void numa_default_policy(void)
2948 {
2949 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2950 }
2951 
2952 /*
2953  * Parse and format mempolicy from/to strings
2954  */
2955 
2956 static const char * const policy_modes[] =
2957 {
2958 	[MPOL_DEFAULT]    = "default",
2959 	[MPOL_PREFERRED]  = "prefer",
2960 	[MPOL_BIND]       = "bind",
2961 	[MPOL_INTERLEAVE] = "interleave",
2962 	[MPOL_LOCAL]      = "local",
2963 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2964 };
2965 
2966 
2967 #ifdef CONFIG_TMPFS
2968 /**
2969  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2970  * @str:  string containing mempolicy to parse
2971  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2972  *
2973  * Format of input:
2974  *	<mode>[=<flags>][:<nodelist>]
2975  *
2976  * Return: %0 on success, else %1
2977  */
2978 int mpol_parse_str(char *str, struct mempolicy **mpol)
2979 {
2980 	struct mempolicy *new = NULL;
2981 	unsigned short mode_flags;
2982 	nodemask_t nodes;
2983 	char *nodelist = strchr(str, ':');
2984 	char *flags = strchr(str, '=');
2985 	int err = 1, mode;
2986 
2987 	if (flags)
2988 		*flags++ = '\0';	/* terminate mode string */
2989 
2990 	if (nodelist) {
2991 		/* NUL-terminate mode or flags string */
2992 		*nodelist++ = '\0';
2993 		if (nodelist_parse(nodelist, nodes))
2994 			goto out;
2995 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2996 			goto out;
2997 	} else
2998 		nodes_clear(nodes);
2999 
3000 	mode = match_string(policy_modes, MPOL_MAX, str);
3001 	if (mode < 0)
3002 		goto out;
3003 
3004 	switch (mode) {
3005 	case MPOL_PREFERRED:
3006 		/*
3007 		 * Insist on a nodelist of one node only, although later
3008 		 * we use first_node(nodes) to grab a single node, so here
3009 		 * nodelist (or nodes) cannot be empty.
3010 		 */
3011 		if (nodelist) {
3012 			char *rest = nodelist;
3013 			while (isdigit(*rest))
3014 				rest++;
3015 			if (*rest)
3016 				goto out;
3017 			if (nodes_empty(nodes))
3018 				goto out;
3019 		}
3020 		break;
3021 	case MPOL_INTERLEAVE:
3022 		/*
3023 		 * Default to online nodes with memory if no nodelist
3024 		 */
3025 		if (!nodelist)
3026 			nodes = node_states[N_MEMORY];
3027 		break;
3028 	case MPOL_LOCAL:
3029 		/*
3030 		 * Don't allow a nodelist;  mpol_new() checks flags
3031 		 */
3032 		if (nodelist)
3033 			goto out;
3034 		break;
3035 	case MPOL_DEFAULT:
3036 		/*
3037 		 * Insist on a empty nodelist
3038 		 */
3039 		if (!nodelist)
3040 			err = 0;
3041 		goto out;
3042 	case MPOL_PREFERRED_MANY:
3043 	case MPOL_BIND:
3044 		/*
3045 		 * Insist on a nodelist
3046 		 */
3047 		if (!nodelist)
3048 			goto out;
3049 	}
3050 
3051 	mode_flags = 0;
3052 	if (flags) {
3053 		/*
3054 		 * Currently, we only support two mutually exclusive
3055 		 * mode flags.
3056 		 */
3057 		if (!strcmp(flags, "static"))
3058 			mode_flags |= MPOL_F_STATIC_NODES;
3059 		else if (!strcmp(flags, "relative"))
3060 			mode_flags |= MPOL_F_RELATIVE_NODES;
3061 		else
3062 			goto out;
3063 	}
3064 
3065 	new = mpol_new(mode, mode_flags, &nodes);
3066 	if (IS_ERR(new))
3067 		goto out;
3068 
3069 	/*
3070 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3071 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3072 	 */
3073 	if (mode != MPOL_PREFERRED) {
3074 		new->nodes = nodes;
3075 	} else if (nodelist) {
3076 		nodes_clear(new->nodes);
3077 		node_set(first_node(nodes), new->nodes);
3078 	} else {
3079 		new->mode = MPOL_LOCAL;
3080 	}
3081 
3082 	/*
3083 	 * Save nodes for contextualization: this will be used to "clone"
3084 	 * the mempolicy in a specific context [cpuset] at a later time.
3085 	 */
3086 	new->w.user_nodemask = nodes;
3087 
3088 	err = 0;
3089 
3090 out:
3091 	/* Restore string for error message */
3092 	if (nodelist)
3093 		*--nodelist = ':';
3094 	if (flags)
3095 		*--flags = '=';
3096 	if (!err)
3097 		*mpol = new;
3098 	return err;
3099 }
3100 #endif /* CONFIG_TMPFS */
3101 
3102 /**
3103  * mpol_to_str - format a mempolicy structure for printing
3104  * @buffer:  to contain formatted mempolicy string
3105  * @maxlen:  length of @buffer
3106  * @pol:  pointer to mempolicy to be formatted
3107  *
3108  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3109  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3110  * longest flag, "relative", and to display at least a few node ids.
3111  */
3112 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3113 {
3114 	char *p = buffer;
3115 	nodemask_t nodes = NODE_MASK_NONE;
3116 	unsigned short mode = MPOL_DEFAULT;
3117 	unsigned short flags = 0;
3118 
3119 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3120 		mode = pol->mode;
3121 		flags = pol->flags;
3122 	}
3123 
3124 	switch (mode) {
3125 	case MPOL_DEFAULT:
3126 	case MPOL_LOCAL:
3127 		break;
3128 	case MPOL_PREFERRED:
3129 	case MPOL_PREFERRED_MANY:
3130 	case MPOL_BIND:
3131 	case MPOL_INTERLEAVE:
3132 		nodes = pol->nodes;
3133 		break;
3134 	default:
3135 		WARN_ON_ONCE(1);
3136 		snprintf(p, maxlen, "unknown");
3137 		return;
3138 	}
3139 
3140 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3141 
3142 	if (flags & MPOL_MODE_FLAGS) {
3143 		p += snprintf(p, buffer + maxlen - p, "=");
3144 
3145 		/*
3146 		 * Currently, the only defined flags are mutually exclusive
3147 		 */
3148 		if (flags & MPOL_F_STATIC_NODES)
3149 			p += snprintf(p, buffer + maxlen - p, "static");
3150 		else if (flags & MPOL_F_RELATIVE_NODES)
3151 			p += snprintf(p, buffer + maxlen - p, "relative");
3152 	}
3153 
3154 	if (!nodes_empty(nodes))
3155 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3156 			       nodemask_pr_args(&nodes));
3157 }
3158