1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * weighted interleave 23 * Allocate memory interleaved over a set of nodes based on 24 * a set of weights (per-node), with normal fallback if it 25 * fails. Otherwise operates the same as interleave. 26 * Example: nodeset(0,1) & weights (2,1) - 2 pages allocated 27 * on node 0 for every 1 page allocated on node 1. 28 * 29 * bind Only allocate memory on a specific set of nodes, 30 * no fallback. 31 * FIXME: memory is allocated starting with the first node 32 * to the last. It would be better if bind would truly restrict 33 * the allocation to memory nodes instead 34 * 35 * preferred Try a specific node first before normal fallback. 36 * As a special case NUMA_NO_NODE here means do the allocation 37 * on the local CPU. This is normally identical to default, 38 * but useful to set in a VMA when you have a non default 39 * process policy. 40 * 41 * preferred many Try a set of nodes first before normal fallback. This is 42 * similar to preferred without the special case. 43 * 44 * default Allocate on the local node first, or when on a VMA 45 * use the process policy. This is what Linux always did 46 * in a NUMA aware kernel and still does by, ahem, default. 47 * 48 * The process policy is applied for most non interrupt memory allocations 49 * in that process' context. Interrupts ignore the policies and always 50 * try to allocate on the local CPU. The VMA policy is only applied for memory 51 * allocations for a VMA in the VM. 52 * 53 * Currently there are a few corner cases in swapping where the policy 54 * is not applied, but the majority should be handled. When process policy 55 * is used it is not remembered over swap outs/swap ins. 56 * 57 * Only the highest zone in the zone hierarchy gets policied. Allocations 58 * requesting a lower zone just use default policy. This implies that 59 * on systems with highmem kernel lowmem allocation don't get policied. 60 * Same with GFP_DMA allocations. 61 * 62 * For shmem/tmpfs shared memory the policy is shared between 63 * all users and remembered even when nobody has memory mapped. 64 */ 65 66 /* Notebook: 67 fix mmap readahead to honour policy and enable policy for any page cache 68 object 69 statistics for bigpages 70 global policy for page cache? currently it uses process policy. Requires 71 first item above. 72 handle mremap for shared memory (currently ignored for the policy) 73 grows down? 74 make bind policy root only? It can trigger oom much faster and the 75 kernel is not always grateful with that. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/mempolicy.h> 81 #include <linux/pagewalk.h> 82 #include <linux/highmem.h> 83 #include <linux/hugetlb.h> 84 #include <linux/kernel.h> 85 #include <linux/sched.h> 86 #include <linux/sched/mm.h> 87 #include <linux/sched/numa_balancing.h> 88 #include <linux/sched/task.h> 89 #include <linux/nodemask.h> 90 #include <linux/cpuset.h> 91 #include <linux/slab.h> 92 #include <linux/string.h> 93 #include <linux/export.h> 94 #include <linux/nsproxy.h> 95 #include <linux/interrupt.h> 96 #include <linux/init.h> 97 #include <linux/compat.h> 98 #include <linux/ptrace.h> 99 #include <linux/swap.h> 100 #include <linux/seq_file.h> 101 #include <linux/proc_fs.h> 102 #include <linux/migrate.h> 103 #include <linux/ksm.h> 104 #include <linux/rmap.h> 105 #include <linux/security.h> 106 #include <linux/syscalls.h> 107 #include <linux/ctype.h> 108 #include <linux/mm_inline.h> 109 #include <linux/mmu_notifier.h> 110 #include <linux/printk.h> 111 #include <linux/swapops.h> 112 113 #include <asm/tlbflush.h> 114 #include <asm/tlb.h> 115 #include <linux/uaccess.h> 116 117 #include "internal.h" 118 119 /* Internal flags */ 120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 121 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 122 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */ 123 124 static struct kmem_cache *policy_cache; 125 static struct kmem_cache *sn_cache; 126 127 /* Highest zone. An specific allocation for a zone below that is not 128 policied. */ 129 enum zone_type policy_zone = 0; 130 131 /* 132 * run-time system-wide default policy => local allocation 133 */ 134 static struct mempolicy default_policy = { 135 .refcnt = ATOMIC_INIT(1), /* never free it */ 136 .mode = MPOL_LOCAL, 137 }; 138 139 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 140 141 /* 142 * iw_table is the sysfs-set interleave weight table, a value of 0 denotes 143 * system-default value should be used. A NULL iw_table also denotes that 144 * system-default values should be used. Until the system-default table 145 * is implemented, the system-default is always 1. 146 * 147 * iw_table is RCU protected 148 */ 149 static u8 __rcu *iw_table; 150 static DEFINE_MUTEX(iw_table_lock); 151 152 static u8 get_il_weight(int node) 153 { 154 u8 *table; 155 u8 weight; 156 157 rcu_read_lock(); 158 table = rcu_dereference(iw_table); 159 /* if no iw_table, use system default */ 160 weight = table ? table[node] : 1; 161 /* if value in iw_table is 0, use system default */ 162 weight = weight ? weight : 1; 163 rcu_read_unlock(); 164 return weight; 165 } 166 167 /** 168 * numa_nearest_node - Find nearest node by state 169 * @node: Node id to start the search 170 * @state: State to filter the search 171 * 172 * Lookup the closest node by distance if @nid is not in state. 173 * 174 * Return: this @node if it is in state, otherwise the closest node by distance 175 */ 176 int numa_nearest_node(int node, unsigned int state) 177 { 178 int min_dist = INT_MAX, dist, n, min_node; 179 180 if (state >= NR_NODE_STATES) 181 return -EINVAL; 182 183 if (node == NUMA_NO_NODE || node_state(node, state)) 184 return node; 185 186 min_node = node; 187 for_each_node_state(n, state) { 188 dist = node_distance(node, n); 189 if (dist < min_dist) { 190 min_dist = dist; 191 min_node = n; 192 } 193 } 194 195 return min_node; 196 } 197 EXPORT_SYMBOL_GPL(numa_nearest_node); 198 199 struct mempolicy *get_task_policy(struct task_struct *p) 200 { 201 struct mempolicy *pol = p->mempolicy; 202 int node; 203 204 if (pol) 205 return pol; 206 207 node = numa_node_id(); 208 if (node != NUMA_NO_NODE) { 209 pol = &preferred_node_policy[node]; 210 /* preferred_node_policy is not initialised early in boot */ 211 if (pol->mode) 212 return pol; 213 } 214 215 return &default_policy; 216 } 217 218 static const struct mempolicy_operations { 219 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 220 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 221 } mpol_ops[MPOL_MAX]; 222 223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 224 { 225 return pol->flags & MPOL_MODE_FLAGS; 226 } 227 228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 229 const nodemask_t *rel) 230 { 231 nodemask_t tmp; 232 nodes_fold(tmp, *orig, nodes_weight(*rel)); 233 nodes_onto(*ret, tmp, *rel); 234 } 235 236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 237 { 238 if (nodes_empty(*nodes)) 239 return -EINVAL; 240 pol->nodes = *nodes; 241 return 0; 242 } 243 244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 245 { 246 if (nodes_empty(*nodes)) 247 return -EINVAL; 248 249 nodes_clear(pol->nodes); 250 node_set(first_node(*nodes), pol->nodes); 251 return 0; 252 } 253 254 /* 255 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 256 * any, for the new policy. mpol_new() has already validated the nodes 257 * parameter with respect to the policy mode and flags. 258 * 259 * Must be called holding task's alloc_lock to protect task's mems_allowed 260 * and mempolicy. May also be called holding the mmap_lock for write. 261 */ 262 static int mpol_set_nodemask(struct mempolicy *pol, 263 const nodemask_t *nodes, struct nodemask_scratch *nsc) 264 { 265 int ret; 266 267 /* 268 * Default (pol==NULL) resp. local memory policies are not a 269 * subject of any remapping. They also do not need any special 270 * constructor. 271 */ 272 if (!pol || pol->mode == MPOL_LOCAL) 273 return 0; 274 275 /* Check N_MEMORY */ 276 nodes_and(nsc->mask1, 277 cpuset_current_mems_allowed, node_states[N_MEMORY]); 278 279 VM_BUG_ON(!nodes); 280 281 if (pol->flags & MPOL_F_RELATIVE_NODES) 282 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 283 else 284 nodes_and(nsc->mask2, *nodes, nsc->mask1); 285 286 if (mpol_store_user_nodemask(pol)) 287 pol->w.user_nodemask = *nodes; 288 else 289 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 290 291 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 292 return ret; 293 } 294 295 /* 296 * This function just creates a new policy, does some check and simple 297 * initialization. You must invoke mpol_set_nodemask() to set nodes. 298 */ 299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 300 nodemask_t *nodes) 301 { 302 struct mempolicy *policy; 303 304 if (mode == MPOL_DEFAULT) { 305 if (nodes && !nodes_empty(*nodes)) 306 return ERR_PTR(-EINVAL); 307 return NULL; 308 } 309 VM_BUG_ON(!nodes); 310 311 /* 312 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 313 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 314 * All other modes require a valid pointer to a non-empty nodemask. 315 */ 316 if (mode == MPOL_PREFERRED) { 317 if (nodes_empty(*nodes)) { 318 if (((flags & MPOL_F_STATIC_NODES) || 319 (flags & MPOL_F_RELATIVE_NODES))) 320 return ERR_PTR(-EINVAL); 321 322 mode = MPOL_LOCAL; 323 } 324 } else if (mode == MPOL_LOCAL) { 325 if (!nodes_empty(*nodes) || 326 (flags & MPOL_F_STATIC_NODES) || 327 (flags & MPOL_F_RELATIVE_NODES)) 328 return ERR_PTR(-EINVAL); 329 } else if (nodes_empty(*nodes)) 330 return ERR_PTR(-EINVAL); 331 332 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 333 if (!policy) 334 return ERR_PTR(-ENOMEM); 335 atomic_set(&policy->refcnt, 1); 336 policy->mode = mode; 337 policy->flags = flags; 338 policy->home_node = NUMA_NO_NODE; 339 340 return policy; 341 } 342 343 /* Slow path of a mpol destructor. */ 344 void __mpol_put(struct mempolicy *pol) 345 { 346 if (!atomic_dec_and_test(&pol->refcnt)) 347 return; 348 kmem_cache_free(policy_cache, pol); 349 } 350 351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 352 { 353 } 354 355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 356 { 357 nodemask_t tmp; 358 359 if (pol->flags & MPOL_F_STATIC_NODES) 360 nodes_and(tmp, pol->w.user_nodemask, *nodes); 361 else if (pol->flags & MPOL_F_RELATIVE_NODES) 362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 363 else { 364 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 365 *nodes); 366 pol->w.cpuset_mems_allowed = *nodes; 367 } 368 369 if (nodes_empty(tmp)) 370 tmp = *nodes; 371 372 pol->nodes = tmp; 373 } 374 375 static void mpol_rebind_preferred(struct mempolicy *pol, 376 const nodemask_t *nodes) 377 { 378 pol->w.cpuset_mems_allowed = *nodes; 379 } 380 381 /* 382 * mpol_rebind_policy - Migrate a policy to a different set of nodes 383 * 384 * Per-vma policies are protected by mmap_lock. Allocations using per-task 385 * policies are protected by task->mems_allowed_seq to prevent a premature 386 * OOM/allocation failure due to parallel nodemask modification. 387 */ 388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 389 { 390 if (!pol || pol->mode == MPOL_LOCAL) 391 return; 392 if (!mpol_store_user_nodemask(pol) && 393 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 394 return; 395 396 mpol_ops[pol->mode].rebind(pol, newmask); 397 } 398 399 /* 400 * Wrapper for mpol_rebind_policy() that just requires task 401 * pointer, and updates task mempolicy. 402 * 403 * Called with task's alloc_lock held. 404 */ 405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 406 { 407 mpol_rebind_policy(tsk->mempolicy, new); 408 } 409 410 /* 411 * Rebind each vma in mm to new nodemask. 412 * 413 * Call holding a reference to mm. Takes mm->mmap_lock during call. 414 */ 415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 416 { 417 struct vm_area_struct *vma; 418 VMA_ITERATOR(vmi, mm, 0); 419 420 mmap_write_lock(mm); 421 for_each_vma(vmi, vma) { 422 vma_start_write(vma); 423 mpol_rebind_policy(vma->vm_policy, new); 424 } 425 mmap_write_unlock(mm); 426 } 427 428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 429 [MPOL_DEFAULT] = { 430 .rebind = mpol_rebind_default, 431 }, 432 [MPOL_INTERLEAVE] = { 433 .create = mpol_new_nodemask, 434 .rebind = mpol_rebind_nodemask, 435 }, 436 [MPOL_PREFERRED] = { 437 .create = mpol_new_preferred, 438 .rebind = mpol_rebind_preferred, 439 }, 440 [MPOL_BIND] = { 441 .create = mpol_new_nodemask, 442 .rebind = mpol_rebind_nodemask, 443 }, 444 [MPOL_LOCAL] = { 445 .rebind = mpol_rebind_default, 446 }, 447 [MPOL_PREFERRED_MANY] = { 448 .create = mpol_new_nodemask, 449 .rebind = mpol_rebind_preferred, 450 }, 451 [MPOL_WEIGHTED_INTERLEAVE] = { 452 .create = mpol_new_nodemask, 453 .rebind = mpol_rebind_nodemask, 454 }, 455 }; 456 457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 458 unsigned long flags); 459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 460 pgoff_t ilx, int *nid); 461 462 static bool strictly_unmovable(unsigned long flags) 463 { 464 /* 465 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO 466 * if any misplaced page is found. 467 */ 468 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == 469 MPOL_MF_STRICT; 470 } 471 472 struct migration_mpol { /* for alloc_migration_target_by_mpol() */ 473 struct mempolicy *pol; 474 pgoff_t ilx; 475 }; 476 477 struct queue_pages { 478 struct list_head *pagelist; 479 unsigned long flags; 480 nodemask_t *nmask; 481 unsigned long start; 482 unsigned long end; 483 struct vm_area_struct *first; 484 struct folio *large; /* note last large folio encountered */ 485 long nr_failed; /* could not be isolated at this time */ 486 }; 487 488 /* 489 * Check if the folio's nid is in qp->nmask. 490 * 491 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 492 * in the invert of qp->nmask. 493 */ 494 static inline bool queue_folio_required(struct folio *folio, 495 struct queue_pages *qp) 496 { 497 int nid = folio_nid(folio); 498 unsigned long flags = qp->flags; 499 500 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 501 } 502 503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) 504 { 505 struct folio *folio; 506 struct queue_pages *qp = walk->private; 507 508 if (unlikely(is_pmd_migration_entry(*pmd))) { 509 qp->nr_failed++; 510 return; 511 } 512 folio = pfn_folio(pmd_pfn(*pmd)); 513 if (is_huge_zero_page(&folio->page)) { 514 walk->action = ACTION_CONTINUE; 515 return; 516 } 517 if (!queue_folio_required(folio, qp)) 518 return; 519 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 520 !vma_migratable(walk->vma) || 521 !migrate_folio_add(folio, qp->pagelist, qp->flags)) 522 qp->nr_failed++; 523 } 524 525 /* 526 * Scan through folios, checking if they satisfy the required conditions, 527 * moving them from LRU to local pagelist for migration if they do (or not). 528 * 529 * queue_folios_pte_range() has two possible return values: 530 * 0 - continue walking to scan for more, even if an existing folio on the 531 * wrong node could not be isolated and queued for migration. 532 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, 533 * and an existing folio was on a node that does not follow the policy. 534 */ 535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 536 unsigned long end, struct mm_walk *walk) 537 { 538 struct vm_area_struct *vma = walk->vma; 539 struct folio *folio; 540 struct queue_pages *qp = walk->private; 541 unsigned long flags = qp->flags; 542 pte_t *pte, *mapped_pte; 543 pte_t ptent; 544 spinlock_t *ptl; 545 546 ptl = pmd_trans_huge_lock(pmd, vma); 547 if (ptl) { 548 queue_folios_pmd(pmd, walk); 549 spin_unlock(ptl); 550 goto out; 551 } 552 553 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 554 if (!pte) { 555 walk->action = ACTION_AGAIN; 556 return 0; 557 } 558 for (; addr != end; pte++, addr += PAGE_SIZE) { 559 ptent = ptep_get(pte); 560 if (pte_none(ptent)) 561 continue; 562 if (!pte_present(ptent)) { 563 if (is_migration_entry(pte_to_swp_entry(ptent))) 564 qp->nr_failed++; 565 continue; 566 } 567 folio = vm_normal_folio(vma, addr, ptent); 568 if (!folio || folio_is_zone_device(folio)) 569 continue; 570 /* 571 * vm_normal_folio() filters out zero pages, but there might 572 * still be reserved folios to skip, perhaps in a VDSO. 573 */ 574 if (folio_test_reserved(folio)) 575 continue; 576 if (!queue_folio_required(folio, qp)) 577 continue; 578 if (folio_test_large(folio)) { 579 /* 580 * A large folio can only be isolated from LRU once, 581 * but may be mapped by many PTEs (and Copy-On-Write may 582 * intersperse PTEs of other, order 0, folios). This is 583 * a common case, so don't mistake it for failure (but 584 * there can be other cases of multi-mapped pages which 585 * this quick check does not help to filter out - and a 586 * search of the pagelist might grow to be prohibitive). 587 * 588 * migrate_pages(&pagelist) returns nr_failed folios, so 589 * check "large" now so that queue_pages_range() returns 590 * a comparable nr_failed folios. This does imply that 591 * if folio could not be isolated for some racy reason 592 * at its first PTE, later PTEs will not give it another 593 * chance of isolation; but keeps the accounting simple. 594 */ 595 if (folio == qp->large) 596 continue; 597 qp->large = folio; 598 } 599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 600 !vma_migratable(vma) || 601 !migrate_folio_add(folio, qp->pagelist, flags)) { 602 qp->nr_failed++; 603 if (strictly_unmovable(flags)) 604 break; 605 } 606 } 607 pte_unmap_unlock(mapped_pte, ptl); 608 cond_resched(); 609 out: 610 if (qp->nr_failed && strictly_unmovable(flags)) 611 return -EIO; 612 return 0; 613 } 614 615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 616 unsigned long addr, unsigned long end, 617 struct mm_walk *walk) 618 { 619 #ifdef CONFIG_HUGETLB_PAGE 620 struct queue_pages *qp = walk->private; 621 unsigned long flags = qp->flags; 622 struct folio *folio; 623 spinlock_t *ptl; 624 pte_t entry; 625 626 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 627 entry = huge_ptep_get(pte); 628 if (!pte_present(entry)) { 629 if (unlikely(is_hugetlb_entry_migration(entry))) 630 qp->nr_failed++; 631 goto unlock; 632 } 633 folio = pfn_folio(pte_pfn(entry)); 634 if (!queue_folio_required(folio, qp)) 635 goto unlock; 636 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 637 !vma_migratable(walk->vma)) { 638 qp->nr_failed++; 639 goto unlock; 640 } 641 /* 642 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 643 * Choosing not to migrate a shared folio is not counted as a failure. 644 * 645 * To check if the folio is shared, ideally we want to make sure 646 * every page is mapped to the same process. Doing that is very 647 * expensive, so check the estimated sharers of the folio instead. 648 */ 649 if ((flags & MPOL_MF_MOVE_ALL) || 650 (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte))) 651 if (!isolate_hugetlb(folio, qp->pagelist)) 652 qp->nr_failed++; 653 unlock: 654 spin_unlock(ptl); 655 if (qp->nr_failed && strictly_unmovable(flags)) 656 return -EIO; 657 #endif 658 return 0; 659 } 660 661 #ifdef CONFIG_NUMA_BALANCING 662 /* 663 * This is used to mark a range of virtual addresses to be inaccessible. 664 * These are later cleared by a NUMA hinting fault. Depending on these 665 * faults, pages may be migrated for better NUMA placement. 666 * 667 * This is assuming that NUMA faults are handled using PROT_NONE. If 668 * an architecture makes a different choice, it will need further 669 * changes to the core. 670 */ 671 unsigned long change_prot_numa(struct vm_area_struct *vma, 672 unsigned long addr, unsigned long end) 673 { 674 struct mmu_gather tlb; 675 long nr_updated; 676 677 tlb_gather_mmu(&tlb, vma->vm_mm); 678 679 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 680 if (nr_updated > 0) 681 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 682 683 tlb_finish_mmu(&tlb); 684 685 return nr_updated; 686 } 687 #endif /* CONFIG_NUMA_BALANCING */ 688 689 static int queue_pages_test_walk(unsigned long start, unsigned long end, 690 struct mm_walk *walk) 691 { 692 struct vm_area_struct *next, *vma = walk->vma; 693 struct queue_pages *qp = walk->private; 694 unsigned long flags = qp->flags; 695 696 /* range check first */ 697 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 698 699 if (!qp->first) { 700 qp->first = vma; 701 if (!(flags & MPOL_MF_DISCONTIG_OK) && 702 (qp->start < vma->vm_start)) 703 /* hole at head side of range */ 704 return -EFAULT; 705 } 706 next = find_vma(vma->vm_mm, vma->vm_end); 707 if (!(flags & MPOL_MF_DISCONTIG_OK) && 708 ((vma->vm_end < qp->end) && 709 (!next || vma->vm_end < next->vm_start))) 710 /* hole at middle or tail of range */ 711 return -EFAULT; 712 713 /* 714 * Need check MPOL_MF_STRICT to return -EIO if possible 715 * regardless of vma_migratable 716 */ 717 if (!vma_migratable(vma) && 718 !(flags & MPOL_MF_STRICT)) 719 return 1; 720 721 /* 722 * Check page nodes, and queue pages to move, in the current vma. 723 * But if no moving, and no strict checking, the scan can be skipped. 724 */ 725 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 726 return 0; 727 return 1; 728 } 729 730 static const struct mm_walk_ops queue_pages_walk_ops = { 731 .hugetlb_entry = queue_folios_hugetlb, 732 .pmd_entry = queue_folios_pte_range, 733 .test_walk = queue_pages_test_walk, 734 .walk_lock = PGWALK_RDLOCK, 735 }; 736 737 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 738 .hugetlb_entry = queue_folios_hugetlb, 739 .pmd_entry = queue_folios_pte_range, 740 .test_walk = queue_pages_test_walk, 741 .walk_lock = PGWALK_WRLOCK, 742 }; 743 744 /* 745 * Walk through page tables and collect pages to be migrated. 746 * 747 * If pages found in a given range are not on the required set of @nodes, 748 * and migration is allowed, they are isolated and queued to @pagelist. 749 * 750 * queue_pages_range() may return: 751 * 0 - all pages already on the right node, or successfully queued for moving 752 * (or neither strict checking nor moving requested: only range checking). 753 * >0 - this number of misplaced folios could not be queued for moving 754 * (a hugetlbfs page or a transparent huge page being counted as 1). 755 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. 756 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. 757 */ 758 static long 759 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 760 nodemask_t *nodes, unsigned long flags, 761 struct list_head *pagelist) 762 { 763 int err; 764 struct queue_pages qp = { 765 .pagelist = pagelist, 766 .flags = flags, 767 .nmask = nodes, 768 .start = start, 769 .end = end, 770 .first = NULL, 771 }; 772 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? 773 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 774 775 err = walk_page_range(mm, start, end, ops, &qp); 776 777 if (!qp.first) 778 /* whole range in hole */ 779 err = -EFAULT; 780 781 return err ? : qp.nr_failed; 782 } 783 784 /* 785 * Apply policy to a single VMA 786 * This must be called with the mmap_lock held for writing. 787 */ 788 static int vma_replace_policy(struct vm_area_struct *vma, 789 struct mempolicy *pol) 790 { 791 int err; 792 struct mempolicy *old; 793 struct mempolicy *new; 794 795 vma_assert_write_locked(vma); 796 797 new = mpol_dup(pol); 798 if (IS_ERR(new)) 799 return PTR_ERR(new); 800 801 if (vma->vm_ops && vma->vm_ops->set_policy) { 802 err = vma->vm_ops->set_policy(vma, new); 803 if (err) 804 goto err_out; 805 } 806 807 old = vma->vm_policy; 808 vma->vm_policy = new; /* protected by mmap_lock */ 809 mpol_put(old); 810 811 return 0; 812 err_out: 813 mpol_put(new); 814 return err; 815 } 816 817 /* Split or merge the VMA (if required) and apply the new policy */ 818 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 819 struct vm_area_struct **prev, unsigned long start, 820 unsigned long end, struct mempolicy *new_pol) 821 { 822 unsigned long vmstart, vmend; 823 824 vmend = min(end, vma->vm_end); 825 if (start > vma->vm_start) { 826 *prev = vma; 827 vmstart = start; 828 } else { 829 vmstart = vma->vm_start; 830 } 831 832 if (mpol_equal(vma->vm_policy, new_pol)) { 833 *prev = vma; 834 return 0; 835 } 836 837 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol); 838 if (IS_ERR(vma)) 839 return PTR_ERR(vma); 840 841 *prev = vma; 842 return vma_replace_policy(vma, new_pol); 843 } 844 845 /* Set the process memory policy */ 846 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 847 nodemask_t *nodes) 848 { 849 struct mempolicy *new, *old; 850 NODEMASK_SCRATCH(scratch); 851 int ret; 852 853 if (!scratch) 854 return -ENOMEM; 855 856 new = mpol_new(mode, flags, nodes); 857 if (IS_ERR(new)) { 858 ret = PTR_ERR(new); 859 goto out; 860 } 861 862 task_lock(current); 863 ret = mpol_set_nodemask(new, nodes, scratch); 864 if (ret) { 865 task_unlock(current); 866 mpol_put(new); 867 goto out; 868 } 869 870 old = current->mempolicy; 871 current->mempolicy = new; 872 if (new && (new->mode == MPOL_INTERLEAVE || 873 new->mode == MPOL_WEIGHTED_INTERLEAVE)) { 874 current->il_prev = MAX_NUMNODES-1; 875 current->il_weight = 0; 876 } 877 task_unlock(current); 878 mpol_put(old); 879 ret = 0; 880 out: 881 NODEMASK_SCRATCH_FREE(scratch); 882 return ret; 883 } 884 885 /* 886 * Return nodemask for policy for get_mempolicy() query 887 * 888 * Called with task's alloc_lock held 889 */ 890 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes) 891 { 892 nodes_clear(*nodes); 893 if (pol == &default_policy) 894 return; 895 896 switch (pol->mode) { 897 case MPOL_BIND: 898 case MPOL_INTERLEAVE: 899 case MPOL_PREFERRED: 900 case MPOL_PREFERRED_MANY: 901 case MPOL_WEIGHTED_INTERLEAVE: 902 *nodes = pol->nodes; 903 break; 904 case MPOL_LOCAL: 905 /* return empty node mask for local allocation */ 906 break; 907 default: 908 BUG(); 909 } 910 } 911 912 static int lookup_node(struct mm_struct *mm, unsigned long addr) 913 { 914 struct page *p = NULL; 915 int ret; 916 917 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 918 if (ret > 0) { 919 ret = page_to_nid(p); 920 put_page(p); 921 } 922 return ret; 923 } 924 925 /* Retrieve NUMA policy */ 926 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 927 unsigned long addr, unsigned long flags) 928 { 929 int err; 930 struct mm_struct *mm = current->mm; 931 struct vm_area_struct *vma = NULL; 932 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 933 934 if (flags & 935 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 936 return -EINVAL; 937 938 if (flags & MPOL_F_MEMS_ALLOWED) { 939 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 940 return -EINVAL; 941 *policy = 0; /* just so it's initialized */ 942 task_lock(current); 943 *nmask = cpuset_current_mems_allowed; 944 task_unlock(current); 945 return 0; 946 } 947 948 if (flags & MPOL_F_ADDR) { 949 pgoff_t ilx; /* ignored here */ 950 /* 951 * Do NOT fall back to task policy if the 952 * vma/shared policy at addr is NULL. We 953 * want to return MPOL_DEFAULT in this case. 954 */ 955 mmap_read_lock(mm); 956 vma = vma_lookup(mm, addr); 957 if (!vma) { 958 mmap_read_unlock(mm); 959 return -EFAULT; 960 } 961 pol = __get_vma_policy(vma, addr, &ilx); 962 } else if (addr) 963 return -EINVAL; 964 965 if (!pol) 966 pol = &default_policy; /* indicates default behavior */ 967 968 if (flags & MPOL_F_NODE) { 969 if (flags & MPOL_F_ADDR) { 970 /* 971 * Take a refcount on the mpol, because we are about to 972 * drop the mmap_lock, after which only "pol" remains 973 * valid, "vma" is stale. 974 */ 975 pol_refcount = pol; 976 vma = NULL; 977 mpol_get(pol); 978 mmap_read_unlock(mm); 979 err = lookup_node(mm, addr); 980 if (err < 0) 981 goto out; 982 *policy = err; 983 } else if (pol == current->mempolicy && 984 pol->mode == MPOL_INTERLEAVE) { 985 *policy = next_node_in(current->il_prev, pol->nodes); 986 } else if (pol == current->mempolicy && 987 pol->mode == MPOL_WEIGHTED_INTERLEAVE) { 988 if (current->il_weight) 989 *policy = current->il_prev; 990 else 991 *policy = next_node_in(current->il_prev, 992 pol->nodes); 993 } else { 994 err = -EINVAL; 995 goto out; 996 } 997 } else { 998 *policy = pol == &default_policy ? MPOL_DEFAULT : 999 pol->mode; 1000 /* 1001 * Internal mempolicy flags must be masked off before exposing 1002 * the policy to userspace. 1003 */ 1004 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1005 } 1006 1007 err = 0; 1008 if (nmask) { 1009 if (mpol_store_user_nodemask(pol)) { 1010 *nmask = pol->w.user_nodemask; 1011 } else { 1012 task_lock(current); 1013 get_policy_nodemask(pol, nmask); 1014 task_unlock(current); 1015 } 1016 } 1017 1018 out: 1019 mpol_cond_put(pol); 1020 if (vma) 1021 mmap_read_unlock(mm); 1022 if (pol_refcount) 1023 mpol_put(pol_refcount); 1024 return err; 1025 } 1026 1027 #ifdef CONFIG_MIGRATION 1028 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1029 unsigned long flags) 1030 { 1031 /* 1032 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 1033 * Choosing not to migrate a shared folio is not counted as a failure. 1034 * 1035 * To check if the folio is shared, ideally we want to make sure 1036 * every page is mapped to the same process. Doing that is very 1037 * expensive, so check the estimated sharers of the folio instead. 1038 */ 1039 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1040 if (folio_isolate_lru(folio)) { 1041 list_add_tail(&folio->lru, foliolist); 1042 node_stat_mod_folio(folio, 1043 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1044 folio_nr_pages(folio)); 1045 } else { 1046 /* 1047 * Non-movable folio may reach here. And, there may be 1048 * temporary off LRU folios or non-LRU movable folios. 1049 * Treat them as unmovable folios since they can't be 1050 * isolated, so they can't be moved at the moment. 1051 */ 1052 return false; 1053 } 1054 } 1055 return true; 1056 } 1057 1058 /* 1059 * Migrate pages from one node to a target node. 1060 * Returns error or the number of pages not migrated. 1061 */ 1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest, 1063 int flags) 1064 { 1065 nodemask_t nmask; 1066 struct vm_area_struct *vma; 1067 LIST_HEAD(pagelist); 1068 long nr_failed; 1069 long err = 0; 1070 struct migration_target_control mtc = { 1071 .nid = dest, 1072 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1073 }; 1074 1075 nodes_clear(nmask); 1076 node_set(source, nmask); 1077 1078 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1079 1080 mmap_read_lock(mm); 1081 vma = find_vma(mm, 0); 1082 1083 /* 1084 * This does not migrate the range, but isolates all pages that 1085 * need migration. Between passing in the full user address 1086 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, 1087 * but passes back the count of pages which could not be isolated. 1088 */ 1089 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1090 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1091 mmap_read_unlock(mm); 1092 1093 if (!list_empty(&pagelist)) { 1094 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1095 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1096 if (err) 1097 putback_movable_pages(&pagelist); 1098 } 1099 1100 if (err >= 0) 1101 err += nr_failed; 1102 return err; 1103 } 1104 1105 /* 1106 * Move pages between the two nodesets so as to preserve the physical 1107 * layout as much as possible. 1108 * 1109 * Returns the number of page that could not be moved. 1110 */ 1111 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1112 const nodemask_t *to, int flags) 1113 { 1114 long nr_failed = 0; 1115 long err = 0; 1116 nodemask_t tmp; 1117 1118 lru_cache_disable(); 1119 1120 /* 1121 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1122 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1123 * bit in 'tmp', and return that <source, dest> pair for migration. 1124 * The pair of nodemasks 'to' and 'from' define the map. 1125 * 1126 * If no pair of bits is found that way, fallback to picking some 1127 * pair of 'source' and 'dest' bits that are not the same. If the 1128 * 'source' and 'dest' bits are the same, this represents a node 1129 * that will be migrating to itself, so no pages need move. 1130 * 1131 * If no bits are left in 'tmp', or if all remaining bits left 1132 * in 'tmp' correspond to the same bit in 'to', return false 1133 * (nothing left to migrate). 1134 * 1135 * This lets us pick a pair of nodes to migrate between, such that 1136 * if possible the dest node is not already occupied by some other 1137 * source node, minimizing the risk of overloading the memory on a 1138 * node that would happen if we migrated incoming memory to a node 1139 * before migrating outgoing memory source that same node. 1140 * 1141 * A single scan of tmp is sufficient. As we go, we remember the 1142 * most recent <s, d> pair that moved (s != d). If we find a pair 1143 * that not only moved, but what's better, moved to an empty slot 1144 * (d is not set in tmp), then we break out then, with that pair. 1145 * Otherwise when we finish scanning from_tmp, we at least have the 1146 * most recent <s, d> pair that moved. If we get all the way through 1147 * the scan of tmp without finding any node that moved, much less 1148 * moved to an empty node, then there is nothing left worth migrating. 1149 */ 1150 1151 tmp = *from; 1152 while (!nodes_empty(tmp)) { 1153 int s, d; 1154 int source = NUMA_NO_NODE; 1155 int dest = 0; 1156 1157 for_each_node_mask(s, tmp) { 1158 1159 /* 1160 * do_migrate_pages() tries to maintain the relative 1161 * node relationship of the pages established between 1162 * threads and memory areas. 1163 * 1164 * However if the number of source nodes is not equal to 1165 * the number of destination nodes we can not preserve 1166 * this node relative relationship. In that case, skip 1167 * copying memory from a node that is in the destination 1168 * mask. 1169 * 1170 * Example: [2,3,4] -> [3,4,5] moves everything. 1171 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1172 */ 1173 1174 if ((nodes_weight(*from) != nodes_weight(*to)) && 1175 (node_isset(s, *to))) 1176 continue; 1177 1178 d = node_remap(s, *from, *to); 1179 if (s == d) 1180 continue; 1181 1182 source = s; /* Node moved. Memorize */ 1183 dest = d; 1184 1185 /* dest not in remaining from nodes? */ 1186 if (!node_isset(dest, tmp)) 1187 break; 1188 } 1189 if (source == NUMA_NO_NODE) 1190 break; 1191 1192 node_clear(source, tmp); 1193 err = migrate_to_node(mm, source, dest, flags); 1194 if (err > 0) 1195 nr_failed += err; 1196 if (err < 0) 1197 break; 1198 } 1199 1200 lru_cache_enable(); 1201 if (err < 0) 1202 return err; 1203 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; 1204 } 1205 1206 /* 1207 * Allocate a new folio for page migration, according to NUMA mempolicy. 1208 */ 1209 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1210 unsigned long private) 1211 { 1212 struct migration_mpol *mmpol = (struct migration_mpol *)private; 1213 struct mempolicy *pol = mmpol->pol; 1214 pgoff_t ilx = mmpol->ilx; 1215 struct page *page; 1216 unsigned int order; 1217 int nid = numa_node_id(); 1218 gfp_t gfp; 1219 1220 order = folio_order(src); 1221 ilx += src->index >> order; 1222 1223 if (folio_test_hugetlb(src)) { 1224 nodemask_t *nodemask; 1225 struct hstate *h; 1226 1227 h = folio_hstate(src); 1228 gfp = htlb_alloc_mask(h); 1229 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 1230 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp); 1231 } 1232 1233 if (folio_test_large(src)) 1234 gfp = GFP_TRANSHUGE; 1235 else 1236 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP; 1237 1238 page = alloc_pages_mpol(gfp, order, pol, ilx, nid); 1239 return page_rmappable_folio(page); 1240 } 1241 #else 1242 1243 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1244 unsigned long flags) 1245 { 1246 return false; 1247 } 1248 1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1250 const nodemask_t *to, int flags) 1251 { 1252 return -ENOSYS; 1253 } 1254 1255 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1256 unsigned long private) 1257 { 1258 return NULL; 1259 } 1260 #endif 1261 1262 static long do_mbind(unsigned long start, unsigned long len, 1263 unsigned short mode, unsigned short mode_flags, 1264 nodemask_t *nmask, unsigned long flags) 1265 { 1266 struct mm_struct *mm = current->mm; 1267 struct vm_area_struct *vma, *prev; 1268 struct vma_iterator vmi; 1269 struct migration_mpol mmpol; 1270 struct mempolicy *new; 1271 unsigned long end; 1272 long err; 1273 long nr_failed; 1274 LIST_HEAD(pagelist); 1275 1276 if (flags & ~(unsigned long)MPOL_MF_VALID) 1277 return -EINVAL; 1278 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1279 return -EPERM; 1280 1281 if (start & ~PAGE_MASK) 1282 return -EINVAL; 1283 1284 if (mode == MPOL_DEFAULT) 1285 flags &= ~MPOL_MF_STRICT; 1286 1287 len = PAGE_ALIGN(len); 1288 end = start + len; 1289 1290 if (end < start) 1291 return -EINVAL; 1292 if (end == start) 1293 return 0; 1294 1295 new = mpol_new(mode, mode_flags, nmask); 1296 if (IS_ERR(new)) 1297 return PTR_ERR(new); 1298 1299 /* 1300 * If we are using the default policy then operation 1301 * on discontinuous address spaces is okay after all 1302 */ 1303 if (!new) 1304 flags |= MPOL_MF_DISCONTIG_OK; 1305 1306 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1307 lru_cache_disable(); 1308 { 1309 NODEMASK_SCRATCH(scratch); 1310 if (scratch) { 1311 mmap_write_lock(mm); 1312 err = mpol_set_nodemask(new, nmask, scratch); 1313 if (err) 1314 mmap_write_unlock(mm); 1315 } else 1316 err = -ENOMEM; 1317 NODEMASK_SCRATCH_FREE(scratch); 1318 } 1319 if (err) 1320 goto mpol_out; 1321 1322 /* 1323 * Lock the VMAs before scanning for pages to migrate, 1324 * to ensure we don't miss a concurrently inserted page. 1325 */ 1326 nr_failed = queue_pages_range(mm, start, end, nmask, 1327 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); 1328 1329 if (nr_failed < 0) { 1330 err = nr_failed; 1331 nr_failed = 0; 1332 } else { 1333 vma_iter_init(&vmi, mm, start); 1334 prev = vma_prev(&vmi); 1335 for_each_vma_range(vmi, vma, end) { 1336 err = mbind_range(&vmi, vma, &prev, start, end, new); 1337 if (err) 1338 break; 1339 } 1340 } 1341 1342 if (!err && !list_empty(&pagelist)) { 1343 /* Convert MPOL_DEFAULT's NULL to task or default policy */ 1344 if (!new) { 1345 new = get_task_policy(current); 1346 mpol_get(new); 1347 } 1348 mmpol.pol = new; 1349 mmpol.ilx = 0; 1350 1351 /* 1352 * In the interleaved case, attempt to allocate on exactly the 1353 * targeted nodes, for the first VMA to be migrated; for later 1354 * VMAs, the nodes will still be interleaved from the targeted 1355 * nodemask, but one by one may be selected differently. 1356 */ 1357 if (new->mode == MPOL_INTERLEAVE || 1358 new->mode == MPOL_WEIGHTED_INTERLEAVE) { 1359 struct page *page; 1360 unsigned int order; 1361 unsigned long addr = -EFAULT; 1362 1363 list_for_each_entry(page, &pagelist, lru) { 1364 if (!PageKsm(page)) 1365 break; 1366 } 1367 if (!list_entry_is_head(page, &pagelist, lru)) { 1368 vma_iter_init(&vmi, mm, start); 1369 for_each_vma_range(vmi, vma, end) { 1370 addr = page_address_in_vma(page, vma); 1371 if (addr != -EFAULT) 1372 break; 1373 } 1374 } 1375 if (addr != -EFAULT) { 1376 order = compound_order(page); 1377 /* We already know the pol, but not the ilx */ 1378 mpol_cond_put(get_vma_policy(vma, addr, order, 1379 &mmpol.ilx)); 1380 /* Set base from which to increment by index */ 1381 mmpol.ilx -= page->index >> order; 1382 } 1383 } 1384 } 1385 1386 mmap_write_unlock(mm); 1387 1388 if (!err && !list_empty(&pagelist)) { 1389 nr_failed |= migrate_pages(&pagelist, 1390 alloc_migration_target_by_mpol, NULL, 1391 (unsigned long)&mmpol, MIGRATE_SYNC, 1392 MR_MEMPOLICY_MBIND, NULL); 1393 } 1394 1395 if (nr_failed && (flags & MPOL_MF_STRICT)) 1396 err = -EIO; 1397 if (!list_empty(&pagelist)) 1398 putback_movable_pages(&pagelist); 1399 mpol_out: 1400 mpol_put(new); 1401 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1402 lru_cache_enable(); 1403 return err; 1404 } 1405 1406 /* 1407 * User space interface with variable sized bitmaps for nodelists. 1408 */ 1409 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1410 unsigned long maxnode) 1411 { 1412 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1413 int ret; 1414 1415 if (in_compat_syscall()) 1416 ret = compat_get_bitmap(mask, 1417 (const compat_ulong_t __user *)nmask, 1418 maxnode); 1419 else 1420 ret = copy_from_user(mask, nmask, 1421 nlongs * sizeof(unsigned long)); 1422 1423 if (ret) 1424 return -EFAULT; 1425 1426 if (maxnode % BITS_PER_LONG) 1427 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1428 1429 return 0; 1430 } 1431 1432 /* Copy a node mask from user space. */ 1433 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1434 unsigned long maxnode) 1435 { 1436 --maxnode; 1437 nodes_clear(*nodes); 1438 if (maxnode == 0 || !nmask) 1439 return 0; 1440 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1441 return -EINVAL; 1442 1443 /* 1444 * When the user specified more nodes than supported just check 1445 * if the non supported part is all zero, one word at a time, 1446 * starting at the end. 1447 */ 1448 while (maxnode > MAX_NUMNODES) { 1449 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1450 unsigned long t; 1451 1452 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1453 return -EFAULT; 1454 1455 if (maxnode - bits >= MAX_NUMNODES) { 1456 maxnode -= bits; 1457 } else { 1458 maxnode = MAX_NUMNODES; 1459 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1460 } 1461 if (t) 1462 return -EINVAL; 1463 } 1464 1465 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1466 } 1467 1468 /* Copy a kernel node mask to user space */ 1469 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1470 nodemask_t *nodes) 1471 { 1472 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1473 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1474 bool compat = in_compat_syscall(); 1475 1476 if (compat) 1477 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1478 1479 if (copy > nbytes) { 1480 if (copy > PAGE_SIZE) 1481 return -EINVAL; 1482 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1483 return -EFAULT; 1484 copy = nbytes; 1485 maxnode = nr_node_ids; 1486 } 1487 1488 if (compat) 1489 return compat_put_bitmap((compat_ulong_t __user *)mask, 1490 nodes_addr(*nodes), maxnode); 1491 1492 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1493 } 1494 1495 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1496 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1497 { 1498 *flags = *mode & MPOL_MODE_FLAGS; 1499 *mode &= ~MPOL_MODE_FLAGS; 1500 1501 if ((unsigned int)(*mode) >= MPOL_MAX) 1502 return -EINVAL; 1503 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1504 return -EINVAL; 1505 if (*flags & MPOL_F_NUMA_BALANCING) { 1506 if (*mode != MPOL_BIND) 1507 return -EINVAL; 1508 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1509 } 1510 return 0; 1511 } 1512 1513 static long kernel_mbind(unsigned long start, unsigned long len, 1514 unsigned long mode, const unsigned long __user *nmask, 1515 unsigned long maxnode, unsigned int flags) 1516 { 1517 unsigned short mode_flags; 1518 nodemask_t nodes; 1519 int lmode = mode; 1520 int err; 1521 1522 start = untagged_addr(start); 1523 err = sanitize_mpol_flags(&lmode, &mode_flags); 1524 if (err) 1525 return err; 1526 1527 err = get_nodes(&nodes, nmask, maxnode); 1528 if (err) 1529 return err; 1530 1531 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1532 } 1533 1534 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1535 unsigned long, home_node, unsigned long, flags) 1536 { 1537 struct mm_struct *mm = current->mm; 1538 struct vm_area_struct *vma, *prev; 1539 struct mempolicy *new, *old; 1540 unsigned long end; 1541 int err = -ENOENT; 1542 VMA_ITERATOR(vmi, mm, start); 1543 1544 start = untagged_addr(start); 1545 if (start & ~PAGE_MASK) 1546 return -EINVAL; 1547 /* 1548 * flags is used for future extension if any. 1549 */ 1550 if (flags != 0) 1551 return -EINVAL; 1552 1553 /* 1554 * Check home_node is online to avoid accessing uninitialized 1555 * NODE_DATA. 1556 */ 1557 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1558 return -EINVAL; 1559 1560 len = PAGE_ALIGN(len); 1561 end = start + len; 1562 1563 if (end < start) 1564 return -EINVAL; 1565 if (end == start) 1566 return 0; 1567 mmap_write_lock(mm); 1568 prev = vma_prev(&vmi); 1569 for_each_vma_range(vmi, vma, end) { 1570 /* 1571 * If any vma in the range got policy other than MPOL_BIND 1572 * or MPOL_PREFERRED_MANY we return error. We don't reset 1573 * the home node for vmas we already updated before. 1574 */ 1575 old = vma_policy(vma); 1576 if (!old) { 1577 prev = vma; 1578 continue; 1579 } 1580 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1581 err = -EOPNOTSUPP; 1582 break; 1583 } 1584 new = mpol_dup(old); 1585 if (IS_ERR(new)) { 1586 err = PTR_ERR(new); 1587 break; 1588 } 1589 1590 vma_start_write(vma); 1591 new->home_node = home_node; 1592 err = mbind_range(&vmi, vma, &prev, start, end, new); 1593 mpol_put(new); 1594 if (err) 1595 break; 1596 } 1597 mmap_write_unlock(mm); 1598 return err; 1599 } 1600 1601 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1602 unsigned long, mode, const unsigned long __user *, nmask, 1603 unsigned long, maxnode, unsigned int, flags) 1604 { 1605 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1606 } 1607 1608 /* Set the process memory policy */ 1609 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1610 unsigned long maxnode) 1611 { 1612 unsigned short mode_flags; 1613 nodemask_t nodes; 1614 int lmode = mode; 1615 int err; 1616 1617 err = sanitize_mpol_flags(&lmode, &mode_flags); 1618 if (err) 1619 return err; 1620 1621 err = get_nodes(&nodes, nmask, maxnode); 1622 if (err) 1623 return err; 1624 1625 return do_set_mempolicy(lmode, mode_flags, &nodes); 1626 } 1627 1628 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1629 unsigned long, maxnode) 1630 { 1631 return kernel_set_mempolicy(mode, nmask, maxnode); 1632 } 1633 1634 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1635 const unsigned long __user *old_nodes, 1636 const unsigned long __user *new_nodes) 1637 { 1638 struct mm_struct *mm = NULL; 1639 struct task_struct *task; 1640 nodemask_t task_nodes; 1641 int err; 1642 nodemask_t *old; 1643 nodemask_t *new; 1644 NODEMASK_SCRATCH(scratch); 1645 1646 if (!scratch) 1647 return -ENOMEM; 1648 1649 old = &scratch->mask1; 1650 new = &scratch->mask2; 1651 1652 err = get_nodes(old, old_nodes, maxnode); 1653 if (err) 1654 goto out; 1655 1656 err = get_nodes(new, new_nodes, maxnode); 1657 if (err) 1658 goto out; 1659 1660 /* Find the mm_struct */ 1661 rcu_read_lock(); 1662 task = pid ? find_task_by_vpid(pid) : current; 1663 if (!task) { 1664 rcu_read_unlock(); 1665 err = -ESRCH; 1666 goto out; 1667 } 1668 get_task_struct(task); 1669 1670 err = -EINVAL; 1671 1672 /* 1673 * Check if this process has the right to modify the specified process. 1674 * Use the regular "ptrace_may_access()" checks. 1675 */ 1676 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1677 rcu_read_unlock(); 1678 err = -EPERM; 1679 goto out_put; 1680 } 1681 rcu_read_unlock(); 1682 1683 task_nodes = cpuset_mems_allowed(task); 1684 /* Is the user allowed to access the target nodes? */ 1685 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1686 err = -EPERM; 1687 goto out_put; 1688 } 1689 1690 task_nodes = cpuset_mems_allowed(current); 1691 nodes_and(*new, *new, task_nodes); 1692 if (nodes_empty(*new)) 1693 goto out_put; 1694 1695 err = security_task_movememory(task); 1696 if (err) 1697 goto out_put; 1698 1699 mm = get_task_mm(task); 1700 put_task_struct(task); 1701 1702 if (!mm) { 1703 err = -EINVAL; 1704 goto out; 1705 } 1706 1707 err = do_migrate_pages(mm, old, new, 1708 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1709 1710 mmput(mm); 1711 out: 1712 NODEMASK_SCRATCH_FREE(scratch); 1713 1714 return err; 1715 1716 out_put: 1717 put_task_struct(task); 1718 goto out; 1719 } 1720 1721 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1722 const unsigned long __user *, old_nodes, 1723 const unsigned long __user *, new_nodes) 1724 { 1725 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1726 } 1727 1728 /* Retrieve NUMA policy */ 1729 static int kernel_get_mempolicy(int __user *policy, 1730 unsigned long __user *nmask, 1731 unsigned long maxnode, 1732 unsigned long addr, 1733 unsigned long flags) 1734 { 1735 int err; 1736 int pval; 1737 nodemask_t nodes; 1738 1739 if (nmask != NULL && maxnode < nr_node_ids) 1740 return -EINVAL; 1741 1742 addr = untagged_addr(addr); 1743 1744 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1745 1746 if (err) 1747 return err; 1748 1749 if (policy && put_user(pval, policy)) 1750 return -EFAULT; 1751 1752 if (nmask) 1753 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1754 1755 return err; 1756 } 1757 1758 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1759 unsigned long __user *, nmask, unsigned long, maxnode, 1760 unsigned long, addr, unsigned long, flags) 1761 { 1762 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1763 } 1764 1765 bool vma_migratable(struct vm_area_struct *vma) 1766 { 1767 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1768 return false; 1769 1770 /* 1771 * DAX device mappings require predictable access latency, so avoid 1772 * incurring periodic faults. 1773 */ 1774 if (vma_is_dax(vma)) 1775 return false; 1776 1777 if (is_vm_hugetlb_page(vma) && 1778 !hugepage_migration_supported(hstate_vma(vma))) 1779 return false; 1780 1781 /* 1782 * Migration allocates pages in the highest zone. If we cannot 1783 * do so then migration (at least from node to node) is not 1784 * possible. 1785 */ 1786 if (vma->vm_file && 1787 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1788 < policy_zone) 1789 return false; 1790 return true; 1791 } 1792 1793 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1794 unsigned long addr, pgoff_t *ilx) 1795 { 1796 *ilx = 0; 1797 return (vma->vm_ops && vma->vm_ops->get_policy) ? 1798 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy; 1799 } 1800 1801 /* 1802 * get_vma_policy(@vma, @addr, @order, @ilx) 1803 * @vma: virtual memory area whose policy is sought 1804 * @addr: address in @vma for shared policy lookup 1805 * @order: 0, or appropriate huge_page_order for interleaving 1806 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or 1807 * MPOL_WEIGHTED_INTERLEAVE 1808 * 1809 * Returns effective policy for a VMA at specified address. 1810 * Falls back to current->mempolicy or system default policy, as necessary. 1811 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1812 * count--added by the get_policy() vm_op, as appropriate--to protect against 1813 * freeing by another task. It is the caller's responsibility to free the 1814 * extra reference for shared policies. 1815 */ 1816 struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1817 unsigned long addr, int order, pgoff_t *ilx) 1818 { 1819 struct mempolicy *pol; 1820 1821 pol = __get_vma_policy(vma, addr, ilx); 1822 if (!pol) 1823 pol = get_task_policy(current); 1824 if (pol->mode == MPOL_INTERLEAVE || 1825 pol->mode == MPOL_WEIGHTED_INTERLEAVE) { 1826 *ilx += vma->vm_pgoff >> order; 1827 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); 1828 } 1829 return pol; 1830 } 1831 1832 bool vma_policy_mof(struct vm_area_struct *vma) 1833 { 1834 struct mempolicy *pol; 1835 1836 if (vma->vm_ops && vma->vm_ops->get_policy) { 1837 bool ret = false; 1838 pgoff_t ilx; /* ignored here */ 1839 1840 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx); 1841 if (pol && (pol->flags & MPOL_F_MOF)) 1842 ret = true; 1843 mpol_cond_put(pol); 1844 1845 return ret; 1846 } 1847 1848 pol = vma->vm_policy; 1849 if (!pol) 1850 pol = get_task_policy(current); 1851 1852 return pol->flags & MPOL_F_MOF; 1853 } 1854 1855 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1856 { 1857 enum zone_type dynamic_policy_zone = policy_zone; 1858 1859 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1860 1861 /* 1862 * if policy->nodes has movable memory only, 1863 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1864 * 1865 * policy->nodes is intersect with node_states[N_MEMORY]. 1866 * so if the following test fails, it implies 1867 * policy->nodes has movable memory only. 1868 */ 1869 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1870 dynamic_policy_zone = ZONE_MOVABLE; 1871 1872 return zone >= dynamic_policy_zone; 1873 } 1874 1875 static unsigned int weighted_interleave_nodes(struct mempolicy *policy) 1876 { 1877 unsigned int node; 1878 unsigned int cpuset_mems_cookie; 1879 1880 retry: 1881 /* to prevent miscount use tsk->mems_allowed_seq to detect rebind */ 1882 cpuset_mems_cookie = read_mems_allowed_begin(); 1883 node = current->il_prev; 1884 if (!current->il_weight || !node_isset(node, policy->nodes)) { 1885 node = next_node_in(node, policy->nodes); 1886 if (read_mems_allowed_retry(cpuset_mems_cookie)) 1887 goto retry; 1888 if (node == MAX_NUMNODES) 1889 return node; 1890 current->il_prev = node; 1891 current->il_weight = get_il_weight(node); 1892 } 1893 current->il_weight--; 1894 return node; 1895 } 1896 1897 /* Do dynamic interleaving for a process */ 1898 static unsigned int interleave_nodes(struct mempolicy *policy) 1899 { 1900 unsigned int nid; 1901 unsigned int cpuset_mems_cookie; 1902 1903 /* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */ 1904 do { 1905 cpuset_mems_cookie = read_mems_allowed_begin(); 1906 nid = next_node_in(current->il_prev, policy->nodes); 1907 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1908 1909 if (nid < MAX_NUMNODES) 1910 current->il_prev = nid; 1911 return nid; 1912 } 1913 1914 /* 1915 * Depending on the memory policy provide a node from which to allocate the 1916 * next slab entry. 1917 */ 1918 unsigned int mempolicy_slab_node(void) 1919 { 1920 struct mempolicy *policy; 1921 int node = numa_mem_id(); 1922 1923 if (!in_task()) 1924 return node; 1925 1926 policy = current->mempolicy; 1927 if (!policy) 1928 return node; 1929 1930 switch (policy->mode) { 1931 case MPOL_PREFERRED: 1932 return first_node(policy->nodes); 1933 1934 case MPOL_INTERLEAVE: 1935 return interleave_nodes(policy); 1936 1937 case MPOL_WEIGHTED_INTERLEAVE: 1938 return weighted_interleave_nodes(policy); 1939 1940 case MPOL_BIND: 1941 case MPOL_PREFERRED_MANY: 1942 { 1943 struct zoneref *z; 1944 1945 /* 1946 * Follow bind policy behavior and start allocation at the 1947 * first node. 1948 */ 1949 struct zonelist *zonelist; 1950 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1951 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1952 z = first_zones_zonelist(zonelist, highest_zoneidx, 1953 &policy->nodes); 1954 return z->zone ? zone_to_nid(z->zone) : node; 1955 } 1956 case MPOL_LOCAL: 1957 return node; 1958 1959 default: 1960 BUG(); 1961 } 1962 } 1963 1964 static unsigned int read_once_policy_nodemask(struct mempolicy *pol, 1965 nodemask_t *mask) 1966 { 1967 /* 1968 * barrier stabilizes the nodemask locally so that it can be iterated 1969 * over safely without concern for changes. Allocators validate node 1970 * selection does not violate mems_allowed, so this is safe. 1971 */ 1972 barrier(); 1973 memcpy(mask, &pol->nodes, sizeof(nodemask_t)); 1974 barrier(); 1975 return nodes_weight(*mask); 1976 } 1977 1978 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx) 1979 { 1980 nodemask_t nodemask; 1981 unsigned int target, nr_nodes; 1982 u8 *table; 1983 unsigned int weight_total = 0; 1984 u8 weight; 1985 int nid; 1986 1987 nr_nodes = read_once_policy_nodemask(pol, &nodemask); 1988 if (!nr_nodes) 1989 return numa_node_id(); 1990 1991 rcu_read_lock(); 1992 table = rcu_dereference(iw_table); 1993 /* calculate the total weight */ 1994 for_each_node_mask(nid, nodemask) { 1995 /* detect system default usage */ 1996 weight = table ? table[nid] : 1; 1997 weight = weight ? weight : 1; 1998 weight_total += weight; 1999 } 2000 2001 /* Calculate the node offset based on totals */ 2002 target = ilx % weight_total; 2003 nid = first_node(nodemask); 2004 while (target) { 2005 /* detect system default usage */ 2006 weight = table ? table[nid] : 1; 2007 weight = weight ? weight : 1; 2008 if (target < weight) 2009 break; 2010 target -= weight; 2011 nid = next_node_in(nid, nodemask); 2012 } 2013 rcu_read_unlock(); 2014 return nid; 2015 } 2016 2017 /* 2018 * Do static interleaving for interleave index @ilx. Returns the ilx'th 2019 * node in pol->nodes (starting from ilx=0), wrapping around if ilx 2020 * exceeds the number of present nodes. 2021 */ 2022 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx) 2023 { 2024 nodemask_t nodemask; 2025 unsigned int target, nnodes; 2026 int i; 2027 int nid; 2028 2029 nnodes = read_once_policy_nodemask(pol, &nodemask); 2030 if (!nnodes) 2031 return numa_node_id(); 2032 target = ilx % nnodes; 2033 nid = first_node(nodemask); 2034 for (i = 0; i < target; i++) 2035 nid = next_node(nid, nodemask); 2036 return nid; 2037 } 2038 2039 /* 2040 * Return a nodemask representing a mempolicy for filtering nodes for 2041 * page allocation, together with preferred node id (or the input node id). 2042 */ 2043 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 2044 pgoff_t ilx, int *nid) 2045 { 2046 nodemask_t *nodemask = NULL; 2047 2048 switch (pol->mode) { 2049 case MPOL_PREFERRED: 2050 /* Override input node id */ 2051 *nid = first_node(pol->nodes); 2052 break; 2053 case MPOL_PREFERRED_MANY: 2054 nodemask = &pol->nodes; 2055 if (pol->home_node != NUMA_NO_NODE) 2056 *nid = pol->home_node; 2057 break; 2058 case MPOL_BIND: 2059 /* Restrict to nodemask (but not on lower zones) */ 2060 if (apply_policy_zone(pol, gfp_zone(gfp)) && 2061 cpuset_nodemask_valid_mems_allowed(&pol->nodes)) 2062 nodemask = &pol->nodes; 2063 if (pol->home_node != NUMA_NO_NODE) 2064 *nid = pol->home_node; 2065 /* 2066 * __GFP_THISNODE shouldn't even be used with the bind policy 2067 * because we might easily break the expectation to stay on the 2068 * requested node and not break the policy. 2069 */ 2070 WARN_ON_ONCE(gfp & __GFP_THISNODE); 2071 break; 2072 case MPOL_INTERLEAVE: 2073 /* Override input node id */ 2074 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 2075 interleave_nodes(pol) : interleave_nid(pol, ilx); 2076 break; 2077 case MPOL_WEIGHTED_INTERLEAVE: 2078 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 2079 weighted_interleave_nodes(pol) : 2080 weighted_interleave_nid(pol, ilx); 2081 break; 2082 } 2083 2084 return nodemask; 2085 } 2086 2087 #ifdef CONFIG_HUGETLBFS 2088 /* 2089 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2090 * @vma: virtual memory area whose policy is sought 2091 * @addr: address in @vma for shared policy lookup and interleave policy 2092 * @gfp_flags: for requested zone 2093 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2094 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2095 * 2096 * Returns a nid suitable for a huge page allocation and a pointer 2097 * to the struct mempolicy for conditional unref after allocation. 2098 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2099 * to the mempolicy's @nodemask for filtering the zonelist. 2100 */ 2101 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2102 struct mempolicy **mpol, nodemask_t **nodemask) 2103 { 2104 pgoff_t ilx; 2105 int nid; 2106 2107 nid = numa_node_id(); 2108 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx); 2109 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid); 2110 return nid; 2111 } 2112 2113 /* 2114 * init_nodemask_of_mempolicy 2115 * 2116 * If the current task's mempolicy is "default" [NULL], return 'false' 2117 * to indicate default policy. Otherwise, extract the policy nodemask 2118 * for 'bind' or 'interleave' policy into the argument nodemask, or 2119 * initialize the argument nodemask to contain the single node for 2120 * 'preferred' or 'local' policy and return 'true' to indicate presence 2121 * of non-default mempolicy. 2122 * 2123 * We don't bother with reference counting the mempolicy [mpol_get/put] 2124 * because the current task is examining it's own mempolicy and a task's 2125 * mempolicy is only ever changed by the task itself. 2126 * 2127 * N.B., it is the caller's responsibility to free a returned nodemask. 2128 */ 2129 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2130 { 2131 struct mempolicy *mempolicy; 2132 2133 if (!(mask && current->mempolicy)) 2134 return false; 2135 2136 task_lock(current); 2137 mempolicy = current->mempolicy; 2138 switch (mempolicy->mode) { 2139 case MPOL_PREFERRED: 2140 case MPOL_PREFERRED_MANY: 2141 case MPOL_BIND: 2142 case MPOL_INTERLEAVE: 2143 case MPOL_WEIGHTED_INTERLEAVE: 2144 *mask = mempolicy->nodes; 2145 break; 2146 2147 case MPOL_LOCAL: 2148 init_nodemask_of_node(mask, numa_node_id()); 2149 break; 2150 2151 default: 2152 BUG(); 2153 } 2154 task_unlock(current); 2155 2156 return true; 2157 } 2158 #endif 2159 2160 /* 2161 * mempolicy_in_oom_domain 2162 * 2163 * If tsk's mempolicy is "bind", check for intersection between mask and 2164 * the policy nodemask. Otherwise, return true for all other policies 2165 * including "interleave", as a tsk with "interleave" policy may have 2166 * memory allocated from all nodes in system. 2167 * 2168 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2169 */ 2170 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2171 const nodemask_t *mask) 2172 { 2173 struct mempolicy *mempolicy; 2174 bool ret = true; 2175 2176 if (!mask) 2177 return ret; 2178 2179 task_lock(tsk); 2180 mempolicy = tsk->mempolicy; 2181 if (mempolicy && mempolicy->mode == MPOL_BIND) 2182 ret = nodes_intersects(mempolicy->nodes, *mask); 2183 task_unlock(tsk); 2184 2185 return ret; 2186 } 2187 2188 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2189 int nid, nodemask_t *nodemask) 2190 { 2191 struct page *page; 2192 gfp_t preferred_gfp; 2193 2194 /* 2195 * This is a two pass approach. The first pass will only try the 2196 * preferred nodes but skip the direct reclaim and allow the 2197 * allocation to fail, while the second pass will try all the 2198 * nodes in system. 2199 */ 2200 preferred_gfp = gfp | __GFP_NOWARN; 2201 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2202 page = __alloc_pages(preferred_gfp, order, nid, nodemask); 2203 if (!page) 2204 page = __alloc_pages(gfp, order, nid, NULL); 2205 2206 return page; 2207 } 2208 2209 /** 2210 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy. 2211 * @gfp: GFP flags. 2212 * @order: Order of the page allocation. 2213 * @pol: Pointer to the NUMA mempolicy. 2214 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()). 2215 * @nid: Preferred node (usually numa_node_id() but @mpol may override it). 2216 * 2217 * Return: The page on success or NULL if allocation fails. 2218 */ 2219 struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, 2220 struct mempolicy *pol, pgoff_t ilx, int nid) 2221 { 2222 nodemask_t *nodemask; 2223 struct page *page; 2224 2225 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 2226 2227 if (pol->mode == MPOL_PREFERRED_MANY) 2228 return alloc_pages_preferred_many(gfp, order, nid, nodemask); 2229 2230 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2231 /* filter "hugepage" allocation, unless from alloc_pages() */ 2232 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) { 2233 /* 2234 * For hugepage allocation and non-interleave policy which 2235 * allows the current node (or other explicitly preferred 2236 * node) we only try to allocate from the current/preferred 2237 * node and don't fall back to other nodes, as the cost of 2238 * remote accesses would likely offset THP benefits. 2239 * 2240 * If the policy is interleave or does not allow the current 2241 * node in its nodemask, we allocate the standard way. 2242 */ 2243 if (pol->mode != MPOL_INTERLEAVE && 2244 pol->mode != MPOL_WEIGHTED_INTERLEAVE && 2245 (!nodemask || node_isset(nid, *nodemask))) { 2246 /* 2247 * First, try to allocate THP only on local node, but 2248 * don't reclaim unnecessarily, just compact. 2249 */ 2250 page = __alloc_pages_node(nid, 2251 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2252 if (page || !(gfp & __GFP_DIRECT_RECLAIM)) 2253 return page; 2254 /* 2255 * If hugepage allocations are configured to always 2256 * synchronous compact or the vma has been madvised 2257 * to prefer hugepage backing, retry allowing remote 2258 * memory with both reclaim and compact as well. 2259 */ 2260 } 2261 } 2262 2263 page = __alloc_pages(gfp, order, nid, nodemask); 2264 2265 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) { 2266 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */ 2267 if (static_branch_likely(&vm_numa_stat_key) && 2268 page_to_nid(page) == nid) { 2269 preempt_disable(); 2270 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2271 preempt_enable(); 2272 } 2273 } 2274 2275 return page; 2276 } 2277 2278 /** 2279 * vma_alloc_folio - Allocate a folio for a VMA. 2280 * @gfp: GFP flags. 2281 * @order: Order of the folio. 2282 * @vma: Pointer to VMA. 2283 * @addr: Virtual address of the allocation. Must be inside @vma. 2284 * @hugepage: Unused (was: For hugepages try only preferred node if possible). 2285 * 2286 * Allocate a folio for a specific address in @vma, using the appropriate 2287 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the 2288 * VMA to prevent it from going away. Should be used for all allocations 2289 * for folios that will be mapped into user space, excepting hugetlbfs, and 2290 * excepting where direct use of alloc_pages_mpol() is more appropriate. 2291 * 2292 * Return: The folio on success or NULL if allocation fails. 2293 */ 2294 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2295 unsigned long addr, bool hugepage) 2296 { 2297 struct mempolicy *pol; 2298 pgoff_t ilx; 2299 struct page *page; 2300 2301 pol = get_vma_policy(vma, addr, order, &ilx); 2302 page = alloc_pages_mpol(gfp | __GFP_COMP, order, 2303 pol, ilx, numa_node_id()); 2304 mpol_cond_put(pol); 2305 return page_rmappable_folio(page); 2306 } 2307 EXPORT_SYMBOL(vma_alloc_folio); 2308 2309 /** 2310 * alloc_pages - Allocate pages. 2311 * @gfp: GFP flags. 2312 * @order: Power of two of number of pages to allocate. 2313 * 2314 * Allocate 1 << @order contiguous pages. The physical address of the 2315 * first page is naturally aligned (eg an order-3 allocation will be aligned 2316 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2317 * process is honoured when in process context. 2318 * 2319 * Context: Can be called from any context, providing the appropriate GFP 2320 * flags are used. 2321 * Return: The page on success or NULL if allocation fails. 2322 */ 2323 struct page *alloc_pages(gfp_t gfp, unsigned int order) 2324 { 2325 struct mempolicy *pol = &default_policy; 2326 2327 /* 2328 * No reference counting needed for current->mempolicy 2329 * nor system default_policy 2330 */ 2331 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2332 pol = get_task_policy(current); 2333 2334 return alloc_pages_mpol(gfp, order, 2335 pol, NO_INTERLEAVE_INDEX, numa_node_id()); 2336 } 2337 EXPORT_SYMBOL(alloc_pages); 2338 2339 struct folio *folio_alloc(gfp_t gfp, unsigned int order) 2340 { 2341 return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order)); 2342 } 2343 EXPORT_SYMBOL(folio_alloc); 2344 2345 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2346 struct mempolicy *pol, unsigned long nr_pages, 2347 struct page **page_array) 2348 { 2349 int nodes; 2350 unsigned long nr_pages_per_node; 2351 int delta; 2352 int i; 2353 unsigned long nr_allocated; 2354 unsigned long total_allocated = 0; 2355 2356 nodes = nodes_weight(pol->nodes); 2357 nr_pages_per_node = nr_pages / nodes; 2358 delta = nr_pages - nodes * nr_pages_per_node; 2359 2360 for (i = 0; i < nodes; i++) { 2361 if (delta) { 2362 nr_allocated = __alloc_pages_bulk(gfp, 2363 interleave_nodes(pol), NULL, 2364 nr_pages_per_node + 1, NULL, 2365 page_array); 2366 delta--; 2367 } else { 2368 nr_allocated = __alloc_pages_bulk(gfp, 2369 interleave_nodes(pol), NULL, 2370 nr_pages_per_node, NULL, page_array); 2371 } 2372 2373 page_array += nr_allocated; 2374 total_allocated += nr_allocated; 2375 } 2376 2377 return total_allocated; 2378 } 2379 2380 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp, 2381 struct mempolicy *pol, unsigned long nr_pages, 2382 struct page **page_array) 2383 { 2384 struct task_struct *me = current; 2385 unsigned int cpuset_mems_cookie; 2386 unsigned long total_allocated = 0; 2387 unsigned long nr_allocated = 0; 2388 unsigned long rounds; 2389 unsigned long node_pages, delta; 2390 u8 *table, *weights, weight; 2391 unsigned int weight_total = 0; 2392 unsigned long rem_pages = nr_pages; 2393 nodemask_t nodes; 2394 int nnodes, node; 2395 int resume_node = MAX_NUMNODES - 1; 2396 u8 resume_weight = 0; 2397 int prev_node; 2398 int i; 2399 2400 if (!nr_pages) 2401 return 0; 2402 2403 /* read the nodes onto the stack, retry if done during rebind */ 2404 do { 2405 cpuset_mems_cookie = read_mems_allowed_begin(); 2406 nnodes = read_once_policy_nodemask(pol, &nodes); 2407 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2408 2409 /* if the nodemask has become invalid, we cannot do anything */ 2410 if (!nnodes) 2411 return 0; 2412 2413 /* Continue allocating from most recent node and adjust the nr_pages */ 2414 node = me->il_prev; 2415 weight = me->il_weight; 2416 if (weight && node_isset(node, nodes)) { 2417 node_pages = min(rem_pages, weight); 2418 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, 2419 NULL, page_array); 2420 page_array += nr_allocated; 2421 total_allocated += nr_allocated; 2422 /* if that's all the pages, no need to interleave */ 2423 if (rem_pages <= weight) { 2424 me->il_weight -= rem_pages; 2425 return total_allocated; 2426 } 2427 /* Otherwise we adjust remaining pages, continue from there */ 2428 rem_pages -= weight; 2429 } 2430 /* clear active weight in case of an allocation failure */ 2431 me->il_weight = 0; 2432 prev_node = node; 2433 2434 /* create a local copy of node weights to operate on outside rcu */ 2435 weights = kzalloc(nr_node_ids, GFP_KERNEL); 2436 if (!weights) 2437 return total_allocated; 2438 2439 rcu_read_lock(); 2440 table = rcu_dereference(iw_table); 2441 if (table) 2442 memcpy(weights, table, nr_node_ids); 2443 rcu_read_unlock(); 2444 2445 /* calculate total, detect system default usage */ 2446 for_each_node_mask(node, nodes) { 2447 if (!weights[node]) 2448 weights[node] = 1; 2449 weight_total += weights[node]; 2450 } 2451 2452 /* 2453 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls. 2454 * Track which node weighted interleave should resume from. 2455 * 2456 * if (rounds > 0) and (delta == 0), resume_node will always be 2457 * the node following prev_node and its weight. 2458 */ 2459 rounds = rem_pages / weight_total; 2460 delta = rem_pages % weight_total; 2461 resume_node = next_node_in(prev_node, nodes); 2462 resume_weight = weights[resume_node]; 2463 for (i = 0; i < nnodes; i++) { 2464 node = next_node_in(prev_node, nodes); 2465 weight = weights[node]; 2466 node_pages = weight * rounds; 2467 /* If a delta exists, add this node's portion of the delta */ 2468 if (delta > weight) { 2469 node_pages += weight; 2470 delta -= weight; 2471 } else if (delta) { 2472 /* when delta is depleted, resume from that node */ 2473 node_pages += delta; 2474 resume_node = node; 2475 resume_weight = weight - delta; 2476 delta = 0; 2477 } 2478 /* node_pages can be 0 if an allocation fails and rounds == 0 */ 2479 if (!node_pages) 2480 break; 2481 nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages, 2482 NULL, page_array); 2483 page_array += nr_allocated; 2484 total_allocated += nr_allocated; 2485 if (total_allocated == nr_pages) 2486 break; 2487 prev_node = node; 2488 } 2489 me->il_prev = resume_node; 2490 me->il_weight = resume_weight; 2491 kfree(weights); 2492 return total_allocated; 2493 } 2494 2495 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2496 struct mempolicy *pol, unsigned long nr_pages, 2497 struct page **page_array) 2498 { 2499 gfp_t preferred_gfp; 2500 unsigned long nr_allocated = 0; 2501 2502 preferred_gfp = gfp | __GFP_NOWARN; 2503 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2504 2505 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2506 nr_pages, NULL, page_array); 2507 2508 if (nr_allocated < nr_pages) 2509 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2510 nr_pages - nr_allocated, NULL, 2511 page_array + nr_allocated); 2512 return nr_allocated; 2513 } 2514 2515 /* alloc pages bulk and mempolicy should be considered at the 2516 * same time in some situation such as vmalloc. 2517 * 2518 * It can accelerate memory allocation especially interleaving 2519 * allocate memory. 2520 */ 2521 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2522 unsigned long nr_pages, struct page **page_array) 2523 { 2524 struct mempolicy *pol = &default_policy; 2525 nodemask_t *nodemask; 2526 int nid; 2527 2528 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2529 pol = get_task_policy(current); 2530 2531 if (pol->mode == MPOL_INTERLEAVE) 2532 return alloc_pages_bulk_array_interleave(gfp, pol, 2533 nr_pages, page_array); 2534 2535 if (pol->mode == MPOL_WEIGHTED_INTERLEAVE) 2536 return alloc_pages_bulk_array_weighted_interleave( 2537 gfp, pol, nr_pages, page_array); 2538 2539 if (pol->mode == MPOL_PREFERRED_MANY) 2540 return alloc_pages_bulk_array_preferred_many(gfp, 2541 numa_node_id(), pol, nr_pages, page_array); 2542 2543 nid = numa_node_id(); 2544 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid); 2545 return __alloc_pages_bulk(gfp, nid, nodemask, 2546 nr_pages, NULL, page_array); 2547 } 2548 2549 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2550 { 2551 struct mempolicy *pol = mpol_dup(src->vm_policy); 2552 2553 if (IS_ERR(pol)) 2554 return PTR_ERR(pol); 2555 dst->vm_policy = pol; 2556 return 0; 2557 } 2558 2559 /* 2560 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2561 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2562 * with the mems_allowed returned by cpuset_mems_allowed(). This 2563 * keeps mempolicies cpuset relative after its cpuset moves. See 2564 * further kernel/cpuset.c update_nodemask(). 2565 * 2566 * current's mempolicy may be rebinded by the other task(the task that changes 2567 * cpuset's mems), so we needn't do rebind work for current task. 2568 */ 2569 2570 /* Slow path of a mempolicy duplicate */ 2571 struct mempolicy *__mpol_dup(struct mempolicy *old) 2572 { 2573 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2574 2575 if (!new) 2576 return ERR_PTR(-ENOMEM); 2577 2578 /* task's mempolicy is protected by alloc_lock */ 2579 if (old == current->mempolicy) { 2580 task_lock(current); 2581 *new = *old; 2582 task_unlock(current); 2583 } else 2584 *new = *old; 2585 2586 if (current_cpuset_is_being_rebound()) { 2587 nodemask_t mems = cpuset_mems_allowed(current); 2588 mpol_rebind_policy(new, &mems); 2589 } 2590 atomic_set(&new->refcnt, 1); 2591 return new; 2592 } 2593 2594 /* Slow path of a mempolicy comparison */ 2595 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2596 { 2597 if (!a || !b) 2598 return false; 2599 if (a->mode != b->mode) 2600 return false; 2601 if (a->flags != b->flags) 2602 return false; 2603 if (a->home_node != b->home_node) 2604 return false; 2605 if (mpol_store_user_nodemask(a)) 2606 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2607 return false; 2608 2609 switch (a->mode) { 2610 case MPOL_BIND: 2611 case MPOL_INTERLEAVE: 2612 case MPOL_PREFERRED: 2613 case MPOL_PREFERRED_MANY: 2614 case MPOL_WEIGHTED_INTERLEAVE: 2615 return !!nodes_equal(a->nodes, b->nodes); 2616 case MPOL_LOCAL: 2617 return true; 2618 default: 2619 BUG(); 2620 return false; 2621 } 2622 } 2623 2624 /* 2625 * Shared memory backing store policy support. 2626 * 2627 * Remember policies even when nobody has shared memory mapped. 2628 * The policies are kept in Red-Black tree linked from the inode. 2629 * They are protected by the sp->lock rwlock, which should be held 2630 * for any accesses to the tree. 2631 */ 2632 2633 /* 2634 * lookup first element intersecting start-end. Caller holds sp->lock for 2635 * reading or for writing 2636 */ 2637 static struct sp_node *sp_lookup(struct shared_policy *sp, 2638 pgoff_t start, pgoff_t end) 2639 { 2640 struct rb_node *n = sp->root.rb_node; 2641 2642 while (n) { 2643 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2644 2645 if (start >= p->end) 2646 n = n->rb_right; 2647 else if (end <= p->start) 2648 n = n->rb_left; 2649 else 2650 break; 2651 } 2652 if (!n) 2653 return NULL; 2654 for (;;) { 2655 struct sp_node *w = NULL; 2656 struct rb_node *prev = rb_prev(n); 2657 if (!prev) 2658 break; 2659 w = rb_entry(prev, struct sp_node, nd); 2660 if (w->end <= start) 2661 break; 2662 n = prev; 2663 } 2664 return rb_entry(n, struct sp_node, nd); 2665 } 2666 2667 /* 2668 * Insert a new shared policy into the list. Caller holds sp->lock for 2669 * writing. 2670 */ 2671 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2672 { 2673 struct rb_node **p = &sp->root.rb_node; 2674 struct rb_node *parent = NULL; 2675 struct sp_node *nd; 2676 2677 while (*p) { 2678 parent = *p; 2679 nd = rb_entry(parent, struct sp_node, nd); 2680 if (new->start < nd->start) 2681 p = &(*p)->rb_left; 2682 else if (new->end > nd->end) 2683 p = &(*p)->rb_right; 2684 else 2685 BUG(); 2686 } 2687 rb_link_node(&new->nd, parent, p); 2688 rb_insert_color(&new->nd, &sp->root); 2689 } 2690 2691 /* Find shared policy intersecting idx */ 2692 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, 2693 pgoff_t idx) 2694 { 2695 struct mempolicy *pol = NULL; 2696 struct sp_node *sn; 2697 2698 if (!sp->root.rb_node) 2699 return NULL; 2700 read_lock(&sp->lock); 2701 sn = sp_lookup(sp, idx, idx+1); 2702 if (sn) { 2703 mpol_get(sn->policy); 2704 pol = sn->policy; 2705 } 2706 read_unlock(&sp->lock); 2707 return pol; 2708 } 2709 2710 static void sp_free(struct sp_node *n) 2711 { 2712 mpol_put(n->policy); 2713 kmem_cache_free(sn_cache, n); 2714 } 2715 2716 /** 2717 * mpol_misplaced - check whether current folio node is valid in policy 2718 * 2719 * @folio: folio to be checked 2720 * @vma: vm area where folio mapped 2721 * @addr: virtual address in @vma for shared policy lookup and interleave policy 2722 * 2723 * Lookup current policy node id for vma,addr and "compare to" folio's 2724 * node id. Policy determination "mimics" alloc_page_vma(). 2725 * Called from fault path where we know the vma and faulting address. 2726 * 2727 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2728 * policy, or a suitable node ID to allocate a replacement folio from. 2729 */ 2730 int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma, 2731 unsigned long addr) 2732 { 2733 struct mempolicy *pol; 2734 pgoff_t ilx; 2735 struct zoneref *z; 2736 int curnid = folio_nid(folio); 2737 int thiscpu = raw_smp_processor_id(); 2738 int thisnid = cpu_to_node(thiscpu); 2739 int polnid = NUMA_NO_NODE; 2740 int ret = NUMA_NO_NODE; 2741 2742 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx); 2743 if (!(pol->flags & MPOL_F_MOF)) 2744 goto out; 2745 2746 switch (pol->mode) { 2747 case MPOL_INTERLEAVE: 2748 polnid = interleave_nid(pol, ilx); 2749 break; 2750 2751 case MPOL_WEIGHTED_INTERLEAVE: 2752 polnid = weighted_interleave_nid(pol, ilx); 2753 break; 2754 2755 case MPOL_PREFERRED: 2756 if (node_isset(curnid, pol->nodes)) 2757 goto out; 2758 polnid = first_node(pol->nodes); 2759 break; 2760 2761 case MPOL_LOCAL: 2762 polnid = numa_node_id(); 2763 break; 2764 2765 case MPOL_BIND: 2766 /* Optimize placement among multiple nodes via NUMA balancing */ 2767 if (pol->flags & MPOL_F_MORON) { 2768 if (node_isset(thisnid, pol->nodes)) 2769 break; 2770 goto out; 2771 } 2772 fallthrough; 2773 2774 case MPOL_PREFERRED_MANY: 2775 /* 2776 * use current page if in policy nodemask, 2777 * else select nearest allowed node, if any. 2778 * If no allowed nodes, use current [!misplaced]. 2779 */ 2780 if (node_isset(curnid, pol->nodes)) 2781 goto out; 2782 z = first_zones_zonelist( 2783 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2784 gfp_zone(GFP_HIGHUSER), 2785 &pol->nodes); 2786 polnid = zone_to_nid(z->zone); 2787 break; 2788 2789 default: 2790 BUG(); 2791 } 2792 2793 /* Migrate the folio towards the node whose CPU is referencing it */ 2794 if (pol->flags & MPOL_F_MORON) { 2795 polnid = thisnid; 2796 2797 if (!should_numa_migrate_memory(current, folio, curnid, 2798 thiscpu)) 2799 goto out; 2800 } 2801 2802 if (curnid != polnid) 2803 ret = polnid; 2804 out: 2805 mpol_cond_put(pol); 2806 2807 return ret; 2808 } 2809 2810 /* 2811 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2812 * dropped after task->mempolicy is set to NULL so that any allocation done as 2813 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2814 * policy. 2815 */ 2816 void mpol_put_task_policy(struct task_struct *task) 2817 { 2818 struct mempolicy *pol; 2819 2820 task_lock(task); 2821 pol = task->mempolicy; 2822 task->mempolicy = NULL; 2823 task_unlock(task); 2824 mpol_put(pol); 2825 } 2826 2827 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2828 { 2829 rb_erase(&n->nd, &sp->root); 2830 sp_free(n); 2831 } 2832 2833 static void sp_node_init(struct sp_node *node, unsigned long start, 2834 unsigned long end, struct mempolicy *pol) 2835 { 2836 node->start = start; 2837 node->end = end; 2838 node->policy = pol; 2839 } 2840 2841 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2842 struct mempolicy *pol) 2843 { 2844 struct sp_node *n; 2845 struct mempolicy *newpol; 2846 2847 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2848 if (!n) 2849 return NULL; 2850 2851 newpol = mpol_dup(pol); 2852 if (IS_ERR(newpol)) { 2853 kmem_cache_free(sn_cache, n); 2854 return NULL; 2855 } 2856 newpol->flags |= MPOL_F_SHARED; 2857 sp_node_init(n, start, end, newpol); 2858 2859 return n; 2860 } 2861 2862 /* Replace a policy range. */ 2863 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start, 2864 pgoff_t end, struct sp_node *new) 2865 { 2866 struct sp_node *n; 2867 struct sp_node *n_new = NULL; 2868 struct mempolicy *mpol_new = NULL; 2869 int ret = 0; 2870 2871 restart: 2872 write_lock(&sp->lock); 2873 n = sp_lookup(sp, start, end); 2874 /* Take care of old policies in the same range. */ 2875 while (n && n->start < end) { 2876 struct rb_node *next = rb_next(&n->nd); 2877 if (n->start >= start) { 2878 if (n->end <= end) 2879 sp_delete(sp, n); 2880 else 2881 n->start = end; 2882 } else { 2883 /* Old policy spanning whole new range. */ 2884 if (n->end > end) { 2885 if (!n_new) 2886 goto alloc_new; 2887 2888 *mpol_new = *n->policy; 2889 atomic_set(&mpol_new->refcnt, 1); 2890 sp_node_init(n_new, end, n->end, mpol_new); 2891 n->end = start; 2892 sp_insert(sp, n_new); 2893 n_new = NULL; 2894 mpol_new = NULL; 2895 break; 2896 } else 2897 n->end = start; 2898 } 2899 if (!next) 2900 break; 2901 n = rb_entry(next, struct sp_node, nd); 2902 } 2903 if (new) 2904 sp_insert(sp, new); 2905 write_unlock(&sp->lock); 2906 ret = 0; 2907 2908 err_out: 2909 if (mpol_new) 2910 mpol_put(mpol_new); 2911 if (n_new) 2912 kmem_cache_free(sn_cache, n_new); 2913 2914 return ret; 2915 2916 alloc_new: 2917 write_unlock(&sp->lock); 2918 ret = -ENOMEM; 2919 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2920 if (!n_new) 2921 goto err_out; 2922 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2923 if (!mpol_new) 2924 goto err_out; 2925 atomic_set(&mpol_new->refcnt, 1); 2926 goto restart; 2927 } 2928 2929 /** 2930 * mpol_shared_policy_init - initialize shared policy for inode 2931 * @sp: pointer to inode shared policy 2932 * @mpol: struct mempolicy to install 2933 * 2934 * Install non-NULL @mpol in inode's shared policy rb-tree. 2935 * On entry, the current task has a reference on a non-NULL @mpol. 2936 * This must be released on exit. 2937 * This is called at get_inode() calls and we can use GFP_KERNEL. 2938 */ 2939 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2940 { 2941 int ret; 2942 2943 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2944 rwlock_init(&sp->lock); 2945 2946 if (mpol) { 2947 struct sp_node *sn; 2948 struct mempolicy *npol; 2949 NODEMASK_SCRATCH(scratch); 2950 2951 if (!scratch) 2952 goto put_mpol; 2953 2954 /* contextualize the tmpfs mount point mempolicy to this file */ 2955 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2956 if (IS_ERR(npol)) 2957 goto free_scratch; /* no valid nodemask intersection */ 2958 2959 task_lock(current); 2960 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch); 2961 task_unlock(current); 2962 if (ret) 2963 goto put_npol; 2964 2965 /* alloc node covering entire file; adds ref to file's npol */ 2966 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol); 2967 if (sn) 2968 sp_insert(sp, sn); 2969 put_npol: 2970 mpol_put(npol); /* drop initial ref on file's npol */ 2971 free_scratch: 2972 NODEMASK_SCRATCH_FREE(scratch); 2973 put_mpol: 2974 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2975 } 2976 } 2977 2978 int mpol_set_shared_policy(struct shared_policy *sp, 2979 struct vm_area_struct *vma, struct mempolicy *pol) 2980 { 2981 int err; 2982 struct sp_node *new = NULL; 2983 unsigned long sz = vma_pages(vma); 2984 2985 if (pol) { 2986 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol); 2987 if (!new) 2988 return -ENOMEM; 2989 } 2990 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new); 2991 if (err && new) 2992 sp_free(new); 2993 return err; 2994 } 2995 2996 /* Free a backing policy store on inode delete. */ 2997 void mpol_free_shared_policy(struct shared_policy *sp) 2998 { 2999 struct sp_node *n; 3000 struct rb_node *next; 3001 3002 if (!sp->root.rb_node) 3003 return; 3004 write_lock(&sp->lock); 3005 next = rb_first(&sp->root); 3006 while (next) { 3007 n = rb_entry(next, struct sp_node, nd); 3008 next = rb_next(&n->nd); 3009 sp_delete(sp, n); 3010 } 3011 write_unlock(&sp->lock); 3012 } 3013 3014 #ifdef CONFIG_NUMA_BALANCING 3015 static int __initdata numabalancing_override; 3016 3017 static void __init check_numabalancing_enable(void) 3018 { 3019 bool numabalancing_default = false; 3020 3021 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 3022 numabalancing_default = true; 3023 3024 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 3025 if (numabalancing_override) 3026 set_numabalancing_state(numabalancing_override == 1); 3027 3028 if (num_online_nodes() > 1 && !numabalancing_override) { 3029 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 3030 numabalancing_default ? "Enabling" : "Disabling"); 3031 set_numabalancing_state(numabalancing_default); 3032 } 3033 } 3034 3035 static int __init setup_numabalancing(char *str) 3036 { 3037 int ret = 0; 3038 if (!str) 3039 goto out; 3040 3041 if (!strcmp(str, "enable")) { 3042 numabalancing_override = 1; 3043 ret = 1; 3044 } else if (!strcmp(str, "disable")) { 3045 numabalancing_override = -1; 3046 ret = 1; 3047 } 3048 out: 3049 if (!ret) 3050 pr_warn("Unable to parse numa_balancing=\n"); 3051 3052 return ret; 3053 } 3054 __setup("numa_balancing=", setup_numabalancing); 3055 #else 3056 static inline void __init check_numabalancing_enable(void) 3057 { 3058 } 3059 #endif /* CONFIG_NUMA_BALANCING */ 3060 3061 void __init numa_policy_init(void) 3062 { 3063 nodemask_t interleave_nodes; 3064 unsigned long largest = 0; 3065 int nid, prefer = 0; 3066 3067 policy_cache = kmem_cache_create("numa_policy", 3068 sizeof(struct mempolicy), 3069 0, SLAB_PANIC, NULL); 3070 3071 sn_cache = kmem_cache_create("shared_policy_node", 3072 sizeof(struct sp_node), 3073 0, SLAB_PANIC, NULL); 3074 3075 for_each_node(nid) { 3076 preferred_node_policy[nid] = (struct mempolicy) { 3077 .refcnt = ATOMIC_INIT(1), 3078 .mode = MPOL_PREFERRED, 3079 .flags = MPOL_F_MOF | MPOL_F_MORON, 3080 .nodes = nodemask_of_node(nid), 3081 }; 3082 } 3083 3084 /* 3085 * Set interleaving policy for system init. Interleaving is only 3086 * enabled across suitably sized nodes (default is >= 16MB), or 3087 * fall back to the largest node if they're all smaller. 3088 */ 3089 nodes_clear(interleave_nodes); 3090 for_each_node_state(nid, N_MEMORY) { 3091 unsigned long total_pages = node_present_pages(nid); 3092 3093 /* Preserve the largest node */ 3094 if (largest < total_pages) { 3095 largest = total_pages; 3096 prefer = nid; 3097 } 3098 3099 /* Interleave this node? */ 3100 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 3101 node_set(nid, interleave_nodes); 3102 } 3103 3104 /* All too small, use the largest */ 3105 if (unlikely(nodes_empty(interleave_nodes))) 3106 node_set(prefer, interleave_nodes); 3107 3108 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 3109 pr_err("%s: interleaving failed\n", __func__); 3110 3111 check_numabalancing_enable(); 3112 } 3113 3114 /* Reset policy of current process to default */ 3115 void numa_default_policy(void) 3116 { 3117 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 3118 } 3119 3120 /* 3121 * Parse and format mempolicy from/to strings 3122 */ 3123 static const char * const policy_modes[] = 3124 { 3125 [MPOL_DEFAULT] = "default", 3126 [MPOL_PREFERRED] = "prefer", 3127 [MPOL_BIND] = "bind", 3128 [MPOL_INTERLEAVE] = "interleave", 3129 [MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave", 3130 [MPOL_LOCAL] = "local", 3131 [MPOL_PREFERRED_MANY] = "prefer (many)", 3132 }; 3133 3134 #ifdef CONFIG_TMPFS 3135 /** 3136 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 3137 * @str: string containing mempolicy to parse 3138 * @mpol: pointer to struct mempolicy pointer, returned on success. 3139 * 3140 * Format of input: 3141 * <mode>[=<flags>][:<nodelist>] 3142 * 3143 * Return: %0 on success, else %1 3144 */ 3145 int mpol_parse_str(char *str, struct mempolicy **mpol) 3146 { 3147 struct mempolicy *new = NULL; 3148 unsigned short mode_flags; 3149 nodemask_t nodes; 3150 char *nodelist = strchr(str, ':'); 3151 char *flags = strchr(str, '='); 3152 int err = 1, mode; 3153 3154 if (flags) 3155 *flags++ = '\0'; /* terminate mode string */ 3156 3157 if (nodelist) { 3158 /* NUL-terminate mode or flags string */ 3159 *nodelist++ = '\0'; 3160 if (nodelist_parse(nodelist, nodes)) 3161 goto out; 3162 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3163 goto out; 3164 } else 3165 nodes_clear(nodes); 3166 3167 mode = match_string(policy_modes, MPOL_MAX, str); 3168 if (mode < 0) 3169 goto out; 3170 3171 switch (mode) { 3172 case MPOL_PREFERRED: 3173 /* 3174 * Insist on a nodelist of one node only, although later 3175 * we use first_node(nodes) to grab a single node, so here 3176 * nodelist (or nodes) cannot be empty. 3177 */ 3178 if (nodelist) { 3179 char *rest = nodelist; 3180 while (isdigit(*rest)) 3181 rest++; 3182 if (*rest) 3183 goto out; 3184 if (nodes_empty(nodes)) 3185 goto out; 3186 } 3187 break; 3188 case MPOL_INTERLEAVE: 3189 case MPOL_WEIGHTED_INTERLEAVE: 3190 /* 3191 * Default to online nodes with memory if no nodelist 3192 */ 3193 if (!nodelist) 3194 nodes = node_states[N_MEMORY]; 3195 break; 3196 case MPOL_LOCAL: 3197 /* 3198 * Don't allow a nodelist; mpol_new() checks flags 3199 */ 3200 if (nodelist) 3201 goto out; 3202 break; 3203 case MPOL_DEFAULT: 3204 /* 3205 * Insist on a empty nodelist 3206 */ 3207 if (!nodelist) 3208 err = 0; 3209 goto out; 3210 case MPOL_PREFERRED_MANY: 3211 case MPOL_BIND: 3212 /* 3213 * Insist on a nodelist 3214 */ 3215 if (!nodelist) 3216 goto out; 3217 } 3218 3219 mode_flags = 0; 3220 if (flags) { 3221 /* 3222 * Currently, we only support two mutually exclusive 3223 * mode flags. 3224 */ 3225 if (!strcmp(flags, "static")) 3226 mode_flags |= MPOL_F_STATIC_NODES; 3227 else if (!strcmp(flags, "relative")) 3228 mode_flags |= MPOL_F_RELATIVE_NODES; 3229 else 3230 goto out; 3231 } 3232 3233 new = mpol_new(mode, mode_flags, &nodes); 3234 if (IS_ERR(new)) 3235 goto out; 3236 3237 /* 3238 * Save nodes for mpol_to_str() to show the tmpfs mount options 3239 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3240 */ 3241 if (mode != MPOL_PREFERRED) { 3242 new->nodes = nodes; 3243 } else if (nodelist) { 3244 nodes_clear(new->nodes); 3245 node_set(first_node(nodes), new->nodes); 3246 } else { 3247 new->mode = MPOL_LOCAL; 3248 } 3249 3250 /* 3251 * Save nodes for contextualization: this will be used to "clone" 3252 * the mempolicy in a specific context [cpuset] at a later time. 3253 */ 3254 new->w.user_nodemask = nodes; 3255 3256 err = 0; 3257 3258 out: 3259 /* Restore string for error message */ 3260 if (nodelist) 3261 *--nodelist = ':'; 3262 if (flags) 3263 *--flags = '='; 3264 if (!err) 3265 *mpol = new; 3266 return err; 3267 } 3268 #endif /* CONFIG_TMPFS */ 3269 3270 /** 3271 * mpol_to_str - format a mempolicy structure for printing 3272 * @buffer: to contain formatted mempolicy string 3273 * @maxlen: length of @buffer 3274 * @pol: pointer to mempolicy to be formatted 3275 * 3276 * Convert @pol into a string. If @buffer is too short, truncate the string. 3277 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3278 * longest flag, "relative", and to display at least a few node ids. 3279 */ 3280 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3281 { 3282 char *p = buffer; 3283 nodemask_t nodes = NODE_MASK_NONE; 3284 unsigned short mode = MPOL_DEFAULT; 3285 unsigned short flags = 0; 3286 3287 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3288 mode = pol->mode; 3289 flags = pol->flags; 3290 } 3291 3292 switch (mode) { 3293 case MPOL_DEFAULT: 3294 case MPOL_LOCAL: 3295 break; 3296 case MPOL_PREFERRED: 3297 case MPOL_PREFERRED_MANY: 3298 case MPOL_BIND: 3299 case MPOL_INTERLEAVE: 3300 case MPOL_WEIGHTED_INTERLEAVE: 3301 nodes = pol->nodes; 3302 break; 3303 default: 3304 WARN_ON_ONCE(1); 3305 snprintf(p, maxlen, "unknown"); 3306 return; 3307 } 3308 3309 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3310 3311 if (flags & MPOL_MODE_FLAGS) { 3312 p += snprintf(p, buffer + maxlen - p, "="); 3313 3314 /* 3315 * Currently, the only defined flags are mutually exclusive 3316 */ 3317 if (flags & MPOL_F_STATIC_NODES) 3318 p += snprintf(p, buffer + maxlen - p, "static"); 3319 else if (flags & MPOL_F_RELATIVE_NODES) 3320 p += snprintf(p, buffer + maxlen - p, "relative"); 3321 } 3322 3323 if (!nodes_empty(nodes)) 3324 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3325 nodemask_pr_args(&nodes)); 3326 } 3327 3328 #ifdef CONFIG_SYSFS 3329 struct iw_node_attr { 3330 struct kobj_attribute kobj_attr; 3331 int nid; 3332 }; 3333 3334 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr, 3335 char *buf) 3336 { 3337 struct iw_node_attr *node_attr; 3338 u8 weight; 3339 3340 node_attr = container_of(attr, struct iw_node_attr, kobj_attr); 3341 weight = get_il_weight(node_attr->nid); 3342 return sysfs_emit(buf, "%d\n", weight); 3343 } 3344 3345 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr, 3346 const char *buf, size_t count) 3347 { 3348 struct iw_node_attr *node_attr; 3349 u8 *new; 3350 u8 *old; 3351 u8 weight = 0; 3352 3353 node_attr = container_of(attr, struct iw_node_attr, kobj_attr); 3354 if (count == 0 || sysfs_streq(buf, "")) 3355 weight = 0; 3356 else if (kstrtou8(buf, 0, &weight)) 3357 return -EINVAL; 3358 3359 new = kzalloc(nr_node_ids, GFP_KERNEL); 3360 if (!new) 3361 return -ENOMEM; 3362 3363 mutex_lock(&iw_table_lock); 3364 old = rcu_dereference_protected(iw_table, 3365 lockdep_is_held(&iw_table_lock)); 3366 if (old) 3367 memcpy(new, old, nr_node_ids); 3368 new[node_attr->nid] = weight; 3369 rcu_assign_pointer(iw_table, new); 3370 mutex_unlock(&iw_table_lock); 3371 synchronize_rcu(); 3372 kfree(old); 3373 return count; 3374 } 3375 3376 static struct iw_node_attr **node_attrs; 3377 3378 static void sysfs_wi_node_release(struct iw_node_attr *node_attr, 3379 struct kobject *parent) 3380 { 3381 if (!node_attr) 3382 return; 3383 sysfs_remove_file(parent, &node_attr->kobj_attr.attr); 3384 kfree(node_attr->kobj_attr.attr.name); 3385 kfree(node_attr); 3386 } 3387 3388 static void sysfs_wi_release(struct kobject *wi_kobj) 3389 { 3390 int i; 3391 3392 for (i = 0; i < nr_node_ids; i++) 3393 sysfs_wi_node_release(node_attrs[i], wi_kobj); 3394 kobject_put(wi_kobj); 3395 } 3396 3397 static const struct kobj_type wi_ktype = { 3398 .sysfs_ops = &kobj_sysfs_ops, 3399 .release = sysfs_wi_release, 3400 }; 3401 3402 static int add_weight_node(int nid, struct kobject *wi_kobj) 3403 { 3404 struct iw_node_attr *node_attr; 3405 char *name; 3406 3407 node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL); 3408 if (!node_attr) 3409 return -ENOMEM; 3410 3411 name = kasprintf(GFP_KERNEL, "node%d", nid); 3412 if (!name) { 3413 kfree(node_attr); 3414 return -ENOMEM; 3415 } 3416 3417 sysfs_attr_init(&node_attr->kobj_attr.attr); 3418 node_attr->kobj_attr.attr.name = name; 3419 node_attr->kobj_attr.attr.mode = 0644; 3420 node_attr->kobj_attr.show = node_show; 3421 node_attr->kobj_attr.store = node_store; 3422 node_attr->nid = nid; 3423 3424 if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) { 3425 kfree(node_attr->kobj_attr.attr.name); 3426 kfree(node_attr); 3427 pr_err("failed to add attribute to weighted_interleave\n"); 3428 return -ENOMEM; 3429 } 3430 3431 node_attrs[nid] = node_attr; 3432 return 0; 3433 } 3434 3435 static int add_weighted_interleave_group(struct kobject *root_kobj) 3436 { 3437 struct kobject *wi_kobj; 3438 int nid, err; 3439 3440 wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); 3441 if (!wi_kobj) 3442 return -ENOMEM; 3443 3444 err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj, 3445 "weighted_interleave"); 3446 if (err) { 3447 kfree(wi_kobj); 3448 return err; 3449 } 3450 3451 for_each_node_state(nid, N_POSSIBLE) { 3452 err = add_weight_node(nid, wi_kobj); 3453 if (err) { 3454 pr_err("failed to add sysfs [node%d]\n", nid); 3455 break; 3456 } 3457 } 3458 if (err) 3459 kobject_put(wi_kobj); 3460 return 0; 3461 } 3462 3463 static void mempolicy_kobj_release(struct kobject *kobj) 3464 { 3465 u8 *old; 3466 3467 mutex_lock(&iw_table_lock); 3468 old = rcu_dereference_protected(iw_table, 3469 lockdep_is_held(&iw_table_lock)); 3470 rcu_assign_pointer(iw_table, NULL); 3471 mutex_unlock(&iw_table_lock); 3472 synchronize_rcu(); 3473 kfree(old); 3474 kfree(node_attrs); 3475 kfree(kobj); 3476 } 3477 3478 static const struct kobj_type mempolicy_ktype = { 3479 .release = mempolicy_kobj_release 3480 }; 3481 3482 static int __init mempolicy_sysfs_init(void) 3483 { 3484 int err; 3485 static struct kobject *mempolicy_kobj; 3486 3487 mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL); 3488 if (!mempolicy_kobj) { 3489 err = -ENOMEM; 3490 goto err_out; 3491 } 3492 3493 node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *), 3494 GFP_KERNEL); 3495 if (!node_attrs) { 3496 err = -ENOMEM; 3497 goto mempol_out; 3498 } 3499 3500 err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj, 3501 "mempolicy"); 3502 if (err) 3503 goto node_out; 3504 3505 err = add_weighted_interleave_group(mempolicy_kobj); 3506 if (err) { 3507 pr_err("mempolicy sysfs structure failed to initialize\n"); 3508 kobject_put(mempolicy_kobj); 3509 return err; 3510 } 3511 3512 return err; 3513 node_out: 3514 kfree(node_attrs); 3515 mempol_out: 3516 kfree(mempolicy_kobj); 3517 err_out: 3518 pr_err("failed to add mempolicy kobject to the system\n"); 3519 return err; 3520 } 3521 3522 late_initcall(mempolicy_sysfs_init); 3523 #endif /* CONFIG_SYSFS */ 3524