1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_page_add(struct page *page, struct list_head *pagelist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the page's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_pages_required(struct page *page, 436 struct queue_pages *qp) 437 { 438 int nid = page_to_nid(page); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_pages_pmd() has three possible return values: 446 * 0 - pages are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing page was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct page *page; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 page = pmd_page(*pmd); 468 if (is_huge_zero_page(page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_pages_pte_range() has three possible return values: 495 * 0 - pages are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct page *page; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_pages_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 page = vm_normal_page(vma, addr, *pte); 525 if (!page || is_zone_device_page(page)) 526 continue; 527 /* 528 * vm_normal_page() filters out zero pages, but there might 529 * still be PageReserved pages to skip, perhaps in a VDSO. 530 */ 531 if (PageReserved(page)) 532 continue; 533 if (!queue_pages_required(page, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_page_add(page, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct page *page; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 page = pte_page(entry); 578 if (!queue_pages_required(page, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced page and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced page but allow migrating pages which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 602 if (flags & (MPOL_MF_MOVE_ALL) || 603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 604 if (isolate_hugetlb(page, qp->pagelist) && 605 (flags & MPOL_MF_STRICT)) 606 /* 607 * Failed to isolate page but allow migrating pages 608 * which have been queued. 609 */ 610 ret = 1; 611 } 612 unlock: 613 spin_unlock(ptl); 614 #else 615 BUG(); 616 #endif 617 return ret; 618 } 619 620 #ifdef CONFIG_NUMA_BALANCING 621 /* 622 * This is used to mark a range of virtual addresses to be inaccessible. 623 * These are later cleared by a NUMA hinting fault. Depending on these 624 * faults, pages may be migrated for better NUMA placement. 625 * 626 * This is assuming that NUMA faults are handled using PROT_NONE. If 627 * an architecture makes a different choice, it will need further 628 * changes to the core. 629 */ 630 unsigned long change_prot_numa(struct vm_area_struct *vma, 631 unsigned long addr, unsigned long end) 632 { 633 struct mmu_gather tlb; 634 int nr_updated; 635 636 tlb_gather_mmu(&tlb, vma->vm_mm); 637 638 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE, 639 MM_CP_PROT_NUMA); 640 if (nr_updated) 641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 642 643 tlb_finish_mmu(&tlb); 644 645 return nr_updated; 646 } 647 #else 648 static unsigned long change_prot_numa(struct vm_area_struct *vma, 649 unsigned long addr, unsigned long end) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_NUMA_BALANCING */ 654 655 static int queue_pages_test_walk(unsigned long start, unsigned long end, 656 struct mm_walk *walk) 657 { 658 struct vm_area_struct *next, *vma = walk->vma; 659 struct queue_pages *qp = walk->private; 660 unsigned long endvma = vma->vm_end; 661 unsigned long flags = qp->flags; 662 663 /* range check first */ 664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 665 666 if (!qp->first) { 667 qp->first = vma; 668 if (!(flags & MPOL_MF_DISCONTIG_OK) && 669 (qp->start < vma->vm_start)) 670 /* hole at head side of range */ 671 return -EFAULT; 672 } 673 next = find_vma(vma->vm_mm, vma->vm_end); 674 if (!(flags & MPOL_MF_DISCONTIG_OK) && 675 ((vma->vm_end < qp->end) && 676 (!next || vma->vm_end < next->vm_start))) 677 /* hole at middle or tail of range */ 678 return -EFAULT; 679 680 /* 681 * Need check MPOL_MF_STRICT to return -EIO if possible 682 * regardless of vma_migratable 683 */ 684 if (!vma_migratable(vma) && 685 !(flags & MPOL_MF_STRICT)) 686 return 1; 687 688 if (endvma > end) 689 endvma = end; 690 691 if (flags & MPOL_MF_LAZY) { 692 /* Similar to task_numa_work, skip inaccessible VMAs */ 693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 694 !(vma->vm_flags & VM_MIXEDMAP)) 695 change_prot_numa(vma, start, endvma); 696 return 1; 697 } 698 699 /* queue pages from current vma */ 700 if (flags & MPOL_MF_VALID) 701 return 0; 702 return 1; 703 } 704 705 static const struct mm_walk_ops queue_pages_walk_ops = { 706 .hugetlb_entry = queue_pages_hugetlb, 707 .pmd_entry = queue_pages_pte_range, 708 .test_walk = queue_pages_test_walk, 709 }; 710 711 /* 712 * Walk through page tables and collect pages to be migrated. 713 * 714 * If pages found in a given range are on a set of nodes (determined by 715 * @nodes and @flags,) it's isolated and queued to the pagelist which is 716 * passed via @private. 717 * 718 * queue_pages_range() has three possible return values: 719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 720 * specified. 721 * 0 - queue pages successfully or no misplaced page. 722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 723 * memory range specified by nodemask and maxnode points outside 724 * your accessible address space (-EFAULT) 725 */ 726 static int 727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 728 nodemask_t *nodes, unsigned long flags, 729 struct list_head *pagelist) 730 { 731 int err; 732 struct queue_pages qp = { 733 .pagelist = pagelist, 734 .flags = flags, 735 .nmask = nodes, 736 .start = start, 737 .end = end, 738 .first = NULL, 739 }; 740 741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 742 743 if (!qp.first) 744 /* whole range in hole */ 745 err = -EFAULT; 746 747 return err; 748 } 749 750 /* 751 * Apply policy to a single VMA 752 * This must be called with the mmap_lock held for writing. 753 */ 754 static int vma_replace_policy(struct vm_area_struct *vma, 755 struct mempolicy *pol) 756 { 757 int err; 758 struct mempolicy *old; 759 struct mempolicy *new; 760 761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 762 vma->vm_start, vma->vm_end, vma->vm_pgoff, 763 vma->vm_ops, vma->vm_file, 764 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 765 766 new = mpol_dup(pol); 767 if (IS_ERR(new)) 768 return PTR_ERR(new); 769 770 if (vma->vm_ops && vma->vm_ops->set_policy) { 771 err = vma->vm_ops->set_policy(vma, new); 772 if (err) 773 goto err_out; 774 } 775 776 old = vma->vm_policy; 777 vma->vm_policy = new; /* protected by mmap_lock */ 778 mpol_put(old); 779 780 return 0; 781 err_out: 782 mpol_put(new); 783 return err; 784 } 785 786 /* Step 2: apply policy to a range and do splits. */ 787 static int mbind_range(struct mm_struct *mm, unsigned long start, 788 unsigned long end, struct mempolicy *new_pol) 789 { 790 MA_STATE(mas, &mm->mm_mt, start, start); 791 struct vm_area_struct *prev; 792 struct vm_area_struct *vma; 793 int err = 0; 794 pgoff_t pgoff; 795 796 prev = mas_prev(&mas, 0); 797 if (unlikely(!prev)) 798 mas_set(&mas, start); 799 800 vma = mas_find(&mas, end - 1); 801 if (WARN_ON(!vma)) 802 return 0; 803 804 if (start > vma->vm_start) 805 prev = vma; 806 807 for (; vma; vma = mas_next(&mas, end - 1)) { 808 unsigned long vmstart = max(start, vma->vm_start); 809 unsigned long vmend = min(end, vma->vm_end); 810 811 if (mpol_equal(vma_policy(vma), new_pol)) 812 goto next; 813 814 pgoff = vma->vm_pgoff + 815 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 816 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 817 vma->anon_vma, vma->vm_file, pgoff, 818 new_pol, vma->vm_userfaultfd_ctx, 819 anon_vma_name(vma)); 820 if (prev) { 821 /* vma_merge() invalidated the mas */ 822 mas_pause(&mas); 823 vma = prev; 824 goto replace; 825 } 826 if (vma->vm_start != vmstart) { 827 err = split_vma(vma->vm_mm, vma, vmstart, 1); 828 if (err) 829 goto out; 830 /* split_vma() invalidated the mas */ 831 mas_pause(&mas); 832 } 833 if (vma->vm_end != vmend) { 834 err = split_vma(vma->vm_mm, vma, vmend, 0); 835 if (err) 836 goto out; 837 /* split_vma() invalidated the mas */ 838 mas_pause(&mas); 839 } 840 replace: 841 err = vma_replace_policy(vma, new_pol); 842 if (err) 843 goto out; 844 next: 845 prev = vma; 846 } 847 848 out: 849 return err; 850 } 851 852 /* Set the process memory policy */ 853 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 854 nodemask_t *nodes) 855 { 856 struct mempolicy *new, *old; 857 NODEMASK_SCRATCH(scratch); 858 int ret; 859 860 if (!scratch) 861 return -ENOMEM; 862 863 new = mpol_new(mode, flags, nodes); 864 if (IS_ERR(new)) { 865 ret = PTR_ERR(new); 866 goto out; 867 } 868 869 task_lock(current); 870 ret = mpol_set_nodemask(new, nodes, scratch); 871 if (ret) { 872 task_unlock(current); 873 mpol_put(new); 874 goto out; 875 } 876 877 old = current->mempolicy; 878 current->mempolicy = new; 879 if (new && new->mode == MPOL_INTERLEAVE) 880 current->il_prev = MAX_NUMNODES-1; 881 task_unlock(current); 882 mpol_put(old); 883 ret = 0; 884 out: 885 NODEMASK_SCRATCH_FREE(scratch); 886 return ret; 887 } 888 889 /* 890 * Return nodemask for policy for get_mempolicy() query 891 * 892 * Called with task's alloc_lock held 893 */ 894 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 895 { 896 nodes_clear(*nodes); 897 if (p == &default_policy) 898 return; 899 900 switch (p->mode) { 901 case MPOL_BIND: 902 case MPOL_INTERLEAVE: 903 case MPOL_PREFERRED: 904 case MPOL_PREFERRED_MANY: 905 *nodes = p->nodes; 906 break; 907 case MPOL_LOCAL: 908 /* return empty node mask for local allocation */ 909 break; 910 default: 911 BUG(); 912 } 913 } 914 915 static int lookup_node(struct mm_struct *mm, unsigned long addr) 916 { 917 struct page *p = NULL; 918 int ret; 919 920 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 921 if (ret > 0) { 922 ret = page_to_nid(p); 923 put_page(p); 924 } 925 return ret; 926 } 927 928 /* Retrieve NUMA policy */ 929 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 930 unsigned long addr, unsigned long flags) 931 { 932 int err; 933 struct mm_struct *mm = current->mm; 934 struct vm_area_struct *vma = NULL; 935 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 936 937 if (flags & 938 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 939 return -EINVAL; 940 941 if (flags & MPOL_F_MEMS_ALLOWED) { 942 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 943 return -EINVAL; 944 *policy = 0; /* just so it's initialized */ 945 task_lock(current); 946 *nmask = cpuset_current_mems_allowed; 947 task_unlock(current); 948 return 0; 949 } 950 951 if (flags & MPOL_F_ADDR) { 952 /* 953 * Do NOT fall back to task policy if the 954 * vma/shared policy at addr is NULL. We 955 * want to return MPOL_DEFAULT in this case. 956 */ 957 mmap_read_lock(mm); 958 vma = vma_lookup(mm, addr); 959 if (!vma) { 960 mmap_read_unlock(mm); 961 return -EFAULT; 962 } 963 if (vma->vm_ops && vma->vm_ops->get_policy) 964 pol = vma->vm_ops->get_policy(vma, addr); 965 else 966 pol = vma->vm_policy; 967 } else if (addr) 968 return -EINVAL; 969 970 if (!pol) 971 pol = &default_policy; /* indicates default behavior */ 972 973 if (flags & MPOL_F_NODE) { 974 if (flags & MPOL_F_ADDR) { 975 /* 976 * Take a refcount on the mpol, because we are about to 977 * drop the mmap_lock, after which only "pol" remains 978 * valid, "vma" is stale. 979 */ 980 pol_refcount = pol; 981 vma = NULL; 982 mpol_get(pol); 983 mmap_read_unlock(mm); 984 err = lookup_node(mm, addr); 985 if (err < 0) 986 goto out; 987 *policy = err; 988 } else if (pol == current->mempolicy && 989 pol->mode == MPOL_INTERLEAVE) { 990 *policy = next_node_in(current->il_prev, pol->nodes); 991 } else { 992 err = -EINVAL; 993 goto out; 994 } 995 } else { 996 *policy = pol == &default_policy ? MPOL_DEFAULT : 997 pol->mode; 998 /* 999 * Internal mempolicy flags must be masked off before exposing 1000 * the policy to userspace. 1001 */ 1002 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1003 } 1004 1005 err = 0; 1006 if (nmask) { 1007 if (mpol_store_user_nodemask(pol)) { 1008 *nmask = pol->w.user_nodemask; 1009 } else { 1010 task_lock(current); 1011 get_policy_nodemask(pol, nmask); 1012 task_unlock(current); 1013 } 1014 } 1015 1016 out: 1017 mpol_cond_put(pol); 1018 if (vma) 1019 mmap_read_unlock(mm); 1020 if (pol_refcount) 1021 mpol_put(pol_refcount); 1022 return err; 1023 } 1024 1025 #ifdef CONFIG_MIGRATION 1026 /* 1027 * page migration, thp tail pages can be passed. 1028 */ 1029 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1030 unsigned long flags) 1031 { 1032 struct page *head = compound_head(page); 1033 /* 1034 * Avoid migrating a page that is shared with others. 1035 */ 1036 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1037 if (!isolate_lru_page(head)) { 1038 list_add_tail(&head->lru, pagelist); 1039 mod_node_page_state(page_pgdat(head), 1040 NR_ISOLATED_ANON + page_is_file_lru(head), 1041 thp_nr_pages(head)); 1042 } else if (flags & MPOL_MF_STRICT) { 1043 /* 1044 * Non-movable page may reach here. And, there may be 1045 * temporary off LRU pages or non-LRU movable pages. 1046 * Treat them as unmovable pages since they can't be 1047 * isolated, so they can't be moved at the moment. It 1048 * should return -EIO for this case too. 1049 */ 1050 return -EIO; 1051 } 1052 } 1053 1054 return 0; 1055 } 1056 1057 /* 1058 * Migrate pages from one node to a target node. 1059 * Returns error or the number of pages not migrated. 1060 */ 1061 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1062 int flags) 1063 { 1064 nodemask_t nmask; 1065 struct vm_area_struct *vma; 1066 LIST_HEAD(pagelist); 1067 int err = 0; 1068 struct migration_target_control mtc = { 1069 .nid = dest, 1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1071 }; 1072 1073 nodes_clear(nmask); 1074 node_set(source, nmask); 1075 1076 /* 1077 * This does not "check" the range but isolates all pages that 1078 * need migration. Between passing in the full user address 1079 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1080 */ 1081 vma = find_vma(mm, 0); 1082 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1083 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1084 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1085 1086 if (!list_empty(&pagelist)) { 1087 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1088 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1089 if (err) 1090 putback_movable_pages(&pagelist); 1091 } 1092 1093 return err; 1094 } 1095 1096 /* 1097 * Move pages between the two nodesets so as to preserve the physical 1098 * layout as much as possible. 1099 * 1100 * Returns the number of page that could not be moved. 1101 */ 1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1103 const nodemask_t *to, int flags) 1104 { 1105 int busy = 0; 1106 int err = 0; 1107 nodemask_t tmp; 1108 1109 lru_cache_disable(); 1110 1111 mmap_read_lock(mm); 1112 1113 /* 1114 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1115 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1116 * bit in 'tmp', and return that <source, dest> pair for migration. 1117 * The pair of nodemasks 'to' and 'from' define the map. 1118 * 1119 * If no pair of bits is found that way, fallback to picking some 1120 * pair of 'source' and 'dest' bits that are not the same. If the 1121 * 'source' and 'dest' bits are the same, this represents a node 1122 * that will be migrating to itself, so no pages need move. 1123 * 1124 * If no bits are left in 'tmp', or if all remaining bits left 1125 * in 'tmp' correspond to the same bit in 'to', return false 1126 * (nothing left to migrate). 1127 * 1128 * This lets us pick a pair of nodes to migrate between, such that 1129 * if possible the dest node is not already occupied by some other 1130 * source node, minimizing the risk of overloading the memory on a 1131 * node that would happen if we migrated incoming memory to a node 1132 * before migrating outgoing memory source that same node. 1133 * 1134 * A single scan of tmp is sufficient. As we go, we remember the 1135 * most recent <s, d> pair that moved (s != d). If we find a pair 1136 * that not only moved, but what's better, moved to an empty slot 1137 * (d is not set in tmp), then we break out then, with that pair. 1138 * Otherwise when we finish scanning from_tmp, we at least have the 1139 * most recent <s, d> pair that moved. If we get all the way through 1140 * the scan of tmp without finding any node that moved, much less 1141 * moved to an empty node, then there is nothing left worth migrating. 1142 */ 1143 1144 tmp = *from; 1145 while (!nodes_empty(tmp)) { 1146 int s, d; 1147 int source = NUMA_NO_NODE; 1148 int dest = 0; 1149 1150 for_each_node_mask(s, tmp) { 1151 1152 /* 1153 * do_migrate_pages() tries to maintain the relative 1154 * node relationship of the pages established between 1155 * threads and memory areas. 1156 * 1157 * However if the number of source nodes is not equal to 1158 * the number of destination nodes we can not preserve 1159 * this node relative relationship. In that case, skip 1160 * copying memory from a node that is in the destination 1161 * mask. 1162 * 1163 * Example: [2,3,4] -> [3,4,5] moves everything. 1164 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1165 */ 1166 1167 if ((nodes_weight(*from) != nodes_weight(*to)) && 1168 (node_isset(s, *to))) 1169 continue; 1170 1171 d = node_remap(s, *from, *to); 1172 if (s == d) 1173 continue; 1174 1175 source = s; /* Node moved. Memorize */ 1176 dest = d; 1177 1178 /* dest not in remaining from nodes? */ 1179 if (!node_isset(dest, tmp)) 1180 break; 1181 } 1182 if (source == NUMA_NO_NODE) 1183 break; 1184 1185 node_clear(source, tmp); 1186 err = migrate_to_node(mm, source, dest, flags); 1187 if (err > 0) 1188 busy += err; 1189 if (err < 0) 1190 break; 1191 } 1192 mmap_read_unlock(mm); 1193 1194 lru_cache_enable(); 1195 if (err < 0) 1196 return err; 1197 return busy; 1198 1199 } 1200 1201 /* 1202 * Allocate a new page for page migration based on vma policy. 1203 * Start by assuming the page is mapped by the same vma as contains @start. 1204 * Search forward from there, if not. N.B., this assumes that the 1205 * list of pages handed to migrate_pages()--which is how we get here-- 1206 * is in virtual address order. 1207 */ 1208 static struct page *new_page(struct page *page, unsigned long start) 1209 { 1210 struct folio *dst, *src = page_folio(page); 1211 struct vm_area_struct *vma; 1212 unsigned long address; 1213 VMA_ITERATOR(vmi, current->mm, start); 1214 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1215 1216 for_each_vma(vmi, vma) { 1217 address = page_address_in_vma(page, vma); 1218 if (address != -EFAULT) 1219 break; 1220 } 1221 1222 if (folio_test_hugetlb(src)) 1223 return alloc_huge_page_vma(page_hstate(&src->page), 1224 vma, address); 1225 1226 if (folio_test_large(src)) 1227 gfp = GFP_TRANSHUGE; 1228 1229 /* 1230 * if !vma, vma_alloc_folio() will use task or system default policy 1231 */ 1232 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1233 folio_test_large(src)); 1234 return &dst->page; 1235 } 1236 #else 1237 1238 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1239 unsigned long flags) 1240 { 1241 return -EIO; 1242 } 1243 1244 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1245 const nodemask_t *to, int flags) 1246 { 1247 return -ENOSYS; 1248 } 1249 1250 static struct page *new_page(struct page *page, unsigned long start) 1251 { 1252 return NULL; 1253 } 1254 #endif 1255 1256 static long do_mbind(unsigned long start, unsigned long len, 1257 unsigned short mode, unsigned short mode_flags, 1258 nodemask_t *nmask, unsigned long flags) 1259 { 1260 struct mm_struct *mm = current->mm; 1261 struct mempolicy *new; 1262 unsigned long end; 1263 int err; 1264 int ret; 1265 LIST_HEAD(pagelist); 1266 1267 if (flags & ~(unsigned long)MPOL_MF_VALID) 1268 return -EINVAL; 1269 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1270 return -EPERM; 1271 1272 if (start & ~PAGE_MASK) 1273 return -EINVAL; 1274 1275 if (mode == MPOL_DEFAULT) 1276 flags &= ~MPOL_MF_STRICT; 1277 1278 len = PAGE_ALIGN(len); 1279 end = start + len; 1280 1281 if (end < start) 1282 return -EINVAL; 1283 if (end == start) 1284 return 0; 1285 1286 new = mpol_new(mode, mode_flags, nmask); 1287 if (IS_ERR(new)) 1288 return PTR_ERR(new); 1289 1290 if (flags & MPOL_MF_LAZY) 1291 new->flags |= MPOL_F_MOF; 1292 1293 /* 1294 * If we are using the default policy then operation 1295 * on discontinuous address spaces is okay after all 1296 */ 1297 if (!new) 1298 flags |= MPOL_MF_DISCONTIG_OK; 1299 1300 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1301 start, start + len, mode, mode_flags, 1302 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1303 1304 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1305 1306 lru_cache_disable(); 1307 } 1308 { 1309 NODEMASK_SCRATCH(scratch); 1310 if (scratch) { 1311 mmap_write_lock(mm); 1312 err = mpol_set_nodemask(new, nmask, scratch); 1313 if (err) 1314 mmap_write_unlock(mm); 1315 } else 1316 err = -ENOMEM; 1317 NODEMASK_SCRATCH_FREE(scratch); 1318 } 1319 if (err) 1320 goto mpol_out; 1321 1322 ret = queue_pages_range(mm, start, end, nmask, 1323 flags | MPOL_MF_INVERT, &pagelist); 1324 1325 if (ret < 0) { 1326 err = ret; 1327 goto up_out; 1328 } 1329 1330 err = mbind_range(mm, start, end, new); 1331 1332 if (!err) { 1333 int nr_failed = 0; 1334 1335 if (!list_empty(&pagelist)) { 1336 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1337 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1338 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1339 if (nr_failed) 1340 putback_movable_pages(&pagelist); 1341 } 1342 1343 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1344 err = -EIO; 1345 } else { 1346 up_out: 1347 if (!list_empty(&pagelist)) 1348 putback_movable_pages(&pagelist); 1349 } 1350 1351 mmap_write_unlock(mm); 1352 mpol_out: 1353 mpol_put(new); 1354 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1355 lru_cache_enable(); 1356 return err; 1357 } 1358 1359 /* 1360 * User space interface with variable sized bitmaps for nodelists. 1361 */ 1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1363 unsigned long maxnode) 1364 { 1365 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1366 int ret; 1367 1368 if (in_compat_syscall()) 1369 ret = compat_get_bitmap(mask, 1370 (const compat_ulong_t __user *)nmask, 1371 maxnode); 1372 else 1373 ret = copy_from_user(mask, nmask, 1374 nlongs * sizeof(unsigned long)); 1375 1376 if (ret) 1377 return -EFAULT; 1378 1379 if (maxnode % BITS_PER_LONG) 1380 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1381 1382 return 0; 1383 } 1384 1385 /* Copy a node mask from user space. */ 1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1387 unsigned long maxnode) 1388 { 1389 --maxnode; 1390 nodes_clear(*nodes); 1391 if (maxnode == 0 || !nmask) 1392 return 0; 1393 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1394 return -EINVAL; 1395 1396 /* 1397 * When the user specified more nodes than supported just check 1398 * if the non supported part is all zero, one word at a time, 1399 * starting at the end. 1400 */ 1401 while (maxnode > MAX_NUMNODES) { 1402 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1403 unsigned long t; 1404 1405 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1406 return -EFAULT; 1407 1408 if (maxnode - bits >= MAX_NUMNODES) { 1409 maxnode -= bits; 1410 } else { 1411 maxnode = MAX_NUMNODES; 1412 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1413 } 1414 if (t) 1415 return -EINVAL; 1416 } 1417 1418 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1419 } 1420 1421 /* Copy a kernel node mask to user space */ 1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1423 nodemask_t *nodes) 1424 { 1425 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1426 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1427 bool compat = in_compat_syscall(); 1428 1429 if (compat) 1430 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1431 1432 if (copy > nbytes) { 1433 if (copy > PAGE_SIZE) 1434 return -EINVAL; 1435 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1436 return -EFAULT; 1437 copy = nbytes; 1438 maxnode = nr_node_ids; 1439 } 1440 1441 if (compat) 1442 return compat_put_bitmap((compat_ulong_t __user *)mask, 1443 nodes_addr(*nodes), maxnode); 1444 1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1446 } 1447 1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1450 { 1451 *flags = *mode & MPOL_MODE_FLAGS; 1452 *mode &= ~MPOL_MODE_FLAGS; 1453 1454 if ((unsigned int)(*mode) >= MPOL_MAX) 1455 return -EINVAL; 1456 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1457 return -EINVAL; 1458 if (*flags & MPOL_F_NUMA_BALANCING) { 1459 if (*mode != MPOL_BIND) 1460 return -EINVAL; 1461 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1462 } 1463 return 0; 1464 } 1465 1466 static long kernel_mbind(unsigned long start, unsigned long len, 1467 unsigned long mode, const unsigned long __user *nmask, 1468 unsigned long maxnode, unsigned int flags) 1469 { 1470 unsigned short mode_flags; 1471 nodemask_t nodes; 1472 int lmode = mode; 1473 int err; 1474 1475 start = untagged_addr(start); 1476 err = sanitize_mpol_flags(&lmode, &mode_flags); 1477 if (err) 1478 return err; 1479 1480 err = get_nodes(&nodes, nmask, maxnode); 1481 if (err) 1482 return err; 1483 1484 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1485 } 1486 1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1488 unsigned long, home_node, unsigned long, flags) 1489 { 1490 struct mm_struct *mm = current->mm; 1491 struct vm_area_struct *vma; 1492 struct mempolicy *new; 1493 unsigned long vmstart; 1494 unsigned long vmend; 1495 unsigned long end; 1496 int err = -ENOENT; 1497 VMA_ITERATOR(vmi, mm, start); 1498 1499 start = untagged_addr(start); 1500 if (start & ~PAGE_MASK) 1501 return -EINVAL; 1502 /* 1503 * flags is used for future extension if any. 1504 */ 1505 if (flags != 0) 1506 return -EINVAL; 1507 1508 /* 1509 * Check home_node is online to avoid accessing uninitialized 1510 * NODE_DATA. 1511 */ 1512 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1513 return -EINVAL; 1514 1515 len = PAGE_ALIGN(len); 1516 end = start + len; 1517 1518 if (end < start) 1519 return -EINVAL; 1520 if (end == start) 1521 return 0; 1522 mmap_write_lock(mm); 1523 for_each_vma_range(vmi, vma, end) { 1524 vmstart = max(start, vma->vm_start); 1525 vmend = min(end, vma->vm_end); 1526 new = mpol_dup(vma_policy(vma)); 1527 if (IS_ERR(new)) { 1528 err = PTR_ERR(new); 1529 break; 1530 } 1531 /* 1532 * Only update home node if there is an existing vma policy 1533 */ 1534 if (!new) 1535 continue; 1536 1537 /* 1538 * If any vma in the range got policy other than MPOL_BIND 1539 * or MPOL_PREFERRED_MANY we return error. We don't reset 1540 * the home node for vmas we already updated before. 1541 */ 1542 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) { 1543 err = -EOPNOTSUPP; 1544 break; 1545 } 1546 1547 new->home_node = home_node; 1548 err = mbind_range(mm, vmstart, vmend, new); 1549 mpol_put(new); 1550 if (err) 1551 break; 1552 } 1553 mmap_write_unlock(mm); 1554 return err; 1555 } 1556 1557 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1558 unsigned long, mode, const unsigned long __user *, nmask, 1559 unsigned long, maxnode, unsigned int, flags) 1560 { 1561 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1562 } 1563 1564 /* Set the process memory policy */ 1565 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1566 unsigned long maxnode) 1567 { 1568 unsigned short mode_flags; 1569 nodemask_t nodes; 1570 int lmode = mode; 1571 int err; 1572 1573 err = sanitize_mpol_flags(&lmode, &mode_flags); 1574 if (err) 1575 return err; 1576 1577 err = get_nodes(&nodes, nmask, maxnode); 1578 if (err) 1579 return err; 1580 1581 return do_set_mempolicy(lmode, mode_flags, &nodes); 1582 } 1583 1584 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1585 unsigned long, maxnode) 1586 { 1587 return kernel_set_mempolicy(mode, nmask, maxnode); 1588 } 1589 1590 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1591 const unsigned long __user *old_nodes, 1592 const unsigned long __user *new_nodes) 1593 { 1594 struct mm_struct *mm = NULL; 1595 struct task_struct *task; 1596 nodemask_t task_nodes; 1597 int err; 1598 nodemask_t *old; 1599 nodemask_t *new; 1600 NODEMASK_SCRATCH(scratch); 1601 1602 if (!scratch) 1603 return -ENOMEM; 1604 1605 old = &scratch->mask1; 1606 new = &scratch->mask2; 1607 1608 err = get_nodes(old, old_nodes, maxnode); 1609 if (err) 1610 goto out; 1611 1612 err = get_nodes(new, new_nodes, maxnode); 1613 if (err) 1614 goto out; 1615 1616 /* Find the mm_struct */ 1617 rcu_read_lock(); 1618 task = pid ? find_task_by_vpid(pid) : current; 1619 if (!task) { 1620 rcu_read_unlock(); 1621 err = -ESRCH; 1622 goto out; 1623 } 1624 get_task_struct(task); 1625 1626 err = -EINVAL; 1627 1628 /* 1629 * Check if this process has the right to modify the specified process. 1630 * Use the regular "ptrace_may_access()" checks. 1631 */ 1632 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1633 rcu_read_unlock(); 1634 err = -EPERM; 1635 goto out_put; 1636 } 1637 rcu_read_unlock(); 1638 1639 task_nodes = cpuset_mems_allowed(task); 1640 /* Is the user allowed to access the target nodes? */ 1641 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1642 err = -EPERM; 1643 goto out_put; 1644 } 1645 1646 task_nodes = cpuset_mems_allowed(current); 1647 nodes_and(*new, *new, task_nodes); 1648 if (nodes_empty(*new)) 1649 goto out_put; 1650 1651 err = security_task_movememory(task); 1652 if (err) 1653 goto out_put; 1654 1655 mm = get_task_mm(task); 1656 put_task_struct(task); 1657 1658 if (!mm) { 1659 err = -EINVAL; 1660 goto out; 1661 } 1662 1663 err = do_migrate_pages(mm, old, new, 1664 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1665 1666 mmput(mm); 1667 out: 1668 NODEMASK_SCRATCH_FREE(scratch); 1669 1670 return err; 1671 1672 out_put: 1673 put_task_struct(task); 1674 goto out; 1675 1676 } 1677 1678 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1679 const unsigned long __user *, old_nodes, 1680 const unsigned long __user *, new_nodes) 1681 { 1682 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1683 } 1684 1685 1686 /* Retrieve NUMA policy */ 1687 static int kernel_get_mempolicy(int __user *policy, 1688 unsigned long __user *nmask, 1689 unsigned long maxnode, 1690 unsigned long addr, 1691 unsigned long flags) 1692 { 1693 int err; 1694 int pval; 1695 nodemask_t nodes; 1696 1697 if (nmask != NULL && maxnode < nr_node_ids) 1698 return -EINVAL; 1699 1700 addr = untagged_addr(addr); 1701 1702 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1703 1704 if (err) 1705 return err; 1706 1707 if (policy && put_user(pval, policy)) 1708 return -EFAULT; 1709 1710 if (nmask) 1711 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1712 1713 return err; 1714 } 1715 1716 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1717 unsigned long __user *, nmask, unsigned long, maxnode, 1718 unsigned long, addr, unsigned long, flags) 1719 { 1720 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1721 } 1722 1723 bool vma_migratable(struct vm_area_struct *vma) 1724 { 1725 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1726 return false; 1727 1728 /* 1729 * DAX device mappings require predictable access latency, so avoid 1730 * incurring periodic faults. 1731 */ 1732 if (vma_is_dax(vma)) 1733 return false; 1734 1735 if (is_vm_hugetlb_page(vma) && 1736 !hugepage_migration_supported(hstate_vma(vma))) 1737 return false; 1738 1739 /* 1740 * Migration allocates pages in the highest zone. If we cannot 1741 * do so then migration (at least from node to node) is not 1742 * possible. 1743 */ 1744 if (vma->vm_file && 1745 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1746 < policy_zone) 1747 return false; 1748 return true; 1749 } 1750 1751 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1752 unsigned long addr) 1753 { 1754 struct mempolicy *pol = NULL; 1755 1756 if (vma) { 1757 if (vma->vm_ops && vma->vm_ops->get_policy) { 1758 pol = vma->vm_ops->get_policy(vma, addr); 1759 } else if (vma->vm_policy) { 1760 pol = vma->vm_policy; 1761 1762 /* 1763 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1764 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1765 * count on these policies which will be dropped by 1766 * mpol_cond_put() later 1767 */ 1768 if (mpol_needs_cond_ref(pol)) 1769 mpol_get(pol); 1770 } 1771 } 1772 1773 return pol; 1774 } 1775 1776 /* 1777 * get_vma_policy(@vma, @addr) 1778 * @vma: virtual memory area whose policy is sought 1779 * @addr: address in @vma for shared policy lookup 1780 * 1781 * Returns effective policy for a VMA at specified address. 1782 * Falls back to current->mempolicy or system default policy, as necessary. 1783 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1784 * count--added by the get_policy() vm_op, as appropriate--to protect against 1785 * freeing by another task. It is the caller's responsibility to free the 1786 * extra reference for shared policies. 1787 */ 1788 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1789 unsigned long addr) 1790 { 1791 struct mempolicy *pol = __get_vma_policy(vma, addr); 1792 1793 if (!pol) 1794 pol = get_task_policy(current); 1795 1796 return pol; 1797 } 1798 1799 bool vma_policy_mof(struct vm_area_struct *vma) 1800 { 1801 struct mempolicy *pol; 1802 1803 if (vma->vm_ops && vma->vm_ops->get_policy) { 1804 bool ret = false; 1805 1806 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1807 if (pol && (pol->flags & MPOL_F_MOF)) 1808 ret = true; 1809 mpol_cond_put(pol); 1810 1811 return ret; 1812 } 1813 1814 pol = vma->vm_policy; 1815 if (!pol) 1816 pol = get_task_policy(current); 1817 1818 return pol->flags & MPOL_F_MOF; 1819 } 1820 1821 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1822 { 1823 enum zone_type dynamic_policy_zone = policy_zone; 1824 1825 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1826 1827 /* 1828 * if policy->nodes has movable memory only, 1829 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1830 * 1831 * policy->nodes is intersect with node_states[N_MEMORY]. 1832 * so if the following test fails, it implies 1833 * policy->nodes has movable memory only. 1834 */ 1835 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1836 dynamic_policy_zone = ZONE_MOVABLE; 1837 1838 return zone >= dynamic_policy_zone; 1839 } 1840 1841 /* 1842 * Return a nodemask representing a mempolicy for filtering nodes for 1843 * page allocation 1844 */ 1845 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1846 { 1847 int mode = policy->mode; 1848 1849 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1850 if (unlikely(mode == MPOL_BIND) && 1851 apply_policy_zone(policy, gfp_zone(gfp)) && 1852 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1853 return &policy->nodes; 1854 1855 if (mode == MPOL_PREFERRED_MANY) 1856 return &policy->nodes; 1857 1858 return NULL; 1859 } 1860 1861 /* 1862 * Return the preferred node id for 'prefer' mempolicy, and return 1863 * the given id for all other policies. 1864 * 1865 * policy_node() is always coupled with policy_nodemask(), which 1866 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1867 */ 1868 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1869 { 1870 if (policy->mode == MPOL_PREFERRED) { 1871 nd = first_node(policy->nodes); 1872 } else { 1873 /* 1874 * __GFP_THISNODE shouldn't even be used with the bind policy 1875 * because we might easily break the expectation to stay on the 1876 * requested node and not break the policy. 1877 */ 1878 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1879 } 1880 1881 if ((policy->mode == MPOL_BIND || 1882 policy->mode == MPOL_PREFERRED_MANY) && 1883 policy->home_node != NUMA_NO_NODE) 1884 return policy->home_node; 1885 1886 return nd; 1887 } 1888 1889 /* Do dynamic interleaving for a process */ 1890 static unsigned interleave_nodes(struct mempolicy *policy) 1891 { 1892 unsigned next; 1893 struct task_struct *me = current; 1894 1895 next = next_node_in(me->il_prev, policy->nodes); 1896 if (next < MAX_NUMNODES) 1897 me->il_prev = next; 1898 return next; 1899 } 1900 1901 /* 1902 * Depending on the memory policy provide a node from which to allocate the 1903 * next slab entry. 1904 */ 1905 unsigned int mempolicy_slab_node(void) 1906 { 1907 struct mempolicy *policy; 1908 int node = numa_mem_id(); 1909 1910 if (!in_task()) 1911 return node; 1912 1913 policy = current->mempolicy; 1914 if (!policy) 1915 return node; 1916 1917 switch (policy->mode) { 1918 case MPOL_PREFERRED: 1919 return first_node(policy->nodes); 1920 1921 case MPOL_INTERLEAVE: 1922 return interleave_nodes(policy); 1923 1924 case MPOL_BIND: 1925 case MPOL_PREFERRED_MANY: 1926 { 1927 struct zoneref *z; 1928 1929 /* 1930 * Follow bind policy behavior and start allocation at the 1931 * first node. 1932 */ 1933 struct zonelist *zonelist; 1934 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1935 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1936 z = first_zones_zonelist(zonelist, highest_zoneidx, 1937 &policy->nodes); 1938 return z->zone ? zone_to_nid(z->zone) : node; 1939 } 1940 case MPOL_LOCAL: 1941 return node; 1942 1943 default: 1944 BUG(); 1945 } 1946 } 1947 1948 /* 1949 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1950 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1951 * number of present nodes. 1952 */ 1953 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1954 { 1955 nodemask_t nodemask = pol->nodes; 1956 unsigned int target, nnodes; 1957 int i; 1958 int nid; 1959 /* 1960 * The barrier will stabilize the nodemask in a register or on 1961 * the stack so that it will stop changing under the code. 1962 * 1963 * Between first_node() and next_node(), pol->nodes could be changed 1964 * by other threads. So we put pol->nodes in a local stack. 1965 */ 1966 barrier(); 1967 1968 nnodes = nodes_weight(nodemask); 1969 if (!nnodes) 1970 return numa_node_id(); 1971 target = (unsigned int)n % nnodes; 1972 nid = first_node(nodemask); 1973 for (i = 0; i < target; i++) 1974 nid = next_node(nid, nodemask); 1975 return nid; 1976 } 1977 1978 /* Determine a node number for interleave */ 1979 static inline unsigned interleave_nid(struct mempolicy *pol, 1980 struct vm_area_struct *vma, unsigned long addr, int shift) 1981 { 1982 if (vma) { 1983 unsigned long off; 1984 1985 /* 1986 * for small pages, there is no difference between 1987 * shift and PAGE_SHIFT, so the bit-shift is safe. 1988 * for huge pages, since vm_pgoff is in units of small 1989 * pages, we need to shift off the always 0 bits to get 1990 * a useful offset. 1991 */ 1992 BUG_ON(shift < PAGE_SHIFT); 1993 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1994 off += (addr - vma->vm_start) >> shift; 1995 return offset_il_node(pol, off); 1996 } else 1997 return interleave_nodes(pol); 1998 } 1999 2000 #ifdef CONFIG_HUGETLBFS 2001 /* 2002 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2003 * @vma: virtual memory area whose policy is sought 2004 * @addr: address in @vma for shared policy lookup and interleave policy 2005 * @gfp_flags: for requested zone 2006 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2007 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2008 * 2009 * Returns a nid suitable for a huge page allocation and a pointer 2010 * to the struct mempolicy for conditional unref after allocation. 2011 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2012 * to the mempolicy's @nodemask for filtering the zonelist. 2013 * 2014 * Must be protected by read_mems_allowed_begin() 2015 */ 2016 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2017 struct mempolicy **mpol, nodemask_t **nodemask) 2018 { 2019 int nid; 2020 int mode; 2021 2022 *mpol = get_vma_policy(vma, addr); 2023 *nodemask = NULL; 2024 mode = (*mpol)->mode; 2025 2026 if (unlikely(mode == MPOL_INTERLEAVE)) { 2027 nid = interleave_nid(*mpol, vma, addr, 2028 huge_page_shift(hstate_vma(vma))); 2029 } else { 2030 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2031 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2032 *nodemask = &(*mpol)->nodes; 2033 } 2034 return nid; 2035 } 2036 2037 /* 2038 * init_nodemask_of_mempolicy 2039 * 2040 * If the current task's mempolicy is "default" [NULL], return 'false' 2041 * to indicate default policy. Otherwise, extract the policy nodemask 2042 * for 'bind' or 'interleave' policy into the argument nodemask, or 2043 * initialize the argument nodemask to contain the single node for 2044 * 'preferred' or 'local' policy and return 'true' to indicate presence 2045 * of non-default mempolicy. 2046 * 2047 * We don't bother with reference counting the mempolicy [mpol_get/put] 2048 * because the current task is examining it's own mempolicy and a task's 2049 * mempolicy is only ever changed by the task itself. 2050 * 2051 * N.B., it is the caller's responsibility to free a returned nodemask. 2052 */ 2053 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2054 { 2055 struct mempolicy *mempolicy; 2056 2057 if (!(mask && current->mempolicy)) 2058 return false; 2059 2060 task_lock(current); 2061 mempolicy = current->mempolicy; 2062 switch (mempolicy->mode) { 2063 case MPOL_PREFERRED: 2064 case MPOL_PREFERRED_MANY: 2065 case MPOL_BIND: 2066 case MPOL_INTERLEAVE: 2067 *mask = mempolicy->nodes; 2068 break; 2069 2070 case MPOL_LOCAL: 2071 init_nodemask_of_node(mask, numa_node_id()); 2072 break; 2073 2074 default: 2075 BUG(); 2076 } 2077 task_unlock(current); 2078 2079 return true; 2080 } 2081 #endif 2082 2083 /* 2084 * mempolicy_in_oom_domain 2085 * 2086 * If tsk's mempolicy is "bind", check for intersection between mask and 2087 * the policy nodemask. Otherwise, return true for all other policies 2088 * including "interleave", as a tsk with "interleave" policy may have 2089 * memory allocated from all nodes in system. 2090 * 2091 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2092 */ 2093 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2094 const nodemask_t *mask) 2095 { 2096 struct mempolicy *mempolicy; 2097 bool ret = true; 2098 2099 if (!mask) 2100 return ret; 2101 2102 task_lock(tsk); 2103 mempolicy = tsk->mempolicy; 2104 if (mempolicy && mempolicy->mode == MPOL_BIND) 2105 ret = nodes_intersects(mempolicy->nodes, *mask); 2106 task_unlock(tsk); 2107 2108 return ret; 2109 } 2110 2111 /* Allocate a page in interleaved policy. 2112 Own path because it needs to do special accounting. */ 2113 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2114 unsigned nid) 2115 { 2116 struct page *page; 2117 2118 page = __alloc_pages(gfp, order, nid, NULL); 2119 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2120 if (!static_branch_likely(&vm_numa_stat_key)) 2121 return page; 2122 if (page && page_to_nid(page) == nid) { 2123 preempt_disable(); 2124 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2125 preempt_enable(); 2126 } 2127 return page; 2128 } 2129 2130 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2131 int nid, struct mempolicy *pol) 2132 { 2133 struct page *page; 2134 gfp_t preferred_gfp; 2135 2136 /* 2137 * This is a two pass approach. The first pass will only try the 2138 * preferred nodes but skip the direct reclaim and allow the 2139 * allocation to fail, while the second pass will try all the 2140 * nodes in system. 2141 */ 2142 preferred_gfp = gfp | __GFP_NOWARN; 2143 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2144 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2145 if (!page) 2146 page = __alloc_pages(gfp, order, nid, NULL); 2147 2148 return page; 2149 } 2150 2151 /** 2152 * vma_alloc_folio - Allocate a folio for a VMA. 2153 * @gfp: GFP flags. 2154 * @order: Order of the folio. 2155 * @vma: Pointer to VMA or NULL if not available. 2156 * @addr: Virtual address of the allocation. Must be inside @vma. 2157 * @hugepage: For hugepages try only the preferred node if possible. 2158 * 2159 * Allocate a folio for a specific address in @vma, using the appropriate 2160 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2161 * of the mm_struct of the VMA to prevent it from going away. Should be 2162 * used for all allocations for folios that will be mapped into user space. 2163 * 2164 * Return: The folio on success or NULL if allocation fails. 2165 */ 2166 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2167 unsigned long addr, bool hugepage) 2168 { 2169 struct mempolicy *pol; 2170 int node = numa_node_id(); 2171 struct folio *folio; 2172 int preferred_nid; 2173 nodemask_t *nmask; 2174 2175 pol = get_vma_policy(vma, addr); 2176 2177 if (pol->mode == MPOL_INTERLEAVE) { 2178 struct page *page; 2179 unsigned nid; 2180 2181 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2182 mpol_cond_put(pol); 2183 gfp |= __GFP_COMP; 2184 page = alloc_page_interleave(gfp, order, nid); 2185 if (page && order > 1) 2186 prep_transhuge_page(page); 2187 folio = (struct folio *)page; 2188 goto out; 2189 } 2190 2191 if (pol->mode == MPOL_PREFERRED_MANY) { 2192 struct page *page; 2193 2194 node = policy_node(gfp, pol, node); 2195 gfp |= __GFP_COMP; 2196 page = alloc_pages_preferred_many(gfp, order, node, pol); 2197 mpol_cond_put(pol); 2198 if (page && order > 1) 2199 prep_transhuge_page(page); 2200 folio = (struct folio *)page; 2201 goto out; 2202 } 2203 2204 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2205 int hpage_node = node; 2206 2207 /* 2208 * For hugepage allocation and non-interleave policy which 2209 * allows the current node (or other explicitly preferred 2210 * node) we only try to allocate from the current/preferred 2211 * node and don't fall back to other nodes, as the cost of 2212 * remote accesses would likely offset THP benefits. 2213 * 2214 * If the policy is interleave or does not allow the current 2215 * node in its nodemask, we allocate the standard way. 2216 */ 2217 if (pol->mode == MPOL_PREFERRED) 2218 hpage_node = first_node(pol->nodes); 2219 2220 nmask = policy_nodemask(gfp, pol); 2221 if (!nmask || node_isset(hpage_node, *nmask)) { 2222 mpol_cond_put(pol); 2223 /* 2224 * First, try to allocate THP only on local node, but 2225 * don't reclaim unnecessarily, just compact. 2226 */ 2227 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2228 __GFP_NORETRY, order, hpage_node); 2229 2230 /* 2231 * If hugepage allocations are configured to always 2232 * synchronous compact or the vma has been madvised 2233 * to prefer hugepage backing, retry allowing remote 2234 * memory with both reclaim and compact as well. 2235 */ 2236 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2237 folio = __folio_alloc(gfp, order, hpage_node, 2238 nmask); 2239 2240 goto out; 2241 } 2242 } 2243 2244 nmask = policy_nodemask(gfp, pol); 2245 preferred_nid = policy_node(gfp, pol, node); 2246 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2247 mpol_cond_put(pol); 2248 out: 2249 return folio; 2250 } 2251 EXPORT_SYMBOL(vma_alloc_folio); 2252 2253 /** 2254 * alloc_pages - Allocate pages. 2255 * @gfp: GFP flags. 2256 * @order: Power of two of number of pages to allocate. 2257 * 2258 * Allocate 1 << @order contiguous pages. The physical address of the 2259 * first page is naturally aligned (eg an order-3 allocation will be aligned 2260 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2261 * process is honoured when in process context. 2262 * 2263 * Context: Can be called from any context, providing the appropriate GFP 2264 * flags are used. 2265 * Return: The page on success or NULL if allocation fails. 2266 */ 2267 struct page *alloc_pages(gfp_t gfp, unsigned order) 2268 { 2269 struct mempolicy *pol = &default_policy; 2270 struct page *page; 2271 2272 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2273 pol = get_task_policy(current); 2274 2275 /* 2276 * No reference counting needed for current->mempolicy 2277 * nor system default_policy 2278 */ 2279 if (pol->mode == MPOL_INTERLEAVE) 2280 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2281 else if (pol->mode == MPOL_PREFERRED_MANY) 2282 page = alloc_pages_preferred_many(gfp, order, 2283 policy_node(gfp, pol, numa_node_id()), pol); 2284 else 2285 page = __alloc_pages(gfp, order, 2286 policy_node(gfp, pol, numa_node_id()), 2287 policy_nodemask(gfp, pol)); 2288 2289 return page; 2290 } 2291 EXPORT_SYMBOL(alloc_pages); 2292 2293 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2294 { 2295 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2296 2297 if (page && order > 1) 2298 prep_transhuge_page(page); 2299 return (struct folio *)page; 2300 } 2301 EXPORT_SYMBOL(folio_alloc); 2302 2303 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2304 struct mempolicy *pol, unsigned long nr_pages, 2305 struct page **page_array) 2306 { 2307 int nodes; 2308 unsigned long nr_pages_per_node; 2309 int delta; 2310 int i; 2311 unsigned long nr_allocated; 2312 unsigned long total_allocated = 0; 2313 2314 nodes = nodes_weight(pol->nodes); 2315 nr_pages_per_node = nr_pages / nodes; 2316 delta = nr_pages - nodes * nr_pages_per_node; 2317 2318 for (i = 0; i < nodes; i++) { 2319 if (delta) { 2320 nr_allocated = __alloc_pages_bulk(gfp, 2321 interleave_nodes(pol), NULL, 2322 nr_pages_per_node + 1, NULL, 2323 page_array); 2324 delta--; 2325 } else { 2326 nr_allocated = __alloc_pages_bulk(gfp, 2327 interleave_nodes(pol), NULL, 2328 nr_pages_per_node, NULL, page_array); 2329 } 2330 2331 page_array += nr_allocated; 2332 total_allocated += nr_allocated; 2333 } 2334 2335 return total_allocated; 2336 } 2337 2338 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2339 struct mempolicy *pol, unsigned long nr_pages, 2340 struct page **page_array) 2341 { 2342 gfp_t preferred_gfp; 2343 unsigned long nr_allocated = 0; 2344 2345 preferred_gfp = gfp | __GFP_NOWARN; 2346 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2347 2348 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2349 nr_pages, NULL, page_array); 2350 2351 if (nr_allocated < nr_pages) 2352 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2353 nr_pages - nr_allocated, NULL, 2354 page_array + nr_allocated); 2355 return nr_allocated; 2356 } 2357 2358 /* alloc pages bulk and mempolicy should be considered at the 2359 * same time in some situation such as vmalloc. 2360 * 2361 * It can accelerate memory allocation especially interleaving 2362 * allocate memory. 2363 */ 2364 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2365 unsigned long nr_pages, struct page **page_array) 2366 { 2367 struct mempolicy *pol = &default_policy; 2368 2369 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2370 pol = get_task_policy(current); 2371 2372 if (pol->mode == MPOL_INTERLEAVE) 2373 return alloc_pages_bulk_array_interleave(gfp, pol, 2374 nr_pages, page_array); 2375 2376 if (pol->mode == MPOL_PREFERRED_MANY) 2377 return alloc_pages_bulk_array_preferred_many(gfp, 2378 numa_node_id(), pol, nr_pages, page_array); 2379 2380 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2381 policy_nodemask(gfp, pol), nr_pages, NULL, 2382 page_array); 2383 } 2384 2385 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2386 { 2387 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2388 2389 if (IS_ERR(pol)) 2390 return PTR_ERR(pol); 2391 dst->vm_policy = pol; 2392 return 0; 2393 } 2394 2395 /* 2396 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2397 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2398 * with the mems_allowed returned by cpuset_mems_allowed(). This 2399 * keeps mempolicies cpuset relative after its cpuset moves. See 2400 * further kernel/cpuset.c update_nodemask(). 2401 * 2402 * current's mempolicy may be rebinded by the other task(the task that changes 2403 * cpuset's mems), so we needn't do rebind work for current task. 2404 */ 2405 2406 /* Slow path of a mempolicy duplicate */ 2407 struct mempolicy *__mpol_dup(struct mempolicy *old) 2408 { 2409 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2410 2411 if (!new) 2412 return ERR_PTR(-ENOMEM); 2413 2414 /* task's mempolicy is protected by alloc_lock */ 2415 if (old == current->mempolicy) { 2416 task_lock(current); 2417 *new = *old; 2418 task_unlock(current); 2419 } else 2420 *new = *old; 2421 2422 if (current_cpuset_is_being_rebound()) { 2423 nodemask_t mems = cpuset_mems_allowed(current); 2424 mpol_rebind_policy(new, &mems); 2425 } 2426 atomic_set(&new->refcnt, 1); 2427 return new; 2428 } 2429 2430 /* Slow path of a mempolicy comparison */ 2431 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2432 { 2433 if (!a || !b) 2434 return false; 2435 if (a->mode != b->mode) 2436 return false; 2437 if (a->flags != b->flags) 2438 return false; 2439 if (a->home_node != b->home_node) 2440 return false; 2441 if (mpol_store_user_nodemask(a)) 2442 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2443 return false; 2444 2445 switch (a->mode) { 2446 case MPOL_BIND: 2447 case MPOL_INTERLEAVE: 2448 case MPOL_PREFERRED: 2449 case MPOL_PREFERRED_MANY: 2450 return !!nodes_equal(a->nodes, b->nodes); 2451 case MPOL_LOCAL: 2452 return true; 2453 default: 2454 BUG(); 2455 return false; 2456 } 2457 } 2458 2459 /* 2460 * Shared memory backing store policy support. 2461 * 2462 * Remember policies even when nobody has shared memory mapped. 2463 * The policies are kept in Red-Black tree linked from the inode. 2464 * They are protected by the sp->lock rwlock, which should be held 2465 * for any accesses to the tree. 2466 */ 2467 2468 /* 2469 * lookup first element intersecting start-end. Caller holds sp->lock for 2470 * reading or for writing 2471 */ 2472 static struct sp_node * 2473 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2474 { 2475 struct rb_node *n = sp->root.rb_node; 2476 2477 while (n) { 2478 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2479 2480 if (start >= p->end) 2481 n = n->rb_right; 2482 else if (end <= p->start) 2483 n = n->rb_left; 2484 else 2485 break; 2486 } 2487 if (!n) 2488 return NULL; 2489 for (;;) { 2490 struct sp_node *w = NULL; 2491 struct rb_node *prev = rb_prev(n); 2492 if (!prev) 2493 break; 2494 w = rb_entry(prev, struct sp_node, nd); 2495 if (w->end <= start) 2496 break; 2497 n = prev; 2498 } 2499 return rb_entry(n, struct sp_node, nd); 2500 } 2501 2502 /* 2503 * Insert a new shared policy into the list. Caller holds sp->lock for 2504 * writing. 2505 */ 2506 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2507 { 2508 struct rb_node **p = &sp->root.rb_node; 2509 struct rb_node *parent = NULL; 2510 struct sp_node *nd; 2511 2512 while (*p) { 2513 parent = *p; 2514 nd = rb_entry(parent, struct sp_node, nd); 2515 if (new->start < nd->start) 2516 p = &(*p)->rb_left; 2517 else if (new->end > nd->end) 2518 p = &(*p)->rb_right; 2519 else 2520 BUG(); 2521 } 2522 rb_link_node(&new->nd, parent, p); 2523 rb_insert_color(&new->nd, &sp->root); 2524 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2525 new->policy ? new->policy->mode : 0); 2526 } 2527 2528 /* Find shared policy intersecting idx */ 2529 struct mempolicy * 2530 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2531 { 2532 struct mempolicy *pol = NULL; 2533 struct sp_node *sn; 2534 2535 if (!sp->root.rb_node) 2536 return NULL; 2537 read_lock(&sp->lock); 2538 sn = sp_lookup(sp, idx, idx+1); 2539 if (sn) { 2540 mpol_get(sn->policy); 2541 pol = sn->policy; 2542 } 2543 read_unlock(&sp->lock); 2544 return pol; 2545 } 2546 2547 static void sp_free(struct sp_node *n) 2548 { 2549 mpol_put(n->policy); 2550 kmem_cache_free(sn_cache, n); 2551 } 2552 2553 /** 2554 * mpol_misplaced - check whether current page node is valid in policy 2555 * 2556 * @page: page to be checked 2557 * @vma: vm area where page mapped 2558 * @addr: virtual address where page mapped 2559 * 2560 * Lookup current policy node id for vma,addr and "compare to" page's 2561 * node id. Policy determination "mimics" alloc_page_vma(). 2562 * Called from fault path where we know the vma and faulting address. 2563 * 2564 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2565 * policy, or a suitable node ID to allocate a replacement page from. 2566 */ 2567 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2568 { 2569 struct mempolicy *pol; 2570 struct zoneref *z; 2571 int curnid = page_to_nid(page); 2572 unsigned long pgoff; 2573 int thiscpu = raw_smp_processor_id(); 2574 int thisnid = cpu_to_node(thiscpu); 2575 int polnid = NUMA_NO_NODE; 2576 int ret = NUMA_NO_NODE; 2577 2578 pol = get_vma_policy(vma, addr); 2579 if (!(pol->flags & MPOL_F_MOF)) 2580 goto out; 2581 2582 switch (pol->mode) { 2583 case MPOL_INTERLEAVE: 2584 pgoff = vma->vm_pgoff; 2585 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2586 polnid = offset_il_node(pol, pgoff); 2587 break; 2588 2589 case MPOL_PREFERRED: 2590 if (node_isset(curnid, pol->nodes)) 2591 goto out; 2592 polnid = first_node(pol->nodes); 2593 break; 2594 2595 case MPOL_LOCAL: 2596 polnid = numa_node_id(); 2597 break; 2598 2599 case MPOL_BIND: 2600 /* Optimize placement among multiple nodes via NUMA balancing */ 2601 if (pol->flags & MPOL_F_MORON) { 2602 if (node_isset(thisnid, pol->nodes)) 2603 break; 2604 goto out; 2605 } 2606 fallthrough; 2607 2608 case MPOL_PREFERRED_MANY: 2609 /* 2610 * use current page if in policy nodemask, 2611 * else select nearest allowed node, if any. 2612 * If no allowed nodes, use current [!misplaced]. 2613 */ 2614 if (node_isset(curnid, pol->nodes)) 2615 goto out; 2616 z = first_zones_zonelist( 2617 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2618 gfp_zone(GFP_HIGHUSER), 2619 &pol->nodes); 2620 polnid = zone_to_nid(z->zone); 2621 break; 2622 2623 default: 2624 BUG(); 2625 } 2626 2627 /* Migrate the page towards the node whose CPU is referencing it */ 2628 if (pol->flags & MPOL_F_MORON) { 2629 polnid = thisnid; 2630 2631 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2632 goto out; 2633 } 2634 2635 if (curnid != polnid) 2636 ret = polnid; 2637 out: 2638 mpol_cond_put(pol); 2639 2640 return ret; 2641 } 2642 2643 /* 2644 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2645 * dropped after task->mempolicy is set to NULL so that any allocation done as 2646 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2647 * policy. 2648 */ 2649 void mpol_put_task_policy(struct task_struct *task) 2650 { 2651 struct mempolicy *pol; 2652 2653 task_lock(task); 2654 pol = task->mempolicy; 2655 task->mempolicy = NULL; 2656 task_unlock(task); 2657 mpol_put(pol); 2658 } 2659 2660 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2661 { 2662 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2663 rb_erase(&n->nd, &sp->root); 2664 sp_free(n); 2665 } 2666 2667 static void sp_node_init(struct sp_node *node, unsigned long start, 2668 unsigned long end, struct mempolicy *pol) 2669 { 2670 node->start = start; 2671 node->end = end; 2672 node->policy = pol; 2673 } 2674 2675 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2676 struct mempolicy *pol) 2677 { 2678 struct sp_node *n; 2679 struct mempolicy *newpol; 2680 2681 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2682 if (!n) 2683 return NULL; 2684 2685 newpol = mpol_dup(pol); 2686 if (IS_ERR(newpol)) { 2687 kmem_cache_free(sn_cache, n); 2688 return NULL; 2689 } 2690 newpol->flags |= MPOL_F_SHARED; 2691 sp_node_init(n, start, end, newpol); 2692 2693 return n; 2694 } 2695 2696 /* Replace a policy range. */ 2697 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2698 unsigned long end, struct sp_node *new) 2699 { 2700 struct sp_node *n; 2701 struct sp_node *n_new = NULL; 2702 struct mempolicy *mpol_new = NULL; 2703 int ret = 0; 2704 2705 restart: 2706 write_lock(&sp->lock); 2707 n = sp_lookup(sp, start, end); 2708 /* Take care of old policies in the same range. */ 2709 while (n && n->start < end) { 2710 struct rb_node *next = rb_next(&n->nd); 2711 if (n->start >= start) { 2712 if (n->end <= end) 2713 sp_delete(sp, n); 2714 else 2715 n->start = end; 2716 } else { 2717 /* Old policy spanning whole new range. */ 2718 if (n->end > end) { 2719 if (!n_new) 2720 goto alloc_new; 2721 2722 *mpol_new = *n->policy; 2723 atomic_set(&mpol_new->refcnt, 1); 2724 sp_node_init(n_new, end, n->end, mpol_new); 2725 n->end = start; 2726 sp_insert(sp, n_new); 2727 n_new = NULL; 2728 mpol_new = NULL; 2729 break; 2730 } else 2731 n->end = start; 2732 } 2733 if (!next) 2734 break; 2735 n = rb_entry(next, struct sp_node, nd); 2736 } 2737 if (new) 2738 sp_insert(sp, new); 2739 write_unlock(&sp->lock); 2740 ret = 0; 2741 2742 err_out: 2743 if (mpol_new) 2744 mpol_put(mpol_new); 2745 if (n_new) 2746 kmem_cache_free(sn_cache, n_new); 2747 2748 return ret; 2749 2750 alloc_new: 2751 write_unlock(&sp->lock); 2752 ret = -ENOMEM; 2753 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2754 if (!n_new) 2755 goto err_out; 2756 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2757 if (!mpol_new) 2758 goto err_out; 2759 atomic_set(&mpol_new->refcnt, 1); 2760 goto restart; 2761 } 2762 2763 /** 2764 * mpol_shared_policy_init - initialize shared policy for inode 2765 * @sp: pointer to inode shared policy 2766 * @mpol: struct mempolicy to install 2767 * 2768 * Install non-NULL @mpol in inode's shared policy rb-tree. 2769 * On entry, the current task has a reference on a non-NULL @mpol. 2770 * This must be released on exit. 2771 * This is called at get_inode() calls and we can use GFP_KERNEL. 2772 */ 2773 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2774 { 2775 int ret; 2776 2777 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2778 rwlock_init(&sp->lock); 2779 2780 if (mpol) { 2781 struct vm_area_struct pvma; 2782 struct mempolicy *new; 2783 NODEMASK_SCRATCH(scratch); 2784 2785 if (!scratch) 2786 goto put_mpol; 2787 /* contextualize the tmpfs mount point mempolicy */ 2788 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2789 if (IS_ERR(new)) 2790 goto free_scratch; /* no valid nodemask intersection */ 2791 2792 task_lock(current); 2793 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2794 task_unlock(current); 2795 if (ret) 2796 goto put_new; 2797 2798 /* Create pseudo-vma that contains just the policy */ 2799 vma_init(&pvma, NULL); 2800 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2801 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2802 2803 put_new: 2804 mpol_put(new); /* drop initial ref */ 2805 free_scratch: 2806 NODEMASK_SCRATCH_FREE(scratch); 2807 put_mpol: 2808 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2809 } 2810 } 2811 2812 int mpol_set_shared_policy(struct shared_policy *info, 2813 struct vm_area_struct *vma, struct mempolicy *npol) 2814 { 2815 int err; 2816 struct sp_node *new = NULL; 2817 unsigned long sz = vma_pages(vma); 2818 2819 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2820 vma->vm_pgoff, 2821 sz, npol ? npol->mode : -1, 2822 npol ? npol->flags : -1, 2823 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2824 2825 if (npol) { 2826 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2827 if (!new) 2828 return -ENOMEM; 2829 } 2830 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2831 if (err && new) 2832 sp_free(new); 2833 return err; 2834 } 2835 2836 /* Free a backing policy store on inode delete. */ 2837 void mpol_free_shared_policy(struct shared_policy *p) 2838 { 2839 struct sp_node *n; 2840 struct rb_node *next; 2841 2842 if (!p->root.rb_node) 2843 return; 2844 write_lock(&p->lock); 2845 next = rb_first(&p->root); 2846 while (next) { 2847 n = rb_entry(next, struct sp_node, nd); 2848 next = rb_next(&n->nd); 2849 sp_delete(p, n); 2850 } 2851 write_unlock(&p->lock); 2852 } 2853 2854 #ifdef CONFIG_NUMA_BALANCING 2855 static int __initdata numabalancing_override; 2856 2857 static void __init check_numabalancing_enable(void) 2858 { 2859 bool numabalancing_default = false; 2860 2861 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2862 numabalancing_default = true; 2863 2864 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2865 if (numabalancing_override) 2866 set_numabalancing_state(numabalancing_override == 1); 2867 2868 if (num_online_nodes() > 1 && !numabalancing_override) { 2869 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2870 numabalancing_default ? "Enabling" : "Disabling"); 2871 set_numabalancing_state(numabalancing_default); 2872 } 2873 } 2874 2875 static int __init setup_numabalancing(char *str) 2876 { 2877 int ret = 0; 2878 if (!str) 2879 goto out; 2880 2881 if (!strcmp(str, "enable")) { 2882 numabalancing_override = 1; 2883 ret = 1; 2884 } else if (!strcmp(str, "disable")) { 2885 numabalancing_override = -1; 2886 ret = 1; 2887 } 2888 out: 2889 if (!ret) 2890 pr_warn("Unable to parse numa_balancing=\n"); 2891 2892 return ret; 2893 } 2894 __setup("numa_balancing=", setup_numabalancing); 2895 #else 2896 static inline void __init check_numabalancing_enable(void) 2897 { 2898 } 2899 #endif /* CONFIG_NUMA_BALANCING */ 2900 2901 /* assumes fs == KERNEL_DS */ 2902 void __init numa_policy_init(void) 2903 { 2904 nodemask_t interleave_nodes; 2905 unsigned long largest = 0; 2906 int nid, prefer = 0; 2907 2908 policy_cache = kmem_cache_create("numa_policy", 2909 sizeof(struct mempolicy), 2910 0, SLAB_PANIC, NULL); 2911 2912 sn_cache = kmem_cache_create("shared_policy_node", 2913 sizeof(struct sp_node), 2914 0, SLAB_PANIC, NULL); 2915 2916 for_each_node(nid) { 2917 preferred_node_policy[nid] = (struct mempolicy) { 2918 .refcnt = ATOMIC_INIT(1), 2919 .mode = MPOL_PREFERRED, 2920 .flags = MPOL_F_MOF | MPOL_F_MORON, 2921 .nodes = nodemask_of_node(nid), 2922 }; 2923 } 2924 2925 /* 2926 * Set interleaving policy for system init. Interleaving is only 2927 * enabled across suitably sized nodes (default is >= 16MB), or 2928 * fall back to the largest node if they're all smaller. 2929 */ 2930 nodes_clear(interleave_nodes); 2931 for_each_node_state(nid, N_MEMORY) { 2932 unsigned long total_pages = node_present_pages(nid); 2933 2934 /* Preserve the largest node */ 2935 if (largest < total_pages) { 2936 largest = total_pages; 2937 prefer = nid; 2938 } 2939 2940 /* Interleave this node? */ 2941 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2942 node_set(nid, interleave_nodes); 2943 } 2944 2945 /* All too small, use the largest */ 2946 if (unlikely(nodes_empty(interleave_nodes))) 2947 node_set(prefer, interleave_nodes); 2948 2949 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2950 pr_err("%s: interleaving failed\n", __func__); 2951 2952 check_numabalancing_enable(); 2953 } 2954 2955 /* Reset policy of current process to default */ 2956 void numa_default_policy(void) 2957 { 2958 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2959 } 2960 2961 /* 2962 * Parse and format mempolicy from/to strings 2963 */ 2964 2965 static const char * const policy_modes[] = 2966 { 2967 [MPOL_DEFAULT] = "default", 2968 [MPOL_PREFERRED] = "prefer", 2969 [MPOL_BIND] = "bind", 2970 [MPOL_INTERLEAVE] = "interleave", 2971 [MPOL_LOCAL] = "local", 2972 [MPOL_PREFERRED_MANY] = "prefer (many)", 2973 }; 2974 2975 2976 #ifdef CONFIG_TMPFS 2977 /** 2978 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2979 * @str: string containing mempolicy to parse 2980 * @mpol: pointer to struct mempolicy pointer, returned on success. 2981 * 2982 * Format of input: 2983 * <mode>[=<flags>][:<nodelist>] 2984 * 2985 * Return: %0 on success, else %1 2986 */ 2987 int mpol_parse_str(char *str, struct mempolicy **mpol) 2988 { 2989 struct mempolicy *new = NULL; 2990 unsigned short mode_flags; 2991 nodemask_t nodes; 2992 char *nodelist = strchr(str, ':'); 2993 char *flags = strchr(str, '='); 2994 int err = 1, mode; 2995 2996 if (flags) 2997 *flags++ = '\0'; /* terminate mode string */ 2998 2999 if (nodelist) { 3000 /* NUL-terminate mode or flags string */ 3001 *nodelist++ = '\0'; 3002 if (nodelist_parse(nodelist, nodes)) 3003 goto out; 3004 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3005 goto out; 3006 } else 3007 nodes_clear(nodes); 3008 3009 mode = match_string(policy_modes, MPOL_MAX, str); 3010 if (mode < 0) 3011 goto out; 3012 3013 switch (mode) { 3014 case MPOL_PREFERRED: 3015 /* 3016 * Insist on a nodelist of one node only, although later 3017 * we use first_node(nodes) to grab a single node, so here 3018 * nodelist (or nodes) cannot be empty. 3019 */ 3020 if (nodelist) { 3021 char *rest = nodelist; 3022 while (isdigit(*rest)) 3023 rest++; 3024 if (*rest) 3025 goto out; 3026 if (nodes_empty(nodes)) 3027 goto out; 3028 } 3029 break; 3030 case MPOL_INTERLEAVE: 3031 /* 3032 * Default to online nodes with memory if no nodelist 3033 */ 3034 if (!nodelist) 3035 nodes = node_states[N_MEMORY]; 3036 break; 3037 case MPOL_LOCAL: 3038 /* 3039 * Don't allow a nodelist; mpol_new() checks flags 3040 */ 3041 if (nodelist) 3042 goto out; 3043 break; 3044 case MPOL_DEFAULT: 3045 /* 3046 * Insist on a empty nodelist 3047 */ 3048 if (!nodelist) 3049 err = 0; 3050 goto out; 3051 case MPOL_PREFERRED_MANY: 3052 case MPOL_BIND: 3053 /* 3054 * Insist on a nodelist 3055 */ 3056 if (!nodelist) 3057 goto out; 3058 } 3059 3060 mode_flags = 0; 3061 if (flags) { 3062 /* 3063 * Currently, we only support two mutually exclusive 3064 * mode flags. 3065 */ 3066 if (!strcmp(flags, "static")) 3067 mode_flags |= MPOL_F_STATIC_NODES; 3068 else if (!strcmp(flags, "relative")) 3069 mode_flags |= MPOL_F_RELATIVE_NODES; 3070 else 3071 goto out; 3072 } 3073 3074 new = mpol_new(mode, mode_flags, &nodes); 3075 if (IS_ERR(new)) 3076 goto out; 3077 3078 /* 3079 * Save nodes for mpol_to_str() to show the tmpfs mount options 3080 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3081 */ 3082 if (mode != MPOL_PREFERRED) { 3083 new->nodes = nodes; 3084 } else if (nodelist) { 3085 nodes_clear(new->nodes); 3086 node_set(first_node(nodes), new->nodes); 3087 } else { 3088 new->mode = MPOL_LOCAL; 3089 } 3090 3091 /* 3092 * Save nodes for contextualization: this will be used to "clone" 3093 * the mempolicy in a specific context [cpuset] at a later time. 3094 */ 3095 new->w.user_nodemask = nodes; 3096 3097 err = 0; 3098 3099 out: 3100 /* Restore string for error message */ 3101 if (nodelist) 3102 *--nodelist = ':'; 3103 if (flags) 3104 *--flags = '='; 3105 if (!err) 3106 *mpol = new; 3107 return err; 3108 } 3109 #endif /* CONFIG_TMPFS */ 3110 3111 /** 3112 * mpol_to_str - format a mempolicy structure for printing 3113 * @buffer: to contain formatted mempolicy string 3114 * @maxlen: length of @buffer 3115 * @pol: pointer to mempolicy to be formatted 3116 * 3117 * Convert @pol into a string. If @buffer is too short, truncate the string. 3118 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3119 * longest flag, "relative", and to display at least a few node ids. 3120 */ 3121 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3122 { 3123 char *p = buffer; 3124 nodemask_t nodes = NODE_MASK_NONE; 3125 unsigned short mode = MPOL_DEFAULT; 3126 unsigned short flags = 0; 3127 3128 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3129 mode = pol->mode; 3130 flags = pol->flags; 3131 } 3132 3133 switch (mode) { 3134 case MPOL_DEFAULT: 3135 case MPOL_LOCAL: 3136 break; 3137 case MPOL_PREFERRED: 3138 case MPOL_PREFERRED_MANY: 3139 case MPOL_BIND: 3140 case MPOL_INTERLEAVE: 3141 nodes = pol->nodes; 3142 break; 3143 default: 3144 WARN_ON_ONCE(1); 3145 snprintf(p, maxlen, "unknown"); 3146 return; 3147 } 3148 3149 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3150 3151 if (flags & MPOL_MODE_FLAGS) { 3152 p += snprintf(p, buffer + maxlen - p, "="); 3153 3154 /* 3155 * Currently, the only defined flags are mutually exclusive 3156 */ 3157 if (flags & MPOL_F_STATIC_NODES) 3158 p += snprintf(p, buffer + maxlen - p, "static"); 3159 else if (flags & MPOL_F_RELATIVE_NODES) 3160 p += snprintf(p, buffer + maxlen - p, "relative"); 3161 } 3162 3163 if (!nodes_empty(nodes)) 3164 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3165 nodemask_pr_args(&nodes)); 3166 } 3167