1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_LOCAL, 125 }; 126 127 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 128 129 /** 130 * numa_map_to_online_node - Find closest online node 131 * @node: Node id to start the search 132 * 133 * Lookup the next closest node by distance if @nid is not online. 134 */ 135 int numa_map_to_online_node(int node) 136 { 137 int min_dist = INT_MAX, dist, n, min_node; 138 139 if (node == NUMA_NO_NODE || node_online(node)) 140 return node; 141 142 min_node = node; 143 for_each_online_node(n) { 144 dist = node_distance(node, n); 145 if (dist < min_dist) { 146 min_dist = dist; 147 min_node = n; 148 } 149 } 150 151 return min_node; 152 } 153 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 154 155 struct mempolicy *get_task_policy(struct task_struct *p) 156 { 157 struct mempolicy *pol = p->mempolicy; 158 int node; 159 160 if (pol) 161 return pol; 162 163 node = numa_node_id(); 164 if (node != NUMA_NO_NODE) { 165 pol = &preferred_node_policy[node]; 166 /* preferred_node_policy is not initialised early in boot */ 167 if (pol->mode) 168 return pol; 169 } 170 171 return &default_policy; 172 } 173 174 static const struct mempolicy_operations { 175 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 176 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 177 } mpol_ops[MPOL_MAX]; 178 179 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 180 { 181 return pol->flags & MPOL_MODE_FLAGS; 182 } 183 184 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 185 const nodemask_t *rel) 186 { 187 nodemask_t tmp; 188 nodes_fold(tmp, *orig, nodes_weight(*rel)); 189 nodes_onto(*ret, tmp, *rel); 190 } 191 192 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 193 { 194 if (nodes_empty(*nodes)) 195 return -EINVAL; 196 pol->nodes = *nodes; 197 return 0; 198 } 199 200 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 201 { 202 if (nodes_empty(*nodes)) 203 return -EINVAL; 204 205 nodes_clear(pol->nodes); 206 node_set(first_node(*nodes), pol->nodes); 207 return 0; 208 } 209 210 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 211 { 212 if (nodes_empty(*nodes)) 213 return -EINVAL; 214 pol->nodes = *nodes; 215 return 0; 216 } 217 218 /* 219 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 220 * any, for the new policy. mpol_new() has already validated the nodes 221 * parameter with respect to the policy mode and flags. 222 * 223 * Must be called holding task's alloc_lock to protect task's mems_allowed 224 * and mempolicy. May also be called holding the mmap_lock for write. 225 */ 226 static int mpol_set_nodemask(struct mempolicy *pol, 227 const nodemask_t *nodes, struct nodemask_scratch *nsc) 228 { 229 int ret; 230 231 /* 232 * Default (pol==NULL) resp. local memory policies are not a 233 * subject of any remapping. They also do not need any special 234 * constructor. 235 */ 236 if (!pol || pol->mode == MPOL_LOCAL) 237 return 0; 238 239 /* Check N_MEMORY */ 240 nodes_and(nsc->mask1, 241 cpuset_current_mems_allowed, node_states[N_MEMORY]); 242 243 VM_BUG_ON(!nodes); 244 245 if (pol->flags & MPOL_F_RELATIVE_NODES) 246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 247 else 248 nodes_and(nsc->mask2, *nodes, nsc->mask1); 249 250 if (mpol_store_user_nodemask(pol)) 251 pol->w.user_nodemask = *nodes; 252 else 253 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 254 255 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 256 return ret; 257 } 258 259 /* 260 * This function just creates a new policy, does some check and simple 261 * initialization. You must invoke mpol_set_nodemask() to set nodes. 262 */ 263 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 264 nodemask_t *nodes) 265 { 266 struct mempolicy *policy; 267 268 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 269 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 270 271 if (mode == MPOL_DEFAULT) { 272 if (nodes && !nodes_empty(*nodes)) 273 return ERR_PTR(-EINVAL); 274 return NULL; 275 } 276 VM_BUG_ON(!nodes); 277 278 /* 279 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 280 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 281 * All other modes require a valid pointer to a non-empty nodemask. 282 */ 283 if (mode == MPOL_PREFERRED) { 284 if (nodes_empty(*nodes)) { 285 if (((flags & MPOL_F_STATIC_NODES) || 286 (flags & MPOL_F_RELATIVE_NODES))) 287 return ERR_PTR(-EINVAL); 288 289 mode = MPOL_LOCAL; 290 } 291 } else if (mode == MPOL_LOCAL) { 292 if (!nodes_empty(*nodes) || 293 (flags & MPOL_F_STATIC_NODES) || 294 (flags & MPOL_F_RELATIVE_NODES)) 295 return ERR_PTR(-EINVAL); 296 } else if (nodes_empty(*nodes)) 297 return ERR_PTR(-EINVAL); 298 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 299 if (!policy) 300 return ERR_PTR(-ENOMEM); 301 atomic_set(&policy->refcnt, 1); 302 policy->mode = mode; 303 policy->flags = flags; 304 305 return policy; 306 } 307 308 /* Slow path of a mpol destructor. */ 309 void __mpol_put(struct mempolicy *p) 310 { 311 if (!atomic_dec_and_test(&p->refcnt)) 312 return; 313 kmem_cache_free(policy_cache, p); 314 } 315 316 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 317 { 318 } 319 320 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 321 { 322 nodemask_t tmp; 323 324 if (pol->flags & MPOL_F_STATIC_NODES) 325 nodes_and(tmp, pol->w.user_nodemask, *nodes); 326 else if (pol->flags & MPOL_F_RELATIVE_NODES) 327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 328 else { 329 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 330 *nodes); 331 pol->w.cpuset_mems_allowed = *nodes; 332 } 333 334 if (nodes_empty(tmp)) 335 tmp = *nodes; 336 337 pol->nodes = tmp; 338 } 339 340 static void mpol_rebind_preferred(struct mempolicy *pol, 341 const nodemask_t *nodes) 342 { 343 pol->w.cpuset_mems_allowed = *nodes; 344 } 345 346 /* 347 * mpol_rebind_policy - Migrate a policy to a different set of nodes 348 * 349 * Per-vma policies are protected by mmap_lock. Allocations using per-task 350 * policies are protected by task->mems_allowed_seq to prevent a premature 351 * OOM/allocation failure due to parallel nodemask modification. 352 */ 353 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 354 { 355 if (!pol) 356 return; 357 if (!mpol_store_user_nodemask(pol) && 358 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 359 return; 360 361 mpol_ops[pol->mode].rebind(pol, newmask); 362 } 363 364 /* 365 * Wrapper for mpol_rebind_policy() that just requires task 366 * pointer, and updates task mempolicy. 367 * 368 * Called with task's alloc_lock held. 369 */ 370 371 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 372 { 373 mpol_rebind_policy(tsk->mempolicy, new); 374 } 375 376 /* 377 * Rebind each vma in mm to new nodemask. 378 * 379 * Call holding a reference to mm. Takes mm->mmap_lock during call. 380 */ 381 382 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 383 { 384 struct vm_area_struct *vma; 385 386 mmap_write_lock(mm); 387 for (vma = mm->mmap; vma; vma = vma->vm_next) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_interleave, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_bind, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 }; 412 413 static int migrate_page_add(struct page *page, struct list_head *pagelist, 414 unsigned long flags); 415 416 struct queue_pages { 417 struct list_head *pagelist; 418 unsigned long flags; 419 nodemask_t *nmask; 420 unsigned long start; 421 unsigned long end; 422 struct vm_area_struct *first; 423 }; 424 425 /* 426 * Check if the page's nid is in qp->nmask. 427 * 428 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 429 * in the invert of qp->nmask. 430 */ 431 static inline bool queue_pages_required(struct page *page, 432 struct queue_pages *qp) 433 { 434 int nid = page_to_nid(page); 435 unsigned long flags = qp->flags; 436 437 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 438 } 439 440 /* 441 * queue_pages_pmd() has four possible return values: 442 * 0 - pages are placed on the right node or queued successfully, or 443 * special page is met, i.e. huge zero page. 444 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 445 * specified. 446 * 2 - THP was split. 447 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 448 * existing page was already on a node that does not follow the 449 * policy. 450 */ 451 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 452 unsigned long end, struct mm_walk *walk) 453 __releases(ptl) 454 { 455 int ret = 0; 456 struct page *page; 457 struct queue_pages *qp = walk->private; 458 unsigned long flags; 459 460 if (unlikely(is_pmd_migration_entry(*pmd))) { 461 ret = -EIO; 462 goto unlock; 463 } 464 page = pmd_page(*pmd); 465 if (is_huge_zero_page(page)) { 466 spin_unlock(ptl); 467 walk->action = ACTION_CONTINUE; 468 goto out; 469 } 470 if (!queue_pages_required(page, qp)) 471 goto unlock; 472 473 flags = qp->flags; 474 /* go to thp migration */ 475 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 476 if (!vma_migratable(walk->vma) || 477 migrate_page_add(page, qp->pagelist, flags)) { 478 ret = 1; 479 goto unlock; 480 } 481 } else 482 ret = -EIO; 483 unlock: 484 spin_unlock(ptl); 485 out: 486 return ret; 487 } 488 489 /* 490 * Scan through pages checking if pages follow certain conditions, 491 * and move them to the pagelist if they do. 492 * 493 * queue_pages_pte_range() has three possible return values: 494 * 0 - pages are placed on the right node or queued successfully, or 495 * special page is met, i.e. zero page. 496 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 497 * specified. 498 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 499 * on a node that does not follow the policy. 500 */ 501 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 502 unsigned long end, struct mm_walk *walk) 503 { 504 struct vm_area_struct *vma = walk->vma; 505 struct page *page; 506 struct queue_pages *qp = walk->private; 507 unsigned long flags = qp->flags; 508 int ret; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) { 515 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 516 if (ret != 2) 517 return ret; 518 } 519 /* THP was split, fall through to pte walk */ 520 521 if (pmd_trans_unstable(pmd)) 522 return 0; 523 524 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 525 for (; addr != end; pte++, addr += PAGE_SIZE) { 526 if (!pte_present(*pte)) 527 continue; 528 page = vm_normal_page(vma, addr, *pte); 529 if (!page) 530 continue; 531 /* 532 * vm_normal_page() filters out zero pages, but there might 533 * still be PageReserved pages to skip, perhaps in a VDSO. 534 */ 535 if (PageReserved(page)) 536 continue; 537 if (!queue_pages_required(page, qp)) 538 continue; 539 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 540 /* MPOL_MF_STRICT must be specified if we get here */ 541 if (!vma_migratable(vma)) { 542 has_unmovable = true; 543 break; 544 } 545 546 /* 547 * Do not abort immediately since there may be 548 * temporary off LRU pages in the range. Still 549 * need migrate other LRU pages. 550 */ 551 if (migrate_page_add(page, qp->pagelist, flags)) 552 has_unmovable = true; 553 } else 554 break; 555 } 556 pte_unmap_unlock(mapped_pte, ptl); 557 cond_resched(); 558 559 if (has_unmovable) 560 return 1; 561 562 return addr != end ? -EIO : 0; 563 } 564 565 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 566 unsigned long addr, unsigned long end, 567 struct mm_walk *walk) 568 { 569 int ret = 0; 570 #ifdef CONFIG_HUGETLB_PAGE 571 struct queue_pages *qp = walk->private; 572 unsigned long flags = (qp->flags & MPOL_MF_VALID); 573 struct page *page; 574 spinlock_t *ptl; 575 pte_t entry; 576 577 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 578 entry = huge_ptep_get(pte); 579 if (!pte_present(entry)) 580 goto unlock; 581 page = pte_page(entry); 582 if (!queue_pages_required(page, qp)) 583 goto unlock; 584 585 if (flags == MPOL_MF_STRICT) { 586 /* 587 * STRICT alone means only detecting misplaced page and no 588 * need to further check other vma. 589 */ 590 ret = -EIO; 591 goto unlock; 592 } 593 594 if (!vma_migratable(walk->vma)) { 595 /* 596 * Must be STRICT with MOVE*, otherwise .test_walk() have 597 * stopped walking current vma. 598 * Detecting misplaced page but allow migrating pages which 599 * have been queued. 600 */ 601 ret = 1; 602 goto unlock; 603 } 604 605 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 606 if (flags & (MPOL_MF_MOVE_ALL) || 607 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 608 if (!isolate_huge_page(page, qp->pagelist) && 609 (flags & MPOL_MF_STRICT)) 610 /* 611 * Failed to isolate page but allow migrating pages 612 * which have been queued. 613 */ 614 ret = 1; 615 } 616 unlock: 617 spin_unlock(ptl); 618 #else 619 BUG(); 620 #endif 621 return ret; 622 } 623 624 #ifdef CONFIG_NUMA_BALANCING 625 /* 626 * This is used to mark a range of virtual addresses to be inaccessible. 627 * These are later cleared by a NUMA hinting fault. Depending on these 628 * faults, pages may be migrated for better NUMA placement. 629 * 630 * This is assuming that NUMA faults are handled using PROT_NONE. If 631 * an architecture makes a different choice, it will need further 632 * changes to the core. 633 */ 634 unsigned long change_prot_numa(struct vm_area_struct *vma, 635 unsigned long addr, unsigned long end) 636 { 637 int nr_updated; 638 639 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 640 if (nr_updated) 641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 642 643 return nr_updated; 644 } 645 #else 646 static unsigned long change_prot_numa(struct vm_area_struct *vma, 647 unsigned long addr, unsigned long end) 648 { 649 return 0; 650 } 651 #endif /* CONFIG_NUMA_BALANCING */ 652 653 static int queue_pages_test_walk(unsigned long start, unsigned long end, 654 struct mm_walk *walk) 655 { 656 struct vm_area_struct *vma = walk->vma; 657 struct queue_pages *qp = walk->private; 658 unsigned long endvma = vma->vm_end; 659 unsigned long flags = qp->flags; 660 661 /* range check first */ 662 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 663 664 if (!qp->first) { 665 qp->first = vma; 666 if (!(flags & MPOL_MF_DISCONTIG_OK) && 667 (qp->start < vma->vm_start)) 668 /* hole at head side of range */ 669 return -EFAULT; 670 } 671 if (!(flags & MPOL_MF_DISCONTIG_OK) && 672 ((vma->vm_end < qp->end) && 673 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 674 /* hole at middle or tail of range */ 675 return -EFAULT; 676 677 /* 678 * Need check MPOL_MF_STRICT to return -EIO if possible 679 * regardless of vma_migratable 680 */ 681 if (!vma_migratable(vma) && 682 !(flags & MPOL_MF_STRICT)) 683 return 1; 684 685 if (endvma > end) 686 endvma = end; 687 688 if (flags & MPOL_MF_LAZY) { 689 /* Similar to task_numa_work, skip inaccessible VMAs */ 690 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 691 !(vma->vm_flags & VM_MIXEDMAP)) 692 change_prot_numa(vma, start, endvma); 693 return 1; 694 } 695 696 /* queue pages from current vma */ 697 if (flags & MPOL_MF_VALID) 698 return 0; 699 return 1; 700 } 701 702 static const struct mm_walk_ops queue_pages_walk_ops = { 703 .hugetlb_entry = queue_pages_hugetlb, 704 .pmd_entry = queue_pages_pte_range, 705 .test_walk = queue_pages_test_walk, 706 }; 707 708 /* 709 * Walk through page tables and collect pages to be migrated. 710 * 711 * If pages found in a given range are on a set of nodes (determined by 712 * @nodes and @flags,) it's isolated and queued to the pagelist which is 713 * passed via @private. 714 * 715 * queue_pages_range() has three possible return values: 716 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 717 * specified. 718 * 0 - queue pages successfully or no misplaced page. 719 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 720 * memory range specified by nodemask and maxnode points outside 721 * your accessible address space (-EFAULT) 722 */ 723 static int 724 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 725 nodemask_t *nodes, unsigned long flags, 726 struct list_head *pagelist) 727 { 728 int err; 729 struct queue_pages qp = { 730 .pagelist = pagelist, 731 .flags = flags, 732 .nmask = nodes, 733 .start = start, 734 .end = end, 735 .first = NULL, 736 }; 737 738 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 739 740 if (!qp.first) 741 /* whole range in hole */ 742 err = -EFAULT; 743 744 return err; 745 } 746 747 /* 748 * Apply policy to a single VMA 749 * This must be called with the mmap_lock held for writing. 750 */ 751 static int vma_replace_policy(struct vm_area_struct *vma, 752 struct mempolicy *pol) 753 { 754 int err; 755 struct mempolicy *old; 756 struct mempolicy *new; 757 758 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 759 vma->vm_start, vma->vm_end, vma->vm_pgoff, 760 vma->vm_ops, vma->vm_file, 761 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 762 763 new = mpol_dup(pol); 764 if (IS_ERR(new)) 765 return PTR_ERR(new); 766 767 if (vma->vm_ops && vma->vm_ops->set_policy) { 768 err = vma->vm_ops->set_policy(vma, new); 769 if (err) 770 goto err_out; 771 } 772 773 old = vma->vm_policy; 774 vma->vm_policy = new; /* protected by mmap_lock */ 775 mpol_put(old); 776 777 return 0; 778 err_out: 779 mpol_put(new); 780 return err; 781 } 782 783 /* Step 2: apply policy to a range and do splits. */ 784 static int mbind_range(struct mm_struct *mm, unsigned long start, 785 unsigned long end, struct mempolicy *new_pol) 786 { 787 struct vm_area_struct *next; 788 struct vm_area_struct *prev; 789 struct vm_area_struct *vma; 790 int err = 0; 791 pgoff_t pgoff; 792 unsigned long vmstart; 793 unsigned long vmend; 794 795 vma = find_vma(mm, start); 796 VM_BUG_ON(!vma); 797 798 prev = vma->vm_prev; 799 if (start > vma->vm_start) 800 prev = vma; 801 802 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 803 next = vma->vm_next; 804 vmstart = max(start, vma->vm_start); 805 vmend = min(end, vma->vm_end); 806 807 if (mpol_equal(vma_policy(vma), new_pol)) 808 continue; 809 810 pgoff = vma->vm_pgoff + 811 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 812 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 813 vma->anon_vma, vma->vm_file, pgoff, 814 new_pol, vma->vm_userfaultfd_ctx); 815 if (prev) { 816 vma = prev; 817 next = vma->vm_next; 818 if (mpol_equal(vma_policy(vma), new_pol)) 819 continue; 820 /* vma_merge() joined vma && vma->next, case 8 */ 821 goto replace; 822 } 823 if (vma->vm_start != vmstart) { 824 err = split_vma(vma->vm_mm, vma, vmstart, 1); 825 if (err) 826 goto out; 827 } 828 if (vma->vm_end != vmend) { 829 err = split_vma(vma->vm_mm, vma, vmend, 0); 830 if (err) 831 goto out; 832 } 833 replace: 834 err = vma_replace_policy(vma, new_pol); 835 if (err) 836 goto out; 837 } 838 839 out: 840 return err; 841 } 842 843 /* Set the process memory policy */ 844 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 845 nodemask_t *nodes) 846 { 847 struct mempolicy *new, *old; 848 NODEMASK_SCRATCH(scratch); 849 int ret; 850 851 if (!scratch) 852 return -ENOMEM; 853 854 new = mpol_new(mode, flags, nodes); 855 if (IS_ERR(new)) { 856 ret = PTR_ERR(new); 857 goto out; 858 } 859 860 if (flags & MPOL_F_NUMA_BALANCING) { 861 if (new && new->mode == MPOL_BIND) { 862 new->flags |= (MPOL_F_MOF | MPOL_F_MORON); 863 } else { 864 ret = -EINVAL; 865 mpol_put(new); 866 goto out; 867 } 868 } 869 870 ret = mpol_set_nodemask(new, nodes, scratch); 871 if (ret) { 872 mpol_put(new); 873 goto out; 874 } 875 task_lock(current); 876 old = current->mempolicy; 877 current->mempolicy = new; 878 if (new && new->mode == MPOL_INTERLEAVE) 879 current->il_prev = MAX_NUMNODES-1; 880 task_unlock(current); 881 mpol_put(old); 882 ret = 0; 883 out: 884 NODEMASK_SCRATCH_FREE(scratch); 885 return ret; 886 } 887 888 /* 889 * Return nodemask for policy for get_mempolicy() query 890 * 891 * Called with task's alloc_lock held 892 */ 893 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 894 { 895 nodes_clear(*nodes); 896 if (p == &default_policy) 897 return; 898 899 switch (p->mode) { 900 case MPOL_BIND: 901 case MPOL_INTERLEAVE: 902 case MPOL_PREFERRED: 903 *nodes = p->nodes; 904 break; 905 case MPOL_LOCAL: 906 /* return empty node mask for local allocation */ 907 break; 908 default: 909 BUG(); 910 } 911 } 912 913 static int lookup_node(struct mm_struct *mm, unsigned long addr) 914 { 915 struct page *p = NULL; 916 int err; 917 918 int locked = 1; 919 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 920 if (err > 0) { 921 err = page_to_nid(p); 922 put_page(p); 923 } 924 if (locked) 925 mmap_read_unlock(mm); 926 return err; 927 } 928 929 /* Retrieve NUMA policy */ 930 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 931 unsigned long addr, unsigned long flags) 932 { 933 int err; 934 struct mm_struct *mm = current->mm; 935 struct vm_area_struct *vma = NULL; 936 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 937 938 if (flags & 939 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 940 return -EINVAL; 941 942 if (flags & MPOL_F_MEMS_ALLOWED) { 943 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 944 return -EINVAL; 945 *policy = 0; /* just so it's initialized */ 946 task_lock(current); 947 *nmask = cpuset_current_mems_allowed; 948 task_unlock(current); 949 return 0; 950 } 951 952 if (flags & MPOL_F_ADDR) { 953 /* 954 * Do NOT fall back to task policy if the 955 * vma/shared policy at addr is NULL. We 956 * want to return MPOL_DEFAULT in this case. 957 */ 958 mmap_read_lock(mm); 959 vma = vma_lookup(mm, addr); 960 if (!vma) { 961 mmap_read_unlock(mm); 962 return -EFAULT; 963 } 964 if (vma->vm_ops && vma->vm_ops->get_policy) 965 pol = vma->vm_ops->get_policy(vma, addr); 966 else 967 pol = vma->vm_policy; 968 } else if (addr) 969 return -EINVAL; 970 971 if (!pol) 972 pol = &default_policy; /* indicates default behavior */ 973 974 if (flags & MPOL_F_NODE) { 975 if (flags & MPOL_F_ADDR) { 976 /* 977 * Take a refcount on the mpol, lookup_node() 978 * will drop the mmap_lock, so after calling 979 * lookup_node() only "pol" remains valid, "vma" 980 * is stale. 981 */ 982 pol_refcount = pol; 983 vma = NULL; 984 mpol_get(pol); 985 err = lookup_node(mm, addr); 986 if (err < 0) 987 goto out; 988 *policy = err; 989 } else if (pol == current->mempolicy && 990 pol->mode == MPOL_INTERLEAVE) { 991 *policy = next_node_in(current->il_prev, pol->nodes); 992 } else { 993 err = -EINVAL; 994 goto out; 995 } 996 } else { 997 *policy = pol == &default_policy ? MPOL_DEFAULT : 998 pol->mode; 999 /* 1000 * Internal mempolicy flags must be masked off before exposing 1001 * the policy to userspace. 1002 */ 1003 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1004 } 1005 1006 err = 0; 1007 if (nmask) { 1008 if (mpol_store_user_nodemask(pol)) { 1009 *nmask = pol->w.user_nodemask; 1010 } else { 1011 task_lock(current); 1012 get_policy_nodemask(pol, nmask); 1013 task_unlock(current); 1014 } 1015 } 1016 1017 out: 1018 mpol_cond_put(pol); 1019 if (vma) 1020 mmap_read_unlock(mm); 1021 if (pol_refcount) 1022 mpol_put(pol_refcount); 1023 return err; 1024 } 1025 1026 #ifdef CONFIG_MIGRATION 1027 /* 1028 * page migration, thp tail pages can be passed. 1029 */ 1030 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1031 unsigned long flags) 1032 { 1033 struct page *head = compound_head(page); 1034 /* 1035 * Avoid migrating a page that is shared with others. 1036 */ 1037 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1038 if (!isolate_lru_page(head)) { 1039 list_add_tail(&head->lru, pagelist); 1040 mod_node_page_state(page_pgdat(head), 1041 NR_ISOLATED_ANON + page_is_file_lru(head), 1042 thp_nr_pages(head)); 1043 } else if (flags & MPOL_MF_STRICT) { 1044 /* 1045 * Non-movable page may reach here. And, there may be 1046 * temporary off LRU pages or non-LRU movable pages. 1047 * Treat them as unmovable pages since they can't be 1048 * isolated, so they can't be moved at the moment. It 1049 * should return -EIO for this case too. 1050 */ 1051 return -EIO; 1052 } 1053 } 1054 1055 return 0; 1056 } 1057 1058 /* 1059 * Migrate pages from one node to a target node. 1060 * Returns error or the number of pages not migrated. 1061 */ 1062 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1063 int flags) 1064 { 1065 nodemask_t nmask; 1066 LIST_HEAD(pagelist); 1067 int err = 0; 1068 struct migration_target_control mtc = { 1069 .nid = dest, 1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1071 }; 1072 1073 nodes_clear(nmask); 1074 node_set(source, nmask); 1075 1076 /* 1077 * This does not "check" the range but isolates all pages that 1078 * need migration. Between passing in the full user address 1079 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1080 */ 1081 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1082 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1083 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1084 1085 if (!list_empty(&pagelist)) { 1086 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1087 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1088 if (err) 1089 putback_movable_pages(&pagelist); 1090 } 1091 1092 return err; 1093 } 1094 1095 /* 1096 * Move pages between the two nodesets so as to preserve the physical 1097 * layout as much as possible. 1098 * 1099 * Returns the number of page that could not be moved. 1100 */ 1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1102 const nodemask_t *to, int flags) 1103 { 1104 int busy = 0; 1105 int err = 0; 1106 nodemask_t tmp; 1107 1108 lru_cache_disable(); 1109 1110 mmap_read_lock(mm); 1111 1112 /* 1113 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1114 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1115 * bit in 'tmp', and return that <source, dest> pair for migration. 1116 * The pair of nodemasks 'to' and 'from' define the map. 1117 * 1118 * If no pair of bits is found that way, fallback to picking some 1119 * pair of 'source' and 'dest' bits that are not the same. If the 1120 * 'source' and 'dest' bits are the same, this represents a node 1121 * that will be migrating to itself, so no pages need move. 1122 * 1123 * If no bits are left in 'tmp', or if all remaining bits left 1124 * in 'tmp' correspond to the same bit in 'to', return false 1125 * (nothing left to migrate). 1126 * 1127 * This lets us pick a pair of nodes to migrate between, such that 1128 * if possible the dest node is not already occupied by some other 1129 * source node, minimizing the risk of overloading the memory on a 1130 * node that would happen if we migrated incoming memory to a node 1131 * before migrating outgoing memory source that same node. 1132 * 1133 * A single scan of tmp is sufficient. As we go, we remember the 1134 * most recent <s, d> pair that moved (s != d). If we find a pair 1135 * that not only moved, but what's better, moved to an empty slot 1136 * (d is not set in tmp), then we break out then, with that pair. 1137 * Otherwise when we finish scanning from_tmp, we at least have the 1138 * most recent <s, d> pair that moved. If we get all the way through 1139 * the scan of tmp without finding any node that moved, much less 1140 * moved to an empty node, then there is nothing left worth migrating. 1141 */ 1142 1143 tmp = *from; 1144 while (!nodes_empty(tmp)) { 1145 int s, d; 1146 int source = NUMA_NO_NODE; 1147 int dest = 0; 1148 1149 for_each_node_mask(s, tmp) { 1150 1151 /* 1152 * do_migrate_pages() tries to maintain the relative 1153 * node relationship of the pages established between 1154 * threads and memory areas. 1155 * 1156 * However if the number of source nodes is not equal to 1157 * the number of destination nodes we can not preserve 1158 * this node relative relationship. In that case, skip 1159 * copying memory from a node that is in the destination 1160 * mask. 1161 * 1162 * Example: [2,3,4] -> [3,4,5] moves everything. 1163 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1164 */ 1165 1166 if ((nodes_weight(*from) != nodes_weight(*to)) && 1167 (node_isset(s, *to))) 1168 continue; 1169 1170 d = node_remap(s, *from, *to); 1171 if (s == d) 1172 continue; 1173 1174 source = s; /* Node moved. Memorize */ 1175 dest = d; 1176 1177 /* dest not in remaining from nodes? */ 1178 if (!node_isset(dest, tmp)) 1179 break; 1180 } 1181 if (source == NUMA_NO_NODE) 1182 break; 1183 1184 node_clear(source, tmp); 1185 err = migrate_to_node(mm, source, dest, flags); 1186 if (err > 0) 1187 busy += err; 1188 if (err < 0) 1189 break; 1190 } 1191 mmap_read_unlock(mm); 1192 1193 lru_cache_enable(); 1194 if (err < 0) 1195 return err; 1196 return busy; 1197 1198 } 1199 1200 /* 1201 * Allocate a new page for page migration based on vma policy. 1202 * Start by assuming the page is mapped by the same vma as contains @start. 1203 * Search forward from there, if not. N.B., this assumes that the 1204 * list of pages handed to migrate_pages()--which is how we get here-- 1205 * is in virtual address order. 1206 */ 1207 static struct page *new_page(struct page *page, unsigned long start) 1208 { 1209 struct vm_area_struct *vma; 1210 unsigned long address; 1211 1212 vma = find_vma(current->mm, start); 1213 while (vma) { 1214 address = page_address_in_vma(page, vma); 1215 if (address != -EFAULT) 1216 break; 1217 vma = vma->vm_next; 1218 } 1219 1220 if (PageHuge(page)) { 1221 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1222 vma, address); 1223 } else if (PageTransHuge(page)) { 1224 struct page *thp; 1225 1226 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1227 HPAGE_PMD_ORDER); 1228 if (!thp) 1229 return NULL; 1230 prep_transhuge_page(thp); 1231 return thp; 1232 } 1233 /* 1234 * if !vma, alloc_page_vma() will use task or system default policy 1235 */ 1236 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1237 vma, address); 1238 } 1239 #else 1240 1241 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1242 unsigned long flags) 1243 { 1244 return -EIO; 1245 } 1246 1247 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1248 const nodemask_t *to, int flags) 1249 { 1250 return -ENOSYS; 1251 } 1252 1253 static struct page *new_page(struct page *page, unsigned long start) 1254 { 1255 return NULL; 1256 } 1257 #endif 1258 1259 static long do_mbind(unsigned long start, unsigned long len, 1260 unsigned short mode, unsigned short mode_flags, 1261 nodemask_t *nmask, unsigned long flags) 1262 { 1263 struct mm_struct *mm = current->mm; 1264 struct mempolicy *new; 1265 unsigned long end; 1266 int err; 1267 int ret; 1268 LIST_HEAD(pagelist); 1269 1270 if (flags & ~(unsigned long)MPOL_MF_VALID) 1271 return -EINVAL; 1272 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1273 return -EPERM; 1274 1275 if (start & ~PAGE_MASK) 1276 return -EINVAL; 1277 1278 if (mode == MPOL_DEFAULT) 1279 flags &= ~MPOL_MF_STRICT; 1280 1281 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1282 end = start + len; 1283 1284 if (end < start) 1285 return -EINVAL; 1286 if (end == start) 1287 return 0; 1288 1289 new = mpol_new(mode, mode_flags, nmask); 1290 if (IS_ERR(new)) 1291 return PTR_ERR(new); 1292 1293 if (flags & MPOL_MF_LAZY) 1294 new->flags |= MPOL_F_MOF; 1295 1296 /* 1297 * If we are using the default policy then operation 1298 * on discontinuous address spaces is okay after all 1299 */ 1300 if (!new) 1301 flags |= MPOL_MF_DISCONTIG_OK; 1302 1303 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1304 start, start + len, mode, mode_flags, 1305 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1306 1307 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1308 1309 lru_cache_disable(); 1310 } 1311 { 1312 NODEMASK_SCRATCH(scratch); 1313 if (scratch) { 1314 mmap_write_lock(mm); 1315 err = mpol_set_nodemask(new, nmask, scratch); 1316 if (err) 1317 mmap_write_unlock(mm); 1318 } else 1319 err = -ENOMEM; 1320 NODEMASK_SCRATCH_FREE(scratch); 1321 } 1322 if (err) 1323 goto mpol_out; 1324 1325 ret = queue_pages_range(mm, start, end, nmask, 1326 flags | MPOL_MF_INVERT, &pagelist); 1327 1328 if (ret < 0) { 1329 err = ret; 1330 goto up_out; 1331 } 1332 1333 err = mbind_range(mm, start, end, new); 1334 1335 if (!err) { 1336 int nr_failed = 0; 1337 1338 if (!list_empty(&pagelist)) { 1339 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1340 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1341 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1342 if (nr_failed) 1343 putback_movable_pages(&pagelist); 1344 } 1345 1346 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1347 err = -EIO; 1348 } else { 1349 up_out: 1350 if (!list_empty(&pagelist)) 1351 putback_movable_pages(&pagelist); 1352 } 1353 1354 mmap_write_unlock(mm); 1355 mpol_out: 1356 mpol_put(new); 1357 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1358 lru_cache_enable(); 1359 return err; 1360 } 1361 1362 /* 1363 * User space interface with variable sized bitmaps for nodelists. 1364 */ 1365 1366 /* Copy a node mask from user space. */ 1367 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1368 unsigned long maxnode) 1369 { 1370 unsigned long k; 1371 unsigned long t; 1372 unsigned long nlongs; 1373 unsigned long endmask; 1374 1375 --maxnode; 1376 nodes_clear(*nodes); 1377 if (maxnode == 0 || !nmask) 1378 return 0; 1379 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1380 return -EINVAL; 1381 1382 nlongs = BITS_TO_LONGS(maxnode); 1383 if ((maxnode % BITS_PER_LONG) == 0) 1384 endmask = ~0UL; 1385 else 1386 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1387 1388 /* 1389 * When the user specified more nodes than supported just check 1390 * if the non supported part is all zero. 1391 * 1392 * If maxnode have more longs than MAX_NUMNODES, check 1393 * the bits in that area first. And then go through to 1394 * check the rest bits which equal or bigger than MAX_NUMNODES. 1395 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1396 */ 1397 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1398 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1399 if (get_user(t, nmask + k)) 1400 return -EFAULT; 1401 if (k == nlongs - 1) { 1402 if (t & endmask) 1403 return -EINVAL; 1404 } else if (t) 1405 return -EINVAL; 1406 } 1407 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1408 endmask = ~0UL; 1409 } 1410 1411 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1412 unsigned long valid_mask = endmask; 1413 1414 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1415 if (get_user(t, nmask + nlongs - 1)) 1416 return -EFAULT; 1417 if (t & valid_mask) 1418 return -EINVAL; 1419 } 1420 1421 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1422 return -EFAULT; 1423 nodes_addr(*nodes)[nlongs-1] &= endmask; 1424 return 0; 1425 } 1426 1427 /* Copy a kernel node mask to user space */ 1428 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1429 nodemask_t *nodes) 1430 { 1431 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1432 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1433 1434 if (copy > nbytes) { 1435 if (copy > PAGE_SIZE) 1436 return -EINVAL; 1437 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1438 return -EFAULT; 1439 copy = nbytes; 1440 } 1441 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1442 } 1443 1444 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1445 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1446 { 1447 *flags = *mode & MPOL_MODE_FLAGS; 1448 *mode &= ~MPOL_MODE_FLAGS; 1449 if ((unsigned int)(*mode) >= MPOL_MAX) 1450 return -EINVAL; 1451 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1452 return -EINVAL; 1453 1454 return 0; 1455 } 1456 1457 static long kernel_mbind(unsigned long start, unsigned long len, 1458 unsigned long mode, const unsigned long __user *nmask, 1459 unsigned long maxnode, unsigned int flags) 1460 { 1461 unsigned short mode_flags; 1462 nodemask_t nodes; 1463 int lmode = mode; 1464 int err; 1465 1466 start = untagged_addr(start); 1467 err = sanitize_mpol_flags(&lmode, &mode_flags); 1468 if (err) 1469 return err; 1470 1471 err = get_nodes(&nodes, nmask, maxnode); 1472 if (err) 1473 return err; 1474 1475 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1476 } 1477 1478 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1479 unsigned long, mode, const unsigned long __user *, nmask, 1480 unsigned long, maxnode, unsigned int, flags) 1481 { 1482 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1483 } 1484 1485 /* Set the process memory policy */ 1486 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1487 unsigned long maxnode) 1488 { 1489 unsigned short mode_flags; 1490 nodemask_t nodes; 1491 int lmode = mode; 1492 int err; 1493 1494 err = sanitize_mpol_flags(&lmode, &mode_flags); 1495 if (err) 1496 return err; 1497 1498 err = get_nodes(&nodes, nmask, maxnode); 1499 if (err) 1500 return err; 1501 1502 return do_set_mempolicy(lmode, mode_flags, &nodes); 1503 } 1504 1505 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1506 unsigned long, maxnode) 1507 { 1508 return kernel_set_mempolicy(mode, nmask, maxnode); 1509 } 1510 1511 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1512 const unsigned long __user *old_nodes, 1513 const unsigned long __user *new_nodes) 1514 { 1515 struct mm_struct *mm = NULL; 1516 struct task_struct *task; 1517 nodemask_t task_nodes; 1518 int err; 1519 nodemask_t *old; 1520 nodemask_t *new; 1521 NODEMASK_SCRATCH(scratch); 1522 1523 if (!scratch) 1524 return -ENOMEM; 1525 1526 old = &scratch->mask1; 1527 new = &scratch->mask2; 1528 1529 err = get_nodes(old, old_nodes, maxnode); 1530 if (err) 1531 goto out; 1532 1533 err = get_nodes(new, new_nodes, maxnode); 1534 if (err) 1535 goto out; 1536 1537 /* Find the mm_struct */ 1538 rcu_read_lock(); 1539 task = pid ? find_task_by_vpid(pid) : current; 1540 if (!task) { 1541 rcu_read_unlock(); 1542 err = -ESRCH; 1543 goto out; 1544 } 1545 get_task_struct(task); 1546 1547 err = -EINVAL; 1548 1549 /* 1550 * Check if this process has the right to modify the specified process. 1551 * Use the regular "ptrace_may_access()" checks. 1552 */ 1553 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1554 rcu_read_unlock(); 1555 err = -EPERM; 1556 goto out_put; 1557 } 1558 rcu_read_unlock(); 1559 1560 task_nodes = cpuset_mems_allowed(task); 1561 /* Is the user allowed to access the target nodes? */ 1562 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1563 err = -EPERM; 1564 goto out_put; 1565 } 1566 1567 task_nodes = cpuset_mems_allowed(current); 1568 nodes_and(*new, *new, task_nodes); 1569 if (nodes_empty(*new)) 1570 goto out_put; 1571 1572 err = security_task_movememory(task); 1573 if (err) 1574 goto out_put; 1575 1576 mm = get_task_mm(task); 1577 put_task_struct(task); 1578 1579 if (!mm) { 1580 err = -EINVAL; 1581 goto out; 1582 } 1583 1584 err = do_migrate_pages(mm, old, new, 1585 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1586 1587 mmput(mm); 1588 out: 1589 NODEMASK_SCRATCH_FREE(scratch); 1590 1591 return err; 1592 1593 out_put: 1594 put_task_struct(task); 1595 goto out; 1596 1597 } 1598 1599 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1600 const unsigned long __user *, old_nodes, 1601 const unsigned long __user *, new_nodes) 1602 { 1603 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1604 } 1605 1606 1607 /* Retrieve NUMA policy */ 1608 static int kernel_get_mempolicy(int __user *policy, 1609 unsigned long __user *nmask, 1610 unsigned long maxnode, 1611 unsigned long addr, 1612 unsigned long flags) 1613 { 1614 int err; 1615 int pval; 1616 nodemask_t nodes; 1617 1618 if (nmask != NULL && maxnode < nr_node_ids) 1619 return -EINVAL; 1620 1621 addr = untagged_addr(addr); 1622 1623 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1624 1625 if (err) 1626 return err; 1627 1628 if (policy && put_user(pval, policy)) 1629 return -EFAULT; 1630 1631 if (nmask) 1632 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1633 1634 return err; 1635 } 1636 1637 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1638 unsigned long __user *, nmask, unsigned long, maxnode, 1639 unsigned long, addr, unsigned long, flags) 1640 { 1641 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1642 } 1643 1644 #ifdef CONFIG_COMPAT 1645 1646 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1647 compat_ulong_t __user *, nmask, 1648 compat_ulong_t, maxnode, 1649 compat_ulong_t, addr, compat_ulong_t, flags) 1650 { 1651 long err; 1652 unsigned long __user *nm = NULL; 1653 unsigned long nr_bits, alloc_size; 1654 DECLARE_BITMAP(bm, MAX_NUMNODES); 1655 1656 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1657 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1658 1659 if (nmask) 1660 nm = compat_alloc_user_space(alloc_size); 1661 1662 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1663 1664 if (!err && nmask) { 1665 unsigned long copy_size; 1666 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1667 err = copy_from_user(bm, nm, copy_size); 1668 /* ensure entire bitmap is zeroed */ 1669 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1670 err |= compat_put_bitmap(nmask, bm, nr_bits); 1671 } 1672 1673 return err; 1674 } 1675 1676 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1677 compat_ulong_t, maxnode) 1678 { 1679 unsigned long __user *nm = NULL; 1680 unsigned long nr_bits, alloc_size; 1681 DECLARE_BITMAP(bm, MAX_NUMNODES); 1682 1683 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1684 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1685 1686 if (nmask) { 1687 if (compat_get_bitmap(bm, nmask, nr_bits)) 1688 return -EFAULT; 1689 nm = compat_alloc_user_space(alloc_size); 1690 if (copy_to_user(nm, bm, alloc_size)) 1691 return -EFAULT; 1692 } 1693 1694 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1695 } 1696 1697 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1698 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1699 compat_ulong_t, maxnode, compat_ulong_t, flags) 1700 { 1701 unsigned long __user *nm = NULL; 1702 unsigned long nr_bits, alloc_size; 1703 nodemask_t bm; 1704 1705 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1706 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1707 1708 if (nmask) { 1709 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1710 return -EFAULT; 1711 nm = compat_alloc_user_space(alloc_size); 1712 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1713 return -EFAULT; 1714 } 1715 1716 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1717 } 1718 1719 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1720 compat_ulong_t, maxnode, 1721 const compat_ulong_t __user *, old_nodes, 1722 const compat_ulong_t __user *, new_nodes) 1723 { 1724 unsigned long __user *old = NULL; 1725 unsigned long __user *new = NULL; 1726 nodemask_t tmp_mask; 1727 unsigned long nr_bits; 1728 unsigned long size; 1729 1730 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1731 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1732 if (old_nodes) { 1733 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1734 return -EFAULT; 1735 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1736 if (new_nodes) 1737 new = old + size / sizeof(unsigned long); 1738 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1739 return -EFAULT; 1740 } 1741 if (new_nodes) { 1742 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1743 return -EFAULT; 1744 if (new == NULL) 1745 new = compat_alloc_user_space(size); 1746 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1747 return -EFAULT; 1748 } 1749 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1750 } 1751 1752 #endif /* CONFIG_COMPAT */ 1753 1754 bool vma_migratable(struct vm_area_struct *vma) 1755 { 1756 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1757 return false; 1758 1759 /* 1760 * DAX device mappings require predictable access latency, so avoid 1761 * incurring periodic faults. 1762 */ 1763 if (vma_is_dax(vma)) 1764 return false; 1765 1766 if (is_vm_hugetlb_page(vma) && 1767 !hugepage_migration_supported(hstate_vma(vma))) 1768 return false; 1769 1770 /* 1771 * Migration allocates pages in the highest zone. If we cannot 1772 * do so then migration (at least from node to node) is not 1773 * possible. 1774 */ 1775 if (vma->vm_file && 1776 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1777 < policy_zone) 1778 return false; 1779 return true; 1780 } 1781 1782 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1783 unsigned long addr) 1784 { 1785 struct mempolicy *pol = NULL; 1786 1787 if (vma) { 1788 if (vma->vm_ops && vma->vm_ops->get_policy) { 1789 pol = vma->vm_ops->get_policy(vma, addr); 1790 } else if (vma->vm_policy) { 1791 pol = vma->vm_policy; 1792 1793 /* 1794 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1795 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1796 * count on these policies which will be dropped by 1797 * mpol_cond_put() later 1798 */ 1799 if (mpol_needs_cond_ref(pol)) 1800 mpol_get(pol); 1801 } 1802 } 1803 1804 return pol; 1805 } 1806 1807 /* 1808 * get_vma_policy(@vma, @addr) 1809 * @vma: virtual memory area whose policy is sought 1810 * @addr: address in @vma for shared policy lookup 1811 * 1812 * Returns effective policy for a VMA at specified address. 1813 * Falls back to current->mempolicy or system default policy, as necessary. 1814 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1815 * count--added by the get_policy() vm_op, as appropriate--to protect against 1816 * freeing by another task. It is the caller's responsibility to free the 1817 * extra reference for shared policies. 1818 */ 1819 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1820 unsigned long addr) 1821 { 1822 struct mempolicy *pol = __get_vma_policy(vma, addr); 1823 1824 if (!pol) 1825 pol = get_task_policy(current); 1826 1827 return pol; 1828 } 1829 1830 bool vma_policy_mof(struct vm_area_struct *vma) 1831 { 1832 struct mempolicy *pol; 1833 1834 if (vma->vm_ops && vma->vm_ops->get_policy) { 1835 bool ret = false; 1836 1837 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1838 if (pol && (pol->flags & MPOL_F_MOF)) 1839 ret = true; 1840 mpol_cond_put(pol); 1841 1842 return ret; 1843 } 1844 1845 pol = vma->vm_policy; 1846 if (!pol) 1847 pol = get_task_policy(current); 1848 1849 return pol->flags & MPOL_F_MOF; 1850 } 1851 1852 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1853 { 1854 enum zone_type dynamic_policy_zone = policy_zone; 1855 1856 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1857 1858 /* 1859 * if policy->nodes has movable memory only, 1860 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1861 * 1862 * policy->nodes is intersect with node_states[N_MEMORY]. 1863 * so if the following test fails, it implies 1864 * policy->nodes has movable memory only. 1865 */ 1866 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1867 dynamic_policy_zone = ZONE_MOVABLE; 1868 1869 return zone >= dynamic_policy_zone; 1870 } 1871 1872 /* 1873 * Return a nodemask representing a mempolicy for filtering nodes for 1874 * page allocation 1875 */ 1876 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1877 { 1878 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1879 if (unlikely(policy->mode == MPOL_BIND) && 1880 apply_policy_zone(policy, gfp_zone(gfp)) && 1881 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1882 return &policy->nodes; 1883 1884 return NULL; 1885 } 1886 1887 /* Return the node id preferred by the given mempolicy, or the given id */ 1888 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1889 { 1890 if (policy->mode == MPOL_PREFERRED) { 1891 nd = first_node(policy->nodes); 1892 } else { 1893 /* 1894 * __GFP_THISNODE shouldn't even be used with the bind policy 1895 * because we might easily break the expectation to stay on the 1896 * requested node and not break the policy. 1897 */ 1898 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1899 } 1900 1901 return nd; 1902 } 1903 1904 /* Do dynamic interleaving for a process */ 1905 static unsigned interleave_nodes(struct mempolicy *policy) 1906 { 1907 unsigned next; 1908 struct task_struct *me = current; 1909 1910 next = next_node_in(me->il_prev, policy->nodes); 1911 if (next < MAX_NUMNODES) 1912 me->il_prev = next; 1913 return next; 1914 } 1915 1916 /* 1917 * Depending on the memory policy provide a node from which to allocate the 1918 * next slab entry. 1919 */ 1920 unsigned int mempolicy_slab_node(void) 1921 { 1922 struct mempolicy *policy; 1923 int node = numa_mem_id(); 1924 1925 if (in_interrupt()) 1926 return node; 1927 1928 policy = current->mempolicy; 1929 if (!policy) 1930 return node; 1931 1932 switch (policy->mode) { 1933 case MPOL_PREFERRED: 1934 return first_node(policy->nodes); 1935 1936 case MPOL_INTERLEAVE: 1937 return interleave_nodes(policy); 1938 1939 case MPOL_BIND: { 1940 struct zoneref *z; 1941 1942 /* 1943 * Follow bind policy behavior and start allocation at the 1944 * first node. 1945 */ 1946 struct zonelist *zonelist; 1947 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1948 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1949 z = first_zones_zonelist(zonelist, highest_zoneidx, 1950 &policy->nodes); 1951 return z->zone ? zone_to_nid(z->zone) : node; 1952 } 1953 case MPOL_LOCAL: 1954 return node; 1955 1956 default: 1957 BUG(); 1958 } 1959 } 1960 1961 /* 1962 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1963 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1964 * number of present nodes. 1965 */ 1966 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1967 { 1968 unsigned nnodes = nodes_weight(pol->nodes); 1969 unsigned target; 1970 int i; 1971 int nid; 1972 1973 if (!nnodes) 1974 return numa_node_id(); 1975 target = (unsigned int)n % nnodes; 1976 nid = first_node(pol->nodes); 1977 for (i = 0; i < target; i++) 1978 nid = next_node(nid, pol->nodes); 1979 return nid; 1980 } 1981 1982 /* Determine a node number for interleave */ 1983 static inline unsigned interleave_nid(struct mempolicy *pol, 1984 struct vm_area_struct *vma, unsigned long addr, int shift) 1985 { 1986 if (vma) { 1987 unsigned long off; 1988 1989 /* 1990 * for small pages, there is no difference between 1991 * shift and PAGE_SHIFT, so the bit-shift is safe. 1992 * for huge pages, since vm_pgoff is in units of small 1993 * pages, we need to shift off the always 0 bits to get 1994 * a useful offset. 1995 */ 1996 BUG_ON(shift < PAGE_SHIFT); 1997 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1998 off += (addr - vma->vm_start) >> shift; 1999 return offset_il_node(pol, off); 2000 } else 2001 return interleave_nodes(pol); 2002 } 2003 2004 #ifdef CONFIG_HUGETLBFS 2005 /* 2006 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2007 * @vma: virtual memory area whose policy is sought 2008 * @addr: address in @vma for shared policy lookup and interleave policy 2009 * @gfp_flags: for requested zone 2010 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2011 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 2012 * 2013 * Returns a nid suitable for a huge page allocation and a pointer 2014 * to the struct mempolicy for conditional unref after allocation. 2015 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 2016 * @nodemask for filtering the zonelist. 2017 * 2018 * Must be protected by read_mems_allowed_begin() 2019 */ 2020 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2021 struct mempolicy **mpol, nodemask_t **nodemask) 2022 { 2023 int nid; 2024 2025 *mpol = get_vma_policy(vma, addr); 2026 *nodemask = NULL; /* assume !MPOL_BIND */ 2027 2028 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 2029 nid = interleave_nid(*mpol, vma, addr, 2030 huge_page_shift(hstate_vma(vma))); 2031 } else { 2032 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2033 if ((*mpol)->mode == MPOL_BIND) 2034 *nodemask = &(*mpol)->nodes; 2035 } 2036 return nid; 2037 } 2038 2039 /* 2040 * init_nodemask_of_mempolicy 2041 * 2042 * If the current task's mempolicy is "default" [NULL], return 'false' 2043 * to indicate default policy. Otherwise, extract the policy nodemask 2044 * for 'bind' or 'interleave' policy into the argument nodemask, or 2045 * initialize the argument nodemask to contain the single node for 2046 * 'preferred' or 'local' policy and return 'true' to indicate presence 2047 * of non-default mempolicy. 2048 * 2049 * We don't bother with reference counting the mempolicy [mpol_get/put] 2050 * because the current task is examining it's own mempolicy and a task's 2051 * mempolicy is only ever changed by the task itself. 2052 * 2053 * N.B., it is the caller's responsibility to free a returned nodemask. 2054 */ 2055 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2056 { 2057 struct mempolicy *mempolicy; 2058 2059 if (!(mask && current->mempolicy)) 2060 return false; 2061 2062 task_lock(current); 2063 mempolicy = current->mempolicy; 2064 switch (mempolicy->mode) { 2065 case MPOL_PREFERRED: 2066 case MPOL_BIND: 2067 case MPOL_INTERLEAVE: 2068 *mask = mempolicy->nodes; 2069 break; 2070 2071 case MPOL_LOCAL: 2072 init_nodemask_of_node(mask, numa_node_id()); 2073 break; 2074 2075 default: 2076 BUG(); 2077 } 2078 task_unlock(current); 2079 2080 return true; 2081 } 2082 #endif 2083 2084 /* 2085 * mempolicy_in_oom_domain 2086 * 2087 * If tsk's mempolicy is "bind", check for intersection between mask and 2088 * the policy nodemask. Otherwise, return true for all other policies 2089 * including "interleave", as a tsk with "interleave" policy may have 2090 * memory allocated from all nodes in system. 2091 * 2092 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2093 */ 2094 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2095 const nodemask_t *mask) 2096 { 2097 struct mempolicy *mempolicy; 2098 bool ret = true; 2099 2100 if (!mask) 2101 return ret; 2102 2103 task_lock(tsk); 2104 mempolicy = tsk->mempolicy; 2105 if (mempolicy && mempolicy->mode == MPOL_BIND) 2106 ret = nodes_intersects(mempolicy->nodes, *mask); 2107 task_unlock(tsk); 2108 2109 return ret; 2110 } 2111 2112 /* Allocate a page in interleaved policy. 2113 Own path because it needs to do special accounting. */ 2114 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2115 unsigned nid) 2116 { 2117 struct page *page; 2118 2119 page = __alloc_pages(gfp, order, nid, NULL); 2120 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2121 if (!static_branch_likely(&vm_numa_stat_key)) 2122 return page; 2123 if (page && page_to_nid(page) == nid) { 2124 preempt_disable(); 2125 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2126 preempt_enable(); 2127 } 2128 return page; 2129 } 2130 2131 /** 2132 * alloc_pages_vma - Allocate a page for a VMA. 2133 * @gfp: GFP flags. 2134 * @order: Order of the GFP allocation. 2135 * @vma: Pointer to VMA or NULL if not available. 2136 * @addr: Virtual address of the allocation. Must be inside @vma. 2137 * @node: Which node to prefer for allocation (modulo policy). 2138 * @hugepage: For hugepages try only the preferred node if possible. 2139 * 2140 * Allocate a page for a specific address in @vma, using the appropriate 2141 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2142 * of the mm_struct of the VMA to prevent it from going away. Should be 2143 * used for all allocations for pages that will be mapped into user space. 2144 * 2145 * Return: The page on success or NULL if allocation fails. 2146 */ 2147 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2148 unsigned long addr, int node, bool hugepage) 2149 { 2150 struct mempolicy *pol; 2151 struct page *page; 2152 int preferred_nid; 2153 nodemask_t *nmask; 2154 2155 pol = get_vma_policy(vma, addr); 2156 2157 if (pol->mode == MPOL_INTERLEAVE) { 2158 unsigned nid; 2159 2160 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2161 mpol_cond_put(pol); 2162 page = alloc_page_interleave(gfp, order, nid); 2163 goto out; 2164 } 2165 2166 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2167 int hpage_node = node; 2168 2169 /* 2170 * For hugepage allocation and non-interleave policy which 2171 * allows the current node (or other explicitly preferred 2172 * node) we only try to allocate from the current/preferred 2173 * node and don't fall back to other nodes, as the cost of 2174 * remote accesses would likely offset THP benefits. 2175 * 2176 * If the policy is interleave, or does not allow the current 2177 * node in its nodemask, we allocate the standard way. 2178 */ 2179 if (pol->mode == MPOL_PREFERRED) 2180 hpage_node = first_node(pol->nodes); 2181 2182 nmask = policy_nodemask(gfp, pol); 2183 if (!nmask || node_isset(hpage_node, *nmask)) { 2184 mpol_cond_put(pol); 2185 /* 2186 * First, try to allocate THP only on local node, but 2187 * don't reclaim unnecessarily, just compact. 2188 */ 2189 page = __alloc_pages_node(hpage_node, 2190 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2191 2192 /* 2193 * If hugepage allocations are configured to always 2194 * synchronous compact or the vma has been madvised 2195 * to prefer hugepage backing, retry allowing remote 2196 * memory with both reclaim and compact as well. 2197 */ 2198 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2199 page = __alloc_pages_node(hpage_node, 2200 gfp, order); 2201 2202 goto out; 2203 } 2204 } 2205 2206 nmask = policy_nodemask(gfp, pol); 2207 preferred_nid = policy_node(gfp, pol, node); 2208 page = __alloc_pages(gfp, order, preferred_nid, nmask); 2209 mpol_cond_put(pol); 2210 out: 2211 return page; 2212 } 2213 EXPORT_SYMBOL(alloc_pages_vma); 2214 2215 /** 2216 * alloc_pages - Allocate pages. 2217 * @gfp: GFP flags. 2218 * @order: Power of two of number of pages to allocate. 2219 * 2220 * Allocate 1 << @order contiguous pages. The physical address of the 2221 * first page is naturally aligned (eg an order-3 allocation will be aligned 2222 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2223 * process is honoured when in process context. 2224 * 2225 * Context: Can be called from any context, providing the appropriate GFP 2226 * flags are used. 2227 * Return: The page on success or NULL if allocation fails. 2228 */ 2229 struct page *alloc_pages(gfp_t gfp, unsigned order) 2230 { 2231 struct mempolicy *pol = &default_policy; 2232 struct page *page; 2233 2234 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2235 pol = get_task_policy(current); 2236 2237 /* 2238 * No reference counting needed for current->mempolicy 2239 * nor system default_policy 2240 */ 2241 if (pol->mode == MPOL_INTERLEAVE) 2242 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2243 else 2244 page = __alloc_pages(gfp, order, 2245 policy_node(gfp, pol, numa_node_id()), 2246 policy_nodemask(gfp, pol)); 2247 2248 return page; 2249 } 2250 EXPORT_SYMBOL(alloc_pages); 2251 2252 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2253 { 2254 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2255 2256 if (IS_ERR(pol)) 2257 return PTR_ERR(pol); 2258 dst->vm_policy = pol; 2259 return 0; 2260 } 2261 2262 /* 2263 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2264 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2265 * with the mems_allowed returned by cpuset_mems_allowed(). This 2266 * keeps mempolicies cpuset relative after its cpuset moves. See 2267 * further kernel/cpuset.c update_nodemask(). 2268 * 2269 * current's mempolicy may be rebinded by the other task(the task that changes 2270 * cpuset's mems), so we needn't do rebind work for current task. 2271 */ 2272 2273 /* Slow path of a mempolicy duplicate */ 2274 struct mempolicy *__mpol_dup(struct mempolicy *old) 2275 { 2276 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2277 2278 if (!new) 2279 return ERR_PTR(-ENOMEM); 2280 2281 /* task's mempolicy is protected by alloc_lock */ 2282 if (old == current->mempolicy) { 2283 task_lock(current); 2284 *new = *old; 2285 task_unlock(current); 2286 } else 2287 *new = *old; 2288 2289 if (current_cpuset_is_being_rebound()) { 2290 nodemask_t mems = cpuset_mems_allowed(current); 2291 mpol_rebind_policy(new, &mems); 2292 } 2293 atomic_set(&new->refcnt, 1); 2294 return new; 2295 } 2296 2297 /* Slow path of a mempolicy comparison */ 2298 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2299 { 2300 if (!a || !b) 2301 return false; 2302 if (a->mode != b->mode) 2303 return false; 2304 if (a->flags != b->flags) 2305 return false; 2306 if (mpol_store_user_nodemask(a)) 2307 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2308 return false; 2309 2310 switch (a->mode) { 2311 case MPOL_BIND: 2312 case MPOL_INTERLEAVE: 2313 case MPOL_PREFERRED: 2314 return !!nodes_equal(a->nodes, b->nodes); 2315 case MPOL_LOCAL: 2316 return true; 2317 default: 2318 BUG(); 2319 return false; 2320 } 2321 } 2322 2323 /* 2324 * Shared memory backing store policy support. 2325 * 2326 * Remember policies even when nobody has shared memory mapped. 2327 * The policies are kept in Red-Black tree linked from the inode. 2328 * They are protected by the sp->lock rwlock, which should be held 2329 * for any accesses to the tree. 2330 */ 2331 2332 /* 2333 * lookup first element intersecting start-end. Caller holds sp->lock for 2334 * reading or for writing 2335 */ 2336 static struct sp_node * 2337 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2338 { 2339 struct rb_node *n = sp->root.rb_node; 2340 2341 while (n) { 2342 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2343 2344 if (start >= p->end) 2345 n = n->rb_right; 2346 else if (end <= p->start) 2347 n = n->rb_left; 2348 else 2349 break; 2350 } 2351 if (!n) 2352 return NULL; 2353 for (;;) { 2354 struct sp_node *w = NULL; 2355 struct rb_node *prev = rb_prev(n); 2356 if (!prev) 2357 break; 2358 w = rb_entry(prev, struct sp_node, nd); 2359 if (w->end <= start) 2360 break; 2361 n = prev; 2362 } 2363 return rb_entry(n, struct sp_node, nd); 2364 } 2365 2366 /* 2367 * Insert a new shared policy into the list. Caller holds sp->lock for 2368 * writing. 2369 */ 2370 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2371 { 2372 struct rb_node **p = &sp->root.rb_node; 2373 struct rb_node *parent = NULL; 2374 struct sp_node *nd; 2375 2376 while (*p) { 2377 parent = *p; 2378 nd = rb_entry(parent, struct sp_node, nd); 2379 if (new->start < nd->start) 2380 p = &(*p)->rb_left; 2381 else if (new->end > nd->end) 2382 p = &(*p)->rb_right; 2383 else 2384 BUG(); 2385 } 2386 rb_link_node(&new->nd, parent, p); 2387 rb_insert_color(&new->nd, &sp->root); 2388 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2389 new->policy ? new->policy->mode : 0); 2390 } 2391 2392 /* Find shared policy intersecting idx */ 2393 struct mempolicy * 2394 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2395 { 2396 struct mempolicy *pol = NULL; 2397 struct sp_node *sn; 2398 2399 if (!sp->root.rb_node) 2400 return NULL; 2401 read_lock(&sp->lock); 2402 sn = sp_lookup(sp, idx, idx+1); 2403 if (sn) { 2404 mpol_get(sn->policy); 2405 pol = sn->policy; 2406 } 2407 read_unlock(&sp->lock); 2408 return pol; 2409 } 2410 2411 static void sp_free(struct sp_node *n) 2412 { 2413 mpol_put(n->policy); 2414 kmem_cache_free(sn_cache, n); 2415 } 2416 2417 /** 2418 * mpol_misplaced - check whether current page node is valid in policy 2419 * 2420 * @page: page to be checked 2421 * @vma: vm area where page mapped 2422 * @addr: virtual address where page mapped 2423 * 2424 * Lookup current policy node id for vma,addr and "compare to" page's 2425 * node id. Policy determination "mimics" alloc_page_vma(). 2426 * Called from fault path where we know the vma and faulting address. 2427 * 2428 * Return: -1 if the page is in a node that is valid for this policy, or a 2429 * suitable node ID to allocate a replacement page from. 2430 */ 2431 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2432 { 2433 struct mempolicy *pol; 2434 struct zoneref *z; 2435 int curnid = page_to_nid(page); 2436 unsigned long pgoff; 2437 int thiscpu = raw_smp_processor_id(); 2438 int thisnid = cpu_to_node(thiscpu); 2439 int polnid = NUMA_NO_NODE; 2440 int ret = -1; 2441 2442 pol = get_vma_policy(vma, addr); 2443 if (!(pol->flags & MPOL_F_MOF)) 2444 goto out; 2445 2446 switch (pol->mode) { 2447 case MPOL_INTERLEAVE: 2448 pgoff = vma->vm_pgoff; 2449 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2450 polnid = offset_il_node(pol, pgoff); 2451 break; 2452 2453 case MPOL_PREFERRED: 2454 polnid = first_node(pol->nodes); 2455 break; 2456 2457 case MPOL_LOCAL: 2458 polnid = numa_node_id(); 2459 break; 2460 2461 case MPOL_BIND: 2462 /* Optimize placement among multiple nodes via NUMA balancing */ 2463 if (pol->flags & MPOL_F_MORON) { 2464 if (node_isset(thisnid, pol->nodes)) 2465 break; 2466 goto out; 2467 } 2468 2469 /* 2470 * allows binding to multiple nodes. 2471 * use current page if in policy nodemask, 2472 * else select nearest allowed node, if any. 2473 * If no allowed nodes, use current [!misplaced]. 2474 */ 2475 if (node_isset(curnid, pol->nodes)) 2476 goto out; 2477 z = first_zones_zonelist( 2478 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2479 gfp_zone(GFP_HIGHUSER), 2480 &pol->nodes); 2481 polnid = zone_to_nid(z->zone); 2482 break; 2483 2484 default: 2485 BUG(); 2486 } 2487 2488 /* Migrate the page towards the node whose CPU is referencing it */ 2489 if (pol->flags & MPOL_F_MORON) { 2490 polnid = thisnid; 2491 2492 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2493 goto out; 2494 } 2495 2496 if (curnid != polnid) 2497 ret = polnid; 2498 out: 2499 mpol_cond_put(pol); 2500 2501 return ret; 2502 } 2503 2504 /* 2505 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2506 * dropped after task->mempolicy is set to NULL so that any allocation done as 2507 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2508 * policy. 2509 */ 2510 void mpol_put_task_policy(struct task_struct *task) 2511 { 2512 struct mempolicy *pol; 2513 2514 task_lock(task); 2515 pol = task->mempolicy; 2516 task->mempolicy = NULL; 2517 task_unlock(task); 2518 mpol_put(pol); 2519 } 2520 2521 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2522 { 2523 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2524 rb_erase(&n->nd, &sp->root); 2525 sp_free(n); 2526 } 2527 2528 static void sp_node_init(struct sp_node *node, unsigned long start, 2529 unsigned long end, struct mempolicy *pol) 2530 { 2531 node->start = start; 2532 node->end = end; 2533 node->policy = pol; 2534 } 2535 2536 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2537 struct mempolicy *pol) 2538 { 2539 struct sp_node *n; 2540 struct mempolicy *newpol; 2541 2542 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2543 if (!n) 2544 return NULL; 2545 2546 newpol = mpol_dup(pol); 2547 if (IS_ERR(newpol)) { 2548 kmem_cache_free(sn_cache, n); 2549 return NULL; 2550 } 2551 newpol->flags |= MPOL_F_SHARED; 2552 sp_node_init(n, start, end, newpol); 2553 2554 return n; 2555 } 2556 2557 /* Replace a policy range. */ 2558 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2559 unsigned long end, struct sp_node *new) 2560 { 2561 struct sp_node *n; 2562 struct sp_node *n_new = NULL; 2563 struct mempolicy *mpol_new = NULL; 2564 int ret = 0; 2565 2566 restart: 2567 write_lock(&sp->lock); 2568 n = sp_lookup(sp, start, end); 2569 /* Take care of old policies in the same range. */ 2570 while (n && n->start < end) { 2571 struct rb_node *next = rb_next(&n->nd); 2572 if (n->start >= start) { 2573 if (n->end <= end) 2574 sp_delete(sp, n); 2575 else 2576 n->start = end; 2577 } else { 2578 /* Old policy spanning whole new range. */ 2579 if (n->end > end) { 2580 if (!n_new) 2581 goto alloc_new; 2582 2583 *mpol_new = *n->policy; 2584 atomic_set(&mpol_new->refcnt, 1); 2585 sp_node_init(n_new, end, n->end, mpol_new); 2586 n->end = start; 2587 sp_insert(sp, n_new); 2588 n_new = NULL; 2589 mpol_new = NULL; 2590 break; 2591 } else 2592 n->end = start; 2593 } 2594 if (!next) 2595 break; 2596 n = rb_entry(next, struct sp_node, nd); 2597 } 2598 if (new) 2599 sp_insert(sp, new); 2600 write_unlock(&sp->lock); 2601 ret = 0; 2602 2603 err_out: 2604 if (mpol_new) 2605 mpol_put(mpol_new); 2606 if (n_new) 2607 kmem_cache_free(sn_cache, n_new); 2608 2609 return ret; 2610 2611 alloc_new: 2612 write_unlock(&sp->lock); 2613 ret = -ENOMEM; 2614 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2615 if (!n_new) 2616 goto err_out; 2617 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2618 if (!mpol_new) 2619 goto err_out; 2620 goto restart; 2621 } 2622 2623 /** 2624 * mpol_shared_policy_init - initialize shared policy for inode 2625 * @sp: pointer to inode shared policy 2626 * @mpol: struct mempolicy to install 2627 * 2628 * Install non-NULL @mpol in inode's shared policy rb-tree. 2629 * On entry, the current task has a reference on a non-NULL @mpol. 2630 * This must be released on exit. 2631 * This is called at get_inode() calls and we can use GFP_KERNEL. 2632 */ 2633 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2634 { 2635 int ret; 2636 2637 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2638 rwlock_init(&sp->lock); 2639 2640 if (mpol) { 2641 struct vm_area_struct pvma; 2642 struct mempolicy *new; 2643 NODEMASK_SCRATCH(scratch); 2644 2645 if (!scratch) 2646 goto put_mpol; 2647 /* contextualize the tmpfs mount point mempolicy */ 2648 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2649 if (IS_ERR(new)) 2650 goto free_scratch; /* no valid nodemask intersection */ 2651 2652 task_lock(current); 2653 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2654 task_unlock(current); 2655 if (ret) 2656 goto put_new; 2657 2658 /* Create pseudo-vma that contains just the policy */ 2659 vma_init(&pvma, NULL); 2660 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2661 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2662 2663 put_new: 2664 mpol_put(new); /* drop initial ref */ 2665 free_scratch: 2666 NODEMASK_SCRATCH_FREE(scratch); 2667 put_mpol: 2668 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2669 } 2670 } 2671 2672 int mpol_set_shared_policy(struct shared_policy *info, 2673 struct vm_area_struct *vma, struct mempolicy *npol) 2674 { 2675 int err; 2676 struct sp_node *new = NULL; 2677 unsigned long sz = vma_pages(vma); 2678 2679 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2680 vma->vm_pgoff, 2681 sz, npol ? npol->mode : -1, 2682 npol ? npol->flags : -1, 2683 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2684 2685 if (npol) { 2686 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2687 if (!new) 2688 return -ENOMEM; 2689 } 2690 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2691 if (err && new) 2692 sp_free(new); 2693 return err; 2694 } 2695 2696 /* Free a backing policy store on inode delete. */ 2697 void mpol_free_shared_policy(struct shared_policy *p) 2698 { 2699 struct sp_node *n; 2700 struct rb_node *next; 2701 2702 if (!p->root.rb_node) 2703 return; 2704 write_lock(&p->lock); 2705 next = rb_first(&p->root); 2706 while (next) { 2707 n = rb_entry(next, struct sp_node, nd); 2708 next = rb_next(&n->nd); 2709 sp_delete(p, n); 2710 } 2711 write_unlock(&p->lock); 2712 } 2713 2714 #ifdef CONFIG_NUMA_BALANCING 2715 static int __initdata numabalancing_override; 2716 2717 static void __init check_numabalancing_enable(void) 2718 { 2719 bool numabalancing_default = false; 2720 2721 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2722 numabalancing_default = true; 2723 2724 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2725 if (numabalancing_override) 2726 set_numabalancing_state(numabalancing_override == 1); 2727 2728 if (num_online_nodes() > 1 && !numabalancing_override) { 2729 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2730 numabalancing_default ? "Enabling" : "Disabling"); 2731 set_numabalancing_state(numabalancing_default); 2732 } 2733 } 2734 2735 static int __init setup_numabalancing(char *str) 2736 { 2737 int ret = 0; 2738 if (!str) 2739 goto out; 2740 2741 if (!strcmp(str, "enable")) { 2742 numabalancing_override = 1; 2743 ret = 1; 2744 } else if (!strcmp(str, "disable")) { 2745 numabalancing_override = -1; 2746 ret = 1; 2747 } 2748 out: 2749 if (!ret) 2750 pr_warn("Unable to parse numa_balancing=\n"); 2751 2752 return ret; 2753 } 2754 __setup("numa_balancing=", setup_numabalancing); 2755 #else 2756 static inline void __init check_numabalancing_enable(void) 2757 { 2758 } 2759 #endif /* CONFIG_NUMA_BALANCING */ 2760 2761 /* assumes fs == KERNEL_DS */ 2762 void __init numa_policy_init(void) 2763 { 2764 nodemask_t interleave_nodes; 2765 unsigned long largest = 0; 2766 int nid, prefer = 0; 2767 2768 policy_cache = kmem_cache_create("numa_policy", 2769 sizeof(struct mempolicy), 2770 0, SLAB_PANIC, NULL); 2771 2772 sn_cache = kmem_cache_create("shared_policy_node", 2773 sizeof(struct sp_node), 2774 0, SLAB_PANIC, NULL); 2775 2776 for_each_node(nid) { 2777 preferred_node_policy[nid] = (struct mempolicy) { 2778 .refcnt = ATOMIC_INIT(1), 2779 .mode = MPOL_PREFERRED, 2780 .flags = MPOL_F_MOF | MPOL_F_MORON, 2781 .nodes = nodemask_of_node(nid), 2782 }; 2783 } 2784 2785 /* 2786 * Set interleaving policy for system init. Interleaving is only 2787 * enabled across suitably sized nodes (default is >= 16MB), or 2788 * fall back to the largest node if they're all smaller. 2789 */ 2790 nodes_clear(interleave_nodes); 2791 for_each_node_state(nid, N_MEMORY) { 2792 unsigned long total_pages = node_present_pages(nid); 2793 2794 /* Preserve the largest node */ 2795 if (largest < total_pages) { 2796 largest = total_pages; 2797 prefer = nid; 2798 } 2799 2800 /* Interleave this node? */ 2801 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2802 node_set(nid, interleave_nodes); 2803 } 2804 2805 /* All too small, use the largest */ 2806 if (unlikely(nodes_empty(interleave_nodes))) 2807 node_set(prefer, interleave_nodes); 2808 2809 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2810 pr_err("%s: interleaving failed\n", __func__); 2811 2812 check_numabalancing_enable(); 2813 } 2814 2815 /* Reset policy of current process to default */ 2816 void numa_default_policy(void) 2817 { 2818 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2819 } 2820 2821 /* 2822 * Parse and format mempolicy from/to strings 2823 */ 2824 2825 static const char * const policy_modes[] = 2826 { 2827 [MPOL_DEFAULT] = "default", 2828 [MPOL_PREFERRED] = "prefer", 2829 [MPOL_BIND] = "bind", 2830 [MPOL_INTERLEAVE] = "interleave", 2831 [MPOL_LOCAL] = "local", 2832 }; 2833 2834 2835 #ifdef CONFIG_TMPFS 2836 /** 2837 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2838 * @str: string containing mempolicy to parse 2839 * @mpol: pointer to struct mempolicy pointer, returned on success. 2840 * 2841 * Format of input: 2842 * <mode>[=<flags>][:<nodelist>] 2843 * 2844 * On success, returns 0, else 1 2845 */ 2846 int mpol_parse_str(char *str, struct mempolicy **mpol) 2847 { 2848 struct mempolicy *new = NULL; 2849 unsigned short mode_flags; 2850 nodemask_t nodes; 2851 char *nodelist = strchr(str, ':'); 2852 char *flags = strchr(str, '='); 2853 int err = 1, mode; 2854 2855 if (flags) 2856 *flags++ = '\0'; /* terminate mode string */ 2857 2858 if (nodelist) { 2859 /* NUL-terminate mode or flags string */ 2860 *nodelist++ = '\0'; 2861 if (nodelist_parse(nodelist, nodes)) 2862 goto out; 2863 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2864 goto out; 2865 } else 2866 nodes_clear(nodes); 2867 2868 mode = match_string(policy_modes, MPOL_MAX, str); 2869 if (mode < 0) 2870 goto out; 2871 2872 switch (mode) { 2873 case MPOL_PREFERRED: 2874 /* 2875 * Insist on a nodelist of one node only, although later 2876 * we use first_node(nodes) to grab a single node, so here 2877 * nodelist (or nodes) cannot be empty. 2878 */ 2879 if (nodelist) { 2880 char *rest = nodelist; 2881 while (isdigit(*rest)) 2882 rest++; 2883 if (*rest) 2884 goto out; 2885 if (nodes_empty(nodes)) 2886 goto out; 2887 } 2888 break; 2889 case MPOL_INTERLEAVE: 2890 /* 2891 * Default to online nodes with memory if no nodelist 2892 */ 2893 if (!nodelist) 2894 nodes = node_states[N_MEMORY]; 2895 break; 2896 case MPOL_LOCAL: 2897 /* 2898 * Don't allow a nodelist; mpol_new() checks flags 2899 */ 2900 if (nodelist) 2901 goto out; 2902 break; 2903 case MPOL_DEFAULT: 2904 /* 2905 * Insist on a empty nodelist 2906 */ 2907 if (!nodelist) 2908 err = 0; 2909 goto out; 2910 case MPOL_BIND: 2911 /* 2912 * Insist on a nodelist 2913 */ 2914 if (!nodelist) 2915 goto out; 2916 } 2917 2918 mode_flags = 0; 2919 if (flags) { 2920 /* 2921 * Currently, we only support two mutually exclusive 2922 * mode flags. 2923 */ 2924 if (!strcmp(flags, "static")) 2925 mode_flags |= MPOL_F_STATIC_NODES; 2926 else if (!strcmp(flags, "relative")) 2927 mode_flags |= MPOL_F_RELATIVE_NODES; 2928 else 2929 goto out; 2930 } 2931 2932 new = mpol_new(mode, mode_flags, &nodes); 2933 if (IS_ERR(new)) 2934 goto out; 2935 2936 /* 2937 * Save nodes for mpol_to_str() to show the tmpfs mount options 2938 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2939 */ 2940 if (mode != MPOL_PREFERRED) { 2941 new->nodes = nodes; 2942 } else if (nodelist) { 2943 nodes_clear(new->nodes); 2944 node_set(first_node(nodes), new->nodes); 2945 } else { 2946 new->mode = MPOL_LOCAL; 2947 } 2948 2949 /* 2950 * Save nodes for contextualization: this will be used to "clone" 2951 * the mempolicy in a specific context [cpuset] at a later time. 2952 */ 2953 new->w.user_nodemask = nodes; 2954 2955 err = 0; 2956 2957 out: 2958 /* Restore string for error message */ 2959 if (nodelist) 2960 *--nodelist = ':'; 2961 if (flags) 2962 *--flags = '='; 2963 if (!err) 2964 *mpol = new; 2965 return err; 2966 } 2967 #endif /* CONFIG_TMPFS */ 2968 2969 /** 2970 * mpol_to_str - format a mempolicy structure for printing 2971 * @buffer: to contain formatted mempolicy string 2972 * @maxlen: length of @buffer 2973 * @pol: pointer to mempolicy to be formatted 2974 * 2975 * Convert @pol into a string. If @buffer is too short, truncate the string. 2976 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2977 * longest flag, "relative", and to display at least a few node ids. 2978 */ 2979 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2980 { 2981 char *p = buffer; 2982 nodemask_t nodes = NODE_MASK_NONE; 2983 unsigned short mode = MPOL_DEFAULT; 2984 unsigned short flags = 0; 2985 2986 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2987 mode = pol->mode; 2988 flags = pol->flags; 2989 } 2990 2991 switch (mode) { 2992 case MPOL_DEFAULT: 2993 case MPOL_LOCAL: 2994 break; 2995 case MPOL_PREFERRED: 2996 case MPOL_BIND: 2997 case MPOL_INTERLEAVE: 2998 nodes = pol->nodes; 2999 break; 3000 default: 3001 WARN_ON_ONCE(1); 3002 snprintf(p, maxlen, "unknown"); 3003 return; 3004 } 3005 3006 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3007 3008 if (flags & MPOL_MODE_FLAGS) { 3009 p += snprintf(p, buffer + maxlen - p, "="); 3010 3011 /* 3012 * Currently, the only defined flags are mutually exclusive 3013 */ 3014 if (flags & MPOL_F_STATIC_NODES) 3015 p += snprintf(p, buffer + maxlen - p, "static"); 3016 else if (flags & MPOL_F_RELATIVE_NODES) 3017 p += snprintf(p, buffer + maxlen - p, "relative"); 3018 } 3019 3020 if (!nodes_empty(nodes)) 3021 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3022 nodemask_pr_args(&nodes)); 3023 } 3024