xref: /linux/mm/mempolicy.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/module.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 
97 #include "internal.h"
98 
99 /* Internal flags */
100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
102 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void gather_stats(struct page *, void *, int pte_dirty);
461 static void migrate_page_add(struct page *page, struct list_head *pagelist,
462 				unsigned long flags);
463 
464 /* Scan through pages checking if pages follow certain conditions. */
465 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
466 		unsigned long addr, unsigned long end,
467 		const nodemask_t *nodes, unsigned long flags,
468 		void *private)
469 {
470 	pte_t *orig_pte;
471 	pte_t *pte;
472 	spinlock_t *ptl;
473 
474 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
475 	do {
476 		struct page *page;
477 		int nid;
478 
479 		if (!pte_present(*pte))
480 			continue;
481 		page = vm_normal_page(vma, addr, *pte);
482 		if (!page)
483 			continue;
484 		/*
485 		 * vm_normal_page() filters out zero pages, but there might
486 		 * still be PageReserved pages to skip, perhaps in a VDSO.
487 		 * And we cannot move PageKsm pages sensibly or safely yet.
488 		 */
489 		if (PageReserved(page) || PageKsm(page))
490 			continue;
491 		nid = page_to_nid(page);
492 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
493 			continue;
494 
495 		if (flags & MPOL_MF_STATS)
496 			gather_stats(page, private, pte_dirty(*pte));
497 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
498 			migrate_page_add(page, private, flags);
499 		else
500 			break;
501 	} while (pte++, addr += PAGE_SIZE, addr != end);
502 	pte_unmap_unlock(orig_pte, ptl);
503 	return addr != end;
504 }
505 
506 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
507 		unsigned long addr, unsigned long end,
508 		const nodemask_t *nodes, unsigned long flags,
509 		void *private)
510 {
511 	pmd_t *pmd;
512 	unsigned long next;
513 
514 	pmd = pmd_offset(pud, addr);
515 	do {
516 		next = pmd_addr_end(addr, end);
517 		if (pmd_none_or_clear_bad(pmd))
518 			continue;
519 		if (check_pte_range(vma, pmd, addr, next, nodes,
520 				    flags, private))
521 			return -EIO;
522 	} while (pmd++, addr = next, addr != end);
523 	return 0;
524 }
525 
526 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
527 		unsigned long addr, unsigned long end,
528 		const nodemask_t *nodes, unsigned long flags,
529 		void *private)
530 {
531 	pud_t *pud;
532 	unsigned long next;
533 
534 	pud = pud_offset(pgd, addr);
535 	do {
536 		next = pud_addr_end(addr, end);
537 		if (pud_none_or_clear_bad(pud))
538 			continue;
539 		if (check_pmd_range(vma, pud, addr, next, nodes,
540 				    flags, private))
541 			return -EIO;
542 	} while (pud++, addr = next, addr != end);
543 	return 0;
544 }
545 
546 static inline int check_pgd_range(struct vm_area_struct *vma,
547 		unsigned long addr, unsigned long end,
548 		const nodemask_t *nodes, unsigned long flags,
549 		void *private)
550 {
551 	pgd_t *pgd;
552 	unsigned long next;
553 
554 	pgd = pgd_offset(vma->vm_mm, addr);
555 	do {
556 		next = pgd_addr_end(addr, end);
557 		if (pgd_none_or_clear_bad(pgd))
558 			continue;
559 		if (check_pud_range(vma, pgd, addr, next, nodes,
560 				    flags, private))
561 			return -EIO;
562 	} while (pgd++, addr = next, addr != end);
563 	return 0;
564 }
565 
566 /*
567  * Check if all pages in a range are on a set of nodes.
568  * If pagelist != NULL then isolate pages from the LRU and
569  * put them on the pagelist.
570  */
571 static struct vm_area_struct *
572 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
573 		const nodemask_t *nodes, unsigned long flags, void *private)
574 {
575 	int err;
576 	struct vm_area_struct *first, *vma, *prev;
577 
578 
579 	first = find_vma(mm, start);
580 	if (!first)
581 		return ERR_PTR(-EFAULT);
582 	prev = NULL;
583 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
584 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
585 			if (!vma->vm_next && vma->vm_end < end)
586 				return ERR_PTR(-EFAULT);
587 			if (prev && prev->vm_end < vma->vm_start)
588 				return ERR_PTR(-EFAULT);
589 		}
590 		if (!is_vm_hugetlb_page(vma) &&
591 		    ((flags & MPOL_MF_STRICT) ||
592 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
593 				vma_migratable(vma)))) {
594 			unsigned long endvma = vma->vm_end;
595 
596 			if (endvma > end)
597 				endvma = end;
598 			if (vma->vm_start > start)
599 				start = vma->vm_start;
600 			err = check_pgd_range(vma, start, endvma, nodes,
601 						flags, private);
602 			if (err) {
603 				first = ERR_PTR(err);
604 				break;
605 			}
606 		}
607 		prev = vma;
608 	}
609 	return first;
610 }
611 
612 /* Apply policy to a single VMA */
613 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
614 {
615 	int err = 0;
616 	struct mempolicy *old = vma->vm_policy;
617 
618 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
619 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
620 		 vma->vm_ops, vma->vm_file,
621 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
622 
623 	if (vma->vm_ops && vma->vm_ops->set_policy)
624 		err = vma->vm_ops->set_policy(vma, new);
625 	if (!err) {
626 		mpol_get(new);
627 		vma->vm_policy = new;
628 		mpol_put(old);
629 	}
630 	return err;
631 }
632 
633 /* Step 2: apply policy to a range and do splits. */
634 static int mbind_range(struct mm_struct *mm, unsigned long start,
635 		       unsigned long end, struct mempolicy *new_pol)
636 {
637 	struct vm_area_struct *next;
638 	struct vm_area_struct *prev;
639 	struct vm_area_struct *vma;
640 	int err = 0;
641 	pgoff_t pgoff;
642 	unsigned long vmstart;
643 	unsigned long vmend;
644 
645 	vma = find_vma_prev(mm, start, &prev);
646 	if (!vma || vma->vm_start > start)
647 		return -EFAULT;
648 
649 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
650 		next = vma->vm_next;
651 		vmstart = max(start, vma->vm_start);
652 		vmend   = min(end, vma->vm_end);
653 
654 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
655 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
656 				  vma->anon_vma, vma->vm_file, pgoff, new_pol);
657 		if (prev) {
658 			vma = prev;
659 			next = vma->vm_next;
660 			continue;
661 		}
662 		if (vma->vm_start != vmstart) {
663 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
664 			if (err)
665 				goto out;
666 		}
667 		if (vma->vm_end != vmend) {
668 			err = split_vma(vma->vm_mm, vma, vmend, 0);
669 			if (err)
670 				goto out;
671 		}
672 		err = policy_vma(vma, new_pol);
673 		if (err)
674 			goto out;
675 	}
676 
677  out:
678 	return err;
679 }
680 
681 /*
682  * Update task->flags PF_MEMPOLICY bit: set iff non-default
683  * mempolicy.  Allows more rapid checking of this (combined perhaps
684  * with other PF_* flag bits) on memory allocation hot code paths.
685  *
686  * If called from outside this file, the task 'p' should -only- be
687  * a newly forked child not yet visible on the task list, because
688  * manipulating the task flags of a visible task is not safe.
689  *
690  * The above limitation is why this routine has the funny name
691  * mpol_fix_fork_child_flag().
692  *
693  * It is also safe to call this with a task pointer of current,
694  * which the static wrapper mpol_set_task_struct_flag() does,
695  * for use within this file.
696  */
697 
698 void mpol_fix_fork_child_flag(struct task_struct *p)
699 {
700 	if (p->mempolicy)
701 		p->flags |= PF_MEMPOLICY;
702 	else
703 		p->flags &= ~PF_MEMPOLICY;
704 }
705 
706 static void mpol_set_task_struct_flag(void)
707 {
708 	mpol_fix_fork_child_flag(current);
709 }
710 
711 /* Set the process memory policy */
712 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 			     nodemask_t *nodes)
714 {
715 	struct mempolicy *new, *old;
716 	struct mm_struct *mm = current->mm;
717 	NODEMASK_SCRATCH(scratch);
718 	int ret;
719 
720 	if (!scratch)
721 		return -ENOMEM;
722 
723 	new = mpol_new(mode, flags, nodes);
724 	if (IS_ERR(new)) {
725 		ret = PTR_ERR(new);
726 		goto out;
727 	}
728 	/*
729 	 * prevent changing our mempolicy while show_numa_maps()
730 	 * is using it.
731 	 * Note:  do_set_mempolicy() can be called at init time
732 	 * with no 'mm'.
733 	 */
734 	if (mm)
735 		down_write(&mm->mmap_sem);
736 	task_lock(current);
737 	ret = mpol_set_nodemask(new, nodes, scratch);
738 	if (ret) {
739 		task_unlock(current);
740 		if (mm)
741 			up_write(&mm->mmap_sem);
742 		mpol_put(new);
743 		goto out;
744 	}
745 	old = current->mempolicy;
746 	current->mempolicy = new;
747 	mpol_set_task_struct_flag();
748 	if (new && new->mode == MPOL_INTERLEAVE &&
749 	    nodes_weight(new->v.nodes))
750 		current->il_next = first_node(new->v.nodes);
751 	task_unlock(current);
752 	if (mm)
753 		up_write(&mm->mmap_sem);
754 
755 	mpol_put(old);
756 	ret = 0;
757 out:
758 	NODEMASK_SCRATCH_FREE(scratch);
759 	return ret;
760 }
761 
762 /*
763  * Return nodemask for policy for get_mempolicy() query
764  *
765  * Called with task's alloc_lock held
766  */
767 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768 {
769 	nodes_clear(*nodes);
770 	if (p == &default_policy)
771 		return;
772 
773 	switch (p->mode) {
774 	case MPOL_BIND:
775 		/* Fall through */
776 	case MPOL_INTERLEAVE:
777 		*nodes = p->v.nodes;
778 		break;
779 	case MPOL_PREFERRED:
780 		if (!(p->flags & MPOL_F_LOCAL))
781 			node_set(p->v.preferred_node, *nodes);
782 		/* else return empty node mask for local allocation */
783 		break;
784 	default:
785 		BUG();
786 	}
787 }
788 
789 static int lookup_node(struct mm_struct *mm, unsigned long addr)
790 {
791 	struct page *p;
792 	int err;
793 
794 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795 	if (err >= 0) {
796 		err = page_to_nid(p);
797 		put_page(p);
798 	}
799 	return err;
800 }
801 
802 /* Retrieve NUMA policy */
803 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 			     unsigned long addr, unsigned long flags)
805 {
806 	int err;
807 	struct mm_struct *mm = current->mm;
808 	struct vm_area_struct *vma = NULL;
809 	struct mempolicy *pol = current->mempolicy;
810 
811 	if (flags &
812 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 		return -EINVAL;
814 
815 	if (flags & MPOL_F_MEMS_ALLOWED) {
816 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817 			return -EINVAL;
818 		*policy = 0;	/* just so it's initialized */
819 		task_lock(current);
820 		*nmask  = cpuset_current_mems_allowed;
821 		task_unlock(current);
822 		return 0;
823 	}
824 
825 	if (flags & MPOL_F_ADDR) {
826 		/*
827 		 * Do NOT fall back to task policy if the
828 		 * vma/shared policy at addr is NULL.  We
829 		 * want to return MPOL_DEFAULT in this case.
830 		 */
831 		down_read(&mm->mmap_sem);
832 		vma = find_vma_intersection(mm, addr, addr+1);
833 		if (!vma) {
834 			up_read(&mm->mmap_sem);
835 			return -EFAULT;
836 		}
837 		if (vma->vm_ops && vma->vm_ops->get_policy)
838 			pol = vma->vm_ops->get_policy(vma, addr);
839 		else
840 			pol = vma->vm_policy;
841 	} else if (addr)
842 		return -EINVAL;
843 
844 	if (!pol)
845 		pol = &default_policy;	/* indicates default behavior */
846 
847 	if (flags & MPOL_F_NODE) {
848 		if (flags & MPOL_F_ADDR) {
849 			err = lookup_node(mm, addr);
850 			if (err < 0)
851 				goto out;
852 			*policy = err;
853 		} else if (pol == current->mempolicy &&
854 				pol->mode == MPOL_INTERLEAVE) {
855 			*policy = current->il_next;
856 		} else {
857 			err = -EINVAL;
858 			goto out;
859 		}
860 	} else {
861 		*policy = pol == &default_policy ? MPOL_DEFAULT :
862 						pol->mode;
863 		/*
864 		 * Internal mempolicy flags must be masked off before exposing
865 		 * the policy to userspace.
866 		 */
867 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
868 	}
869 
870 	if (vma) {
871 		up_read(&current->mm->mmap_sem);
872 		vma = NULL;
873 	}
874 
875 	err = 0;
876 	if (nmask) {
877 		if (mpol_store_user_nodemask(pol)) {
878 			*nmask = pol->w.user_nodemask;
879 		} else {
880 			task_lock(current);
881 			get_policy_nodemask(pol, nmask);
882 			task_unlock(current);
883 		}
884 	}
885 
886  out:
887 	mpol_cond_put(pol);
888 	if (vma)
889 		up_read(&current->mm->mmap_sem);
890 	return err;
891 }
892 
893 #ifdef CONFIG_MIGRATION
894 /*
895  * page migration
896  */
897 static void migrate_page_add(struct page *page, struct list_head *pagelist,
898 				unsigned long flags)
899 {
900 	/*
901 	 * Avoid migrating a page that is shared with others.
902 	 */
903 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 		if (!isolate_lru_page(page)) {
905 			list_add_tail(&page->lru, pagelist);
906 			inc_zone_page_state(page, NR_ISOLATED_ANON +
907 					    page_is_file_cache(page));
908 		}
909 	}
910 }
911 
912 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913 {
914 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915 }
916 
917 /*
918  * Migrate pages from one node to a target node.
919  * Returns error or the number of pages not migrated.
920  */
921 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922 			   int flags)
923 {
924 	nodemask_t nmask;
925 	LIST_HEAD(pagelist);
926 	int err = 0;
927 
928 	nodes_clear(nmask);
929 	node_set(source, nmask);
930 
931 	check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
932 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
933 
934 	if (!list_empty(&pagelist))
935 		err = migrate_pages(&pagelist, new_node_page, dest, 0);
936 
937 	return err;
938 }
939 
940 /*
941  * Move pages between the two nodesets so as to preserve the physical
942  * layout as much as possible.
943  *
944  * Returns the number of page that could not be moved.
945  */
946 int do_migrate_pages(struct mm_struct *mm,
947 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
948 {
949 	int busy = 0;
950 	int err;
951 	nodemask_t tmp;
952 
953 	err = migrate_prep();
954 	if (err)
955 		return err;
956 
957 	down_read(&mm->mmap_sem);
958 
959 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
960 	if (err)
961 		goto out;
962 
963 	/*
964 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
965 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
966 	 * bit in 'tmp', and return that <source, dest> pair for migration.
967 	 * The pair of nodemasks 'to' and 'from' define the map.
968 	 *
969 	 * If no pair of bits is found that way, fallback to picking some
970 	 * pair of 'source' and 'dest' bits that are not the same.  If the
971 	 * 'source' and 'dest' bits are the same, this represents a node
972 	 * that will be migrating to itself, so no pages need move.
973 	 *
974 	 * If no bits are left in 'tmp', or if all remaining bits left
975 	 * in 'tmp' correspond to the same bit in 'to', return false
976 	 * (nothing left to migrate).
977 	 *
978 	 * This lets us pick a pair of nodes to migrate between, such that
979 	 * if possible the dest node is not already occupied by some other
980 	 * source node, minimizing the risk of overloading the memory on a
981 	 * node that would happen if we migrated incoming memory to a node
982 	 * before migrating outgoing memory source that same node.
983 	 *
984 	 * A single scan of tmp is sufficient.  As we go, we remember the
985 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
986 	 * that not only moved, but what's better, moved to an empty slot
987 	 * (d is not set in tmp), then we break out then, with that pair.
988 	 * Otherwise when we finish scannng from_tmp, we at least have the
989 	 * most recent <s, d> pair that moved.  If we get all the way through
990 	 * the scan of tmp without finding any node that moved, much less
991 	 * moved to an empty node, then there is nothing left worth migrating.
992 	 */
993 
994 	tmp = *from_nodes;
995 	while (!nodes_empty(tmp)) {
996 		int s,d;
997 		int source = -1;
998 		int dest = 0;
999 
1000 		for_each_node_mask(s, tmp) {
1001 			d = node_remap(s, *from_nodes, *to_nodes);
1002 			if (s == d)
1003 				continue;
1004 
1005 			source = s;	/* Node moved. Memorize */
1006 			dest = d;
1007 
1008 			/* dest not in remaining from nodes? */
1009 			if (!node_isset(dest, tmp))
1010 				break;
1011 		}
1012 		if (source == -1)
1013 			break;
1014 
1015 		node_clear(source, tmp);
1016 		err = migrate_to_node(mm, source, dest, flags);
1017 		if (err > 0)
1018 			busy += err;
1019 		if (err < 0)
1020 			break;
1021 	}
1022 out:
1023 	up_read(&mm->mmap_sem);
1024 	if (err < 0)
1025 		return err;
1026 	return busy;
1027 
1028 }
1029 
1030 /*
1031  * Allocate a new page for page migration based on vma policy.
1032  * Start assuming that page is mapped by vma pointed to by @private.
1033  * Search forward from there, if not.  N.B., this assumes that the
1034  * list of pages handed to migrate_pages()--which is how we get here--
1035  * is in virtual address order.
1036  */
1037 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1038 {
1039 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1040 	unsigned long uninitialized_var(address);
1041 
1042 	while (vma) {
1043 		address = page_address_in_vma(page, vma);
1044 		if (address != -EFAULT)
1045 			break;
1046 		vma = vma->vm_next;
1047 	}
1048 
1049 	/*
1050 	 * if !vma, alloc_page_vma() will use task or system default policy
1051 	 */
1052 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1053 }
1054 #else
1055 
1056 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1057 				unsigned long flags)
1058 {
1059 }
1060 
1061 int do_migrate_pages(struct mm_struct *mm,
1062 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1063 {
1064 	return -ENOSYS;
1065 }
1066 
1067 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1068 {
1069 	return NULL;
1070 }
1071 #endif
1072 
1073 static long do_mbind(unsigned long start, unsigned long len,
1074 		     unsigned short mode, unsigned short mode_flags,
1075 		     nodemask_t *nmask, unsigned long flags)
1076 {
1077 	struct vm_area_struct *vma;
1078 	struct mm_struct *mm = current->mm;
1079 	struct mempolicy *new;
1080 	unsigned long end;
1081 	int err;
1082 	LIST_HEAD(pagelist);
1083 
1084 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1085 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1086 		return -EINVAL;
1087 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1088 		return -EPERM;
1089 
1090 	if (start & ~PAGE_MASK)
1091 		return -EINVAL;
1092 
1093 	if (mode == MPOL_DEFAULT)
1094 		flags &= ~MPOL_MF_STRICT;
1095 
1096 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1097 	end = start + len;
1098 
1099 	if (end < start)
1100 		return -EINVAL;
1101 	if (end == start)
1102 		return 0;
1103 
1104 	new = mpol_new(mode, mode_flags, nmask);
1105 	if (IS_ERR(new))
1106 		return PTR_ERR(new);
1107 
1108 	/*
1109 	 * If we are using the default policy then operation
1110 	 * on discontinuous address spaces is okay after all
1111 	 */
1112 	if (!new)
1113 		flags |= MPOL_MF_DISCONTIG_OK;
1114 
1115 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1116 		 start, start + len, mode, mode_flags,
1117 		 nmask ? nodes_addr(*nmask)[0] : -1);
1118 
1119 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1120 
1121 		err = migrate_prep();
1122 		if (err)
1123 			goto mpol_out;
1124 	}
1125 	{
1126 		NODEMASK_SCRATCH(scratch);
1127 		if (scratch) {
1128 			down_write(&mm->mmap_sem);
1129 			task_lock(current);
1130 			err = mpol_set_nodemask(new, nmask, scratch);
1131 			task_unlock(current);
1132 			if (err)
1133 				up_write(&mm->mmap_sem);
1134 		} else
1135 			err = -ENOMEM;
1136 		NODEMASK_SCRATCH_FREE(scratch);
1137 	}
1138 	if (err)
1139 		goto mpol_out;
1140 
1141 	vma = check_range(mm, start, end, nmask,
1142 			  flags | MPOL_MF_INVERT, &pagelist);
1143 
1144 	err = PTR_ERR(vma);
1145 	if (!IS_ERR(vma)) {
1146 		int nr_failed = 0;
1147 
1148 		err = mbind_range(mm, start, end, new);
1149 
1150 		if (!list_empty(&pagelist))
1151 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1152 						(unsigned long)vma, 0);
1153 
1154 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1155 			err = -EIO;
1156 	} else
1157 		putback_lru_pages(&pagelist);
1158 
1159 	up_write(&mm->mmap_sem);
1160  mpol_out:
1161 	mpol_put(new);
1162 	return err;
1163 }
1164 
1165 /*
1166  * User space interface with variable sized bitmaps for nodelists.
1167  */
1168 
1169 /* Copy a node mask from user space. */
1170 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1171 		     unsigned long maxnode)
1172 {
1173 	unsigned long k;
1174 	unsigned long nlongs;
1175 	unsigned long endmask;
1176 
1177 	--maxnode;
1178 	nodes_clear(*nodes);
1179 	if (maxnode == 0 || !nmask)
1180 		return 0;
1181 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1182 		return -EINVAL;
1183 
1184 	nlongs = BITS_TO_LONGS(maxnode);
1185 	if ((maxnode % BITS_PER_LONG) == 0)
1186 		endmask = ~0UL;
1187 	else
1188 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1189 
1190 	/* When the user specified more nodes than supported just check
1191 	   if the non supported part is all zero. */
1192 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1193 		if (nlongs > PAGE_SIZE/sizeof(long))
1194 			return -EINVAL;
1195 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1196 			unsigned long t;
1197 			if (get_user(t, nmask + k))
1198 				return -EFAULT;
1199 			if (k == nlongs - 1) {
1200 				if (t & endmask)
1201 					return -EINVAL;
1202 			} else if (t)
1203 				return -EINVAL;
1204 		}
1205 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1206 		endmask = ~0UL;
1207 	}
1208 
1209 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1210 		return -EFAULT;
1211 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1212 	return 0;
1213 }
1214 
1215 /* Copy a kernel node mask to user space */
1216 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1217 			      nodemask_t *nodes)
1218 {
1219 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1220 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1221 
1222 	if (copy > nbytes) {
1223 		if (copy > PAGE_SIZE)
1224 			return -EINVAL;
1225 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1226 			return -EFAULT;
1227 		copy = nbytes;
1228 	}
1229 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1230 }
1231 
1232 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1233 		unsigned long, mode, unsigned long __user *, nmask,
1234 		unsigned long, maxnode, unsigned, flags)
1235 {
1236 	nodemask_t nodes;
1237 	int err;
1238 	unsigned short mode_flags;
1239 
1240 	mode_flags = mode & MPOL_MODE_FLAGS;
1241 	mode &= ~MPOL_MODE_FLAGS;
1242 	if (mode >= MPOL_MAX)
1243 		return -EINVAL;
1244 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1245 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1246 		return -EINVAL;
1247 	err = get_nodes(&nodes, nmask, maxnode);
1248 	if (err)
1249 		return err;
1250 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1251 }
1252 
1253 /* Set the process memory policy */
1254 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1255 		unsigned long, maxnode)
1256 {
1257 	int err;
1258 	nodemask_t nodes;
1259 	unsigned short flags;
1260 
1261 	flags = mode & MPOL_MODE_FLAGS;
1262 	mode &= ~MPOL_MODE_FLAGS;
1263 	if ((unsigned int)mode >= MPOL_MAX)
1264 		return -EINVAL;
1265 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1266 		return -EINVAL;
1267 	err = get_nodes(&nodes, nmask, maxnode);
1268 	if (err)
1269 		return err;
1270 	return do_set_mempolicy(mode, flags, &nodes);
1271 }
1272 
1273 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1274 		const unsigned long __user *, old_nodes,
1275 		const unsigned long __user *, new_nodes)
1276 {
1277 	const struct cred *cred = current_cred(), *tcred;
1278 	struct mm_struct *mm = NULL;
1279 	struct task_struct *task;
1280 	nodemask_t task_nodes;
1281 	int err;
1282 	nodemask_t *old;
1283 	nodemask_t *new;
1284 	NODEMASK_SCRATCH(scratch);
1285 
1286 	if (!scratch)
1287 		return -ENOMEM;
1288 
1289 	old = &scratch->mask1;
1290 	new = &scratch->mask2;
1291 
1292 	err = get_nodes(old, old_nodes, maxnode);
1293 	if (err)
1294 		goto out;
1295 
1296 	err = get_nodes(new, new_nodes, maxnode);
1297 	if (err)
1298 		goto out;
1299 
1300 	/* Find the mm_struct */
1301 	read_lock(&tasklist_lock);
1302 	task = pid ? find_task_by_vpid(pid) : current;
1303 	if (!task) {
1304 		read_unlock(&tasklist_lock);
1305 		err = -ESRCH;
1306 		goto out;
1307 	}
1308 	mm = get_task_mm(task);
1309 	read_unlock(&tasklist_lock);
1310 
1311 	err = -EINVAL;
1312 	if (!mm)
1313 		goto out;
1314 
1315 	/*
1316 	 * Check if this process has the right to modify the specified
1317 	 * process. The right exists if the process has administrative
1318 	 * capabilities, superuser privileges or the same
1319 	 * userid as the target process.
1320 	 */
1321 	rcu_read_lock();
1322 	tcred = __task_cred(task);
1323 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1324 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1325 	    !capable(CAP_SYS_NICE)) {
1326 		rcu_read_unlock();
1327 		err = -EPERM;
1328 		goto out;
1329 	}
1330 	rcu_read_unlock();
1331 
1332 	task_nodes = cpuset_mems_allowed(task);
1333 	/* Is the user allowed to access the target nodes? */
1334 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1335 		err = -EPERM;
1336 		goto out;
1337 	}
1338 
1339 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1340 		err = -EINVAL;
1341 		goto out;
1342 	}
1343 
1344 	err = security_task_movememory(task);
1345 	if (err)
1346 		goto out;
1347 
1348 	err = do_migrate_pages(mm, old, new,
1349 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1350 out:
1351 	if (mm)
1352 		mmput(mm);
1353 	NODEMASK_SCRATCH_FREE(scratch);
1354 
1355 	return err;
1356 }
1357 
1358 
1359 /* Retrieve NUMA policy */
1360 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1361 		unsigned long __user *, nmask, unsigned long, maxnode,
1362 		unsigned long, addr, unsigned long, flags)
1363 {
1364 	int err;
1365 	int uninitialized_var(pval);
1366 	nodemask_t nodes;
1367 
1368 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1369 		return -EINVAL;
1370 
1371 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1372 
1373 	if (err)
1374 		return err;
1375 
1376 	if (policy && put_user(pval, policy))
1377 		return -EFAULT;
1378 
1379 	if (nmask)
1380 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1381 
1382 	return err;
1383 }
1384 
1385 #ifdef CONFIG_COMPAT
1386 
1387 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1388 				     compat_ulong_t __user *nmask,
1389 				     compat_ulong_t maxnode,
1390 				     compat_ulong_t addr, compat_ulong_t flags)
1391 {
1392 	long err;
1393 	unsigned long __user *nm = NULL;
1394 	unsigned long nr_bits, alloc_size;
1395 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1396 
1397 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1398 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1399 
1400 	if (nmask)
1401 		nm = compat_alloc_user_space(alloc_size);
1402 
1403 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1404 
1405 	if (!err && nmask) {
1406 		err = copy_from_user(bm, nm, alloc_size);
1407 		/* ensure entire bitmap is zeroed */
1408 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1409 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1410 	}
1411 
1412 	return err;
1413 }
1414 
1415 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1416 				     compat_ulong_t maxnode)
1417 {
1418 	long err = 0;
1419 	unsigned long __user *nm = NULL;
1420 	unsigned long nr_bits, alloc_size;
1421 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1422 
1423 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1424 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1425 
1426 	if (nmask) {
1427 		err = compat_get_bitmap(bm, nmask, nr_bits);
1428 		nm = compat_alloc_user_space(alloc_size);
1429 		err |= copy_to_user(nm, bm, alloc_size);
1430 	}
1431 
1432 	if (err)
1433 		return -EFAULT;
1434 
1435 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1436 }
1437 
1438 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1439 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1440 			     compat_ulong_t maxnode, compat_ulong_t flags)
1441 {
1442 	long err = 0;
1443 	unsigned long __user *nm = NULL;
1444 	unsigned long nr_bits, alloc_size;
1445 	nodemask_t bm;
1446 
1447 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1448 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1449 
1450 	if (nmask) {
1451 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1452 		nm = compat_alloc_user_space(alloc_size);
1453 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1454 	}
1455 
1456 	if (err)
1457 		return -EFAULT;
1458 
1459 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1460 }
1461 
1462 #endif
1463 
1464 /*
1465  * get_vma_policy(@task, @vma, @addr)
1466  * @task - task for fallback if vma policy == default
1467  * @vma   - virtual memory area whose policy is sought
1468  * @addr  - address in @vma for shared policy lookup
1469  *
1470  * Returns effective policy for a VMA at specified address.
1471  * Falls back to @task or system default policy, as necessary.
1472  * Current or other task's task mempolicy and non-shared vma policies
1473  * are protected by the task's mmap_sem, which must be held for read by
1474  * the caller.
1475  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1476  * count--added by the get_policy() vm_op, as appropriate--to protect against
1477  * freeing by another task.  It is the caller's responsibility to free the
1478  * extra reference for shared policies.
1479  */
1480 static struct mempolicy *get_vma_policy(struct task_struct *task,
1481 		struct vm_area_struct *vma, unsigned long addr)
1482 {
1483 	struct mempolicy *pol = task->mempolicy;
1484 
1485 	if (vma) {
1486 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1487 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1488 									addr);
1489 			if (vpol)
1490 				pol = vpol;
1491 		} else if (vma->vm_policy)
1492 			pol = vma->vm_policy;
1493 	}
1494 	if (!pol)
1495 		pol = &default_policy;
1496 	return pol;
1497 }
1498 
1499 /*
1500  * Return a nodemask representing a mempolicy for filtering nodes for
1501  * page allocation
1502  */
1503 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1504 {
1505 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1506 	if (unlikely(policy->mode == MPOL_BIND) &&
1507 			gfp_zone(gfp) >= policy_zone &&
1508 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1509 		return &policy->v.nodes;
1510 
1511 	return NULL;
1512 }
1513 
1514 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1515 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1516 {
1517 	int nd = numa_node_id();
1518 
1519 	switch (policy->mode) {
1520 	case MPOL_PREFERRED:
1521 		if (!(policy->flags & MPOL_F_LOCAL))
1522 			nd = policy->v.preferred_node;
1523 		break;
1524 	case MPOL_BIND:
1525 		/*
1526 		 * Normally, MPOL_BIND allocations are node-local within the
1527 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1528 		 * current node isn't part of the mask, we use the zonelist for
1529 		 * the first node in the mask instead.
1530 		 */
1531 		if (unlikely(gfp & __GFP_THISNODE) &&
1532 				unlikely(!node_isset(nd, policy->v.nodes)))
1533 			nd = first_node(policy->v.nodes);
1534 		break;
1535 	default:
1536 		BUG();
1537 	}
1538 	return node_zonelist(nd, gfp);
1539 }
1540 
1541 /* Do dynamic interleaving for a process */
1542 static unsigned interleave_nodes(struct mempolicy *policy)
1543 {
1544 	unsigned nid, next;
1545 	struct task_struct *me = current;
1546 
1547 	nid = me->il_next;
1548 	next = next_node(nid, policy->v.nodes);
1549 	if (next >= MAX_NUMNODES)
1550 		next = first_node(policy->v.nodes);
1551 	if (next < MAX_NUMNODES)
1552 		me->il_next = next;
1553 	return nid;
1554 }
1555 
1556 /*
1557  * Depending on the memory policy provide a node from which to allocate the
1558  * next slab entry.
1559  * @policy must be protected by freeing by the caller.  If @policy is
1560  * the current task's mempolicy, this protection is implicit, as only the
1561  * task can change it's policy.  The system default policy requires no
1562  * such protection.
1563  */
1564 unsigned slab_node(struct mempolicy *policy)
1565 {
1566 	if (!policy || policy->flags & MPOL_F_LOCAL)
1567 		return numa_node_id();
1568 
1569 	switch (policy->mode) {
1570 	case MPOL_PREFERRED:
1571 		/*
1572 		 * handled MPOL_F_LOCAL above
1573 		 */
1574 		return policy->v.preferred_node;
1575 
1576 	case MPOL_INTERLEAVE:
1577 		return interleave_nodes(policy);
1578 
1579 	case MPOL_BIND: {
1580 		/*
1581 		 * Follow bind policy behavior and start allocation at the
1582 		 * first node.
1583 		 */
1584 		struct zonelist *zonelist;
1585 		struct zone *zone;
1586 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1587 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1588 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1589 							&policy->v.nodes,
1590 							&zone);
1591 		return zone->node;
1592 	}
1593 
1594 	default:
1595 		BUG();
1596 	}
1597 }
1598 
1599 /* Do static interleaving for a VMA with known offset. */
1600 static unsigned offset_il_node(struct mempolicy *pol,
1601 		struct vm_area_struct *vma, unsigned long off)
1602 {
1603 	unsigned nnodes = nodes_weight(pol->v.nodes);
1604 	unsigned target;
1605 	int c;
1606 	int nid = -1;
1607 
1608 	if (!nnodes)
1609 		return numa_node_id();
1610 	target = (unsigned int)off % nnodes;
1611 	c = 0;
1612 	do {
1613 		nid = next_node(nid, pol->v.nodes);
1614 		c++;
1615 	} while (c <= target);
1616 	return nid;
1617 }
1618 
1619 /* Determine a node number for interleave */
1620 static inline unsigned interleave_nid(struct mempolicy *pol,
1621 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1622 {
1623 	if (vma) {
1624 		unsigned long off;
1625 
1626 		/*
1627 		 * for small pages, there is no difference between
1628 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1629 		 * for huge pages, since vm_pgoff is in units of small
1630 		 * pages, we need to shift off the always 0 bits to get
1631 		 * a useful offset.
1632 		 */
1633 		BUG_ON(shift < PAGE_SHIFT);
1634 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1635 		off += (addr - vma->vm_start) >> shift;
1636 		return offset_il_node(pol, vma, off);
1637 	} else
1638 		return interleave_nodes(pol);
1639 }
1640 
1641 #ifdef CONFIG_HUGETLBFS
1642 /*
1643  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1644  * @vma = virtual memory area whose policy is sought
1645  * @addr = address in @vma for shared policy lookup and interleave policy
1646  * @gfp_flags = for requested zone
1647  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1648  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1649  *
1650  * Returns a zonelist suitable for a huge page allocation and a pointer
1651  * to the struct mempolicy for conditional unref after allocation.
1652  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1653  * @nodemask for filtering the zonelist.
1654  *
1655  * Must be protected by get_mems_allowed()
1656  */
1657 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1658 				gfp_t gfp_flags, struct mempolicy **mpol,
1659 				nodemask_t **nodemask)
1660 {
1661 	struct zonelist *zl;
1662 
1663 	*mpol = get_vma_policy(current, vma, addr);
1664 	*nodemask = NULL;	/* assume !MPOL_BIND */
1665 
1666 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1667 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1668 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1669 	} else {
1670 		zl = policy_zonelist(gfp_flags, *mpol);
1671 		if ((*mpol)->mode == MPOL_BIND)
1672 			*nodemask = &(*mpol)->v.nodes;
1673 	}
1674 	return zl;
1675 }
1676 
1677 /*
1678  * init_nodemask_of_mempolicy
1679  *
1680  * If the current task's mempolicy is "default" [NULL], return 'false'
1681  * to indicate default policy.  Otherwise, extract the policy nodemask
1682  * for 'bind' or 'interleave' policy into the argument nodemask, or
1683  * initialize the argument nodemask to contain the single node for
1684  * 'preferred' or 'local' policy and return 'true' to indicate presence
1685  * of non-default mempolicy.
1686  *
1687  * We don't bother with reference counting the mempolicy [mpol_get/put]
1688  * because the current task is examining it's own mempolicy and a task's
1689  * mempolicy is only ever changed by the task itself.
1690  *
1691  * N.B., it is the caller's responsibility to free a returned nodemask.
1692  */
1693 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1694 {
1695 	struct mempolicy *mempolicy;
1696 	int nid;
1697 
1698 	if (!(mask && current->mempolicy))
1699 		return false;
1700 
1701 	task_lock(current);
1702 	mempolicy = current->mempolicy;
1703 	switch (mempolicy->mode) {
1704 	case MPOL_PREFERRED:
1705 		if (mempolicy->flags & MPOL_F_LOCAL)
1706 			nid = numa_node_id();
1707 		else
1708 			nid = mempolicy->v.preferred_node;
1709 		init_nodemask_of_node(mask, nid);
1710 		break;
1711 
1712 	case MPOL_BIND:
1713 		/* Fall through */
1714 	case MPOL_INTERLEAVE:
1715 		*mask =  mempolicy->v.nodes;
1716 		break;
1717 
1718 	default:
1719 		BUG();
1720 	}
1721 	task_unlock(current);
1722 
1723 	return true;
1724 }
1725 #endif
1726 
1727 /*
1728  * mempolicy_nodemask_intersects
1729  *
1730  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1731  * policy.  Otherwise, check for intersection between mask and the policy
1732  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1733  * policy, always return true since it may allocate elsewhere on fallback.
1734  *
1735  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1736  */
1737 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1738 					const nodemask_t *mask)
1739 {
1740 	struct mempolicy *mempolicy;
1741 	bool ret = true;
1742 
1743 	if (!mask)
1744 		return ret;
1745 	task_lock(tsk);
1746 	mempolicy = tsk->mempolicy;
1747 	if (!mempolicy)
1748 		goto out;
1749 
1750 	switch (mempolicy->mode) {
1751 	case MPOL_PREFERRED:
1752 		/*
1753 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1754 		 * allocate from, they may fallback to other nodes when oom.
1755 		 * Thus, it's possible for tsk to have allocated memory from
1756 		 * nodes in mask.
1757 		 */
1758 		break;
1759 	case MPOL_BIND:
1760 	case MPOL_INTERLEAVE:
1761 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1762 		break;
1763 	default:
1764 		BUG();
1765 	}
1766 out:
1767 	task_unlock(tsk);
1768 	return ret;
1769 }
1770 
1771 /* Allocate a page in interleaved policy.
1772    Own path because it needs to do special accounting. */
1773 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1774 					unsigned nid)
1775 {
1776 	struct zonelist *zl;
1777 	struct page *page;
1778 
1779 	zl = node_zonelist(nid, gfp);
1780 	page = __alloc_pages(gfp, order, zl);
1781 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1782 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1783 	return page;
1784 }
1785 
1786 /**
1787  * 	alloc_page_vma	- Allocate a page for a VMA.
1788  *
1789  * 	@gfp:
1790  *      %GFP_USER    user allocation.
1791  *      %GFP_KERNEL  kernel allocations,
1792  *      %GFP_HIGHMEM highmem/user allocations,
1793  *      %GFP_FS      allocation should not call back into a file system.
1794  *      %GFP_ATOMIC  don't sleep.
1795  *
1796  * 	@vma:  Pointer to VMA or NULL if not available.
1797  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1798  *
1799  * 	This function allocates a page from the kernel page pool and applies
1800  *	a NUMA policy associated with the VMA or the current process.
1801  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1802  *	mm_struct of the VMA to prevent it from going away. Should be used for
1803  *	all allocations for pages that will be mapped into
1804  * 	user space. Returns NULL when no page can be allocated.
1805  *
1806  *	Should be called with the mm_sem of the vma hold.
1807  */
1808 struct page *
1809 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1810 {
1811 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1812 	struct zonelist *zl;
1813 	struct page *page;
1814 
1815 	get_mems_allowed();
1816 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1817 		unsigned nid;
1818 
1819 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1820 		mpol_cond_put(pol);
1821 		page = alloc_page_interleave(gfp, 0, nid);
1822 		put_mems_allowed();
1823 		return page;
1824 	}
1825 	zl = policy_zonelist(gfp, pol);
1826 	if (unlikely(mpol_needs_cond_ref(pol))) {
1827 		/*
1828 		 * slow path: ref counted shared policy
1829 		 */
1830 		struct page *page =  __alloc_pages_nodemask(gfp, 0,
1831 						zl, policy_nodemask(gfp, pol));
1832 		__mpol_put(pol);
1833 		put_mems_allowed();
1834 		return page;
1835 	}
1836 	/*
1837 	 * fast path:  default or task policy
1838 	 */
1839 	page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1840 	put_mems_allowed();
1841 	return page;
1842 }
1843 
1844 /**
1845  * 	alloc_pages_current - Allocate pages.
1846  *
1847  *	@gfp:
1848  *		%GFP_USER   user allocation,
1849  *      	%GFP_KERNEL kernel allocation,
1850  *      	%GFP_HIGHMEM highmem allocation,
1851  *      	%GFP_FS     don't call back into a file system.
1852  *      	%GFP_ATOMIC don't sleep.
1853  *	@order: Power of two of allocation size in pages. 0 is a single page.
1854  *
1855  *	Allocate a page from the kernel page pool.  When not in
1856  *	interrupt context and apply the current process NUMA policy.
1857  *	Returns NULL when no page can be allocated.
1858  *
1859  *	Don't call cpuset_update_task_memory_state() unless
1860  *	1) it's ok to take cpuset_sem (can WAIT), and
1861  *	2) allocating for current task (not interrupt).
1862  */
1863 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1864 {
1865 	struct mempolicy *pol = current->mempolicy;
1866 	struct page *page;
1867 
1868 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1869 		pol = &default_policy;
1870 
1871 	get_mems_allowed();
1872 	/*
1873 	 * No reference counting needed for current->mempolicy
1874 	 * nor system default_policy
1875 	 */
1876 	if (pol->mode == MPOL_INTERLEAVE)
1877 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1878 	else
1879 		page = __alloc_pages_nodemask(gfp, order,
1880 			policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1881 	put_mems_allowed();
1882 	return page;
1883 }
1884 EXPORT_SYMBOL(alloc_pages_current);
1885 
1886 /*
1887  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1888  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1889  * with the mems_allowed returned by cpuset_mems_allowed().  This
1890  * keeps mempolicies cpuset relative after its cpuset moves.  See
1891  * further kernel/cpuset.c update_nodemask().
1892  *
1893  * current's mempolicy may be rebinded by the other task(the task that changes
1894  * cpuset's mems), so we needn't do rebind work for current task.
1895  */
1896 
1897 /* Slow path of a mempolicy duplicate */
1898 struct mempolicy *__mpol_dup(struct mempolicy *old)
1899 {
1900 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1901 
1902 	if (!new)
1903 		return ERR_PTR(-ENOMEM);
1904 
1905 	/* task's mempolicy is protected by alloc_lock */
1906 	if (old == current->mempolicy) {
1907 		task_lock(current);
1908 		*new = *old;
1909 		task_unlock(current);
1910 	} else
1911 		*new = *old;
1912 
1913 	rcu_read_lock();
1914 	if (current_cpuset_is_being_rebound()) {
1915 		nodemask_t mems = cpuset_mems_allowed(current);
1916 		if (new->flags & MPOL_F_REBINDING)
1917 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1918 		else
1919 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1920 	}
1921 	rcu_read_unlock();
1922 	atomic_set(&new->refcnt, 1);
1923 	return new;
1924 }
1925 
1926 /*
1927  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1928  * eliminate the * MPOL_F_* flags that require conditional ref and
1929  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
1930  * after return.  Use the returned value.
1931  *
1932  * Allows use of a mempolicy for, e.g., multiple allocations with a single
1933  * policy lookup, even if the policy needs/has extra ref on lookup.
1934  * shmem_readahead needs this.
1935  */
1936 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1937 						struct mempolicy *frompol)
1938 {
1939 	if (!mpol_needs_cond_ref(frompol))
1940 		return frompol;
1941 
1942 	*tompol = *frompol;
1943 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
1944 	__mpol_put(frompol);
1945 	return tompol;
1946 }
1947 
1948 /* Slow path of a mempolicy comparison */
1949 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1950 {
1951 	if (!a || !b)
1952 		return 0;
1953 	if (a->mode != b->mode)
1954 		return 0;
1955 	if (a->flags != b->flags)
1956 		return 0;
1957 	if (mpol_store_user_nodemask(a))
1958 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1959 			return 0;
1960 
1961 	switch (a->mode) {
1962 	case MPOL_BIND:
1963 		/* Fall through */
1964 	case MPOL_INTERLEAVE:
1965 		return nodes_equal(a->v.nodes, b->v.nodes);
1966 	case MPOL_PREFERRED:
1967 		return a->v.preferred_node == b->v.preferred_node &&
1968 			a->flags == b->flags;
1969 	default:
1970 		BUG();
1971 		return 0;
1972 	}
1973 }
1974 
1975 /*
1976  * Shared memory backing store policy support.
1977  *
1978  * Remember policies even when nobody has shared memory mapped.
1979  * The policies are kept in Red-Black tree linked from the inode.
1980  * They are protected by the sp->lock spinlock, which should be held
1981  * for any accesses to the tree.
1982  */
1983 
1984 /* lookup first element intersecting start-end */
1985 /* Caller holds sp->lock */
1986 static struct sp_node *
1987 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1988 {
1989 	struct rb_node *n = sp->root.rb_node;
1990 
1991 	while (n) {
1992 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1993 
1994 		if (start >= p->end)
1995 			n = n->rb_right;
1996 		else if (end <= p->start)
1997 			n = n->rb_left;
1998 		else
1999 			break;
2000 	}
2001 	if (!n)
2002 		return NULL;
2003 	for (;;) {
2004 		struct sp_node *w = NULL;
2005 		struct rb_node *prev = rb_prev(n);
2006 		if (!prev)
2007 			break;
2008 		w = rb_entry(prev, struct sp_node, nd);
2009 		if (w->end <= start)
2010 			break;
2011 		n = prev;
2012 	}
2013 	return rb_entry(n, struct sp_node, nd);
2014 }
2015 
2016 /* Insert a new shared policy into the list. */
2017 /* Caller holds sp->lock */
2018 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2019 {
2020 	struct rb_node **p = &sp->root.rb_node;
2021 	struct rb_node *parent = NULL;
2022 	struct sp_node *nd;
2023 
2024 	while (*p) {
2025 		parent = *p;
2026 		nd = rb_entry(parent, struct sp_node, nd);
2027 		if (new->start < nd->start)
2028 			p = &(*p)->rb_left;
2029 		else if (new->end > nd->end)
2030 			p = &(*p)->rb_right;
2031 		else
2032 			BUG();
2033 	}
2034 	rb_link_node(&new->nd, parent, p);
2035 	rb_insert_color(&new->nd, &sp->root);
2036 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2037 		 new->policy ? new->policy->mode : 0);
2038 }
2039 
2040 /* Find shared policy intersecting idx */
2041 struct mempolicy *
2042 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2043 {
2044 	struct mempolicy *pol = NULL;
2045 	struct sp_node *sn;
2046 
2047 	if (!sp->root.rb_node)
2048 		return NULL;
2049 	spin_lock(&sp->lock);
2050 	sn = sp_lookup(sp, idx, idx+1);
2051 	if (sn) {
2052 		mpol_get(sn->policy);
2053 		pol = sn->policy;
2054 	}
2055 	spin_unlock(&sp->lock);
2056 	return pol;
2057 }
2058 
2059 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2060 {
2061 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2062 	rb_erase(&n->nd, &sp->root);
2063 	mpol_put(n->policy);
2064 	kmem_cache_free(sn_cache, n);
2065 }
2066 
2067 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2068 				struct mempolicy *pol)
2069 {
2070 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2071 
2072 	if (!n)
2073 		return NULL;
2074 	n->start = start;
2075 	n->end = end;
2076 	mpol_get(pol);
2077 	pol->flags |= MPOL_F_SHARED;	/* for unref */
2078 	n->policy = pol;
2079 	return n;
2080 }
2081 
2082 /* Replace a policy range. */
2083 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2084 				 unsigned long end, struct sp_node *new)
2085 {
2086 	struct sp_node *n, *new2 = NULL;
2087 
2088 restart:
2089 	spin_lock(&sp->lock);
2090 	n = sp_lookup(sp, start, end);
2091 	/* Take care of old policies in the same range. */
2092 	while (n && n->start < end) {
2093 		struct rb_node *next = rb_next(&n->nd);
2094 		if (n->start >= start) {
2095 			if (n->end <= end)
2096 				sp_delete(sp, n);
2097 			else
2098 				n->start = end;
2099 		} else {
2100 			/* Old policy spanning whole new range. */
2101 			if (n->end > end) {
2102 				if (!new2) {
2103 					spin_unlock(&sp->lock);
2104 					new2 = sp_alloc(end, n->end, n->policy);
2105 					if (!new2)
2106 						return -ENOMEM;
2107 					goto restart;
2108 				}
2109 				n->end = start;
2110 				sp_insert(sp, new2);
2111 				new2 = NULL;
2112 				break;
2113 			} else
2114 				n->end = start;
2115 		}
2116 		if (!next)
2117 			break;
2118 		n = rb_entry(next, struct sp_node, nd);
2119 	}
2120 	if (new)
2121 		sp_insert(sp, new);
2122 	spin_unlock(&sp->lock);
2123 	if (new2) {
2124 		mpol_put(new2->policy);
2125 		kmem_cache_free(sn_cache, new2);
2126 	}
2127 	return 0;
2128 }
2129 
2130 /**
2131  * mpol_shared_policy_init - initialize shared policy for inode
2132  * @sp: pointer to inode shared policy
2133  * @mpol:  struct mempolicy to install
2134  *
2135  * Install non-NULL @mpol in inode's shared policy rb-tree.
2136  * On entry, the current task has a reference on a non-NULL @mpol.
2137  * This must be released on exit.
2138  * This is called at get_inode() calls and we can use GFP_KERNEL.
2139  */
2140 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2141 {
2142 	int ret;
2143 
2144 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2145 	spin_lock_init(&sp->lock);
2146 
2147 	if (mpol) {
2148 		struct vm_area_struct pvma;
2149 		struct mempolicy *new;
2150 		NODEMASK_SCRATCH(scratch);
2151 
2152 		if (!scratch)
2153 			goto put_mpol;
2154 		/* contextualize the tmpfs mount point mempolicy */
2155 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2156 		if (IS_ERR(new))
2157 			goto free_scratch; /* no valid nodemask intersection */
2158 
2159 		task_lock(current);
2160 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2161 		task_unlock(current);
2162 		if (ret)
2163 			goto put_new;
2164 
2165 		/* Create pseudo-vma that contains just the policy */
2166 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2167 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2168 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2169 
2170 put_new:
2171 		mpol_put(new);			/* drop initial ref */
2172 free_scratch:
2173 		NODEMASK_SCRATCH_FREE(scratch);
2174 put_mpol:
2175 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2176 	}
2177 }
2178 
2179 int mpol_set_shared_policy(struct shared_policy *info,
2180 			struct vm_area_struct *vma, struct mempolicy *npol)
2181 {
2182 	int err;
2183 	struct sp_node *new = NULL;
2184 	unsigned long sz = vma_pages(vma);
2185 
2186 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2187 		 vma->vm_pgoff,
2188 		 sz, npol ? npol->mode : -1,
2189 		 npol ? npol->flags : -1,
2190 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2191 
2192 	if (npol) {
2193 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2194 		if (!new)
2195 			return -ENOMEM;
2196 	}
2197 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2198 	if (err && new)
2199 		kmem_cache_free(sn_cache, new);
2200 	return err;
2201 }
2202 
2203 /* Free a backing policy store on inode delete. */
2204 void mpol_free_shared_policy(struct shared_policy *p)
2205 {
2206 	struct sp_node *n;
2207 	struct rb_node *next;
2208 
2209 	if (!p->root.rb_node)
2210 		return;
2211 	spin_lock(&p->lock);
2212 	next = rb_first(&p->root);
2213 	while (next) {
2214 		n = rb_entry(next, struct sp_node, nd);
2215 		next = rb_next(&n->nd);
2216 		rb_erase(&n->nd, &p->root);
2217 		mpol_put(n->policy);
2218 		kmem_cache_free(sn_cache, n);
2219 	}
2220 	spin_unlock(&p->lock);
2221 }
2222 
2223 /* assumes fs == KERNEL_DS */
2224 void __init numa_policy_init(void)
2225 {
2226 	nodemask_t interleave_nodes;
2227 	unsigned long largest = 0;
2228 	int nid, prefer = 0;
2229 
2230 	policy_cache = kmem_cache_create("numa_policy",
2231 					 sizeof(struct mempolicy),
2232 					 0, SLAB_PANIC, NULL);
2233 
2234 	sn_cache = kmem_cache_create("shared_policy_node",
2235 				     sizeof(struct sp_node),
2236 				     0, SLAB_PANIC, NULL);
2237 
2238 	/*
2239 	 * Set interleaving policy for system init. Interleaving is only
2240 	 * enabled across suitably sized nodes (default is >= 16MB), or
2241 	 * fall back to the largest node if they're all smaller.
2242 	 */
2243 	nodes_clear(interleave_nodes);
2244 	for_each_node_state(nid, N_HIGH_MEMORY) {
2245 		unsigned long total_pages = node_present_pages(nid);
2246 
2247 		/* Preserve the largest node */
2248 		if (largest < total_pages) {
2249 			largest = total_pages;
2250 			prefer = nid;
2251 		}
2252 
2253 		/* Interleave this node? */
2254 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2255 			node_set(nid, interleave_nodes);
2256 	}
2257 
2258 	/* All too small, use the largest */
2259 	if (unlikely(nodes_empty(interleave_nodes)))
2260 		node_set(prefer, interleave_nodes);
2261 
2262 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2263 		printk("numa_policy_init: interleaving failed\n");
2264 }
2265 
2266 /* Reset policy of current process to default */
2267 void numa_default_policy(void)
2268 {
2269 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2270 }
2271 
2272 /*
2273  * Parse and format mempolicy from/to strings
2274  */
2275 
2276 /*
2277  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2278  * Used only for mpol_parse_str() and mpol_to_str()
2279  */
2280 #define MPOL_LOCAL MPOL_MAX
2281 static const char * const policy_modes[] =
2282 {
2283 	[MPOL_DEFAULT]    = "default",
2284 	[MPOL_PREFERRED]  = "prefer",
2285 	[MPOL_BIND]       = "bind",
2286 	[MPOL_INTERLEAVE] = "interleave",
2287 	[MPOL_LOCAL]      = "local"
2288 };
2289 
2290 
2291 #ifdef CONFIG_TMPFS
2292 /**
2293  * mpol_parse_str - parse string to mempolicy
2294  * @str:  string containing mempolicy to parse
2295  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2296  * @no_context:  flag whether to "contextualize" the mempolicy
2297  *
2298  * Format of input:
2299  *	<mode>[=<flags>][:<nodelist>]
2300  *
2301  * if @no_context is true, save the input nodemask in w.user_nodemask in
2302  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2303  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2304  * mount option.  Note that if 'static' or 'relative' mode flags were
2305  * specified, the input nodemask will already have been saved.  Saving
2306  * it again is redundant, but safe.
2307  *
2308  * On success, returns 0, else 1
2309  */
2310 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2311 {
2312 	struct mempolicy *new = NULL;
2313 	unsigned short mode;
2314 	unsigned short uninitialized_var(mode_flags);
2315 	nodemask_t nodes;
2316 	char *nodelist = strchr(str, ':');
2317 	char *flags = strchr(str, '=');
2318 	int err = 1;
2319 
2320 	if (nodelist) {
2321 		/* NUL-terminate mode or flags string */
2322 		*nodelist++ = '\0';
2323 		if (nodelist_parse(nodelist, nodes))
2324 			goto out;
2325 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2326 			goto out;
2327 	} else
2328 		nodes_clear(nodes);
2329 
2330 	if (flags)
2331 		*flags++ = '\0';	/* terminate mode string */
2332 
2333 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2334 		if (!strcmp(str, policy_modes[mode])) {
2335 			break;
2336 		}
2337 	}
2338 	if (mode > MPOL_LOCAL)
2339 		goto out;
2340 
2341 	switch (mode) {
2342 	case MPOL_PREFERRED:
2343 		/*
2344 		 * Insist on a nodelist of one node only
2345 		 */
2346 		if (nodelist) {
2347 			char *rest = nodelist;
2348 			while (isdigit(*rest))
2349 				rest++;
2350 			if (*rest)
2351 				goto out;
2352 		}
2353 		break;
2354 	case MPOL_INTERLEAVE:
2355 		/*
2356 		 * Default to online nodes with memory if no nodelist
2357 		 */
2358 		if (!nodelist)
2359 			nodes = node_states[N_HIGH_MEMORY];
2360 		break;
2361 	case MPOL_LOCAL:
2362 		/*
2363 		 * Don't allow a nodelist;  mpol_new() checks flags
2364 		 */
2365 		if (nodelist)
2366 			goto out;
2367 		mode = MPOL_PREFERRED;
2368 		break;
2369 	case MPOL_DEFAULT:
2370 		/*
2371 		 * Insist on a empty nodelist
2372 		 */
2373 		if (!nodelist)
2374 			err = 0;
2375 		goto out;
2376 	case MPOL_BIND:
2377 		/*
2378 		 * Insist on a nodelist
2379 		 */
2380 		if (!nodelist)
2381 			goto out;
2382 	}
2383 
2384 	mode_flags = 0;
2385 	if (flags) {
2386 		/*
2387 		 * Currently, we only support two mutually exclusive
2388 		 * mode flags.
2389 		 */
2390 		if (!strcmp(flags, "static"))
2391 			mode_flags |= MPOL_F_STATIC_NODES;
2392 		else if (!strcmp(flags, "relative"))
2393 			mode_flags |= MPOL_F_RELATIVE_NODES;
2394 		else
2395 			goto out;
2396 	}
2397 
2398 	new = mpol_new(mode, mode_flags, &nodes);
2399 	if (IS_ERR(new))
2400 		goto out;
2401 
2402 	if (no_context) {
2403 		/* save for contextualization */
2404 		new->w.user_nodemask = nodes;
2405 	} else {
2406 		int ret;
2407 		NODEMASK_SCRATCH(scratch);
2408 		if (scratch) {
2409 			task_lock(current);
2410 			ret = mpol_set_nodemask(new, &nodes, scratch);
2411 			task_unlock(current);
2412 		} else
2413 			ret = -ENOMEM;
2414 		NODEMASK_SCRATCH_FREE(scratch);
2415 		if (ret) {
2416 			mpol_put(new);
2417 			goto out;
2418 		}
2419 	}
2420 	err = 0;
2421 
2422 out:
2423 	/* Restore string for error message */
2424 	if (nodelist)
2425 		*--nodelist = ':';
2426 	if (flags)
2427 		*--flags = '=';
2428 	if (!err)
2429 		*mpol = new;
2430 	return err;
2431 }
2432 #endif /* CONFIG_TMPFS */
2433 
2434 /**
2435  * mpol_to_str - format a mempolicy structure for printing
2436  * @buffer:  to contain formatted mempolicy string
2437  * @maxlen:  length of @buffer
2438  * @pol:  pointer to mempolicy to be formatted
2439  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2440  *
2441  * Convert a mempolicy into a string.
2442  * Returns the number of characters in buffer (if positive)
2443  * or an error (negative)
2444  */
2445 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2446 {
2447 	char *p = buffer;
2448 	int l;
2449 	nodemask_t nodes;
2450 	unsigned short mode;
2451 	unsigned short flags = pol ? pol->flags : 0;
2452 
2453 	/*
2454 	 * Sanity check:  room for longest mode, flag and some nodes
2455 	 */
2456 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2457 
2458 	if (!pol || pol == &default_policy)
2459 		mode = MPOL_DEFAULT;
2460 	else
2461 		mode = pol->mode;
2462 
2463 	switch (mode) {
2464 	case MPOL_DEFAULT:
2465 		nodes_clear(nodes);
2466 		break;
2467 
2468 	case MPOL_PREFERRED:
2469 		nodes_clear(nodes);
2470 		if (flags & MPOL_F_LOCAL)
2471 			mode = MPOL_LOCAL;	/* pseudo-policy */
2472 		else
2473 			node_set(pol->v.preferred_node, nodes);
2474 		break;
2475 
2476 	case MPOL_BIND:
2477 		/* Fall through */
2478 	case MPOL_INTERLEAVE:
2479 		if (no_context)
2480 			nodes = pol->w.user_nodemask;
2481 		else
2482 			nodes = pol->v.nodes;
2483 		break;
2484 
2485 	default:
2486 		BUG();
2487 	}
2488 
2489 	l = strlen(policy_modes[mode]);
2490 	if (buffer + maxlen < p + l + 1)
2491 		return -ENOSPC;
2492 
2493 	strcpy(p, policy_modes[mode]);
2494 	p += l;
2495 
2496 	if (flags & MPOL_MODE_FLAGS) {
2497 		if (buffer + maxlen < p + 2)
2498 			return -ENOSPC;
2499 		*p++ = '=';
2500 
2501 		/*
2502 		 * Currently, the only defined flags are mutually exclusive
2503 		 */
2504 		if (flags & MPOL_F_STATIC_NODES)
2505 			p += snprintf(p, buffer + maxlen - p, "static");
2506 		else if (flags & MPOL_F_RELATIVE_NODES)
2507 			p += snprintf(p, buffer + maxlen - p, "relative");
2508 	}
2509 
2510 	if (!nodes_empty(nodes)) {
2511 		if (buffer + maxlen < p + 2)
2512 			return -ENOSPC;
2513 		*p++ = ':';
2514 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2515 	}
2516 	return p - buffer;
2517 }
2518 
2519 struct numa_maps {
2520 	unsigned long pages;
2521 	unsigned long anon;
2522 	unsigned long active;
2523 	unsigned long writeback;
2524 	unsigned long mapcount_max;
2525 	unsigned long dirty;
2526 	unsigned long swapcache;
2527 	unsigned long node[MAX_NUMNODES];
2528 };
2529 
2530 static void gather_stats(struct page *page, void *private, int pte_dirty)
2531 {
2532 	struct numa_maps *md = private;
2533 	int count = page_mapcount(page);
2534 
2535 	md->pages++;
2536 	if (pte_dirty || PageDirty(page))
2537 		md->dirty++;
2538 
2539 	if (PageSwapCache(page))
2540 		md->swapcache++;
2541 
2542 	if (PageActive(page) || PageUnevictable(page))
2543 		md->active++;
2544 
2545 	if (PageWriteback(page))
2546 		md->writeback++;
2547 
2548 	if (PageAnon(page))
2549 		md->anon++;
2550 
2551 	if (count > md->mapcount_max)
2552 		md->mapcount_max = count;
2553 
2554 	md->node[page_to_nid(page)]++;
2555 }
2556 
2557 #ifdef CONFIG_HUGETLB_PAGE
2558 static void check_huge_range(struct vm_area_struct *vma,
2559 		unsigned long start, unsigned long end,
2560 		struct numa_maps *md)
2561 {
2562 	unsigned long addr;
2563 	struct page *page;
2564 	struct hstate *h = hstate_vma(vma);
2565 	unsigned long sz = huge_page_size(h);
2566 
2567 	for (addr = start; addr < end; addr += sz) {
2568 		pte_t *ptep = huge_pte_offset(vma->vm_mm,
2569 						addr & huge_page_mask(h));
2570 		pte_t pte;
2571 
2572 		if (!ptep)
2573 			continue;
2574 
2575 		pte = *ptep;
2576 		if (pte_none(pte))
2577 			continue;
2578 
2579 		page = pte_page(pte);
2580 		if (!page)
2581 			continue;
2582 
2583 		gather_stats(page, md, pte_dirty(*ptep));
2584 	}
2585 }
2586 #else
2587 static inline void check_huge_range(struct vm_area_struct *vma,
2588 		unsigned long start, unsigned long end,
2589 		struct numa_maps *md)
2590 {
2591 }
2592 #endif
2593 
2594 /*
2595  * Display pages allocated per node and memory policy via /proc.
2596  */
2597 int show_numa_map(struct seq_file *m, void *v)
2598 {
2599 	struct proc_maps_private *priv = m->private;
2600 	struct vm_area_struct *vma = v;
2601 	struct numa_maps *md;
2602 	struct file *file = vma->vm_file;
2603 	struct mm_struct *mm = vma->vm_mm;
2604 	struct mempolicy *pol;
2605 	int n;
2606 	char buffer[50];
2607 
2608 	if (!mm)
2609 		return 0;
2610 
2611 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2612 	if (!md)
2613 		return 0;
2614 
2615 	pol = get_vma_policy(priv->task, vma, vma->vm_start);
2616 	mpol_to_str(buffer, sizeof(buffer), pol, 0);
2617 	mpol_cond_put(pol);
2618 
2619 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2620 
2621 	if (file) {
2622 		seq_printf(m, " file=");
2623 		seq_path(m, &file->f_path, "\n\t= ");
2624 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2625 		seq_printf(m, " heap");
2626 	} else if (vma->vm_start <= mm->start_stack &&
2627 			vma->vm_end >= mm->start_stack) {
2628 		seq_printf(m, " stack");
2629 	}
2630 
2631 	if (is_vm_hugetlb_page(vma)) {
2632 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2633 		seq_printf(m, " huge");
2634 	} else {
2635 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
2636 			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2637 	}
2638 
2639 	if (!md->pages)
2640 		goto out;
2641 
2642 	if (md->anon)
2643 		seq_printf(m," anon=%lu",md->anon);
2644 
2645 	if (md->dirty)
2646 		seq_printf(m," dirty=%lu",md->dirty);
2647 
2648 	if (md->pages != md->anon && md->pages != md->dirty)
2649 		seq_printf(m, " mapped=%lu", md->pages);
2650 
2651 	if (md->mapcount_max > 1)
2652 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2653 
2654 	if (md->swapcache)
2655 		seq_printf(m," swapcache=%lu", md->swapcache);
2656 
2657 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2658 		seq_printf(m," active=%lu", md->active);
2659 
2660 	if (md->writeback)
2661 		seq_printf(m," writeback=%lu", md->writeback);
2662 
2663 	for_each_node_state(n, N_HIGH_MEMORY)
2664 		if (md->node[n])
2665 			seq_printf(m, " N%d=%lu", n, md->node[n]);
2666 out:
2667 	seq_putc(m, '\n');
2668 	kfree(md);
2669 
2670 	if (m->count < m->size)
2671 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2672 	return 0;
2673 }
2674