1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 could replace all the switch()es with a mempolicy_ops structure. 67 */ 68 69 #include <linux/mempolicy.h> 70 #include <linux/mm.h> 71 #include <linux/highmem.h> 72 #include <linux/hugetlb.h> 73 #include <linux/kernel.h> 74 #include <linux/sched.h> 75 #include <linux/mm.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/gfp.h> 79 #include <linux/slab.h> 80 #include <linux/string.h> 81 #include <linux/module.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/mempolicy.h> 86 #include <linux/swap.h> 87 #include <linux/seq_file.h> 88 #include <linux/proc_fs.h> 89 #include <linux/migrate.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 93 #include <asm/tlbflush.h> 94 #include <asm/uaccess.h> 95 96 /* Internal flags */ 97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ 100 101 static struct kmem_cache *policy_cache; 102 static struct kmem_cache *sn_cache; 103 104 #define PDprintk(fmt...) 105 106 /* Highest zone. An specific allocation for a zone below that is not 107 policied. */ 108 enum zone_type policy_zone = ZONE_DMA; 109 110 struct mempolicy default_policy = { 111 .refcnt = ATOMIC_INIT(1), /* never free it */ 112 .policy = MPOL_DEFAULT, 113 }; 114 115 /* Do sanity checking on a policy */ 116 static int mpol_check_policy(int mode, nodemask_t *nodes) 117 { 118 int empty = nodes_empty(*nodes); 119 120 switch (mode) { 121 case MPOL_DEFAULT: 122 if (!empty) 123 return -EINVAL; 124 break; 125 case MPOL_BIND: 126 case MPOL_INTERLEAVE: 127 /* Preferred will only use the first bit, but allow 128 more for now. */ 129 if (empty) 130 return -EINVAL; 131 break; 132 } 133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL; 134 } 135 136 /* Generate a custom zonelist for the BIND policy. */ 137 static struct zonelist *bind_zonelist(nodemask_t *nodes) 138 { 139 struct zonelist *zl; 140 int num, max, nd; 141 enum zone_type k; 142 143 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); 144 max++; /* space for zlcache_ptr (see mmzone.h) */ 145 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL); 146 if (!zl) 147 return NULL; 148 zl->zlcache_ptr = NULL; 149 num = 0; 150 /* First put in the highest zones from all nodes, then all the next 151 lower zones etc. Avoid empty zones because the memory allocator 152 doesn't like them. If you implement node hot removal you 153 have to fix that. */ 154 k = policy_zone; 155 while (1) { 156 for_each_node_mask(nd, *nodes) { 157 struct zone *z = &NODE_DATA(nd)->node_zones[k]; 158 if (z->present_pages > 0) 159 zl->zones[num++] = z; 160 } 161 if (k == 0) 162 break; 163 k--; 164 } 165 zl->zones[num] = NULL; 166 return zl; 167 } 168 169 /* Create a new policy */ 170 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes) 171 { 172 struct mempolicy *policy; 173 174 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]); 175 if (mode == MPOL_DEFAULT) 176 return NULL; 177 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 178 if (!policy) 179 return ERR_PTR(-ENOMEM); 180 atomic_set(&policy->refcnt, 1); 181 switch (mode) { 182 case MPOL_INTERLEAVE: 183 policy->v.nodes = *nodes; 184 if (nodes_weight(*nodes) == 0) { 185 kmem_cache_free(policy_cache, policy); 186 return ERR_PTR(-EINVAL); 187 } 188 break; 189 case MPOL_PREFERRED: 190 policy->v.preferred_node = first_node(*nodes); 191 if (policy->v.preferred_node >= MAX_NUMNODES) 192 policy->v.preferred_node = -1; 193 break; 194 case MPOL_BIND: 195 policy->v.zonelist = bind_zonelist(nodes); 196 if (policy->v.zonelist == NULL) { 197 kmem_cache_free(policy_cache, policy); 198 return ERR_PTR(-ENOMEM); 199 } 200 break; 201 } 202 policy->policy = mode; 203 policy->cpuset_mems_allowed = cpuset_mems_allowed(current); 204 return policy; 205 } 206 207 static void gather_stats(struct page *, void *, int pte_dirty); 208 static void migrate_page_add(struct page *page, struct list_head *pagelist, 209 unsigned long flags); 210 211 /* Scan through pages checking if pages follow certain conditions. */ 212 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 213 unsigned long addr, unsigned long end, 214 const nodemask_t *nodes, unsigned long flags, 215 void *private) 216 { 217 pte_t *orig_pte; 218 pte_t *pte; 219 spinlock_t *ptl; 220 221 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 222 do { 223 struct page *page; 224 int nid; 225 226 if (!pte_present(*pte)) 227 continue; 228 page = vm_normal_page(vma, addr, *pte); 229 if (!page) 230 continue; 231 /* 232 * The check for PageReserved here is important to avoid 233 * handling zero pages and other pages that may have been 234 * marked special by the system. 235 * 236 * If the PageReserved would not be checked here then f.e. 237 * the location of the zero page could have an influence 238 * on MPOL_MF_STRICT, zero pages would be counted for 239 * the per node stats, and there would be useless attempts 240 * to put zero pages on the migration list. 241 */ 242 if (PageReserved(page)) 243 continue; 244 nid = page_to_nid(page); 245 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 246 continue; 247 248 if (flags & MPOL_MF_STATS) 249 gather_stats(page, private, pte_dirty(*pte)); 250 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 251 migrate_page_add(page, private, flags); 252 else 253 break; 254 } while (pte++, addr += PAGE_SIZE, addr != end); 255 pte_unmap_unlock(orig_pte, ptl); 256 return addr != end; 257 } 258 259 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 260 unsigned long addr, unsigned long end, 261 const nodemask_t *nodes, unsigned long flags, 262 void *private) 263 { 264 pmd_t *pmd; 265 unsigned long next; 266 267 pmd = pmd_offset(pud, addr); 268 do { 269 next = pmd_addr_end(addr, end); 270 if (pmd_none_or_clear_bad(pmd)) 271 continue; 272 if (check_pte_range(vma, pmd, addr, next, nodes, 273 flags, private)) 274 return -EIO; 275 } while (pmd++, addr = next, addr != end); 276 return 0; 277 } 278 279 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 280 unsigned long addr, unsigned long end, 281 const nodemask_t *nodes, unsigned long flags, 282 void *private) 283 { 284 pud_t *pud; 285 unsigned long next; 286 287 pud = pud_offset(pgd, addr); 288 do { 289 next = pud_addr_end(addr, end); 290 if (pud_none_or_clear_bad(pud)) 291 continue; 292 if (check_pmd_range(vma, pud, addr, next, nodes, 293 flags, private)) 294 return -EIO; 295 } while (pud++, addr = next, addr != end); 296 return 0; 297 } 298 299 static inline int check_pgd_range(struct vm_area_struct *vma, 300 unsigned long addr, unsigned long end, 301 const nodemask_t *nodes, unsigned long flags, 302 void *private) 303 { 304 pgd_t *pgd; 305 unsigned long next; 306 307 pgd = pgd_offset(vma->vm_mm, addr); 308 do { 309 next = pgd_addr_end(addr, end); 310 if (pgd_none_or_clear_bad(pgd)) 311 continue; 312 if (check_pud_range(vma, pgd, addr, next, nodes, 313 flags, private)) 314 return -EIO; 315 } while (pgd++, addr = next, addr != end); 316 return 0; 317 } 318 319 /* Check if a vma is migratable */ 320 static inline int vma_migratable(struct vm_area_struct *vma) 321 { 322 if (vma->vm_flags & ( 323 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED)) 324 return 0; 325 return 1; 326 } 327 328 /* 329 * Check if all pages in a range are on a set of nodes. 330 * If pagelist != NULL then isolate pages from the LRU and 331 * put them on the pagelist. 332 */ 333 static struct vm_area_struct * 334 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 335 const nodemask_t *nodes, unsigned long flags, void *private) 336 { 337 int err; 338 struct vm_area_struct *first, *vma, *prev; 339 340 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 341 342 err = migrate_prep(); 343 if (err) 344 return ERR_PTR(err); 345 } 346 347 first = find_vma(mm, start); 348 if (!first) 349 return ERR_PTR(-EFAULT); 350 prev = NULL; 351 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 352 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 353 if (!vma->vm_next && vma->vm_end < end) 354 return ERR_PTR(-EFAULT); 355 if (prev && prev->vm_end < vma->vm_start) 356 return ERR_PTR(-EFAULT); 357 } 358 if (!is_vm_hugetlb_page(vma) && 359 ((flags & MPOL_MF_STRICT) || 360 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 361 vma_migratable(vma)))) { 362 unsigned long endvma = vma->vm_end; 363 364 if (endvma > end) 365 endvma = end; 366 if (vma->vm_start > start) 367 start = vma->vm_start; 368 err = check_pgd_range(vma, start, endvma, nodes, 369 flags, private); 370 if (err) { 371 first = ERR_PTR(err); 372 break; 373 } 374 } 375 prev = vma; 376 } 377 return first; 378 } 379 380 /* Apply policy to a single VMA */ 381 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) 382 { 383 int err = 0; 384 struct mempolicy *old = vma->vm_policy; 385 386 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 387 vma->vm_start, vma->vm_end, vma->vm_pgoff, 388 vma->vm_ops, vma->vm_file, 389 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 390 391 if (vma->vm_ops && vma->vm_ops->set_policy) 392 err = vma->vm_ops->set_policy(vma, new); 393 if (!err) { 394 mpol_get(new); 395 vma->vm_policy = new; 396 mpol_free(old); 397 } 398 return err; 399 } 400 401 /* Step 2: apply policy to a range and do splits. */ 402 static int mbind_range(struct vm_area_struct *vma, unsigned long start, 403 unsigned long end, struct mempolicy *new) 404 { 405 struct vm_area_struct *next; 406 int err; 407 408 err = 0; 409 for (; vma && vma->vm_start < end; vma = next) { 410 next = vma->vm_next; 411 if (vma->vm_start < start) 412 err = split_vma(vma->vm_mm, vma, start, 1); 413 if (!err && vma->vm_end > end) 414 err = split_vma(vma->vm_mm, vma, end, 0); 415 if (!err) 416 err = policy_vma(vma, new); 417 if (err) 418 break; 419 } 420 return err; 421 } 422 423 static int contextualize_policy(int mode, nodemask_t *nodes) 424 { 425 if (!nodes) 426 return 0; 427 428 cpuset_update_task_memory_state(); 429 if (!cpuset_nodes_subset_current_mems_allowed(*nodes)) 430 return -EINVAL; 431 return mpol_check_policy(mode, nodes); 432 } 433 434 435 /* 436 * Update task->flags PF_MEMPOLICY bit: set iff non-default 437 * mempolicy. Allows more rapid checking of this (combined perhaps 438 * with other PF_* flag bits) on memory allocation hot code paths. 439 * 440 * If called from outside this file, the task 'p' should -only- be 441 * a newly forked child not yet visible on the task list, because 442 * manipulating the task flags of a visible task is not safe. 443 * 444 * The above limitation is why this routine has the funny name 445 * mpol_fix_fork_child_flag(). 446 * 447 * It is also safe to call this with a task pointer of current, 448 * which the static wrapper mpol_set_task_struct_flag() does, 449 * for use within this file. 450 */ 451 452 void mpol_fix_fork_child_flag(struct task_struct *p) 453 { 454 if (p->mempolicy) 455 p->flags |= PF_MEMPOLICY; 456 else 457 p->flags &= ~PF_MEMPOLICY; 458 } 459 460 static void mpol_set_task_struct_flag(void) 461 { 462 mpol_fix_fork_child_flag(current); 463 } 464 465 /* Set the process memory policy */ 466 long do_set_mempolicy(int mode, nodemask_t *nodes) 467 { 468 struct mempolicy *new; 469 470 if (contextualize_policy(mode, nodes)) 471 return -EINVAL; 472 new = mpol_new(mode, nodes); 473 if (IS_ERR(new)) 474 return PTR_ERR(new); 475 mpol_free(current->mempolicy); 476 current->mempolicy = new; 477 mpol_set_task_struct_flag(); 478 if (new && new->policy == MPOL_INTERLEAVE) 479 current->il_next = first_node(new->v.nodes); 480 return 0; 481 } 482 483 /* Fill a zone bitmap for a policy */ 484 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes) 485 { 486 int i; 487 488 nodes_clear(*nodes); 489 switch (p->policy) { 490 case MPOL_BIND: 491 for (i = 0; p->v.zonelist->zones[i]; i++) 492 node_set(zone_to_nid(p->v.zonelist->zones[i]), 493 *nodes); 494 break; 495 case MPOL_DEFAULT: 496 break; 497 case MPOL_INTERLEAVE: 498 *nodes = p->v.nodes; 499 break; 500 case MPOL_PREFERRED: 501 /* or use current node instead of online map? */ 502 if (p->v.preferred_node < 0) 503 *nodes = node_online_map; 504 else 505 node_set(p->v.preferred_node, *nodes); 506 break; 507 default: 508 BUG(); 509 } 510 } 511 512 static int lookup_node(struct mm_struct *mm, unsigned long addr) 513 { 514 struct page *p; 515 int err; 516 517 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 518 if (err >= 0) { 519 err = page_to_nid(p); 520 put_page(p); 521 } 522 return err; 523 } 524 525 /* Retrieve NUMA policy */ 526 long do_get_mempolicy(int *policy, nodemask_t *nmask, 527 unsigned long addr, unsigned long flags) 528 { 529 int err; 530 struct mm_struct *mm = current->mm; 531 struct vm_area_struct *vma = NULL; 532 struct mempolicy *pol = current->mempolicy; 533 534 cpuset_update_task_memory_state(); 535 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR)) 536 return -EINVAL; 537 if (flags & MPOL_F_ADDR) { 538 down_read(&mm->mmap_sem); 539 vma = find_vma_intersection(mm, addr, addr+1); 540 if (!vma) { 541 up_read(&mm->mmap_sem); 542 return -EFAULT; 543 } 544 if (vma->vm_ops && vma->vm_ops->get_policy) 545 pol = vma->vm_ops->get_policy(vma, addr); 546 else 547 pol = vma->vm_policy; 548 } else if (addr) 549 return -EINVAL; 550 551 if (!pol) 552 pol = &default_policy; 553 554 if (flags & MPOL_F_NODE) { 555 if (flags & MPOL_F_ADDR) { 556 err = lookup_node(mm, addr); 557 if (err < 0) 558 goto out; 559 *policy = err; 560 } else if (pol == current->mempolicy && 561 pol->policy == MPOL_INTERLEAVE) { 562 *policy = current->il_next; 563 } else { 564 err = -EINVAL; 565 goto out; 566 } 567 } else 568 *policy = pol->policy; 569 570 if (vma) { 571 up_read(¤t->mm->mmap_sem); 572 vma = NULL; 573 } 574 575 err = 0; 576 if (nmask) 577 get_zonemask(pol, nmask); 578 579 out: 580 if (vma) 581 up_read(¤t->mm->mmap_sem); 582 return err; 583 } 584 585 #ifdef CONFIG_MIGRATION 586 /* 587 * page migration 588 */ 589 static void migrate_page_add(struct page *page, struct list_head *pagelist, 590 unsigned long flags) 591 { 592 /* 593 * Avoid migrating a page that is shared with others. 594 */ 595 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) 596 isolate_lru_page(page, pagelist); 597 } 598 599 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 600 { 601 return alloc_pages_node(node, GFP_HIGHUSER, 0); 602 } 603 604 /* 605 * Migrate pages from one node to a target node. 606 * Returns error or the number of pages not migrated. 607 */ 608 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) 609 { 610 nodemask_t nmask; 611 LIST_HEAD(pagelist); 612 int err = 0; 613 614 nodes_clear(nmask); 615 node_set(source, nmask); 616 617 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, 618 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 619 620 if (!list_empty(&pagelist)) 621 err = migrate_pages(&pagelist, new_node_page, dest); 622 623 return err; 624 } 625 626 /* 627 * Move pages between the two nodesets so as to preserve the physical 628 * layout as much as possible. 629 * 630 * Returns the number of page that could not be moved. 631 */ 632 int do_migrate_pages(struct mm_struct *mm, 633 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 634 { 635 LIST_HEAD(pagelist); 636 int busy = 0; 637 int err = 0; 638 nodemask_t tmp; 639 640 down_read(&mm->mmap_sem); 641 642 err = migrate_vmas(mm, from_nodes, to_nodes, flags); 643 if (err) 644 goto out; 645 646 /* 647 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 648 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 649 * bit in 'tmp', and return that <source, dest> pair for migration. 650 * The pair of nodemasks 'to' and 'from' define the map. 651 * 652 * If no pair of bits is found that way, fallback to picking some 653 * pair of 'source' and 'dest' bits that are not the same. If the 654 * 'source' and 'dest' bits are the same, this represents a node 655 * that will be migrating to itself, so no pages need move. 656 * 657 * If no bits are left in 'tmp', or if all remaining bits left 658 * in 'tmp' correspond to the same bit in 'to', return false 659 * (nothing left to migrate). 660 * 661 * This lets us pick a pair of nodes to migrate between, such that 662 * if possible the dest node is not already occupied by some other 663 * source node, minimizing the risk of overloading the memory on a 664 * node that would happen if we migrated incoming memory to a node 665 * before migrating outgoing memory source that same node. 666 * 667 * A single scan of tmp is sufficient. As we go, we remember the 668 * most recent <s, d> pair that moved (s != d). If we find a pair 669 * that not only moved, but what's better, moved to an empty slot 670 * (d is not set in tmp), then we break out then, with that pair. 671 * Otherwise when we finish scannng from_tmp, we at least have the 672 * most recent <s, d> pair that moved. If we get all the way through 673 * the scan of tmp without finding any node that moved, much less 674 * moved to an empty node, then there is nothing left worth migrating. 675 */ 676 677 tmp = *from_nodes; 678 while (!nodes_empty(tmp)) { 679 int s,d; 680 int source = -1; 681 int dest = 0; 682 683 for_each_node_mask(s, tmp) { 684 d = node_remap(s, *from_nodes, *to_nodes); 685 if (s == d) 686 continue; 687 688 source = s; /* Node moved. Memorize */ 689 dest = d; 690 691 /* dest not in remaining from nodes? */ 692 if (!node_isset(dest, tmp)) 693 break; 694 } 695 if (source == -1) 696 break; 697 698 node_clear(source, tmp); 699 err = migrate_to_node(mm, source, dest, flags); 700 if (err > 0) 701 busy += err; 702 if (err < 0) 703 break; 704 } 705 out: 706 up_read(&mm->mmap_sem); 707 if (err < 0) 708 return err; 709 return busy; 710 711 } 712 713 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 714 { 715 struct vm_area_struct *vma = (struct vm_area_struct *)private; 716 717 return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma)); 718 } 719 #else 720 721 static void migrate_page_add(struct page *page, struct list_head *pagelist, 722 unsigned long flags) 723 { 724 } 725 726 int do_migrate_pages(struct mm_struct *mm, 727 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 728 { 729 return -ENOSYS; 730 } 731 732 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 733 { 734 return NULL; 735 } 736 #endif 737 738 long do_mbind(unsigned long start, unsigned long len, 739 unsigned long mode, nodemask_t *nmask, unsigned long flags) 740 { 741 struct vm_area_struct *vma; 742 struct mm_struct *mm = current->mm; 743 struct mempolicy *new; 744 unsigned long end; 745 int err; 746 LIST_HEAD(pagelist); 747 748 if ((flags & ~(unsigned long)(MPOL_MF_STRICT | 749 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 750 || mode > MPOL_MAX) 751 return -EINVAL; 752 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 753 return -EPERM; 754 755 if (start & ~PAGE_MASK) 756 return -EINVAL; 757 758 if (mode == MPOL_DEFAULT) 759 flags &= ~MPOL_MF_STRICT; 760 761 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 762 end = start + len; 763 764 if (end < start) 765 return -EINVAL; 766 if (end == start) 767 return 0; 768 769 if (mpol_check_policy(mode, nmask)) 770 return -EINVAL; 771 772 new = mpol_new(mode, nmask); 773 if (IS_ERR(new)) 774 return PTR_ERR(new); 775 776 /* 777 * If we are using the default policy then operation 778 * on discontinuous address spaces is okay after all 779 */ 780 if (!new) 781 flags |= MPOL_MF_DISCONTIG_OK; 782 783 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len, 784 mode,nodes_addr(nodes)[0]); 785 786 down_write(&mm->mmap_sem); 787 vma = check_range(mm, start, end, nmask, 788 flags | MPOL_MF_INVERT, &pagelist); 789 790 err = PTR_ERR(vma); 791 if (!IS_ERR(vma)) { 792 int nr_failed = 0; 793 794 err = mbind_range(vma, start, end, new); 795 796 if (!list_empty(&pagelist)) 797 nr_failed = migrate_pages(&pagelist, new_vma_page, 798 (unsigned long)vma); 799 800 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 801 err = -EIO; 802 } 803 804 up_write(&mm->mmap_sem); 805 mpol_free(new); 806 return err; 807 } 808 809 /* 810 * User space interface with variable sized bitmaps for nodelists. 811 */ 812 813 /* Copy a node mask from user space. */ 814 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 815 unsigned long maxnode) 816 { 817 unsigned long k; 818 unsigned long nlongs; 819 unsigned long endmask; 820 821 --maxnode; 822 nodes_clear(*nodes); 823 if (maxnode == 0 || !nmask) 824 return 0; 825 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 826 return -EINVAL; 827 828 nlongs = BITS_TO_LONGS(maxnode); 829 if ((maxnode % BITS_PER_LONG) == 0) 830 endmask = ~0UL; 831 else 832 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 833 834 /* When the user specified more nodes than supported just check 835 if the non supported part is all zero. */ 836 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 837 if (nlongs > PAGE_SIZE/sizeof(long)) 838 return -EINVAL; 839 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 840 unsigned long t; 841 if (get_user(t, nmask + k)) 842 return -EFAULT; 843 if (k == nlongs - 1) { 844 if (t & endmask) 845 return -EINVAL; 846 } else if (t) 847 return -EINVAL; 848 } 849 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 850 endmask = ~0UL; 851 } 852 853 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 854 return -EFAULT; 855 nodes_addr(*nodes)[nlongs-1] &= endmask; 856 return 0; 857 } 858 859 /* Copy a kernel node mask to user space */ 860 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 861 nodemask_t *nodes) 862 { 863 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 864 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 865 866 if (copy > nbytes) { 867 if (copy > PAGE_SIZE) 868 return -EINVAL; 869 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 870 return -EFAULT; 871 copy = nbytes; 872 } 873 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 874 } 875 876 asmlinkage long sys_mbind(unsigned long start, unsigned long len, 877 unsigned long mode, 878 unsigned long __user *nmask, unsigned long maxnode, 879 unsigned flags) 880 { 881 nodemask_t nodes; 882 int err; 883 884 err = get_nodes(&nodes, nmask, maxnode); 885 if (err) 886 return err; 887 #ifdef CONFIG_CPUSETS 888 /* Restrict the nodes to the allowed nodes in the cpuset */ 889 nodes_and(nodes, nodes, current->mems_allowed); 890 #endif 891 return do_mbind(start, len, mode, &nodes, flags); 892 } 893 894 /* Set the process memory policy */ 895 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask, 896 unsigned long maxnode) 897 { 898 int err; 899 nodemask_t nodes; 900 901 if (mode < 0 || mode > MPOL_MAX) 902 return -EINVAL; 903 err = get_nodes(&nodes, nmask, maxnode); 904 if (err) 905 return err; 906 return do_set_mempolicy(mode, &nodes); 907 } 908 909 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode, 910 const unsigned long __user *old_nodes, 911 const unsigned long __user *new_nodes) 912 { 913 struct mm_struct *mm; 914 struct task_struct *task; 915 nodemask_t old; 916 nodemask_t new; 917 nodemask_t task_nodes; 918 int err; 919 920 err = get_nodes(&old, old_nodes, maxnode); 921 if (err) 922 return err; 923 924 err = get_nodes(&new, new_nodes, maxnode); 925 if (err) 926 return err; 927 928 /* Find the mm_struct */ 929 read_lock(&tasklist_lock); 930 task = pid ? find_task_by_pid(pid) : current; 931 if (!task) { 932 read_unlock(&tasklist_lock); 933 return -ESRCH; 934 } 935 mm = get_task_mm(task); 936 read_unlock(&tasklist_lock); 937 938 if (!mm) 939 return -EINVAL; 940 941 /* 942 * Check if this process has the right to modify the specified 943 * process. The right exists if the process has administrative 944 * capabilities, superuser privileges or the same 945 * userid as the target process. 946 */ 947 if ((current->euid != task->suid) && (current->euid != task->uid) && 948 (current->uid != task->suid) && (current->uid != task->uid) && 949 !capable(CAP_SYS_NICE)) { 950 err = -EPERM; 951 goto out; 952 } 953 954 task_nodes = cpuset_mems_allowed(task); 955 /* Is the user allowed to access the target nodes? */ 956 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { 957 err = -EPERM; 958 goto out; 959 } 960 961 err = security_task_movememory(task); 962 if (err) 963 goto out; 964 965 err = do_migrate_pages(mm, &old, &new, 966 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 967 out: 968 mmput(mm); 969 return err; 970 } 971 972 973 /* Retrieve NUMA policy */ 974 asmlinkage long sys_get_mempolicy(int __user *policy, 975 unsigned long __user *nmask, 976 unsigned long maxnode, 977 unsigned long addr, unsigned long flags) 978 { 979 int err, pval; 980 nodemask_t nodes; 981 982 if (nmask != NULL && maxnode < MAX_NUMNODES) 983 return -EINVAL; 984 985 err = do_get_mempolicy(&pval, &nodes, addr, flags); 986 987 if (err) 988 return err; 989 990 if (policy && put_user(pval, policy)) 991 return -EFAULT; 992 993 if (nmask) 994 err = copy_nodes_to_user(nmask, maxnode, &nodes); 995 996 return err; 997 } 998 999 #ifdef CONFIG_COMPAT 1000 1001 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1002 compat_ulong_t __user *nmask, 1003 compat_ulong_t maxnode, 1004 compat_ulong_t addr, compat_ulong_t flags) 1005 { 1006 long err; 1007 unsigned long __user *nm = NULL; 1008 unsigned long nr_bits, alloc_size; 1009 DECLARE_BITMAP(bm, MAX_NUMNODES); 1010 1011 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1012 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1013 1014 if (nmask) 1015 nm = compat_alloc_user_space(alloc_size); 1016 1017 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1018 1019 if (!err && nmask) { 1020 err = copy_from_user(bm, nm, alloc_size); 1021 /* ensure entire bitmap is zeroed */ 1022 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1023 err |= compat_put_bitmap(nmask, bm, nr_bits); 1024 } 1025 1026 return err; 1027 } 1028 1029 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1030 compat_ulong_t maxnode) 1031 { 1032 long err = 0; 1033 unsigned long __user *nm = NULL; 1034 unsigned long nr_bits, alloc_size; 1035 DECLARE_BITMAP(bm, MAX_NUMNODES); 1036 1037 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1038 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1039 1040 if (nmask) { 1041 err = compat_get_bitmap(bm, nmask, nr_bits); 1042 nm = compat_alloc_user_space(alloc_size); 1043 err |= copy_to_user(nm, bm, alloc_size); 1044 } 1045 1046 if (err) 1047 return -EFAULT; 1048 1049 return sys_set_mempolicy(mode, nm, nr_bits+1); 1050 } 1051 1052 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1053 compat_ulong_t mode, compat_ulong_t __user *nmask, 1054 compat_ulong_t maxnode, compat_ulong_t flags) 1055 { 1056 long err = 0; 1057 unsigned long __user *nm = NULL; 1058 unsigned long nr_bits, alloc_size; 1059 nodemask_t bm; 1060 1061 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1062 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1063 1064 if (nmask) { 1065 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1066 nm = compat_alloc_user_space(alloc_size); 1067 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1068 } 1069 1070 if (err) 1071 return -EFAULT; 1072 1073 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1074 } 1075 1076 #endif 1077 1078 /* Return effective policy for a VMA */ 1079 static struct mempolicy * get_vma_policy(struct task_struct *task, 1080 struct vm_area_struct *vma, unsigned long addr) 1081 { 1082 struct mempolicy *pol = task->mempolicy; 1083 1084 if (vma) { 1085 if (vma->vm_ops && vma->vm_ops->get_policy) 1086 pol = vma->vm_ops->get_policy(vma, addr); 1087 else if (vma->vm_policy && 1088 vma->vm_policy->policy != MPOL_DEFAULT) 1089 pol = vma->vm_policy; 1090 } 1091 if (!pol) 1092 pol = &default_policy; 1093 return pol; 1094 } 1095 1096 /* Return a zonelist representing a mempolicy */ 1097 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy) 1098 { 1099 int nd; 1100 1101 switch (policy->policy) { 1102 case MPOL_PREFERRED: 1103 nd = policy->v.preferred_node; 1104 if (nd < 0) 1105 nd = numa_node_id(); 1106 break; 1107 case MPOL_BIND: 1108 /* Lower zones don't get a policy applied */ 1109 /* Careful: current->mems_allowed might have moved */ 1110 if (gfp_zone(gfp) >= policy_zone) 1111 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist)) 1112 return policy->v.zonelist; 1113 /*FALL THROUGH*/ 1114 case MPOL_INTERLEAVE: /* should not happen */ 1115 case MPOL_DEFAULT: 1116 nd = numa_node_id(); 1117 break; 1118 default: 1119 nd = 0; 1120 BUG(); 1121 } 1122 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp); 1123 } 1124 1125 /* Do dynamic interleaving for a process */ 1126 static unsigned interleave_nodes(struct mempolicy *policy) 1127 { 1128 unsigned nid, next; 1129 struct task_struct *me = current; 1130 1131 nid = me->il_next; 1132 next = next_node(nid, policy->v.nodes); 1133 if (next >= MAX_NUMNODES) 1134 next = first_node(policy->v.nodes); 1135 me->il_next = next; 1136 return nid; 1137 } 1138 1139 /* 1140 * Depending on the memory policy provide a node from which to allocate the 1141 * next slab entry. 1142 */ 1143 unsigned slab_node(struct mempolicy *policy) 1144 { 1145 int pol = policy ? policy->policy : MPOL_DEFAULT; 1146 1147 switch (pol) { 1148 case MPOL_INTERLEAVE: 1149 return interleave_nodes(policy); 1150 1151 case MPOL_BIND: 1152 /* 1153 * Follow bind policy behavior and start allocation at the 1154 * first node. 1155 */ 1156 return zone_to_nid(policy->v.zonelist->zones[0]); 1157 1158 case MPOL_PREFERRED: 1159 if (policy->v.preferred_node >= 0) 1160 return policy->v.preferred_node; 1161 /* Fall through */ 1162 1163 default: 1164 return numa_node_id(); 1165 } 1166 } 1167 1168 /* Do static interleaving for a VMA with known offset. */ 1169 static unsigned offset_il_node(struct mempolicy *pol, 1170 struct vm_area_struct *vma, unsigned long off) 1171 { 1172 unsigned nnodes = nodes_weight(pol->v.nodes); 1173 unsigned target = (unsigned)off % nnodes; 1174 int c; 1175 int nid = -1; 1176 1177 c = 0; 1178 do { 1179 nid = next_node(nid, pol->v.nodes); 1180 c++; 1181 } while (c <= target); 1182 return nid; 1183 } 1184 1185 /* Determine a node number for interleave */ 1186 static inline unsigned interleave_nid(struct mempolicy *pol, 1187 struct vm_area_struct *vma, unsigned long addr, int shift) 1188 { 1189 if (vma) { 1190 unsigned long off; 1191 1192 /* 1193 * for small pages, there is no difference between 1194 * shift and PAGE_SHIFT, so the bit-shift is safe. 1195 * for huge pages, since vm_pgoff is in units of small 1196 * pages, we need to shift off the always 0 bits to get 1197 * a useful offset. 1198 */ 1199 BUG_ON(shift < PAGE_SHIFT); 1200 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1201 off += (addr - vma->vm_start) >> shift; 1202 return offset_il_node(pol, vma, off); 1203 } else 1204 return interleave_nodes(pol); 1205 } 1206 1207 #ifdef CONFIG_HUGETLBFS 1208 /* Return a zonelist suitable for a huge page allocation. */ 1209 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr) 1210 { 1211 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1212 1213 if (pol->policy == MPOL_INTERLEAVE) { 1214 unsigned nid; 1215 1216 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT); 1217 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER); 1218 } 1219 return zonelist_policy(GFP_HIGHUSER, pol); 1220 } 1221 #endif 1222 1223 /* Allocate a page in interleaved policy. 1224 Own path because it needs to do special accounting. */ 1225 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1226 unsigned nid) 1227 { 1228 struct zonelist *zl; 1229 struct page *page; 1230 1231 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp); 1232 page = __alloc_pages(gfp, order, zl); 1233 if (page && page_zone(page) == zl->zones[0]) 1234 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1235 return page; 1236 } 1237 1238 /** 1239 * alloc_page_vma - Allocate a page for a VMA. 1240 * 1241 * @gfp: 1242 * %GFP_USER user allocation. 1243 * %GFP_KERNEL kernel allocations, 1244 * %GFP_HIGHMEM highmem/user allocations, 1245 * %GFP_FS allocation should not call back into a file system. 1246 * %GFP_ATOMIC don't sleep. 1247 * 1248 * @vma: Pointer to VMA or NULL if not available. 1249 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1250 * 1251 * This function allocates a page from the kernel page pool and applies 1252 * a NUMA policy associated with the VMA or the current process. 1253 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1254 * mm_struct of the VMA to prevent it from going away. Should be used for 1255 * all allocations for pages that will be mapped into 1256 * user space. Returns NULL when no page can be allocated. 1257 * 1258 * Should be called with the mm_sem of the vma hold. 1259 */ 1260 struct page * 1261 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) 1262 { 1263 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1264 1265 cpuset_update_task_memory_state(); 1266 1267 if (unlikely(pol->policy == MPOL_INTERLEAVE)) { 1268 unsigned nid; 1269 1270 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); 1271 return alloc_page_interleave(gfp, 0, nid); 1272 } 1273 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol)); 1274 } 1275 1276 /** 1277 * alloc_pages_current - Allocate pages. 1278 * 1279 * @gfp: 1280 * %GFP_USER user allocation, 1281 * %GFP_KERNEL kernel allocation, 1282 * %GFP_HIGHMEM highmem allocation, 1283 * %GFP_FS don't call back into a file system. 1284 * %GFP_ATOMIC don't sleep. 1285 * @order: Power of two of allocation size in pages. 0 is a single page. 1286 * 1287 * Allocate a page from the kernel page pool. When not in 1288 * interrupt context and apply the current process NUMA policy. 1289 * Returns NULL when no page can be allocated. 1290 * 1291 * Don't call cpuset_update_task_memory_state() unless 1292 * 1) it's ok to take cpuset_sem (can WAIT), and 1293 * 2) allocating for current task (not interrupt). 1294 */ 1295 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1296 { 1297 struct mempolicy *pol = current->mempolicy; 1298 1299 if ((gfp & __GFP_WAIT) && !in_interrupt()) 1300 cpuset_update_task_memory_state(); 1301 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1302 pol = &default_policy; 1303 if (pol->policy == MPOL_INTERLEAVE) 1304 return alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1305 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol)); 1306 } 1307 EXPORT_SYMBOL(alloc_pages_current); 1308 1309 /* 1310 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it 1311 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1312 * with the mems_allowed returned by cpuset_mems_allowed(). This 1313 * keeps mempolicies cpuset relative after its cpuset moves. See 1314 * further kernel/cpuset.c update_nodemask(). 1315 */ 1316 void *cpuset_being_rebound; 1317 1318 /* Slow path of a mempolicy copy */ 1319 struct mempolicy *__mpol_copy(struct mempolicy *old) 1320 { 1321 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1322 1323 if (!new) 1324 return ERR_PTR(-ENOMEM); 1325 if (current_cpuset_is_being_rebound()) { 1326 nodemask_t mems = cpuset_mems_allowed(current); 1327 mpol_rebind_policy(old, &mems); 1328 } 1329 *new = *old; 1330 atomic_set(&new->refcnt, 1); 1331 if (new->policy == MPOL_BIND) { 1332 int sz = ksize(old->v.zonelist); 1333 new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL); 1334 if (!new->v.zonelist) { 1335 kmem_cache_free(policy_cache, new); 1336 return ERR_PTR(-ENOMEM); 1337 } 1338 } 1339 return new; 1340 } 1341 1342 /* Slow path of a mempolicy comparison */ 1343 int __mpol_equal(struct mempolicy *a, struct mempolicy *b) 1344 { 1345 if (!a || !b) 1346 return 0; 1347 if (a->policy != b->policy) 1348 return 0; 1349 switch (a->policy) { 1350 case MPOL_DEFAULT: 1351 return 1; 1352 case MPOL_INTERLEAVE: 1353 return nodes_equal(a->v.nodes, b->v.nodes); 1354 case MPOL_PREFERRED: 1355 return a->v.preferred_node == b->v.preferred_node; 1356 case MPOL_BIND: { 1357 int i; 1358 for (i = 0; a->v.zonelist->zones[i]; i++) 1359 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i]) 1360 return 0; 1361 return b->v.zonelist->zones[i] == NULL; 1362 } 1363 default: 1364 BUG(); 1365 return 0; 1366 } 1367 } 1368 1369 /* Slow path of a mpol destructor. */ 1370 void __mpol_free(struct mempolicy *p) 1371 { 1372 if (!atomic_dec_and_test(&p->refcnt)) 1373 return; 1374 if (p->policy == MPOL_BIND) 1375 kfree(p->v.zonelist); 1376 p->policy = MPOL_DEFAULT; 1377 kmem_cache_free(policy_cache, p); 1378 } 1379 1380 /* 1381 * Shared memory backing store policy support. 1382 * 1383 * Remember policies even when nobody has shared memory mapped. 1384 * The policies are kept in Red-Black tree linked from the inode. 1385 * They are protected by the sp->lock spinlock, which should be held 1386 * for any accesses to the tree. 1387 */ 1388 1389 /* lookup first element intersecting start-end */ 1390 /* Caller holds sp->lock */ 1391 static struct sp_node * 1392 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 1393 { 1394 struct rb_node *n = sp->root.rb_node; 1395 1396 while (n) { 1397 struct sp_node *p = rb_entry(n, struct sp_node, nd); 1398 1399 if (start >= p->end) 1400 n = n->rb_right; 1401 else if (end <= p->start) 1402 n = n->rb_left; 1403 else 1404 break; 1405 } 1406 if (!n) 1407 return NULL; 1408 for (;;) { 1409 struct sp_node *w = NULL; 1410 struct rb_node *prev = rb_prev(n); 1411 if (!prev) 1412 break; 1413 w = rb_entry(prev, struct sp_node, nd); 1414 if (w->end <= start) 1415 break; 1416 n = prev; 1417 } 1418 return rb_entry(n, struct sp_node, nd); 1419 } 1420 1421 /* Insert a new shared policy into the list. */ 1422 /* Caller holds sp->lock */ 1423 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 1424 { 1425 struct rb_node **p = &sp->root.rb_node; 1426 struct rb_node *parent = NULL; 1427 struct sp_node *nd; 1428 1429 while (*p) { 1430 parent = *p; 1431 nd = rb_entry(parent, struct sp_node, nd); 1432 if (new->start < nd->start) 1433 p = &(*p)->rb_left; 1434 else if (new->end > nd->end) 1435 p = &(*p)->rb_right; 1436 else 1437 BUG(); 1438 } 1439 rb_link_node(&new->nd, parent, p); 1440 rb_insert_color(&new->nd, &sp->root); 1441 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end, 1442 new->policy ? new->policy->policy : 0); 1443 } 1444 1445 /* Find shared policy intersecting idx */ 1446 struct mempolicy * 1447 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 1448 { 1449 struct mempolicy *pol = NULL; 1450 struct sp_node *sn; 1451 1452 if (!sp->root.rb_node) 1453 return NULL; 1454 spin_lock(&sp->lock); 1455 sn = sp_lookup(sp, idx, idx+1); 1456 if (sn) { 1457 mpol_get(sn->policy); 1458 pol = sn->policy; 1459 } 1460 spin_unlock(&sp->lock); 1461 return pol; 1462 } 1463 1464 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 1465 { 1466 PDprintk("deleting %lx-l%x\n", n->start, n->end); 1467 rb_erase(&n->nd, &sp->root); 1468 mpol_free(n->policy); 1469 kmem_cache_free(sn_cache, n); 1470 } 1471 1472 struct sp_node * 1473 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol) 1474 { 1475 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 1476 1477 if (!n) 1478 return NULL; 1479 n->start = start; 1480 n->end = end; 1481 mpol_get(pol); 1482 n->policy = pol; 1483 return n; 1484 } 1485 1486 /* Replace a policy range. */ 1487 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 1488 unsigned long end, struct sp_node *new) 1489 { 1490 struct sp_node *n, *new2 = NULL; 1491 1492 restart: 1493 spin_lock(&sp->lock); 1494 n = sp_lookup(sp, start, end); 1495 /* Take care of old policies in the same range. */ 1496 while (n && n->start < end) { 1497 struct rb_node *next = rb_next(&n->nd); 1498 if (n->start >= start) { 1499 if (n->end <= end) 1500 sp_delete(sp, n); 1501 else 1502 n->start = end; 1503 } else { 1504 /* Old policy spanning whole new range. */ 1505 if (n->end > end) { 1506 if (!new2) { 1507 spin_unlock(&sp->lock); 1508 new2 = sp_alloc(end, n->end, n->policy); 1509 if (!new2) 1510 return -ENOMEM; 1511 goto restart; 1512 } 1513 n->end = start; 1514 sp_insert(sp, new2); 1515 new2 = NULL; 1516 break; 1517 } else 1518 n->end = start; 1519 } 1520 if (!next) 1521 break; 1522 n = rb_entry(next, struct sp_node, nd); 1523 } 1524 if (new) 1525 sp_insert(sp, new); 1526 spin_unlock(&sp->lock); 1527 if (new2) { 1528 mpol_free(new2->policy); 1529 kmem_cache_free(sn_cache, new2); 1530 } 1531 return 0; 1532 } 1533 1534 void mpol_shared_policy_init(struct shared_policy *info, int policy, 1535 nodemask_t *policy_nodes) 1536 { 1537 info->root = RB_ROOT; 1538 spin_lock_init(&info->lock); 1539 1540 if (policy != MPOL_DEFAULT) { 1541 struct mempolicy *newpol; 1542 1543 /* Falls back to MPOL_DEFAULT on any error */ 1544 newpol = mpol_new(policy, policy_nodes); 1545 if (!IS_ERR(newpol)) { 1546 /* Create pseudo-vma that contains just the policy */ 1547 struct vm_area_struct pvma; 1548 1549 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1550 /* Policy covers entire file */ 1551 pvma.vm_end = TASK_SIZE; 1552 mpol_set_shared_policy(info, &pvma, newpol); 1553 mpol_free(newpol); 1554 } 1555 } 1556 } 1557 1558 int mpol_set_shared_policy(struct shared_policy *info, 1559 struct vm_area_struct *vma, struct mempolicy *npol) 1560 { 1561 int err; 1562 struct sp_node *new = NULL; 1563 unsigned long sz = vma_pages(vma); 1564 1565 PDprintk("set_shared_policy %lx sz %lu %d %lx\n", 1566 vma->vm_pgoff, 1567 sz, npol? npol->policy : -1, 1568 npol ? nodes_addr(npol->v.nodes)[0] : -1); 1569 1570 if (npol) { 1571 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 1572 if (!new) 1573 return -ENOMEM; 1574 } 1575 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 1576 if (err && new) 1577 kmem_cache_free(sn_cache, new); 1578 return err; 1579 } 1580 1581 /* Free a backing policy store on inode delete. */ 1582 void mpol_free_shared_policy(struct shared_policy *p) 1583 { 1584 struct sp_node *n; 1585 struct rb_node *next; 1586 1587 if (!p->root.rb_node) 1588 return; 1589 spin_lock(&p->lock); 1590 next = rb_first(&p->root); 1591 while (next) { 1592 n = rb_entry(next, struct sp_node, nd); 1593 next = rb_next(&n->nd); 1594 rb_erase(&n->nd, &p->root); 1595 mpol_free(n->policy); 1596 kmem_cache_free(sn_cache, n); 1597 } 1598 spin_unlock(&p->lock); 1599 } 1600 1601 /* assumes fs == KERNEL_DS */ 1602 void __init numa_policy_init(void) 1603 { 1604 policy_cache = kmem_cache_create("numa_policy", 1605 sizeof(struct mempolicy), 1606 0, SLAB_PANIC, NULL, NULL); 1607 1608 sn_cache = kmem_cache_create("shared_policy_node", 1609 sizeof(struct sp_node), 1610 0, SLAB_PANIC, NULL, NULL); 1611 1612 /* Set interleaving policy for system init. This way not all 1613 the data structures allocated at system boot end up in node zero. */ 1614 1615 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map)) 1616 printk("numa_policy_init: interleaving failed\n"); 1617 } 1618 1619 /* Reset policy of current process to default */ 1620 void numa_default_policy(void) 1621 { 1622 do_set_mempolicy(MPOL_DEFAULT, NULL); 1623 } 1624 1625 /* Migrate a policy to a different set of nodes */ 1626 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 1627 { 1628 nodemask_t *mpolmask; 1629 nodemask_t tmp; 1630 1631 if (!pol) 1632 return; 1633 mpolmask = &pol->cpuset_mems_allowed; 1634 if (nodes_equal(*mpolmask, *newmask)) 1635 return; 1636 1637 switch (pol->policy) { 1638 case MPOL_DEFAULT: 1639 break; 1640 case MPOL_INTERLEAVE: 1641 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask); 1642 pol->v.nodes = tmp; 1643 *mpolmask = *newmask; 1644 current->il_next = node_remap(current->il_next, 1645 *mpolmask, *newmask); 1646 break; 1647 case MPOL_PREFERRED: 1648 pol->v.preferred_node = node_remap(pol->v.preferred_node, 1649 *mpolmask, *newmask); 1650 *mpolmask = *newmask; 1651 break; 1652 case MPOL_BIND: { 1653 nodemask_t nodes; 1654 struct zone **z; 1655 struct zonelist *zonelist; 1656 1657 nodes_clear(nodes); 1658 for (z = pol->v.zonelist->zones; *z; z++) 1659 node_set(zone_to_nid(*z), nodes); 1660 nodes_remap(tmp, nodes, *mpolmask, *newmask); 1661 nodes = tmp; 1662 1663 zonelist = bind_zonelist(&nodes); 1664 1665 /* If no mem, then zonelist is NULL and we keep old zonelist. 1666 * If that old zonelist has no remaining mems_allowed nodes, 1667 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT. 1668 */ 1669 1670 if (zonelist) { 1671 /* Good - got mem - substitute new zonelist */ 1672 kfree(pol->v.zonelist); 1673 pol->v.zonelist = zonelist; 1674 } 1675 *mpolmask = *newmask; 1676 break; 1677 } 1678 default: 1679 BUG(); 1680 break; 1681 } 1682 } 1683 1684 /* 1685 * Wrapper for mpol_rebind_policy() that just requires task 1686 * pointer, and updates task mempolicy. 1687 */ 1688 1689 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 1690 { 1691 mpol_rebind_policy(tsk->mempolicy, new); 1692 } 1693 1694 /* 1695 * Rebind each vma in mm to new nodemask. 1696 * 1697 * Call holding a reference to mm. Takes mm->mmap_sem during call. 1698 */ 1699 1700 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 1701 { 1702 struct vm_area_struct *vma; 1703 1704 down_write(&mm->mmap_sem); 1705 for (vma = mm->mmap; vma; vma = vma->vm_next) 1706 mpol_rebind_policy(vma->vm_policy, new); 1707 up_write(&mm->mmap_sem); 1708 } 1709 1710 /* 1711 * Display pages allocated per node and memory policy via /proc. 1712 */ 1713 1714 static const char * const policy_types[] = 1715 { "default", "prefer", "bind", "interleave" }; 1716 1717 /* 1718 * Convert a mempolicy into a string. 1719 * Returns the number of characters in buffer (if positive) 1720 * or an error (negative) 1721 */ 1722 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 1723 { 1724 char *p = buffer; 1725 int l; 1726 nodemask_t nodes; 1727 int mode = pol ? pol->policy : MPOL_DEFAULT; 1728 1729 switch (mode) { 1730 case MPOL_DEFAULT: 1731 nodes_clear(nodes); 1732 break; 1733 1734 case MPOL_PREFERRED: 1735 nodes_clear(nodes); 1736 node_set(pol->v.preferred_node, nodes); 1737 break; 1738 1739 case MPOL_BIND: 1740 get_zonemask(pol, &nodes); 1741 break; 1742 1743 case MPOL_INTERLEAVE: 1744 nodes = pol->v.nodes; 1745 break; 1746 1747 default: 1748 BUG(); 1749 return -EFAULT; 1750 } 1751 1752 l = strlen(policy_types[mode]); 1753 if (buffer + maxlen < p + l + 1) 1754 return -ENOSPC; 1755 1756 strcpy(p, policy_types[mode]); 1757 p += l; 1758 1759 if (!nodes_empty(nodes)) { 1760 if (buffer + maxlen < p + 2) 1761 return -ENOSPC; 1762 *p++ = '='; 1763 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 1764 } 1765 return p - buffer; 1766 } 1767 1768 struct numa_maps { 1769 unsigned long pages; 1770 unsigned long anon; 1771 unsigned long active; 1772 unsigned long writeback; 1773 unsigned long mapcount_max; 1774 unsigned long dirty; 1775 unsigned long swapcache; 1776 unsigned long node[MAX_NUMNODES]; 1777 }; 1778 1779 static void gather_stats(struct page *page, void *private, int pte_dirty) 1780 { 1781 struct numa_maps *md = private; 1782 int count = page_mapcount(page); 1783 1784 md->pages++; 1785 if (pte_dirty || PageDirty(page)) 1786 md->dirty++; 1787 1788 if (PageSwapCache(page)) 1789 md->swapcache++; 1790 1791 if (PageActive(page)) 1792 md->active++; 1793 1794 if (PageWriteback(page)) 1795 md->writeback++; 1796 1797 if (PageAnon(page)) 1798 md->anon++; 1799 1800 if (count > md->mapcount_max) 1801 md->mapcount_max = count; 1802 1803 md->node[page_to_nid(page)]++; 1804 } 1805 1806 #ifdef CONFIG_HUGETLB_PAGE 1807 static void check_huge_range(struct vm_area_struct *vma, 1808 unsigned long start, unsigned long end, 1809 struct numa_maps *md) 1810 { 1811 unsigned long addr; 1812 struct page *page; 1813 1814 for (addr = start; addr < end; addr += HPAGE_SIZE) { 1815 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK); 1816 pte_t pte; 1817 1818 if (!ptep) 1819 continue; 1820 1821 pte = *ptep; 1822 if (pte_none(pte)) 1823 continue; 1824 1825 page = pte_page(pte); 1826 if (!page) 1827 continue; 1828 1829 gather_stats(page, md, pte_dirty(*ptep)); 1830 } 1831 } 1832 #else 1833 static inline void check_huge_range(struct vm_area_struct *vma, 1834 unsigned long start, unsigned long end, 1835 struct numa_maps *md) 1836 { 1837 } 1838 #endif 1839 1840 int show_numa_map(struct seq_file *m, void *v) 1841 { 1842 struct proc_maps_private *priv = m->private; 1843 struct vm_area_struct *vma = v; 1844 struct numa_maps *md; 1845 struct file *file = vma->vm_file; 1846 struct mm_struct *mm = vma->vm_mm; 1847 int n; 1848 char buffer[50]; 1849 1850 if (!mm) 1851 return 0; 1852 1853 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); 1854 if (!md) 1855 return 0; 1856 1857 mpol_to_str(buffer, sizeof(buffer), 1858 get_vma_policy(priv->task, vma, vma->vm_start)); 1859 1860 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1861 1862 if (file) { 1863 seq_printf(m, " file="); 1864 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= "); 1865 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1866 seq_printf(m, " heap"); 1867 } else if (vma->vm_start <= mm->start_stack && 1868 vma->vm_end >= mm->start_stack) { 1869 seq_printf(m, " stack"); 1870 } 1871 1872 if (is_vm_hugetlb_page(vma)) { 1873 check_huge_range(vma, vma->vm_start, vma->vm_end, md); 1874 seq_printf(m, " huge"); 1875 } else { 1876 check_pgd_range(vma, vma->vm_start, vma->vm_end, 1877 &node_online_map, MPOL_MF_STATS, md); 1878 } 1879 1880 if (!md->pages) 1881 goto out; 1882 1883 if (md->anon) 1884 seq_printf(m," anon=%lu",md->anon); 1885 1886 if (md->dirty) 1887 seq_printf(m," dirty=%lu",md->dirty); 1888 1889 if (md->pages != md->anon && md->pages != md->dirty) 1890 seq_printf(m, " mapped=%lu", md->pages); 1891 1892 if (md->mapcount_max > 1) 1893 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1894 1895 if (md->swapcache) 1896 seq_printf(m," swapcache=%lu", md->swapcache); 1897 1898 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1899 seq_printf(m," active=%lu", md->active); 1900 1901 if (md->writeback) 1902 seq_printf(m," writeback=%lu", md->writeback); 1903 1904 for_each_online_node(n) 1905 if (md->node[n]) 1906 seq_printf(m, " N%d=%lu", n, md->node[n]); 1907 out: 1908 seq_putc(m, '\n'); 1909 kfree(md); 1910 1911 if (m->count < m->size) 1912 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; 1913 return 0; 1914 } 1915 1916