xref: /linux/mm/mempolicy.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66    could replace all the switch()es with a mempolicy_ops structure.
67 */
68 
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95 
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
100 
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103 
104 #define PDprintk(fmt...)
105 
106 /* Highest zone. An specific allocation for a zone below that is not
107    policied. */
108 enum zone_type policy_zone = ZONE_DMA;
109 
110 struct mempolicy default_policy = {
111 	.refcnt = ATOMIC_INIT(1), /* never free it */
112 	.policy = MPOL_DEFAULT,
113 };
114 
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
117 {
118 	int empty = nodes_empty(*nodes);
119 
120 	switch (mode) {
121 	case MPOL_DEFAULT:
122 		if (!empty)
123 			return -EINVAL;
124 		break;
125 	case MPOL_BIND:
126 	case MPOL_INTERLEAVE:
127 		/* Preferred will only use the first bit, but allow
128 		   more for now. */
129 		if (empty)
130 			return -EINVAL;
131 		break;
132 	}
133 	return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
134 }
135 
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
138 {
139 	struct zonelist *zl;
140 	int num, max, nd;
141 	enum zone_type k;
142 
143 	max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 	max++;			/* space for zlcache_ptr (see mmzone.h) */
145 	zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
146 	if (!zl)
147 		return NULL;
148 	zl->zlcache_ptr = NULL;
149 	num = 0;
150 	/* First put in the highest zones from all nodes, then all the next
151 	   lower zones etc. Avoid empty zones because the memory allocator
152 	   doesn't like them. If you implement node hot removal you
153 	   have to fix that. */
154 	k = policy_zone;
155 	while (1) {
156 		for_each_node_mask(nd, *nodes) {
157 			struct zone *z = &NODE_DATA(nd)->node_zones[k];
158 			if (z->present_pages > 0)
159 				zl->zones[num++] = z;
160 		}
161 		if (k == 0)
162 			break;
163 		k--;
164 	}
165 	zl->zones[num] = NULL;
166 	return zl;
167 }
168 
169 /* Create a new policy */
170 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
171 {
172 	struct mempolicy *policy;
173 
174 	PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
175 	if (mode == MPOL_DEFAULT)
176 		return NULL;
177 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
178 	if (!policy)
179 		return ERR_PTR(-ENOMEM);
180 	atomic_set(&policy->refcnt, 1);
181 	switch (mode) {
182 	case MPOL_INTERLEAVE:
183 		policy->v.nodes = *nodes;
184 		if (nodes_weight(*nodes) == 0) {
185 			kmem_cache_free(policy_cache, policy);
186 			return ERR_PTR(-EINVAL);
187 		}
188 		break;
189 	case MPOL_PREFERRED:
190 		policy->v.preferred_node = first_node(*nodes);
191 		if (policy->v.preferred_node >= MAX_NUMNODES)
192 			policy->v.preferred_node = -1;
193 		break;
194 	case MPOL_BIND:
195 		policy->v.zonelist = bind_zonelist(nodes);
196 		if (policy->v.zonelist == NULL) {
197 			kmem_cache_free(policy_cache, policy);
198 			return ERR_PTR(-ENOMEM);
199 		}
200 		break;
201 	}
202 	policy->policy = mode;
203 	policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
204 	return policy;
205 }
206 
207 static void gather_stats(struct page *, void *, int pte_dirty);
208 static void migrate_page_add(struct page *page, struct list_head *pagelist,
209 				unsigned long flags);
210 
211 /* Scan through pages checking if pages follow certain conditions. */
212 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
213 		unsigned long addr, unsigned long end,
214 		const nodemask_t *nodes, unsigned long flags,
215 		void *private)
216 {
217 	pte_t *orig_pte;
218 	pte_t *pte;
219 	spinlock_t *ptl;
220 
221 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
222 	do {
223 		struct page *page;
224 		int nid;
225 
226 		if (!pte_present(*pte))
227 			continue;
228 		page = vm_normal_page(vma, addr, *pte);
229 		if (!page)
230 			continue;
231 		/*
232 		 * The check for PageReserved here is important to avoid
233 		 * handling zero pages and other pages that may have been
234 		 * marked special by the system.
235 		 *
236 		 * If the PageReserved would not be checked here then f.e.
237 		 * the location of the zero page could have an influence
238 		 * on MPOL_MF_STRICT, zero pages would be counted for
239 		 * the per node stats, and there would be useless attempts
240 		 * to put zero pages on the migration list.
241 		 */
242 		if (PageReserved(page))
243 			continue;
244 		nid = page_to_nid(page);
245 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
246 			continue;
247 
248 		if (flags & MPOL_MF_STATS)
249 			gather_stats(page, private, pte_dirty(*pte));
250 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
251 			migrate_page_add(page, private, flags);
252 		else
253 			break;
254 	} while (pte++, addr += PAGE_SIZE, addr != end);
255 	pte_unmap_unlock(orig_pte, ptl);
256 	return addr != end;
257 }
258 
259 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
260 		unsigned long addr, unsigned long end,
261 		const nodemask_t *nodes, unsigned long flags,
262 		void *private)
263 {
264 	pmd_t *pmd;
265 	unsigned long next;
266 
267 	pmd = pmd_offset(pud, addr);
268 	do {
269 		next = pmd_addr_end(addr, end);
270 		if (pmd_none_or_clear_bad(pmd))
271 			continue;
272 		if (check_pte_range(vma, pmd, addr, next, nodes,
273 				    flags, private))
274 			return -EIO;
275 	} while (pmd++, addr = next, addr != end);
276 	return 0;
277 }
278 
279 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
280 		unsigned long addr, unsigned long end,
281 		const nodemask_t *nodes, unsigned long flags,
282 		void *private)
283 {
284 	pud_t *pud;
285 	unsigned long next;
286 
287 	pud = pud_offset(pgd, addr);
288 	do {
289 		next = pud_addr_end(addr, end);
290 		if (pud_none_or_clear_bad(pud))
291 			continue;
292 		if (check_pmd_range(vma, pud, addr, next, nodes,
293 				    flags, private))
294 			return -EIO;
295 	} while (pud++, addr = next, addr != end);
296 	return 0;
297 }
298 
299 static inline int check_pgd_range(struct vm_area_struct *vma,
300 		unsigned long addr, unsigned long end,
301 		const nodemask_t *nodes, unsigned long flags,
302 		void *private)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	pgd = pgd_offset(vma->vm_mm, addr);
308 	do {
309 		next = pgd_addr_end(addr, end);
310 		if (pgd_none_or_clear_bad(pgd))
311 			continue;
312 		if (check_pud_range(vma, pgd, addr, next, nodes,
313 				    flags, private))
314 			return -EIO;
315 	} while (pgd++, addr = next, addr != end);
316 	return 0;
317 }
318 
319 /* Check if a vma is migratable */
320 static inline int vma_migratable(struct vm_area_struct *vma)
321 {
322 	if (vma->vm_flags & (
323 		VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
324 		return 0;
325 	return 1;
326 }
327 
328 /*
329  * Check if all pages in a range are on a set of nodes.
330  * If pagelist != NULL then isolate pages from the LRU and
331  * put them on the pagelist.
332  */
333 static struct vm_area_struct *
334 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
335 		const nodemask_t *nodes, unsigned long flags, void *private)
336 {
337 	int err;
338 	struct vm_area_struct *first, *vma, *prev;
339 
340 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
341 
342 		err = migrate_prep();
343 		if (err)
344 			return ERR_PTR(err);
345 	}
346 
347 	first = find_vma(mm, start);
348 	if (!first)
349 		return ERR_PTR(-EFAULT);
350 	prev = NULL;
351 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
352 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
353 			if (!vma->vm_next && vma->vm_end < end)
354 				return ERR_PTR(-EFAULT);
355 			if (prev && prev->vm_end < vma->vm_start)
356 				return ERR_PTR(-EFAULT);
357 		}
358 		if (!is_vm_hugetlb_page(vma) &&
359 		    ((flags & MPOL_MF_STRICT) ||
360 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
361 				vma_migratable(vma)))) {
362 			unsigned long endvma = vma->vm_end;
363 
364 			if (endvma > end)
365 				endvma = end;
366 			if (vma->vm_start > start)
367 				start = vma->vm_start;
368 			err = check_pgd_range(vma, start, endvma, nodes,
369 						flags, private);
370 			if (err) {
371 				first = ERR_PTR(err);
372 				break;
373 			}
374 		}
375 		prev = vma;
376 	}
377 	return first;
378 }
379 
380 /* Apply policy to a single VMA */
381 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
382 {
383 	int err = 0;
384 	struct mempolicy *old = vma->vm_policy;
385 
386 	PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
387 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
388 		 vma->vm_ops, vma->vm_file,
389 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
390 
391 	if (vma->vm_ops && vma->vm_ops->set_policy)
392 		err = vma->vm_ops->set_policy(vma, new);
393 	if (!err) {
394 		mpol_get(new);
395 		vma->vm_policy = new;
396 		mpol_free(old);
397 	}
398 	return err;
399 }
400 
401 /* Step 2: apply policy to a range and do splits. */
402 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
403 		       unsigned long end, struct mempolicy *new)
404 {
405 	struct vm_area_struct *next;
406 	int err;
407 
408 	err = 0;
409 	for (; vma && vma->vm_start < end; vma = next) {
410 		next = vma->vm_next;
411 		if (vma->vm_start < start)
412 			err = split_vma(vma->vm_mm, vma, start, 1);
413 		if (!err && vma->vm_end > end)
414 			err = split_vma(vma->vm_mm, vma, end, 0);
415 		if (!err)
416 			err = policy_vma(vma, new);
417 		if (err)
418 			break;
419 	}
420 	return err;
421 }
422 
423 static int contextualize_policy(int mode, nodemask_t *nodes)
424 {
425 	if (!nodes)
426 		return 0;
427 
428 	cpuset_update_task_memory_state();
429 	if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
430 		return -EINVAL;
431 	return mpol_check_policy(mode, nodes);
432 }
433 
434 
435 /*
436  * Update task->flags PF_MEMPOLICY bit: set iff non-default
437  * mempolicy.  Allows more rapid checking of this (combined perhaps
438  * with other PF_* flag bits) on memory allocation hot code paths.
439  *
440  * If called from outside this file, the task 'p' should -only- be
441  * a newly forked child not yet visible on the task list, because
442  * manipulating the task flags of a visible task is not safe.
443  *
444  * The above limitation is why this routine has the funny name
445  * mpol_fix_fork_child_flag().
446  *
447  * It is also safe to call this with a task pointer of current,
448  * which the static wrapper mpol_set_task_struct_flag() does,
449  * for use within this file.
450  */
451 
452 void mpol_fix_fork_child_flag(struct task_struct *p)
453 {
454 	if (p->mempolicy)
455 		p->flags |= PF_MEMPOLICY;
456 	else
457 		p->flags &= ~PF_MEMPOLICY;
458 }
459 
460 static void mpol_set_task_struct_flag(void)
461 {
462 	mpol_fix_fork_child_flag(current);
463 }
464 
465 /* Set the process memory policy */
466 long do_set_mempolicy(int mode, nodemask_t *nodes)
467 {
468 	struct mempolicy *new;
469 
470 	if (contextualize_policy(mode, nodes))
471 		return -EINVAL;
472 	new = mpol_new(mode, nodes);
473 	if (IS_ERR(new))
474 		return PTR_ERR(new);
475 	mpol_free(current->mempolicy);
476 	current->mempolicy = new;
477 	mpol_set_task_struct_flag();
478 	if (new && new->policy == MPOL_INTERLEAVE)
479 		current->il_next = first_node(new->v.nodes);
480 	return 0;
481 }
482 
483 /* Fill a zone bitmap for a policy */
484 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
485 {
486 	int i;
487 
488 	nodes_clear(*nodes);
489 	switch (p->policy) {
490 	case MPOL_BIND:
491 		for (i = 0; p->v.zonelist->zones[i]; i++)
492 			node_set(zone_to_nid(p->v.zonelist->zones[i]),
493 				*nodes);
494 		break;
495 	case MPOL_DEFAULT:
496 		break;
497 	case MPOL_INTERLEAVE:
498 		*nodes = p->v.nodes;
499 		break;
500 	case MPOL_PREFERRED:
501 		/* or use current node instead of online map? */
502 		if (p->v.preferred_node < 0)
503 			*nodes = node_online_map;
504 		else
505 			node_set(p->v.preferred_node, *nodes);
506 		break;
507 	default:
508 		BUG();
509 	}
510 }
511 
512 static int lookup_node(struct mm_struct *mm, unsigned long addr)
513 {
514 	struct page *p;
515 	int err;
516 
517 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
518 	if (err >= 0) {
519 		err = page_to_nid(p);
520 		put_page(p);
521 	}
522 	return err;
523 }
524 
525 /* Retrieve NUMA policy */
526 long do_get_mempolicy(int *policy, nodemask_t *nmask,
527 			unsigned long addr, unsigned long flags)
528 {
529 	int err;
530 	struct mm_struct *mm = current->mm;
531 	struct vm_area_struct *vma = NULL;
532 	struct mempolicy *pol = current->mempolicy;
533 
534 	cpuset_update_task_memory_state();
535 	if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
536 		return -EINVAL;
537 	if (flags & MPOL_F_ADDR) {
538 		down_read(&mm->mmap_sem);
539 		vma = find_vma_intersection(mm, addr, addr+1);
540 		if (!vma) {
541 			up_read(&mm->mmap_sem);
542 			return -EFAULT;
543 		}
544 		if (vma->vm_ops && vma->vm_ops->get_policy)
545 			pol = vma->vm_ops->get_policy(vma, addr);
546 		else
547 			pol = vma->vm_policy;
548 	} else if (addr)
549 		return -EINVAL;
550 
551 	if (!pol)
552 		pol = &default_policy;
553 
554 	if (flags & MPOL_F_NODE) {
555 		if (flags & MPOL_F_ADDR) {
556 			err = lookup_node(mm, addr);
557 			if (err < 0)
558 				goto out;
559 			*policy = err;
560 		} else if (pol == current->mempolicy &&
561 				pol->policy == MPOL_INTERLEAVE) {
562 			*policy = current->il_next;
563 		} else {
564 			err = -EINVAL;
565 			goto out;
566 		}
567 	} else
568 		*policy = pol->policy;
569 
570 	if (vma) {
571 		up_read(&current->mm->mmap_sem);
572 		vma = NULL;
573 	}
574 
575 	err = 0;
576 	if (nmask)
577 		get_zonemask(pol, nmask);
578 
579  out:
580 	if (vma)
581 		up_read(&current->mm->mmap_sem);
582 	return err;
583 }
584 
585 #ifdef CONFIG_MIGRATION
586 /*
587  * page migration
588  */
589 static void migrate_page_add(struct page *page, struct list_head *pagelist,
590 				unsigned long flags)
591 {
592 	/*
593 	 * Avoid migrating a page that is shared with others.
594 	 */
595 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
596 		isolate_lru_page(page, pagelist);
597 }
598 
599 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
600 {
601 	return alloc_pages_node(node, GFP_HIGHUSER, 0);
602 }
603 
604 /*
605  * Migrate pages from one node to a target node.
606  * Returns error or the number of pages not migrated.
607  */
608 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
609 {
610 	nodemask_t nmask;
611 	LIST_HEAD(pagelist);
612 	int err = 0;
613 
614 	nodes_clear(nmask);
615 	node_set(source, nmask);
616 
617 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
618 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
619 
620 	if (!list_empty(&pagelist))
621 		err = migrate_pages(&pagelist, new_node_page, dest);
622 
623 	return err;
624 }
625 
626 /*
627  * Move pages between the two nodesets so as to preserve the physical
628  * layout as much as possible.
629  *
630  * Returns the number of page that could not be moved.
631  */
632 int do_migrate_pages(struct mm_struct *mm,
633 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
634 {
635 	LIST_HEAD(pagelist);
636 	int busy = 0;
637 	int err = 0;
638 	nodemask_t tmp;
639 
640   	down_read(&mm->mmap_sem);
641 
642 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
643 	if (err)
644 		goto out;
645 
646 /*
647  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
648  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
649  * bit in 'tmp', and return that <source, dest> pair for migration.
650  * The pair of nodemasks 'to' and 'from' define the map.
651  *
652  * If no pair of bits is found that way, fallback to picking some
653  * pair of 'source' and 'dest' bits that are not the same.  If the
654  * 'source' and 'dest' bits are the same, this represents a node
655  * that will be migrating to itself, so no pages need move.
656  *
657  * If no bits are left in 'tmp', or if all remaining bits left
658  * in 'tmp' correspond to the same bit in 'to', return false
659  * (nothing left to migrate).
660  *
661  * This lets us pick a pair of nodes to migrate between, such that
662  * if possible the dest node is not already occupied by some other
663  * source node, minimizing the risk of overloading the memory on a
664  * node that would happen if we migrated incoming memory to a node
665  * before migrating outgoing memory source that same node.
666  *
667  * A single scan of tmp is sufficient.  As we go, we remember the
668  * most recent <s, d> pair that moved (s != d).  If we find a pair
669  * that not only moved, but what's better, moved to an empty slot
670  * (d is not set in tmp), then we break out then, with that pair.
671  * Otherwise when we finish scannng from_tmp, we at least have the
672  * most recent <s, d> pair that moved.  If we get all the way through
673  * the scan of tmp without finding any node that moved, much less
674  * moved to an empty node, then there is nothing left worth migrating.
675  */
676 
677 	tmp = *from_nodes;
678 	while (!nodes_empty(tmp)) {
679 		int s,d;
680 		int source = -1;
681 		int dest = 0;
682 
683 		for_each_node_mask(s, tmp) {
684 			d = node_remap(s, *from_nodes, *to_nodes);
685 			if (s == d)
686 				continue;
687 
688 			source = s;	/* Node moved. Memorize */
689 			dest = d;
690 
691 			/* dest not in remaining from nodes? */
692 			if (!node_isset(dest, tmp))
693 				break;
694 		}
695 		if (source == -1)
696 			break;
697 
698 		node_clear(source, tmp);
699 		err = migrate_to_node(mm, source, dest, flags);
700 		if (err > 0)
701 			busy += err;
702 		if (err < 0)
703 			break;
704 	}
705 out:
706 	up_read(&mm->mmap_sem);
707 	if (err < 0)
708 		return err;
709 	return busy;
710 
711 }
712 
713 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
714 {
715 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
716 
717 	return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
718 }
719 #else
720 
721 static void migrate_page_add(struct page *page, struct list_head *pagelist,
722 				unsigned long flags)
723 {
724 }
725 
726 int do_migrate_pages(struct mm_struct *mm,
727 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
728 {
729 	return -ENOSYS;
730 }
731 
732 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
733 {
734 	return NULL;
735 }
736 #endif
737 
738 long do_mbind(unsigned long start, unsigned long len,
739 		unsigned long mode, nodemask_t *nmask, unsigned long flags)
740 {
741 	struct vm_area_struct *vma;
742 	struct mm_struct *mm = current->mm;
743 	struct mempolicy *new;
744 	unsigned long end;
745 	int err;
746 	LIST_HEAD(pagelist);
747 
748 	if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
749 				      MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
750 	    || mode > MPOL_MAX)
751 		return -EINVAL;
752 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
753 		return -EPERM;
754 
755 	if (start & ~PAGE_MASK)
756 		return -EINVAL;
757 
758 	if (mode == MPOL_DEFAULT)
759 		flags &= ~MPOL_MF_STRICT;
760 
761 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
762 	end = start + len;
763 
764 	if (end < start)
765 		return -EINVAL;
766 	if (end == start)
767 		return 0;
768 
769 	if (mpol_check_policy(mode, nmask))
770 		return -EINVAL;
771 
772 	new = mpol_new(mode, nmask);
773 	if (IS_ERR(new))
774 		return PTR_ERR(new);
775 
776 	/*
777 	 * If we are using the default policy then operation
778 	 * on discontinuous address spaces is okay after all
779 	 */
780 	if (!new)
781 		flags |= MPOL_MF_DISCONTIG_OK;
782 
783 	PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
784 			mode,nodes_addr(nodes)[0]);
785 
786 	down_write(&mm->mmap_sem);
787 	vma = check_range(mm, start, end, nmask,
788 			  flags | MPOL_MF_INVERT, &pagelist);
789 
790 	err = PTR_ERR(vma);
791 	if (!IS_ERR(vma)) {
792 		int nr_failed = 0;
793 
794 		err = mbind_range(vma, start, end, new);
795 
796 		if (!list_empty(&pagelist))
797 			nr_failed = migrate_pages(&pagelist, new_vma_page,
798 						(unsigned long)vma);
799 
800 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
801 			err = -EIO;
802 	}
803 
804 	up_write(&mm->mmap_sem);
805 	mpol_free(new);
806 	return err;
807 }
808 
809 /*
810  * User space interface with variable sized bitmaps for nodelists.
811  */
812 
813 /* Copy a node mask from user space. */
814 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
815 		     unsigned long maxnode)
816 {
817 	unsigned long k;
818 	unsigned long nlongs;
819 	unsigned long endmask;
820 
821 	--maxnode;
822 	nodes_clear(*nodes);
823 	if (maxnode == 0 || !nmask)
824 		return 0;
825 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
826 		return -EINVAL;
827 
828 	nlongs = BITS_TO_LONGS(maxnode);
829 	if ((maxnode % BITS_PER_LONG) == 0)
830 		endmask = ~0UL;
831 	else
832 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
833 
834 	/* When the user specified more nodes than supported just check
835 	   if the non supported part is all zero. */
836 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
837 		if (nlongs > PAGE_SIZE/sizeof(long))
838 			return -EINVAL;
839 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
840 			unsigned long t;
841 			if (get_user(t, nmask + k))
842 				return -EFAULT;
843 			if (k == nlongs - 1) {
844 				if (t & endmask)
845 					return -EINVAL;
846 			} else if (t)
847 				return -EINVAL;
848 		}
849 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
850 		endmask = ~0UL;
851 	}
852 
853 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
854 		return -EFAULT;
855 	nodes_addr(*nodes)[nlongs-1] &= endmask;
856 	return 0;
857 }
858 
859 /* Copy a kernel node mask to user space */
860 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
861 			      nodemask_t *nodes)
862 {
863 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
864 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
865 
866 	if (copy > nbytes) {
867 		if (copy > PAGE_SIZE)
868 			return -EINVAL;
869 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
870 			return -EFAULT;
871 		copy = nbytes;
872 	}
873 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
874 }
875 
876 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
877 			unsigned long mode,
878 			unsigned long __user *nmask, unsigned long maxnode,
879 			unsigned flags)
880 {
881 	nodemask_t nodes;
882 	int err;
883 
884 	err = get_nodes(&nodes, nmask, maxnode);
885 	if (err)
886 		return err;
887 #ifdef CONFIG_CPUSETS
888 	/* Restrict the nodes to the allowed nodes in the cpuset */
889 	nodes_and(nodes, nodes, current->mems_allowed);
890 #endif
891 	return do_mbind(start, len, mode, &nodes, flags);
892 }
893 
894 /* Set the process memory policy */
895 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
896 		unsigned long maxnode)
897 {
898 	int err;
899 	nodemask_t nodes;
900 
901 	if (mode < 0 || mode > MPOL_MAX)
902 		return -EINVAL;
903 	err = get_nodes(&nodes, nmask, maxnode);
904 	if (err)
905 		return err;
906 	return do_set_mempolicy(mode, &nodes);
907 }
908 
909 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
910 		const unsigned long __user *old_nodes,
911 		const unsigned long __user *new_nodes)
912 {
913 	struct mm_struct *mm;
914 	struct task_struct *task;
915 	nodemask_t old;
916 	nodemask_t new;
917 	nodemask_t task_nodes;
918 	int err;
919 
920 	err = get_nodes(&old, old_nodes, maxnode);
921 	if (err)
922 		return err;
923 
924 	err = get_nodes(&new, new_nodes, maxnode);
925 	if (err)
926 		return err;
927 
928 	/* Find the mm_struct */
929 	read_lock(&tasklist_lock);
930 	task = pid ? find_task_by_pid(pid) : current;
931 	if (!task) {
932 		read_unlock(&tasklist_lock);
933 		return -ESRCH;
934 	}
935 	mm = get_task_mm(task);
936 	read_unlock(&tasklist_lock);
937 
938 	if (!mm)
939 		return -EINVAL;
940 
941 	/*
942 	 * Check if this process has the right to modify the specified
943 	 * process. The right exists if the process has administrative
944 	 * capabilities, superuser privileges or the same
945 	 * userid as the target process.
946 	 */
947 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
948 	    (current->uid != task->suid) && (current->uid != task->uid) &&
949 	    !capable(CAP_SYS_NICE)) {
950 		err = -EPERM;
951 		goto out;
952 	}
953 
954 	task_nodes = cpuset_mems_allowed(task);
955 	/* Is the user allowed to access the target nodes? */
956 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
957 		err = -EPERM;
958 		goto out;
959 	}
960 
961 	err = security_task_movememory(task);
962 	if (err)
963 		goto out;
964 
965 	err = do_migrate_pages(mm, &old, &new,
966 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
967 out:
968 	mmput(mm);
969 	return err;
970 }
971 
972 
973 /* Retrieve NUMA policy */
974 asmlinkage long sys_get_mempolicy(int __user *policy,
975 				unsigned long __user *nmask,
976 				unsigned long maxnode,
977 				unsigned long addr, unsigned long flags)
978 {
979 	int err, pval;
980 	nodemask_t nodes;
981 
982 	if (nmask != NULL && maxnode < MAX_NUMNODES)
983 		return -EINVAL;
984 
985 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
986 
987 	if (err)
988 		return err;
989 
990 	if (policy && put_user(pval, policy))
991 		return -EFAULT;
992 
993 	if (nmask)
994 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
995 
996 	return err;
997 }
998 
999 #ifdef CONFIG_COMPAT
1000 
1001 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1002 				     compat_ulong_t __user *nmask,
1003 				     compat_ulong_t maxnode,
1004 				     compat_ulong_t addr, compat_ulong_t flags)
1005 {
1006 	long err;
1007 	unsigned long __user *nm = NULL;
1008 	unsigned long nr_bits, alloc_size;
1009 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1010 
1011 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1012 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1013 
1014 	if (nmask)
1015 		nm = compat_alloc_user_space(alloc_size);
1016 
1017 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1018 
1019 	if (!err && nmask) {
1020 		err = copy_from_user(bm, nm, alloc_size);
1021 		/* ensure entire bitmap is zeroed */
1022 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1023 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1024 	}
1025 
1026 	return err;
1027 }
1028 
1029 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1030 				     compat_ulong_t maxnode)
1031 {
1032 	long err = 0;
1033 	unsigned long __user *nm = NULL;
1034 	unsigned long nr_bits, alloc_size;
1035 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1036 
1037 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1038 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1039 
1040 	if (nmask) {
1041 		err = compat_get_bitmap(bm, nmask, nr_bits);
1042 		nm = compat_alloc_user_space(alloc_size);
1043 		err |= copy_to_user(nm, bm, alloc_size);
1044 	}
1045 
1046 	if (err)
1047 		return -EFAULT;
1048 
1049 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1050 }
1051 
1052 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1053 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1054 			     compat_ulong_t maxnode, compat_ulong_t flags)
1055 {
1056 	long err = 0;
1057 	unsigned long __user *nm = NULL;
1058 	unsigned long nr_bits, alloc_size;
1059 	nodemask_t bm;
1060 
1061 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1062 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1063 
1064 	if (nmask) {
1065 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1066 		nm = compat_alloc_user_space(alloc_size);
1067 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1068 	}
1069 
1070 	if (err)
1071 		return -EFAULT;
1072 
1073 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1074 }
1075 
1076 #endif
1077 
1078 /* Return effective policy for a VMA */
1079 static struct mempolicy * get_vma_policy(struct task_struct *task,
1080 		struct vm_area_struct *vma, unsigned long addr)
1081 {
1082 	struct mempolicy *pol = task->mempolicy;
1083 
1084 	if (vma) {
1085 		if (vma->vm_ops && vma->vm_ops->get_policy)
1086 			pol = vma->vm_ops->get_policy(vma, addr);
1087 		else if (vma->vm_policy &&
1088 				vma->vm_policy->policy != MPOL_DEFAULT)
1089 			pol = vma->vm_policy;
1090 	}
1091 	if (!pol)
1092 		pol = &default_policy;
1093 	return pol;
1094 }
1095 
1096 /* Return a zonelist representing a mempolicy */
1097 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1098 {
1099 	int nd;
1100 
1101 	switch (policy->policy) {
1102 	case MPOL_PREFERRED:
1103 		nd = policy->v.preferred_node;
1104 		if (nd < 0)
1105 			nd = numa_node_id();
1106 		break;
1107 	case MPOL_BIND:
1108 		/* Lower zones don't get a policy applied */
1109 		/* Careful: current->mems_allowed might have moved */
1110 		if (gfp_zone(gfp) >= policy_zone)
1111 			if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1112 				return policy->v.zonelist;
1113 		/*FALL THROUGH*/
1114 	case MPOL_INTERLEAVE: /* should not happen */
1115 	case MPOL_DEFAULT:
1116 		nd = numa_node_id();
1117 		break;
1118 	default:
1119 		nd = 0;
1120 		BUG();
1121 	}
1122 	return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1123 }
1124 
1125 /* Do dynamic interleaving for a process */
1126 static unsigned interleave_nodes(struct mempolicy *policy)
1127 {
1128 	unsigned nid, next;
1129 	struct task_struct *me = current;
1130 
1131 	nid = me->il_next;
1132 	next = next_node(nid, policy->v.nodes);
1133 	if (next >= MAX_NUMNODES)
1134 		next = first_node(policy->v.nodes);
1135 	me->il_next = next;
1136 	return nid;
1137 }
1138 
1139 /*
1140  * Depending on the memory policy provide a node from which to allocate the
1141  * next slab entry.
1142  */
1143 unsigned slab_node(struct mempolicy *policy)
1144 {
1145 	int pol = policy ? policy->policy : MPOL_DEFAULT;
1146 
1147 	switch (pol) {
1148 	case MPOL_INTERLEAVE:
1149 		return interleave_nodes(policy);
1150 
1151 	case MPOL_BIND:
1152 		/*
1153 		 * Follow bind policy behavior and start allocation at the
1154 		 * first node.
1155 		 */
1156 		return zone_to_nid(policy->v.zonelist->zones[0]);
1157 
1158 	case MPOL_PREFERRED:
1159 		if (policy->v.preferred_node >= 0)
1160 			return policy->v.preferred_node;
1161 		/* Fall through */
1162 
1163 	default:
1164 		return numa_node_id();
1165 	}
1166 }
1167 
1168 /* Do static interleaving for a VMA with known offset. */
1169 static unsigned offset_il_node(struct mempolicy *pol,
1170 		struct vm_area_struct *vma, unsigned long off)
1171 {
1172 	unsigned nnodes = nodes_weight(pol->v.nodes);
1173 	unsigned target = (unsigned)off % nnodes;
1174 	int c;
1175 	int nid = -1;
1176 
1177 	c = 0;
1178 	do {
1179 		nid = next_node(nid, pol->v.nodes);
1180 		c++;
1181 	} while (c <= target);
1182 	return nid;
1183 }
1184 
1185 /* Determine a node number for interleave */
1186 static inline unsigned interleave_nid(struct mempolicy *pol,
1187 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1188 {
1189 	if (vma) {
1190 		unsigned long off;
1191 
1192 		/*
1193 		 * for small pages, there is no difference between
1194 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1195 		 * for huge pages, since vm_pgoff is in units of small
1196 		 * pages, we need to shift off the always 0 bits to get
1197 		 * a useful offset.
1198 		 */
1199 		BUG_ON(shift < PAGE_SHIFT);
1200 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1201 		off += (addr - vma->vm_start) >> shift;
1202 		return offset_il_node(pol, vma, off);
1203 	} else
1204 		return interleave_nodes(pol);
1205 }
1206 
1207 #ifdef CONFIG_HUGETLBFS
1208 /* Return a zonelist suitable for a huge page allocation. */
1209 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1210 {
1211 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1212 
1213 	if (pol->policy == MPOL_INTERLEAVE) {
1214 		unsigned nid;
1215 
1216 		nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1217 		return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1218 	}
1219 	return zonelist_policy(GFP_HIGHUSER, pol);
1220 }
1221 #endif
1222 
1223 /* Allocate a page in interleaved policy.
1224    Own path because it needs to do special accounting. */
1225 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1226 					unsigned nid)
1227 {
1228 	struct zonelist *zl;
1229 	struct page *page;
1230 
1231 	zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1232 	page = __alloc_pages(gfp, order, zl);
1233 	if (page && page_zone(page) == zl->zones[0])
1234 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1235 	return page;
1236 }
1237 
1238 /**
1239  * 	alloc_page_vma	- Allocate a page for a VMA.
1240  *
1241  * 	@gfp:
1242  *      %GFP_USER    user allocation.
1243  *      %GFP_KERNEL  kernel allocations,
1244  *      %GFP_HIGHMEM highmem/user allocations,
1245  *      %GFP_FS      allocation should not call back into a file system.
1246  *      %GFP_ATOMIC  don't sleep.
1247  *
1248  * 	@vma:  Pointer to VMA or NULL if not available.
1249  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1250  *
1251  * 	This function allocates a page from the kernel page pool and applies
1252  *	a NUMA policy associated with the VMA or the current process.
1253  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1254  *	mm_struct of the VMA to prevent it from going away. Should be used for
1255  *	all allocations for pages that will be mapped into
1256  * 	user space. Returns NULL when no page can be allocated.
1257  *
1258  *	Should be called with the mm_sem of the vma hold.
1259  */
1260 struct page *
1261 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1262 {
1263 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1264 
1265 	cpuset_update_task_memory_state();
1266 
1267 	if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1268 		unsigned nid;
1269 
1270 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1271 		return alloc_page_interleave(gfp, 0, nid);
1272 	}
1273 	return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1274 }
1275 
1276 /**
1277  * 	alloc_pages_current - Allocate pages.
1278  *
1279  *	@gfp:
1280  *		%GFP_USER   user allocation,
1281  *      	%GFP_KERNEL kernel allocation,
1282  *      	%GFP_HIGHMEM highmem allocation,
1283  *      	%GFP_FS     don't call back into a file system.
1284  *      	%GFP_ATOMIC don't sleep.
1285  *	@order: Power of two of allocation size in pages. 0 is a single page.
1286  *
1287  *	Allocate a page from the kernel page pool.  When not in
1288  *	interrupt context and apply the current process NUMA policy.
1289  *	Returns NULL when no page can be allocated.
1290  *
1291  *	Don't call cpuset_update_task_memory_state() unless
1292  *	1) it's ok to take cpuset_sem (can WAIT), and
1293  *	2) allocating for current task (not interrupt).
1294  */
1295 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1296 {
1297 	struct mempolicy *pol = current->mempolicy;
1298 
1299 	if ((gfp & __GFP_WAIT) && !in_interrupt())
1300 		cpuset_update_task_memory_state();
1301 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1302 		pol = &default_policy;
1303 	if (pol->policy == MPOL_INTERLEAVE)
1304 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1305 	return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1306 }
1307 EXPORT_SYMBOL(alloc_pages_current);
1308 
1309 /*
1310  * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1311  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1312  * with the mems_allowed returned by cpuset_mems_allowed().  This
1313  * keeps mempolicies cpuset relative after its cpuset moves.  See
1314  * further kernel/cpuset.c update_nodemask().
1315  */
1316 void *cpuset_being_rebound;
1317 
1318 /* Slow path of a mempolicy copy */
1319 struct mempolicy *__mpol_copy(struct mempolicy *old)
1320 {
1321 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1322 
1323 	if (!new)
1324 		return ERR_PTR(-ENOMEM);
1325 	if (current_cpuset_is_being_rebound()) {
1326 		nodemask_t mems = cpuset_mems_allowed(current);
1327 		mpol_rebind_policy(old, &mems);
1328 	}
1329 	*new = *old;
1330 	atomic_set(&new->refcnt, 1);
1331 	if (new->policy == MPOL_BIND) {
1332 		int sz = ksize(old->v.zonelist);
1333 		new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
1334 		if (!new->v.zonelist) {
1335 			kmem_cache_free(policy_cache, new);
1336 			return ERR_PTR(-ENOMEM);
1337 		}
1338 	}
1339 	return new;
1340 }
1341 
1342 /* Slow path of a mempolicy comparison */
1343 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1344 {
1345 	if (!a || !b)
1346 		return 0;
1347 	if (a->policy != b->policy)
1348 		return 0;
1349 	switch (a->policy) {
1350 	case MPOL_DEFAULT:
1351 		return 1;
1352 	case MPOL_INTERLEAVE:
1353 		return nodes_equal(a->v.nodes, b->v.nodes);
1354 	case MPOL_PREFERRED:
1355 		return a->v.preferred_node == b->v.preferred_node;
1356 	case MPOL_BIND: {
1357 		int i;
1358 		for (i = 0; a->v.zonelist->zones[i]; i++)
1359 			if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1360 				return 0;
1361 		return b->v.zonelist->zones[i] == NULL;
1362 	}
1363 	default:
1364 		BUG();
1365 		return 0;
1366 	}
1367 }
1368 
1369 /* Slow path of a mpol destructor. */
1370 void __mpol_free(struct mempolicy *p)
1371 {
1372 	if (!atomic_dec_and_test(&p->refcnt))
1373 		return;
1374 	if (p->policy == MPOL_BIND)
1375 		kfree(p->v.zonelist);
1376 	p->policy = MPOL_DEFAULT;
1377 	kmem_cache_free(policy_cache, p);
1378 }
1379 
1380 /*
1381  * Shared memory backing store policy support.
1382  *
1383  * Remember policies even when nobody has shared memory mapped.
1384  * The policies are kept in Red-Black tree linked from the inode.
1385  * They are protected by the sp->lock spinlock, which should be held
1386  * for any accesses to the tree.
1387  */
1388 
1389 /* lookup first element intersecting start-end */
1390 /* Caller holds sp->lock */
1391 static struct sp_node *
1392 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1393 {
1394 	struct rb_node *n = sp->root.rb_node;
1395 
1396 	while (n) {
1397 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1398 
1399 		if (start >= p->end)
1400 			n = n->rb_right;
1401 		else if (end <= p->start)
1402 			n = n->rb_left;
1403 		else
1404 			break;
1405 	}
1406 	if (!n)
1407 		return NULL;
1408 	for (;;) {
1409 		struct sp_node *w = NULL;
1410 		struct rb_node *prev = rb_prev(n);
1411 		if (!prev)
1412 			break;
1413 		w = rb_entry(prev, struct sp_node, nd);
1414 		if (w->end <= start)
1415 			break;
1416 		n = prev;
1417 	}
1418 	return rb_entry(n, struct sp_node, nd);
1419 }
1420 
1421 /* Insert a new shared policy into the list. */
1422 /* Caller holds sp->lock */
1423 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1424 {
1425 	struct rb_node **p = &sp->root.rb_node;
1426 	struct rb_node *parent = NULL;
1427 	struct sp_node *nd;
1428 
1429 	while (*p) {
1430 		parent = *p;
1431 		nd = rb_entry(parent, struct sp_node, nd);
1432 		if (new->start < nd->start)
1433 			p = &(*p)->rb_left;
1434 		else if (new->end > nd->end)
1435 			p = &(*p)->rb_right;
1436 		else
1437 			BUG();
1438 	}
1439 	rb_link_node(&new->nd, parent, p);
1440 	rb_insert_color(&new->nd, &sp->root);
1441 	PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1442 		 new->policy ? new->policy->policy : 0);
1443 }
1444 
1445 /* Find shared policy intersecting idx */
1446 struct mempolicy *
1447 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1448 {
1449 	struct mempolicy *pol = NULL;
1450 	struct sp_node *sn;
1451 
1452 	if (!sp->root.rb_node)
1453 		return NULL;
1454 	spin_lock(&sp->lock);
1455 	sn = sp_lookup(sp, idx, idx+1);
1456 	if (sn) {
1457 		mpol_get(sn->policy);
1458 		pol = sn->policy;
1459 	}
1460 	spin_unlock(&sp->lock);
1461 	return pol;
1462 }
1463 
1464 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1465 {
1466 	PDprintk("deleting %lx-l%x\n", n->start, n->end);
1467 	rb_erase(&n->nd, &sp->root);
1468 	mpol_free(n->policy);
1469 	kmem_cache_free(sn_cache, n);
1470 }
1471 
1472 struct sp_node *
1473 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1474 {
1475 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1476 
1477 	if (!n)
1478 		return NULL;
1479 	n->start = start;
1480 	n->end = end;
1481 	mpol_get(pol);
1482 	n->policy = pol;
1483 	return n;
1484 }
1485 
1486 /* Replace a policy range. */
1487 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1488 				 unsigned long end, struct sp_node *new)
1489 {
1490 	struct sp_node *n, *new2 = NULL;
1491 
1492 restart:
1493 	spin_lock(&sp->lock);
1494 	n = sp_lookup(sp, start, end);
1495 	/* Take care of old policies in the same range. */
1496 	while (n && n->start < end) {
1497 		struct rb_node *next = rb_next(&n->nd);
1498 		if (n->start >= start) {
1499 			if (n->end <= end)
1500 				sp_delete(sp, n);
1501 			else
1502 				n->start = end;
1503 		} else {
1504 			/* Old policy spanning whole new range. */
1505 			if (n->end > end) {
1506 				if (!new2) {
1507 					spin_unlock(&sp->lock);
1508 					new2 = sp_alloc(end, n->end, n->policy);
1509 					if (!new2)
1510 						return -ENOMEM;
1511 					goto restart;
1512 				}
1513 				n->end = start;
1514 				sp_insert(sp, new2);
1515 				new2 = NULL;
1516 				break;
1517 			} else
1518 				n->end = start;
1519 		}
1520 		if (!next)
1521 			break;
1522 		n = rb_entry(next, struct sp_node, nd);
1523 	}
1524 	if (new)
1525 		sp_insert(sp, new);
1526 	spin_unlock(&sp->lock);
1527 	if (new2) {
1528 		mpol_free(new2->policy);
1529 		kmem_cache_free(sn_cache, new2);
1530 	}
1531 	return 0;
1532 }
1533 
1534 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1535 				nodemask_t *policy_nodes)
1536 {
1537 	info->root = RB_ROOT;
1538 	spin_lock_init(&info->lock);
1539 
1540 	if (policy != MPOL_DEFAULT) {
1541 		struct mempolicy *newpol;
1542 
1543 		/* Falls back to MPOL_DEFAULT on any error */
1544 		newpol = mpol_new(policy, policy_nodes);
1545 		if (!IS_ERR(newpol)) {
1546 			/* Create pseudo-vma that contains just the policy */
1547 			struct vm_area_struct pvma;
1548 
1549 			memset(&pvma, 0, sizeof(struct vm_area_struct));
1550 			/* Policy covers entire file */
1551 			pvma.vm_end = TASK_SIZE;
1552 			mpol_set_shared_policy(info, &pvma, newpol);
1553 			mpol_free(newpol);
1554 		}
1555 	}
1556 }
1557 
1558 int mpol_set_shared_policy(struct shared_policy *info,
1559 			struct vm_area_struct *vma, struct mempolicy *npol)
1560 {
1561 	int err;
1562 	struct sp_node *new = NULL;
1563 	unsigned long sz = vma_pages(vma);
1564 
1565 	PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1566 		 vma->vm_pgoff,
1567 		 sz, npol? npol->policy : -1,
1568 		npol ? nodes_addr(npol->v.nodes)[0] : -1);
1569 
1570 	if (npol) {
1571 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1572 		if (!new)
1573 			return -ENOMEM;
1574 	}
1575 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1576 	if (err && new)
1577 		kmem_cache_free(sn_cache, new);
1578 	return err;
1579 }
1580 
1581 /* Free a backing policy store on inode delete. */
1582 void mpol_free_shared_policy(struct shared_policy *p)
1583 {
1584 	struct sp_node *n;
1585 	struct rb_node *next;
1586 
1587 	if (!p->root.rb_node)
1588 		return;
1589 	spin_lock(&p->lock);
1590 	next = rb_first(&p->root);
1591 	while (next) {
1592 		n = rb_entry(next, struct sp_node, nd);
1593 		next = rb_next(&n->nd);
1594 		rb_erase(&n->nd, &p->root);
1595 		mpol_free(n->policy);
1596 		kmem_cache_free(sn_cache, n);
1597 	}
1598 	spin_unlock(&p->lock);
1599 }
1600 
1601 /* assumes fs == KERNEL_DS */
1602 void __init numa_policy_init(void)
1603 {
1604 	policy_cache = kmem_cache_create("numa_policy",
1605 					 sizeof(struct mempolicy),
1606 					 0, SLAB_PANIC, NULL, NULL);
1607 
1608 	sn_cache = kmem_cache_create("shared_policy_node",
1609 				     sizeof(struct sp_node),
1610 				     0, SLAB_PANIC, NULL, NULL);
1611 
1612 	/* Set interleaving policy for system init. This way not all
1613 	   the data structures allocated at system boot end up in node zero. */
1614 
1615 	if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1616 		printk("numa_policy_init: interleaving failed\n");
1617 }
1618 
1619 /* Reset policy of current process to default */
1620 void numa_default_policy(void)
1621 {
1622 	do_set_mempolicy(MPOL_DEFAULT, NULL);
1623 }
1624 
1625 /* Migrate a policy to a different set of nodes */
1626 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1627 {
1628 	nodemask_t *mpolmask;
1629 	nodemask_t tmp;
1630 
1631 	if (!pol)
1632 		return;
1633 	mpolmask = &pol->cpuset_mems_allowed;
1634 	if (nodes_equal(*mpolmask, *newmask))
1635 		return;
1636 
1637 	switch (pol->policy) {
1638 	case MPOL_DEFAULT:
1639 		break;
1640 	case MPOL_INTERLEAVE:
1641 		nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1642 		pol->v.nodes = tmp;
1643 		*mpolmask = *newmask;
1644 		current->il_next = node_remap(current->il_next,
1645 						*mpolmask, *newmask);
1646 		break;
1647 	case MPOL_PREFERRED:
1648 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
1649 						*mpolmask, *newmask);
1650 		*mpolmask = *newmask;
1651 		break;
1652 	case MPOL_BIND: {
1653 		nodemask_t nodes;
1654 		struct zone **z;
1655 		struct zonelist *zonelist;
1656 
1657 		nodes_clear(nodes);
1658 		for (z = pol->v.zonelist->zones; *z; z++)
1659 			node_set(zone_to_nid(*z), nodes);
1660 		nodes_remap(tmp, nodes, *mpolmask, *newmask);
1661 		nodes = tmp;
1662 
1663 		zonelist = bind_zonelist(&nodes);
1664 
1665 		/* If no mem, then zonelist is NULL and we keep old zonelist.
1666 		 * If that old zonelist has no remaining mems_allowed nodes,
1667 		 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1668 		 */
1669 
1670 		if (zonelist) {
1671 			/* Good - got mem - substitute new zonelist */
1672 			kfree(pol->v.zonelist);
1673 			pol->v.zonelist = zonelist;
1674 		}
1675 		*mpolmask = *newmask;
1676 		break;
1677 	}
1678 	default:
1679 		BUG();
1680 		break;
1681 	}
1682 }
1683 
1684 /*
1685  * Wrapper for mpol_rebind_policy() that just requires task
1686  * pointer, and updates task mempolicy.
1687  */
1688 
1689 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1690 {
1691 	mpol_rebind_policy(tsk->mempolicy, new);
1692 }
1693 
1694 /*
1695  * Rebind each vma in mm to new nodemask.
1696  *
1697  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
1698  */
1699 
1700 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1701 {
1702 	struct vm_area_struct *vma;
1703 
1704 	down_write(&mm->mmap_sem);
1705 	for (vma = mm->mmap; vma; vma = vma->vm_next)
1706 		mpol_rebind_policy(vma->vm_policy, new);
1707 	up_write(&mm->mmap_sem);
1708 }
1709 
1710 /*
1711  * Display pages allocated per node and memory policy via /proc.
1712  */
1713 
1714 static const char * const policy_types[] =
1715 	{ "default", "prefer", "bind", "interleave" };
1716 
1717 /*
1718  * Convert a mempolicy into a string.
1719  * Returns the number of characters in buffer (if positive)
1720  * or an error (negative)
1721  */
1722 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1723 {
1724 	char *p = buffer;
1725 	int l;
1726 	nodemask_t nodes;
1727 	int mode = pol ? pol->policy : MPOL_DEFAULT;
1728 
1729 	switch (mode) {
1730 	case MPOL_DEFAULT:
1731 		nodes_clear(nodes);
1732 		break;
1733 
1734 	case MPOL_PREFERRED:
1735 		nodes_clear(nodes);
1736 		node_set(pol->v.preferred_node, nodes);
1737 		break;
1738 
1739 	case MPOL_BIND:
1740 		get_zonemask(pol, &nodes);
1741 		break;
1742 
1743 	case MPOL_INTERLEAVE:
1744 		nodes = pol->v.nodes;
1745 		break;
1746 
1747 	default:
1748 		BUG();
1749 		return -EFAULT;
1750 	}
1751 
1752 	l = strlen(policy_types[mode]);
1753  	if (buffer + maxlen < p + l + 1)
1754  		return -ENOSPC;
1755 
1756 	strcpy(p, policy_types[mode]);
1757 	p += l;
1758 
1759 	if (!nodes_empty(nodes)) {
1760 		if (buffer + maxlen < p + 2)
1761 			return -ENOSPC;
1762 		*p++ = '=';
1763 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1764 	}
1765 	return p - buffer;
1766 }
1767 
1768 struct numa_maps {
1769 	unsigned long pages;
1770 	unsigned long anon;
1771 	unsigned long active;
1772 	unsigned long writeback;
1773 	unsigned long mapcount_max;
1774 	unsigned long dirty;
1775 	unsigned long swapcache;
1776 	unsigned long node[MAX_NUMNODES];
1777 };
1778 
1779 static void gather_stats(struct page *page, void *private, int pte_dirty)
1780 {
1781 	struct numa_maps *md = private;
1782 	int count = page_mapcount(page);
1783 
1784 	md->pages++;
1785 	if (pte_dirty || PageDirty(page))
1786 		md->dirty++;
1787 
1788 	if (PageSwapCache(page))
1789 		md->swapcache++;
1790 
1791 	if (PageActive(page))
1792 		md->active++;
1793 
1794 	if (PageWriteback(page))
1795 		md->writeback++;
1796 
1797 	if (PageAnon(page))
1798 		md->anon++;
1799 
1800 	if (count > md->mapcount_max)
1801 		md->mapcount_max = count;
1802 
1803 	md->node[page_to_nid(page)]++;
1804 }
1805 
1806 #ifdef CONFIG_HUGETLB_PAGE
1807 static void check_huge_range(struct vm_area_struct *vma,
1808 		unsigned long start, unsigned long end,
1809 		struct numa_maps *md)
1810 {
1811 	unsigned long addr;
1812 	struct page *page;
1813 
1814 	for (addr = start; addr < end; addr += HPAGE_SIZE) {
1815 		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1816 		pte_t pte;
1817 
1818 		if (!ptep)
1819 			continue;
1820 
1821 		pte = *ptep;
1822 		if (pte_none(pte))
1823 			continue;
1824 
1825 		page = pte_page(pte);
1826 		if (!page)
1827 			continue;
1828 
1829 		gather_stats(page, md, pte_dirty(*ptep));
1830 	}
1831 }
1832 #else
1833 static inline void check_huge_range(struct vm_area_struct *vma,
1834 		unsigned long start, unsigned long end,
1835 		struct numa_maps *md)
1836 {
1837 }
1838 #endif
1839 
1840 int show_numa_map(struct seq_file *m, void *v)
1841 {
1842 	struct proc_maps_private *priv = m->private;
1843 	struct vm_area_struct *vma = v;
1844 	struct numa_maps *md;
1845 	struct file *file = vma->vm_file;
1846 	struct mm_struct *mm = vma->vm_mm;
1847 	int n;
1848 	char buffer[50];
1849 
1850 	if (!mm)
1851 		return 0;
1852 
1853 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1854 	if (!md)
1855 		return 0;
1856 
1857 	mpol_to_str(buffer, sizeof(buffer),
1858 			    get_vma_policy(priv->task, vma, vma->vm_start));
1859 
1860 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1861 
1862 	if (file) {
1863 		seq_printf(m, " file=");
1864 		seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= ");
1865 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1866 		seq_printf(m, " heap");
1867 	} else if (vma->vm_start <= mm->start_stack &&
1868 			vma->vm_end >= mm->start_stack) {
1869 		seq_printf(m, " stack");
1870 	}
1871 
1872 	if (is_vm_hugetlb_page(vma)) {
1873 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1874 		seq_printf(m, " huge");
1875 	} else {
1876 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
1877 				&node_online_map, MPOL_MF_STATS, md);
1878 	}
1879 
1880 	if (!md->pages)
1881 		goto out;
1882 
1883 	if (md->anon)
1884 		seq_printf(m," anon=%lu",md->anon);
1885 
1886 	if (md->dirty)
1887 		seq_printf(m," dirty=%lu",md->dirty);
1888 
1889 	if (md->pages != md->anon && md->pages != md->dirty)
1890 		seq_printf(m, " mapped=%lu", md->pages);
1891 
1892 	if (md->mapcount_max > 1)
1893 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1894 
1895 	if (md->swapcache)
1896 		seq_printf(m," swapcache=%lu", md->swapcache);
1897 
1898 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1899 		seq_printf(m," active=%lu", md->active);
1900 
1901 	if (md->writeback)
1902 		seq_printf(m," writeback=%lu", md->writeback);
1903 
1904 	for_each_online_node(n)
1905 		if (md->node[n])
1906 			seq_printf(m, " N%d=%lu", n, md->node[n]);
1907 out:
1908 	seq_putc(m, '\n');
1909 	kfree(md);
1910 
1911 	if (m->count < m->size)
1912 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1913 	return 0;
1914 }
1915 
1916