xref: /linux/mm/mempolicy.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte, *mapped_pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(mapped_pte, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 		if (!isolate_huge_page(page, qp->pagelist) &&
627 			(flags & MPOL_MF_STRICT))
628 			/*
629 			 * Failed to isolate page but allow migrating pages
630 			 * which have been queued.
631 			 */
632 			ret = 1;
633 	}
634 unlock:
635 	spin_unlock(ptl);
636 #else
637 	BUG();
638 #endif
639 	return ret;
640 }
641 
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644  * This is used to mark a range of virtual addresses to be inaccessible.
645  * These are later cleared by a NUMA hinting fault. Depending on these
646  * faults, pages may be migrated for better NUMA placement.
647  *
648  * This is assuming that NUMA faults are handled using PROT_NONE. If
649  * an architecture makes a different choice, it will need further
650  * changes to the core.
651  */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 			unsigned long addr, unsigned long end)
654 {
655 	int nr_updated;
656 
657 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 	if (nr_updated)
659 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660 
661 	return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 			unsigned long addr, unsigned long end)
666 {
667 	return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670 
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 				struct mm_walk *walk)
673 {
674 	struct vm_area_struct *vma = walk->vma;
675 	struct queue_pages *qp = walk->private;
676 	unsigned long endvma = vma->vm_end;
677 	unsigned long flags = qp->flags;
678 
679 	/* range check first */
680 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
681 
682 	if (!qp->first) {
683 		qp->first = vma;
684 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 			(qp->start < vma->vm_start))
686 			/* hole at head side of range */
687 			return -EFAULT;
688 	}
689 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 		((vma->vm_end < qp->end) &&
691 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 		/* hole at middle or tail of range */
693 		return -EFAULT;
694 
695 	/*
696 	 * Need check MPOL_MF_STRICT to return -EIO if possible
697 	 * regardless of vma_migratable
698 	 */
699 	if (!vma_migratable(vma) &&
700 	    !(flags & MPOL_MF_STRICT))
701 		return 1;
702 
703 	if (endvma > end)
704 		endvma = end;
705 
706 	if (flags & MPOL_MF_LAZY) {
707 		/* Similar to task_numa_work, skip inaccessible VMAs */
708 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 			!(vma->vm_flags & VM_MIXEDMAP))
710 			change_prot_numa(vma, start, endvma);
711 		return 1;
712 	}
713 
714 	/* queue pages from current vma */
715 	if (flags & MPOL_MF_VALID)
716 		return 0;
717 	return 1;
718 }
719 
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 	.hugetlb_entry		= queue_pages_hugetlb,
722 	.pmd_entry		= queue_pages_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 };
725 
726 /*
727  * Walk through page tables and collect pages to be migrated.
728  *
729  * If pages found in a given range are on a set of nodes (determined by
730  * @nodes and @flags,) it's isolated and queued to the pagelist which is
731  * passed via @private.
732  *
733  * queue_pages_range() has three possible return values:
734  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735  *     specified.
736  * 0 - queue pages successfully or no misplaced page.
737  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738  *         memory range specified by nodemask and maxnode points outside
739  *         your accessible address space (-EFAULT)
740  */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 		nodemask_t *nodes, unsigned long flags,
744 		struct list_head *pagelist)
745 {
746 	int err;
747 	struct queue_pages qp = {
748 		.pagelist = pagelist,
749 		.flags = flags,
750 		.nmask = nodes,
751 		.start = start,
752 		.end = end,
753 		.first = NULL,
754 	};
755 
756 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757 
758 	if (!qp.first)
759 		/* whole range in hole */
760 		err = -EFAULT;
761 
762 	return err;
763 }
764 
765 /*
766  * Apply policy to a single VMA
767  * This must be called with the mmap_lock held for writing.
768  */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 						struct mempolicy *pol)
771 {
772 	int err;
773 	struct mempolicy *old;
774 	struct mempolicy *new;
775 
776 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 		 vma->vm_ops, vma->vm_file,
779 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780 
781 	new = mpol_dup(pol);
782 	if (IS_ERR(new))
783 		return PTR_ERR(new);
784 
785 	if (vma->vm_ops && vma->vm_ops->set_policy) {
786 		err = vma->vm_ops->set_policy(vma, new);
787 		if (err)
788 			goto err_out;
789 	}
790 
791 	old = vma->vm_policy;
792 	vma->vm_policy = new; /* protected by mmap_lock */
793 	mpol_put(old);
794 
795 	return 0;
796  err_out:
797 	mpol_put(new);
798 	return err;
799 }
800 
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 		       unsigned long end, struct mempolicy *new_pol)
804 {
805 	struct vm_area_struct *next;
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 		next = vma->vm_next;
822 		vmstart = max(start, vma->vm_start);
823 		vmend   = min(end, vma->vm_end);
824 
825 		if (mpol_equal(vma_policy(vma), new_pol))
826 			continue;
827 
828 		pgoff = vma->vm_pgoff +
829 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 				 vma->anon_vma, vma->vm_file, pgoff,
832 				 new_pol, vma->vm_userfaultfd_ctx);
833 		if (prev) {
834 			vma = prev;
835 			next = vma->vm_next;
836 			if (mpol_equal(vma_policy(vma), new_pol))
837 				continue;
838 			/* vma_merge() joined vma && vma->next, case 8 */
839 			goto replace;
840 		}
841 		if (vma->vm_start != vmstart) {
842 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 			if (err)
844 				goto out;
845 		}
846 		if (vma->vm_end != vmend) {
847 			err = split_vma(vma->vm_mm, vma, vmend, 0);
848 			if (err)
849 				goto out;
850 		}
851  replace:
852 		err = vma_replace_policy(vma, new_pol);
853 		if (err)
854 			goto out;
855 	}
856 
857  out:
858 	return err;
859 }
860 
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 			     nodemask_t *nodes)
864 {
865 	struct mempolicy *new, *old;
866 	NODEMASK_SCRATCH(scratch);
867 	int ret;
868 
869 	if (!scratch)
870 		return -ENOMEM;
871 
872 	new = mpol_new(mode, flags, nodes);
873 	if (IS_ERR(new)) {
874 		ret = PTR_ERR(new);
875 		goto out;
876 	}
877 
878 	if (flags & MPOL_F_NUMA_BALANCING) {
879 		if (new && new->mode == MPOL_BIND) {
880 			new->flags |= (MPOL_F_MOF | MPOL_F_MORON);
881 		} else {
882 			ret = -EINVAL;
883 			mpol_put(new);
884 			goto out;
885 		}
886 	}
887 
888 	ret = mpol_set_nodemask(new, nodes, scratch);
889 	if (ret) {
890 		mpol_put(new);
891 		goto out;
892 	}
893 	task_lock(current);
894 	old = current->mempolicy;
895 	current->mempolicy = new;
896 	if (new && new->mode == MPOL_INTERLEAVE)
897 		current->il_prev = MAX_NUMNODES-1;
898 	task_unlock(current);
899 	mpol_put(old);
900 	ret = 0;
901 out:
902 	NODEMASK_SCRATCH_FREE(scratch);
903 	return ret;
904 }
905 
906 /*
907  * Return nodemask for policy for get_mempolicy() query
908  *
909  * Called with task's alloc_lock held
910  */
911 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
912 {
913 	nodes_clear(*nodes);
914 	if (p == &default_policy)
915 		return;
916 
917 	switch (p->mode) {
918 	case MPOL_BIND:
919 	case MPOL_INTERLEAVE:
920 		*nodes = p->v.nodes;
921 		break;
922 	case MPOL_PREFERRED:
923 		if (!(p->flags & MPOL_F_LOCAL))
924 			node_set(p->v.preferred_node, *nodes);
925 		/* else return empty node mask for local allocation */
926 		break;
927 	default:
928 		BUG();
929 	}
930 }
931 
932 static int lookup_node(struct mm_struct *mm, unsigned long addr)
933 {
934 	struct page *p = NULL;
935 	int err;
936 
937 	int locked = 1;
938 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
939 	if (err > 0) {
940 		err = page_to_nid(p);
941 		put_page(p);
942 	}
943 	if (locked)
944 		mmap_read_unlock(mm);
945 	return err;
946 }
947 
948 /* Retrieve NUMA policy */
949 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
950 			     unsigned long addr, unsigned long flags)
951 {
952 	int err;
953 	struct mm_struct *mm = current->mm;
954 	struct vm_area_struct *vma = NULL;
955 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
956 
957 	if (flags &
958 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
959 		return -EINVAL;
960 
961 	if (flags & MPOL_F_MEMS_ALLOWED) {
962 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
963 			return -EINVAL;
964 		*policy = 0;	/* just so it's initialized */
965 		task_lock(current);
966 		*nmask  = cpuset_current_mems_allowed;
967 		task_unlock(current);
968 		return 0;
969 	}
970 
971 	if (flags & MPOL_F_ADDR) {
972 		/*
973 		 * Do NOT fall back to task policy if the
974 		 * vma/shared policy at addr is NULL.  We
975 		 * want to return MPOL_DEFAULT in this case.
976 		 */
977 		mmap_read_lock(mm);
978 		vma = find_vma_intersection(mm, addr, addr+1);
979 		if (!vma) {
980 			mmap_read_unlock(mm);
981 			return -EFAULT;
982 		}
983 		if (vma->vm_ops && vma->vm_ops->get_policy)
984 			pol = vma->vm_ops->get_policy(vma, addr);
985 		else
986 			pol = vma->vm_policy;
987 	} else if (addr)
988 		return -EINVAL;
989 
990 	if (!pol)
991 		pol = &default_policy;	/* indicates default behavior */
992 
993 	if (flags & MPOL_F_NODE) {
994 		if (flags & MPOL_F_ADDR) {
995 			/*
996 			 * Take a refcount on the mpol, lookup_node()
997 			 * wil drop the mmap_lock, so after calling
998 			 * lookup_node() only "pol" remains valid, "vma"
999 			 * is stale.
1000 			 */
1001 			pol_refcount = pol;
1002 			vma = NULL;
1003 			mpol_get(pol);
1004 			err = lookup_node(mm, addr);
1005 			if (err < 0)
1006 				goto out;
1007 			*policy = err;
1008 		} else if (pol == current->mempolicy &&
1009 				pol->mode == MPOL_INTERLEAVE) {
1010 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1011 		} else {
1012 			err = -EINVAL;
1013 			goto out;
1014 		}
1015 	} else {
1016 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1017 						pol->mode;
1018 		/*
1019 		 * Internal mempolicy flags must be masked off before exposing
1020 		 * the policy to userspace.
1021 		 */
1022 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1023 	}
1024 
1025 	err = 0;
1026 	if (nmask) {
1027 		if (mpol_store_user_nodemask(pol)) {
1028 			*nmask = pol->w.user_nodemask;
1029 		} else {
1030 			task_lock(current);
1031 			get_policy_nodemask(pol, nmask);
1032 			task_unlock(current);
1033 		}
1034 	}
1035 
1036  out:
1037 	mpol_cond_put(pol);
1038 	if (vma)
1039 		mmap_read_unlock(mm);
1040 	if (pol_refcount)
1041 		mpol_put(pol_refcount);
1042 	return err;
1043 }
1044 
1045 #ifdef CONFIG_MIGRATION
1046 /*
1047  * page migration, thp tail pages can be passed.
1048  */
1049 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1050 				unsigned long flags)
1051 {
1052 	struct page *head = compound_head(page);
1053 	/*
1054 	 * Avoid migrating a page that is shared with others.
1055 	 */
1056 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1057 		if (!isolate_lru_page(head)) {
1058 			list_add_tail(&head->lru, pagelist);
1059 			mod_node_page_state(page_pgdat(head),
1060 				NR_ISOLATED_ANON + page_is_file_lru(head),
1061 				thp_nr_pages(head));
1062 		} else if (flags & MPOL_MF_STRICT) {
1063 			/*
1064 			 * Non-movable page may reach here.  And, there may be
1065 			 * temporary off LRU pages or non-LRU movable pages.
1066 			 * Treat them as unmovable pages since they can't be
1067 			 * isolated, so they can't be moved at the moment.  It
1068 			 * should return -EIO for this case too.
1069 			 */
1070 			return -EIO;
1071 		}
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * Migrate pages from one node to a target node.
1079  * Returns error or the number of pages not migrated.
1080  */
1081 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1082 			   int flags)
1083 {
1084 	nodemask_t nmask;
1085 	LIST_HEAD(pagelist);
1086 	int err = 0;
1087 	struct migration_target_control mtc = {
1088 		.nid = dest,
1089 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1090 	};
1091 
1092 	nodes_clear(nmask);
1093 	node_set(source, nmask);
1094 
1095 	/*
1096 	 * This does not "check" the range but isolates all pages that
1097 	 * need migration.  Between passing in the full user address
1098 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1099 	 */
1100 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1101 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1102 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1103 
1104 	if (!list_empty(&pagelist)) {
1105 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1106 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1107 		if (err)
1108 			putback_movable_pages(&pagelist);
1109 	}
1110 
1111 	return err;
1112 }
1113 
1114 /*
1115  * Move pages between the two nodesets so as to preserve the physical
1116  * layout as much as possible.
1117  *
1118  * Returns the number of page that could not be moved.
1119  */
1120 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1121 		     const nodemask_t *to, int flags)
1122 {
1123 	int busy = 0;
1124 	int err = 0;
1125 	nodemask_t tmp;
1126 
1127 	migrate_prep();
1128 
1129 	mmap_read_lock(mm);
1130 
1131 	/*
1132 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1133 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1134 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1135 	 * The pair of nodemasks 'to' and 'from' define the map.
1136 	 *
1137 	 * If no pair of bits is found that way, fallback to picking some
1138 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1139 	 * 'source' and 'dest' bits are the same, this represents a node
1140 	 * that will be migrating to itself, so no pages need move.
1141 	 *
1142 	 * If no bits are left in 'tmp', or if all remaining bits left
1143 	 * in 'tmp' correspond to the same bit in 'to', return false
1144 	 * (nothing left to migrate).
1145 	 *
1146 	 * This lets us pick a pair of nodes to migrate between, such that
1147 	 * if possible the dest node is not already occupied by some other
1148 	 * source node, minimizing the risk of overloading the memory on a
1149 	 * node that would happen if we migrated incoming memory to a node
1150 	 * before migrating outgoing memory source that same node.
1151 	 *
1152 	 * A single scan of tmp is sufficient.  As we go, we remember the
1153 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1154 	 * that not only moved, but what's better, moved to an empty slot
1155 	 * (d is not set in tmp), then we break out then, with that pair.
1156 	 * Otherwise when we finish scanning from_tmp, we at least have the
1157 	 * most recent <s, d> pair that moved.  If we get all the way through
1158 	 * the scan of tmp without finding any node that moved, much less
1159 	 * moved to an empty node, then there is nothing left worth migrating.
1160 	 */
1161 
1162 	tmp = *from;
1163 	while (!nodes_empty(tmp)) {
1164 		int s,d;
1165 		int source = NUMA_NO_NODE;
1166 		int dest = 0;
1167 
1168 		for_each_node_mask(s, tmp) {
1169 
1170 			/*
1171 			 * do_migrate_pages() tries to maintain the relative
1172 			 * node relationship of the pages established between
1173 			 * threads and memory areas.
1174                          *
1175 			 * However if the number of source nodes is not equal to
1176 			 * the number of destination nodes we can not preserve
1177 			 * this node relative relationship.  In that case, skip
1178 			 * copying memory from a node that is in the destination
1179 			 * mask.
1180 			 *
1181 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1182 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1183 			 */
1184 
1185 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1186 						(node_isset(s, *to)))
1187 				continue;
1188 
1189 			d = node_remap(s, *from, *to);
1190 			if (s == d)
1191 				continue;
1192 
1193 			source = s;	/* Node moved. Memorize */
1194 			dest = d;
1195 
1196 			/* dest not in remaining from nodes? */
1197 			if (!node_isset(dest, tmp))
1198 				break;
1199 		}
1200 		if (source == NUMA_NO_NODE)
1201 			break;
1202 
1203 		node_clear(source, tmp);
1204 		err = migrate_to_node(mm, source, dest, flags);
1205 		if (err > 0)
1206 			busy += err;
1207 		if (err < 0)
1208 			break;
1209 	}
1210 	mmap_read_unlock(mm);
1211 	if (err < 0)
1212 		return err;
1213 	return busy;
1214 
1215 }
1216 
1217 /*
1218  * Allocate a new page for page migration based on vma policy.
1219  * Start by assuming the page is mapped by the same vma as contains @start.
1220  * Search forward from there, if not.  N.B., this assumes that the
1221  * list of pages handed to migrate_pages()--which is how we get here--
1222  * is in virtual address order.
1223  */
1224 static struct page *new_page(struct page *page, unsigned long start)
1225 {
1226 	struct vm_area_struct *vma;
1227 	unsigned long address;
1228 
1229 	vma = find_vma(current->mm, start);
1230 	while (vma) {
1231 		address = page_address_in_vma(page, vma);
1232 		if (address != -EFAULT)
1233 			break;
1234 		vma = vma->vm_next;
1235 	}
1236 
1237 	if (PageHuge(page)) {
1238 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1239 				vma, address);
1240 	} else if (PageTransHuge(page)) {
1241 		struct page *thp;
1242 
1243 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1244 					 HPAGE_PMD_ORDER);
1245 		if (!thp)
1246 			return NULL;
1247 		prep_transhuge_page(thp);
1248 		return thp;
1249 	}
1250 	/*
1251 	 * if !vma, alloc_page_vma() will use task or system default policy
1252 	 */
1253 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1254 			vma, address);
1255 }
1256 #else
1257 
1258 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1259 				unsigned long flags)
1260 {
1261 	return -EIO;
1262 }
1263 
1264 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1265 		     const nodemask_t *to, int flags)
1266 {
1267 	return -ENOSYS;
1268 }
1269 
1270 static struct page *new_page(struct page *page, unsigned long start)
1271 {
1272 	return NULL;
1273 }
1274 #endif
1275 
1276 static long do_mbind(unsigned long start, unsigned long len,
1277 		     unsigned short mode, unsigned short mode_flags,
1278 		     nodemask_t *nmask, unsigned long flags)
1279 {
1280 	struct mm_struct *mm = current->mm;
1281 	struct mempolicy *new;
1282 	unsigned long end;
1283 	int err;
1284 	int ret;
1285 	LIST_HEAD(pagelist);
1286 
1287 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1288 		return -EINVAL;
1289 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1290 		return -EPERM;
1291 
1292 	if (start & ~PAGE_MASK)
1293 		return -EINVAL;
1294 
1295 	if (mode == MPOL_DEFAULT)
1296 		flags &= ~MPOL_MF_STRICT;
1297 
1298 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1299 	end = start + len;
1300 
1301 	if (end < start)
1302 		return -EINVAL;
1303 	if (end == start)
1304 		return 0;
1305 
1306 	new = mpol_new(mode, mode_flags, nmask);
1307 	if (IS_ERR(new))
1308 		return PTR_ERR(new);
1309 
1310 	if (flags & MPOL_MF_LAZY)
1311 		new->flags |= MPOL_F_MOF;
1312 
1313 	/*
1314 	 * If we are using the default policy then operation
1315 	 * on discontinuous address spaces is okay after all
1316 	 */
1317 	if (!new)
1318 		flags |= MPOL_MF_DISCONTIG_OK;
1319 
1320 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1321 		 start, start + len, mode, mode_flags,
1322 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1323 
1324 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1325 
1326 		migrate_prep();
1327 	}
1328 	{
1329 		NODEMASK_SCRATCH(scratch);
1330 		if (scratch) {
1331 			mmap_write_lock(mm);
1332 			err = mpol_set_nodemask(new, nmask, scratch);
1333 			if (err)
1334 				mmap_write_unlock(mm);
1335 		} else
1336 			err = -ENOMEM;
1337 		NODEMASK_SCRATCH_FREE(scratch);
1338 	}
1339 	if (err)
1340 		goto mpol_out;
1341 
1342 	ret = queue_pages_range(mm, start, end, nmask,
1343 			  flags | MPOL_MF_INVERT, &pagelist);
1344 
1345 	if (ret < 0) {
1346 		err = ret;
1347 		goto up_out;
1348 	}
1349 
1350 	err = mbind_range(mm, start, end, new);
1351 
1352 	if (!err) {
1353 		int nr_failed = 0;
1354 
1355 		if (!list_empty(&pagelist)) {
1356 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1357 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1358 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1359 			if (nr_failed)
1360 				putback_movable_pages(&pagelist);
1361 		}
1362 
1363 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1364 			err = -EIO;
1365 	} else {
1366 up_out:
1367 		if (!list_empty(&pagelist))
1368 			putback_movable_pages(&pagelist);
1369 	}
1370 
1371 	mmap_write_unlock(mm);
1372 mpol_out:
1373 	mpol_put(new);
1374 	return err;
1375 }
1376 
1377 /*
1378  * User space interface with variable sized bitmaps for nodelists.
1379  */
1380 
1381 /* Copy a node mask from user space. */
1382 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1383 		     unsigned long maxnode)
1384 {
1385 	unsigned long k;
1386 	unsigned long t;
1387 	unsigned long nlongs;
1388 	unsigned long endmask;
1389 
1390 	--maxnode;
1391 	nodes_clear(*nodes);
1392 	if (maxnode == 0 || !nmask)
1393 		return 0;
1394 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395 		return -EINVAL;
1396 
1397 	nlongs = BITS_TO_LONGS(maxnode);
1398 	if ((maxnode % BITS_PER_LONG) == 0)
1399 		endmask = ~0UL;
1400 	else
1401 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1402 
1403 	/*
1404 	 * When the user specified more nodes than supported just check
1405 	 * if the non supported part is all zero.
1406 	 *
1407 	 * If maxnode have more longs than MAX_NUMNODES, check
1408 	 * the bits in that area first. And then go through to
1409 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1410 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1411 	 */
1412 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1413 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1414 			if (get_user(t, nmask + k))
1415 				return -EFAULT;
1416 			if (k == nlongs - 1) {
1417 				if (t & endmask)
1418 					return -EINVAL;
1419 			} else if (t)
1420 				return -EINVAL;
1421 		}
1422 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1423 		endmask = ~0UL;
1424 	}
1425 
1426 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1427 		unsigned long valid_mask = endmask;
1428 
1429 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1430 		if (get_user(t, nmask + nlongs - 1))
1431 			return -EFAULT;
1432 		if (t & valid_mask)
1433 			return -EINVAL;
1434 	}
1435 
1436 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1437 		return -EFAULT;
1438 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1439 	return 0;
1440 }
1441 
1442 /* Copy a kernel node mask to user space */
1443 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1444 			      nodemask_t *nodes)
1445 {
1446 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1447 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1448 
1449 	if (copy > nbytes) {
1450 		if (copy > PAGE_SIZE)
1451 			return -EINVAL;
1452 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1453 			return -EFAULT;
1454 		copy = nbytes;
1455 	}
1456 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1457 }
1458 
1459 static long kernel_mbind(unsigned long start, unsigned long len,
1460 			 unsigned long mode, const unsigned long __user *nmask,
1461 			 unsigned long maxnode, unsigned int flags)
1462 {
1463 	nodemask_t nodes;
1464 	int err;
1465 	unsigned short mode_flags;
1466 
1467 	start = untagged_addr(start);
1468 	mode_flags = mode & MPOL_MODE_FLAGS;
1469 	mode &= ~MPOL_MODE_FLAGS;
1470 	if (mode >= MPOL_MAX)
1471 		return -EINVAL;
1472 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1473 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1474 		return -EINVAL;
1475 	err = get_nodes(&nodes, nmask, maxnode);
1476 	if (err)
1477 		return err;
1478 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1479 }
1480 
1481 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1482 		unsigned long, mode, const unsigned long __user *, nmask,
1483 		unsigned long, maxnode, unsigned int, flags)
1484 {
1485 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1486 }
1487 
1488 /* Set the process memory policy */
1489 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1490 				 unsigned long maxnode)
1491 {
1492 	int err;
1493 	nodemask_t nodes;
1494 	unsigned short flags;
1495 
1496 	flags = mode & MPOL_MODE_FLAGS;
1497 	mode &= ~MPOL_MODE_FLAGS;
1498 	if ((unsigned int)mode >= MPOL_MAX)
1499 		return -EINVAL;
1500 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1501 		return -EINVAL;
1502 	err = get_nodes(&nodes, nmask, maxnode);
1503 	if (err)
1504 		return err;
1505 	return do_set_mempolicy(mode, flags, &nodes);
1506 }
1507 
1508 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1509 		unsigned long, maxnode)
1510 {
1511 	return kernel_set_mempolicy(mode, nmask, maxnode);
1512 }
1513 
1514 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1515 				const unsigned long __user *old_nodes,
1516 				const unsigned long __user *new_nodes)
1517 {
1518 	struct mm_struct *mm = NULL;
1519 	struct task_struct *task;
1520 	nodemask_t task_nodes;
1521 	int err;
1522 	nodemask_t *old;
1523 	nodemask_t *new;
1524 	NODEMASK_SCRATCH(scratch);
1525 
1526 	if (!scratch)
1527 		return -ENOMEM;
1528 
1529 	old = &scratch->mask1;
1530 	new = &scratch->mask2;
1531 
1532 	err = get_nodes(old, old_nodes, maxnode);
1533 	if (err)
1534 		goto out;
1535 
1536 	err = get_nodes(new, new_nodes, maxnode);
1537 	if (err)
1538 		goto out;
1539 
1540 	/* Find the mm_struct */
1541 	rcu_read_lock();
1542 	task = pid ? find_task_by_vpid(pid) : current;
1543 	if (!task) {
1544 		rcu_read_unlock();
1545 		err = -ESRCH;
1546 		goto out;
1547 	}
1548 	get_task_struct(task);
1549 
1550 	err = -EINVAL;
1551 
1552 	/*
1553 	 * Check if this process has the right to modify the specified process.
1554 	 * Use the regular "ptrace_may_access()" checks.
1555 	 */
1556 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1557 		rcu_read_unlock();
1558 		err = -EPERM;
1559 		goto out_put;
1560 	}
1561 	rcu_read_unlock();
1562 
1563 	task_nodes = cpuset_mems_allowed(task);
1564 	/* Is the user allowed to access the target nodes? */
1565 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1566 		err = -EPERM;
1567 		goto out_put;
1568 	}
1569 
1570 	task_nodes = cpuset_mems_allowed(current);
1571 	nodes_and(*new, *new, task_nodes);
1572 	if (nodes_empty(*new))
1573 		goto out_put;
1574 
1575 	err = security_task_movememory(task);
1576 	if (err)
1577 		goto out_put;
1578 
1579 	mm = get_task_mm(task);
1580 	put_task_struct(task);
1581 
1582 	if (!mm) {
1583 		err = -EINVAL;
1584 		goto out;
1585 	}
1586 
1587 	err = do_migrate_pages(mm, old, new,
1588 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1589 
1590 	mmput(mm);
1591 out:
1592 	NODEMASK_SCRATCH_FREE(scratch);
1593 
1594 	return err;
1595 
1596 out_put:
1597 	put_task_struct(task);
1598 	goto out;
1599 
1600 }
1601 
1602 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1603 		const unsigned long __user *, old_nodes,
1604 		const unsigned long __user *, new_nodes)
1605 {
1606 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1607 }
1608 
1609 
1610 /* Retrieve NUMA policy */
1611 static int kernel_get_mempolicy(int __user *policy,
1612 				unsigned long __user *nmask,
1613 				unsigned long maxnode,
1614 				unsigned long addr,
1615 				unsigned long flags)
1616 {
1617 	int err;
1618 	int pval;
1619 	nodemask_t nodes;
1620 
1621 	if (nmask != NULL && maxnode < nr_node_ids)
1622 		return -EINVAL;
1623 
1624 	addr = untagged_addr(addr);
1625 
1626 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1627 
1628 	if (err)
1629 		return err;
1630 
1631 	if (policy && put_user(pval, policy))
1632 		return -EFAULT;
1633 
1634 	if (nmask)
1635 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1636 
1637 	return err;
1638 }
1639 
1640 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1641 		unsigned long __user *, nmask, unsigned long, maxnode,
1642 		unsigned long, addr, unsigned long, flags)
1643 {
1644 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1645 }
1646 
1647 #ifdef CONFIG_COMPAT
1648 
1649 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1650 		       compat_ulong_t __user *, nmask,
1651 		       compat_ulong_t, maxnode,
1652 		       compat_ulong_t, addr, compat_ulong_t, flags)
1653 {
1654 	long err;
1655 	unsigned long __user *nm = NULL;
1656 	unsigned long nr_bits, alloc_size;
1657 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1658 
1659 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1660 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1661 
1662 	if (nmask)
1663 		nm = compat_alloc_user_space(alloc_size);
1664 
1665 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1666 
1667 	if (!err && nmask) {
1668 		unsigned long copy_size;
1669 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1670 		err = copy_from_user(bm, nm, copy_size);
1671 		/* ensure entire bitmap is zeroed */
1672 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1673 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1674 	}
1675 
1676 	return err;
1677 }
1678 
1679 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1680 		       compat_ulong_t, maxnode)
1681 {
1682 	unsigned long __user *nm = NULL;
1683 	unsigned long nr_bits, alloc_size;
1684 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1685 
1686 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1687 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1688 
1689 	if (nmask) {
1690 		if (compat_get_bitmap(bm, nmask, nr_bits))
1691 			return -EFAULT;
1692 		nm = compat_alloc_user_space(alloc_size);
1693 		if (copy_to_user(nm, bm, alloc_size))
1694 			return -EFAULT;
1695 	}
1696 
1697 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1698 }
1699 
1700 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1701 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1702 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1703 {
1704 	unsigned long __user *nm = NULL;
1705 	unsigned long nr_bits, alloc_size;
1706 	nodemask_t bm;
1707 
1708 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1709 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1710 
1711 	if (nmask) {
1712 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1713 			return -EFAULT;
1714 		nm = compat_alloc_user_space(alloc_size);
1715 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1716 			return -EFAULT;
1717 	}
1718 
1719 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1720 }
1721 
1722 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1723 		       compat_ulong_t, maxnode,
1724 		       const compat_ulong_t __user *, old_nodes,
1725 		       const compat_ulong_t __user *, new_nodes)
1726 {
1727 	unsigned long __user *old = NULL;
1728 	unsigned long __user *new = NULL;
1729 	nodemask_t tmp_mask;
1730 	unsigned long nr_bits;
1731 	unsigned long size;
1732 
1733 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1734 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1735 	if (old_nodes) {
1736 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1737 			return -EFAULT;
1738 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1739 		if (new_nodes)
1740 			new = old + size / sizeof(unsigned long);
1741 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1742 			return -EFAULT;
1743 	}
1744 	if (new_nodes) {
1745 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1746 			return -EFAULT;
1747 		if (new == NULL)
1748 			new = compat_alloc_user_space(size);
1749 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1750 			return -EFAULT;
1751 	}
1752 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1753 }
1754 
1755 #endif /* CONFIG_COMPAT */
1756 
1757 bool vma_migratable(struct vm_area_struct *vma)
1758 {
1759 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1760 		return false;
1761 
1762 	/*
1763 	 * DAX device mappings require predictable access latency, so avoid
1764 	 * incurring periodic faults.
1765 	 */
1766 	if (vma_is_dax(vma))
1767 		return false;
1768 
1769 	if (is_vm_hugetlb_page(vma) &&
1770 		!hugepage_migration_supported(hstate_vma(vma)))
1771 		return false;
1772 
1773 	/*
1774 	 * Migration allocates pages in the highest zone. If we cannot
1775 	 * do so then migration (at least from node to node) is not
1776 	 * possible.
1777 	 */
1778 	if (vma->vm_file &&
1779 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1780 			< policy_zone)
1781 		return false;
1782 	return true;
1783 }
1784 
1785 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1786 						unsigned long addr)
1787 {
1788 	struct mempolicy *pol = NULL;
1789 
1790 	if (vma) {
1791 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1792 			pol = vma->vm_ops->get_policy(vma, addr);
1793 		} else if (vma->vm_policy) {
1794 			pol = vma->vm_policy;
1795 
1796 			/*
1797 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1798 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1799 			 * count on these policies which will be dropped by
1800 			 * mpol_cond_put() later
1801 			 */
1802 			if (mpol_needs_cond_ref(pol))
1803 				mpol_get(pol);
1804 		}
1805 	}
1806 
1807 	return pol;
1808 }
1809 
1810 /*
1811  * get_vma_policy(@vma, @addr)
1812  * @vma: virtual memory area whose policy is sought
1813  * @addr: address in @vma for shared policy lookup
1814  *
1815  * Returns effective policy for a VMA at specified address.
1816  * Falls back to current->mempolicy or system default policy, as necessary.
1817  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818  * count--added by the get_policy() vm_op, as appropriate--to protect against
1819  * freeing by another task.  It is the caller's responsibility to free the
1820  * extra reference for shared policies.
1821  */
1822 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823 						unsigned long addr)
1824 {
1825 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1826 
1827 	if (!pol)
1828 		pol = get_task_policy(current);
1829 
1830 	return pol;
1831 }
1832 
1833 bool vma_policy_mof(struct vm_area_struct *vma)
1834 {
1835 	struct mempolicy *pol;
1836 
1837 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1838 		bool ret = false;
1839 
1840 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1841 		if (pol && (pol->flags & MPOL_F_MOF))
1842 			ret = true;
1843 		mpol_cond_put(pol);
1844 
1845 		return ret;
1846 	}
1847 
1848 	pol = vma->vm_policy;
1849 	if (!pol)
1850 		pol = get_task_policy(current);
1851 
1852 	return pol->flags & MPOL_F_MOF;
1853 }
1854 
1855 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1856 {
1857 	enum zone_type dynamic_policy_zone = policy_zone;
1858 
1859 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1860 
1861 	/*
1862 	 * if policy->v.nodes has movable memory only,
1863 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1864 	 *
1865 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1866 	 * so if the following test faile, it implies
1867 	 * policy->v.nodes has movable memory only.
1868 	 */
1869 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1870 		dynamic_policy_zone = ZONE_MOVABLE;
1871 
1872 	return zone >= dynamic_policy_zone;
1873 }
1874 
1875 /*
1876  * Return a nodemask representing a mempolicy for filtering nodes for
1877  * page allocation
1878  */
1879 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1880 {
1881 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1882 	if (unlikely(policy->mode == MPOL_BIND) &&
1883 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1884 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1885 		return &policy->v.nodes;
1886 
1887 	return NULL;
1888 }
1889 
1890 /* Return the node id preferred by the given mempolicy, or the given id */
1891 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1892 {
1893 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1894 		nd = policy->v.preferred_node;
1895 	else {
1896 		/*
1897 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1898 		 * because we might easily break the expectation to stay on the
1899 		 * requested node and not break the policy.
1900 		 */
1901 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1902 	}
1903 
1904 	return nd;
1905 }
1906 
1907 /* Do dynamic interleaving for a process */
1908 static unsigned interleave_nodes(struct mempolicy *policy)
1909 {
1910 	unsigned next;
1911 	struct task_struct *me = current;
1912 
1913 	next = next_node_in(me->il_prev, policy->v.nodes);
1914 	if (next < MAX_NUMNODES)
1915 		me->il_prev = next;
1916 	return next;
1917 }
1918 
1919 /*
1920  * Depending on the memory policy provide a node from which to allocate the
1921  * next slab entry.
1922  */
1923 unsigned int mempolicy_slab_node(void)
1924 {
1925 	struct mempolicy *policy;
1926 	int node = numa_mem_id();
1927 
1928 	if (in_interrupt())
1929 		return node;
1930 
1931 	policy = current->mempolicy;
1932 	if (!policy || policy->flags & MPOL_F_LOCAL)
1933 		return node;
1934 
1935 	switch (policy->mode) {
1936 	case MPOL_PREFERRED:
1937 		/*
1938 		 * handled MPOL_F_LOCAL above
1939 		 */
1940 		return policy->v.preferred_node;
1941 
1942 	case MPOL_INTERLEAVE:
1943 		return interleave_nodes(policy);
1944 
1945 	case MPOL_BIND: {
1946 		struct zoneref *z;
1947 
1948 		/*
1949 		 * Follow bind policy behavior and start allocation at the
1950 		 * first node.
1951 		 */
1952 		struct zonelist *zonelist;
1953 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1954 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1955 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1956 							&policy->v.nodes);
1957 		return z->zone ? zone_to_nid(z->zone) : node;
1958 	}
1959 
1960 	default:
1961 		BUG();
1962 	}
1963 }
1964 
1965 /*
1966  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1967  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1968  * number of present nodes.
1969  */
1970 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1971 {
1972 	unsigned nnodes = nodes_weight(pol->v.nodes);
1973 	unsigned target;
1974 	int i;
1975 	int nid;
1976 
1977 	if (!nnodes)
1978 		return numa_node_id();
1979 	target = (unsigned int)n % nnodes;
1980 	nid = first_node(pol->v.nodes);
1981 	for (i = 0; i < target; i++)
1982 		nid = next_node(nid, pol->v.nodes);
1983 	return nid;
1984 }
1985 
1986 /* Determine a node number for interleave */
1987 static inline unsigned interleave_nid(struct mempolicy *pol,
1988 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1989 {
1990 	if (vma) {
1991 		unsigned long off;
1992 
1993 		/*
1994 		 * for small pages, there is no difference between
1995 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1996 		 * for huge pages, since vm_pgoff is in units of small
1997 		 * pages, we need to shift off the always 0 bits to get
1998 		 * a useful offset.
1999 		 */
2000 		BUG_ON(shift < PAGE_SHIFT);
2001 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2002 		off += (addr - vma->vm_start) >> shift;
2003 		return offset_il_node(pol, off);
2004 	} else
2005 		return interleave_nodes(pol);
2006 }
2007 
2008 #ifdef CONFIG_HUGETLBFS
2009 /*
2010  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2011  * @vma: virtual memory area whose policy is sought
2012  * @addr: address in @vma for shared policy lookup and interleave policy
2013  * @gfp_flags: for requested zone
2014  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2015  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2016  *
2017  * Returns a nid suitable for a huge page allocation and a pointer
2018  * to the struct mempolicy for conditional unref after allocation.
2019  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2020  * @nodemask for filtering the zonelist.
2021  *
2022  * Must be protected by read_mems_allowed_begin()
2023  */
2024 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2025 				struct mempolicy **mpol, nodemask_t **nodemask)
2026 {
2027 	int nid;
2028 
2029 	*mpol = get_vma_policy(vma, addr);
2030 	*nodemask = NULL;	/* assume !MPOL_BIND */
2031 
2032 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2033 		nid = interleave_nid(*mpol, vma, addr,
2034 					huge_page_shift(hstate_vma(vma)));
2035 	} else {
2036 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2037 		if ((*mpol)->mode == MPOL_BIND)
2038 			*nodemask = &(*mpol)->v.nodes;
2039 	}
2040 	return nid;
2041 }
2042 
2043 /*
2044  * init_nodemask_of_mempolicy
2045  *
2046  * If the current task's mempolicy is "default" [NULL], return 'false'
2047  * to indicate default policy.  Otherwise, extract the policy nodemask
2048  * for 'bind' or 'interleave' policy into the argument nodemask, or
2049  * initialize the argument nodemask to contain the single node for
2050  * 'preferred' or 'local' policy and return 'true' to indicate presence
2051  * of non-default mempolicy.
2052  *
2053  * We don't bother with reference counting the mempolicy [mpol_get/put]
2054  * because the current task is examining it's own mempolicy and a task's
2055  * mempolicy is only ever changed by the task itself.
2056  *
2057  * N.B., it is the caller's responsibility to free a returned nodemask.
2058  */
2059 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2060 {
2061 	struct mempolicy *mempolicy;
2062 	int nid;
2063 
2064 	if (!(mask && current->mempolicy))
2065 		return false;
2066 
2067 	task_lock(current);
2068 	mempolicy = current->mempolicy;
2069 	switch (mempolicy->mode) {
2070 	case MPOL_PREFERRED:
2071 		if (mempolicy->flags & MPOL_F_LOCAL)
2072 			nid = numa_node_id();
2073 		else
2074 			nid = mempolicy->v.preferred_node;
2075 		init_nodemask_of_node(mask, nid);
2076 		break;
2077 
2078 	case MPOL_BIND:
2079 	case MPOL_INTERLEAVE:
2080 		*mask =  mempolicy->v.nodes;
2081 		break;
2082 
2083 	default:
2084 		BUG();
2085 	}
2086 	task_unlock(current);
2087 
2088 	return true;
2089 }
2090 #endif
2091 
2092 /*
2093  * mempolicy_nodemask_intersects
2094  *
2095  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2096  * policy.  Otherwise, check for intersection between mask and the policy
2097  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2098  * policy, always return true since it may allocate elsewhere on fallback.
2099  *
2100  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2101  */
2102 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2103 					const nodemask_t *mask)
2104 {
2105 	struct mempolicy *mempolicy;
2106 	bool ret = true;
2107 
2108 	if (!mask)
2109 		return ret;
2110 	task_lock(tsk);
2111 	mempolicy = tsk->mempolicy;
2112 	if (!mempolicy)
2113 		goto out;
2114 
2115 	switch (mempolicy->mode) {
2116 	case MPOL_PREFERRED:
2117 		/*
2118 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2119 		 * allocate from, they may fallback to other nodes when oom.
2120 		 * Thus, it's possible for tsk to have allocated memory from
2121 		 * nodes in mask.
2122 		 */
2123 		break;
2124 	case MPOL_BIND:
2125 	case MPOL_INTERLEAVE:
2126 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2127 		break;
2128 	default:
2129 		BUG();
2130 	}
2131 out:
2132 	task_unlock(tsk);
2133 	return ret;
2134 }
2135 
2136 /* Allocate a page in interleaved policy.
2137    Own path because it needs to do special accounting. */
2138 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2139 					unsigned nid)
2140 {
2141 	struct page *page;
2142 
2143 	page = __alloc_pages(gfp, order, nid, NULL);
2144 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2145 	if (!static_branch_likely(&vm_numa_stat_key))
2146 		return page;
2147 	if (page && page_to_nid(page) == nid) {
2148 		preempt_disable();
2149 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2150 		preempt_enable();
2151 	}
2152 	return page;
2153 }
2154 
2155 /**
2156  * alloc_pages_vma - Allocate a page for a VMA.
2157  * @gfp: GFP flags.
2158  * @order: Order of the GFP allocation.
2159  * @vma: Pointer to VMA or NULL if not available.
2160  * @addr: Virtual address of the allocation.  Must be inside @vma.
2161  * @node: Which node to prefer for allocation (modulo policy).
2162  * @hugepage: For hugepages try only the preferred node if possible.
2163  *
2164  * Allocate a page for a specific address in @vma, using the appropriate
2165  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2166  * of the mm_struct of the VMA to prevent it from going away.  Should be
2167  * used for all allocations for pages that will be mapped into user space.
2168  *
2169  * Return: The page on success or NULL if allocation fails.
2170  */
2171 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2172 		unsigned long addr, int node, bool hugepage)
2173 {
2174 	struct mempolicy *pol;
2175 	struct page *page;
2176 	int preferred_nid;
2177 	nodemask_t *nmask;
2178 
2179 	pol = get_vma_policy(vma, addr);
2180 
2181 	if (pol->mode == MPOL_INTERLEAVE) {
2182 		unsigned nid;
2183 
2184 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2185 		mpol_cond_put(pol);
2186 		page = alloc_page_interleave(gfp, order, nid);
2187 		goto out;
2188 	}
2189 
2190 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2191 		int hpage_node = node;
2192 
2193 		/*
2194 		 * For hugepage allocation and non-interleave policy which
2195 		 * allows the current node (or other explicitly preferred
2196 		 * node) we only try to allocate from the current/preferred
2197 		 * node and don't fall back to other nodes, as the cost of
2198 		 * remote accesses would likely offset THP benefits.
2199 		 *
2200 		 * If the policy is interleave, or does not allow the current
2201 		 * node in its nodemask, we allocate the standard way.
2202 		 */
2203 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2204 			hpage_node = pol->v.preferred_node;
2205 
2206 		nmask = policy_nodemask(gfp, pol);
2207 		if (!nmask || node_isset(hpage_node, *nmask)) {
2208 			mpol_cond_put(pol);
2209 			/*
2210 			 * First, try to allocate THP only on local node, but
2211 			 * don't reclaim unnecessarily, just compact.
2212 			 */
2213 			page = __alloc_pages_node(hpage_node,
2214 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2215 
2216 			/*
2217 			 * If hugepage allocations are configured to always
2218 			 * synchronous compact or the vma has been madvised
2219 			 * to prefer hugepage backing, retry allowing remote
2220 			 * memory with both reclaim and compact as well.
2221 			 */
2222 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2223 				page = __alloc_pages_node(hpage_node,
2224 								gfp, order);
2225 
2226 			goto out;
2227 		}
2228 	}
2229 
2230 	nmask = policy_nodemask(gfp, pol);
2231 	preferred_nid = policy_node(gfp, pol, node);
2232 	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2233 	mpol_cond_put(pol);
2234 out:
2235 	return page;
2236 }
2237 EXPORT_SYMBOL(alloc_pages_vma);
2238 
2239 /**
2240  * alloc_pages - Allocate pages.
2241  * @gfp: GFP flags.
2242  * @order: Power of two of number of pages to allocate.
2243  *
2244  * Allocate 1 << @order contiguous pages.  The physical address of the
2245  * first page is naturally aligned (eg an order-3 allocation will be aligned
2246  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2247  * process is honoured when in process context.
2248  *
2249  * Context: Can be called from any context, providing the appropriate GFP
2250  * flags are used.
2251  * Return: The page on success or NULL if allocation fails.
2252  */
2253 struct page *alloc_pages(gfp_t gfp, unsigned order)
2254 {
2255 	struct mempolicy *pol = &default_policy;
2256 	struct page *page;
2257 
2258 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2259 		pol = get_task_policy(current);
2260 
2261 	/*
2262 	 * No reference counting needed for current->mempolicy
2263 	 * nor system default_policy
2264 	 */
2265 	if (pol->mode == MPOL_INTERLEAVE)
2266 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2267 	else
2268 		page = __alloc_pages(gfp, order,
2269 				policy_node(gfp, pol, numa_node_id()),
2270 				policy_nodemask(gfp, pol));
2271 
2272 	return page;
2273 }
2274 EXPORT_SYMBOL(alloc_pages);
2275 
2276 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2277 {
2278 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2279 
2280 	if (IS_ERR(pol))
2281 		return PTR_ERR(pol);
2282 	dst->vm_policy = pol;
2283 	return 0;
2284 }
2285 
2286 /*
2287  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2288  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2289  * with the mems_allowed returned by cpuset_mems_allowed().  This
2290  * keeps mempolicies cpuset relative after its cpuset moves.  See
2291  * further kernel/cpuset.c update_nodemask().
2292  *
2293  * current's mempolicy may be rebinded by the other task(the task that changes
2294  * cpuset's mems), so we needn't do rebind work for current task.
2295  */
2296 
2297 /* Slow path of a mempolicy duplicate */
2298 struct mempolicy *__mpol_dup(struct mempolicy *old)
2299 {
2300 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2301 
2302 	if (!new)
2303 		return ERR_PTR(-ENOMEM);
2304 
2305 	/* task's mempolicy is protected by alloc_lock */
2306 	if (old == current->mempolicy) {
2307 		task_lock(current);
2308 		*new = *old;
2309 		task_unlock(current);
2310 	} else
2311 		*new = *old;
2312 
2313 	if (current_cpuset_is_being_rebound()) {
2314 		nodemask_t mems = cpuset_mems_allowed(current);
2315 		mpol_rebind_policy(new, &mems);
2316 	}
2317 	atomic_set(&new->refcnt, 1);
2318 	return new;
2319 }
2320 
2321 /* Slow path of a mempolicy comparison */
2322 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2323 {
2324 	if (!a || !b)
2325 		return false;
2326 	if (a->mode != b->mode)
2327 		return false;
2328 	if (a->flags != b->flags)
2329 		return false;
2330 	if (mpol_store_user_nodemask(a))
2331 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2332 			return false;
2333 
2334 	switch (a->mode) {
2335 	case MPOL_BIND:
2336 	case MPOL_INTERLEAVE:
2337 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2338 	case MPOL_PREFERRED:
2339 		/* a's ->flags is the same as b's */
2340 		if (a->flags & MPOL_F_LOCAL)
2341 			return true;
2342 		return a->v.preferred_node == b->v.preferred_node;
2343 	default:
2344 		BUG();
2345 		return false;
2346 	}
2347 }
2348 
2349 /*
2350  * Shared memory backing store policy support.
2351  *
2352  * Remember policies even when nobody has shared memory mapped.
2353  * The policies are kept in Red-Black tree linked from the inode.
2354  * They are protected by the sp->lock rwlock, which should be held
2355  * for any accesses to the tree.
2356  */
2357 
2358 /*
2359  * lookup first element intersecting start-end.  Caller holds sp->lock for
2360  * reading or for writing
2361  */
2362 static struct sp_node *
2363 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2364 {
2365 	struct rb_node *n = sp->root.rb_node;
2366 
2367 	while (n) {
2368 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2369 
2370 		if (start >= p->end)
2371 			n = n->rb_right;
2372 		else if (end <= p->start)
2373 			n = n->rb_left;
2374 		else
2375 			break;
2376 	}
2377 	if (!n)
2378 		return NULL;
2379 	for (;;) {
2380 		struct sp_node *w = NULL;
2381 		struct rb_node *prev = rb_prev(n);
2382 		if (!prev)
2383 			break;
2384 		w = rb_entry(prev, struct sp_node, nd);
2385 		if (w->end <= start)
2386 			break;
2387 		n = prev;
2388 	}
2389 	return rb_entry(n, struct sp_node, nd);
2390 }
2391 
2392 /*
2393  * Insert a new shared policy into the list.  Caller holds sp->lock for
2394  * writing.
2395  */
2396 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2397 {
2398 	struct rb_node **p = &sp->root.rb_node;
2399 	struct rb_node *parent = NULL;
2400 	struct sp_node *nd;
2401 
2402 	while (*p) {
2403 		parent = *p;
2404 		nd = rb_entry(parent, struct sp_node, nd);
2405 		if (new->start < nd->start)
2406 			p = &(*p)->rb_left;
2407 		else if (new->end > nd->end)
2408 			p = &(*p)->rb_right;
2409 		else
2410 			BUG();
2411 	}
2412 	rb_link_node(&new->nd, parent, p);
2413 	rb_insert_color(&new->nd, &sp->root);
2414 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2415 		 new->policy ? new->policy->mode : 0);
2416 }
2417 
2418 /* Find shared policy intersecting idx */
2419 struct mempolicy *
2420 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2421 {
2422 	struct mempolicy *pol = NULL;
2423 	struct sp_node *sn;
2424 
2425 	if (!sp->root.rb_node)
2426 		return NULL;
2427 	read_lock(&sp->lock);
2428 	sn = sp_lookup(sp, idx, idx+1);
2429 	if (sn) {
2430 		mpol_get(sn->policy);
2431 		pol = sn->policy;
2432 	}
2433 	read_unlock(&sp->lock);
2434 	return pol;
2435 }
2436 
2437 static void sp_free(struct sp_node *n)
2438 {
2439 	mpol_put(n->policy);
2440 	kmem_cache_free(sn_cache, n);
2441 }
2442 
2443 /**
2444  * mpol_misplaced - check whether current page node is valid in policy
2445  *
2446  * @page: page to be checked
2447  * @vma: vm area where page mapped
2448  * @addr: virtual address where page mapped
2449  *
2450  * Lookup current policy node id for vma,addr and "compare to" page's
2451  * node id.  Policy determination "mimics" alloc_page_vma().
2452  * Called from fault path where we know the vma and faulting address.
2453  *
2454  * Return: -1 if the page is in a node that is valid for this policy, or a
2455  * suitable node ID to allocate a replacement page from.
2456  */
2457 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2458 {
2459 	struct mempolicy *pol;
2460 	struct zoneref *z;
2461 	int curnid = page_to_nid(page);
2462 	unsigned long pgoff;
2463 	int thiscpu = raw_smp_processor_id();
2464 	int thisnid = cpu_to_node(thiscpu);
2465 	int polnid = NUMA_NO_NODE;
2466 	int ret = -1;
2467 
2468 	pol = get_vma_policy(vma, addr);
2469 	if (!(pol->flags & MPOL_F_MOF))
2470 		goto out;
2471 
2472 	switch (pol->mode) {
2473 	case MPOL_INTERLEAVE:
2474 		pgoff = vma->vm_pgoff;
2475 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2476 		polnid = offset_il_node(pol, pgoff);
2477 		break;
2478 
2479 	case MPOL_PREFERRED:
2480 		if (pol->flags & MPOL_F_LOCAL)
2481 			polnid = numa_node_id();
2482 		else
2483 			polnid = pol->v.preferred_node;
2484 		break;
2485 
2486 	case MPOL_BIND:
2487 		/* Optimize placement among multiple nodes via NUMA balancing */
2488 		if (pol->flags & MPOL_F_MORON) {
2489 			if (node_isset(thisnid, pol->v.nodes))
2490 				break;
2491 			goto out;
2492 		}
2493 
2494 		/*
2495 		 * allows binding to multiple nodes.
2496 		 * use current page if in policy nodemask,
2497 		 * else select nearest allowed node, if any.
2498 		 * If no allowed nodes, use current [!misplaced].
2499 		 */
2500 		if (node_isset(curnid, pol->v.nodes))
2501 			goto out;
2502 		z = first_zones_zonelist(
2503 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2504 				gfp_zone(GFP_HIGHUSER),
2505 				&pol->v.nodes);
2506 		polnid = zone_to_nid(z->zone);
2507 		break;
2508 
2509 	default:
2510 		BUG();
2511 	}
2512 
2513 	/* Migrate the page towards the node whose CPU is referencing it */
2514 	if (pol->flags & MPOL_F_MORON) {
2515 		polnid = thisnid;
2516 
2517 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2518 			goto out;
2519 	}
2520 
2521 	if (curnid != polnid)
2522 		ret = polnid;
2523 out:
2524 	mpol_cond_put(pol);
2525 
2526 	return ret;
2527 }
2528 
2529 /*
2530  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2531  * dropped after task->mempolicy is set to NULL so that any allocation done as
2532  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2533  * policy.
2534  */
2535 void mpol_put_task_policy(struct task_struct *task)
2536 {
2537 	struct mempolicy *pol;
2538 
2539 	task_lock(task);
2540 	pol = task->mempolicy;
2541 	task->mempolicy = NULL;
2542 	task_unlock(task);
2543 	mpol_put(pol);
2544 }
2545 
2546 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2547 {
2548 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2549 	rb_erase(&n->nd, &sp->root);
2550 	sp_free(n);
2551 }
2552 
2553 static void sp_node_init(struct sp_node *node, unsigned long start,
2554 			unsigned long end, struct mempolicy *pol)
2555 {
2556 	node->start = start;
2557 	node->end = end;
2558 	node->policy = pol;
2559 }
2560 
2561 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2562 				struct mempolicy *pol)
2563 {
2564 	struct sp_node *n;
2565 	struct mempolicy *newpol;
2566 
2567 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2568 	if (!n)
2569 		return NULL;
2570 
2571 	newpol = mpol_dup(pol);
2572 	if (IS_ERR(newpol)) {
2573 		kmem_cache_free(sn_cache, n);
2574 		return NULL;
2575 	}
2576 	newpol->flags |= MPOL_F_SHARED;
2577 	sp_node_init(n, start, end, newpol);
2578 
2579 	return n;
2580 }
2581 
2582 /* Replace a policy range. */
2583 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2584 				 unsigned long end, struct sp_node *new)
2585 {
2586 	struct sp_node *n;
2587 	struct sp_node *n_new = NULL;
2588 	struct mempolicy *mpol_new = NULL;
2589 	int ret = 0;
2590 
2591 restart:
2592 	write_lock(&sp->lock);
2593 	n = sp_lookup(sp, start, end);
2594 	/* Take care of old policies in the same range. */
2595 	while (n && n->start < end) {
2596 		struct rb_node *next = rb_next(&n->nd);
2597 		if (n->start >= start) {
2598 			if (n->end <= end)
2599 				sp_delete(sp, n);
2600 			else
2601 				n->start = end;
2602 		} else {
2603 			/* Old policy spanning whole new range. */
2604 			if (n->end > end) {
2605 				if (!n_new)
2606 					goto alloc_new;
2607 
2608 				*mpol_new = *n->policy;
2609 				atomic_set(&mpol_new->refcnt, 1);
2610 				sp_node_init(n_new, end, n->end, mpol_new);
2611 				n->end = start;
2612 				sp_insert(sp, n_new);
2613 				n_new = NULL;
2614 				mpol_new = NULL;
2615 				break;
2616 			} else
2617 				n->end = start;
2618 		}
2619 		if (!next)
2620 			break;
2621 		n = rb_entry(next, struct sp_node, nd);
2622 	}
2623 	if (new)
2624 		sp_insert(sp, new);
2625 	write_unlock(&sp->lock);
2626 	ret = 0;
2627 
2628 err_out:
2629 	if (mpol_new)
2630 		mpol_put(mpol_new);
2631 	if (n_new)
2632 		kmem_cache_free(sn_cache, n_new);
2633 
2634 	return ret;
2635 
2636 alloc_new:
2637 	write_unlock(&sp->lock);
2638 	ret = -ENOMEM;
2639 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2640 	if (!n_new)
2641 		goto err_out;
2642 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2643 	if (!mpol_new)
2644 		goto err_out;
2645 	goto restart;
2646 }
2647 
2648 /**
2649  * mpol_shared_policy_init - initialize shared policy for inode
2650  * @sp: pointer to inode shared policy
2651  * @mpol:  struct mempolicy to install
2652  *
2653  * Install non-NULL @mpol in inode's shared policy rb-tree.
2654  * On entry, the current task has a reference on a non-NULL @mpol.
2655  * This must be released on exit.
2656  * This is called at get_inode() calls and we can use GFP_KERNEL.
2657  */
2658 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2659 {
2660 	int ret;
2661 
2662 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2663 	rwlock_init(&sp->lock);
2664 
2665 	if (mpol) {
2666 		struct vm_area_struct pvma;
2667 		struct mempolicy *new;
2668 		NODEMASK_SCRATCH(scratch);
2669 
2670 		if (!scratch)
2671 			goto put_mpol;
2672 		/* contextualize the tmpfs mount point mempolicy */
2673 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2674 		if (IS_ERR(new))
2675 			goto free_scratch; /* no valid nodemask intersection */
2676 
2677 		task_lock(current);
2678 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2679 		task_unlock(current);
2680 		if (ret)
2681 			goto put_new;
2682 
2683 		/* Create pseudo-vma that contains just the policy */
2684 		vma_init(&pvma, NULL);
2685 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2686 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2687 
2688 put_new:
2689 		mpol_put(new);			/* drop initial ref */
2690 free_scratch:
2691 		NODEMASK_SCRATCH_FREE(scratch);
2692 put_mpol:
2693 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2694 	}
2695 }
2696 
2697 int mpol_set_shared_policy(struct shared_policy *info,
2698 			struct vm_area_struct *vma, struct mempolicy *npol)
2699 {
2700 	int err;
2701 	struct sp_node *new = NULL;
2702 	unsigned long sz = vma_pages(vma);
2703 
2704 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2705 		 vma->vm_pgoff,
2706 		 sz, npol ? npol->mode : -1,
2707 		 npol ? npol->flags : -1,
2708 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2709 
2710 	if (npol) {
2711 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2712 		if (!new)
2713 			return -ENOMEM;
2714 	}
2715 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2716 	if (err && new)
2717 		sp_free(new);
2718 	return err;
2719 }
2720 
2721 /* Free a backing policy store on inode delete. */
2722 void mpol_free_shared_policy(struct shared_policy *p)
2723 {
2724 	struct sp_node *n;
2725 	struct rb_node *next;
2726 
2727 	if (!p->root.rb_node)
2728 		return;
2729 	write_lock(&p->lock);
2730 	next = rb_first(&p->root);
2731 	while (next) {
2732 		n = rb_entry(next, struct sp_node, nd);
2733 		next = rb_next(&n->nd);
2734 		sp_delete(p, n);
2735 	}
2736 	write_unlock(&p->lock);
2737 }
2738 
2739 #ifdef CONFIG_NUMA_BALANCING
2740 static int __initdata numabalancing_override;
2741 
2742 static void __init check_numabalancing_enable(void)
2743 {
2744 	bool numabalancing_default = false;
2745 
2746 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2747 		numabalancing_default = true;
2748 
2749 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2750 	if (numabalancing_override)
2751 		set_numabalancing_state(numabalancing_override == 1);
2752 
2753 	if (num_online_nodes() > 1 && !numabalancing_override) {
2754 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2755 			numabalancing_default ? "Enabling" : "Disabling");
2756 		set_numabalancing_state(numabalancing_default);
2757 	}
2758 }
2759 
2760 static int __init setup_numabalancing(char *str)
2761 {
2762 	int ret = 0;
2763 	if (!str)
2764 		goto out;
2765 
2766 	if (!strcmp(str, "enable")) {
2767 		numabalancing_override = 1;
2768 		ret = 1;
2769 	} else if (!strcmp(str, "disable")) {
2770 		numabalancing_override = -1;
2771 		ret = 1;
2772 	}
2773 out:
2774 	if (!ret)
2775 		pr_warn("Unable to parse numa_balancing=\n");
2776 
2777 	return ret;
2778 }
2779 __setup("numa_balancing=", setup_numabalancing);
2780 #else
2781 static inline void __init check_numabalancing_enable(void)
2782 {
2783 }
2784 #endif /* CONFIG_NUMA_BALANCING */
2785 
2786 /* assumes fs == KERNEL_DS */
2787 void __init numa_policy_init(void)
2788 {
2789 	nodemask_t interleave_nodes;
2790 	unsigned long largest = 0;
2791 	int nid, prefer = 0;
2792 
2793 	policy_cache = kmem_cache_create("numa_policy",
2794 					 sizeof(struct mempolicy),
2795 					 0, SLAB_PANIC, NULL);
2796 
2797 	sn_cache = kmem_cache_create("shared_policy_node",
2798 				     sizeof(struct sp_node),
2799 				     0, SLAB_PANIC, NULL);
2800 
2801 	for_each_node(nid) {
2802 		preferred_node_policy[nid] = (struct mempolicy) {
2803 			.refcnt = ATOMIC_INIT(1),
2804 			.mode = MPOL_PREFERRED,
2805 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2806 			.v = { .preferred_node = nid, },
2807 		};
2808 	}
2809 
2810 	/*
2811 	 * Set interleaving policy for system init. Interleaving is only
2812 	 * enabled across suitably sized nodes (default is >= 16MB), or
2813 	 * fall back to the largest node if they're all smaller.
2814 	 */
2815 	nodes_clear(interleave_nodes);
2816 	for_each_node_state(nid, N_MEMORY) {
2817 		unsigned long total_pages = node_present_pages(nid);
2818 
2819 		/* Preserve the largest node */
2820 		if (largest < total_pages) {
2821 			largest = total_pages;
2822 			prefer = nid;
2823 		}
2824 
2825 		/* Interleave this node? */
2826 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2827 			node_set(nid, interleave_nodes);
2828 	}
2829 
2830 	/* All too small, use the largest */
2831 	if (unlikely(nodes_empty(interleave_nodes)))
2832 		node_set(prefer, interleave_nodes);
2833 
2834 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2835 		pr_err("%s: interleaving failed\n", __func__);
2836 
2837 	check_numabalancing_enable();
2838 }
2839 
2840 /* Reset policy of current process to default */
2841 void numa_default_policy(void)
2842 {
2843 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2844 }
2845 
2846 /*
2847  * Parse and format mempolicy from/to strings
2848  */
2849 
2850 /*
2851  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2852  */
2853 static const char * const policy_modes[] =
2854 {
2855 	[MPOL_DEFAULT]    = "default",
2856 	[MPOL_PREFERRED]  = "prefer",
2857 	[MPOL_BIND]       = "bind",
2858 	[MPOL_INTERLEAVE] = "interleave",
2859 	[MPOL_LOCAL]      = "local",
2860 };
2861 
2862 
2863 #ifdef CONFIG_TMPFS
2864 /**
2865  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2866  * @str:  string containing mempolicy to parse
2867  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2868  *
2869  * Format of input:
2870  *	<mode>[=<flags>][:<nodelist>]
2871  *
2872  * On success, returns 0, else 1
2873  */
2874 int mpol_parse_str(char *str, struct mempolicy **mpol)
2875 {
2876 	struct mempolicy *new = NULL;
2877 	unsigned short mode_flags;
2878 	nodemask_t nodes;
2879 	char *nodelist = strchr(str, ':');
2880 	char *flags = strchr(str, '=');
2881 	int err = 1, mode;
2882 
2883 	if (flags)
2884 		*flags++ = '\0';	/* terminate mode string */
2885 
2886 	if (nodelist) {
2887 		/* NUL-terminate mode or flags string */
2888 		*nodelist++ = '\0';
2889 		if (nodelist_parse(nodelist, nodes))
2890 			goto out;
2891 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2892 			goto out;
2893 	} else
2894 		nodes_clear(nodes);
2895 
2896 	mode = match_string(policy_modes, MPOL_MAX, str);
2897 	if (mode < 0)
2898 		goto out;
2899 
2900 	switch (mode) {
2901 	case MPOL_PREFERRED:
2902 		/*
2903 		 * Insist on a nodelist of one node only, although later
2904 		 * we use first_node(nodes) to grab a single node, so here
2905 		 * nodelist (or nodes) cannot be empty.
2906 		 */
2907 		if (nodelist) {
2908 			char *rest = nodelist;
2909 			while (isdigit(*rest))
2910 				rest++;
2911 			if (*rest)
2912 				goto out;
2913 			if (nodes_empty(nodes))
2914 				goto out;
2915 		}
2916 		break;
2917 	case MPOL_INTERLEAVE:
2918 		/*
2919 		 * Default to online nodes with memory if no nodelist
2920 		 */
2921 		if (!nodelist)
2922 			nodes = node_states[N_MEMORY];
2923 		break;
2924 	case MPOL_LOCAL:
2925 		/*
2926 		 * Don't allow a nodelist;  mpol_new() checks flags
2927 		 */
2928 		if (nodelist)
2929 			goto out;
2930 		mode = MPOL_PREFERRED;
2931 		break;
2932 	case MPOL_DEFAULT:
2933 		/*
2934 		 * Insist on a empty nodelist
2935 		 */
2936 		if (!nodelist)
2937 			err = 0;
2938 		goto out;
2939 	case MPOL_BIND:
2940 		/*
2941 		 * Insist on a nodelist
2942 		 */
2943 		if (!nodelist)
2944 			goto out;
2945 	}
2946 
2947 	mode_flags = 0;
2948 	if (flags) {
2949 		/*
2950 		 * Currently, we only support two mutually exclusive
2951 		 * mode flags.
2952 		 */
2953 		if (!strcmp(flags, "static"))
2954 			mode_flags |= MPOL_F_STATIC_NODES;
2955 		else if (!strcmp(flags, "relative"))
2956 			mode_flags |= MPOL_F_RELATIVE_NODES;
2957 		else
2958 			goto out;
2959 	}
2960 
2961 	new = mpol_new(mode, mode_flags, &nodes);
2962 	if (IS_ERR(new))
2963 		goto out;
2964 
2965 	/*
2966 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2967 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2968 	 */
2969 	if (mode != MPOL_PREFERRED)
2970 		new->v.nodes = nodes;
2971 	else if (nodelist)
2972 		new->v.preferred_node = first_node(nodes);
2973 	else
2974 		new->flags |= MPOL_F_LOCAL;
2975 
2976 	/*
2977 	 * Save nodes for contextualization: this will be used to "clone"
2978 	 * the mempolicy in a specific context [cpuset] at a later time.
2979 	 */
2980 	new->w.user_nodemask = nodes;
2981 
2982 	err = 0;
2983 
2984 out:
2985 	/* Restore string for error message */
2986 	if (nodelist)
2987 		*--nodelist = ':';
2988 	if (flags)
2989 		*--flags = '=';
2990 	if (!err)
2991 		*mpol = new;
2992 	return err;
2993 }
2994 #endif /* CONFIG_TMPFS */
2995 
2996 /**
2997  * mpol_to_str - format a mempolicy structure for printing
2998  * @buffer:  to contain formatted mempolicy string
2999  * @maxlen:  length of @buffer
3000  * @pol:  pointer to mempolicy to be formatted
3001  *
3002  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3003  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3004  * longest flag, "relative", and to display at least a few node ids.
3005  */
3006 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3007 {
3008 	char *p = buffer;
3009 	nodemask_t nodes = NODE_MASK_NONE;
3010 	unsigned short mode = MPOL_DEFAULT;
3011 	unsigned short flags = 0;
3012 
3013 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3014 		mode = pol->mode;
3015 		flags = pol->flags;
3016 	}
3017 
3018 	switch (mode) {
3019 	case MPOL_DEFAULT:
3020 		break;
3021 	case MPOL_PREFERRED:
3022 		if (flags & MPOL_F_LOCAL)
3023 			mode = MPOL_LOCAL;
3024 		else
3025 			node_set(pol->v.preferred_node, nodes);
3026 		break;
3027 	case MPOL_BIND:
3028 	case MPOL_INTERLEAVE:
3029 		nodes = pol->v.nodes;
3030 		break;
3031 	default:
3032 		WARN_ON_ONCE(1);
3033 		snprintf(p, maxlen, "unknown");
3034 		return;
3035 	}
3036 
3037 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3038 
3039 	if (flags & MPOL_MODE_FLAGS) {
3040 		p += snprintf(p, buffer + maxlen - p, "=");
3041 
3042 		/*
3043 		 * Currently, the only defined flags are mutually exclusive
3044 		 */
3045 		if (flags & MPOL_F_STATIC_NODES)
3046 			p += snprintf(p, buffer + maxlen - p, "static");
3047 		else if (flags & MPOL_F_RELATIVE_NODES)
3048 			p += snprintf(p, buffer + maxlen - p, "relative");
3049 	}
3050 
3051 	if (!nodes_empty(nodes))
3052 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3053 			       nodemask_pr_args(&nodes));
3054 }
3055