1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 /** 131 * numa_map_to_online_node - Find closest online node 132 * @node: Node id to start the search 133 * 134 * Lookup the next closest node by distance if @nid is not online. 135 */ 136 int numa_map_to_online_node(int node) 137 { 138 int min_dist = INT_MAX, dist, n, min_node; 139 140 if (node == NUMA_NO_NODE || node_online(node)) 141 return node; 142 143 min_node = node; 144 for_each_online_node(n) { 145 dist = node_distance(node, n); 146 if (dist < min_dist) { 147 min_dist = dist; 148 min_node = n; 149 } 150 } 151 152 return min_node; 153 } 154 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 155 156 struct mempolicy *get_task_policy(struct task_struct *p) 157 { 158 struct mempolicy *pol = p->mempolicy; 159 int node; 160 161 if (pol) 162 return pol; 163 164 node = numa_node_id(); 165 if (node != NUMA_NO_NODE) { 166 pol = &preferred_node_policy[node]; 167 /* preferred_node_policy is not initialised early in boot */ 168 if (pol->mode) 169 return pol; 170 } 171 172 return &default_policy; 173 } 174 175 static const struct mempolicy_operations { 176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 178 } mpol_ops[MPOL_MAX]; 179 180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 181 { 182 return pol->flags & MPOL_MODE_FLAGS; 183 } 184 185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 186 const nodemask_t *rel) 187 { 188 nodemask_t tmp; 189 nodes_fold(tmp, *orig, nodes_weight(*rel)); 190 nodes_onto(*ret, tmp, *rel); 191 } 192 193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 194 { 195 if (nodes_empty(*nodes)) 196 return -EINVAL; 197 pol->v.nodes = *nodes; 198 return 0; 199 } 200 201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 202 { 203 if (!nodes) 204 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 205 else if (nodes_empty(*nodes)) 206 return -EINVAL; /* no allowed nodes */ 207 else 208 pol->v.preferred_node = first_node(*nodes); 209 return 0; 210 } 211 212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 213 { 214 if (nodes_empty(*nodes)) 215 return -EINVAL; 216 pol->v.nodes = *nodes; 217 return 0; 218 } 219 220 /* 221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 222 * any, for the new policy. mpol_new() has already validated the nodes 223 * parameter with respect to the policy mode and flags. But, we need to 224 * handle an empty nodemask with MPOL_PREFERRED here. 225 * 226 * Must be called holding task's alloc_lock to protect task's mems_allowed 227 * and mempolicy. May also be called holding the mmap_lock for write. 228 */ 229 static int mpol_set_nodemask(struct mempolicy *pol, 230 const nodemask_t *nodes, struct nodemask_scratch *nsc) 231 { 232 int ret; 233 234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 235 if (pol == NULL) 236 return 0; 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 243 nodes = NULL; /* explicit local allocation */ 244 else { 245 if (pol->flags & MPOL_F_RELATIVE_NODES) 246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 247 else 248 nodes_and(nsc->mask2, *nodes, nsc->mask1); 249 250 if (mpol_store_user_nodemask(pol)) 251 pol->w.user_nodemask = *nodes; 252 else 253 pol->w.cpuset_mems_allowed = 254 cpuset_current_mems_allowed; 255 } 256 257 if (nodes) 258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 259 else 260 ret = mpol_ops[pol->mode].create(pol, NULL); 261 return ret; 262 } 263 264 /* 265 * This function just creates a new policy, does some check and simple 266 * initialization. You must invoke mpol_set_nodemask() to set nodes. 267 */ 268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 269 nodemask_t *nodes) 270 { 271 struct mempolicy *policy; 272 273 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 275 276 if (mode == MPOL_DEFAULT) { 277 if (nodes && !nodes_empty(*nodes)) 278 return ERR_PTR(-EINVAL); 279 return NULL; 280 } 281 VM_BUG_ON(!nodes); 282 283 /* 284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 286 * All other modes require a valid pointer to a non-empty nodemask. 287 */ 288 if (mode == MPOL_PREFERRED) { 289 if (nodes_empty(*nodes)) { 290 if (((flags & MPOL_F_STATIC_NODES) || 291 (flags & MPOL_F_RELATIVE_NODES))) 292 return ERR_PTR(-EINVAL); 293 } 294 } else if (mode == MPOL_LOCAL) { 295 if (!nodes_empty(*nodes) || 296 (flags & MPOL_F_STATIC_NODES) || 297 (flags & MPOL_F_RELATIVE_NODES)) 298 return ERR_PTR(-EINVAL); 299 mode = MPOL_PREFERRED; 300 } else if (nodes_empty(*nodes)) 301 return ERR_PTR(-EINVAL); 302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 303 if (!policy) 304 return ERR_PTR(-ENOMEM); 305 atomic_set(&policy->refcnt, 1); 306 policy->mode = mode; 307 policy->flags = flags; 308 309 return policy; 310 } 311 312 /* Slow path of a mpol destructor. */ 313 void __mpol_put(struct mempolicy *p) 314 { 315 if (!atomic_dec_and_test(&p->refcnt)) 316 return; 317 kmem_cache_free(policy_cache, p); 318 } 319 320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 321 { 322 } 323 324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 325 { 326 nodemask_t tmp; 327 328 if (pol->flags & MPOL_F_STATIC_NODES) 329 nodes_and(tmp, pol->w.user_nodemask, *nodes); 330 else if (pol->flags & MPOL_F_RELATIVE_NODES) 331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 332 else { 333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 334 *nodes); 335 pol->w.cpuset_mems_allowed = *nodes; 336 } 337 338 if (nodes_empty(tmp)) 339 tmp = *nodes; 340 341 pol->v.nodes = tmp; 342 } 343 344 static void mpol_rebind_preferred(struct mempolicy *pol, 345 const nodemask_t *nodes) 346 { 347 nodemask_t tmp; 348 349 if (pol->flags & MPOL_F_STATIC_NODES) { 350 int node = first_node(pol->w.user_nodemask); 351 352 if (node_isset(node, *nodes)) { 353 pol->v.preferred_node = node; 354 pol->flags &= ~MPOL_F_LOCAL; 355 } else 356 pol->flags |= MPOL_F_LOCAL; 357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 359 pol->v.preferred_node = first_node(tmp); 360 } else if (!(pol->flags & MPOL_F_LOCAL)) { 361 pol->v.preferred_node = node_remap(pol->v.preferred_node, 362 pol->w.cpuset_mems_allowed, 363 *nodes); 364 pol->w.cpuset_mems_allowed = *nodes; 365 } 366 } 367 368 /* 369 * mpol_rebind_policy - Migrate a policy to a different set of nodes 370 * 371 * Per-vma policies are protected by mmap_lock. Allocations using per-task 372 * policies are protected by task->mems_allowed_seq to prevent a premature 373 * OOM/allocation failure due to parallel nodemask modification. 374 */ 375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 376 { 377 if (!pol) 378 return; 379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 381 return; 382 383 mpol_ops[pol->mode].rebind(pol, newmask); 384 } 385 386 /* 387 * Wrapper for mpol_rebind_policy() that just requires task 388 * pointer, and updates task mempolicy. 389 * 390 * Called with task's alloc_lock held. 391 */ 392 393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 394 { 395 mpol_rebind_policy(tsk->mempolicy, new); 396 } 397 398 /* 399 * Rebind each vma in mm to new nodemask. 400 * 401 * Call holding a reference to mm. Takes mm->mmap_lock during call. 402 */ 403 404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 405 { 406 struct vm_area_struct *vma; 407 408 mmap_write_lock(mm); 409 for (vma = mm->mmap; vma; vma = vma->vm_next) 410 mpol_rebind_policy(vma->vm_policy, new); 411 mmap_write_unlock(mm); 412 } 413 414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 415 [MPOL_DEFAULT] = { 416 .rebind = mpol_rebind_default, 417 }, 418 [MPOL_INTERLEAVE] = { 419 .create = mpol_new_interleave, 420 .rebind = mpol_rebind_nodemask, 421 }, 422 [MPOL_PREFERRED] = { 423 .create = mpol_new_preferred, 424 .rebind = mpol_rebind_preferred, 425 }, 426 [MPOL_BIND] = { 427 .create = mpol_new_bind, 428 .rebind = mpol_rebind_nodemask, 429 }, 430 }; 431 432 static int migrate_page_add(struct page *page, struct list_head *pagelist, 433 unsigned long flags); 434 435 struct queue_pages { 436 struct list_head *pagelist; 437 unsigned long flags; 438 nodemask_t *nmask; 439 unsigned long start; 440 unsigned long end; 441 struct vm_area_struct *first; 442 }; 443 444 /* 445 * Check if the page's nid is in qp->nmask. 446 * 447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 448 * in the invert of qp->nmask. 449 */ 450 static inline bool queue_pages_required(struct page *page, 451 struct queue_pages *qp) 452 { 453 int nid = page_to_nid(page); 454 unsigned long flags = qp->flags; 455 456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 457 } 458 459 /* 460 * queue_pages_pmd() has four possible return values: 461 * 0 - pages are placed on the right node or queued successfully. 462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 463 * specified. 464 * 2 - THP was split. 465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 466 * existing page was already on a node that does not follow the 467 * policy. 468 */ 469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 470 unsigned long end, struct mm_walk *walk) 471 __releases(ptl) 472 { 473 int ret = 0; 474 struct page *page; 475 struct queue_pages *qp = walk->private; 476 unsigned long flags; 477 478 if (unlikely(is_pmd_migration_entry(*pmd))) { 479 ret = -EIO; 480 goto unlock; 481 } 482 page = pmd_page(*pmd); 483 if (is_huge_zero_page(page)) { 484 spin_unlock(ptl); 485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 486 ret = 2; 487 goto out; 488 } 489 if (!queue_pages_required(page, qp)) 490 goto unlock; 491 492 flags = qp->flags; 493 /* go to thp migration */ 494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 495 if (!vma_migratable(walk->vma) || 496 migrate_page_add(page, qp->pagelist, flags)) { 497 ret = 1; 498 goto unlock; 499 } 500 } else 501 ret = -EIO; 502 unlock: 503 spin_unlock(ptl); 504 out: 505 return ret; 506 } 507 508 /* 509 * Scan through pages checking if pages follow certain conditions, 510 * and move them to the pagelist if they do. 511 * 512 * queue_pages_pte_range() has three possible return values: 513 * 0 - pages are placed on the right node or queued successfully. 514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 515 * specified. 516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 517 * on a node that does not follow the policy. 518 */ 519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 520 unsigned long end, struct mm_walk *walk) 521 { 522 struct vm_area_struct *vma = walk->vma; 523 struct page *page; 524 struct queue_pages *qp = walk->private; 525 unsigned long flags = qp->flags; 526 int ret; 527 bool has_unmovable = false; 528 pte_t *pte, *mapped_pte; 529 spinlock_t *ptl; 530 531 ptl = pmd_trans_huge_lock(pmd, vma); 532 if (ptl) { 533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 534 if (ret != 2) 535 return ret; 536 } 537 /* THP was split, fall through to pte walk */ 538 539 if (pmd_trans_unstable(pmd)) 540 return 0; 541 542 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 543 for (; addr != end; pte++, addr += PAGE_SIZE) { 544 if (!pte_present(*pte)) 545 continue; 546 page = vm_normal_page(vma, addr, *pte); 547 if (!page) 548 continue; 549 /* 550 * vm_normal_page() filters out zero pages, but there might 551 * still be PageReserved pages to skip, perhaps in a VDSO. 552 */ 553 if (PageReserved(page)) 554 continue; 555 if (!queue_pages_required(page, qp)) 556 continue; 557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 558 /* MPOL_MF_STRICT must be specified if we get here */ 559 if (!vma_migratable(vma)) { 560 has_unmovable = true; 561 break; 562 } 563 564 /* 565 * Do not abort immediately since there may be 566 * temporary off LRU pages in the range. Still 567 * need migrate other LRU pages. 568 */ 569 if (migrate_page_add(page, qp->pagelist, flags)) 570 has_unmovable = true; 571 } else 572 break; 573 } 574 pte_unmap_unlock(mapped_pte, ptl); 575 cond_resched(); 576 577 if (has_unmovable) 578 return 1; 579 580 return addr != end ? -EIO : 0; 581 } 582 583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 584 unsigned long addr, unsigned long end, 585 struct mm_walk *walk) 586 { 587 int ret = 0; 588 #ifdef CONFIG_HUGETLB_PAGE 589 struct queue_pages *qp = walk->private; 590 unsigned long flags = (qp->flags & MPOL_MF_VALID); 591 struct page *page; 592 spinlock_t *ptl; 593 pte_t entry; 594 595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 596 entry = huge_ptep_get(pte); 597 if (!pte_present(entry)) 598 goto unlock; 599 page = pte_page(entry); 600 if (!queue_pages_required(page, qp)) 601 goto unlock; 602 603 if (flags == MPOL_MF_STRICT) { 604 /* 605 * STRICT alone means only detecting misplaced page and no 606 * need to further check other vma. 607 */ 608 ret = -EIO; 609 goto unlock; 610 } 611 612 if (!vma_migratable(walk->vma)) { 613 /* 614 * Must be STRICT with MOVE*, otherwise .test_walk() have 615 * stopped walking current vma. 616 * Detecting misplaced page but allow migrating pages which 617 * have been queued. 618 */ 619 ret = 1; 620 goto unlock; 621 } 622 623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 624 if (flags & (MPOL_MF_MOVE_ALL) || 625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 626 if (!isolate_huge_page(page, qp->pagelist) && 627 (flags & MPOL_MF_STRICT)) 628 /* 629 * Failed to isolate page but allow migrating pages 630 * which have been queued. 631 */ 632 ret = 1; 633 } 634 unlock: 635 spin_unlock(ptl); 636 #else 637 BUG(); 638 #endif 639 return ret; 640 } 641 642 #ifdef CONFIG_NUMA_BALANCING 643 /* 644 * This is used to mark a range of virtual addresses to be inaccessible. 645 * These are later cleared by a NUMA hinting fault. Depending on these 646 * faults, pages may be migrated for better NUMA placement. 647 * 648 * This is assuming that NUMA faults are handled using PROT_NONE. If 649 * an architecture makes a different choice, it will need further 650 * changes to the core. 651 */ 652 unsigned long change_prot_numa(struct vm_area_struct *vma, 653 unsigned long addr, unsigned long end) 654 { 655 int nr_updated; 656 657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 658 if (nr_updated) 659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 660 661 return nr_updated; 662 } 663 #else 664 static unsigned long change_prot_numa(struct vm_area_struct *vma, 665 unsigned long addr, unsigned long end) 666 { 667 return 0; 668 } 669 #endif /* CONFIG_NUMA_BALANCING */ 670 671 static int queue_pages_test_walk(unsigned long start, unsigned long end, 672 struct mm_walk *walk) 673 { 674 struct vm_area_struct *vma = walk->vma; 675 struct queue_pages *qp = walk->private; 676 unsigned long endvma = vma->vm_end; 677 unsigned long flags = qp->flags; 678 679 /* range check first */ 680 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 681 682 if (!qp->first) { 683 qp->first = vma; 684 if (!(flags & MPOL_MF_DISCONTIG_OK) && 685 (qp->start < vma->vm_start)) 686 /* hole at head side of range */ 687 return -EFAULT; 688 } 689 if (!(flags & MPOL_MF_DISCONTIG_OK) && 690 ((vma->vm_end < qp->end) && 691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 692 /* hole at middle or tail of range */ 693 return -EFAULT; 694 695 /* 696 * Need check MPOL_MF_STRICT to return -EIO if possible 697 * regardless of vma_migratable 698 */ 699 if (!vma_migratable(vma) && 700 !(flags & MPOL_MF_STRICT)) 701 return 1; 702 703 if (endvma > end) 704 endvma = end; 705 706 if (flags & MPOL_MF_LAZY) { 707 /* Similar to task_numa_work, skip inaccessible VMAs */ 708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 709 !(vma->vm_flags & VM_MIXEDMAP)) 710 change_prot_numa(vma, start, endvma); 711 return 1; 712 } 713 714 /* queue pages from current vma */ 715 if (flags & MPOL_MF_VALID) 716 return 0; 717 return 1; 718 } 719 720 static const struct mm_walk_ops queue_pages_walk_ops = { 721 .hugetlb_entry = queue_pages_hugetlb, 722 .pmd_entry = queue_pages_pte_range, 723 .test_walk = queue_pages_test_walk, 724 }; 725 726 /* 727 * Walk through page tables and collect pages to be migrated. 728 * 729 * If pages found in a given range are on a set of nodes (determined by 730 * @nodes and @flags,) it's isolated and queued to the pagelist which is 731 * passed via @private. 732 * 733 * queue_pages_range() has three possible return values: 734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 735 * specified. 736 * 0 - queue pages successfully or no misplaced page. 737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 738 * memory range specified by nodemask and maxnode points outside 739 * your accessible address space (-EFAULT) 740 */ 741 static int 742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 743 nodemask_t *nodes, unsigned long flags, 744 struct list_head *pagelist) 745 { 746 int err; 747 struct queue_pages qp = { 748 .pagelist = pagelist, 749 .flags = flags, 750 .nmask = nodes, 751 .start = start, 752 .end = end, 753 .first = NULL, 754 }; 755 756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 757 758 if (!qp.first) 759 /* whole range in hole */ 760 err = -EFAULT; 761 762 return err; 763 } 764 765 /* 766 * Apply policy to a single VMA 767 * This must be called with the mmap_lock held for writing. 768 */ 769 static int vma_replace_policy(struct vm_area_struct *vma, 770 struct mempolicy *pol) 771 { 772 int err; 773 struct mempolicy *old; 774 struct mempolicy *new; 775 776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 777 vma->vm_start, vma->vm_end, vma->vm_pgoff, 778 vma->vm_ops, vma->vm_file, 779 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 780 781 new = mpol_dup(pol); 782 if (IS_ERR(new)) 783 return PTR_ERR(new); 784 785 if (vma->vm_ops && vma->vm_ops->set_policy) { 786 err = vma->vm_ops->set_policy(vma, new); 787 if (err) 788 goto err_out; 789 } 790 791 old = vma->vm_policy; 792 vma->vm_policy = new; /* protected by mmap_lock */ 793 mpol_put(old); 794 795 return 0; 796 err_out: 797 mpol_put(new); 798 return err; 799 } 800 801 /* Step 2: apply policy to a range and do splits. */ 802 static int mbind_range(struct mm_struct *mm, unsigned long start, 803 unsigned long end, struct mempolicy *new_pol) 804 { 805 struct vm_area_struct *next; 806 struct vm_area_struct *prev; 807 struct vm_area_struct *vma; 808 int err = 0; 809 pgoff_t pgoff; 810 unsigned long vmstart; 811 unsigned long vmend; 812 813 vma = find_vma(mm, start); 814 VM_BUG_ON(!vma); 815 816 prev = vma->vm_prev; 817 if (start > vma->vm_start) 818 prev = vma; 819 820 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 821 next = vma->vm_next; 822 vmstart = max(start, vma->vm_start); 823 vmend = min(end, vma->vm_end); 824 825 if (mpol_equal(vma_policy(vma), new_pol)) 826 continue; 827 828 pgoff = vma->vm_pgoff + 829 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 831 vma->anon_vma, vma->vm_file, pgoff, 832 new_pol, vma->vm_userfaultfd_ctx); 833 if (prev) { 834 vma = prev; 835 next = vma->vm_next; 836 if (mpol_equal(vma_policy(vma), new_pol)) 837 continue; 838 /* vma_merge() joined vma && vma->next, case 8 */ 839 goto replace; 840 } 841 if (vma->vm_start != vmstart) { 842 err = split_vma(vma->vm_mm, vma, vmstart, 1); 843 if (err) 844 goto out; 845 } 846 if (vma->vm_end != vmend) { 847 err = split_vma(vma->vm_mm, vma, vmend, 0); 848 if (err) 849 goto out; 850 } 851 replace: 852 err = vma_replace_policy(vma, new_pol); 853 if (err) 854 goto out; 855 } 856 857 out: 858 return err; 859 } 860 861 /* Set the process memory policy */ 862 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 863 nodemask_t *nodes) 864 { 865 struct mempolicy *new, *old; 866 NODEMASK_SCRATCH(scratch); 867 int ret; 868 869 if (!scratch) 870 return -ENOMEM; 871 872 new = mpol_new(mode, flags, nodes); 873 if (IS_ERR(new)) { 874 ret = PTR_ERR(new); 875 goto out; 876 } 877 878 if (flags & MPOL_F_NUMA_BALANCING) { 879 if (new && new->mode == MPOL_BIND) { 880 new->flags |= (MPOL_F_MOF | MPOL_F_MORON); 881 } else { 882 ret = -EINVAL; 883 mpol_put(new); 884 goto out; 885 } 886 } 887 888 ret = mpol_set_nodemask(new, nodes, scratch); 889 if (ret) { 890 mpol_put(new); 891 goto out; 892 } 893 task_lock(current); 894 old = current->mempolicy; 895 current->mempolicy = new; 896 if (new && new->mode == MPOL_INTERLEAVE) 897 current->il_prev = MAX_NUMNODES-1; 898 task_unlock(current); 899 mpol_put(old); 900 ret = 0; 901 out: 902 NODEMASK_SCRATCH_FREE(scratch); 903 return ret; 904 } 905 906 /* 907 * Return nodemask for policy for get_mempolicy() query 908 * 909 * Called with task's alloc_lock held 910 */ 911 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 912 { 913 nodes_clear(*nodes); 914 if (p == &default_policy) 915 return; 916 917 switch (p->mode) { 918 case MPOL_BIND: 919 case MPOL_INTERLEAVE: 920 *nodes = p->v.nodes; 921 break; 922 case MPOL_PREFERRED: 923 if (!(p->flags & MPOL_F_LOCAL)) 924 node_set(p->v.preferred_node, *nodes); 925 /* else return empty node mask for local allocation */ 926 break; 927 default: 928 BUG(); 929 } 930 } 931 932 static int lookup_node(struct mm_struct *mm, unsigned long addr) 933 { 934 struct page *p = NULL; 935 int err; 936 937 int locked = 1; 938 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 939 if (err > 0) { 940 err = page_to_nid(p); 941 put_page(p); 942 } 943 if (locked) 944 mmap_read_unlock(mm); 945 return err; 946 } 947 948 /* Retrieve NUMA policy */ 949 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 950 unsigned long addr, unsigned long flags) 951 { 952 int err; 953 struct mm_struct *mm = current->mm; 954 struct vm_area_struct *vma = NULL; 955 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 956 957 if (flags & 958 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 959 return -EINVAL; 960 961 if (flags & MPOL_F_MEMS_ALLOWED) { 962 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 963 return -EINVAL; 964 *policy = 0; /* just so it's initialized */ 965 task_lock(current); 966 *nmask = cpuset_current_mems_allowed; 967 task_unlock(current); 968 return 0; 969 } 970 971 if (flags & MPOL_F_ADDR) { 972 /* 973 * Do NOT fall back to task policy if the 974 * vma/shared policy at addr is NULL. We 975 * want to return MPOL_DEFAULT in this case. 976 */ 977 mmap_read_lock(mm); 978 vma = find_vma_intersection(mm, addr, addr+1); 979 if (!vma) { 980 mmap_read_unlock(mm); 981 return -EFAULT; 982 } 983 if (vma->vm_ops && vma->vm_ops->get_policy) 984 pol = vma->vm_ops->get_policy(vma, addr); 985 else 986 pol = vma->vm_policy; 987 } else if (addr) 988 return -EINVAL; 989 990 if (!pol) 991 pol = &default_policy; /* indicates default behavior */ 992 993 if (flags & MPOL_F_NODE) { 994 if (flags & MPOL_F_ADDR) { 995 /* 996 * Take a refcount on the mpol, lookup_node() 997 * wil drop the mmap_lock, so after calling 998 * lookup_node() only "pol" remains valid, "vma" 999 * is stale. 1000 */ 1001 pol_refcount = pol; 1002 vma = NULL; 1003 mpol_get(pol); 1004 err = lookup_node(mm, addr); 1005 if (err < 0) 1006 goto out; 1007 *policy = err; 1008 } else if (pol == current->mempolicy && 1009 pol->mode == MPOL_INTERLEAVE) { 1010 *policy = next_node_in(current->il_prev, pol->v.nodes); 1011 } else { 1012 err = -EINVAL; 1013 goto out; 1014 } 1015 } else { 1016 *policy = pol == &default_policy ? MPOL_DEFAULT : 1017 pol->mode; 1018 /* 1019 * Internal mempolicy flags must be masked off before exposing 1020 * the policy to userspace. 1021 */ 1022 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1023 } 1024 1025 err = 0; 1026 if (nmask) { 1027 if (mpol_store_user_nodemask(pol)) { 1028 *nmask = pol->w.user_nodemask; 1029 } else { 1030 task_lock(current); 1031 get_policy_nodemask(pol, nmask); 1032 task_unlock(current); 1033 } 1034 } 1035 1036 out: 1037 mpol_cond_put(pol); 1038 if (vma) 1039 mmap_read_unlock(mm); 1040 if (pol_refcount) 1041 mpol_put(pol_refcount); 1042 return err; 1043 } 1044 1045 #ifdef CONFIG_MIGRATION 1046 /* 1047 * page migration, thp tail pages can be passed. 1048 */ 1049 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1050 unsigned long flags) 1051 { 1052 struct page *head = compound_head(page); 1053 /* 1054 * Avoid migrating a page that is shared with others. 1055 */ 1056 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1057 if (!isolate_lru_page(head)) { 1058 list_add_tail(&head->lru, pagelist); 1059 mod_node_page_state(page_pgdat(head), 1060 NR_ISOLATED_ANON + page_is_file_lru(head), 1061 thp_nr_pages(head)); 1062 } else if (flags & MPOL_MF_STRICT) { 1063 /* 1064 * Non-movable page may reach here. And, there may be 1065 * temporary off LRU pages or non-LRU movable pages. 1066 * Treat them as unmovable pages since they can't be 1067 * isolated, so they can't be moved at the moment. It 1068 * should return -EIO for this case too. 1069 */ 1070 return -EIO; 1071 } 1072 } 1073 1074 return 0; 1075 } 1076 1077 /* 1078 * Migrate pages from one node to a target node. 1079 * Returns error or the number of pages not migrated. 1080 */ 1081 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1082 int flags) 1083 { 1084 nodemask_t nmask; 1085 LIST_HEAD(pagelist); 1086 int err = 0; 1087 struct migration_target_control mtc = { 1088 .nid = dest, 1089 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1090 }; 1091 1092 nodes_clear(nmask); 1093 node_set(source, nmask); 1094 1095 /* 1096 * This does not "check" the range but isolates all pages that 1097 * need migration. Between passing in the full user address 1098 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1099 */ 1100 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1101 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1102 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1103 1104 if (!list_empty(&pagelist)) { 1105 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1106 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1107 if (err) 1108 putback_movable_pages(&pagelist); 1109 } 1110 1111 return err; 1112 } 1113 1114 /* 1115 * Move pages between the two nodesets so as to preserve the physical 1116 * layout as much as possible. 1117 * 1118 * Returns the number of page that could not be moved. 1119 */ 1120 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1121 const nodemask_t *to, int flags) 1122 { 1123 int busy = 0; 1124 int err = 0; 1125 nodemask_t tmp; 1126 1127 migrate_prep(); 1128 1129 mmap_read_lock(mm); 1130 1131 /* 1132 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1133 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1134 * bit in 'tmp', and return that <source, dest> pair for migration. 1135 * The pair of nodemasks 'to' and 'from' define the map. 1136 * 1137 * If no pair of bits is found that way, fallback to picking some 1138 * pair of 'source' and 'dest' bits that are not the same. If the 1139 * 'source' and 'dest' bits are the same, this represents a node 1140 * that will be migrating to itself, so no pages need move. 1141 * 1142 * If no bits are left in 'tmp', or if all remaining bits left 1143 * in 'tmp' correspond to the same bit in 'to', return false 1144 * (nothing left to migrate). 1145 * 1146 * This lets us pick a pair of nodes to migrate between, such that 1147 * if possible the dest node is not already occupied by some other 1148 * source node, minimizing the risk of overloading the memory on a 1149 * node that would happen if we migrated incoming memory to a node 1150 * before migrating outgoing memory source that same node. 1151 * 1152 * A single scan of tmp is sufficient. As we go, we remember the 1153 * most recent <s, d> pair that moved (s != d). If we find a pair 1154 * that not only moved, but what's better, moved to an empty slot 1155 * (d is not set in tmp), then we break out then, with that pair. 1156 * Otherwise when we finish scanning from_tmp, we at least have the 1157 * most recent <s, d> pair that moved. If we get all the way through 1158 * the scan of tmp without finding any node that moved, much less 1159 * moved to an empty node, then there is nothing left worth migrating. 1160 */ 1161 1162 tmp = *from; 1163 while (!nodes_empty(tmp)) { 1164 int s,d; 1165 int source = NUMA_NO_NODE; 1166 int dest = 0; 1167 1168 for_each_node_mask(s, tmp) { 1169 1170 /* 1171 * do_migrate_pages() tries to maintain the relative 1172 * node relationship of the pages established between 1173 * threads and memory areas. 1174 * 1175 * However if the number of source nodes is not equal to 1176 * the number of destination nodes we can not preserve 1177 * this node relative relationship. In that case, skip 1178 * copying memory from a node that is in the destination 1179 * mask. 1180 * 1181 * Example: [2,3,4] -> [3,4,5] moves everything. 1182 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1183 */ 1184 1185 if ((nodes_weight(*from) != nodes_weight(*to)) && 1186 (node_isset(s, *to))) 1187 continue; 1188 1189 d = node_remap(s, *from, *to); 1190 if (s == d) 1191 continue; 1192 1193 source = s; /* Node moved. Memorize */ 1194 dest = d; 1195 1196 /* dest not in remaining from nodes? */ 1197 if (!node_isset(dest, tmp)) 1198 break; 1199 } 1200 if (source == NUMA_NO_NODE) 1201 break; 1202 1203 node_clear(source, tmp); 1204 err = migrate_to_node(mm, source, dest, flags); 1205 if (err > 0) 1206 busy += err; 1207 if (err < 0) 1208 break; 1209 } 1210 mmap_read_unlock(mm); 1211 if (err < 0) 1212 return err; 1213 return busy; 1214 1215 } 1216 1217 /* 1218 * Allocate a new page for page migration based on vma policy. 1219 * Start by assuming the page is mapped by the same vma as contains @start. 1220 * Search forward from there, if not. N.B., this assumes that the 1221 * list of pages handed to migrate_pages()--which is how we get here-- 1222 * is in virtual address order. 1223 */ 1224 static struct page *new_page(struct page *page, unsigned long start) 1225 { 1226 struct vm_area_struct *vma; 1227 unsigned long address; 1228 1229 vma = find_vma(current->mm, start); 1230 while (vma) { 1231 address = page_address_in_vma(page, vma); 1232 if (address != -EFAULT) 1233 break; 1234 vma = vma->vm_next; 1235 } 1236 1237 if (PageHuge(page)) { 1238 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1239 vma, address); 1240 } else if (PageTransHuge(page)) { 1241 struct page *thp; 1242 1243 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1244 HPAGE_PMD_ORDER); 1245 if (!thp) 1246 return NULL; 1247 prep_transhuge_page(thp); 1248 return thp; 1249 } 1250 /* 1251 * if !vma, alloc_page_vma() will use task or system default policy 1252 */ 1253 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1254 vma, address); 1255 } 1256 #else 1257 1258 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1259 unsigned long flags) 1260 { 1261 return -EIO; 1262 } 1263 1264 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1265 const nodemask_t *to, int flags) 1266 { 1267 return -ENOSYS; 1268 } 1269 1270 static struct page *new_page(struct page *page, unsigned long start) 1271 { 1272 return NULL; 1273 } 1274 #endif 1275 1276 static long do_mbind(unsigned long start, unsigned long len, 1277 unsigned short mode, unsigned short mode_flags, 1278 nodemask_t *nmask, unsigned long flags) 1279 { 1280 struct mm_struct *mm = current->mm; 1281 struct mempolicy *new; 1282 unsigned long end; 1283 int err; 1284 int ret; 1285 LIST_HEAD(pagelist); 1286 1287 if (flags & ~(unsigned long)MPOL_MF_VALID) 1288 return -EINVAL; 1289 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1290 return -EPERM; 1291 1292 if (start & ~PAGE_MASK) 1293 return -EINVAL; 1294 1295 if (mode == MPOL_DEFAULT) 1296 flags &= ~MPOL_MF_STRICT; 1297 1298 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1299 end = start + len; 1300 1301 if (end < start) 1302 return -EINVAL; 1303 if (end == start) 1304 return 0; 1305 1306 new = mpol_new(mode, mode_flags, nmask); 1307 if (IS_ERR(new)) 1308 return PTR_ERR(new); 1309 1310 if (flags & MPOL_MF_LAZY) 1311 new->flags |= MPOL_F_MOF; 1312 1313 /* 1314 * If we are using the default policy then operation 1315 * on discontinuous address spaces is okay after all 1316 */ 1317 if (!new) 1318 flags |= MPOL_MF_DISCONTIG_OK; 1319 1320 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1321 start, start + len, mode, mode_flags, 1322 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1323 1324 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1325 1326 migrate_prep(); 1327 } 1328 { 1329 NODEMASK_SCRATCH(scratch); 1330 if (scratch) { 1331 mmap_write_lock(mm); 1332 err = mpol_set_nodemask(new, nmask, scratch); 1333 if (err) 1334 mmap_write_unlock(mm); 1335 } else 1336 err = -ENOMEM; 1337 NODEMASK_SCRATCH_FREE(scratch); 1338 } 1339 if (err) 1340 goto mpol_out; 1341 1342 ret = queue_pages_range(mm, start, end, nmask, 1343 flags | MPOL_MF_INVERT, &pagelist); 1344 1345 if (ret < 0) { 1346 err = ret; 1347 goto up_out; 1348 } 1349 1350 err = mbind_range(mm, start, end, new); 1351 1352 if (!err) { 1353 int nr_failed = 0; 1354 1355 if (!list_empty(&pagelist)) { 1356 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1357 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1358 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1359 if (nr_failed) 1360 putback_movable_pages(&pagelist); 1361 } 1362 1363 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1364 err = -EIO; 1365 } else { 1366 up_out: 1367 if (!list_empty(&pagelist)) 1368 putback_movable_pages(&pagelist); 1369 } 1370 1371 mmap_write_unlock(mm); 1372 mpol_out: 1373 mpol_put(new); 1374 return err; 1375 } 1376 1377 /* 1378 * User space interface with variable sized bitmaps for nodelists. 1379 */ 1380 1381 /* Copy a node mask from user space. */ 1382 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1383 unsigned long maxnode) 1384 { 1385 unsigned long k; 1386 unsigned long t; 1387 unsigned long nlongs; 1388 unsigned long endmask; 1389 1390 --maxnode; 1391 nodes_clear(*nodes); 1392 if (maxnode == 0 || !nmask) 1393 return 0; 1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1395 return -EINVAL; 1396 1397 nlongs = BITS_TO_LONGS(maxnode); 1398 if ((maxnode % BITS_PER_LONG) == 0) 1399 endmask = ~0UL; 1400 else 1401 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1402 1403 /* 1404 * When the user specified more nodes than supported just check 1405 * if the non supported part is all zero. 1406 * 1407 * If maxnode have more longs than MAX_NUMNODES, check 1408 * the bits in that area first. And then go through to 1409 * check the rest bits which equal or bigger than MAX_NUMNODES. 1410 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1411 */ 1412 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1413 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1414 if (get_user(t, nmask + k)) 1415 return -EFAULT; 1416 if (k == nlongs - 1) { 1417 if (t & endmask) 1418 return -EINVAL; 1419 } else if (t) 1420 return -EINVAL; 1421 } 1422 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1423 endmask = ~0UL; 1424 } 1425 1426 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1427 unsigned long valid_mask = endmask; 1428 1429 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1430 if (get_user(t, nmask + nlongs - 1)) 1431 return -EFAULT; 1432 if (t & valid_mask) 1433 return -EINVAL; 1434 } 1435 1436 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1437 return -EFAULT; 1438 nodes_addr(*nodes)[nlongs-1] &= endmask; 1439 return 0; 1440 } 1441 1442 /* Copy a kernel node mask to user space */ 1443 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1444 nodemask_t *nodes) 1445 { 1446 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1447 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1448 1449 if (copy > nbytes) { 1450 if (copy > PAGE_SIZE) 1451 return -EINVAL; 1452 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1453 return -EFAULT; 1454 copy = nbytes; 1455 } 1456 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1457 } 1458 1459 static long kernel_mbind(unsigned long start, unsigned long len, 1460 unsigned long mode, const unsigned long __user *nmask, 1461 unsigned long maxnode, unsigned int flags) 1462 { 1463 nodemask_t nodes; 1464 int err; 1465 unsigned short mode_flags; 1466 1467 start = untagged_addr(start); 1468 mode_flags = mode & MPOL_MODE_FLAGS; 1469 mode &= ~MPOL_MODE_FLAGS; 1470 if (mode >= MPOL_MAX) 1471 return -EINVAL; 1472 if ((mode_flags & MPOL_F_STATIC_NODES) && 1473 (mode_flags & MPOL_F_RELATIVE_NODES)) 1474 return -EINVAL; 1475 err = get_nodes(&nodes, nmask, maxnode); 1476 if (err) 1477 return err; 1478 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1479 } 1480 1481 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1482 unsigned long, mode, const unsigned long __user *, nmask, 1483 unsigned long, maxnode, unsigned int, flags) 1484 { 1485 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1486 } 1487 1488 /* Set the process memory policy */ 1489 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1490 unsigned long maxnode) 1491 { 1492 int err; 1493 nodemask_t nodes; 1494 unsigned short flags; 1495 1496 flags = mode & MPOL_MODE_FLAGS; 1497 mode &= ~MPOL_MODE_FLAGS; 1498 if ((unsigned int)mode >= MPOL_MAX) 1499 return -EINVAL; 1500 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1501 return -EINVAL; 1502 err = get_nodes(&nodes, nmask, maxnode); 1503 if (err) 1504 return err; 1505 return do_set_mempolicy(mode, flags, &nodes); 1506 } 1507 1508 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1509 unsigned long, maxnode) 1510 { 1511 return kernel_set_mempolicy(mode, nmask, maxnode); 1512 } 1513 1514 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1515 const unsigned long __user *old_nodes, 1516 const unsigned long __user *new_nodes) 1517 { 1518 struct mm_struct *mm = NULL; 1519 struct task_struct *task; 1520 nodemask_t task_nodes; 1521 int err; 1522 nodemask_t *old; 1523 nodemask_t *new; 1524 NODEMASK_SCRATCH(scratch); 1525 1526 if (!scratch) 1527 return -ENOMEM; 1528 1529 old = &scratch->mask1; 1530 new = &scratch->mask2; 1531 1532 err = get_nodes(old, old_nodes, maxnode); 1533 if (err) 1534 goto out; 1535 1536 err = get_nodes(new, new_nodes, maxnode); 1537 if (err) 1538 goto out; 1539 1540 /* Find the mm_struct */ 1541 rcu_read_lock(); 1542 task = pid ? find_task_by_vpid(pid) : current; 1543 if (!task) { 1544 rcu_read_unlock(); 1545 err = -ESRCH; 1546 goto out; 1547 } 1548 get_task_struct(task); 1549 1550 err = -EINVAL; 1551 1552 /* 1553 * Check if this process has the right to modify the specified process. 1554 * Use the regular "ptrace_may_access()" checks. 1555 */ 1556 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1557 rcu_read_unlock(); 1558 err = -EPERM; 1559 goto out_put; 1560 } 1561 rcu_read_unlock(); 1562 1563 task_nodes = cpuset_mems_allowed(task); 1564 /* Is the user allowed to access the target nodes? */ 1565 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1566 err = -EPERM; 1567 goto out_put; 1568 } 1569 1570 task_nodes = cpuset_mems_allowed(current); 1571 nodes_and(*new, *new, task_nodes); 1572 if (nodes_empty(*new)) 1573 goto out_put; 1574 1575 err = security_task_movememory(task); 1576 if (err) 1577 goto out_put; 1578 1579 mm = get_task_mm(task); 1580 put_task_struct(task); 1581 1582 if (!mm) { 1583 err = -EINVAL; 1584 goto out; 1585 } 1586 1587 err = do_migrate_pages(mm, old, new, 1588 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1589 1590 mmput(mm); 1591 out: 1592 NODEMASK_SCRATCH_FREE(scratch); 1593 1594 return err; 1595 1596 out_put: 1597 put_task_struct(task); 1598 goto out; 1599 1600 } 1601 1602 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1603 const unsigned long __user *, old_nodes, 1604 const unsigned long __user *, new_nodes) 1605 { 1606 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1607 } 1608 1609 1610 /* Retrieve NUMA policy */ 1611 static int kernel_get_mempolicy(int __user *policy, 1612 unsigned long __user *nmask, 1613 unsigned long maxnode, 1614 unsigned long addr, 1615 unsigned long flags) 1616 { 1617 int err; 1618 int pval; 1619 nodemask_t nodes; 1620 1621 if (nmask != NULL && maxnode < nr_node_ids) 1622 return -EINVAL; 1623 1624 addr = untagged_addr(addr); 1625 1626 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1627 1628 if (err) 1629 return err; 1630 1631 if (policy && put_user(pval, policy)) 1632 return -EFAULT; 1633 1634 if (nmask) 1635 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1636 1637 return err; 1638 } 1639 1640 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1641 unsigned long __user *, nmask, unsigned long, maxnode, 1642 unsigned long, addr, unsigned long, flags) 1643 { 1644 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1645 } 1646 1647 #ifdef CONFIG_COMPAT 1648 1649 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1650 compat_ulong_t __user *, nmask, 1651 compat_ulong_t, maxnode, 1652 compat_ulong_t, addr, compat_ulong_t, flags) 1653 { 1654 long err; 1655 unsigned long __user *nm = NULL; 1656 unsigned long nr_bits, alloc_size; 1657 DECLARE_BITMAP(bm, MAX_NUMNODES); 1658 1659 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1660 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1661 1662 if (nmask) 1663 nm = compat_alloc_user_space(alloc_size); 1664 1665 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1666 1667 if (!err && nmask) { 1668 unsigned long copy_size; 1669 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1670 err = copy_from_user(bm, nm, copy_size); 1671 /* ensure entire bitmap is zeroed */ 1672 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1673 err |= compat_put_bitmap(nmask, bm, nr_bits); 1674 } 1675 1676 return err; 1677 } 1678 1679 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1680 compat_ulong_t, maxnode) 1681 { 1682 unsigned long __user *nm = NULL; 1683 unsigned long nr_bits, alloc_size; 1684 DECLARE_BITMAP(bm, MAX_NUMNODES); 1685 1686 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1687 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1688 1689 if (nmask) { 1690 if (compat_get_bitmap(bm, nmask, nr_bits)) 1691 return -EFAULT; 1692 nm = compat_alloc_user_space(alloc_size); 1693 if (copy_to_user(nm, bm, alloc_size)) 1694 return -EFAULT; 1695 } 1696 1697 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1698 } 1699 1700 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1701 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1702 compat_ulong_t, maxnode, compat_ulong_t, flags) 1703 { 1704 unsigned long __user *nm = NULL; 1705 unsigned long nr_bits, alloc_size; 1706 nodemask_t bm; 1707 1708 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1709 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1710 1711 if (nmask) { 1712 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1713 return -EFAULT; 1714 nm = compat_alloc_user_space(alloc_size); 1715 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1716 return -EFAULT; 1717 } 1718 1719 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1720 } 1721 1722 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1723 compat_ulong_t, maxnode, 1724 const compat_ulong_t __user *, old_nodes, 1725 const compat_ulong_t __user *, new_nodes) 1726 { 1727 unsigned long __user *old = NULL; 1728 unsigned long __user *new = NULL; 1729 nodemask_t tmp_mask; 1730 unsigned long nr_bits; 1731 unsigned long size; 1732 1733 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1734 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1735 if (old_nodes) { 1736 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1737 return -EFAULT; 1738 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1739 if (new_nodes) 1740 new = old + size / sizeof(unsigned long); 1741 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1742 return -EFAULT; 1743 } 1744 if (new_nodes) { 1745 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1746 return -EFAULT; 1747 if (new == NULL) 1748 new = compat_alloc_user_space(size); 1749 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1750 return -EFAULT; 1751 } 1752 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1753 } 1754 1755 #endif /* CONFIG_COMPAT */ 1756 1757 bool vma_migratable(struct vm_area_struct *vma) 1758 { 1759 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1760 return false; 1761 1762 /* 1763 * DAX device mappings require predictable access latency, so avoid 1764 * incurring periodic faults. 1765 */ 1766 if (vma_is_dax(vma)) 1767 return false; 1768 1769 if (is_vm_hugetlb_page(vma) && 1770 !hugepage_migration_supported(hstate_vma(vma))) 1771 return false; 1772 1773 /* 1774 * Migration allocates pages in the highest zone. If we cannot 1775 * do so then migration (at least from node to node) is not 1776 * possible. 1777 */ 1778 if (vma->vm_file && 1779 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1780 < policy_zone) 1781 return false; 1782 return true; 1783 } 1784 1785 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1786 unsigned long addr) 1787 { 1788 struct mempolicy *pol = NULL; 1789 1790 if (vma) { 1791 if (vma->vm_ops && vma->vm_ops->get_policy) { 1792 pol = vma->vm_ops->get_policy(vma, addr); 1793 } else if (vma->vm_policy) { 1794 pol = vma->vm_policy; 1795 1796 /* 1797 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1798 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1799 * count on these policies which will be dropped by 1800 * mpol_cond_put() later 1801 */ 1802 if (mpol_needs_cond_ref(pol)) 1803 mpol_get(pol); 1804 } 1805 } 1806 1807 return pol; 1808 } 1809 1810 /* 1811 * get_vma_policy(@vma, @addr) 1812 * @vma: virtual memory area whose policy is sought 1813 * @addr: address in @vma for shared policy lookup 1814 * 1815 * Returns effective policy for a VMA at specified address. 1816 * Falls back to current->mempolicy or system default policy, as necessary. 1817 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1818 * count--added by the get_policy() vm_op, as appropriate--to protect against 1819 * freeing by another task. It is the caller's responsibility to free the 1820 * extra reference for shared policies. 1821 */ 1822 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1823 unsigned long addr) 1824 { 1825 struct mempolicy *pol = __get_vma_policy(vma, addr); 1826 1827 if (!pol) 1828 pol = get_task_policy(current); 1829 1830 return pol; 1831 } 1832 1833 bool vma_policy_mof(struct vm_area_struct *vma) 1834 { 1835 struct mempolicy *pol; 1836 1837 if (vma->vm_ops && vma->vm_ops->get_policy) { 1838 bool ret = false; 1839 1840 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1841 if (pol && (pol->flags & MPOL_F_MOF)) 1842 ret = true; 1843 mpol_cond_put(pol); 1844 1845 return ret; 1846 } 1847 1848 pol = vma->vm_policy; 1849 if (!pol) 1850 pol = get_task_policy(current); 1851 1852 return pol->flags & MPOL_F_MOF; 1853 } 1854 1855 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1856 { 1857 enum zone_type dynamic_policy_zone = policy_zone; 1858 1859 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1860 1861 /* 1862 * if policy->v.nodes has movable memory only, 1863 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1864 * 1865 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1866 * so if the following test faile, it implies 1867 * policy->v.nodes has movable memory only. 1868 */ 1869 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1870 dynamic_policy_zone = ZONE_MOVABLE; 1871 1872 return zone >= dynamic_policy_zone; 1873 } 1874 1875 /* 1876 * Return a nodemask representing a mempolicy for filtering nodes for 1877 * page allocation 1878 */ 1879 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1880 { 1881 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1882 if (unlikely(policy->mode == MPOL_BIND) && 1883 apply_policy_zone(policy, gfp_zone(gfp)) && 1884 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1885 return &policy->v.nodes; 1886 1887 return NULL; 1888 } 1889 1890 /* Return the node id preferred by the given mempolicy, or the given id */ 1891 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1892 { 1893 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1894 nd = policy->v.preferred_node; 1895 else { 1896 /* 1897 * __GFP_THISNODE shouldn't even be used with the bind policy 1898 * because we might easily break the expectation to stay on the 1899 * requested node and not break the policy. 1900 */ 1901 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1902 } 1903 1904 return nd; 1905 } 1906 1907 /* Do dynamic interleaving for a process */ 1908 static unsigned interleave_nodes(struct mempolicy *policy) 1909 { 1910 unsigned next; 1911 struct task_struct *me = current; 1912 1913 next = next_node_in(me->il_prev, policy->v.nodes); 1914 if (next < MAX_NUMNODES) 1915 me->il_prev = next; 1916 return next; 1917 } 1918 1919 /* 1920 * Depending on the memory policy provide a node from which to allocate the 1921 * next slab entry. 1922 */ 1923 unsigned int mempolicy_slab_node(void) 1924 { 1925 struct mempolicy *policy; 1926 int node = numa_mem_id(); 1927 1928 if (in_interrupt()) 1929 return node; 1930 1931 policy = current->mempolicy; 1932 if (!policy || policy->flags & MPOL_F_LOCAL) 1933 return node; 1934 1935 switch (policy->mode) { 1936 case MPOL_PREFERRED: 1937 /* 1938 * handled MPOL_F_LOCAL above 1939 */ 1940 return policy->v.preferred_node; 1941 1942 case MPOL_INTERLEAVE: 1943 return interleave_nodes(policy); 1944 1945 case MPOL_BIND: { 1946 struct zoneref *z; 1947 1948 /* 1949 * Follow bind policy behavior and start allocation at the 1950 * first node. 1951 */ 1952 struct zonelist *zonelist; 1953 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1954 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1955 z = first_zones_zonelist(zonelist, highest_zoneidx, 1956 &policy->v.nodes); 1957 return z->zone ? zone_to_nid(z->zone) : node; 1958 } 1959 1960 default: 1961 BUG(); 1962 } 1963 } 1964 1965 /* 1966 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1967 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1968 * number of present nodes. 1969 */ 1970 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1971 { 1972 unsigned nnodes = nodes_weight(pol->v.nodes); 1973 unsigned target; 1974 int i; 1975 int nid; 1976 1977 if (!nnodes) 1978 return numa_node_id(); 1979 target = (unsigned int)n % nnodes; 1980 nid = first_node(pol->v.nodes); 1981 for (i = 0; i < target; i++) 1982 nid = next_node(nid, pol->v.nodes); 1983 return nid; 1984 } 1985 1986 /* Determine a node number for interleave */ 1987 static inline unsigned interleave_nid(struct mempolicy *pol, 1988 struct vm_area_struct *vma, unsigned long addr, int shift) 1989 { 1990 if (vma) { 1991 unsigned long off; 1992 1993 /* 1994 * for small pages, there is no difference between 1995 * shift and PAGE_SHIFT, so the bit-shift is safe. 1996 * for huge pages, since vm_pgoff is in units of small 1997 * pages, we need to shift off the always 0 bits to get 1998 * a useful offset. 1999 */ 2000 BUG_ON(shift < PAGE_SHIFT); 2001 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 2002 off += (addr - vma->vm_start) >> shift; 2003 return offset_il_node(pol, off); 2004 } else 2005 return interleave_nodes(pol); 2006 } 2007 2008 #ifdef CONFIG_HUGETLBFS 2009 /* 2010 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2011 * @vma: virtual memory area whose policy is sought 2012 * @addr: address in @vma for shared policy lookup and interleave policy 2013 * @gfp_flags: for requested zone 2014 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2015 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 2016 * 2017 * Returns a nid suitable for a huge page allocation and a pointer 2018 * to the struct mempolicy for conditional unref after allocation. 2019 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 2020 * @nodemask for filtering the zonelist. 2021 * 2022 * Must be protected by read_mems_allowed_begin() 2023 */ 2024 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2025 struct mempolicy **mpol, nodemask_t **nodemask) 2026 { 2027 int nid; 2028 2029 *mpol = get_vma_policy(vma, addr); 2030 *nodemask = NULL; /* assume !MPOL_BIND */ 2031 2032 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 2033 nid = interleave_nid(*mpol, vma, addr, 2034 huge_page_shift(hstate_vma(vma))); 2035 } else { 2036 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2037 if ((*mpol)->mode == MPOL_BIND) 2038 *nodemask = &(*mpol)->v.nodes; 2039 } 2040 return nid; 2041 } 2042 2043 /* 2044 * init_nodemask_of_mempolicy 2045 * 2046 * If the current task's mempolicy is "default" [NULL], return 'false' 2047 * to indicate default policy. Otherwise, extract the policy nodemask 2048 * for 'bind' or 'interleave' policy into the argument nodemask, or 2049 * initialize the argument nodemask to contain the single node for 2050 * 'preferred' or 'local' policy and return 'true' to indicate presence 2051 * of non-default mempolicy. 2052 * 2053 * We don't bother with reference counting the mempolicy [mpol_get/put] 2054 * because the current task is examining it's own mempolicy and a task's 2055 * mempolicy is only ever changed by the task itself. 2056 * 2057 * N.B., it is the caller's responsibility to free a returned nodemask. 2058 */ 2059 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2060 { 2061 struct mempolicy *mempolicy; 2062 int nid; 2063 2064 if (!(mask && current->mempolicy)) 2065 return false; 2066 2067 task_lock(current); 2068 mempolicy = current->mempolicy; 2069 switch (mempolicy->mode) { 2070 case MPOL_PREFERRED: 2071 if (mempolicy->flags & MPOL_F_LOCAL) 2072 nid = numa_node_id(); 2073 else 2074 nid = mempolicy->v.preferred_node; 2075 init_nodemask_of_node(mask, nid); 2076 break; 2077 2078 case MPOL_BIND: 2079 case MPOL_INTERLEAVE: 2080 *mask = mempolicy->v.nodes; 2081 break; 2082 2083 default: 2084 BUG(); 2085 } 2086 task_unlock(current); 2087 2088 return true; 2089 } 2090 #endif 2091 2092 /* 2093 * mempolicy_nodemask_intersects 2094 * 2095 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2096 * policy. Otherwise, check for intersection between mask and the policy 2097 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2098 * policy, always return true since it may allocate elsewhere on fallback. 2099 * 2100 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2101 */ 2102 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2103 const nodemask_t *mask) 2104 { 2105 struct mempolicy *mempolicy; 2106 bool ret = true; 2107 2108 if (!mask) 2109 return ret; 2110 task_lock(tsk); 2111 mempolicy = tsk->mempolicy; 2112 if (!mempolicy) 2113 goto out; 2114 2115 switch (mempolicy->mode) { 2116 case MPOL_PREFERRED: 2117 /* 2118 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2119 * allocate from, they may fallback to other nodes when oom. 2120 * Thus, it's possible for tsk to have allocated memory from 2121 * nodes in mask. 2122 */ 2123 break; 2124 case MPOL_BIND: 2125 case MPOL_INTERLEAVE: 2126 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2127 break; 2128 default: 2129 BUG(); 2130 } 2131 out: 2132 task_unlock(tsk); 2133 return ret; 2134 } 2135 2136 /* Allocate a page in interleaved policy. 2137 Own path because it needs to do special accounting. */ 2138 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2139 unsigned nid) 2140 { 2141 struct page *page; 2142 2143 page = __alloc_pages(gfp, order, nid, NULL); 2144 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2145 if (!static_branch_likely(&vm_numa_stat_key)) 2146 return page; 2147 if (page && page_to_nid(page) == nid) { 2148 preempt_disable(); 2149 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2150 preempt_enable(); 2151 } 2152 return page; 2153 } 2154 2155 /** 2156 * alloc_pages_vma - Allocate a page for a VMA. 2157 * @gfp: GFP flags. 2158 * @order: Order of the GFP allocation. 2159 * @vma: Pointer to VMA or NULL if not available. 2160 * @addr: Virtual address of the allocation. Must be inside @vma. 2161 * @node: Which node to prefer for allocation (modulo policy). 2162 * @hugepage: For hugepages try only the preferred node if possible. 2163 * 2164 * Allocate a page for a specific address in @vma, using the appropriate 2165 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2166 * of the mm_struct of the VMA to prevent it from going away. Should be 2167 * used for all allocations for pages that will be mapped into user space. 2168 * 2169 * Return: The page on success or NULL if allocation fails. 2170 */ 2171 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2172 unsigned long addr, int node, bool hugepage) 2173 { 2174 struct mempolicy *pol; 2175 struct page *page; 2176 int preferred_nid; 2177 nodemask_t *nmask; 2178 2179 pol = get_vma_policy(vma, addr); 2180 2181 if (pol->mode == MPOL_INTERLEAVE) { 2182 unsigned nid; 2183 2184 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2185 mpol_cond_put(pol); 2186 page = alloc_page_interleave(gfp, order, nid); 2187 goto out; 2188 } 2189 2190 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2191 int hpage_node = node; 2192 2193 /* 2194 * For hugepage allocation and non-interleave policy which 2195 * allows the current node (or other explicitly preferred 2196 * node) we only try to allocate from the current/preferred 2197 * node and don't fall back to other nodes, as the cost of 2198 * remote accesses would likely offset THP benefits. 2199 * 2200 * If the policy is interleave, or does not allow the current 2201 * node in its nodemask, we allocate the standard way. 2202 */ 2203 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2204 hpage_node = pol->v.preferred_node; 2205 2206 nmask = policy_nodemask(gfp, pol); 2207 if (!nmask || node_isset(hpage_node, *nmask)) { 2208 mpol_cond_put(pol); 2209 /* 2210 * First, try to allocate THP only on local node, but 2211 * don't reclaim unnecessarily, just compact. 2212 */ 2213 page = __alloc_pages_node(hpage_node, 2214 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2215 2216 /* 2217 * If hugepage allocations are configured to always 2218 * synchronous compact or the vma has been madvised 2219 * to prefer hugepage backing, retry allowing remote 2220 * memory with both reclaim and compact as well. 2221 */ 2222 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2223 page = __alloc_pages_node(hpage_node, 2224 gfp, order); 2225 2226 goto out; 2227 } 2228 } 2229 2230 nmask = policy_nodemask(gfp, pol); 2231 preferred_nid = policy_node(gfp, pol, node); 2232 page = __alloc_pages(gfp, order, preferred_nid, nmask); 2233 mpol_cond_put(pol); 2234 out: 2235 return page; 2236 } 2237 EXPORT_SYMBOL(alloc_pages_vma); 2238 2239 /** 2240 * alloc_pages - Allocate pages. 2241 * @gfp: GFP flags. 2242 * @order: Power of two of number of pages to allocate. 2243 * 2244 * Allocate 1 << @order contiguous pages. The physical address of the 2245 * first page is naturally aligned (eg an order-3 allocation will be aligned 2246 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2247 * process is honoured when in process context. 2248 * 2249 * Context: Can be called from any context, providing the appropriate GFP 2250 * flags are used. 2251 * Return: The page on success or NULL if allocation fails. 2252 */ 2253 struct page *alloc_pages(gfp_t gfp, unsigned order) 2254 { 2255 struct mempolicy *pol = &default_policy; 2256 struct page *page; 2257 2258 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2259 pol = get_task_policy(current); 2260 2261 /* 2262 * No reference counting needed for current->mempolicy 2263 * nor system default_policy 2264 */ 2265 if (pol->mode == MPOL_INTERLEAVE) 2266 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2267 else 2268 page = __alloc_pages(gfp, order, 2269 policy_node(gfp, pol, numa_node_id()), 2270 policy_nodemask(gfp, pol)); 2271 2272 return page; 2273 } 2274 EXPORT_SYMBOL(alloc_pages); 2275 2276 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2277 { 2278 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2279 2280 if (IS_ERR(pol)) 2281 return PTR_ERR(pol); 2282 dst->vm_policy = pol; 2283 return 0; 2284 } 2285 2286 /* 2287 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2288 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2289 * with the mems_allowed returned by cpuset_mems_allowed(). This 2290 * keeps mempolicies cpuset relative after its cpuset moves. See 2291 * further kernel/cpuset.c update_nodemask(). 2292 * 2293 * current's mempolicy may be rebinded by the other task(the task that changes 2294 * cpuset's mems), so we needn't do rebind work for current task. 2295 */ 2296 2297 /* Slow path of a mempolicy duplicate */ 2298 struct mempolicy *__mpol_dup(struct mempolicy *old) 2299 { 2300 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2301 2302 if (!new) 2303 return ERR_PTR(-ENOMEM); 2304 2305 /* task's mempolicy is protected by alloc_lock */ 2306 if (old == current->mempolicy) { 2307 task_lock(current); 2308 *new = *old; 2309 task_unlock(current); 2310 } else 2311 *new = *old; 2312 2313 if (current_cpuset_is_being_rebound()) { 2314 nodemask_t mems = cpuset_mems_allowed(current); 2315 mpol_rebind_policy(new, &mems); 2316 } 2317 atomic_set(&new->refcnt, 1); 2318 return new; 2319 } 2320 2321 /* Slow path of a mempolicy comparison */ 2322 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2323 { 2324 if (!a || !b) 2325 return false; 2326 if (a->mode != b->mode) 2327 return false; 2328 if (a->flags != b->flags) 2329 return false; 2330 if (mpol_store_user_nodemask(a)) 2331 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2332 return false; 2333 2334 switch (a->mode) { 2335 case MPOL_BIND: 2336 case MPOL_INTERLEAVE: 2337 return !!nodes_equal(a->v.nodes, b->v.nodes); 2338 case MPOL_PREFERRED: 2339 /* a's ->flags is the same as b's */ 2340 if (a->flags & MPOL_F_LOCAL) 2341 return true; 2342 return a->v.preferred_node == b->v.preferred_node; 2343 default: 2344 BUG(); 2345 return false; 2346 } 2347 } 2348 2349 /* 2350 * Shared memory backing store policy support. 2351 * 2352 * Remember policies even when nobody has shared memory mapped. 2353 * The policies are kept in Red-Black tree linked from the inode. 2354 * They are protected by the sp->lock rwlock, which should be held 2355 * for any accesses to the tree. 2356 */ 2357 2358 /* 2359 * lookup first element intersecting start-end. Caller holds sp->lock for 2360 * reading or for writing 2361 */ 2362 static struct sp_node * 2363 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2364 { 2365 struct rb_node *n = sp->root.rb_node; 2366 2367 while (n) { 2368 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2369 2370 if (start >= p->end) 2371 n = n->rb_right; 2372 else if (end <= p->start) 2373 n = n->rb_left; 2374 else 2375 break; 2376 } 2377 if (!n) 2378 return NULL; 2379 for (;;) { 2380 struct sp_node *w = NULL; 2381 struct rb_node *prev = rb_prev(n); 2382 if (!prev) 2383 break; 2384 w = rb_entry(prev, struct sp_node, nd); 2385 if (w->end <= start) 2386 break; 2387 n = prev; 2388 } 2389 return rb_entry(n, struct sp_node, nd); 2390 } 2391 2392 /* 2393 * Insert a new shared policy into the list. Caller holds sp->lock for 2394 * writing. 2395 */ 2396 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2397 { 2398 struct rb_node **p = &sp->root.rb_node; 2399 struct rb_node *parent = NULL; 2400 struct sp_node *nd; 2401 2402 while (*p) { 2403 parent = *p; 2404 nd = rb_entry(parent, struct sp_node, nd); 2405 if (new->start < nd->start) 2406 p = &(*p)->rb_left; 2407 else if (new->end > nd->end) 2408 p = &(*p)->rb_right; 2409 else 2410 BUG(); 2411 } 2412 rb_link_node(&new->nd, parent, p); 2413 rb_insert_color(&new->nd, &sp->root); 2414 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2415 new->policy ? new->policy->mode : 0); 2416 } 2417 2418 /* Find shared policy intersecting idx */ 2419 struct mempolicy * 2420 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2421 { 2422 struct mempolicy *pol = NULL; 2423 struct sp_node *sn; 2424 2425 if (!sp->root.rb_node) 2426 return NULL; 2427 read_lock(&sp->lock); 2428 sn = sp_lookup(sp, idx, idx+1); 2429 if (sn) { 2430 mpol_get(sn->policy); 2431 pol = sn->policy; 2432 } 2433 read_unlock(&sp->lock); 2434 return pol; 2435 } 2436 2437 static void sp_free(struct sp_node *n) 2438 { 2439 mpol_put(n->policy); 2440 kmem_cache_free(sn_cache, n); 2441 } 2442 2443 /** 2444 * mpol_misplaced - check whether current page node is valid in policy 2445 * 2446 * @page: page to be checked 2447 * @vma: vm area where page mapped 2448 * @addr: virtual address where page mapped 2449 * 2450 * Lookup current policy node id for vma,addr and "compare to" page's 2451 * node id. Policy determination "mimics" alloc_page_vma(). 2452 * Called from fault path where we know the vma and faulting address. 2453 * 2454 * Return: -1 if the page is in a node that is valid for this policy, or a 2455 * suitable node ID to allocate a replacement page from. 2456 */ 2457 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2458 { 2459 struct mempolicy *pol; 2460 struct zoneref *z; 2461 int curnid = page_to_nid(page); 2462 unsigned long pgoff; 2463 int thiscpu = raw_smp_processor_id(); 2464 int thisnid = cpu_to_node(thiscpu); 2465 int polnid = NUMA_NO_NODE; 2466 int ret = -1; 2467 2468 pol = get_vma_policy(vma, addr); 2469 if (!(pol->flags & MPOL_F_MOF)) 2470 goto out; 2471 2472 switch (pol->mode) { 2473 case MPOL_INTERLEAVE: 2474 pgoff = vma->vm_pgoff; 2475 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2476 polnid = offset_il_node(pol, pgoff); 2477 break; 2478 2479 case MPOL_PREFERRED: 2480 if (pol->flags & MPOL_F_LOCAL) 2481 polnid = numa_node_id(); 2482 else 2483 polnid = pol->v.preferred_node; 2484 break; 2485 2486 case MPOL_BIND: 2487 /* Optimize placement among multiple nodes via NUMA balancing */ 2488 if (pol->flags & MPOL_F_MORON) { 2489 if (node_isset(thisnid, pol->v.nodes)) 2490 break; 2491 goto out; 2492 } 2493 2494 /* 2495 * allows binding to multiple nodes. 2496 * use current page if in policy nodemask, 2497 * else select nearest allowed node, if any. 2498 * If no allowed nodes, use current [!misplaced]. 2499 */ 2500 if (node_isset(curnid, pol->v.nodes)) 2501 goto out; 2502 z = first_zones_zonelist( 2503 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2504 gfp_zone(GFP_HIGHUSER), 2505 &pol->v.nodes); 2506 polnid = zone_to_nid(z->zone); 2507 break; 2508 2509 default: 2510 BUG(); 2511 } 2512 2513 /* Migrate the page towards the node whose CPU is referencing it */ 2514 if (pol->flags & MPOL_F_MORON) { 2515 polnid = thisnid; 2516 2517 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2518 goto out; 2519 } 2520 2521 if (curnid != polnid) 2522 ret = polnid; 2523 out: 2524 mpol_cond_put(pol); 2525 2526 return ret; 2527 } 2528 2529 /* 2530 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2531 * dropped after task->mempolicy is set to NULL so that any allocation done as 2532 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2533 * policy. 2534 */ 2535 void mpol_put_task_policy(struct task_struct *task) 2536 { 2537 struct mempolicy *pol; 2538 2539 task_lock(task); 2540 pol = task->mempolicy; 2541 task->mempolicy = NULL; 2542 task_unlock(task); 2543 mpol_put(pol); 2544 } 2545 2546 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2547 { 2548 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2549 rb_erase(&n->nd, &sp->root); 2550 sp_free(n); 2551 } 2552 2553 static void sp_node_init(struct sp_node *node, unsigned long start, 2554 unsigned long end, struct mempolicy *pol) 2555 { 2556 node->start = start; 2557 node->end = end; 2558 node->policy = pol; 2559 } 2560 2561 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2562 struct mempolicy *pol) 2563 { 2564 struct sp_node *n; 2565 struct mempolicy *newpol; 2566 2567 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2568 if (!n) 2569 return NULL; 2570 2571 newpol = mpol_dup(pol); 2572 if (IS_ERR(newpol)) { 2573 kmem_cache_free(sn_cache, n); 2574 return NULL; 2575 } 2576 newpol->flags |= MPOL_F_SHARED; 2577 sp_node_init(n, start, end, newpol); 2578 2579 return n; 2580 } 2581 2582 /* Replace a policy range. */ 2583 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2584 unsigned long end, struct sp_node *new) 2585 { 2586 struct sp_node *n; 2587 struct sp_node *n_new = NULL; 2588 struct mempolicy *mpol_new = NULL; 2589 int ret = 0; 2590 2591 restart: 2592 write_lock(&sp->lock); 2593 n = sp_lookup(sp, start, end); 2594 /* Take care of old policies in the same range. */ 2595 while (n && n->start < end) { 2596 struct rb_node *next = rb_next(&n->nd); 2597 if (n->start >= start) { 2598 if (n->end <= end) 2599 sp_delete(sp, n); 2600 else 2601 n->start = end; 2602 } else { 2603 /* Old policy spanning whole new range. */ 2604 if (n->end > end) { 2605 if (!n_new) 2606 goto alloc_new; 2607 2608 *mpol_new = *n->policy; 2609 atomic_set(&mpol_new->refcnt, 1); 2610 sp_node_init(n_new, end, n->end, mpol_new); 2611 n->end = start; 2612 sp_insert(sp, n_new); 2613 n_new = NULL; 2614 mpol_new = NULL; 2615 break; 2616 } else 2617 n->end = start; 2618 } 2619 if (!next) 2620 break; 2621 n = rb_entry(next, struct sp_node, nd); 2622 } 2623 if (new) 2624 sp_insert(sp, new); 2625 write_unlock(&sp->lock); 2626 ret = 0; 2627 2628 err_out: 2629 if (mpol_new) 2630 mpol_put(mpol_new); 2631 if (n_new) 2632 kmem_cache_free(sn_cache, n_new); 2633 2634 return ret; 2635 2636 alloc_new: 2637 write_unlock(&sp->lock); 2638 ret = -ENOMEM; 2639 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2640 if (!n_new) 2641 goto err_out; 2642 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2643 if (!mpol_new) 2644 goto err_out; 2645 goto restart; 2646 } 2647 2648 /** 2649 * mpol_shared_policy_init - initialize shared policy for inode 2650 * @sp: pointer to inode shared policy 2651 * @mpol: struct mempolicy to install 2652 * 2653 * Install non-NULL @mpol in inode's shared policy rb-tree. 2654 * On entry, the current task has a reference on a non-NULL @mpol. 2655 * This must be released on exit. 2656 * This is called at get_inode() calls and we can use GFP_KERNEL. 2657 */ 2658 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2659 { 2660 int ret; 2661 2662 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2663 rwlock_init(&sp->lock); 2664 2665 if (mpol) { 2666 struct vm_area_struct pvma; 2667 struct mempolicy *new; 2668 NODEMASK_SCRATCH(scratch); 2669 2670 if (!scratch) 2671 goto put_mpol; 2672 /* contextualize the tmpfs mount point mempolicy */ 2673 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2674 if (IS_ERR(new)) 2675 goto free_scratch; /* no valid nodemask intersection */ 2676 2677 task_lock(current); 2678 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2679 task_unlock(current); 2680 if (ret) 2681 goto put_new; 2682 2683 /* Create pseudo-vma that contains just the policy */ 2684 vma_init(&pvma, NULL); 2685 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2686 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2687 2688 put_new: 2689 mpol_put(new); /* drop initial ref */ 2690 free_scratch: 2691 NODEMASK_SCRATCH_FREE(scratch); 2692 put_mpol: 2693 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2694 } 2695 } 2696 2697 int mpol_set_shared_policy(struct shared_policy *info, 2698 struct vm_area_struct *vma, struct mempolicy *npol) 2699 { 2700 int err; 2701 struct sp_node *new = NULL; 2702 unsigned long sz = vma_pages(vma); 2703 2704 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2705 vma->vm_pgoff, 2706 sz, npol ? npol->mode : -1, 2707 npol ? npol->flags : -1, 2708 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2709 2710 if (npol) { 2711 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2712 if (!new) 2713 return -ENOMEM; 2714 } 2715 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2716 if (err && new) 2717 sp_free(new); 2718 return err; 2719 } 2720 2721 /* Free a backing policy store on inode delete. */ 2722 void mpol_free_shared_policy(struct shared_policy *p) 2723 { 2724 struct sp_node *n; 2725 struct rb_node *next; 2726 2727 if (!p->root.rb_node) 2728 return; 2729 write_lock(&p->lock); 2730 next = rb_first(&p->root); 2731 while (next) { 2732 n = rb_entry(next, struct sp_node, nd); 2733 next = rb_next(&n->nd); 2734 sp_delete(p, n); 2735 } 2736 write_unlock(&p->lock); 2737 } 2738 2739 #ifdef CONFIG_NUMA_BALANCING 2740 static int __initdata numabalancing_override; 2741 2742 static void __init check_numabalancing_enable(void) 2743 { 2744 bool numabalancing_default = false; 2745 2746 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2747 numabalancing_default = true; 2748 2749 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2750 if (numabalancing_override) 2751 set_numabalancing_state(numabalancing_override == 1); 2752 2753 if (num_online_nodes() > 1 && !numabalancing_override) { 2754 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2755 numabalancing_default ? "Enabling" : "Disabling"); 2756 set_numabalancing_state(numabalancing_default); 2757 } 2758 } 2759 2760 static int __init setup_numabalancing(char *str) 2761 { 2762 int ret = 0; 2763 if (!str) 2764 goto out; 2765 2766 if (!strcmp(str, "enable")) { 2767 numabalancing_override = 1; 2768 ret = 1; 2769 } else if (!strcmp(str, "disable")) { 2770 numabalancing_override = -1; 2771 ret = 1; 2772 } 2773 out: 2774 if (!ret) 2775 pr_warn("Unable to parse numa_balancing=\n"); 2776 2777 return ret; 2778 } 2779 __setup("numa_balancing=", setup_numabalancing); 2780 #else 2781 static inline void __init check_numabalancing_enable(void) 2782 { 2783 } 2784 #endif /* CONFIG_NUMA_BALANCING */ 2785 2786 /* assumes fs == KERNEL_DS */ 2787 void __init numa_policy_init(void) 2788 { 2789 nodemask_t interleave_nodes; 2790 unsigned long largest = 0; 2791 int nid, prefer = 0; 2792 2793 policy_cache = kmem_cache_create("numa_policy", 2794 sizeof(struct mempolicy), 2795 0, SLAB_PANIC, NULL); 2796 2797 sn_cache = kmem_cache_create("shared_policy_node", 2798 sizeof(struct sp_node), 2799 0, SLAB_PANIC, NULL); 2800 2801 for_each_node(nid) { 2802 preferred_node_policy[nid] = (struct mempolicy) { 2803 .refcnt = ATOMIC_INIT(1), 2804 .mode = MPOL_PREFERRED, 2805 .flags = MPOL_F_MOF | MPOL_F_MORON, 2806 .v = { .preferred_node = nid, }, 2807 }; 2808 } 2809 2810 /* 2811 * Set interleaving policy for system init. Interleaving is only 2812 * enabled across suitably sized nodes (default is >= 16MB), or 2813 * fall back to the largest node if they're all smaller. 2814 */ 2815 nodes_clear(interleave_nodes); 2816 for_each_node_state(nid, N_MEMORY) { 2817 unsigned long total_pages = node_present_pages(nid); 2818 2819 /* Preserve the largest node */ 2820 if (largest < total_pages) { 2821 largest = total_pages; 2822 prefer = nid; 2823 } 2824 2825 /* Interleave this node? */ 2826 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2827 node_set(nid, interleave_nodes); 2828 } 2829 2830 /* All too small, use the largest */ 2831 if (unlikely(nodes_empty(interleave_nodes))) 2832 node_set(prefer, interleave_nodes); 2833 2834 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2835 pr_err("%s: interleaving failed\n", __func__); 2836 2837 check_numabalancing_enable(); 2838 } 2839 2840 /* Reset policy of current process to default */ 2841 void numa_default_policy(void) 2842 { 2843 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2844 } 2845 2846 /* 2847 * Parse and format mempolicy from/to strings 2848 */ 2849 2850 /* 2851 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2852 */ 2853 static const char * const policy_modes[] = 2854 { 2855 [MPOL_DEFAULT] = "default", 2856 [MPOL_PREFERRED] = "prefer", 2857 [MPOL_BIND] = "bind", 2858 [MPOL_INTERLEAVE] = "interleave", 2859 [MPOL_LOCAL] = "local", 2860 }; 2861 2862 2863 #ifdef CONFIG_TMPFS 2864 /** 2865 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2866 * @str: string containing mempolicy to parse 2867 * @mpol: pointer to struct mempolicy pointer, returned on success. 2868 * 2869 * Format of input: 2870 * <mode>[=<flags>][:<nodelist>] 2871 * 2872 * On success, returns 0, else 1 2873 */ 2874 int mpol_parse_str(char *str, struct mempolicy **mpol) 2875 { 2876 struct mempolicy *new = NULL; 2877 unsigned short mode_flags; 2878 nodemask_t nodes; 2879 char *nodelist = strchr(str, ':'); 2880 char *flags = strchr(str, '='); 2881 int err = 1, mode; 2882 2883 if (flags) 2884 *flags++ = '\0'; /* terminate mode string */ 2885 2886 if (nodelist) { 2887 /* NUL-terminate mode or flags string */ 2888 *nodelist++ = '\0'; 2889 if (nodelist_parse(nodelist, nodes)) 2890 goto out; 2891 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2892 goto out; 2893 } else 2894 nodes_clear(nodes); 2895 2896 mode = match_string(policy_modes, MPOL_MAX, str); 2897 if (mode < 0) 2898 goto out; 2899 2900 switch (mode) { 2901 case MPOL_PREFERRED: 2902 /* 2903 * Insist on a nodelist of one node only, although later 2904 * we use first_node(nodes) to grab a single node, so here 2905 * nodelist (or nodes) cannot be empty. 2906 */ 2907 if (nodelist) { 2908 char *rest = nodelist; 2909 while (isdigit(*rest)) 2910 rest++; 2911 if (*rest) 2912 goto out; 2913 if (nodes_empty(nodes)) 2914 goto out; 2915 } 2916 break; 2917 case MPOL_INTERLEAVE: 2918 /* 2919 * Default to online nodes with memory if no nodelist 2920 */ 2921 if (!nodelist) 2922 nodes = node_states[N_MEMORY]; 2923 break; 2924 case MPOL_LOCAL: 2925 /* 2926 * Don't allow a nodelist; mpol_new() checks flags 2927 */ 2928 if (nodelist) 2929 goto out; 2930 mode = MPOL_PREFERRED; 2931 break; 2932 case MPOL_DEFAULT: 2933 /* 2934 * Insist on a empty nodelist 2935 */ 2936 if (!nodelist) 2937 err = 0; 2938 goto out; 2939 case MPOL_BIND: 2940 /* 2941 * Insist on a nodelist 2942 */ 2943 if (!nodelist) 2944 goto out; 2945 } 2946 2947 mode_flags = 0; 2948 if (flags) { 2949 /* 2950 * Currently, we only support two mutually exclusive 2951 * mode flags. 2952 */ 2953 if (!strcmp(flags, "static")) 2954 mode_flags |= MPOL_F_STATIC_NODES; 2955 else if (!strcmp(flags, "relative")) 2956 mode_flags |= MPOL_F_RELATIVE_NODES; 2957 else 2958 goto out; 2959 } 2960 2961 new = mpol_new(mode, mode_flags, &nodes); 2962 if (IS_ERR(new)) 2963 goto out; 2964 2965 /* 2966 * Save nodes for mpol_to_str() to show the tmpfs mount options 2967 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2968 */ 2969 if (mode != MPOL_PREFERRED) 2970 new->v.nodes = nodes; 2971 else if (nodelist) 2972 new->v.preferred_node = first_node(nodes); 2973 else 2974 new->flags |= MPOL_F_LOCAL; 2975 2976 /* 2977 * Save nodes for contextualization: this will be used to "clone" 2978 * the mempolicy in a specific context [cpuset] at a later time. 2979 */ 2980 new->w.user_nodemask = nodes; 2981 2982 err = 0; 2983 2984 out: 2985 /* Restore string for error message */ 2986 if (nodelist) 2987 *--nodelist = ':'; 2988 if (flags) 2989 *--flags = '='; 2990 if (!err) 2991 *mpol = new; 2992 return err; 2993 } 2994 #endif /* CONFIG_TMPFS */ 2995 2996 /** 2997 * mpol_to_str - format a mempolicy structure for printing 2998 * @buffer: to contain formatted mempolicy string 2999 * @maxlen: length of @buffer 3000 * @pol: pointer to mempolicy to be formatted 3001 * 3002 * Convert @pol into a string. If @buffer is too short, truncate the string. 3003 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3004 * longest flag, "relative", and to display at least a few node ids. 3005 */ 3006 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3007 { 3008 char *p = buffer; 3009 nodemask_t nodes = NODE_MASK_NONE; 3010 unsigned short mode = MPOL_DEFAULT; 3011 unsigned short flags = 0; 3012 3013 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3014 mode = pol->mode; 3015 flags = pol->flags; 3016 } 3017 3018 switch (mode) { 3019 case MPOL_DEFAULT: 3020 break; 3021 case MPOL_PREFERRED: 3022 if (flags & MPOL_F_LOCAL) 3023 mode = MPOL_LOCAL; 3024 else 3025 node_set(pol->v.preferred_node, nodes); 3026 break; 3027 case MPOL_BIND: 3028 case MPOL_INTERLEAVE: 3029 nodes = pol->v.nodes; 3030 break; 3031 default: 3032 WARN_ON_ONCE(1); 3033 snprintf(p, maxlen, "unknown"); 3034 return; 3035 } 3036 3037 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3038 3039 if (flags & MPOL_MODE_FLAGS) { 3040 p += snprintf(p, buffer + maxlen - p, "="); 3041 3042 /* 3043 * Currently, the only defined flags are mutually exclusive 3044 */ 3045 if (flags & MPOL_F_STATIC_NODES) 3046 p += snprintf(p, buffer + maxlen - p, "static"); 3047 else if (flags & MPOL_F_RELATIVE_NODES) 3048 p += snprintf(p, buffer + maxlen - p, "relative"); 3049 } 3050 3051 if (!nodes_empty(nodes)) 3052 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3053 nodemask_pr_args(&nodes)); 3054 } 3055