1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmem/tmpfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 #define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */ 116 117 static struct kmem_cache *policy_cache; 118 static struct kmem_cache *sn_cache; 119 120 /* Highest zone. An specific allocation for a zone below that is not 121 policied. */ 122 enum zone_type policy_zone = 0; 123 124 /* 125 * run-time system-wide default policy => local allocation 126 */ 127 static struct mempolicy default_policy = { 128 .refcnt = ATOMIC_INIT(1), /* never free it */ 129 .mode = MPOL_LOCAL, 130 }; 131 132 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 133 134 /** 135 * numa_nearest_node - Find nearest node by state 136 * @node: Node id to start the search 137 * @state: State to filter the search 138 * 139 * Lookup the closest node by distance if @nid is not in state. 140 * 141 * Return: this @node if it is in state, otherwise the closest node by distance 142 */ 143 int numa_nearest_node(int node, unsigned int state) 144 { 145 int min_dist = INT_MAX, dist, n, min_node; 146 147 if (state >= NR_NODE_STATES) 148 return -EINVAL; 149 150 if (node == NUMA_NO_NODE || node_state(node, state)) 151 return node; 152 153 min_node = node; 154 for_each_node_state(n, state) { 155 dist = node_distance(node, n); 156 if (dist < min_dist) { 157 min_dist = dist; 158 min_node = n; 159 } 160 } 161 162 return min_node; 163 } 164 EXPORT_SYMBOL_GPL(numa_nearest_node); 165 166 struct mempolicy *get_task_policy(struct task_struct *p) 167 { 168 struct mempolicy *pol = p->mempolicy; 169 int node; 170 171 if (pol) 172 return pol; 173 174 node = numa_node_id(); 175 if (node != NUMA_NO_NODE) { 176 pol = &preferred_node_policy[node]; 177 /* preferred_node_policy is not initialised early in boot */ 178 if (pol->mode) 179 return pol; 180 } 181 182 return &default_policy; 183 } 184 185 static const struct mempolicy_operations { 186 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 187 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 188 } mpol_ops[MPOL_MAX]; 189 190 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 191 { 192 return pol->flags & MPOL_MODE_FLAGS; 193 } 194 195 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 196 const nodemask_t *rel) 197 { 198 nodemask_t tmp; 199 nodes_fold(tmp, *orig, nodes_weight(*rel)); 200 nodes_onto(*ret, tmp, *rel); 201 } 202 203 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 204 { 205 if (nodes_empty(*nodes)) 206 return -EINVAL; 207 pol->nodes = *nodes; 208 return 0; 209 } 210 211 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 212 { 213 if (nodes_empty(*nodes)) 214 return -EINVAL; 215 216 nodes_clear(pol->nodes); 217 node_set(first_node(*nodes), pol->nodes); 218 return 0; 219 } 220 221 /* 222 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 223 * any, for the new policy. mpol_new() has already validated the nodes 224 * parameter with respect to the policy mode and flags. 225 * 226 * Must be called holding task's alloc_lock to protect task's mems_allowed 227 * and mempolicy. May also be called holding the mmap_lock for write. 228 */ 229 static int mpol_set_nodemask(struct mempolicy *pol, 230 const nodemask_t *nodes, struct nodemask_scratch *nsc) 231 { 232 int ret; 233 234 /* 235 * Default (pol==NULL) resp. local memory policies are not a 236 * subject of any remapping. They also do not need any special 237 * constructor. 238 */ 239 if (!pol || pol->mode == MPOL_LOCAL) 240 return 0; 241 242 /* Check N_MEMORY */ 243 nodes_and(nsc->mask1, 244 cpuset_current_mems_allowed, node_states[N_MEMORY]); 245 246 VM_BUG_ON(!nodes); 247 248 if (pol->flags & MPOL_F_RELATIVE_NODES) 249 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 250 else 251 nodes_and(nsc->mask2, *nodes, nsc->mask1); 252 253 if (mpol_store_user_nodemask(pol)) 254 pol->w.user_nodemask = *nodes; 255 else 256 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 257 258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 259 return ret; 260 } 261 262 /* 263 * This function just creates a new policy, does some check and simple 264 * initialization. You must invoke mpol_set_nodemask() to set nodes. 265 */ 266 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 267 nodemask_t *nodes) 268 { 269 struct mempolicy *policy; 270 271 if (mode == MPOL_DEFAULT) { 272 if (nodes && !nodes_empty(*nodes)) 273 return ERR_PTR(-EINVAL); 274 return NULL; 275 } 276 VM_BUG_ON(!nodes); 277 278 /* 279 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 280 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 281 * All other modes require a valid pointer to a non-empty nodemask. 282 */ 283 if (mode == MPOL_PREFERRED) { 284 if (nodes_empty(*nodes)) { 285 if (((flags & MPOL_F_STATIC_NODES) || 286 (flags & MPOL_F_RELATIVE_NODES))) 287 return ERR_PTR(-EINVAL); 288 289 mode = MPOL_LOCAL; 290 } 291 } else if (mode == MPOL_LOCAL) { 292 if (!nodes_empty(*nodes) || 293 (flags & MPOL_F_STATIC_NODES) || 294 (flags & MPOL_F_RELATIVE_NODES)) 295 return ERR_PTR(-EINVAL); 296 } else if (nodes_empty(*nodes)) 297 return ERR_PTR(-EINVAL); 298 299 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 300 if (!policy) 301 return ERR_PTR(-ENOMEM); 302 atomic_set(&policy->refcnt, 1); 303 policy->mode = mode; 304 policy->flags = flags; 305 policy->home_node = NUMA_NO_NODE; 306 307 return policy; 308 } 309 310 /* Slow path of a mpol destructor. */ 311 void __mpol_put(struct mempolicy *pol) 312 { 313 if (!atomic_dec_and_test(&pol->refcnt)) 314 return; 315 kmem_cache_free(policy_cache, pol); 316 } 317 318 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 319 { 320 } 321 322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 323 { 324 nodemask_t tmp; 325 326 if (pol->flags & MPOL_F_STATIC_NODES) 327 nodes_and(tmp, pol->w.user_nodemask, *nodes); 328 else if (pol->flags & MPOL_F_RELATIVE_NODES) 329 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 330 else { 331 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 332 *nodes); 333 pol->w.cpuset_mems_allowed = *nodes; 334 } 335 336 if (nodes_empty(tmp)) 337 tmp = *nodes; 338 339 pol->nodes = tmp; 340 } 341 342 static void mpol_rebind_preferred(struct mempolicy *pol, 343 const nodemask_t *nodes) 344 { 345 pol->w.cpuset_mems_allowed = *nodes; 346 } 347 348 /* 349 * mpol_rebind_policy - Migrate a policy to a different set of nodes 350 * 351 * Per-vma policies are protected by mmap_lock. Allocations using per-task 352 * policies are protected by task->mems_allowed_seq to prevent a premature 353 * OOM/allocation failure due to parallel nodemask modification. 354 */ 355 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 356 { 357 if (!pol || pol->mode == MPOL_LOCAL) 358 return; 359 if (!mpol_store_user_nodemask(pol) && 360 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 361 return; 362 363 mpol_ops[pol->mode].rebind(pol, newmask); 364 } 365 366 /* 367 * Wrapper for mpol_rebind_policy() that just requires task 368 * pointer, and updates task mempolicy. 369 * 370 * Called with task's alloc_lock held. 371 */ 372 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 373 { 374 mpol_rebind_policy(tsk->mempolicy, new); 375 } 376 377 /* 378 * Rebind each vma in mm to new nodemask. 379 * 380 * Call holding a reference to mm. Takes mm->mmap_lock during call. 381 */ 382 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 383 { 384 struct vm_area_struct *vma; 385 VMA_ITERATOR(vmi, mm, 0); 386 387 mmap_write_lock(mm); 388 for_each_vma(vmi, vma) { 389 vma_start_write(vma); 390 mpol_rebind_policy(vma->vm_policy, new); 391 } 392 mmap_write_unlock(mm); 393 } 394 395 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 396 [MPOL_DEFAULT] = { 397 .rebind = mpol_rebind_default, 398 }, 399 [MPOL_INTERLEAVE] = { 400 .create = mpol_new_nodemask, 401 .rebind = mpol_rebind_nodemask, 402 }, 403 [MPOL_PREFERRED] = { 404 .create = mpol_new_preferred, 405 .rebind = mpol_rebind_preferred, 406 }, 407 [MPOL_BIND] = { 408 .create = mpol_new_nodemask, 409 .rebind = mpol_rebind_nodemask, 410 }, 411 [MPOL_LOCAL] = { 412 .rebind = mpol_rebind_default, 413 }, 414 [MPOL_PREFERRED_MANY] = { 415 .create = mpol_new_nodemask, 416 .rebind = mpol_rebind_preferred, 417 }, 418 }; 419 420 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 421 unsigned long flags); 422 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 423 pgoff_t ilx, int *nid); 424 425 static bool strictly_unmovable(unsigned long flags) 426 { 427 /* 428 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO 429 * if any misplaced page is found. 430 */ 431 return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) == 432 MPOL_MF_STRICT; 433 } 434 435 struct migration_mpol { /* for alloc_migration_target_by_mpol() */ 436 struct mempolicy *pol; 437 pgoff_t ilx; 438 }; 439 440 struct queue_pages { 441 struct list_head *pagelist; 442 unsigned long flags; 443 nodemask_t *nmask; 444 unsigned long start; 445 unsigned long end; 446 struct vm_area_struct *first; 447 struct folio *large; /* note last large folio encountered */ 448 long nr_failed; /* could not be isolated at this time */ 449 }; 450 451 /* 452 * Check if the folio's nid is in qp->nmask. 453 * 454 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 455 * in the invert of qp->nmask. 456 */ 457 static inline bool queue_folio_required(struct folio *folio, 458 struct queue_pages *qp) 459 { 460 int nid = folio_nid(folio); 461 unsigned long flags = qp->flags; 462 463 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 464 } 465 466 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk) 467 { 468 struct folio *folio; 469 struct queue_pages *qp = walk->private; 470 471 if (unlikely(is_pmd_migration_entry(*pmd))) { 472 qp->nr_failed++; 473 return; 474 } 475 folio = pfn_folio(pmd_pfn(*pmd)); 476 if (is_huge_zero_page(&folio->page)) { 477 walk->action = ACTION_CONTINUE; 478 return; 479 } 480 if (!queue_folio_required(folio, qp)) 481 return; 482 if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 483 !vma_migratable(walk->vma) || 484 !migrate_folio_add(folio, qp->pagelist, qp->flags)) 485 qp->nr_failed++; 486 } 487 488 /* 489 * Scan through folios, checking if they satisfy the required conditions, 490 * moving them from LRU to local pagelist for migration if they do (or not). 491 * 492 * queue_folios_pte_range() has two possible return values: 493 * 0 - continue walking to scan for more, even if an existing folio on the 494 * wrong node could not be isolated and queued for migration. 495 * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL, 496 * and an existing folio was on a node that does not follow the policy. 497 */ 498 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 499 unsigned long end, struct mm_walk *walk) 500 { 501 struct vm_area_struct *vma = walk->vma; 502 struct folio *folio; 503 struct queue_pages *qp = walk->private; 504 unsigned long flags = qp->flags; 505 pte_t *pte, *mapped_pte; 506 pte_t ptent; 507 spinlock_t *ptl; 508 509 ptl = pmd_trans_huge_lock(pmd, vma); 510 if (ptl) { 511 queue_folios_pmd(pmd, walk); 512 spin_unlock(ptl); 513 goto out; 514 } 515 516 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 517 if (!pte) { 518 walk->action = ACTION_AGAIN; 519 return 0; 520 } 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 ptent = ptep_get(pte); 523 if (pte_none(ptent)) 524 continue; 525 if (!pte_present(ptent)) { 526 if (is_migration_entry(pte_to_swp_entry(ptent))) 527 qp->nr_failed++; 528 continue; 529 } 530 folio = vm_normal_folio(vma, addr, ptent); 531 if (!folio || folio_is_zone_device(folio)) 532 continue; 533 /* 534 * vm_normal_folio() filters out zero pages, but there might 535 * still be reserved folios to skip, perhaps in a VDSO. 536 */ 537 if (folio_test_reserved(folio)) 538 continue; 539 if (!queue_folio_required(folio, qp)) 540 continue; 541 if (folio_test_large(folio)) { 542 /* 543 * A large folio can only be isolated from LRU once, 544 * but may be mapped by many PTEs (and Copy-On-Write may 545 * intersperse PTEs of other, order 0, folios). This is 546 * a common case, so don't mistake it for failure (but 547 * there can be other cases of multi-mapped pages which 548 * this quick check does not help to filter out - and a 549 * search of the pagelist might grow to be prohibitive). 550 * 551 * migrate_pages(&pagelist) returns nr_failed folios, so 552 * check "large" now so that queue_pages_range() returns 553 * a comparable nr_failed folios. This does imply that 554 * if folio could not be isolated for some racy reason 555 * at its first PTE, later PTEs will not give it another 556 * chance of isolation; but keeps the accounting simple. 557 */ 558 if (folio == qp->large) 559 continue; 560 qp->large = folio; 561 } 562 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 563 !vma_migratable(vma) || 564 !migrate_folio_add(folio, qp->pagelist, flags)) { 565 qp->nr_failed++; 566 if (strictly_unmovable(flags)) 567 break; 568 } 569 } 570 pte_unmap_unlock(mapped_pte, ptl); 571 cond_resched(); 572 out: 573 if (qp->nr_failed && strictly_unmovable(flags)) 574 return -EIO; 575 return 0; 576 } 577 578 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 579 unsigned long addr, unsigned long end, 580 struct mm_walk *walk) 581 { 582 #ifdef CONFIG_HUGETLB_PAGE 583 struct queue_pages *qp = walk->private; 584 unsigned long flags = qp->flags; 585 struct folio *folio; 586 spinlock_t *ptl; 587 pte_t entry; 588 589 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 590 entry = huge_ptep_get(pte); 591 if (!pte_present(entry)) { 592 if (unlikely(is_hugetlb_entry_migration(entry))) 593 qp->nr_failed++; 594 goto unlock; 595 } 596 folio = pfn_folio(pte_pfn(entry)); 597 if (!queue_folio_required(folio, qp)) 598 goto unlock; 599 if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) || 600 !vma_migratable(walk->vma)) { 601 qp->nr_failed++; 602 goto unlock; 603 } 604 /* 605 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 606 * Choosing not to migrate a shared folio is not counted as a failure. 607 * 608 * To check if the folio is shared, ideally we want to make sure 609 * every page is mapped to the same process. Doing that is very 610 * expensive, so check the estimated sharers of the folio instead. 611 */ 612 if ((flags & MPOL_MF_MOVE_ALL) || 613 (folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte))) 614 if (!isolate_hugetlb(folio, qp->pagelist)) 615 qp->nr_failed++; 616 unlock: 617 spin_unlock(ptl); 618 if (qp->nr_failed && strictly_unmovable(flags)) 619 return -EIO; 620 #endif 621 return 0; 622 } 623 624 #ifdef CONFIG_NUMA_BALANCING 625 /* 626 * This is used to mark a range of virtual addresses to be inaccessible. 627 * These are later cleared by a NUMA hinting fault. Depending on these 628 * faults, pages may be migrated for better NUMA placement. 629 * 630 * This is assuming that NUMA faults are handled using PROT_NONE. If 631 * an architecture makes a different choice, it will need further 632 * changes to the core. 633 */ 634 unsigned long change_prot_numa(struct vm_area_struct *vma, 635 unsigned long addr, unsigned long end) 636 { 637 struct mmu_gather tlb; 638 long nr_updated; 639 640 tlb_gather_mmu(&tlb, vma->vm_mm); 641 642 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 643 if (nr_updated > 0) 644 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 645 646 tlb_finish_mmu(&tlb); 647 648 return nr_updated; 649 } 650 #endif /* CONFIG_NUMA_BALANCING */ 651 652 static int queue_pages_test_walk(unsigned long start, unsigned long end, 653 struct mm_walk *walk) 654 { 655 struct vm_area_struct *next, *vma = walk->vma; 656 struct queue_pages *qp = walk->private; 657 unsigned long endvma = vma->vm_end; 658 unsigned long flags = qp->flags; 659 660 /* range check first */ 661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 662 663 if (!qp->first) { 664 qp->first = vma; 665 if (!(flags & MPOL_MF_DISCONTIG_OK) && 666 (qp->start < vma->vm_start)) 667 /* hole at head side of range */ 668 return -EFAULT; 669 } 670 next = find_vma(vma->vm_mm, vma->vm_end); 671 if (!(flags & MPOL_MF_DISCONTIG_OK) && 672 ((vma->vm_end < qp->end) && 673 (!next || vma->vm_end < next->vm_start))) 674 /* hole at middle or tail of range */ 675 return -EFAULT; 676 677 /* 678 * Need check MPOL_MF_STRICT to return -EIO if possible 679 * regardless of vma_migratable 680 */ 681 if (!vma_migratable(vma) && 682 !(flags & MPOL_MF_STRICT)) 683 return 1; 684 685 if (endvma > end) 686 endvma = end; 687 688 /* 689 * Check page nodes, and queue pages to move, in the current vma. 690 * But if no moving, and no strict checking, the scan can be skipped. 691 */ 692 if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 693 return 0; 694 return 1; 695 } 696 697 static const struct mm_walk_ops queue_pages_walk_ops = { 698 .hugetlb_entry = queue_folios_hugetlb, 699 .pmd_entry = queue_folios_pte_range, 700 .test_walk = queue_pages_test_walk, 701 .walk_lock = PGWALK_RDLOCK, 702 }; 703 704 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = { 705 .hugetlb_entry = queue_folios_hugetlb, 706 .pmd_entry = queue_folios_pte_range, 707 .test_walk = queue_pages_test_walk, 708 .walk_lock = PGWALK_WRLOCK, 709 }; 710 711 /* 712 * Walk through page tables and collect pages to be migrated. 713 * 714 * If pages found in a given range are not on the required set of @nodes, 715 * and migration is allowed, they are isolated and queued to @pagelist. 716 * 717 * queue_pages_range() may return: 718 * 0 - all pages already on the right node, or successfully queued for moving 719 * (or neither strict checking nor moving requested: only range checking). 720 * >0 - this number of misplaced folios could not be queued for moving 721 * (a hugetlbfs page or a transparent huge page being counted as 1). 722 * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs. 723 * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified. 724 */ 725 static long 726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 727 nodemask_t *nodes, unsigned long flags, 728 struct list_head *pagelist) 729 { 730 int err; 731 struct queue_pages qp = { 732 .pagelist = pagelist, 733 .flags = flags, 734 .nmask = nodes, 735 .start = start, 736 .end = end, 737 .first = NULL, 738 }; 739 const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ? 740 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops; 741 742 err = walk_page_range(mm, start, end, ops, &qp); 743 744 if (!qp.first) 745 /* whole range in hole */ 746 err = -EFAULT; 747 748 return err ? : qp.nr_failed; 749 } 750 751 /* 752 * Apply policy to a single VMA 753 * This must be called with the mmap_lock held for writing. 754 */ 755 static int vma_replace_policy(struct vm_area_struct *vma, 756 struct mempolicy *pol) 757 { 758 int err; 759 struct mempolicy *old; 760 struct mempolicy *new; 761 762 vma_assert_write_locked(vma); 763 764 new = mpol_dup(pol); 765 if (IS_ERR(new)) 766 return PTR_ERR(new); 767 768 if (vma->vm_ops && vma->vm_ops->set_policy) { 769 err = vma->vm_ops->set_policy(vma, new); 770 if (err) 771 goto err_out; 772 } 773 774 old = vma->vm_policy; 775 vma->vm_policy = new; /* protected by mmap_lock */ 776 mpol_put(old); 777 778 return 0; 779 err_out: 780 mpol_put(new); 781 return err; 782 } 783 784 /* Split or merge the VMA (if required) and apply the new policy */ 785 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma, 786 struct vm_area_struct **prev, unsigned long start, 787 unsigned long end, struct mempolicy *new_pol) 788 { 789 unsigned long vmstart, vmend; 790 791 vmend = min(end, vma->vm_end); 792 if (start > vma->vm_start) { 793 *prev = vma; 794 vmstart = start; 795 } else { 796 vmstart = vma->vm_start; 797 } 798 799 if (mpol_equal(vma->vm_policy, new_pol)) { 800 *prev = vma; 801 return 0; 802 } 803 804 vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol); 805 if (IS_ERR(vma)) 806 return PTR_ERR(vma); 807 808 *prev = vma; 809 return vma_replace_policy(vma, new_pol); 810 } 811 812 /* Set the process memory policy */ 813 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 814 nodemask_t *nodes) 815 { 816 struct mempolicy *new, *old; 817 NODEMASK_SCRATCH(scratch); 818 int ret; 819 820 if (!scratch) 821 return -ENOMEM; 822 823 new = mpol_new(mode, flags, nodes); 824 if (IS_ERR(new)) { 825 ret = PTR_ERR(new); 826 goto out; 827 } 828 829 task_lock(current); 830 ret = mpol_set_nodemask(new, nodes, scratch); 831 if (ret) { 832 task_unlock(current); 833 mpol_put(new); 834 goto out; 835 } 836 837 old = current->mempolicy; 838 current->mempolicy = new; 839 if (new && new->mode == MPOL_INTERLEAVE) 840 current->il_prev = MAX_NUMNODES-1; 841 task_unlock(current); 842 mpol_put(old); 843 ret = 0; 844 out: 845 NODEMASK_SCRATCH_FREE(scratch); 846 return ret; 847 } 848 849 /* 850 * Return nodemask for policy for get_mempolicy() query 851 * 852 * Called with task's alloc_lock held 853 */ 854 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes) 855 { 856 nodes_clear(*nodes); 857 if (pol == &default_policy) 858 return; 859 860 switch (pol->mode) { 861 case MPOL_BIND: 862 case MPOL_INTERLEAVE: 863 case MPOL_PREFERRED: 864 case MPOL_PREFERRED_MANY: 865 *nodes = pol->nodes; 866 break; 867 case MPOL_LOCAL: 868 /* return empty node mask for local allocation */ 869 break; 870 default: 871 BUG(); 872 } 873 } 874 875 static int lookup_node(struct mm_struct *mm, unsigned long addr) 876 { 877 struct page *p = NULL; 878 int ret; 879 880 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 881 if (ret > 0) { 882 ret = page_to_nid(p); 883 put_page(p); 884 } 885 return ret; 886 } 887 888 /* Retrieve NUMA policy */ 889 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 890 unsigned long addr, unsigned long flags) 891 { 892 int err; 893 struct mm_struct *mm = current->mm; 894 struct vm_area_struct *vma = NULL; 895 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 896 897 if (flags & 898 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 899 return -EINVAL; 900 901 if (flags & MPOL_F_MEMS_ALLOWED) { 902 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 903 return -EINVAL; 904 *policy = 0; /* just so it's initialized */ 905 task_lock(current); 906 *nmask = cpuset_current_mems_allowed; 907 task_unlock(current); 908 return 0; 909 } 910 911 if (flags & MPOL_F_ADDR) { 912 pgoff_t ilx; /* ignored here */ 913 /* 914 * Do NOT fall back to task policy if the 915 * vma/shared policy at addr is NULL. We 916 * want to return MPOL_DEFAULT in this case. 917 */ 918 mmap_read_lock(mm); 919 vma = vma_lookup(mm, addr); 920 if (!vma) { 921 mmap_read_unlock(mm); 922 return -EFAULT; 923 } 924 pol = __get_vma_policy(vma, addr, &ilx); 925 } else if (addr) 926 return -EINVAL; 927 928 if (!pol) 929 pol = &default_policy; /* indicates default behavior */ 930 931 if (flags & MPOL_F_NODE) { 932 if (flags & MPOL_F_ADDR) { 933 /* 934 * Take a refcount on the mpol, because we are about to 935 * drop the mmap_lock, after which only "pol" remains 936 * valid, "vma" is stale. 937 */ 938 pol_refcount = pol; 939 vma = NULL; 940 mpol_get(pol); 941 mmap_read_unlock(mm); 942 err = lookup_node(mm, addr); 943 if (err < 0) 944 goto out; 945 *policy = err; 946 } else if (pol == current->mempolicy && 947 pol->mode == MPOL_INTERLEAVE) { 948 *policy = next_node_in(current->il_prev, pol->nodes); 949 } else { 950 err = -EINVAL; 951 goto out; 952 } 953 } else { 954 *policy = pol == &default_policy ? MPOL_DEFAULT : 955 pol->mode; 956 /* 957 * Internal mempolicy flags must be masked off before exposing 958 * the policy to userspace. 959 */ 960 *policy |= (pol->flags & MPOL_MODE_FLAGS); 961 } 962 963 err = 0; 964 if (nmask) { 965 if (mpol_store_user_nodemask(pol)) { 966 *nmask = pol->w.user_nodemask; 967 } else { 968 task_lock(current); 969 get_policy_nodemask(pol, nmask); 970 task_unlock(current); 971 } 972 } 973 974 out: 975 mpol_cond_put(pol); 976 if (vma) 977 mmap_read_unlock(mm); 978 if (pol_refcount) 979 mpol_put(pol_refcount); 980 return err; 981 } 982 983 #ifdef CONFIG_MIGRATION 984 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 985 unsigned long flags) 986 { 987 /* 988 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio. 989 * Choosing not to migrate a shared folio is not counted as a failure. 990 * 991 * To check if the folio is shared, ideally we want to make sure 992 * every page is mapped to the same process. Doing that is very 993 * expensive, so check the estimated sharers of the folio instead. 994 */ 995 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 996 if (folio_isolate_lru(folio)) { 997 list_add_tail(&folio->lru, foliolist); 998 node_stat_mod_folio(folio, 999 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1000 folio_nr_pages(folio)); 1001 } else { 1002 /* 1003 * Non-movable folio may reach here. And, there may be 1004 * temporary off LRU folios or non-LRU movable folios. 1005 * Treat them as unmovable folios since they can't be 1006 * isolated, so they can't be moved at the moment. 1007 */ 1008 return false; 1009 } 1010 } 1011 return true; 1012 } 1013 1014 /* 1015 * Migrate pages from one node to a target node. 1016 * Returns error or the number of pages not migrated. 1017 */ 1018 static long migrate_to_node(struct mm_struct *mm, int source, int dest, 1019 int flags) 1020 { 1021 nodemask_t nmask; 1022 struct vm_area_struct *vma; 1023 LIST_HEAD(pagelist); 1024 long nr_failed; 1025 long err = 0; 1026 struct migration_target_control mtc = { 1027 .nid = dest, 1028 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1029 }; 1030 1031 nodes_clear(nmask); 1032 node_set(source, nmask); 1033 1034 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1035 1036 mmap_read_lock(mm); 1037 vma = find_vma(mm, 0); 1038 1039 /* 1040 * This does not migrate the range, but isolates all pages that 1041 * need migration. Between passing in the full user address 1042 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail, 1043 * but passes back the count of pages which could not be isolated. 1044 */ 1045 nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1046 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1047 mmap_read_unlock(mm); 1048 1049 if (!list_empty(&pagelist)) { 1050 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1051 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1052 if (err) 1053 putback_movable_pages(&pagelist); 1054 } 1055 1056 if (err >= 0) 1057 err += nr_failed; 1058 return err; 1059 } 1060 1061 /* 1062 * Move pages between the two nodesets so as to preserve the physical 1063 * layout as much as possible. 1064 * 1065 * Returns the number of page that could not be moved. 1066 */ 1067 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1068 const nodemask_t *to, int flags) 1069 { 1070 long nr_failed = 0; 1071 long err = 0; 1072 nodemask_t tmp; 1073 1074 lru_cache_disable(); 1075 1076 /* 1077 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1078 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1079 * bit in 'tmp', and return that <source, dest> pair for migration. 1080 * The pair of nodemasks 'to' and 'from' define the map. 1081 * 1082 * If no pair of bits is found that way, fallback to picking some 1083 * pair of 'source' and 'dest' bits that are not the same. If the 1084 * 'source' and 'dest' bits are the same, this represents a node 1085 * that will be migrating to itself, so no pages need move. 1086 * 1087 * If no bits are left in 'tmp', or if all remaining bits left 1088 * in 'tmp' correspond to the same bit in 'to', return false 1089 * (nothing left to migrate). 1090 * 1091 * This lets us pick a pair of nodes to migrate between, such that 1092 * if possible the dest node is not already occupied by some other 1093 * source node, minimizing the risk of overloading the memory on a 1094 * node that would happen if we migrated incoming memory to a node 1095 * before migrating outgoing memory source that same node. 1096 * 1097 * A single scan of tmp is sufficient. As we go, we remember the 1098 * most recent <s, d> pair that moved (s != d). If we find a pair 1099 * that not only moved, but what's better, moved to an empty slot 1100 * (d is not set in tmp), then we break out then, with that pair. 1101 * Otherwise when we finish scanning from_tmp, we at least have the 1102 * most recent <s, d> pair that moved. If we get all the way through 1103 * the scan of tmp without finding any node that moved, much less 1104 * moved to an empty node, then there is nothing left worth migrating. 1105 */ 1106 1107 tmp = *from; 1108 while (!nodes_empty(tmp)) { 1109 int s, d; 1110 int source = NUMA_NO_NODE; 1111 int dest = 0; 1112 1113 for_each_node_mask(s, tmp) { 1114 1115 /* 1116 * do_migrate_pages() tries to maintain the relative 1117 * node relationship of the pages established between 1118 * threads and memory areas. 1119 * 1120 * However if the number of source nodes is not equal to 1121 * the number of destination nodes we can not preserve 1122 * this node relative relationship. In that case, skip 1123 * copying memory from a node that is in the destination 1124 * mask. 1125 * 1126 * Example: [2,3,4] -> [3,4,5] moves everything. 1127 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1128 */ 1129 1130 if ((nodes_weight(*from) != nodes_weight(*to)) && 1131 (node_isset(s, *to))) 1132 continue; 1133 1134 d = node_remap(s, *from, *to); 1135 if (s == d) 1136 continue; 1137 1138 source = s; /* Node moved. Memorize */ 1139 dest = d; 1140 1141 /* dest not in remaining from nodes? */ 1142 if (!node_isset(dest, tmp)) 1143 break; 1144 } 1145 if (source == NUMA_NO_NODE) 1146 break; 1147 1148 node_clear(source, tmp); 1149 err = migrate_to_node(mm, source, dest, flags); 1150 if (err > 0) 1151 nr_failed += err; 1152 if (err < 0) 1153 break; 1154 } 1155 1156 lru_cache_enable(); 1157 if (err < 0) 1158 return err; 1159 return (nr_failed < INT_MAX) ? nr_failed : INT_MAX; 1160 } 1161 1162 /* 1163 * Allocate a new folio for page migration, according to NUMA mempolicy. 1164 */ 1165 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1166 unsigned long private) 1167 { 1168 struct migration_mpol *mmpol = (struct migration_mpol *)private; 1169 struct mempolicy *pol = mmpol->pol; 1170 pgoff_t ilx = mmpol->ilx; 1171 struct page *page; 1172 unsigned int order; 1173 int nid = numa_node_id(); 1174 gfp_t gfp; 1175 1176 order = folio_order(src); 1177 ilx += src->index >> order; 1178 1179 if (folio_test_hugetlb(src)) { 1180 nodemask_t *nodemask; 1181 struct hstate *h; 1182 1183 h = folio_hstate(src); 1184 gfp = htlb_alloc_mask(h); 1185 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 1186 return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp); 1187 } 1188 1189 if (folio_test_large(src)) 1190 gfp = GFP_TRANSHUGE; 1191 else 1192 gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP; 1193 1194 page = alloc_pages_mpol(gfp, order, pol, ilx, nid); 1195 return page_rmappable_folio(page); 1196 } 1197 #else 1198 1199 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1200 unsigned long flags) 1201 { 1202 return false; 1203 } 1204 1205 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1206 const nodemask_t *to, int flags) 1207 { 1208 return -ENOSYS; 1209 } 1210 1211 static struct folio *alloc_migration_target_by_mpol(struct folio *src, 1212 unsigned long private) 1213 { 1214 return NULL; 1215 } 1216 #endif 1217 1218 static long do_mbind(unsigned long start, unsigned long len, 1219 unsigned short mode, unsigned short mode_flags, 1220 nodemask_t *nmask, unsigned long flags) 1221 { 1222 struct mm_struct *mm = current->mm; 1223 struct vm_area_struct *vma, *prev; 1224 struct vma_iterator vmi; 1225 struct migration_mpol mmpol; 1226 struct mempolicy *new; 1227 unsigned long end; 1228 long err; 1229 long nr_failed; 1230 LIST_HEAD(pagelist); 1231 1232 if (flags & ~(unsigned long)MPOL_MF_VALID) 1233 return -EINVAL; 1234 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1235 return -EPERM; 1236 1237 if (start & ~PAGE_MASK) 1238 return -EINVAL; 1239 1240 if (mode == MPOL_DEFAULT) 1241 flags &= ~MPOL_MF_STRICT; 1242 1243 len = PAGE_ALIGN(len); 1244 end = start + len; 1245 1246 if (end < start) 1247 return -EINVAL; 1248 if (end == start) 1249 return 0; 1250 1251 new = mpol_new(mode, mode_flags, nmask); 1252 if (IS_ERR(new)) 1253 return PTR_ERR(new); 1254 1255 /* 1256 * If we are using the default policy then operation 1257 * on discontinuous address spaces is okay after all 1258 */ 1259 if (!new) 1260 flags |= MPOL_MF_DISCONTIG_OK; 1261 1262 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1263 lru_cache_disable(); 1264 { 1265 NODEMASK_SCRATCH(scratch); 1266 if (scratch) { 1267 mmap_write_lock(mm); 1268 err = mpol_set_nodemask(new, nmask, scratch); 1269 if (err) 1270 mmap_write_unlock(mm); 1271 } else 1272 err = -ENOMEM; 1273 NODEMASK_SCRATCH_FREE(scratch); 1274 } 1275 if (err) 1276 goto mpol_out; 1277 1278 /* 1279 * Lock the VMAs before scanning for pages to migrate, 1280 * to ensure we don't miss a concurrently inserted page. 1281 */ 1282 nr_failed = queue_pages_range(mm, start, end, nmask, 1283 flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist); 1284 1285 if (nr_failed < 0) { 1286 err = nr_failed; 1287 nr_failed = 0; 1288 } else { 1289 vma_iter_init(&vmi, mm, start); 1290 prev = vma_prev(&vmi); 1291 for_each_vma_range(vmi, vma, end) { 1292 err = mbind_range(&vmi, vma, &prev, start, end, new); 1293 if (err) 1294 break; 1295 } 1296 } 1297 1298 if (!err && !list_empty(&pagelist)) { 1299 /* Convert MPOL_DEFAULT's NULL to task or default policy */ 1300 if (!new) { 1301 new = get_task_policy(current); 1302 mpol_get(new); 1303 } 1304 mmpol.pol = new; 1305 mmpol.ilx = 0; 1306 1307 /* 1308 * In the interleaved case, attempt to allocate on exactly the 1309 * targeted nodes, for the first VMA to be migrated; for later 1310 * VMAs, the nodes will still be interleaved from the targeted 1311 * nodemask, but one by one may be selected differently. 1312 */ 1313 if (new->mode == MPOL_INTERLEAVE) { 1314 struct page *page; 1315 unsigned int order; 1316 unsigned long addr = -EFAULT; 1317 1318 list_for_each_entry(page, &pagelist, lru) { 1319 if (!PageKsm(page)) 1320 break; 1321 } 1322 if (!list_entry_is_head(page, &pagelist, lru)) { 1323 vma_iter_init(&vmi, mm, start); 1324 for_each_vma_range(vmi, vma, end) { 1325 addr = page_address_in_vma(page, vma); 1326 if (addr != -EFAULT) 1327 break; 1328 } 1329 } 1330 if (addr != -EFAULT) { 1331 order = compound_order(page); 1332 /* We already know the pol, but not the ilx */ 1333 mpol_cond_put(get_vma_policy(vma, addr, order, 1334 &mmpol.ilx)); 1335 /* Set base from which to increment by index */ 1336 mmpol.ilx -= page->index >> order; 1337 } 1338 } 1339 } 1340 1341 mmap_write_unlock(mm); 1342 1343 if (!err && !list_empty(&pagelist)) { 1344 nr_failed |= migrate_pages(&pagelist, 1345 alloc_migration_target_by_mpol, NULL, 1346 (unsigned long)&mmpol, MIGRATE_SYNC, 1347 MR_MEMPOLICY_MBIND, NULL); 1348 } 1349 1350 if (nr_failed && (flags & MPOL_MF_STRICT)) 1351 err = -EIO; 1352 if (!list_empty(&pagelist)) 1353 putback_movable_pages(&pagelist); 1354 mpol_out: 1355 mpol_put(new); 1356 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1357 lru_cache_enable(); 1358 return err; 1359 } 1360 1361 /* 1362 * User space interface with variable sized bitmaps for nodelists. 1363 */ 1364 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1365 unsigned long maxnode) 1366 { 1367 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1368 int ret; 1369 1370 if (in_compat_syscall()) 1371 ret = compat_get_bitmap(mask, 1372 (const compat_ulong_t __user *)nmask, 1373 maxnode); 1374 else 1375 ret = copy_from_user(mask, nmask, 1376 nlongs * sizeof(unsigned long)); 1377 1378 if (ret) 1379 return -EFAULT; 1380 1381 if (maxnode % BITS_PER_LONG) 1382 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1383 1384 return 0; 1385 } 1386 1387 /* Copy a node mask from user space. */ 1388 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1389 unsigned long maxnode) 1390 { 1391 --maxnode; 1392 nodes_clear(*nodes); 1393 if (maxnode == 0 || !nmask) 1394 return 0; 1395 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1396 return -EINVAL; 1397 1398 /* 1399 * When the user specified more nodes than supported just check 1400 * if the non supported part is all zero, one word at a time, 1401 * starting at the end. 1402 */ 1403 while (maxnode > MAX_NUMNODES) { 1404 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1405 unsigned long t; 1406 1407 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1408 return -EFAULT; 1409 1410 if (maxnode - bits >= MAX_NUMNODES) { 1411 maxnode -= bits; 1412 } else { 1413 maxnode = MAX_NUMNODES; 1414 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1415 } 1416 if (t) 1417 return -EINVAL; 1418 } 1419 1420 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1421 } 1422 1423 /* Copy a kernel node mask to user space */ 1424 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1425 nodemask_t *nodes) 1426 { 1427 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1428 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1429 bool compat = in_compat_syscall(); 1430 1431 if (compat) 1432 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1433 1434 if (copy > nbytes) { 1435 if (copy > PAGE_SIZE) 1436 return -EINVAL; 1437 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1438 return -EFAULT; 1439 copy = nbytes; 1440 maxnode = nr_node_ids; 1441 } 1442 1443 if (compat) 1444 return compat_put_bitmap((compat_ulong_t __user *)mask, 1445 nodes_addr(*nodes), maxnode); 1446 1447 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1448 } 1449 1450 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1451 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1452 { 1453 *flags = *mode & MPOL_MODE_FLAGS; 1454 *mode &= ~MPOL_MODE_FLAGS; 1455 1456 if ((unsigned int)(*mode) >= MPOL_MAX) 1457 return -EINVAL; 1458 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1459 return -EINVAL; 1460 if (*flags & MPOL_F_NUMA_BALANCING) { 1461 if (*mode != MPOL_BIND) 1462 return -EINVAL; 1463 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1464 } 1465 return 0; 1466 } 1467 1468 static long kernel_mbind(unsigned long start, unsigned long len, 1469 unsigned long mode, const unsigned long __user *nmask, 1470 unsigned long maxnode, unsigned int flags) 1471 { 1472 unsigned short mode_flags; 1473 nodemask_t nodes; 1474 int lmode = mode; 1475 int err; 1476 1477 start = untagged_addr(start); 1478 err = sanitize_mpol_flags(&lmode, &mode_flags); 1479 if (err) 1480 return err; 1481 1482 err = get_nodes(&nodes, nmask, maxnode); 1483 if (err) 1484 return err; 1485 1486 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1487 } 1488 1489 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1490 unsigned long, home_node, unsigned long, flags) 1491 { 1492 struct mm_struct *mm = current->mm; 1493 struct vm_area_struct *vma, *prev; 1494 struct mempolicy *new, *old; 1495 unsigned long end; 1496 int err = -ENOENT; 1497 VMA_ITERATOR(vmi, mm, start); 1498 1499 start = untagged_addr(start); 1500 if (start & ~PAGE_MASK) 1501 return -EINVAL; 1502 /* 1503 * flags is used for future extension if any. 1504 */ 1505 if (flags != 0) 1506 return -EINVAL; 1507 1508 /* 1509 * Check home_node is online to avoid accessing uninitialized 1510 * NODE_DATA. 1511 */ 1512 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1513 return -EINVAL; 1514 1515 len = PAGE_ALIGN(len); 1516 end = start + len; 1517 1518 if (end < start) 1519 return -EINVAL; 1520 if (end == start) 1521 return 0; 1522 mmap_write_lock(mm); 1523 prev = vma_prev(&vmi); 1524 for_each_vma_range(vmi, vma, end) { 1525 /* 1526 * If any vma in the range got policy other than MPOL_BIND 1527 * or MPOL_PREFERRED_MANY we return error. We don't reset 1528 * the home node for vmas we already updated before. 1529 */ 1530 old = vma_policy(vma); 1531 if (!old) { 1532 prev = vma; 1533 continue; 1534 } 1535 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1536 err = -EOPNOTSUPP; 1537 break; 1538 } 1539 new = mpol_dup(old); 1540 if (IS_ERR(new)) { 1541 err = PTR_ERR(new); 1542 break; 1543 } 1544 1545 vma_start_write(vma); 1546 new->home_node = home_node; 1547 err = mbind_range(&vmi, vma, &prev, start, end, new); 1548 mpol_put(new); 1549 if (err) 1550 break; 1551 } 1552 mmap_write_unlock(mm); 1553 return err; 1554 } 1555 1556 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1557 unsigned long, mode, const unsigned long __user *, nmask, 1558 unsigned long, maxnode, unsigned int, flags) 1559 { 1560 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1561 } 1562 1563 /* Set the process memory policy */ 1564 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1565 unsigned long maxnode) 1566 { 1567 unsigned short mode_flags; 1568 nodemask_t nodes; 1569 int lmode = mode; 1570 int err; 1571 1572 err = sanitize_mpol_flags(&lmode, &mode_flags); 1573 if (err) 1574 return err; 1575 1576 err = get_nodes(&nodes, nmask, maxnode); 1577 if (err) 1578 return err; 1579 1580 return do_set_mempolicy(lmode, mode_flags, &nodes); 1581 } 1582 1583 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1584 unsigned long, maxnode) 1585 { 1586 return kernel_set_mempolicy(mode, nmask, maxnode); 1587 } 1588 1589 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1590 const unsigned long __user *old_nodes, 1591 const unsigned long __user *new_nodes) 1592 { 1593 struct mm_struct *mm = NULL; 1594 struct task_struct *task; 1595 nodemask_t task_nodes; 1596 int err; 1597 nodemask_t *old; 1598 nodemask_t *new; 1599 NODEMASK_SCRATCH(scratch); 1600 1601 if (!scratch) 1602 return -ENOMEM; 1603 1604 old = &scratch->mask1; 1605 new = &scratch->mask2; 1606 1607 err = get_nodes(old, old_nodes, maxnode); 1608 if (err) 1609 goto out; 1610 1611 err = get_nodes(new, new_nodes, maxnode); 1612 if (err) 1613 goto out; 1614 1615 /* Find the mm_struct */ 1616 rcu_read_lock(); 1617 task = pid ? find_task_by_vpid(pid) : current; 1618 if (!task) { 1619 rcu_read_unlock(); 1620 err = -ESRCH; 1621 goto out; 1622 } 1623 get_task_struct(task); 1624 1625 err = -EINVAL; 1626 1627 /* 1628 * Check if this process has the right to modify the specified process. 1629 * Use the regular "ptrace_may_access()" checks. 1630 */ 1631 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1632 rcu_read_unlock(); 1633 err = -EPERM; 1634 goto out_put; 1635 } 1636 rcu_read_unlock(); 1637 1638 task_nodes = cpuset_mems_allowed(task); 1639 /* Is the user allowed to access the target nodes? */ 1640 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1641 err = -EPERM; 1642 goto out_put; 1643 } 1644 1645 task_nodes = cpuset_mems_allowed(current); 1646 nodes_and(*new, *new, task_nodes); 1647 if (nodes_empty(*new)) 1648 goto out_put; 1649 1650 err = security_task_movememory(task); 1651 if (err) 1652 goto out_put; 1653 1654 mm = get_task_mm(task); 1655 put_task_struct(task); 1656 1657 if (!mm) { 1658 err = -EINVAL; 1659 goto out; 1660 } 1661 1662 err = do_migrate_pages(mm, old, new, 1663 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1664 1665 mmput(mm); 1666 out: 1667 NODEMASK_SCRATCH_FREE(scratch); 1668 1669 return err; 1670 1671 out_put: 1672 put_task_struct(task); 1673 goto out; 1674 } 1675 1676 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1677 const unsigned long __user *, old_nodes, 1678 const unsigned long __user *, new_nodes) 1679 { 1680 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1681 } 1682 1683 /* Retrieve NUMA policy */ 1684 static int kernel_get_mempolicy(int __user *policy, 1685 unsigned long __user *nmask, 1686 unsigned long maxnode, 1687 unsigned long addr, 1688 unsigned long flags) 1689 { 1690 int err; 1691 int pval; 1692 nodemask_t nodes; 1693 1694 if (nmask != NULL && maxnode < nr_node_ids) 1695 return -EINVAL; 1696 1697 addr = untagged_addr(addr); 1698 1699 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1700 1701 if (err) 1702 return err; 1703 1704 if (policy && put_user(pval, policy)) 1705 return -EFAULT; 1706 1707 if (nmask) 1708 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1709 1710 return err; 1711 } 1712 1713 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1714 unsigned long __user *, nmask, unsigned long, maxnode, 1715 unsigned long, addr, unsigned long, flags) 1716 { 1717 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1718 } 1719 1720 bool vma_migratable(struct vm_area_struct *vma) 1721 { 1722 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1723 return false; 1724 1725 /* 1726 * DAX device mappings require predictable access latency, so avoid 1727 * incurring periodic faults. 1728 */ 1729 if (vma_is_dax(vma)) 1730 return false; 1731 1732 if (is_vm_hugetlb_page(vma) && 1733 !hugepage_migration_supported(hstate_vma(vma))) 1734 return false; 1735 1736 /* 1737 * Migration allocates pages in the highest zone. If we cannot 1738 * do so then migration (at least from node to node) is not 1739 * possible. 1740 */ 1741 if (vma->vm_file && 1742 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1743 < policy_zone) 1744 return false; 1745 return true; 1746 } 1747 1748 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1749 unsigned long addr, pgoff_t *ilx) 1750 { 1751 *ilx = 0; 1752 return (vma->vm_ops && vma->vm_ops->get_policy) ? 1753 vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy; 1754 } 1755 1756 /* 1757 * get_vma_policy(@vma, @addr, @order, @ilx) 1758 * @vma: virtual memory area whose policy is sought 1759 * @addr: address in @vma for shared policy lookup 1760 * @order: 0, or appropriate huge_page_order for interleaving 1761 * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE 1762 * 1763 * Returns effective policy for a VMA at specified address. 1764 * Falls back to current->mempolicy or system default policy, as necessary. 1765 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1766 * count--added by the get_policy() vm_op, as appropriate--to protect against 1767 * freeing by another task. It is the caller's responsibility to free the 1768 * extra reference for shared policies. 1769 */ 1770 struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1771 unsigned long addr, int order, pgoff_t *ilx) 1772 { 1773 struct mempolicy *pol; 1774 1775 pol = __get_vma_policy(vma, addr, ilx); 1776 if (!pol) 1777 pol = get_task_policy(current); 1778 if (pol->mode == MPOL_INTERLEAVE) { 1779 *ilx += vma->vm_pgoff >> order; 1780 *ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order); 1781 } 1782 return pol; 1783 } 1784 1785 bool vma_policy_mof(struct vm_area_struct *vma) 1786 { 1787 struct mempolicy *pol; 1788 1789 if (vma->vm_ops && vma->vm_ops->get_policy) { 1790 bool ret = false; 1791 pgoff_t ilx; /* ignored here */ 1792 1793 pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx); 1794 if (pol && (pol->flags & MPOL_F_MOF)) 1795 ret = true; 1796 mpol_cond_put(pol); 1797 1798 return ret; 1799 } 1800 1801 pol = vma->vm_policy; 1802 if (!pol) 1803 pol = get_task_policy(current); 1804 1805 return pol->flags & MPOL_F_MOF; 1806 } 1807 1808 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1809 { 1810 enum zone_type dynamic_policy_zone = policy_zone; 1811 1812 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1813 1814 /* 1815 * if policy->nodes has movable memory only, 1816 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1817 * 1818 * policy->nodes is intersect with node_states[N_MEMORY]. 1819 * so if the following test fails, it implies 1820 * policy->nodes has movable memory only. 1821 */ 1822 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1823 dynamic_policy_zone = ZONE_MOVABLE; 1824 1825 return zone >= dynamic_policy_zone; 1826 } 1827 1828 /* Do dynamic interleaving for a process */ 1829 static unsigned int interleave_nodes(struct mempolicy *policy) 1830 { 1831 unsigned int nid; 1832 1833 nid = next_node_in(current->il_prev, policy->nodes); 1834 if (nid < MAX_NUMNODES) 1835 current->il_prev = nid; 1836 return nid; 1837 } 1838 1839 /* 1840 * Depending on the memory policy provide a node from which to allocate the 1841 * next slab entry. 1842 */ 1843 unsigned int mempolicy_slab_node(void) 1844 { 1845 struct mempolicy *policy; 1846 int node = numa_mem_id(); 1847 1848 if (!in_task()) 1849 return node; 1850 1851 policy = current->mempolicy; 1852 if (!policy) 1853 return node; 1854 1855 switch (policy->mode) { 1856 case MPOL_PREFERRED: 1857 return first_node(policy->nodes); 1858 1859 case MPOL_INTERLEAVE: 1860 return interleave_nodes(policy); 1861 1862 case MPOL_BIND: 1863 case MPOL_PREFERRED_MANY: 1864 { 1865 struct zoneref *z; 1866 1867 /* 1868 * Follow bind policy behavior and start allocation at the 1869 * first node. 1870 */ 1871 struct zonelist *zonelist; 1872 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1873 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1874 z = first_zones_zonelist(zonelist, highest_zoneidx, 1875 &policy->nodes); 1876 return z->zone ? zone_to_nid(z->zone) : node; 1877 } 1878 case MPOL_LOCAL: 1879 return node; 1880 1881 default: 1882 BUG(); 1883 } 1884 } 1885 1886 /* 1887 * Do static interleaving for interleave index @ilx. Returns the ilx'th 1888 * node in pol->nodes (starting from ilx=0), wrapping around if ilx 1889 * exceeds the number of present nodes. 1890 */ 1891 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx) 1892 { 1893 nodemask_t nodemask = pol->nodes; 1894 unsigned int target, nnodes; 1895 int i; 1896 int nid; 1897 /* 1898 * The barrier will stabilize the nodemask in a register or on 1899 * the stack so that it will stop changing under the code. 1900 * 1901 * Between first_node() and next_node(), pol->nodes could be changed 1902 * by other threads. So we put pol->nodes in a local stack. 1903 */ 1904 barrier(); 1905 1906 nnodes = nodes_weight(nodemask); 1907 if (!nnodes) 1908 return numa_node_id(); 1909 target = ilx % nnodes; 1910 nid = first_node(nodemask); 1911 for (i = 0; i < target; i++) 1912 nid = next_node(nid, nodemask); 1913 return nid; 1914 } 1915 1916 /* 1917 * Return a nodemask representing a mempolicy for filtering nodes for 1918 * page allocation, together with preferred node id (or the input node id). 1919 */ 1920 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol, 1921 pgoff_t ilx, int *nid) 1922 { 1923 nodemask_t *nodemask = NULL; 1924 1925 switch (pol->mode) { 1926 case MPOL_PREFERRED: 1927 /* Override input node id */ 1928 *nid = first_node(pol->nodes); 1929 break; 1930 case MPOL_PREFERRED_MANY: 1931 nodemask = &pol->nodes; 1932 if (pol->home_node != NUMA_NO_NODE) 1933 *nid = pol->home_node; 1934 break; 1935 case MPOL_BIND: 1936 /* Restrict to nodemask (but not on lower zones) */ 1937 if (apply_policy_zone(pol, gfp_zone(gfp)) && 1938 cpuset_nodemask_valid_mems_allowed(&pol->nodes)) 1939 nodemask = &pol->nodes; 1940 if (pol->home_node != NUMA_NO_NODE) 1941 *nid = pol->home_node; 1942 /* 1943 * __GFP_THISNODE shouldn't even be used with the bind policy 1944 * because we might easily break the expectation to stay on the 1945 * requested node and not break the policy. 1946 */ 1947 WARN_ON_ONCE(gfp & __GFP_THISNODE); 1948 break; 1949 case MPOL_INTERLEAVE: 1950 /* Override input node id */ 1951 *nid = (ilx == NO_INTERLEAVE_INDEX) ? 1952 interleave_nodes(pol) : interleave_nid(pol, ilx); 1953 break; 1954 } 1955 1956 return nodemask; 1957 } 1958 1959 #ifdef CONFIG_HUGETLBFS 1960 /* 1961 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1962 * @vma: virtual memory area whose policy is sought 1963 * @addr: address in @vma for shared policy lookup and interleave policy 1964 * @gfp_flags: for requested zone 1965 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1966 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 1967 * 1968 * Returns a nid suitable for a huge page allocation and a pointer 1969 * to the struct mempolicy for conditional unref after allocation. 1970 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 1971 * to the mempolicy's @nodemask for filtering the zonelist. 1972 */ 1973 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1974 struct mempolicy **mpol, nodemask_t **nodemask) 1975 { 1976 pgoff_t ilx; 1977 int nid; 1978 1979 nid = numa_node_id(); 1980 *mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx); 1981 *nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid); 1982 return nid; 1983 } 1984 1985 /* 1986 * init_nodemask_of_mempolicy 1987 * 1988 * If the current task's mempolicy is "default" [NULL], return 'false' 1989 * to indicate default policy. Otherwise, extract the policy nodemask 1990 * for 'bind' or 'interleave' policy into the argument nodemask, or 1991 * initialize the argument nodemask to contain the single node for 1992 * 'preferred' or 'local' policy and return 'true' to indicate presence 1993 * of non-default mempolicy. 1994 * 1995 * We don't bother with reference counting the mempolicy [mpol_get/put] 1996 * because the current task is examining it's own mempolicy and a task's 1997 * mempolicy is only ever changed by the task itself. 1998 * 1999 * N.B., it is the caller's responsibility to free a returned nodemask. 2000 */ 2001 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2002 { 2003 struct mempolicy *mempolicy; 2004 2005 if (!(mask && current->mempolicy)) 2006 return false; 2007 2008 task_lock(current); 2009 mempolicy = current->mempolicy; 2010 switch (mempolicy->mode) { 2011 case MPOL_PREFERRED: 2012 case MPOL_PREFERRED_MANY: 2013 case MPOL_BIND: 2014 case MPOL_INTERLEAVE: 2015 *mask = mempolicy->nodes; 2016 break; 2017 2018 case MPOL_LOCAL: 2019 init_nodemask_of_node(mask, numa_node_id()); 2020 break; 2021 2022 default: 2023 BUG(); 2024 } 2025 task_unlock(current); 2026 2027 return true; 2028 } 2029 #endif 2030 2031 /* 2032 * mempolicy_in_oom_domain 2033 * 2034 * If tsk's mempolicy is "bind", check for intersection between mask and 2035 * the policy nodemask. Otherwise, return true for all other policies 2036 * including "interleave", as a tsk with "interleave" policy may have 2037 * memory allocated from all nodes in system. 2038 * 2039 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2040 */ 2041 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2042 const nodemask_t *mask) 2043 { 2044 struct mempolicy *mempolicy; 2045 bool ret = true; 2046 2047 if (!mask) 2048 return ret; 2049 2050 task_lock(tsk); 2051 mempolicy = tsk->mempolicy; 2052 if (mempolicy && mempolicy->mode == MPOL_BIND) 2053 ret = nodes_intersects(mempolicy->nodes, *mask); 2054 task_unlock(tsk); 2055 2056 return ret; 2057 } 2058 2059 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2060 int nid, nodemask_t *nodemask) 2061 { 2062 struct page *page; 2063 gfp_t preferred_gfp; 2064 2065 /* 2066 * This is a two pass approach. The first pass will only try the 2067 * preferred nodes but skip the direct reclaim and allow the 2068 * allocation to fail, while the second pass will try all the 2069 * nodes in system. 2070 */ 2071 preferred_gfp = gfp | __GFP_NOWARN; 2072 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2073 page = __alloc_pages(preferred_gfp, order, nid, nodemask); 2074 if (!page) 2075 page = __alloc_pages(gfp, order, nid, NULL); 2076 2077 return page; 2078 } 2079 2080 /** 2081 * alloc_pages_mpol - Allocate pages according to NUMA mempolicy. 2082 * @gfp: GFP flags. 2083 * @order: Order of the page allocation. 2084 * @pol: Pointer to the NUMA mempolicy. 2085 * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()). 2086 * @nid: Preferred node (usually numa_node_id() but @mpol may override it). 2087 * 2088 * Return: The page on success or NULL if allocation fails. 2089 */ 2090 struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order, 2091 struct mempolicy *pol, pgoff_t ilx, int nid) 2092 { 2093 nodemask_t *nodemask; 2094 struct page *page; 2095 2096 nodemask = policy_nodemask(gfp, pol, ilx, &nid); 2097 2098 if (pol->mode == MPOL_PREFERRED_MANY) 2099 return alloc_pages_preferred_many(gfp, order, nid, nodemask); 2100 2101 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2102 /* filter "hugepage" allocation, unless from alloc_pages() */ 2103 order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) { 2104 /* 2105 * For hugepage allocation and non-interleave policy which 2106 * allows the current node (or other explicitly preferred 2107 * node) we only try to allocate from the current/preferred 2108 * node and don't fall back to other nodes, as the cost of 2109 * remote accesses would likely offset THP benefits. 2110 * 2111 * If the policy is interleave or does not allow the current 2112 * node in its nodemask, we allocate the standard way. 2113 */ 2114 if (pol->mode != MPOL_INTERLEAVE && 2115 (!nodemask || node_isset(nid, *nodemask))) { 2116 /* 2117 * First, try to allocate THP only on local node, but 2118 * don't reclaim unnecessarily, just compact. 2119 */ 2120 page = __alloc_pages_node(nid, 2121 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2122 if (page || !(gfp & __GFP_DIRECT_RECLAIM)) 2123 return page; 2124 /* 2125 * If hugepage allocations are configured to always 2126 * synchronous compact or the vma has been madvised 2127 * to prefer hugepage backing, retry allowing remote 2128 * memory with both reclaim and compact as well. 2129 */ 2130 } 2131 } 2132 2133 page = __alloc_pages(gfp, order, nid, nodemask); 2134 2135 if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) { 2136 /* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */ 2137 if (static_branch_likely(&vm_numa_stat_key) && 2138 page_to_nid(page) == nid) { 2139 preempt_disable(); 2140 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2141 preempt_enable(); 2142 } 2143 } 2144 2145 return page; 2146 } 2147 2148 /** 2149 * vma_alloc_folio - Allocate a folio for a VMA. 2150 * @gfp: GFP flags. 2151 * @order: Order of the folio. 2152 * @vma: Pointer to VMA. 2153 * @addr: Virtual address of the allocation. Must be inside @vma. 2154 * @hugepage: Unused (was: For hugepages try only preferred node if possible). 2155 * 2156 * Allocate a folio for a specific address in @vma, using the appropriate 2157 * NUMA policy. The caller must hold the mmap_lock of the mm_struct of the 2158 * VMA to prevent it from going away. Should be used for all allocations 2159 * for folios that will be mapped into user space, excepting hugetlbfs, and 2160 * excepting where direct use of alloc_pages_mpol() is more appropriate. 2161 * 2162 * Return: The folio on success or NULL if allocation fails. 2163 */ 2164 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2165 unsigned long addr, bool hugepage) 2166 { 2167 struct mempolicy *pol; 2168 pgoff_t ilx; 2169 struct page *page; 2170 2171 pol = get_vma_policy(vma, addr, order, &ilx); 2172 page = alloc_pages_mpol(gfp | __GFP_COMP, order, 2173 pol, ilx, numa_node_id()); 2174 mpol_cond_put(pol); 2175 return page_rmappable_folio(page); 2176 } 2177 EXPORT_SYMBOL(vma_alloc_folio); 2178 2179 /** 2180 * alloc_pages - Allocate pages. 2181 * @gfp: GFP flags. 2182 * @order: Power of two of number of pages to allocate. 2183 * 2184 * Allocate 1 << @order contiguous pages. The physical address of the 2185 * first page is naturally aligned (eg an order-3 allocation will be aligned 2186 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2187 * process is honoured when in process context. 2188 * 2189 * Context: Can be called from any context, providing the appropriate GFP 2190 * flags are used. 2191 * Return: The page on success or NULL if allocation fails. 2192 */ 2193 struct page *alloc_pages(gfp_t gfp, unsigned int order) 2194 { 2195 struct mempolicy *pol = &default_policy; 2196 2197 /* 2198 * No reference counting needed for current->mempolicy 2199 * nor system default_policy 2200 */ 2201 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2202 pol = get_task_policy(current); 2203 2204 return alloc_pages_mpol(gfp, order, 2205 pol, NO_INTERLEAVE_INDEX, numa_node_id()); 2206 } 2207 EXPORT_SYMBOL(alloc_pages); 2208 2209 struct folio *folio_alloc(gfp_t gfp, unsigned int order) 2210 { 2211 return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order)); 2212 } 2213 EXPORT_SYMBOL(folio_alloc); 2214 2215 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2216 struct mempolicy *pol, unsigned long nr_pages, 2217 struct page **page_array) 2218 { 2219 int nodes; 2220 unsigned long nr_pages_per_node; 2221 int delta; 2222 int i; 2223 unsigned long nr_allocated; 2224 unsigned long total_allocated = 0; 2225 2226 nodes = nodes_weight(pol->nodes); 2227 nr_pages_per_node = nr_pages / nodes; 2228 delta = nr_pages - nodes * nr_pages_per_node; 2229 2230 for (i = 0; i < nodes; i++) { 2231 if (delta) { 2232 nr_allocated = __alloc_pages_bulk(gfp, 2233 interleave_nodes(pol), NULL, 2234 nr_pages_per_node + 1, NULL, 2235 page_array); 2236 delta--; 2237 } else { 2238 nr_allocated = __alloc_pages_bulk(gfp, 2239 interleave_nodes(pol), NULL, 2240 nr_pages_per_node, NULL, page_array); 2241 } 2242 2243 page_array += nr_allocated; 2244 total_allocated += nr_allocated; 2245 } 2246 2247 return total_allocated; 2248 } 2249 2250 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2251 struct mempolicy *pol, unsigned long nr_pages, 2252 struct page **page_array) 2253 { 2254 gfp_t preferred_gfp; 2255 unsigned long nr_allocated = 0; 2256 2257 preferred_gfp = gfp | __GFP_NOWARN; 2258 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2259 2260 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2261 nr_pages, NULL, page_array); 2262 2263 if (nr_allocated < nr_pages) 2264 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2265 nr_pages - nr_allocated, NULL, 2266 page_array + nr_allocated); 2267 return nr_allocated; 2268 } 2269 2270 /* alloc pages bulk and mempolicy should be considered at the 2271 * same time in some situation such as vmalloc. 2272 * 2273 * It can accelerate memory allocation especially interleaving 2274 * allocate memory. 2275 */ 2276 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2277 unsigned long nr_pages, struct page **page_array) 2278 { 2279 struct mempolicy *pol = &default_policy; 2280 nodemask_t *nodemask; 2281 int nid; 2282 2283 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2284 pol = get_task_policy(current); 2285 2286 if (pol->mode == MPOL_INTERLEAVE) 2287 return alloc_pages_bulk_array_interleave(gfp, pol, 2288 nr_pages, page_array); 2289 2290 if (pol->mode == MPOL_PREFERRED_MANY) 2291 return alloc_pages_bulk_array_preferred_many(gfp, 2292 numa_node_id(), pol, nr_pages, page_array); 2293 2294 nid = numa_node_id(); 2295 nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid); 2296 return __alloc_pages_bulk(gfp, nid, nodemask, 2297 nr_pages, NULL, page_array); 2298 } 2299 2300 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2301 { 2302 struct mempolicy *pol = mpol_dup(src->vm_policy); 2303 2304 if (IS_ERR(pol)) 2305 return PTR_ERR(pol); 2306 dst->vm_policy = pol; 2307 return 0; 2308 } 2309 2310 /* 2311 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2312 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2313 * with the mems_allowed returned by cpuset_mems_allowed(). This 2314 * keeps mempolicies cpuset relative after its cpuset moves. See 2315 * further kernel/cpuset.c update_nodemask(). 2316 * 2317 * current's mempolicy may be rebinded by the other task(the task that changes 2318 * cpuset's mems), so we needn't do rebind work for current task. 2319 */ 2320 2321 /* Slow path of a mempolicy duplicate */ 2322 struct mempolicy *__mpol_dup(struct mempolicy *old) 2323 { 2324 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2325 2326 if (!new) 2327 return ERR_PTR(-ENOMEM); 2328 2329 /* task's mempolicy is protected by alloc_lock */ 2330 if (old == current->mempolicy) { 2331 task_lock(current); 2332 *new = *old; 2333 task_unlock(current); 2334 } else 2335 *new = *old; 2336 2337 if (current_cpuset_is_being_rebound()) { 2338 nodemask_t mems = cpuset_mems_allowed(current); 2339 mpol_rebind_policy(new, &mems); 2340 } 2341 atomic_set(&new->refcnt, 1); 2342 return new; 2343 } 2344 2345 /* Slow path of a mempolicy comparison */ 2346 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2347 { 2348 if (!a || !b) 2349 return false; 2350 if (a->mode != b->mode) 2351 return false; 2352 if (a->flags != b->flags) 2353 return false; 2354 if (a->home_node != b->home_node) 2355 return false; 2356 if (mpol_store_user_nodemask(a)) 2357 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2358 return false; 2359 2360 switch (a->mode) { 2361 case MPOL_BIND: 2362 case MPOL_INTERLEAVE: 2363 case MPOL_PREFERRED: 2364 case MPOL_PREFERRED_MANY: 2365 return !!nodes_equal(a->nodes, b->nodes); 2366 case MPOL_LOCAL: 2367 return true; 2368 default: 2369 BUG(); 2370 return false; 2371 } 2372 } 2373 2374 /* 2375 * Shared memory backing store policy support. 2376 * 2377 * Remember policies even when nobody has shared memory mapped. 2378 * The policies are kept in Red-Black tree linked from the inode. 2379 * They are protected by the sp->lock rwlock, which should be held 2380 * for any accesses to the tree. 2381 */ 2382 2383 /* 2384 * lookup first element intersecting start-end. Caller holds sp->lock for 2385 * reading or for writing 2386 */ 2387 static struct sp_node *sp_lookup(struct shared_policy *sp, 2388 pgoff_t start, pgoff_t end) 2389 { 2390 struct rb_node *n = sp->root.rb_node; 2391 2392 while (n) { 2393 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2394 2395 if (start >= p->end) 2396 n = n->rb_right; 2397 else if (end <= p->start) 2398 n = n->rb_left; 2399 else 2400 break; 2401 } 2402 if (!n) 2403 return NULL; 2404 for (;;) { 2405 struct sp_node *w = NULL; 2406 struct rb_node *prev = rb_prev(n); 2407 if (!prev) 2408 break; 2409 w = rb_entry(prev, struct sp_node, nd); 2410 if (w->end <= start) 2411 break; 2412 n = prev; 2413 } 2414 return rb_entry(n, struct sp_node, nd); 2415 } 2416 2417 /* 2418 * Insert a new shared policy into the list. Caller holds sp->lock for 2419 * writing. 2420 */ 2421 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2422 { 2423 struct rb_node **p = &sp->root.rb_node; 2424 struct rb_node *parent = NULL; 2425 struct sp_node *nd; 2426 2427 while (*p) { 2428 parent = *p; 2429 nd = rb_entry(parent, struct sp_node, nd); 2430 if (new->start < nd->start) 2431 p = &(*p)->rb_left; 2432 else if (new->end > nd->end) 2433 p = &(*p)->rb_right; 2434 else 2435 BUG(); 2436 } 2437 rb_link_node(&new->nd, parent, p); 2438 rb_insert_color(&new->nd, &sp->root); 2439 } 2440 2441 /* Find shared policy intersecting idx */ 2442 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, 2443 pgoff_t idx) 2444 { 2445 struct mempolicy *pol = NULL; 2446 struct sp_node *sn; 2447 2448 if (!sp->root.rb_node) 2449 return NULL; 2450 read_lock(&sp->lock); 2451 sn = sp_lookup(sp, idx, idx+1); 2452 if (sn) { 2453 mpol_get(sn->policy); 2454 pol = sn->policy; 2455 } 2456 read_unlock(&sp->lock); 2457 return pol; 2458 } 2459 2460 static void sp_free(struct sp_node *n) 2461 { 2462 mpol_put(n->policy); 2463 kmem_cache_free(sn_cache, n); 2464 } 2465 2466 /** 2467 * mpol_misplaced - check whether current folio node is valid in policy 2468 * 2469 * @folio: folio to be checked 2470 * @vma: vm area where folio mapped 2471 * @addr: virtual address in @vma for shared policy lookup and interleave policy 2472 * 2473 * Lookup current policy node id for vma,addr and "compare to" folio's 2474 * node id. Policy determination "mimics" alloc_page_vma(). 2475 * Called from fault path where we know the vma and faulting address. 2476 * 2477 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2478 * policy, or a suitable node ID to allocate a replacement folio from. 2479 */ 2480 int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma, 2481 unsigned long addr) 2482 { 2483 struct mempolicy *pol; 2484 pgoff_t ilx; 2485 struct zoneref *z; 2486 int curnid = folio_nid(folio); 2487 int thiscpu = raw_smp_processor_id(); 2488 int thisnid = cpu_to_node(thiscpu); 2489 int polnid = NUMA_NO_NODE; 2490 int ret = NUMA_NO_NODE; 2491 2492 pol = get_vma_policy(vma, addr, folio_order(folio), &ilx); 2493 if (!(pol->flags & MPOL_F_MOF)) 2494 goto out; 2495 2496 switch (pol->mode) { 2497 case MPOL_INTERLEAVE: 2498 polnid = interleave_nid(pol, ilx); 2499 break; 2500 2501 case MPOL_PREFERRED: 2502 if (node_isset(curnid, pol->nodes)) 2503 goto out; 2504 polnid = first_node(pol->nodes); 2505 break; 2506 2507 case MPOL_LOCAL: 2508 polnid = numa_node_id(); 2509 break; 2510 2511 case MPOL_BIND: 2512 /* Optimize placement among multiple nodes via NUMA balancing */ 2513 if (pol->flags & MPOL_F_MORON) { 2514 if (node_isset(thisnid, pol->nodes)) 2515 break; 2516 goto out; 2517 } 2518 fallthrough; 2519 2520 case MPOL_PREFERRED_MANY: 2521 /* 2522 * use current page if in policy nodemask, 2523 * else select nearest allowed node, if any. 2524 * If no allowed nodes, use current [!misplaced]. 2525 */ 2526 if (node_isset(curnid, pol->nodes)) 2527 goto out; 2528 z = first_zones_zonelist( 2529 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2530 gfp_zone(GFP_HIGHUSER), 2531 &pol->nodes); 2532 polnid = zone_to_nid(z->zone); 2533 break; 2534 2535 default: 2536 BUG(); 2537 } 2538 2539 /* Migrate the folio towards the node whose CPU is referencing it */ 2540 if (pol->flags & MPOL_F_MORON) { 2541 polnid = thisnid; 2542 2543 if (!should_numa_migrate_memory(current, folio, curnid, 2544 thiscpu)) 2545 goto out; 2546 } 2547 2548 if (curnid != polnid) 2549 ret = polnid; 2550 out: 2551 mpol_cond_put(pol); 2552 2553 return ret; 2554 } 2555 2556 /* 2557 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2558 * dropped after task->mempolicy is set to NULL so that any allocation done as 2559 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2560 * policy. 2561 */ 2562 void mpol_put_task_policy(struct task_struct *task) 2563 { 2564 struct mempolicy *pol; 2565 2566 task_lock(task); 2567 pol = task->mempolicy; 2568 task->mempolicy = NULL; 2569 task_unlock(task); 2570 mpol_put(pol); 2571 } 2572 2573 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2574 { 2575 rb_erase(&n->nd, &sp->root); 2576 sp_free(n); 2577 } 2578 2579 static void sp_node_init(struct sp_node *node, unsigned long start, 2580 unsigned long end, struct mempolicy *pol) 2581 { 2582 node->start = start; 2583 node->end = end; 2584 node->policy = pol; 2585 } 2586 2587 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2588 struct mempolicy *pol) 2589 { 2590 struct sp_node *n; 2591 struct mempolicy *newpol; 2592 2593 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2594 if (!n) 2595 return NULL; 2596 2597 newpol = mpol_dup(pol); 2598 if (IS_ERR(newpol)) { 2599 kmem_cache_free(sn_cache, n); 2600 return NULL; 2601 } 2602 newpol->flags |= MPOL_F_SHARED; 2603 sp_node_init(n, start, end, newpol); 2604 2605 return n; 2606 } 2607 2608 /* Replace a policy range. */ 2609 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start, 2610 pgoff_t end, struct sp_node *new) 2611 { 2612 struct sp_node *n; 2613 struct sp_node *n_new = NULL; 2614 struct mempolicy *mpol_new = NULL; 2615 int ret = 0; 2616 2617 restart: 2618 write_lock(&sp->lock); 2619 n = sp_lookup(sp, start, end); 2620 /* Take care of old policies in the same range. */ 2621 while (n && n->start < end) { 2622 struct rb_node *next = rb_next(&n->nd); 2623 if (n->start >= start) { 2624 if (n->end <= end) 2625 sp_delete(sp, n); 2626 else 2627 n->start = end; 2628 } else { 2629 /* Old policy spanning whole new range. */ 2630 if (n->end > end) { 2631 if (!n_new) 2632 goto alloc_new; 2633 2634 *mpol_new = *n->policy; 2635 atomic_set(&mpol_new->refcnt, 1); 2636 sp_node_init(n_new, end, n->end, mpol_new); 2637 n->end = start; 2638 sp_insert(sp, n_new); 2639 n_new = NULL; 2640 mpol_new = NULL; 2641 break; 2642 } else 2643 n->end = start; 2644 } 2645 if (!next) 2646 break; 2647 n = rb_entry(next, struct sp_node, nd); 2648 } 2649 if (new) 2650 sp_insert(sp, new); 2651 write_unlock(&sp->lock); 2652 ret = 0; 2653 2654 err_out: 2655 if (mpol_new) 2656 mpol_put(mpol_new); 2657 if (n_new) 2658 kmem_cache_free(sn_cache, n_new); 2659 2660 return ret; 2661 2662 alloc_new: 2663 write_unlock(&sp->lock); 2664 ret = -ENOMEM; 2665 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2666 if (!n_new) 2667 goto err_out; 2668 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2669 if (!mpol_new) 2670 goto err_out; 2671 atomic_set(&mpol_new->refcnt, 1); 2672 goto restart; 2673 } 2674 2675 /** 2676 * mpol_shared_policy_init - initialize shared policy for inode 2677 * @sp: pointer to inode shared policy 2678 * @mpol: struct mempolicy to install 2679 * 2680 * Install non-NULL @mpol in inode's shared policy rb-tree. 2681 * On entry, the current task has a reference on a non-NULL @mpol. 2682 * This must be released on exit. 2683 * This is called at get_inode() calls and we can use GFP_KERNEL. 2684 */ 2685 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2686 { 2687 int ret; 2688 2689 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2690 rwlock_init(&sp->lock); 2691 2692 if (mpol) { 2693 struct sp_node *sn; 2694 struct mempolicy *npol; 2695 NODEMASK_SCRATCH(scratch); 2696 2697 if (!scratch) 2698 goto put_mpol; 2699 2700 /* contextualize the tmpfs mount point mempolicy to this file */ 2701 npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2702 if (IS_ERR(npol)) 2703 goto free_scratch; /* no valid nodemask intersection */ 2704 2705 task_lock(current); 2706 ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch); 2707 task_unlock(current); 2708 if (ret) 2709 goto put_npol; 2710 2711 /* alloc node covering entire file; adds ref to file's npol */ 2712 sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol); 2713 if (sn) 2714 sp_insert(sp, sn); 2715 put_npol: 2716 mpol_put(npol); /* drop initial ref on file's npol */ 2717 free_scratch: 2718 NODEMASK_SCRATCH_FREE(scratch); 2719 put_mpol: 2720 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2721 } 2722 } 2723 2724 int mpol_set_shared_policy(struct shared_policy *sp, 2725 struct vm_area_struct *vma, struct mempolicy *pol) 2726 { 2727 int err; 2728 struct sp_node *new = NULL; 2729 unsigned long sz = vma_pages(vma); 2730 2731 if (pol) { 2732 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol); 2733 if (!new) 2734 return -ENOMEM; 2735 } 2736 err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new); 2737 if (err && new) 2738 sp_free(new); 2739 return err; 2740 } 2741 2742 /* Free a backing policy store on inode delete. */ 2743 void mpol_free_shared_policy(struct shared_policy *sp) 2744 { 2745 struct sp_node *n; 2746 struct rb_node *next; 2747 2748 if (!sp->root.rb_node) 2749 return; 2750 write_lock(&sp->lock); 2751 next = rb_first(&sp->root); 2752 while (next) { 2753 n = rb_entry(next, struct sp_node, nd); 2754 next = rb_next(&n->nd); 2755 sp_delete(sp, n); 2756 } 2757 write_unlock(&sp->lock); 2758 } 2759 2760 #ifdef CONFIG_NUMA_BALANCING 2761 static int __initdata numabalancing_override; 2762 2763 static void __init check_numabalancing_enable(void) 2764 { 2765 bool numabalancing_default = false; 2766 2767 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2768 numabalancing_default = true; 2769 2770 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2771 if (numabalancing_override) 2772 set_numabalancing_state(numabalancing_override == 1); 2773 2774 if (num_online_nodes() > 1 && !numabalancing_override) { 2775 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2776 numabalancing_default ? "Enabling" : "Disabling"); 2777 set_numabalancing_state(numabalancing_default); 2778 } 2779 } 2780 2781 static int __init setup_numabalancing(char *str) 2782 { 2783 int ret = 0; 2784 if (!str) 2785 goto out; 2786 2787 if (!strcmp(str, "enable")) { 2788 numabalancing_override = 1; 2789 ret = 1; 2790 } else if (!strcmp(str, "disable")) { 2791 numabalancing_override = -1; 2792 ret = 1; 2793 } 2794 out: 2795 if (!ret) 2796 pr_warn("Unable to parse numa_balancing=\n"); 2797 2798 return ret; 2799 } 2800 __setup("numa_balancing=", setup_numabalancing); 2801 #else 2802 static inline void __init check_numabalancing_enable(void) 2803 { 2804 } 2805 #endif /* CONFIG_NUMA_BALANCING */ 2806 2807 void __init numa_policy_init(void) 2808 { 2809 nodemask_t interleave_nodes; 2810 unsigned long largest = 0; 2811 int nid, prefer = 0; 2812 2813 policy_cache = kmem_cache_create("numa_policy", 2814 sizeof(struct mempolicy), 2815 0, SLAB_PANIC, NULL); 2816 2817 sn_cache = kmem_cache_create("shared_policy_node", 2818 sizeof(struct sp_node), 2819 0, SLAB_PANIC, NULL); 2820 2821 for_each_node(nid) { 2822 preferred_node_policy[nid] = (struct mempolicy) { 2823 .refcnt = ATOMIC_INIT(1), 2824 .mode = MPOL_PREFERRED, 2825 .flags = MPOL_F_MOF | MPOL_F_MORON, 2826 .nodes = nodemask_of_node(nid), 2827 }; 2828 } 2829 2830 /* 2831 * Set interleaving policy for system init. Interleaving is only 2832 * enabled across suitably sized nodes (default is >= 16MB), or 2833 * fall back to the largest node if they're all smaller. 2834 */ 2835 nodes_clear(interleave_nodes); 2836 for_each_node_state(nid, N_MEMORY) { 2837 unsigned long total_pages = node_present_pages(nid); 2838 2839 /* Preserve the largest node */ 2840 if (largest < total_pages) { 2841 largest = total_pages; 2842 prefer = nid; 2843 } 2844 2845 /* Interleave this node? */ 2846 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2847 node_set(nid, interleave_nodes); 2848 } 2849 2850 /* All too small, use the largest */ 2851 if (unlikely(nodes_empty(interleave_nodes))) 2852 node_set(prefer, interleave_nodes); 2853 2854 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2855 pr_err("%s: interleaving failed\n", __func__); 2856 2857 check_numabalancing_enable(); 2858 } 2859 2860 /* Reset policy of current process to default */ 2861 void numa_default_policy(void) 2862 { 2863 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2864 } 2865 2866 /* 2867 * Parse and format mempolicy from/to strings 2868 */ 2869 static const char * const policy_modes[] = 2870 { 2871 [MPOL_DEFAULT] = "default", 2872 [MPOL_PREFERRED] = "prefer", 2873 [MPOL_BIND] = "bind", 2874 [MPOL_INTERLEAVE] = "interleave", 2875 [MPOL_LOCAL] = "local", 2876 [MPOL_PREFERRED_MANY] = "prefer (many)", 2877 }; 2878 2879 #ifdef CONFIG_TMPFS 2880 /** 2881 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2882 * @str: string containing mempolicy to parse 2883 * @mpol: pointer to struct mempolicy pointer, returned on success. 2884 * 2885 * Format of input: 2886 * <mode>[=<flags>][:<nodelist>] 2887 * 2888 * Return: %0 on success, else %1 2889 */ 2890 int mpol_parse_str(char *str, struct mempolicy **mpol) 2891 { 2892 struct mempolicy *new = NULL; 2893 unsigned short mode_flags; 2894 nodemask_t nodes; 2895 char *nodelist = strchr(str, ':'); 2896 char *flags = strchr(str, '='); 2897 int err = 1, mode; 2898 2899 if (flags) 2900 *flags++ = '\0'; /* terminate mode string */ 2901 2902 if (nodelist) { 2903 /* NUL-terminate mode or flags string */ 2904 *nodelist++ = '\0'; 2905 if (nodelist_parse(nodelist, nodes)) 2906 goto out; 2907 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2908 goto out; 2909 } else 2910 nodes_clear(nodes); 2911 2912 mode = match_string(policy_modes, MPOL_MAX, str); 2913 if (mode < 0) 2914 goto out; 2915 2916 switch (mode) { 2917 case MPOL_PREFERRED: 2918 /* 2919 * Insist on a nodelist of one node only, although later 2920 * we use first_node(nodes) to grab a single node, so here 2921 * nodelist (or nodes) cannot be empty. 2922 */ 2923 if (nodelist) { 2924 char *rest = nodelist; 2925 while (isdigit(*rest)) 2926 rest++; 2927 if (*rest) 2928 goto out; 2929 if (nodes_empty(nodes)) 2930 goto out; 2931 } 2932 break; 2933 case MPOL_INTERLEAVE: 2934 /* 2935 * Default to online nodes with memory if no nodelist 2936 */ 2937 if (!nodelist) 2938 nodes = node_states[N_MEMORY]; 2939 break; 2940 case MPOL_LOCAL: 2941 /* 2942 * Don't allow a nodelist; mpol_new() checks flags 2943 */ 2944 if (nodelist) 2945 goto out; 2946 break; 2947 case MPOL_DEFAULT: 2948 /* 2949 * Insist on a empty nodelist 2950 */ 2951 if (!nodelist) 2952 err = 0; 2953 goto out; 2954 case MPOL_PREFERRED_MANY: 2955 case MPOL_BIND: 2956 /* 2957 * Insist on a nodelist 2958 */ 2959 if (!nodelist) 2960 goto out; 2961 } 2962 2963 mode_flags = 0; 2964 if (flags) { 2965 /* 2966 * Currently, we only support two mutually exclusive 2967 * mode flags. 2968 */ 2969 if (!strcmp(flags, "static")) 2970 mode_flags |= MPOL_F_STATIC_NODES; 2971 else if (!strcmp(flags, "relative")) 2972 mode_flags |= MPOL_F_RELATIVE_NODES; 2973 else 2974 goto out; 2975 } 2976 2977 new = mpol_new(mode, mode_flags, &nodes); 2978 if (IS_ERR(new)) 2979 goto out; 2980 2981 /* 2982 * Save nodes for mpol_to_str() to show the tmpfs mount options 2983 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2984 */ 2985 if (mode != MPOL_PREFERRED) { 2986 new->nodes = nodes; 2987 } else if (nodelist) { 2988 nodes_clear(new->nodes); 2989 node_set(first_node(nodes), new->nodes); 2990 } else { 2991 new->mode = MPOL_LOCAL; 2992 } 2993 2994 /* 2995 * Save nodes for contextualization: this will be used to "clone" 2996 * the mempolicy in a specific context [cpuset] at a later time. 2997 */ 2998 new->w.user_nodemask = nodes; 2999 3000 err = 0; 3001 3002 out: 3003 /* Restore string for error message */ 3004 if (nodelist) 3005 *--nodelist = ':'; 3006 if (flags) 3007 *--flags = '='; 3008 if (!err) 3009 *mpol = new; 3010 return err; 3011 } 3012 #endif /* CONFIG_TMPFS */ 3013 3014 /** 3015 * mpol_to_str - format a mempolicy structure for printing 3016 * @buffer: to contain formatted mempolicy string 3017 * @maxlen: length of @buffer 3018 * @pol: pointer to mempolicy to be formatted 3019 * 3020 * Convert @pol into a string. If @buffer is too short, truncate the string. 3021 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3022 * longest flag, "relative", and to display at least a few node ids. 3023 */ 3024 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3025 { 3026 char *p = buffer; 3027 nodemask_t nodes = NODE_MASK_NONE; 3028 unsigned short mode = MPOL_DEFAULT; 3029 unsigned short flags = 0; 3030 3031 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3032 mode = pol->mode; 3033 flags = pol->flags; 3034 } 3035 3036 switch (mode) { 3037 case MPOL_DEFAULT: 3038 case MPOL_LOCAL: 3039 break; 3040 case MPOL_PREFERRED: 3041 case MPOL_PREFERRED_MANY: 3042 case MPOL_BIND: 3043 case MPOL_INTERLEAVE: 3044 nodes = pol->nodes; 3045 break; 3046 default: 3047 WARN_ON_ONCE(1); 3048 snprintf(p, maxlen, "unknown"); 3049 return; 3050 } 3051 3052 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3053 3054 if (flags & MPOL_MODE_FLAGS) { 3055 p += snprintf(p, buffer + maxlen - p, "="); 3056 3057 /* 3058 * Currently, the only defined flags are mutually exclusive 3059 */ 3060 if (flags & MPOL_F_STATIC_NODES) 3061 p += snprintf(p, buffer + maxlen - p, "static"); 3062 else if (flags & MPOL_F_RELATIVE_NODES) 3063 p += snprintf(p, buffer + maxlen - p, "relative"); 3064 } 3065 3066 if (!nodes_empty(nodes)) 3067 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3068 nodemask_pr_args(&nodes)); 3069 } 3070