1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <linux/uaccess.h> 108 109 #include "internal.h" 110 111 /* Internal flags */ 112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 114 115 static struct kmem_cache *policy_cache; 116 static struct kmem_cache *sn_cache; 117 118 /* Highest zone. An specific allocation for a zone below that is not 119 policied. */ 120 enum zone_type policy_zone = 0; 121 122 /* 123 * run-time system-wide default policy => local allocation 124 */ 125 static struct mempolicy default_policy = { 126 .refcnt = ATOMIC_INIT(1), /* never free it */ 127 .mode = MPOL_LOCAL, 128 }; 129 130 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 131 132 /** 133 * numa_map_to_online_node - Find closest online node 134 * @node: Node id to start the search 135 * 136 * Lookup the next closest node by distance if @nid is not online. 137 */ 138 int numa_map_to_online_node(int node) 139 { 140 int min_dist = INT_MAX, dist, n, min_node; 141 142 if (node == NUMA_NO_NODE || node_online(node)) 143 return node; 144 145 min_node = node; 146 for_each_online_node(n) { 147 dist = node_distance(node, n); 148 if (dist < min_dist) { 149 min_dist = dist; 150 min_node = n; 151 } 152 } 153 154 return min_node; 155 } 156 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 157 158 struct mempolicy *get_task_policy(struct task_struct *p) 159 { 160 struct mempolicy *pol = p->mempolicy; 161 int node; 162 163 if (pol) 164 return pol; 165 166 node = numa_node_id(); 167 if (node != NUMA_NO_NODE) { 168 pol = &preferred_node_policy[node]; 169 /* preferred_node_policy is not initialised early in boot */ 170 if (pol->mode) 171 return pol; 172 } 173 174 return &default_policy; 175 } 176 177 static const struct mempolicy_operations { 178 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 179 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 180 } mpol_ops[MPOL_MAX]; 181 182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 183 { 184 return pol->flags & MPOL_MODE_FLAGS; 185 } 186 187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 188 const nodemask_t *rel) 189 { 190 nodemask_t tmp; 191 nodes_fold(tmp, *orig, nodes_weight(*rel)); 192 nodes_onto(*ret, tmp, *rel); 193 } 194 195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 196 { 197 if (nodes_empty(*nodes)) 198 return -EINVAL; 199 pol->nodes = *nodes; 200 return 0; 201 } 202 203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 204 { 205 if (nodes_empty(*nodes)) 206 return -EINVAL; 207 208 nodes_clear(pol->nodes); 209 node_set(first_node(*nodes), pol->nodes); 210 return 0; 211 } 212 213 /* 214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 215 * any, for the new policy. mpol_new() has already validated the nodes 216 * parameter with respect to the policy mode and flags. 217 * 218 * Must be called holding task's alloc_lock to protect task's mems_allowed 219 * and mempolicy. May also be called holding the mmap_lock for write. 220 */ 221 static int mpol_set_nodemask(struct mempolicy *pol, 222 const nodemask_t *nodes, struct nodemask_scratch *nsc) 223 { 224 int ret; 225 226 /* 227 * Default (pol==NULL) resp. local memory policies are not a 228 * subject of any remapping. They also do not need any special 229 * constructor. 230 */ 231 if (!pol || pol->mode == MPOL_LOCAL) 232 return 0; 233 234 /* Check N_MEMORY */ 235 nodes_and(nsc->mask1, 236 cpuset_current_mems_allowed, node_states[N_MEMORY]); 237 238 VM_BUG_ON(!nodes); 239 240 if (pol->flags & MPOL_F_RELATIVE_NODES) 241 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 242 else 243 nodes_and(nsc->mask2, *nodes, nsc->mask1); 244 245 if (mpol_store_user_nodemask(pol)) 246 pol->w.user_nodemask = *nodes; 247 else 248 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 249 250 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 251 return ret; 252 } 253 254 /* 255 * This function just creates a new policy, does some check and simple 256 * initialization. You must invoke mpol_set_nodemask() to set nodes. 257 */ 258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 259 nodemask_t *nodes) 260 { 261 struct mempolicy *policy; 262 263 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 265 266 if (mode == MPOL_DEFAULT) { 267 if (nodes && !nodes_empty(*nodes)) 268 return ERR_PTR(-EINVAL); 269 return NULL; 270 } 271 VM_BUG_ON(!nodes); 272 273 /* 274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 276 * All other modes require a valid pointer to a non-empty nodemask. 277 */ 278 if (mode == MPOL_PREFERRED) { 279 if (nodes_empty(*nodes)) { 280 if (((flags & MPOL_F_STATIC_NODES) || 281 (flags & MPOL_F_RELATIVE_NODES))) 282 return ERR_PTR(-EINVAL); 283 284 mode = MPOL_LOCAL; 285 } 286 } else if (mode == MPOL_LOCAL) { 287 if (!nodes_empty(*nodes) || 288 (flags & MPOL_F_STATIC_NODES) || 289 (flags & MPOL_F_RELATIVE_NODES)) 290 return ERR_PTR(-EINVAL); 291 } else if (nodes_empty(*nodes)) 292 return ERR_PTR(-EINVAL); 293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 294 if (!policy) 295 return ERR_PTR(-ENOMEM); 296 atomic_set(&policy->refcnt, 1); 297 policy->mode = mode; 298 policy->flags = flags; 299 300 return policy; 301 } 302 303 /* Slow path of a mpol destructor. */ 304 void __mpol_put(struct mempolicy *p) 305 { 306 if (!atomic_dec_and_test(&p->refcnt)) 307 return; 308 kmem_cache_free(policy_cache, p); 309 } 310 311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 312 { 313 } 314 315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 nodemask_t tmp; 318 319 if (pol->flags & MPOL_F_STATIC_NODES) 320 nodes_and(tmp, pol->w.user_nodemask, *nodes); 321 else if (pol->flags & MPOL_F_RELATIVE_NODES) 322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 323 else { 324 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 325 *nodes); 326 pol->w.cpuset_mems_allowed = *nodes; 327 } 328 329 if (nodes_empty(tmp)) 330 tmp = *nodes; 331 332 pol->nodes = tmp; 333 } 334 335 static void mpol_rebind_preferred(struct mempolicy *pol, 336 const nodemask_t *nodes) 337 { 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 341 /* 342 * mpol_rebind_policy - Migrate a policy to a different set of nodes 343 * 344 * Per-vma policies are protected by mmap_lock. Allocations using per-task 345 * policies are protected by task->mems_allowed_seq to prevent a premature 346 * OOM/allocation failure due to parallel nodemask modification. 347 */ 348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 349 { 350 if (!pol) 351 return; 352 if (!mpol_store_user_nodemask(pol) && 353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 354 return; 355 356 mpol_ops[pol->mode].rebind(pol, newmask); 357 } 358 359 /* 360 * Wrapper for mpol_rebind_policy() that just requires task 361 * pointer, and updates task mempolicy. 362 * 363 * Called with task's alloc_lock held. 364 */ 365 366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 367 { 368 mpol_rebind_policy(tsk->mempolicy, new); 369 } 370 371 /* 372 * Rebind each vma in mm to new nodemask. 373 * 374 * Call holding a reference to mm. Takes mm->mmap_lock during call. 375 */ 376 377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 378 { 379 struct vm_area_struct *vma; 380 381 mmap_write_lock(mm); 382 for (vma = mm->mmap; vma; vma = vma->vm_next) 383 mpol_rebind_policy(vma->vm_policy, new); 384 mmap_write_unlock(mm); 385 } 386 387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 388 [MPOL_DEFAULT] = { 389 .rebind = mpol_rebind_default, 390 }, 391 [MPOL_INTERLEAVE] = { 392 .create = mpol_new_nodemask, 393 .rebind = mpol_rebind_nodemask, 394 }, 395 [MPOL_PREFERRED] = { 396 .create = mpol_new_preferred, 397 .rebind = mpol_rebind_preferred, 398 }, 399 [MPOL_BIND] = { 400 .create = mpol_new_nodemask, 401 .rebind = mpol_rebind_nodemask, 402 }, 403 [MPOL_LOCAL] = { 404 .rebind = mpol_rebind_default, 405 }, 406 [MPOL_PREFERRED_MANY] = { 407 .create = mpol_new_nodemask, 408 .rebind = mpol_rebind_preferred, 409 }, 410 }; 411 412 static int migrate_page_add(struct page *page, struct list_head *pagelist, 413 unsigned long flags); 414 415 struct queue_pages { 416 struct list_head *pagelist; 417 unsigned long flags; 418 nodemask_t *nmask; 419 unsigned long start; 420 unsigned long end; 421 struct vm_area_struct *first; 422 }; 423 424 /* 425 * Check if the page's nid is in qp->nmask. 426 * 427 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 428 * in the invert of qp->nmask. 429 */ 430 static inline bool queue_pages_required(struct page *page, 431 struct queue_pages *qp) 432 { 433 int nid = page_to_nid(page); 434 unsigned long flags = qp->flags; 435 436 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 437 } 438 439 /* 440 * queue_pages_pmd() has four possible return values: 441 * 0 - pages are placed on the right node or queued successfully, or 442 * special page is met, i.e. huge zero page. 443 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 444 * specified. 445 * 2 - THP was split. 446 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 447 * existing page was already on a node that does not follow the 448 * policy. 449 */ 450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 451 unsigned long end, struct mm_walk *walk) 452 __releases(ptl) 453 { 454 int ret = 0; 455 struct page *page; 456 struct queue_pages *qp = walk->private; 457 unsigned long flags; 458 459 if (unlikely(is_pmd_migration_entry(*pmd))) { 460 ret = -EIO; 461 goto unlock; 462 } 463 page = pmd_page(*pmd); 464 if (is_huge_zero_page(page)) { 465 spin_unlock(ptl); 466 walk->action = ACTION_CONTINUE; 467 goto out; 468 } 469 if (!queue_pages_required(page, qp)) 470 goto unlock; 471 472 flags = qp->flags; 473 /* go to thp migration */ 474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 475 if (!vma_migratable(walk->vma) || 476 migrate_page_add(page, qp->pagelist, flags)) { 477 ret = 1; 478 goto unlock; 479 } 480 } else 481 ret = -EIO; 482 unlock: 483 spin_unlock(ptl); 484 out: 485 return ret; 486 } 487 488 /* 489 * Scan through pages checking if pages follow certain conditions, 490 * and move them to the pagelist if they do. 491 * 492 * queue_pages_pte_range() has three possible return values: 493 * 0 - pages are placed on the right node or queued successfully, or 494 * special page is met, i.e. zero page. 495 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 496 * specified. 497 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 498 * on a node that does not follow the policy. 499 */ 500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 501 unsigned long end, struct mm_walk *walk) 502 { 503 struct vm_area_struct *vma = walk->vma; 504 struct page *page; 505 struct queue_pages *qp = walk->private; 506 unsigned long flags = qp->flags; 507 int ret; 508 bool has_unmovable = false; 509 pte_t *pte, *mapped_pte; 510 spinlock_t *ptl; 511 512 ptl = pmd_trans_huge_lock(pmd, vma); 513 if (ptl) { 514 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 515 if (ret != 2) 516 return ret; 517 } 518 /* THP was split, fall through to pte walk */ 519 520 if (pmd_trans_unstable(pmd)) 521 return 0; 522 523 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 524 for (; addr != end; pte++, addr += PAGE_SIZE) { 525 if (!pte_present(*pte)) 526 continue; 527 page = vm_normal_page(vma, addr, *pte); 528 if (!page) 529 continue; 530 /* 531 * vm_normal_page() filters out zero pages, but there might 532 * still be PageReserved pages to skip, perhaps in a VDSO. 533 */ 534 if (PageReserved(page)) 535 continue; 536 if (!queue_pages_required(page, qp)) 537 continue; 538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 539 /* MPOL_MF_STRICT must be specified if we get here */ 540 if (!vma_migratable(vma)) { 541 has_unmovable = true; 542 break; 543 } 544 545 /* 546 * Do not abort immediately since there may be 547 * temporary off LRU pages in the range. Still 548 * need migrate other LRU pages. 549 */ 550 if (migrate_page_add(page, qp->pagelist, flags)) 551 has_unmovable = true; 552 } else 553 break; 554 } 555 pte_unmap_unlock(mapped_pte, ptl); 556 cond_resched(); 557 558 if (has_unmovable) 559 return 1; 560 561 return addr != end ? -EIO : 0; 562 } 563 564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 565 unsigned long addr, unsigned long end, 566 struct mm_walk *walk) 567 { 568 int ret = 0; 569 #ifdef CONFIG_HUGETLB_PAGE 570 struct queue_pages *qp = walk->private; 571 unsigned long flags = (qp->flags & MPOL_MF_VALID); 572 struct page *page; 573 spinlock_t *ptl; 574 pte_t entry; 575 576 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 577 entry = huge_ptep_get(pte); 578 if (!pte_present(entry)) 579 goto unlock; 580 page = pte_page(entry); 581 if (!queue_pages_required(page, qp)) 582 goto unlock; 583 584 if (flags == MPOL_MF_STRICT) { 585 /* 586 * STRICT alone means only detecting misplaced page and no 587 * need to further check other vma. 588 */ 589 ret = -EIO; 590 goto unlock; 591 } 592 593 if (!vma_migratable(walk->vma)) { 594 /* 595 * Must be STRICT with MOVE*, otherwise .test_walk() have 596 * stopped walking current vma. 597 * Detecting misplaced page but allow migrating pages which 598 * have been queued. 599 */ 600 ret = 1; 601 goto unlock; 602 } 603 604 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 605 if (flags & (MPOL_MF_MOVE_ALL) || 606 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 607 if (!isolate_huge_page(page, qp->pagelist) && 608 (flags & MPOL_MF_STRICT)) 609 /* 610 * Failed to isolate page but allow migrating pages 611 * which have been queued. 612 */ 613 ret = 1; 614 } 615 unlock: 616 spin_unlock(ptl); 617 #else 618 BUG(); 619 #endif 620 return ret; 621 } 622 623 #ifdef CONFIG_NUMA_BALANCING 624 /* 625 * This is used to mark a range of virtual addresses to be inaccessible. 626 * These are later cleared by a NUMA hinting fault. Depending on these 627 * faults, pages may be migrated for better NUMA placement. 628 * 629 * This is assuming that NUMA faults are handled using PROT_NONE. If 630 * an architecture makes a different choice, it will need further 631 * changes to the core. 632 */ 633 unsigned long change_prot_numa(struct vm_area_struct *vma, 634 unsigned long addr, unsigned long end) 635 { 636 int nr_updated; 637 638 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 639 if (nr_updated) 640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 641 642 return nr_updated; 643 } 644 #else 645 static unsigned long change_prot_numa(struct vm_area_struct *vma, 646 unsigned long addr, unsigned long end) 647 { 648 return 0; 649 } 650 #endif /* CONFIG_NUMA_BALANCING */ 651 652 static int queue_pages_test_walk(unsigned long start, unsigned long end, 653 struct mm_walk *walk) 654 { 655 struct vm_area_struct *vma = walk->vma; 656 struct queue_pages *qp = walk->private; 657 unsigned long endvma = vma->vm_end; 658 unsigned long flags = qp->flags; 659 660 /* range check first */ 661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 662 663 if (!qp->first) { 664 qp->first = vma; 665 if (!(flags & MPOL_MF_DISCONTIG_OK) && 666 (qp->start < vma->vm_start)) 667 /* hole at head side of range */ 668 return -EFAULT; 669 } 670 if (!(flags & MPOL_MF_DISCONTIG_OK) && 671 ((vma->vm_end < qp->end) && 672 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 673 /* hole at middle or tail of range */ 674 return -EFAULT; 675 676 /* 677 * Need check MPOL_MF_STRICT to return -EIO if possible 678 * regardless of vma_migratable 679 */ 680 if (!vma_migratable(vma) && 681 !(flags & MPOL_MF_STRICT)) 682 return 1; 683 684 if (endvma > end) 685 endvma = end; 686 687 if (flags & MPOL_MF_LAZY) { 688 /* Similar to task_numa_work, skip inaccessible VMAs */ 689 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 690 !(vma->vm_flags & VM_MIXEDMAP)) 691 change_prot_numa(vma, start, endvma); 692 return 1; 693 } 694 695 /* queue pages from current vma */ 696 if (flags & MPOL_MF_VALID) 697 return 0; 698 return 1; 699 } 700 701 static const struct mm_walk_ops queue_pages_walk_ops = { 702 .hugetlb_entry = queue_pages_hugetlb, 703 .pmd_entry = queue_pages_pte_range, 704 .test_walk = queue_pages_test_walk, 705 }; 706 707 /* 708 * Walk through page tables and collect pages to be migrated. 709 * 710 * If pages found in a given range are on a set of nodes (determined by 711 * @nodes and @flags,) it's isolated and queued to the pagelist which is 712 * passed via @private. 713 * 714 * queue_pages_range() has three possible return values: 715 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 716 * specified. 717 * 0 - queue pages successfully or no misplaced page. 718 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 719 * memory range specified by nodemask and maxnode points outside 720 * your accessible address space (-EFAULT) 721 */ 722 static int 723 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 724 nodemask_t *nodes, unsigned long flags, 725 struct list_head *pagelist) 726 { 727 int err; 728 struct queue_pages qp = { 729 .pagelist = pagelist, 730 .flags = flags, 731 .nmask = nodes, 732 .start = start, 733 .end = end, 734 .first = NULL, 735 }; 736 737 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 738 739 if (!qp.first) 740 /* whole range in hole */ 741 err = -EFAULT; 742 743 return err; 744 } 745 746 /* 747 * Apply policy to a single VMA 748 * This must be called with the mmap_lock held for writing. 749 */ 750 static int vma_replace_policy(struct vm_area_struct *vma, 751 struct mempolicy *pol) 752 { 753 int err; 754 struct mempolicy *old; 755 struct mempolicy *new; 756 757 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 758 vma->vm_start, vma->vm_end, vma->vm_pgoff, 759 vma->vm_ops, vma->vm_file, 760 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 761 762 new = mpol_dup(pol); 763 if (IS_ERR(new)) 764 return PTR_ERR(new); 765 766 if (vma->vm_ops && vma->vm_ops->set_policy) { 767 err = vma->vm_ops->set_policy(vma, new); 768 if (err) 769 goto err_out; 770 } 771 772 old = vma->vm_policy; 773 vma->vm_policy = new; /* protected by mmap_lock */ 774 mpol_put(old); 775 776 return 0; 777 err_out: 778 mpol_put(new); 779 return err; 780 } 781 782 /* Step 2: apply policy to a range and do splits. */ 783 static int mbind_range(struct mm_struct *mm, unsigned long start, 784 unsigned long end, struct mempolicy *new_pol) 785 { 786 struct vm_area_struct *next; 787 struct vm_area_struct *prev; 788 struct vm_area_struct *vma; 789 int err = 0; 790 pgoff_t pgoff; 791 unsigned long vmstart; 792 unsigned long vmend; 793 794 vma = find_vma(mm, start); 795 VM_BUG_ON(!vma); 796 797 prev = vma->vm_prev; 798 if (start > vma->vm_start) 799 prev = vma; 800 801 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 802 next = vma->vm_next; 803 vmstart = max(start, vma->vm_start); 804 vmend = min(end, vma->vm_end); 805 806 if (mpol_equal(vma_policy(vma), new_pol)) 807 continue; 808 809 pgoff = vma->vm_pgoff + 810 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 812 vma->anon_vma, vma->vm_file, pgoff, 813 new_pol, vma->vm_userfaultfd_ctx); 814 if (prev) { 815 vma = prev; 816 next = vma->vm_next; 817 if (mpol_equal(vma_policy(vma), new_pol)) 818 continue; 819 /* vma_merge() joined vma && vma->next, case 8 */ 820 goto replace; 821 } 822 if (vma->vm_start != vmstart) { 823 err = split_vma(vma->vm_mm, vma, vmstart, 1); 824 if (err) 825 goto out; 826 } 827 if (vma->vm_end != vmend) { 828 err = split_vma(vma->vm_mm, vma, vmend, 0); 829 if (err) 830 goto out; 831 } 832 replace: 833 err = vma_replace_policy(vma, new_pol); 834 if (err) 835 goto out; 836 } 837 838 out: 839 return err; 840 } 841 842 /* Set the process memory policy */ 843 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 844 nodemask_t *nodes) 845 { 846 struct mempolicy *new, *old; 847 NODEMASK_SCRATCH(scratch); 848 int ret; 849 850 if (!scratch) 851 return -ENOMEM; 852 853 new = mpol_new(mode, flags, nodes); 854 if (IS_ERR(new)) { 855 ret = PTR_ERR(new); 856 goto out; 857 } 858 859 ret = mpol_set_nodemask(new, nodes, scratch); 860 if (ret) { 861 mpol_put(new); 862 goto out; 863 } 864 task_lock(current); 865 old = current->mempolicy; 866 current->mempolicy = new; 867 if (new && new->mode == MPOL_INTERLEAVE) 868 current->il_prev = MAX_NUMNODES-1; 869 task_unlock(current); 870 mpol_put(old); 871 ret = 0; 872 out: 873 NODEMASK_SCRATCH_FREE(scratch); 874 return ret; 875 } 876 877 /* 878 * Return nodemask for policy for get_mempolicy() query 879 * 880 * Called with task's alloc_lock held 881 */ 882 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 883 { 884 nodes_clear(*nodes); 885 if (p == &default_policy) 886 return; 887 888 switch (p->mode) { 889 case MPOL_BIND: 890 case MPOL_INTERLEAVE: 891 case MPOL_PREFERRED: 892 case MPOL_PREFERRED_MANY: 893 *nodes = p->nodes; 894 break; 895 case MPOL_LOCAL: 896 /* return empty node mask for local allocation */ 897 break; 898 default: 899 BUG(); 900 } 901 } 902 903 static int lookup_node(struct mm_struct *mm, unsigned long addr) 904 { 905 struct page *p = NULL; 906 int err; 907 908 int locked = 1; 909 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 910 if (err > 0) { 911 err = page_to_nid(p); 912 put_page(p); 913 } 914 if (locked) 915 mmap_read_unlock(mm); 916 return err; 917 } 918 919 /* Retrieve NUMA policy */ 920 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 921 unsigned long addr, unsigned long flags) 922 { 923 int err; 924 struct mm_struct *mm = current->mm; 925 struct vm_area_struct *vma = NULL; 926 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 927 928 if (flags & 929 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 930 return -EINVAL; 931 932 if (flags & MPOL_F_MEMS_ALLOWED) { 933 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 934 return -EINVAL; 935 *policy = 0; /* just so it's initialized */ 936 task_lock(current); 937 *nmask = cpuset_current_mems_allowed; 938 task_unlock(current); 939 return 0; 940 } 941 942 if (flags & MPOL_F_ADDR) { 943 /* 944 * Do NOT fall back to task policy if the 945 * vma/shared policy at addr is NULL. We 946 * want to return MPOL_DEFAULT in this case. 947 */ 948 mmap_read_lock(mm); 949 vma = vma_lookup(mm, addr); 950 if (!vma) { 951 mmap_read_unlock(mm); 952 return -EFAULT; 953 } 954 if (vma->vm_ops && vma->vm_ops->get_policy) 955 pol = vma->vm_ops->get_policy(vma, addr); 956 else 957 pol = vma->vm_policy; 958 } else if (addr) 959 return -EINVAL; 960 961 if (!pol) 962 pol = &default_policy; /* indicates default behavior */ 963 964 if (flags & MPOL_F_NODE) { 965 if (flags & MPOL_F_ADDR) { 966 /* 967 * Take a refcount on the mpol, lookup_node() 968 * will drop the mmap_lock, so after calling 969 * lookup_node() only "pol" remains valid, "vma" 970 * is stale. 971 */ 972 pol_refcount = pol; 973 vma = NULL; 974 mpol_get(pol); 975 err = lookup_node(mm, addr); 976 if (err < 0) 977 goto out; 978 *policy = err; 979 } else if (pol == current->mempolicy && 980 pol->mode == MPOL_INTERLEAVE) { 981 *policy = next_node_in(current->il_prev, pol->nodes); 982 } else { 983 err = -EINVAL; 984 goto out; 985 } 986 } else { 987 *policy = pol == &default_policy ? MPOL_DEFAULT : 988 pol->mode; 989 /* 990 * Internal mempolicy flags must be masked off before exposing 991 * the policy to userspace. 992 */ 993 *policy |= (pol->flags & MPOL_MODE_FLAGS); 994 } 995 996 err = 0; 997 if (nmask) { 998 if (mpol_store_user_nodemask(pol)) { 999 *nmask = pol->w.user_nodemask; 1000 } else { 1001 task_lock(current); 1002 get_policy_nodemask(pol, nmask); 1003 task_unlock(current); 1004 } 1005 } 1006 1007 out: 1008 mpol_cond_put(pol); 1009 if (vma) 1010 mmap_read_unlock(mm); 1011 if (pol_refcount) 1012 mpol_put(pol_refcount); 1013 return err; 1014 } 1015 1016 #ifdef CONFIG_MIGRATION 1017 /* 1018 * page migration, thp tail pages can be passed. 1019 */ 1020 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1021 unsigned long flags) 1022 { 1023 struct page *head = compound_head(page); 1024 /* 1025 * Avoid migrating a page that is shared with others. 1026 */ 1027 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1028 if (!isolate_lru_page(head)) { 1029 list_add_tail(&head->lru, pagelist); 1030 mod_node_page_state(page_pgdat(head), 1031 NR_ISOLATED_ANON + page_is_file_lru(head), 1032 thp_nr_pages(head)); 1033 } else if (flags & MPOL_MF_STRICT) { 1034 /* 1035 * Non-movable page may reach here. And, there may be 1036 * temporary off LRU pages or non-LRU movable pages. 1037 * Treat them as unmovable pages since they can't be 1038 * isolated, so they can't be moved at the moment. It 1039 * should return -EIO for this case too. 1040 */ 1041 return -EIO; 1042 } 1043 } 1044 1045 return 0; 1046 } 1047 1048 /* 1049 * Migrate pages from one node to a target node. 1050 * Returns error or the number of pages not migrated. 1051 */ 1052 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1053 int flags) 1054 { 1055 nodemask_t nmask; 1056 LIST_HEAD(pagelist); 1057 int err = 0; 1058 struct migration_target_control mtc = { 1059 .nid = dest, 1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1061 }; 1062 1063 nodes_clear(nmask); 1064 node_set(source, nmask); 1065 1066 /* 1067 * This does not "check" the range but isolates all pages that 1068 * need migration. Between passing in the full user address 1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1070 */ 1071 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1072 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1073 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1074 1075 if (!list_empty(&pagelist)) { 1076 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1077 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1078 if (err) 1079 putback_movable_pages(&pagelist); 1080 } 1081 1082 return err; 1083 } 1084 1085 /* 1086 * Move pages between the two nodesets so as to preserve the physical 1087 * layout as much as possible. 1088 * 1089 * Returns the number of page that could not be moved. 1090 */ 1091 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1092 const nodemask_t *to, int flags) 1093 { 1094 int busy = 0; 1095 int err = 0; 1096 nodemask_t tmp; 1097 1098 lru_cache_disable(); 1099 1100 mmap_read_lock(mm); 1101 1102 /* 1103 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1104 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1105 * bit in 'tmp', and return that <source, dest> pair for migration. 1106 * The pair of nodemasks 'to' and 'from' define the map. 1107 * 1108 * If no pair of bits is found that way, fallback to picking some 1109 * pair of 'source' and 'dest' bits that are not the same. If the 1110 * 'source' and 'dest' bits are the same, this represents a node 1111 * that will be migrating to itself, so no pages need move. 1112 * 1113 * If no bits are left in 'tmp', or if all remaining bits left 1114 * in 'tmp' correspond to the same bit in 'to', return false 1115 * (nothing left to migrate). 1116 * 1117 * This lets us pick a pair of nodes to migrate between, such that 1118 * if possible the dest node is not already occupied by some other 1119 * source node, minimizing the risk of overloading the memory on a 1120 * node that would happen if we migrated incoming memory to a node 1121 * before migrating outgoing memory source that same node. 1122 * 1123 * A single scan of tmp is sufficient. As we go, we remember the 1124 * most recent <s, d> pair that moved (s != d). If we find a pair 1125 * that not only moved, but what's better, moved to an empty slot 1126 * (d is not set in tmp), then we break out then, with that pair. 1127 * Otherwise when we finish scanning from_tmp, we at least have the 1128 * most recent <s, d> pair that moved. If we get all the way through 1129 * the scan of tmp without finding any node that moved, much less 1130 * moved to an empty node, then there is nothing left worth migrating. 1131 */ 1132 1133 tmp = *from; 1134 while (!nodes_empty(tmp)) { 1135 int s, d; 1136 int source = NUMA_NO_NODE; 1137 int dest = 0; 1138 1139 for_each_node_mask(s, tmp) { 1140 1141 /* 1142 * do_migrate_pages() tries to maintain the relative 1143 * node relationship of the pages established between 1144 * threads and memory areas. 1145 * 1146 * However if the number of source nodes is not equal to 1147 * the number of destination nodes we can not preserve 1148 * this node relative relationship. In that case, skip 1149 * copying memory from a node that is in the destination 1150 * mask. 1151 * 1152 * Example: [2,3,4] -> [3,4,5] moves everything. 1153 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1154 */ 1155 1156 if ((nodes_weight(*from) != nodes_weight(*to)) && 1157 (node_isset(s, *to))) 1158 continue; 1159 1160 d = node_remap(s, *from, *to); 1161 if (s == d) 1162 continue; 1163 1164 source = s; /* Node moved. Memorize */ 1165 dest = d; 1166 1167 /* dest not in remaining from nodes? */ 1168 if (!node_isset(dest, tmp)) 1169 break; 1170 } 1171 if (source == NUMA_NO_NODE) 1172 break; 1173 1174 node_clear(source, tmp); 1175 err = migrate_to_node(mm, source, dest, flags); 1176 if (err > 0) 1177 busy += err; 1178 if (err < 0) 1179 break; 1180 } 1181 mmap_read_unlock(mm); 1182 1183 lru_cache_enable(); 1184 if (err < 0) 1185 return err; 1186 return busy; 1187 1188 } 1189 1190 /* 1191 * Allocate a new page for page migration based on vma policy. 1192 * Start by assuming the page is mapped by the same vma as contains @start. 1193 * Search forward from there, if not. N.B., this assumes that the 1194 * list of pages handed to migrate_pages()--which is how we get here-- 1195 * is in virtual address order. 1196 */ 1197 static struct page *new_page(struct page *page, unsigned long start) 1198 { 1199 struct vm_area_struct *vma; 1200 unsigned long address; 1201 1202 vma = find_vma(current->mm, start); 1203 while (vma) { 1204 address = page_address_in_vma(page, vma); 1205 if (address != -EFAULT) 1206 break; 1207 vma = vma->vm_next; 1208 } 1209 1210 if (PageHuge(page)) { 1211 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1212 vma, address); 1213 } else if (PageTransHuge(page)) { 1214 struct page *thp; 1215 1216 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1217 HPAGE_PMD_ORDER); 1218 if (!thp) 1219 return NULL; 1220 prep_transhuge_page(thp); 1221 return thp; 1222 } 1223 /* 1224 * if !vma, alloc_page_vma() will use task or system default policy 1225 */ 1226 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1227 vma, address); 1228 } 1229 #else 1230 1231 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1232 unsigned long flags) 1233 { 1234 return -EIO; 1235 } 1236 1237 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1238 const nodemask_t *to, int flags) 1239 { 1240 return -ENOSYS; 1241 } 1242 1243 static struct page *new_page(struct page *page, unsigned long start) 1244 { 1245 return NULL; 1246 } 1247 #endif 1248 1249 static long do_mbind(unsigned long start, unsigned long len, 1250 unsigned short mode, unsigned short mode_flags, 1251 nodemask_t *nmask, unsigned long flags) 1252 { 1253 struct mm_struct *mm = current->mm; 1254 struct mempolicy *new; 1255 unsigned long end; 1256 int err; 1257 int ret; 1258 LIST_HEAD(pagelist); 1259 1260 if (flags & ~(unsigned long)MPOL_MF_VALID) 1261 return -EINVAL; 1262 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1263 return -EPERM; 1264 1265 if (start & ~PAGE_MASK) 1266 return -EINVAL; 1267 1268 if (mode == MPOL_DEFAULT) 1269 flags &= ~MPOL_MF_STRICT; 1270 1271 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1272 end = start + len; 1273 1274 if (end < start) 1275 return -EINVAL; 1276 if (end == start) 1277 return 0; 1278 1279 new = mpol_new(mode, mode_flags, nmask); 1280 if (IS_ERR(new)) 1281 return PTR_ERR(new); 1282 1283 if (flags & MPOL_MF_LAZY) 1284 new->flags |= MPOL_F_MOF; 1285 1286 /* 1287 * If we are using the default policy then operation 1288 * on discontinuous address spaces is okay after all 1289 */ 1290 if (!new) 1291 flags |= MPOL_MF_DISCONTIG_OK; 1292 1293 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1294 start, start + len, mode, mode_flags, 1295 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1296 1297 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1298 1299 lru_cache_disable(); 1300 } 1301 { 1302 NODEMASK_SCRATCH(scratch); 1303 if (scratch) { 1304 mmap_write_lock(mm); 1305 err = mpol_set_nodemask(new, nmask, scratch); 1306 if (err) 1307 mmap_write_unlock(mm); 1308 } else 1309 err = -ENOMEM; 1310 NODEMASK_SCRATCH_FREE(scratch); 1311 } 1312 if (err) 1313 goto mpol_out; 1314 1315 ret = queue_pages_range(mm, start, end, nmask, 1316 flags | MPOL_MF_INVERT, &pagelist); 1317 1318 if (ret < 0) { 1319 err = ret; 1320 goto up_out; 1321 } 1322 1323 err = mbind_range(mm, start, end, new); 1324 1325 if (!err) { 1326 int nr_failed = 0; 1327 1328 if (!list_empty(&pagelist)) { 1329 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1330 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1331 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1332 if (nr_failed) 1333 putback_movable_pages(&pagelist); 1334 } 1335 1336 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1337 err = -EIO; 1338 } else { 1339 up_out: 1340 if (!list_empty(&pagelist)) 1341 putback_movable_pages(&pagelist); 1342 } 1343 1344 mmap_write_unlock(mm); 1345 mpol_out: 1346 mpol_put(new); 1347 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1348 lru_cache_enable(); 1349 return err; 1350 } 1351 1352 /* 1353 * User space interface with variable sized bitmaps for nodelists. 1354 */ 1355 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1356 unsigned long maxnode) 1357 { 1358 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1359 int ret; 1360 1361 if (in_compat_syscall()) 1362 ret = compat_get_bitmap(mask, 1363 (const compat_ulong_t __user *)nmask, 1364 maxnode); 1365 else 1366 ret = copy_from_user(mask, nmask, 1367 nlongs * sizeof(unsigned long)); 1368 1369 if (ret) 1370 return -EFAULT; 1371 1372 if (maxnode % BITS_PER_LONG) 1373 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1374 1375 return 0; 1376 } 1377 1378 /* Copy a node mask from user space. */ 1379 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1380 unsigned long maxnode) 1381 { 1382 --maxnode; 1383 nodes_clear(*nodes); 1384 if (maxnode == 0 || !nmask) 1385 return 0; 1386 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1387 return -EINVAL; 1388 1389 /* 1390 * When the user specified more nodes than supported just check 1391 * if the non supported part is all zero, one word at a time, 1392 * starting at the end. 1393 */ 1394 while (maxnode > MAX_NUMNODES) { 1395 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1396 unsigned long t; 1397 1398 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits)) 1399 return -EFAULT; 1400 1401 if (maxnode - bits >= MAX_NUMNODES) { 1402 maxnode -= bits; 1403 } else { 1404 maxnode = MAX_NUMNODES; 1405 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1406 } 1407 if (t) 1408 return -EINVAL; 1409 } 1410 1411 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1412 } 1413 1414 /* Copy a kernel node mask to user space */ 1415 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1416 nodemask_t *nodes) 1417 { 1418 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1419 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1420 bool compat = in_compat_syscall(); 1421 1422 if (compat) 1423 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1424 1425 if (copy > nbytes) { 1426 if (copy > PAGE_SIZE) 1427 return -EINVAL; 1428 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1429 return -EFAULT; 1430 copy = nbytes; 1431 maxnode = nr_node_ids; 1432 } 1433 1434 if (compat) 1435 return compat_put_bitmap((compat_ulong_t __user *)mask, 1436 nodes_addr(*nodes), maxnode); 1437 1438 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1439 } 1440 1441 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1442 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1443 { 1444 *flags = *mode & MPOL_MODE_FLAGS; 1445 *mode &= ~MPOL_MODE_FLAGS; 1446 1447 if ((unsigned int)(*mode) >= MPOL_MAX) 1448 return -EINVAL; 1449 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1450 return -EINVAL; 1451 if (*flags & MPOL_F_NUMA_BALANCING) { 1452 if (*mode != MPOL_BIND) 1453 return -EINVAL; 1454 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1455 } 1456 return 0; 1457 } 1458 1459 static long kernel_mbind(unsigned long start, unsigned long len, 1460 unsigned long mode, const unsigned long __user *nmask, 1461 unsigned long maxnode, unsigned int flags) 1462 { 1463 unsigned short mode_flags; 1464 nodemask_t nodes; 1465 int lmode = mode; 1466 int err; 1467 1468 start = untagged_addr(start); 1469 err = sanitize_mpol_flags(&lmode, &mode_flags); 1470 if (err) 1471 return err; 1472 1473 err = get_nodes(&nodes, nmask, maxnode); 1474 if (err) 1475 return err; 1476 1477 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1478 } 1479 1480 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1481 unsigned long, mode, const unsigned long __user *, nmask, 1482 unsigned long, maxnode, unsigned int, flags) 1483 { 1484 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1485 } 1486 1487 /* Set the process memory policy */ 1488 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1489 unsigned long maxnode) 1490 { 1491 unsigned short mode_flags; 1492 nodemask_t nodes; 1493 int lmode = mode; 1494 int err; 1495 1496 err = sanitize_mpol_flags(&lmode, &mode_flags); 1497 if (err) 1498 return err; 1499 1500 err = get_nodes(&nodes, nmask, maxnode); 1501 if (err) 1502 return err; 1503 1504 return do_set_mempolicy(lmode, mode_flags, &nodes); 1505 } 1506 1507 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1508 unsigned long, maxnode) 1509 { 1510 return kernel_set_mempolicy(mode, nmask, maxnode); 1511 } 1512 1513 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1514 const unsigned long __user *old_nodes, 1515 const unsigned long __user *new_nodes) 1516 { 1517 struct mm_struct *mm = NULL; 1518 struct task_struct *task; 1519 nodemask_t task_nodes; 1520 int err; 1521 nodemask_t *old; 1522 nodemask_t *new; 1523 NODEMASK_SCRATCH(scratch); 1524 1525 if (!scratch) 1526 return -ENOMEM; 1527 1528 old = &scratch->mask1; 1529 new = &scratch->mask2; 1530 1531 err = get_nodes(old, old_nodes, maxnode); 1532 if (err) 1533 goto out; 1534 1535 err = get_nodes(new, new_nodes, maxnode); 1536 if (err) 1537 goto out; 1538 1539 /* Find the mm_struct */ 1540 rcu_read_lock(); 1541 task = pid ? find_task_by_vpid(pid) : current; 1542 if (!task) { 1543 rcu_read_unlock(); 1544 err = -ESRCH; 1545 goto out; 1546 } 1547 get_task_struct(task); 1548 1549 err = -EINVAL; 1550 1551 /* 1552 * Check if this process has the right to modify the specified process. 1553 * Use the regular "ptrace_may_access()" checks. 1554 */ 1555 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1556 rcu_read_unlock(); 1557 err = -EPERM; 1558 goto out_put; 1559 } 1560 rcu_read_unlock(); 1561 1562 task_nodes = cpuset_mems_allowed(task); 1563 /* Is the user allowed to access the target nodes? */ 1564 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1565 err = -EPERM; 1566 goto out_put; 1567 } 1568 1569 task_nodes = cpuset_mems_allowed(current); 1570 nodes_and(*new, *new, task_nodes); 1571 if (nodes_empty(*new)) 1572 goto out_put; 1573 1574 err = security_task_movememory(task); 1575 if (err) 1576 goto out_put; 1577 1578 mm = get_task_mm(task); 1579 put_task_struct(task); 1580 1581 if (!mm) { 1582 err = -EINVAL; 1583 goto out; 1584 } 1585 1586 err = do_migrate_pages(mm, old, new, 1587 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1588 1589 mmput(mm); 1590 out: 1591 NODEMASK_SCRATCH_FREE(scratch); 1592 1593 return err; 1594 1595 out_put: 1596 put_task_struct(task); 1597 goto out; 1598 1599 } 1600 1601 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1602 const unsigned long __user *, old_nodes, 1603 const unsigned long __user *, new_nodes) 1604 { 1605 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1606 } 1607 1608 1609 /* Retrieve NUMA policy */ 1610 static int kernel_get_mempolicy(int __user *policy, 1611 unsigned long __user *nmask, 1612 unsigned long maxnode, 1613 unsigned long addr, 1614 unsigned long flags) 1615 { 1616 int err; 1617 int pval; 1618 nodemask_t nodes; 1619 1620 if (nmask != NULL && maxnode < nr_node_ids) 1621 return -EINVAL; 1622 1623 addr = untagged_addr(addr); 1624 1625 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1626 1627 if (err) 1628 return err; 1629 1630 if (policy && put_user(pval, policy)) 1631 return -EFAULT; 1632 1633 if (nmask) 1634 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1635 1636 return err; 1637 } 1638 1639 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1640 unsigned long __user *, nmask, unsigned long, maxnode, 1641 unsigned long, addr, unsigned long, flags) 1642 { 1643 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1644 } 1645 1646 bool vma_migratable(struct vm_area_struct *vma) 1647 { 1648 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1649 return false; 1650 1651 /* 1652 * DAX device mappings require predictable access latency, so avoid 1653 * incurring periodic faults. 1654 */ 1655 if (vma_is_dax(vma)) 1656 return false; 1657 1658 if (is_vm_hugetlb_page(vma) && 1659 !hugepage_migration_supported(hstate_vma(vma))) 1660 return false; 1661 1662 /* 1663 * Migration allocates pages in the highest zone. If we cannot 1664 * do so then migration (at least from node to node) is not 1665 * possible. 1666 */ 1667 if (vma->vm_file && 1668 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1669 < policy_zone) 1670 return false; 1671 return true; 1672 } 1673 1674 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1675 unsigned long addr) 1676 { 1677 struct mempolicy *pol = NULL; 1678 1679 if (vma) { 1680 if (vma->vm_ops && vma->vm_ops->get_policy) { 1681 pol = vma->vm_ops->get_policy(vma, addr); 1682 } else if (vma->vm_policy) { 1683 pol = vma->vm_policy; 1684 1685 /* 1686 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1687 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1688 * count on these policies which will be dropped by 1689 * mpol_cond_put() later 1690 */ 1691 if (mpol_needs_cond_ref(pol)) 1692 mpol_get(pol); 1693 } 1694 } 1695 1696 return pol; 1697 } 1698 1699 /* 1700 * get_vma_policy(@vma, @addr) 1701 * @vma: virtual memory area whose policy is sought 1702 * @addr: address in @vma for shared policy lookup 1703 * 1704 * Returns effective policy for a VMA at specified address. 1705 * Falls back to current->mempolicy or system default policy, as necessary. 1706 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1707 * count--added by the get_policy() vm_op, as appropriate--to protect against 1708 * freeing by another task. It is the caller's responsibility to free the 1709 * extra reference for shared policies. 1710 */ 1711 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1712 unsigned long addr) 1713 { 1714 struct mempolicy *pol = __get_vma_policy(vma, addr); 1715 1716 if (!pol) 1717 pol = get_task_policy(current); 1718 1719 return pol; 1720 } 1721 1722 bool vma_policy_mof(struct vm_area_struct *vma) 1723 { 1724 struct mempolicy *pol; 1725 1726 if (vma->vm_ops && vma->vm_ops->get_policy) { 1727 bool ret = false; 1728 1729 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1730 if (pol && (pol->flags & MPOL_F_MOF)) 1731 ret = true; 1732 mpol_cond_put(pol); 1733 1734 return ret; 1735 } 1736 1737 pol = vma->vm_policy; 1738 if (!pol) 1739 pol = get_task_policy(current); 1740 1741 return pol->flags & MPOL_F_MOF; 1742 } 1743 1744 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1745 { 1746 enum zone_type dynamic_policy_zone = policy_zone; 1747 1748 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1749 1750 /* 1751 * if policy->nodes has movable memory only, 1752 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1753 * 1754 * policy->nodes is intersect with node_states[N_MEMORY]. 1755 * so if the following test fails, it implies 1756 * policy->nodes has movable memory only. 1757 */ 1758 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1759 dynamic_policy_zone = ZONE_MOVABLE; 1760 1761 return zone >= dynamic_policy_zone; 1762 } 1763 1764 /* 1765 * Return a nodemask representing a mempolicy for filtering nodes for 1766 * page allocation 1767 */ 1768 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1769 { 1770 int mode = policy->mode; 1771 1772 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1773 if (unlikely(mode == MPOL_BIND) && 1774 apply_policy_zone(policy, gfp_zone(gfp)) && 1775 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1776 return &policy->nodes; 1777 1778 if (mode == MPOL_PREFERRED_MANY) 1779 return &policy->nodes; 1780 1781 return NULL; 1782 } 1783 1784 /* 1785 * Return the preferred node id for 'prefer' mempolicy, and return 1786 * the given id for all other policies. 1787 * 1788 * policy_node() is always coupled with policy_nodemask(), which 1789 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1790 */ 1791 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1792 { 1793 if (policy->mode == MPOL_PREFERRED) { 1794 nd = first_node(policy->nodes); 1795 } else { 1796 /* 1797 * __GFP_THISNODE shouldn't even be used with the bind policy 1798 * because we might easily break the expectation to stay on the 1799 * requested node and not break the policy. 1800 */ 1801 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1802 } 1803 1804 return nd; 1805 } 1806 1807 /* Do dynamic interleaving for a process */ 1808 static unsigned interleave_nodes(struct mempolicy *policy) 1809 { 1810 unsigned next; 1811 struct task_struct *me = current; 1812 1813 next = next_node_in(me->il_prev, policy->nodes); 1814 if (next < MAX_NUMNODES) 1815 me->il_prev = next; 1816 return next; 1817 } 1818 1819 /* 1820 * Depending on the memory policy provide a node from which to allocate the 1821 * next slab entry. 1822 */ 1823 unsigned int mempolicy_slab_node(void) 1824 { 1825 struct mempolicy *policy; 1826 int node = numa_mem_id(); 1827 1828 if (!in_task()) 1829 return node; 1830 1831 policy = current->mempolicy; 1832 if (!policy) 1833 return node; 1834 1835 switch (policy->mode) { 1836 case MPOL_PREFERRED: 1837 return first_node(policy->nodes); 1838 1839 case MPOL_INTERLEAVE: 1840 return interleave_nodes(policy); 1841 1842 case MPOL_BIND: 1843 case MPOL_PREFERRED_MANY: 1844 { 1845 struct zoneref *z; 1846 1847 /* 1848 * Follow bind policy behavior and start allocation at the 1849 * first node. 1850 */ 1851 struct zonelist *zonelist; 1852 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1853 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1854 z = first_zones_zonelist(zonelist, highest_zoneidx, 1855 &policy->nodes); 1856 return z->zone ? zone_to_nid(z->zone) : node; 1857 } 1858 case MPOL_LOCAL: 1859 return node; 1860 1861 default: 1862 BUG(); 1863 } 1864 } 1865 1866 /* 1867 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1868 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1869 * number of present nodes. 1870 */ 1871 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1872 { 1873 nodemask_t nodemask = pol->nodes; 1874 unsigned int target, nnodes; 1875 int i; 1876 int nid; 1877 /* 1878 * The barrier will stabilize the nodemask in a register or on 1879 * the stack so that it will stop changing under the code. 1880 * 1881 * Between first_node() and next_node(), pol->nodes could be changed 1882 * by other threads. So we put pol->nodes in a local stack. 1883 */ 1884 barrier(); 1885 1886 nnodes = nodes_weight(nodemask); 1887 if (!nnodes) 1888 return numa_node_id(); 1889 target = (unsigned int)n % nnodes; 1890 nid = first_node(nodemask); 1891 for (i = 0; i < target; i++) 1892 nid = next_node(nid, nodemask); 1893 return nid; 1894 } 1895 1896 /* Determine a node number for interleave */ 1897 static inline unsigned interleave_nid(struct mempolicy *pol, 1898 struct vm_area_struct *vma, unsigned long addr, int shift) 1899 { 1900 if (vma) { 1901 unsigned long off; 1902 1903 /* 1904 * for small pages, there is no difference between 1905 * shift and PAGE_SHIFT, so the bit-shift is safe. 1906 * for huge pages, since vm_pgoff is in units of small 1907 * pages, we need to shift off the always 0 bits to get 1908 * a useful offset. 1909 */ 1910 BUG_ON(shift < PAGE_SHIFT); 1911 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1912 off += (addr - vma->vm_start) >> shift; 1913 return offset_il_node(pol, off); 1914 } else 1915 return interleave_nodes(pol); 1916 } 1917 1918 #ifdef CONFIG_HUGETLBFS 1919 /* 1920 * huge_node(@vma, @addr, @gfp_flags, @mpol) 1921 * @vma: virtual memory area whose policy is sought 1922 * @addr: address in @vma for shared policy lookup and interleave policy 1923 * @gfp_flags: for requested zone 1924 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1925 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 1926 * 1927 * Returns a nid suitable for a huge page allocation and a pointer 1928 * to the struct mempolicy for conditional unref after allocation. 1929 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 1930 * to the mempolicy's @nodemask for filtering the zonelist. 1931 * 1932 * Must be protected by read_mems_allowed_begin() 1933 */ 1934 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 1935 struct mempolicy **mpol, nodemask_t **nodemask) 1936 { 1937 int nid; 1938 int mode; 1939 1940 *mpol = get_vma_policy(vma, addr); 1941 *nodemask = NULL; 1942 mode = (*mpol)->mode; 1943 1944 if (unlikely(mode == MPOL_INTERLEAVE)) { 1945 nid = interleave_nid(*mpol, vma, addr, 1946 huge_page_shift(hstate_vma(vma))); 1947 } else { 1948 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 1949 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 1950 *nodemask = &(*mpol)->nodes; 1951 } 1952 return nid; 1953 } 1954 1955 /* 1956 * init_nodemask_of_mempolicy 1957 * 1958 * If the current task's mempolicy is "default" [NULL], return 'false' 1959 * to indicate default policy. Otherwise, extract the policy nodemask 1960 * for 'bind' or 'interleave' policy into the argument nodemask, or 1961 * initialize the argument nodemask to contain the single node for 1962 * 'preferred' or 'local' policy and return 'true' to indicate presence 1963 * of non-default mempolicy. 1964 * 1965 * We don't bother with reference counting the mempolicy [mpol_get/put] 1966 * because the current task is examining it's own mempolicy and a task's 1967 * mempolicy is only ever changed by the task itself. 1968 * 1969 * N.B., it is the caller's responsibility to free a returned nodemask. 1970 */ 1971 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1972 { 1973 struct mempolicy *mempolicy; 1974 1975 if (!(mask && current->mempolicy)) 1976 return false; 1977 1978 task_lock(current); 1979 mempolicy = current->mempolicy; 1980 switch (mempolicy->mode) { 1981 case MPOL_PREFERRED: 1982 case MPOL_PREFERRED_MANY: 1983 case MPOL_BIND: 1984 case MPOL_INTERLEAVE: 1985 *mask = mempolicy->nodes; 1986 break; 1987 1988 case MPOL_LOCAL: 1989 init_nodemask_of_node(mask, numa_node_id()); 1990 break; 1991 1992 default: 1993 BUG(); 1994 } 1995 task_unlock(current); 1996 1997 return true; 1998 } 1999 #endif 2000 2001 /* 2002 * mempolicy_in_oom_domain 2003 * 2004 * If tsk's mempolicy is "bind", check for intersection between mask and 2005 * the policy nodemask. Otherwise, return true for all other policies 2006 * including "interleave", as a tsk with "interleave" policy may have 2007 * memory allocated from all nodes in system. 2008 * 2009 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2010 */ 2011 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2012 const nodemask_t *mask) 2013 { 2014 struct mempolicy *mempolicy; 2015 bool ret = true; 2016 2017 if (!mask) 2018 return ret; 2019 2020 task_lock(tsk); 2021 mempolicy = tsk->mempolicy; 2022 if (mempolicy && mempolicy->mode == MPOL_BIND) 2023 ret = nodes_intersects(mempolicy->nodes, *mask); 2024 task_unlock(tsk); 2025 2026 return ret; 2027 } 2028 2029 /* Allocate a page in interleaved policy. 2030 Own path because it needs to do special accounting. */ 2031 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2032 unsigned nid) 2033 { 2034 struct page *page; 2035 2036 page = __alloc_pages(gfp, order, nid, NULL); 2037 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2038 if (!static_branch_likely(&vm_numa_stat_key)) 2039 return page; 2040 if (page && page_to_nid(page) == nid) { 2041 preempt_disable(); 2042 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2043 preempt_enable(); 2044 } 2045 return page; 2046 } 2047 2048 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2049 int nid, struct mempolicy *pol) 2050 { 2051 struct page *page; 2052 gfp_t preferred_gfp; 2053 2054 /* 2055 * This is a two pass approach. The first pass will only try the 2056 * preferred nodes but skip the direct reclaim and allow the 2057 * allocation to fail, while the second pass will try all the 2058 * nodes in system. 2059 */ 2060 preferred_gfp = gfp | __GFP_NOWARN; 2061 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2062 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2063 if (!page) 2064 page = __alloc_pages(gfp, order, numa_node_id(), NULL); 2065 2066 return page; 2067 } 2068 2069 /** 2070 * alloc_pages_vma - Allocate a page for a VMA. 2071 * @gfp: GFP flags. 2072 * @order: Order of the GFP allocation. 2073 * @vma: Pointer to VMA or NULL if not available. 2074 * @addr: Virtual address of the allocation. Must be inside @vma. 2075 * @node: Which node to prefer for allocation (modulo policy). 2076 * @hugepage: For hugepages try only the preferred node if possible. 2077 * 2078 * Allocate a page for a specific address in @vma, using the appropriate 2079 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2080 * of the mm_struct of the VMA to prevent it from going away. Should be 2081 * used for all allocations for pages that will be mapped into user space. 2082 * 2083 * Return: The page on success or NULL if allocation fails. 2084 */ 2085 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2086 unsigned long addr, int node, bool hugepage) 2087 { 2088 struct mempolicy *pol; 2089 struct page *page; 2090 int preferred_nid; 2091 nodemask_t *nmask; 2092 2093 pol = get_vma_policy(vma, addr); 2094 2095 if (pol->mode == MPOL_INTERLEAVE) { 2096 unsigned nid; 2097 2098 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2099 mpol_cond_put(pol); 2100 page = alloc_page_interleave(gfp, order, nid); 2101 goto out; 2102 } 2103 2104 if (pol->mode == MPOL_PREFERRED_MANY) { 2105 page = alloc_pages_preferred_many(gfp, order, node, pol); 2106 mpol_cond_put(pol); 2107 goto out; 2108 } 2109 2110 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2111 int hpage_node = node; 2112 2113 /* 2114 * For hugepage allocation and non-interleave policy which 2115 * allows the current node (or other explicitly preferred 2116 * node) we only try to allocate from the current/preferred 2117 * node and don't fall back to other nodes, as the cost of 2118 * remote accesses would likely offset THP benefits. 2119 * 2120 * If the policy is interleave or does not allow the current 2121 * node in its nodemask, we allocate the standard way. 2122 */ 2123 if (pol->mode == MPOL_PREFERRED) 2124 hpage_node = first_node(pol->nodes); 2125 2126 nmask = policy_nodemask(gfp, pol); 2127 if (!nmask || node_isset(hpage_node, *nmask)) { 2128 mpol_cond_put(pol); 2129 /* 2130 * First, try to allocate THP only on local node, but 2131 * don't reclaim unnecessarily, just compact. 2132 */ 2133 page = __alloc_pages_node(hpage_node, 2134 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2135 2136 /* 2137 * If hugepage allocations are configured to always 2138 * synchronous compact or the vma has been madvised 2139 * to prefer hugepage backing, retry allowing remote 2140 * memory with both reclaim and compact as well. 2141 */ 2142 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2143 page = __alloc_pages(gfp, order, hpage_node, nmask); 2144 2145 goto out; 2146 } 2147 } 2148 2149 nmask = policy_nodemask(gfp, pol); 2150 preferred_nid = policy_node(gfp, pol, node); 2151 page = __alloc_pages(gfp, order, preferred_nid, nmask); 2152 mpol_cond_put(pol); 2153 out: 2154 return page; 2155 } 2156 EXPORT_SYMBOL(alloc_pages_vma); 2157 2158 /** 2159 * alloc_pages - Allocate pages. 2160 * @gfp: GFP flags. 2161 * @order: Power of two of number of pages to allocate. 2162 * 2163 * Allocate 1 << @order contiguous pages. The physical address of the 2164 * first page is naturally aligned (eg an order-3 allocation will be aligned 2165 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2166 * process is honoured when in process context. 2167 * 2168 * Context: Can be called from any context, providing the appropriate GFP 2169 * flags are used. 2170 * Return: The page on success or NULL if allocation fails. 2171 */ 2172 struct page *alloc_pages(gfp_t gfp, unsigned order) 2173 { 2174 struct mempolicy *pol = &default_policy; 2175 struct page *page; 2176 2177 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2178 pol = get_task_policy(current); 2179 2180 /* 2181 * No reference counting needed for current->mempolicy 2182 * nor system default_policy 2183 */ 2184 if (pol->mode == MPOL_INTERLEAVE) 2185 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2186 else if (pol->mode == MPOL_PREFERRED_MANY) 2187 page = alloc_pages_preferred_many(gfp, order, 2188 numa_node_id(), pol); 2189 else 2190 page = __alloc_pages(gfp, order, 2191 policy_node(gfp, pol, numa_node_id()), 2192 policy_nodemask(gfp, pol)); 2193 2194 return page; 2195 } 2196 EXPORT_SYMBOL(alloc_pages); 2197 2198 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2199 { 2200 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2201 2202 if (page && order > 1) 2203 prep_transhuge_page(page); 2204 return (struct folio *)page; 2205 } 2206 EXPORT_SYMBOL(folio_alloc); 2207 2208 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2209 struct mempolicy *pol, unsigned long nr_pages, 2210 struct page **page_array) 2211 { 2212 int nodes; 2213 unsigned long nr_pages_per_node; 2214 int delta; 2215 int i; 2216 unsigned long nr_allocated; 2217 unsigned long total_allocated = 0; 2218 2219 nodes = nodes_weight(pol->nodes); 2220 nr_pages_per_node = nr_pages / nodes; 2221 delta = nr_pages - nodes * nr_pages_per_node; 2222 2223 for (i = 0; i < nodes; i++) { 2224 if (delta) { 2225 nr_allocated = __alloc_pages_bulk(gfp, 2226 interleave_nodes(pol), NULL, 2227 nr_pages_per_node + 1, NULL, 2228 page_array); 2229 delta--; 2230 } else { 2231 nr_allocated = __alloc_pages_bulk(gfp, 2232 interleave_nodes(pol), NULL, 2233 nr_pages_per_node, NULL, page_array); 2234 } 2235 2236 page_array += nr_allocated; 2237 total_allocated += nr_allocated; 2238 } 2239 2240 return total_allocated; 2241 } 2242 2243 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2244 struct mempolicy *pol, unsigned long nr_pages, 2245 struct page **page_array) 2246 { 2247 gfp_t preferred_gfp; 2248 unsigned long nr_allocated = 0; 2249 2250 preferred_gfp = gfp | __GFP_NOWARN; 2251 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2252 2253 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2254 nr_pages, NULL, page_array); 2255 2256 if (nr_allocated < nr_pages) 2257 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2258 nr_pages - nr_allocated, NULL, 2259 page_array + nr_allocated); 2260 return nr_allocated; 2261 } 2262 2263 /* alloc pages bulk and mempolicy should be considered at the 2264 * same time in some situation such as vmalloc. 2265 * 2266 * It can accelerate memory allocation especially interleaving 2267 * allocate memory. 2268 */ 2269 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2270 unsigned long nr_pages, struct page **page_array) 2271 { 2272 struct mempolicy *pol = &default_policy; 2273 2274 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2275 pol = get_task_policy(current); 2276 2277 if (pol->mode == MPOL_INTERLEAVE) 2278 return alloc_pages_bulk_array_interleave(gfp, pol, 2279 nr_pages, page_array); 2280 2281 if (pol->mode == MPOL_PREFERRED_MANY) 2282 return alloc_pages_bulk_array_preferred_many(gfp, 2283 numa_node_id(), pol, nr_pages, page_array); 2284 2285 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2286 policy_nodemask(gfp, pol), nr_pages, NULL, 2287 page_array); 2288 } 2289 2290 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2291 { 2292 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2293 2294 if (IS_ERR(pol)) 2295 return PTR_ERR(pol); 2296 dst->vm_policy = pol; 2297 return 0; 2298 } 2299 2300 /* 2301 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2302 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2303 * with the mems_allowed returned by cpuset_mems_allowed(). This 2304 * keeps mempolicies cpuset relative after its cpuset moves. See 2305 * further kernel/cpuset.c update_nodemask(). 2306 * 2307 * current's mempolicy may be rebinded by the other task(the task that changes 2308 * cpuset's mems), so we needn't do rebind work for current task. 2309 */ 2310 2311 /* Slow path of a mempolicy duplicate */ 2312 struct mempolicy *__mpol_dup(struct mempolicy *old) 2313 { 2314 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2315 2316 if (!new) 2317 return ERR_PTR(-ENOMEM); 2318 2319 /* task's mempolicy is protected by alloc_lock */ 2320 if (old == current->mempolicy) { 2321 task_lock(current); 2322 *new = *old; 2323 task_unlock(current); 2324 } else 2325 *new = *old; 2326 2327 if (current_cpuset_is_being_rebound()) { 2328 nodemask_t mems = cpuset_mems_allowed(current); 2329 mpol_rebind_policy(new, &mems); 2330 } 2331 atomic_set(&new->refcnt, 1); 2332 return new; 2333 } 2334 2335 /* Slow path of a mempolicy comparison */ 2336 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2337 { 2338 if (!a || !b) 2339 return false; 2340 if (a->mode != b->mode) 2341 return false; 2342 if (a->flags != b->flags) 2343 return false; 2344 if (mpol_store_user_nodemask(a)) 2345 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2346 return false; 2347 2348 switch (a->mode) { 2349 case MPOL_BIND: 2350 case MPOL_INTERLEAVE: 2351 case MPOL_PREFERRED: 2352 case MPOL_PREFERRED_MANY: 2353 return !!nodes_equal(a->nodes, b->nodes); 2354 case MPOL_LOCAL: 2355 return true; 2356 default: 2357 BUG(); 2358 return false; 2359 } 2360 } 2361 2362 /* 2363 * Shared memory backing store policy support. 2364 * 2365 * Remember policies even when nobody has shared memory mapped. 2366 * The policies are kept in Red-Black tree linked from the inode. 2367 * They are protected by the sp->lock rwlock, which should be held 2368 * for any accesses to the tree. 2369 */ 2370 2371 /* 2372 * lookup first element intersecting start-end. Caller holds sp->lock for 2373 * reading or for writing 2374 */ 2375 static struct sp_node * 2376 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2377 { 2378 struct rb_node *n = sp->root.rb_node; 2379 2380 while (n) { 2381 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2382 2383 if (start >= p->end) 2384 n = n->rb_right; 2385 else if (end <= p->start) 2386 n = n->rb_left; 2387 else 2388 break; 2389 } 2390 if (!n) 2391 return NULL; 2392 for (;;) { 2393 struct sp_node *w = NULL; 2394 struct rb_node *prev = rb_prev(n); 2395 if (!prev) 2396 break; 2397 w = rb_entry(prev, struct sp_node, nd); 2398 if (w->end <= start) 2399 break; 2400 n = prev; 2401 } 2402 return rb_entry(n, struct sp_node, nd); 2403 } 2404 2405 /* 2406 * Insert a new shared policy into the list. Caller holds sp->lock for 2407 * writing. 2408 */ 2409 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2410 { 2411 struct rb_node **p = &sp->root.rb_node; 2412 struct rb_node *parent = NULL; 2413 struct sp_node *nd; 2414 2415 while (*p) { 2416 parent = *p; 2417 nd = rb_entry(parent, struct sp_node, nd); 2418 if (new->start < nd->start) 2419 p = &(*p)->rb_left; 2420 else if (new->end > nd->end) 2421 p = &(*p)->rb_right; 2422 else 2423 BUG(); 2424 } 2425 rb_link_node(&new->nd, parent, p); 2426 rb_insert_color(&new->nd, &sp->root); 2427 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2428 new->policy ? new->policy->mode : 0); 2429 } 2430 2431 /* Find shared policy intersecting idx */ 2432 struct mempolicy * 2433 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2434 { 2435 struct mempolicy *pol = NULL; 2436 struct sp_node *sn; 2437 2438 if (!sp->root.rb_node) 2439 return NULL; 2440 read_lock(&sp->lock); 2441 sn = sp_lookup(sp, idx, idx+1); 2442 if (sn) { 2443 mpol_get(sn->policy); 2444 pol = sn->policy; 2445 } 2446 read_unlock(&sp->lock); 2447 return pol; 2448 } 2449 2450 static void sp_free(struct sp_node *n) 2451 { 2452 mpol_put(n->policy); 2453 kmem_cache_free(sn_cache, n); 2454 } 2455 2456 /** 2457 * mpol_misplaced - check whether current page node is valid in policy 2458 * 2459 * @page: page to be checked 2460 * @vma: vm area where page mapped 2461 * @addr: virtual address where page mapped 2462 * 2463 * Lookup current policy node id for vma,addr and "compare to" page's 2464 * node id. Policy determination "mimics" alloc_page_vma(). 2465 * Called from fault path where we know the vma and faulting address. 2466 * 2467 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2468 * policy, or a suitable node ID to allocate a replacement page from. 2469 */ 2470 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2471 { 2472 struct mempolicy *pol; 2473 struct zoneref *z; 2474 int curnid = page_to_nid(page); 2475 unsigned long pgoff; 2476 int thiscpu = raw_smp_processor_id(); 2477 int thisnid = cpu_to_node(thiscpu); 2478 int polnid = NUMA_NO_NODE; 2479 int ret = NUMA_NO_NODE; 2480 2481 pol = get_vma_policy(vma, addr); 2482 if (!(pol->flags & MPOL_F_MOF)) 2483 goto out; 2484 2485 switch (pol->mode) { 2486 case MPOL_INTERLEAVE: 2487 pgoff = vma->vm_pgoff; 2488 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2489 polnid = offset_il_node(pol, pgoff); 2490 break; 2491 2492 case MPOL_PREFERRED: 2493 if (node_isset(curnid, pol->nodes)) 2494 goto out; 2495 polnid = first_node(pol->nodes); 2496 break; 2497 2498 case MPOL_LOCAL: 2499 polnid = numa_node_id(); 2500 break; 2501 2502 case MPOL_BIND: 2503 /* Optimize placement among multiple nodes via NUMA balancing */ 2504 if (pol->flags & MPOL_F_MORON) { 2505 if (node_isset(thisnid, pol->nodes)) 2506 break; 2507 goto out; 2508 } 2509 fallthrough; 2510 2511 case MPOL_PREFERRED_MANY: 2512 /* 2513 * use current page if in policy nodemask, 2514 * else select nearest allowed node, if any. 2515 * If no allowed nodes, use current [!misplaced]. 2516 */ 2517 if (node_isset(curnid, pol->nodes)) 2518 goto out; 2519 z = first_zones_zonelist( 2520 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2521 gfp_zone(GFP_HIGHUSER), 2522 &pol->nodes); 2523 polnid = zone_to_nid(z->zone); 2524 break; 2525 2526 default: 2527 BUG(); 2528 } 2529 2530 /* Migrate the page towards the node whose CPU is referencing it */ 2531 if (pol->flags & MPOL_F_MORON) { 2532 polnid = thisnid; 2533 2534 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2535 goto out; 2536 } 2537 2538 if (curnid != polnid) 2539 ret = polnid; 2540 out: 2541 mpol_cond_put(pol); 2542 2543 return ret; 2544 } 2545 2546 /* 2547 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2548 * dropped after task->mempolicy is set to NULL so that any allocation done as 2549 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2550 * policy. 2551 */ 2552 void mpol_put_task_policy(struct task_struct *task) 2553 { 2554 struct mempolicy *pol; 2555 2556 task_lock(task); 2557 pol = task->mempolicy; 2558 task->mempolicy = NULL; 2559 task_unlock(task); 2560 mpol_put(pol); 2561 } 2562 2563 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2564 { 2565 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2566 rb_erase(&n->nd, &sp->root); 2567 sp_free(n); 2568 } 2569 2570 static void sp_node_init(struct sp_node *node, unsigned long start, 2571 unsigned long end, struct mempolicy *pol) 2572 { 2573 node->start = start; 2574 node->end = end; 2575 node->policy = pol; 2576 } 2577 2578 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2579 struct mempolicy *pol) 2580 { 2581 struct sp_node *n; 2582 struct mempolicy *newpol; 2583 2584 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2585 if (!n) 2586 return NULL; 2587 2588 newpol = mpol_dup(pol); 2589 if (IS_ERR(newpol)) { 2590 kmem_cache_free(sn_cache, n); 2591 return NULL; 2592 } 2593 newpol->flags |= MPOL_F_SHARED; 2594 sp_node_init(n, start, end, newpol); 2595 2596 return n; 2597 } 2598 2599 /* Replace a policy range. */ 2600 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2601 unsigned long end, struct sp_node *new) 2602 { 2603 struct sp_node *n; 2604 struct sp_node *n_new = NULL; 2605 struct mempolicy *mpol_new = NULL; 2606 int ret = 0; 2607 2608 restart: 2609 write_lock(&sp->lock); 2610 n = sp_lookup(sp, start, end); 2611 /* Take care of old policies in the same range. */ 2612 while (n && n->start < end) { 2613 struct rb_node *next = rb_next(&n->nd); 2614 if (n->start >= start) { 2615 if (n->end <= end) 2616 sp_delete(sp, n); 2617 else 2618 n->start = end; 2619 } else { 2620 /* Old policy spanning whole new range. */ 2621 if (n->end > end) { 2622 if (!n_new) 2623 goto alloc_new; 2624 2625 *mpol_new = *n->policy; 2626 atomic_set(&mpol_new->refcnt, 1); 2627 sp_node_init(n_new, end, n->end, mpol_new); 2628 n->end = start; 2629 sp_insert(sp, n_new); 2630 n_new = NULL; 2631 mpol_new = NULL; 2632 break; 2633 } else 2634 n->end = start; 2635 } 2636 if (!next) 2637 break; 2638 n = rb_entry(next, struct sp_node, nd); 2639 } 2640 if (new) 2641 sp_insert(sp, new); 2642 write_unlock(&sp->lock); 2643 ret = 0; 2644 2645 err_out: 2646 if (mpol_new) 2647 mpol_put(mpol_new); 2648 if (n_new) 2649 kmem_cache_free(sn_cache, n_new); 2650 2651 return ret; 2652 2653 alloc_new: 2654 write_unlock(&sp->lock); 2655 ret = -ENOMEM; 2656 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2657 if (!n_new) 2658 goto err_out; 2659 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2660 if (!mpol_new) 2661 goto err_out; 2662 goto restart; 2663 } 2664 2665 /** 2666 * mpol_shared_policy_init - initialize shared policy for inode 2667 * @sp: pointer to inode shared policy 2668 * @mpol: struct mempolicy to install 2669 * 2670 * Install non-NULL @mpol in inode's shared policy rb-tree. 2671 * On entry, the current task has a reference on a non-NULL @mpol. 2672 * This must be released on exit. 2673 * This is called at get_inode() calls and we can use GFP_KERNEL. 2674 */ 2675 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2676 { 2677 int ret; 2678 2679 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2680 rwlock_init(&sp->lock); 2681 2682 if (mpol) { 2683 struct vm_area_struct pvma; 2684 struct mempolicy *new; 2685 NODEMASK_SCRATCH(scratch); 2686 2687 if (!scratch) 2688 goto put_mpol; 2689 /* contextualize the tmpfs mount point mempolicy */ 2690 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2691 if (IS_ERR(new)) 2692 goto free_scratch; /* no valid nodemask intersection */ 2693 2694 task_lock(current); 2695 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2696 task_unlock(current); 2697 if (ret) 2698 goto put_new; 2699 2700 /* Create pseudo-vma that contains just the policy */ 2701 vma_init(&pvma, NULL); 2702 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2703 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2704 2705 put_new: 2706 mpol_put(new); /* drop initial ref */ 2707 free_scratch: 2708 NODEMASK_SCRATCH_FREE(scratch); 2709 put_mpol: 2710 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2711 } 2712 } 2713 2714 int mpol_set_shared_policy(struct shared_policy *info, 2715 struct vm_area_struct *vma, struct mempolicy *npol) 2716 { 2717 int err; 2718 struct sp_node *new = NULL; 2719 unsigned long sz = vma_pages(vma); 2720 2721 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2722 vma->vm_pgoff, 2723 sz, npol ? npol->mode : -1, 2724 npol ? npol->flags : -1, 2725 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2726 2727 if (npol) { 2728 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2729 if (!new) 2730 return -ENOMEM; 2731 } 2732 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2733 if (err && new) 2734 sp_free(new); 2735 return err; 2736 } 2737 2738 /* Free a backing policy store on inode delete. */ 2739 void mpol_free_shared_policy(struct shared_policy *p) 2740 { 2741 struct sp_node *n; 2742 struct rb_node *next; 2743 2744 if (!p->root.rb_node) 2745 return; 2746 write_lock(&p->lock); 2747 next = rb_first(&p->root); 2748 while (next) { 2749 n = rb_entry(next, struct sp_node, nd); 2750 next = rb_next(&n->nd); 2751 sp_delete(p, n); 2752 } 2753 write_unlock(&p->lock); 2754 } 2755 2756 #ifdef CONFIG_NUMA_BALANCING 2757 static int __initdata numabalancing_override; 2758 2759 static void __init check_numabalancing_enable(void) 2760 { 2761 bool numabalancing_default = false; 2762 2763 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2764 numabalancing_default = true; 2765 2766 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2767 if (numabalancing_override) 2768 set_numabalancing_state(numabalancing_override == 1); 2769 2770 if (num_online_nodes() > 1 && !numabalancing_override) { 2771 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2772 numabalancing_default ? "Enabling" : "Disabling"); 2773 set_numabalancing_state(numabalancing_default); 2774 } 2775 } 2776 2777 static int __init setup_numabalancing(char *str) 2778 { 2779 int ret = 0; 2780 if (!str) 2781 goto out; 2782 2783 if (!strcmp(str, "enable")) { 2784 numabalancing_override = 1; 2785 ret = 1; 2786 } else if (!strcmp(str, "disable")) { 2787 numabalancing_override = -1; 2788 ret = 1; 2789 } 2790 out: 2791 if (!ret) 2792 pr_warn("Unable to parse numa_balancing=\n"); 2793 2794 return ret; 2795 } 2796 __setup("numa_balancing=", setup_numabalancing); 2797 #else 2798 static inline void __init check_numabalancing_enable(void) 2799 { 2800 } 2801 #endif /* CONFIG_NUMA_BALANCING */ 2802 2803 /* assumes fs == KERNEL_DS */ 2804 void __init numa_policy_init(void) 2805 { 2806 nodemask_t interleave_nodes; 2807 unsigned long largest = 0; 2808 int nid, prefer = 0; 2809 2810 policy_cache = kmem_cache_create("numa_policy", 2811 sizeof(struct mempolicy), 2812 0, SLAB_PANIC, NULL); 2813 2814 sn_cache = kmem_cache_create("shared_policy_node", 2815 sizeof(struct sp_node), 2816 0, SLAB_PANIC, NULL); 2817 2818 for_each_node(nid) { 2819 preferred_node_policy[nid] = (struct mempolicy) { 2820 .refcnt = ATOMIC_INIT(1), 2821 .mode = MPOL_PREFERRED, 2822 .flags = MPOL_F_MOF | MPOL_F_MORON, 2823 .nodes = nodemask_of_node(nid), 2824 }; 2825 } 2826 2827 /* 2828 * Set interleaving policy for system init. Interleaving is only 2829 * enabled across suitably sized nodes (default is >= 16MB), or 2830 * fall back to the largest node if they're all smaller. 2831 */ 2832 nodes_clear(interleave_nodes); 2833 for_each_node_state(nid, N_MEMORY) { 2834 unsigned long total_pages = node_present_pages(nid); 2835 2836 /* Preserve the largest node */ 2837 if (largest < total_pages) { 2838 largest = total_pages; 2839 prefer = nid; 2840 } 2841 2842 /* Interleave this node? */ 2843 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2844 node_set(nid, interleave_nodes); 2845 } 2846 2847 /* All too small, use the largest */ 2848 if (unlikely(nodes_empty(interleave_nodes))) 2849 node_set(prefer, interleave_nodes); 2850 2851 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2852 pr_err("%s: interleaving failed\n", __func__); 2853 2854 check_numabalancing_enable(); 2855 } 2856 2857 /* Reset policy of current process to default */ 2858 void numa_default_policy(void) 2859 { 2860 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2861 } 2862 2863 /* 2864 * Parse and format mempolicy from/to strings 2865 */ 2866 2867 static const char * const policy_modes[] = 2868 { 2869 [MPOL_DEFAULT] = "default", 2870 [MPOL_PREFERRED] = "prefer", 2871 [MPOL_BIND] = "bind", 2872 [MPOL_INTERLEAVE] = "interleave", 2873 [MPOL_LOCAL] = "local", 2874 [MPOL_PREFERRED_MANY] = "prefer (many)", 2875 }; 2876 2877 2878 #ifdef CONFIG_TMPFS 2879 /** 2880 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2881 * @str: string containing mempolicy to parse 2882 * @mpol: pointer to struct mempolicy pointer, returned on success. 2883 * 2884 * Format of input: 2885 * <mode>[=<flags>][:<nodelist>] 2886 * 2887 * On success, returns 0, else 1 2888 */ 2889 int mpol_parse_str(char *str, struct mempolicy **mpol) 2890 { 2891 struct mempolicy *new = NULL; 2892 unsigned short mode_flags; 2893 nodemask_t nodes; 2894 char *nodelist = strchr(str, ':'); 2895 char *flags = strchr(str, '='); 2896 int err = 1, mode; 2897 2898 if (flags) 2899 *flags++ = '\0'; /* terminate mode string */ 2900 2901 if (nodelist) { 2902 /* NUL-terminate mode or flags string */ 2903 *nodelist++ = '\0'; 2904 if (nodelist_parse(nodelist, nodes)) 2905 goto out; 2906 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2907 goto out; 2908 } else 2909 nodes_clear(nodes); 2910 2911 mode = match_string(policy_modes, MPOL_MAX, str); 2912 if (mode < 0) 2913 goto out; 2914 2915 switch (mode) { 2916 case MPOL_PREFERRED: 2917 /* 2918 * Insist on a nodelist of one node only, although later 2919 * we use first_node(nodes) to grab a single node, so here 2920 * nodelist (or nodes) cannot be empty. 2921 */ 2922 if (nodelist) { 2923 char *rest = nodelist; 2924 while (isdigit(*rest)) 2925 rest++; 2926 if (*rest) 2927 goto out; 2928 if (nodes_empty(nodes)) 2929 goto out; 2930 } 2931 break; 2932 case MPOL_INTERLEAVE: 2933 /* 2934 * Default to online nodes with memory if no nodelist 2935 */ 2936 if (!nodelist) 2937 nodes = node_states[N_MEMORY]; 2938 break; 2939 case MPOL_LOCAL: 2940 /* 2941 * Don't allow a nodelist; mpol_new() checks flags 2942 */ 2943 if (nodelist) 2944 goto out; 2945 break; 2946 case MPOL_DEFAULT: 2947 /* 2948 * Insist on a empty nodelist 2949 */ 2950 if (!nodelist) 2951 err = 0; 2952 goto out; 2953 case MPOL_PREFERRED_MANY: 2954 case MPOL_BIND: 2955 /* 2956 * Insist on a nodelist 2957 */ 2958 if (!nodelist) 2959 goto out; 2960 } 2961 2962 mode_flags = 0; 2963 if (flags) { 2964 /* 2965 * Currently, we only support two mutually exclusive 2966 * mode flags. 2967 */ 2968 if (!strcmp(flags, "static")) 2969 mode_flags |= MPOL_F_STATIC_NODES; 2970 else if (!strcmp(flags, "relative")) 2971 mode_flags |= MPOL_F_RELATIVE_NODES; 2972 else 2973 goto out; 2974 } 2975 2976 new = mpol_new(mode, mode_flags, &nodes); 2977 if (IS_ERR(new)) 2978 goto out; 2979 2980 /* 2981 * Save nodes for mpol_to_str() to show the tmpfs mount options 2982 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2983 */ 2984 if (mode != MPOL_PREFERRED) { 2985 new->nodes = nodes; 2986 } else if (nodelist) { 2987 nodes_clear(new->nodes); 2988 node_set(first_node(nodes), new->nodes); 2989 } else { 2990 new->mode = MPOL_LOCAL; 2991 } 2992 2993 /* 2994 * Save nodes for contextualization: this will be used to "clone" 2995 * the mempolicy in a specific context [cpuset] at a later time. 2996 */ 2997 new->w.user_nodemask = nodes; 2998 2999 err = 0; 3000 3001 out: 3002 /* Restore string for error message */ 3003 if (nodelist) 3004 *--nodelist = ':'; 3005 if (flags) 3006 *--flags = '='; 3007 if (!err) 3008 *mpol = new; 3009 return err; 3010 } 3011 #endif /* CONFIG_TMPFS */ 3012 3013 /** 3014 * mpol_to_str - format a mempolicy structure for printing 3015 * @buffer: to contain formatted mempolicy string 3016 * @maxlen: length of @buffer 3017 * @pol: pointer to mempolicy to be formatted 3018 * 3019 * Convert @pol into a string. If @buffer is too short, truncate the string. 3020 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3021 * longest flag, "relative", and to display at least a few node ids. 3022 */ 3023 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3024 { 3025 char *p = buffer; 3026 nodemask_t nodes = NODE_MASK_NONE; 3027 unsigned short mode = MPOL_DEFAULT; 3028 unsigned short flags = 0; 3029 3030 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3031 mode = pol->mode; 3032 flags = pol->flags; 3033 } 3034 3035 switch (mode) { 3036 case MPOL_DEFAULT: 3037 case MPOL_LOCAL: 3038 break; 3039 case MPOL_PREFERRED: 3040 case MPOL_PREFERRED_MANY: 3041 case MPOL_BIND: 3042 case MPOL_INTERLEAVE: 3043 nodes = pol->nodes; 3044 break; 3045 default: 3046 WARN_ON_ONCE(1); 3047 snprintf(p, maxlen, "unknown"); 3048 return; 3049 } 3050 3051 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3052 3053 if (flags & MPOL_MODE_FLAGS) { 3054 p += snprintf(p, buffer + maxlen - p, "="); 3055 3056 /* 3057 * Currently, the only defined flags are mutually exclusive 3058 */ 3059 if (flags & MPOL_F_STATIC_NODES) 3060 p += snprintf(p, buffer + maxlen - p, "static"); 3061 else if (flags & MPOL_F_RELATIVE_NODES) 3062 p += snprintf(p, buffer + maxlen - p, "relative"); 3063 } 3064 3065 if (!nodes_empty(nodes)) 3066 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3067 nodemask_pr_args(&nodes)); 3068 } 3069