xref: /linux/mm/mempolicy.c (revision a634dda26186cf9a51567020fcce52bcba5e1e59)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support six policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * weighted interleave
23  *                Allocate memory interleaved over a set of nodes based on
24  *                a set of weights (per-node), with normal fallback if it
25  *                fails.  Otherwise operates the same as interleave.
26  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27  *                on node 0 for every 1 page allocated on node 1.
28  *
29  * bind           Only allocate memory on a specific set of nodes,
30  *                no fallback.
31  *                FIXME: memory is allocated starting with the first node
32  *                to the last. It would be better if bind would truly restrict
33  *                the allocation to memory nodes instead
34  *
35  * preferred      Try a specific node first before normal fallback.
36  *                As a special case NUMA_NO_NODE here means do the allocation
37  *                on the local CPU. This is normally identical to default,
38  *                but useful to set in a VMA when you have a non default
39  *                process policy.
40  *
41  * preferred many Try a set of nodes first before normal fallback. This is
42  *                similar to preferred without the special case.
43  *
44  * default        Allocate on the local node first, or when on a VMA
45  *                use the process policy. This is what Linux always did
46  *		  in a NUMA aware kernel and still does by, ahem, default.
47  *
48  * The process policy is applied for most non interrupt memory allocations
49  * in that process' context. Interrupts ignore the policies and always
50  * try to allocate on the local CPU. The VMA policy is only applied for memory
51  * allocations for a VMA in the VM.
52  *
53  * Currently there are a few corner cases in swapping where the policy
54  * is not applied, but the majority should be handled. When process policy
55  * is used it is not remembered over swap outs/swap ins.
56  *
57  * Only the highest zone in the zone hierarchy gets policied. Allocations
58  * requesting a lower zone just use default policy. This implies that
59  * on systems with highmem kernel lowmem allocation don't get policied.
60  * Same with GFP_DMA allocations.
61  *
62  * For shmem/tmpfs shared memory the policy is shared between
63  * all users and remembered even when nobody has memory mapped.
64  */
65 
66 /* Notebook:
67    fix mmap readahead to honour policy and enable policy for any page cache
68    object
69    statistics for bigpages
70    global policy for page cache? currently it uses process policy. Requires
71    first item above.
72    handle mremap for shared memory (currently ignored for the policy)
73    grows down?
74    make bind policy root only? It can trigger oom much faster and the
75    kernel is not always grateful with that.
76 */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116 
117 #include "internal.h"
118 
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123 
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126 
127 /* Highest zone. An specific allocation for a zone below that is not
128    policied. */
129 enum zone_type policy_zone = 0;
130 
131 /*
132  * run-time system-wide default policy => local allocation
133  */
134 static struct mempolicy default_policy = {
135 	.refcnt = ATOMIC_INIT(1), /* never free it */
136 	.mode = MPOL_LOCAL,
137 };
138 
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140 
141 /*
142  * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143  * system-default value should be used. A NULL iw_table also denotes that
144  * system-default values should be used. Until the system-default table
145  * is implemented, the system-default is always 1.
146  *
147  * iw_table is RCU protected
148  */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151 
152 static u8 get_il_weight(int node)
153 {
154 	u8 *table;
155 	u8 weight;
156 
157 	rcu_read_lock();
158 	table = rcu_dereference(iw_table);
159 	/* if no iw_table, use system default */
160 	weight = table ? table[node] : 1;
161 	/* if value in iw_table is 0, use system default */
162 	weight = weight ? weight : 1;
163 	rcu_read_unlock();
164 	return weight;
165 }
166 
167 /**
168  * numa_nearest_node - Find nearest node by state
169  * @node: Node id to start the search
170  * @state: State to filter the search
171  *
172  * Lookup the closest node by distance if @nid is not in state.
173  *
174  * Return: this @node if it is in state, otherwise the closest node by distance
175  */
176 int numa_nearest_node(int node, unsigned int state)
177 {
178 	int min_dist = INT_MAX, dist, n, min_node;
179 
180 	if (state >= NR_NODE_STATES)
181 		return -EINVAL;
182 
183 	if (node == NUMA_NO_NODE || node_state(node, state))
184 		return node;
185 
186 	min_node = node;
187 	for_each_node_state(n, state) {
188 		dist = node_distance(node, n);
189 		if (dist < min_dist) {
190 			min_dist = dist;
191 			min_node = n;
192 		}
193 	}
194 
195 	return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198 
199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 	struct mempolicy *pol = p->mempolicy;
202 	int node;
203 
204 	if (pol)
205 		return pol;
206 
207 	node = numa_node_id();
208 	if (node != NUMA_NO_NODE) {
209 		pol = &preferred_node_policy[node];
210 		/* preferred_node_policy is not initialised early in boot */
211 		if (pol->mode)
212 			return pol;
213 	}
214 
215 	return &default_policy;
216 }
217 
218 static const struct mempolicy_operations {
219 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222 
223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 	return pol->flags & MPOL_MODE_FLAGS;
226 }
227 
228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 				   const nodemask_t *rel)
230 {
231 	nodemask_t tmp;
232 	nodes_fold(tmp, *orig, nodes_weight(*rel));
233 	nodes_onto(*ret, tmp, *rel);
234 }
235 
236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 	if (nodes_empty(*nodes))
239 		return -EINVAL;
240 	pol->nodes = *nodes;
241 	return 0;
242 }
243 
244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 	if (nodes_empty(*nodes))
247 		return -EINVAL;
248 
249 	nodes_clear(pol->nodes);
250 	node_set(first_node(*nodes), pol->nodes);
251 	return 0;
252 }
253 
254 /*
255  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256  * any, for the new policy.  mpol_new() has already validated the nodes
257  * parameter with respect to the policy mode and flags.
258  *
259  * Must be called holding task's alloc_lock to protect task's mems_allowed
260  * and mempolicy.  May also be called holding the mmap_lock for write.
261  */
262 static int mpol_set_nodemask(struct mempolicy *pol,
263 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 	int ret;
266 
267 	/*
268 	 * Default (pol==NULL) resp. local memory policies are not a
269 	 * subject of any remapping. They also do not need any special
270 	 * constructor.
271 	 */
272 	if (!pol || pol->mode == MPOL_LOCAL)
273 		return 0;
274 
275 	/* Check N_MEMORY */
276 	nodes_and(nsc->mask1,
277 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278 
279 	VM_BUG_ON(!nodes);
280 
281 	if (pol->flags & MPOL_F_RELATIVE_NODES)
282 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 	else
284 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285 
286 	if (mpol_store_user_nodemask(pol))
287 		pol->w.user_nodemask = *nodes;
288 	else
289 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290 
291 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 	return ret;
293 }
294 
295 /*
296  * This function just creates a new policy, does some check and simple
297  * initialization. You must invoke mpol_set_nodemask() to set nodes.
298  */
299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 				  nodemask_t *nodes)
301 {
302 	struct mempolicy *policy;
303 
304 	if (mode == MPOL_DEFAULT) {
305 		if (nodes && !nodes_empty(*nodes))
306 			return ERR_PTR(-EINVAL);
307 		return NULL;
308 	}
309 	VM_BUG_ON(!nodes);
310 
311 	/*
312 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 	 * All other modes require a valid pointer to a non-empty nodemask.
315 	 */
316 	if (mode == MPOL_PREFERRED) {
317 		if (nodes_empty(*nodes)) {
318 			if (((flags & MPOL_F_STATIC_NODES) ||
319 			     (flags & MPOL_F_RELATIVE_NODES)))
320 				return ERR_PTR(-EINVAL);
321 
322 			mode = MPOL_LOCAL;
323 		}
324 	} else if (mode == MPOL_LOCAL) {
325 		if (!nodes_empty(*nodes) ||
326 		    (flags & MPOL_F_STATIC_NODES) ||
327 		    (flags & MPOL_F_RELATIVE_NODES))
328 			return ERR_PTR(-EINVAL);
329 	} else if (nodes_empty(*nodes))
330 		return ERR_PTR(-EINVAL);
331 
332 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 	if (!policy)
334 		return ERR_PTR(-ENOMEM);
335 	atomic_set(&policy->refcnt, 1);
336 	policy->mode = mode;
337 	policy->flags = flags;
338 	policy->home_node = NUMA_NO_NODE;
339 
340 	return policy;
341 }
342 
343 /* Slow path of a mpol destructor. */
344 void __mpol_put(struct mempolicy *pol)
345 {
346 	if (!atomic_dec_and_test(&pol->refcnt))
347 		return;
348 	kmem_cache_free(policy_cache, pol);
349 }
350 
351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354 
355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 	nodemask_t tmp;
358 
359 	if (pol->flags & MPOL_F_STATIC_NODES)
360 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 	else {
364 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 								*nodes);
366 		pol->w.cpuset_mems_allowed = *nodes;
367 	}
368 
369 	if (nodes_empty(tmp))
370 		tmp = *nodes;
371 
372 	pol->nodes = tmp;
373 }
374 
375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 						const nodemask_t *nodes)
377 {
378 	pol->w.cpuset_mems_allowed = *nodes;
379 }
380 
381 /*
382  * mpol_rebind_policy - Migrate a policy to a different set of nodes
383  *
384  * Per-vma policies are protected by mmap_lock. Allocations using per-task
385  * policies are protected by task->mems_allowed_seq to prevent a premature
386  * OOM/allocation failure due to parallel nodemask modification.
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 	if (!pol || pol->mode == MPOL_LOCAL)
391 		return;
392 	if (!mpol_store_user_nodemask(pol) &&
393 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 		return;
395 
396 	mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398 
399 /*
400  * Wrapper for mpol_rebind_policy() that just requires task
401  * pointer, and updates task mempolicy.
402  *
403  * Called with task's alloc_lock held.
404  */
405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 	mpol_rebind_policy(tsk->mempolicy, new);
408 }
409 
410 /*
411  * Rebind each vma in mm to new nodemask.
412  *
413  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414  */
415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 	struct vm_area_struct *vma;
418 	VMA_ITERATOR(vmi, mm, 0);
419 
420 	mmap_write_lock(mm);
421 	for_each_vma(vmi, vma) {
422 		vma_start_write(vma);
423 		mpol_rebind_policy(vma->vm_policy, new);
424 	}
425 	mmap_write_unlock(mm);
426 }
427 
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 	[MPOL_DEFAULT] = {
430 		.rebind = mpol_rebind_default,
431 	},
432 	[MPOL_INTERLEAVE] = {
433 		.create = mpol_new_nodemask,
434 		.rebind = mpol_rebind_nodemask,
435 	},
436 	[MPOL_PREFERRED] = {
437 		.create = mpol_new_preferred,
438 		.rebind = mpol_rebind_preferred,
439 	},
440 	[MPOL_BIND] = {
441 		.create = mpol_new_nodemask,
442 		.rebind = mpol_rebind_nodemask,
443 	},
444 	[MPOL_LOCAL] = {
445 		.rebind = mpol_rebind_default,
446 	},
447 	[MPOL_PREFERRED_MANY] = {
448 		.create = mpol_new_nodemask,
449 		.rebind = mpol_rebind_preferred,
450 	},
451 	[MPOL_WEIGHTED_INTERLEAVE] = {
452 		.create = mpol_new_nodemask,
453 		.rebind = mpol_rebind_nodemask,
454 	},
455 };
456 
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 				unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 				pgoff_t ilx, int *nid);
461 
462 static bool strictly_unmovable(unsigned long flags)
463 {
464 	/*
465 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 	 * if any misplaced page is found.
467 	 */
468 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 			 MPOL_MF_STRICT;
470 }
471 
472 struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473 	struct mempolicy *pol;
474 	pgoff_t ilx;
475 };
476 
477 struct queue_pages {
478 	struct list_head *pagelist;
479 	unsigned long flags;
480 	nodemask_t *nmask;
481 	unsigned long start;
482 	unsigned long end;
483 	struct vm_area_struct *first;
484 	struct folio *large;		/* note last large folio encountered */
485 	long nr_failed;			/* could not be isolated at this time */
486 };
487 
488 /*
489  * Check if the folio's nid is in qp->nmask.
490  *
491  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492  * in the invert of qp->nmask.
493  */
494 static inline bool queue_folio_required(struct folio *folio,
495 					struct queue_pages *qp)
496 {
497 	int nid = folio_nid(folio);
498 	unsigned long flags = qp->flags;
499 
500 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502 
503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 	struct folio *folio;
506 	struct queue_pages *qp = walk->private;
507 
508 	if (unlikely(is_pmd_migration_entry(*pmd))) {
509 		qp->nr_failed++;
510 		return;
511 	}
512 	folio = pmd_folio(*pmd);
513 	if (is_huge_zero_folio(folio)) {
514 		walk->action = ACTION_CONTINUE;
515 		return;
516 	}
517 	if (!queue_folio_required(folio, qp))
518 		return;
519 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 	    !vma_migratable(walk->vma) ||
521 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 		qp->nr_failed++;
523 }
524 
525 /*
526  * Scan through folios, checking if they satisfy the required conditions,
527  * moving them from LRU to local pagelist for migration if they do (or not).
528  *
529  * queue_folios_pte_range() has two possible return values:
530  * 0 - continue walking to scan for more, even if an existing folio on the
531  *     wrong node could not be isolated and queued for migration.
532  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533  *        and an existing folio was on a node that does not follow the policy.
534  */
535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 			unsigned long end, struct mm_walk *walk)
537 {
538 	struct vm_area_struct *vma = walk->vma;
539 	struct folio *folio;
540 	struct queue_pages *qp = walk->private;
541 	unsigned long flags = qp->flags;
542 	pte_t *pte, *mapped_pte;
543 	pte_t ptent;
544 	spinlock_t *ptl;
545 
546 	ptl = pmd_trans_huge_lock(pmd, vma);
547 	if (ptl) {
548 		queue_folios_pmd(pmd, walk);
549 		spin_unlock(ptl);
550 		goto out;
551 	}
552 
553 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 	if (!pte) {
555 		walk->action = ACTION_AGAIN;
556 		return 0;
557 	}
558 	for (; addr != end; pte++, addr += PAGE_SIZE) {
559 		ptent = ptep_get(pte);
560 		if (pte_none(ptent))
561 			continue;
562 		if (!pte_present(ptent)) {
563 			if (is_migration_entry(pte_to_swp_entry(ptent)))
564 				qp->nr_failed++;
565 			continue;
566 		}
567 		folio = vm_normal_folio(vma, addr, ptent);
568 		if (!folio || folio_is_zone_device(folio))
569 			continue;
570 		/*
571 		 * vm_normal_folio() filters out zero pages, but there might
572 		 * still be reserved folios to skip, perhaps in a VDSO.
573 		 */
574 		if (folio_test_reserved(folio))
575 			continue;
576 		if (!queue_folio_required(folio, qp))
577 			continue;
578 		if (folio_test_large(folio)) {
579 			/*
580 			 * A large folio can only be isolated from LRU once,
581 			 * but may be mapped by many PTEs (and Copy-On-Write may
582 			 * intersperse PTEs of other, order 0, folios).  This is
583 			 * a common case, so don't mistake it for failure (but
584 			 * there can be other cases of multi-mapped pages which
585 			 * this quick check does not help to filter out - and a
586 			 * search of the pagelist might grow to be prohibitive).
587 			 *
588 			 * migrate_pages(&pagelist) returns nr_failed folios, so
589 			 * check "large" now so that queue_pages_range() returns
590 			 * a comparable nr_failed folios.  This does imply that
591 			 * if folio could not be isolated for some racy reason
592 			 * at its first PTE, later PTEs will not give it another
593 			 * chance of isolation; but keeps the accounting simple.
594 			 */
595 			if (folio == qp->large)
596 				continue;
597 			qp->large = folio;
598 		}
599 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 		    !vma_migratable(vma) ||
601 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602 			qp->nr_failed++;
603 			if (strictly_unmovable(flags))
604 				break;
605 		}
606 	}
607 	pte_unmap_unlock(mapped_pte, ptl);
608 	cond_resched();
609 out:
610 	if (qp->nr_failed && strictly_unmovable(flags))
611 		return -EIO;
612 	return 0;
613 }
614 
615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 			       unsigned long addr, unsigned long end,
617 			       struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 	struct queue_pages *qp = walk->private;
621 	unsigned long flags = qp->flags;
622 	struct folio *folio;
623 	spinlock_t *ptl;
624 	pte_t entry;
625 
626 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 	entry = huge_ptep_get(walk->mm, addr, pte);
628 	if (!pte_present(entry)) {
629 		if (unlikely(is_hugetlb_entry_migration(entry)))
630 			qp->nr_failed++;
631 		goto unlock;
632 	}
633 	folio = pfn_folio(pte_pfn(entry));
634 	if (!queue_folio_required(folio, qp))
635 		goto unlock;
636 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 	    !vma_migratable(walk->vma)) {
638 		qp->nr_failed++;
639 		goto unlock;
640 	}
641 	/*
642 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 	 * Choosing not to migrate a shared folio is not counted as a failure.
644 	 *
645 	 * See folio_likely_mapped_shared() on possible imprecision when we
646 	 * cannot easily detect if a folio is shared.
647 	 */
648 	if ((flags & MPOL_MF_MOVE_ALL) ||
649 	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 		if (!isolate_hugetlb(folio, qp->pagelist))
651 			qp->nr_failed++;
652 unlock:
653 	spin_unlock(ptl);
654 	if (qp->nr_failed && strictly_unmovable(flags))
655 		return -EIO;
656 #endif
657 	return 0;
658 }
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662  * This is used to mark a range of virtual addresses to be inaccessible.
663  * These are later cleared by a NUMA hinting fault. Depending on these
664  * faults, pages may be migrated for better NUMA placement.
665  *
666  * This is assuming that NUMA faults are handled using PROT_NONE. If
667  * an architecture makes a different choice, it will need further
668  * changes to the core.
669  */
670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 			unsigned long addr, unsigned long end)
672 {
673 	struct mmu_gather tlb;
674 	long nr_updated;
675 
676 	tlb_gather_mmu(&tlb, vma->vm_mm);
677 
678 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 	if (nr_updated > 0) {
680 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
682 	}
683 
684 	tlb_finish_mmu(&tlb);
685 
686 	return nr_updated;
687 }
688 #endif /* CONFIG_NUMA_BALANCING */
689 
690 static int queue_pages_test_walk(unsigned long start, unsigned long end,
691 				struct mm_walk *walk)
692 {
693 	struct vm_area_struct *next, *vma = walk->vma;
694 	struct queue_pages *qp = walk->private;
695 	unsigned long flags = qp->flags;
696 
697 	/* range check first */
698 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
699 
700 	if (!qp->first) {
701 		qp->first = vma;
702 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
703 			(qp->start < vma->vm_start))
704 			/* hole at head side of range */
705 			return -EFAULT;
706 	}
707 	next = find_vma(vma->vm_mm, vma->vm_end);
708 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
709 		((vma->vm_end < qp->end) &&
710 		(!next || vma->vm_end < next->vm_start)))
711 		/* hole at middle or tail of range */
712 		return -EFAULT;
713 
714 	/*
715 	 * Need check MPOL_MF_STRICT to return -EIO if possible
716 	 * regardless of vma_migratable
717 	 */
718 	if (!vma_migratable(vma) &&
719 	    !(flags & MPOL_MF_STRICT))
720 		return 1;
721 
722 	/*
723 	 * Check page nodes, and queue pages to move, in the current vma.
724 	 * But if no moving, and no strict checking, the scan can be skipped.
725 	 */
726 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
727 		return 0;
728 	return 1;
729 }
730 
731 static const struct mm_walk_ops queue_pages_walk_ops = {
732 	.hugetlb_entry		= queue_folios_hugetlb,
733 	.pmd_entry		= queue_folios_pte_range,
734 	.test_walk		= queue_pages_test_walk,
735 	.walk_lock		= PGWALK_RDLOCK,
736 };
737 
738 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
739 	.hugetlb_entry		= queue_folios_hugetlb,
740 	.pmd_entry		= queue_folios_pte_range,
741 	.test_walk		= queue_pages_test_walk,
742 	.walk_lock		= PGWALK_WRLOCK,
743 };
744 
745 /*
746  * Walk through page tables and collect pages to be migrated.
747  *
748  * If pages found in a given range are not on the required set of @nodes,
749  * and migration is allowed, they are isolated and queued to @pagelist.
750  *
751  * queue_pages_range() may return:
752  * 0 - all pages already on the right node, or successfully queued for moving
753  *     (or neither strict checking nor moving requested: only range checking).
754  * >0 - this number of misplaced folios could not be queued for moving
755  *      (a hugetlbfs page or a transparent huge page being counted as 1).
756  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
757  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
758  */
759 static long
760 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
761 		nodemask_t *nodes, unsigned long flags,
762 		struct list_head *pagelist)
763 {
764 	int err;
765 	struct queue_pages qp = {
766 		.pagelist = pagelist,
767 		.flags = flags,
768 		.nmask = nodes,
769 		.start = start,
770 		.end = end,
771 		.first = NULL,
772 	};
773 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
774 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
775 
776 	err = walk_page_range(mm, start, end, ops, &qp);
777 
778 	if (!qp.first)
779 		/* whole range in hole */
780 		err = -EFAULT;
781 
782 	return err ? : qp.nr_failed;
783 }
784 
785 /*
786  * Apply policy to a single VMA
787  * This must be called with the mmap_lock held for writing.
788  */
789 static int vma_replace_policy(struct vm_area_struct *vma,
790 				struct mempolicy *pol)
791 {
792 	int err;
793 	struct mempolicy *old;
794 	struct mempolicy *new;
795 
796 	vma_assert_write_locked(vma);
797 
798 	new = mpol_dup(pol);
799 	if (IS_ERR(new))
800 		return PTR_ERR(new);
801 
802 	if (vma->vm_ops && vma->vm_ops->set_policy) {
803 		err = vma->vm_ops->set_policy(vma, new);
804 		if (err)
805 			goto err_out;
806 	}
807 
808 	old = vma->vm_policy;
809 	vma->vm_policy = new; /* protected by mmap_lock */
810 	mpol_put(old);
811 
812 	return 0;
813  err_out:
814 	mpol_put(new);
815 	return err;
816 }
817 
818 /* Split or merge the VMA (if required) and apply the new policy */
819 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
820 		struct vm_area_struct **prev, unsigned long start,
821 		unsigned long end, struct mempolicy *new_pol)
822 {
823 	unsigned long vmstart, vmend;
824 
825 	vmend = min(end, vma->vm_end);
826 	if (start > vma->vm_start) {
827 		*prev = vma;
828 		vmstart = start;
829 	} else {
830 		vmstart = vma->vm_start;
831 	}
832 
833 	if (mpol_equal(vma->vm_policy, new_pol)) {
834 		*prev = vma;
835 		return 0;
836 	}
837 
838 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
839 	if (IS_ERR(vma))
840 		return PTR_ERR(vma);
841 
842 	*prev = vma;
843 	return vma_replace_policy(vma, new_pol);
844 }
845 
846 /* Set the process memory policy */
847 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
848 			     nodemask_t *nodes)
849 {
850 	struct mempolicy *new, *old;
851 	NODEMASK_SCRATCH(scratch);
852 	int ret;
853 
854 	if (!scratch)
855 		return -ENOMEM;
856 
857 	new = mpol_new(mode, flags, nodes);
858 	if (IS_ERR(new)) {
859 		ret = PTR_ERR(new);
860 		goto out;
861 	}
862 
863 	task_lock(current);
864 	ret = mpol_set_nodemask(new, nodes, scratch);
865 	if (ret) {
866 		task_unlock(current);
867 		mpol_put(new);
868 		goto out;
869 	}
870 
871 	old = current->mempolicy;
872 	current->mempolicy = new;
873 	if (new && (new->mode == MPOL_INTERLEAVE ||
874 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
875 		current->il_prev = MAX_NUMNODES-1;
876 		current->il_weight = 0;
877 	}
878 	task_unlock(current);
879 	mpol_put(old);
880 	ret = 0;
881 out:
882 	NODEMASK_SCRATCH_FREE(scratch);
883 	return ret;
884 }
885 
886 /*
887  * Return nodemask for policy for get_mempolicy() query
888  *
889  * Called with task's alloc_lock held
890  */
891 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
892 {
893 	nodes_clear(*nodes);
894 	if (pol == &default_policy)
895 		return;
896 
897 	switch (pol->mode) {
898 	case MPOL_BIND:
899 	case MPOL_INTERLEAVE:
900 	case MPOL_PREFERRED:
901 	case MPOL_PREFERRED_MANY:
902 	case MPOL_WEIGHTED_INTERLEAVE:
903 		*nodes = pol->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int ret;
917 
918 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 	if (ret > 0) {
920 		ret = page_to_nid(p);
921 		put_page(p);
922 	}
923 	return ret;
924 }
925 
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 			     unsigned long addr, unsigned long flags)
929 {
930 	int err;
931 	struct mm_struct *mm = current->mm;
932 	struct vm_area_struct *vma = NULL;
933 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 
935 	if (flags &
936 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 		return -EINVAL;
938 
939 	if (flags & MPOL_F_MEMS_ALLOWED) {
940 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 			return -EINVAL;
942 		*policy = 0;	/* just so it's initialized */
943 		task_lock(current);
944 		*nmask  = cpuset_current_mems_allowed;
945 		task_unlock(current);
946 		return 0;
947 	}
948 
949 	if (flags & MPOL_F_ADDR) {
950 		pgoff_t ilx;		/* ignored here */
951 		/*
952 		 * Do NOT fall back to task policy if the
953 		 * vma/shared policy at addr is NULL.  We
954 		 * want to return MPOL_DEFAULT in this case.
955 		 */
956 		mmap_read_lock(mm);
957 		vma = vma_lookup(mm, addr);
958 		if (!vma) {
959 			mmap_read_unlock(mm);
960 			return -EFAULT;
961 		}
962 		pol = __get_vma_policy(vma, addr, &ilx);
963 	} else if (addr)
964 		return -EINVAL;
965 
966 	if (!pol)
967 		pol = &default_policy;	/* indicates default behavior */
968 
969 	if (flags & MPOL_F_NODE) {
970 		if (flags & MPOL_F_ADDR) {
971 			/*
972 			 * Take a refcount on the mpol, because we are about to
973 			 * drop the mmap_lock, after which only "pol" remains
974 			 * valid, "vma" is stale.
975 			 */
976 			pol_refcount = pol;
977 			vma = NULL;
978 			mpol_get(pol);
979 			mmap_read_unlock(mm);
980 			err = lookup_node(mm, addr);
981 			if (err < 0)
982 				goto out;
983 			*policy = err;
984 		} else if (pol == current->mempolicy &&
985 				pol->mode == MPOL_INTERLEAVE) {
986 			*policy = next_node_in(current->il_prev, pol->nodes);
987 		} else if (pol == current->mempolicy &&
988 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
989 			if (current->il_weight)
990 				*policy = current->il_prev;
991 			else
992 				*policy = next_node_in(current->il_prev,
993 						       pol->nodes);
994 		} else {
995 			err = -EINVAL;
996 			goto out;
997 		}
998 	} else {
999 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1000 						pol->mode;
1001 		/*
1002 		 * Internal mempolicy flags must be masked off before exposing
1003 		 * the policy to userspace.
1004 		 */
1005 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1006 	}
1007 
1008 	err = 0;
1009 	if (nmask) {
1010 		if (mpol_store_user_nodemask(pol)) {
1011 			*nmask = pol->w.user_nodemask;
1012 		} else {
1013 			task_lock(current);
1014 			get_policy_nodemask(pol, nmask);
1015 			task_unlock(current);
1016 		}
1017 	}
1018 
1019  out:
1020 	mpol_cond_put(pol);
1021 	if (vma)
1022 		mmap_read_unlock(mm);
1023 	if (pol_refcount)
1024 		mpol_put(pol_refcount);
1025 	return err;
1026 }
1027 
1028 #ifdef CONFIG_MIGRATION
1029 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1030 				unsigned long flags)
1031 {
1032 	/*
1033 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034 	 * Choosing not to migrate a shared folio is not counted as a failure.
1035 	 *
1036 	 * See folio_likely_mapped_shared() on possible imprecision when we
1037 	 * cannot easily detect if a folio is shared.
1038 	 */
1039 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040 		if (folio_isolate_lru(folio)) {
1041 			list_add_tail(&folio->lru, foliolist);
1042 			node_stat_mod_folio(folio,
1043 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044 				folio_nr_pages(folio));
1045 		} else {
1046 			/*
1047 			 * Non-movable folio may reach here.  And, there may be
1048 			 * temporary off LRU folios or non-LRU movable folios.
1049 			 * Treat them as unmovable folios since they can't be
1050 			 * isolated, so they can't be moved at the moment.
1051 			 */
1052 			return false;
1053 		}
1054 	}
1055 	return true;
1056 }
1057 
1058 /*
1059  * Migrate pages from one node to a target node.
1060  * Returns error or the number of pages not migrated.
1061  */
1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 			    int flags)
1064 {
1065 	nodemask_t nmask;
1066 	struct vm_area_struct *vma;
1067 	LIST_HEAD(pagelist);
1068 	long nr_failed;
1069 	long err = 0;
1070 	struct migration_target_control mtc = {
1071 		.nid = dest,
1072 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 		.reason = MR_SYSCALL,
1074 	};
1075 
1076 	nodes_clear(nmask);
1077 	node_set(source, nmask);
1078 
1079 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080 
1081 	mmap_read_lock(mm);
1082 	vma = find_vma(mm, 0);
1083 	if (unlikely(!vma)) {
1084 		mmap_read_unlock(mm);
1085 		return 0;
1086 	}
1087 
1088 	/*
1089 	 * This does not migrate the range, but isolates all pages that
1090 	 * need migration.  Between passing in the full user address
1091 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1092 	 * but passes back the count of pages which could not be isolated.
1093 	 */
1094 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1095 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1096 	mmap_read_unlock(mm);
1097 
1098 	if (!list_empty(&pagelist)) {
1099 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1100 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1101 		if (err)
1102 			putback_movable_pages(&pagelist);
1103 	}
1104 
1105 	if (err >= 0)
1106 		err += nr_failed;
1107 	return err;
1108 }
1109 
1110 /*
1111  * Move pages between the two nodesets so as to preserve the physical
1112  * layout as much as possible.
1113  *
1114  * Returns the number of page that could not be moved.
1115  */
1116 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1117 		     const nodemask_t *to, int flags)
1118 {
1119 	long nr_failed = 0;
1120 	long err = 0;
1121 	nodemask_t tmp;
1122 
1123 	lru_cache_disable();
1124 
1125 	/*
1126 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1127 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1128 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1129 	 * The pair of nodemasks 'to' and 'from' define the map.
1130 	 *
1131 	 * If no pair of bits is found that way, fallback to picking some
1132 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1133 	 * 'source' and 'dest' bits are the same, this represents a node
1134 	 * that will be migrating to itself, so no pages need move.
1135 	 *
1136 	 * If no bits are left in 'tmp', or if all remaining bits left
1137 	 * in 'tmp' correspond to the same bit in 'to', return false
1138 	 * (nothing left to migrate).
1139 	 *
1140 	 * This lets us pick a pair of nodes to migrate between, such that
1141 	 * if possible the dest node is not already occupied by some other
1142 	 * source node, minimizing the risk of overloading the memory on a
1143 	 * node that would happen if we migrated incoming memory to a node
1144 	 * before migrating outgoing memory source that same node.
1145 	 *
1146 	 * A single scan of tmp is sufficient.  As we go, we remember the
1147 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1148 	 * that not only moved, but what's better, moved to an empty slot
1149 	 * (d is not set in tmp), then we break out then, with that pair.
1150 	 * Otherwise when we finish scanning from_tmp, we at least have the
1151 	 * most recent <s, d> pair that moved.  If we get all the way through
1152 	 * the scan of tmp without finding any node that moved, much less
1153 	 * moved to an empty node, then there is nothing left worth migrating.
1154 	 */
1155 
1156 	tmp = *from;
1157 	while (!nodes_empty(tmp)) {
1158 		int s, d;
1159 		int source = NUMA_NO_NODE;
1160 		int dest = 0;
1161 
1162 		for_each_node_mask(s, tmp) {
1163 
1164 			/*
1165 			 * do_migrate_pages() tries to maintain the relative
1166 			 * node relationship of the pages established between
1167 			 * threads and memory areas.
1168                          *
1169 			 * However if the number of source nodes is not equal to
1170 			 * the number of destination nodes we can not preserve
1171 			 * this node relative relationship.  In that case, skip
1172 			 * copying memory from a node that is in the destination
1173 			 * mask.
1174 			 *
1175 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1176 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1177 			 */
1178 
1179 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1180 						(node_isset(s, *to)))
1181 				continue;
1182 
1183 			d = node_remap(s, *from, *to);
1184 			if (s == d)
1185 				continue;
1186 
1187 			source = s;	/* Node moved. Memorize */
1188 			dest = d;
1189 
1190 			/* dest not in remaining from nodes? */
1191 			if (!node_isset(dest, tmp))
1192 				break;
1193 		}
1194 		if (source == NUMA_NO_NODE)
1195 			break;
1196 
1197 		node_clear(source, tmp);
1198 		err = migrate_to_node(mm, source, dest, flags);
1199 		if (err > 0)
1200 			nr_failed += err;
1201 		if (err < 0)
1202 			break;
1203 	}
1204 
1205 	lru_cache_enable();
1206 	if (err < 0)
1207 		return err;
1208 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1209 }
1210 
1211 /*
1212  * Allocate a new folio for page migration, according to NUMA mempolicy.
1213  */
1214 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1215 						    unsigned long private)
1216 {
1217 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1218 	struct mempolicy *pol = mmpol->pol;
1219 	pgoff_t ilx = mmpol->ilx;
1220 	unsigned int order;
1221 	int nid = numa_node_id();
1222 	gfp_t gfp;
1223 
1224 	order = folio_order(src);
1225 	ilx += src->index >> order;
1226 
1227 	if (folio_test_hugetlb(src)) {
1228 		nodemask_t *nodemask;
1229 		struct hstate *h;
1230 
1231 		h = folio_hstate(src);
1232 		gfp = htlb_alloc_mask(h);
1233 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1234 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1235 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1236 	}
1237 
1238 	if (folio_test_large(src))
1239 		gfp = GFP_TRANSHUGE;
1240 	else
1241 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1242 
1243 	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1244 }
1245 #else
1246 
1247 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1248 				unsigned long flags)
1249 {
1250 	return false;
1251 }
1252 
1253 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1254 		     const nodemask_t *to, int flags)
1255 {
1256 	return -ENOSYS;
1257 }
1258 
1259 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1260 						    unsigned long private)
1261 {
1262 	return NULL;
1263 }
1264 #endif
1265 
1266 static long do_mbind(unsigned long start, unsigned long len,
1267 		     unsigned short mode, unsigned short mode_flags,
1268 		     nodemask_t *nmask, unsigned long flags)
1269 {
1270 	struct mm_struct *mm = current->mm;
1271 	struct vm_area_struct *vma, *prev;
1272 	struct vma_iterator vmi;
1273 	struct migration_mpol mmpol;
1274 	struct mempolicy *new;
1275 	unsigned long end;
1276 	long err;
1277 	long nr_failed;
1278 	LIST_HEAD(pagelist);
1279 
1280 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1281 		return -EINVAL;
1282 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283 		return -EPERM;
1284 
1285 	if (start & ~PAGE_MASK)
1286 		return -EINVAL;
1287 
1288 	if (mode == MPOL_DEFAULT)
1289 		flags &= ~MPOL_MF_STRICT;
1290 
1291 	len = PAGE_ALIGN(len);
1292 	end = start + len;
1293 
1294 	if (end < start)
1295 		return -EINVAL;
1296 	if (end == start)
1297 		return 0;
1298 
1299 	new = mpol_new(mode, mode_flags, nmask);
1300 	if (IS_ERR(new))
1301 		return PTR_ERR(new);
1302 
1303 	/*
1304 	 * If we are using the default policy then operation
1305 	 * on discontinuous address spaces is okay after all
1306 	 */
1307 	if (!new)
1308 		flags |= MPOL_MF_DISCONTIG_OK;
1309 
1310 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1311 		lru_cache_disable();
1312 	{
1313 		NODEMASK_SCRATCH(scratch);
1314 		if (scratch) {
1315 			mmap_write_lock(mm);
1316 			err = mpol_set_nodemask(new, nmask, scratch);
1317 			if (err)
1318 				mmap_write_unlock(mm);
1319 		} else
1320 			err = -ENOMEM;
1321 		NODEMASK_SCRATCH_FREE(scratch);
1322 	}
1323 	if (err)
1324 		goto mpol_out;
1325 
1326 	/*
1327 	 * Lock the VMAs before scanning for pages to migrate,
1328 	 * to ensure we don't miss a concurrently inserted page.
1329 	 */
1330 	nr_failed = queue_pages_range(mm, start, end, nmask,
1331 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1332 
1333 	if (nr_failed < 0) {
1334 		err = nr_failed;
1335 		nr_failed = 0;
1336 	} else {
1337 		vma_iter_init(&vmi, mm, start);
1338 		prev = vma_prev(&vmi);
1339 		for_each_vma_range(vmi, vma, end) {
1340 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1341 			if (err)
1342 				break;
1343 		}
1344 	}
1345 
1346 	if (!err && !list_empty(&pagelist)) {
1347 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1348 		if (!new) {
1349 			new = get_task_policy(current);
1350 			mpol_get(new);
1351 		}
1352 		mmpol.pol = new;
1353 		mmpol.ilx = 0;
1354 
1355 		/*
1356 		 * In the interleaved case, attempt to allocate on exactly the
1357 		 * targeted nodes, for the first VMA to be migrated; for later
1358 		 * VMAs, the nodes will still be interleaved from the targeted
1359 		 * nodemask, but one by one may be selected differently.
1360 		 */
1361 		if (new->mode == MPOL_INTERLEAVE ||
1362 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1363 			struct folio *folio;
1364 			unsigned int order;
1365 			unsigned long addr = -EFAULT;
1366 
1367 			list_for_each_entry(folio, &pagelist, lru) {
1368 				if (!folio_test_ksm(folio))
1369 					break;
1370 			}
1371 			if (!list_entry_is_head(folio, &pagelist, lru)) {
1372 				vma_iter_init(&vmi, mm, start);
1373 				for_each_vma_range(vmi, vma, end) {
1374 					addr = page_address_in_vma(folio,
1375 						folio_page(folio, 0), vma);
1376 					if (addr != -EFAULT)
1377 						break;
1378 				}
1379 			}
1380 			if (addr != -EFAULT) {
1381 				order = folio_order(folio);
1382 				/* We already know the pol, but not the ilx */
1383 				mpol_cond_put(get_vma_policy(vma, addr, order,
1384 							     &mmpol.ilx));
1385 				/* Set base from which to increment by index */
1386 				mmpol.ilx -= folio->index >> order;
1387 			}
1388 		}
1389 	}
1390 
1391 	mmap_write_unlock(mm);
1392 
1393 	if (!err && !list_empty(&pagelist)) {
1394 		nr_failed |= migrate_pages(&pagelist,
1395 				alloc_migration_target_by_mpol, NULL,
1396 				(unsigned long)&mmpol, MIGRATE_SYNC,
1397 				MR_MEMPOLICY_MBIND, NULL);
1398 	}
1399 
1400 	if (nr_failed && (flags & MPOL_MF_STRICT))
1401 		err = -EIO;
1402 	if (!list_empty(&pagelist))
1403 		putback_movable_pages(&pagelist);
1404 mpol_out:
1405 	mpol_put(new);
1406 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1407 		lru_cache_enable();
1408 	return err;
1409 }
1410 
1411 /*
1412  * User space interface with variable sized bitmaps for nodelists.
1413  */
1414 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1415 		      unsigned long maxnode)
1416 {
1417 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1418 	int ret;
1419 
1420 	if (in_compat_syscall())
1421 		ret = compat_get_bitmap(mask,
1422 					(const compat_ulong_t __user *)nmask,
1423 					maxnode);
1424 	else
1425 		ret = copy_from_user(mask, nmask,
1426 				     nlongs * sizeof(unsigned long));
1427 
1428 	if (ret)
1429 		return -EFAULT;
1430 
1431 	if (maxnode % BITS_PER_LONG)
1432 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1433 
1434 	return 0;
1435 }
1436 
1437 /* Copy a node mask from user space. */
1438 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1439 		     unsigned long maxnode)
1440 {
1441 	--maxnode;
1442 	nodes_clear(*nodes);
1443 	if (maxnode == 0 || !nmask)
1444 		return 0;
1445 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1446 		return -EINVAL;
1447 
1448 	/*
1449 	 * When the user specified more nodes than supported just check
1450 	 * if the non supported part is all zero, one word at a time,
1451 	 * starting at the end.
1452 	 */
1453 	while (maxnode > MAX_NUMNODES) {
1454 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1455 		unsigned long t;
1456 
1457 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1458 			return -EFAULT;
1459 
1460 		if (maxnode - bits >= MAX_NUMNODES) {
1461 			maxnode -= bits;
1462 		} else {
1463 			maxnode = MAX_NUMNODES;
1464 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1465 		}
1466 		if (t)
1467 			return -EINVAL;
1468 	}
1469 
1470 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1471 }
1472 
1473 /* Copy a kernel node mask to user space */
1474 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1475 			      nodemask_t *nodes)
1476 {
1477 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1478 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1479 	bool compat = in_compat_syscall();
1480 
1481 	if (compat)
1482 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1483 
1484 	if (copy > nbytes) {
1485 		if (copy > PAGE_SIZE)
1486 			return -EINVAL;
1487 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1488 			return -EFAULT;
1489 		copy = nbytes;
1490 		maxnode = nr_node_ids;
1491 	}
1492 
1493 	if (compat)
1494 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1495 					 nodes_addr(*nodes), maxnode);
1496 
1497 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1498 }
1499 
1500 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1501 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1502 {
1503 	*flags = *mode & MPOL_MODE_FLAGS;
1504 	*mode &= ~MPOL_MODE_FLAGS;
1505 
1506 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1507 		return -EINVAL;
1508 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1509 		return -EINVAL;
1510 	if (*flags & MPOL_F_NUMA_BALANCING) {
1511 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1512 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1513 		else
1514 			return -EINVAL;
1515 	}
1516 	return 0;
1517 }
1518 
1519 static long kernel_mbind(unsigned long start, unsigned long len,
1520 			 unsigned long mode, const unsigned long __user *nmask,
1521 			 unsigned long maxnode, unsigned int flags)
1522 {
1523 	unsigned short mode_flags;
1524 	nodemask_t nodes;
1525 	int lmode = mode;
1526 	int err;
1527 
1528 	start = untagged_addr(start);
1529 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1530 	if (err)
1531 		return err;
1532 
1533 	err = get_nodes(&nodes, nmask, maxnode);
1534 	if (err)
1535 		return err;
1536 
1537 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1538 }
1539 
1540 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1541 		unsigned long, home_node, unsigned long, flags)
1542 {
1543 	struct mm_struct *mm = current->mm;
1544 	struct vm_area_struct *vma, *prev;
1545 	struct mempolicy *new, *old;
1546 	unsigned long end;
1547 	int err = -ENOENT;
1548 	VMA_ITERATOR(vmi, mm, start);
1549 
1550 	start = untagged_addr(start);
1551 	if (start & ~PAGE_MASK)
1552 		return -EINVAL;
1553 	/*
1554 	 * flags is used for future extension if any.
1555 	 */
1556 	if (flags != 0)
1557 		return -EINVAL;
1558 
1559 	/*
1560 	 * Check home_node is online to avoid accessing uninitialized
1561 	 * NODE_DATA.
1562 	 */
1563 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1564 		return -EINVAL;
1565 
1566 	len = PAGE_ALIGN(len);
1567 	end = start + len;
1568 
1569 	if (end < start)
1570 		return -EINVAL;
1571 	if (end == start)
1572 		return 0;
1573 	mmap_write_lock(mm);
1574 	prev = vma_prev(&vmi);
1575 	for_each_vma_range(vmi, vma, end) {
1576 		/*
1577 		 * If any vma in the range got policy other than MPOL_BIND
1578 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1579 		 * the home node for vmas we already updated before.
1580 		 */
1581 		old = vma_policy(vma);
1582 		if (!old) {
1583 			prev = vma;
1584 			continue;
1585 		}
1586 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1587 			err = -EOPNOTSUPP;
1588 			break;
1589 		}
1590 		new = mpol_dup(old);
1591 		if (IS_ERR(new)) {
1592 			err = PTR_ERR(new);
1593 			break;
1594 		}
1595 
1596 		vma_start_write(vma);
1597 		new->home_node = home_node;
1598 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1599 		mpol_put(new);
1600 		if (err)
1601 			break;
1602 	}
1603 	mmap_write_unlock(mm);
1604 	return err;
1605 }
1606 
1607 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1608 		unsigned long, mode, const unsigned long __user *, nmask,
1609 		unsigned long, maxnode, unsigned int, flags)
1610 {
1611 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1612 }
1613 
1614 /* Set the process memory policy */
1615 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1616 				 unsigned long maxnode)
1617 {
1618 	unsigned short mode_flags;
1619 	nodemask_t nodes;
1620 	int lmode = mode;
1621 	int err;
1622 
1623 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1624 	if (err)
1625 		return err;
1626 
1627 	err = get_nodes(&nodes, nmask, maxnode);
1628 	if (err)
1629 		return err;
1630 
1631 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1632 }
1633 
1634 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1635 		unsigned long, maxnode)
1636 {
1637 	return kernel_set_mempolicy(mode, nmask, maxnode);
1638 }
1639 
1640 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1641 				const unsigned long __user *old_nodes,
1642 				const unsigned long __user *new_nodes)
1643 {
1644 	struct mm_struct *mm = NULL;
1645 	struct task_struct *task;
1646 	nodemask_t task_nodes;
1647 	int err;
1648 	nodemask_t *old;
1649 	nodemask_t *new;
1650 	NODEMASK_SCRATCH(scratch);
1651 
1652 	if (!scratch)
1653 		return -ENOMEM;
1654 
1655 	old = &scratch->mask1;
1656 	new = &scratch->mask2;
1657 
1658 	err = get_nodes(old, old_nodes, maxnode);
1659 	if (err)
1660 		goto out;
1661 
1662 	err = get_nodes(new, new_nodes, maxnode);
1663 	if (err)
1664 		goto out;
1665 
1666 	/* Find the mm_struct */
1667 	rcu_read_lock();
1668 	task = pid ? find_task_by_vpid(pid) : current;
1669 	if (!task) {
1670 		rcu_read_unlock();
1671 		err = -ESRCH;
1672 		goto out;
1673 	}
1674 	get_task_struct(task);
1675 
1676 	err = -EINVAL;
1677 
1678 	/*
1679 	 * Check if this process has the right to modify the specified process.
1680 	 * Use the regular "ptrace_may_access()" checks.
1681 	 */
1682 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1683 		rcu_read_unlock();
1684 		err = -EPERM;
1685 		goto out_put;
1686 	}
1687 	rcu_read_unlock();
1688 
1689 	task_nodes = cpuset_mems_allowed(task);
1690 	/* Is the user allowed to access the target nodes? */
1691 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1692 		err = -EPERM;
1693 		goto out_put;
1694 	}
1695 
1696 	task_nodes = cpuset_mems_allowed(current);
1697 	nodes_and(*new, *new, task_nodes);
1698 	if (nodes_empty(*new))
1699 		goto out_put;
1700 
1701 	err = security_task_movememory(task);
1702 	if (err)
1703 		goto out_put;
1704 
1705 	mm = get_task_mm(task);
1706 	put_task_struct(task);
1707 
1708 	if (!mm) {
1709 		err = -EINVAL;
1710 		goto out;
1711 	}
1712 
1713 	err = do_migrate_pages(mm, old, new,
1714 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1715 
1716 	mmput(mm);
1717 out:
1718 	NODEMASK_SCRATCH_FREE(scratch);
1719 
1720 	return err;
1721 
1722 out_put:
1723 	put_task_struct(task);
1724 	goto out;
1725 }
1726 
1727 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1728 		const unsigned long __user *, old_nodes,
1729 		const unsigned long __user *, new_nodes)
1730 {
1731 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1732 }
1733 
1734 /* Retrieve NUMA policy */
1735 static int kernel_get_mempolicy(int __user *policy,
1736 				unsigned long __user *nmask,
1737 				unsigned long maxnode,
1738 				unsigned long addr,
1739 				unsigned long flags)
1740 {
1741 	int err;
1742 	int pval;
1743 	nodemask_t nodes;
1744 
1745 	if (nmask != NULL && maxnode < nr_node_ids)
1746 		return -EINVAL;
1747 
1748 	addr = untagged_addr(addr);
1749 
1750 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1751 
1752 	if (err)
1753 		return err;
1754 
1755 	if (policy && put_user(pval, policy))
1756 		return -EFAULT;
1757 
1758 	if (nmask)
1759 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1760 
1761 	return err;
1762 }
1763 
1764 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1765 		unsigned long __user *, nmask, unsigned long, maxnode,
1766 		unsigned long, addr, unsigned long, flags)
1767 {
1768 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1769 }
1770 
1771 bool vma_migratable(struct vm_area_struct *vma)
1772 {
1773 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774 		return false;
1775 
1776 	/*
1777 	 * DAX device mappings require predictable access latency, so avoid
1778 	 * incurring periodic faults.
1779 	 */
1780 	if (vma_is_dax(vma))
1781 		return false;
1782 
1783 	if (is_vm_hugetlb_page(vma) &&
1784 		!hugepage_migration_supported(hstate_vma(vma)))
1785 		return false;
1786 
1787 	/*
1788 	 * Migration allocates pages in the highest zone. If we cannot
1789 	 * do so then migration (at least from node to node) is not
1790 	 * possible.
1791 	 */
1792 	if (vma->vm_file &&
1793 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794 			< policy_zone)
1795 		return false;
1796 	return true;
1797 }
1798 
1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800 				   unsigned long addr, pgoff_t *ilx)
1801 {
1802 	*ilx = 0;
1803 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1804 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1805 }
1806 
1807 /*
1808  * get_vma_policy(@vma, @addr, @order, @ilx)
1809  * @vma: virtual memory area whose policy is sought
1810  * @addr: address in @vma for shared policy lookup
1811  * @order: 0, or appropriate huge_page_order for interleaving
1812  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1813  *       MPOL_WEIGHTED_INTERLEAVE
1814  *
1815  * Returns effective policy for a VMA at specified address.
1816  * Falls back to current->mempolicy or system default policy, as necessary.
1817  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818  * count--added by the get_policy() vm_op, as appropriate--to protect against
1819  * freeing by another task.  It is the caller's responsibility to free the
1820  * extra reference for shared policies.
1821  */
1822 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823 				 unsigned long addr, int order, pgoff_t *ilx)
1824 {
1825 	struct mempolicy *pol;
1826 
1827 	pol = __get_vma_policy(vma, addr, ilx);
1828 	if (!pol)
1829 		pol = get_task_policy(current);
1830 	if (pol->mode == MPOL_INTERLEAVE ||
1831 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1832 		*ilx += vma->vm_pgoff >> order;
1833 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1834 	}
1835 	return pol;
1836 }
1837 
1838 bool vma_policy_mof(struct vm_area_struct *vma)
1839 {
1840 	struct mempolicy *pol;
1841 
1842 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1843 		bool ret = false;
1844 		pgoff_t ilx;		/* ignored here */
1845 
1846 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1847 		if (pol && (pol->flags & MPOL_F_MOF))
1848 			ret = true;
1849 		mpol_cond_put(pol);
1850 
1851 		return ret;
1852 	}
1853 
1854 	pol = vma->vm_policy;
1855 	if (!pol)
1856 		pol = get_task_policy(current);
1857 
1858 	return pol->flags & MPOL_F_MOF;
1859 }
1860 
1861 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1862 {
1863 	enum zone_type dynamic_policy_zone = policy_zone;
1864 
1865 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1866 
1867 	/*
1868 	 * if policy->nodes has movable memory only,
1869 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1870 	 *
1871 	 * policy->nodes is intersect with node_states[N_MEMORY].
1872 	 * so if the following test fails, it implies
1873 	 * policy->nodes has movable memory only.
1874 	 */
1875 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1876 		dynamic_policy_zone = ZONE_MOVABLE;
1877 
1878 	return zone >= dynamic_policy_zone;
1879 }
1880 
1881 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1882 {
1883 	unsigned int node;
1884 	unsigned int cpuset_mems_cookie;
1885 
1886 retry:
1887 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1888 	cpuset_mems_cookie = read_mems_allowed_begin();
1889 	node = current->il_prev;
1890 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1891 		node = next_node_in(node, policy->nodes);
1892 		if (read_mems_allowed_retry(cpuset_mems_cookie))
1893 			goto retry;
1894 		if (node == MAX_NUMNODES)
1895 			return node;
1896 		current->il_prev = node;
1897 		current->il_weight = get_il_weight(node);
1898 	}
1899 	current->il_weight--;
1900 	return node;
1901 }
1902 
1903 /* Do dynamic interleaving for a process */
1904 static unsigned int interleave_nodes(struct mempolicy *policy)
1905 {
1906 	unsigned int nid;
1907 	unsigned int cpuset_mems_cookie;
1908 
1909 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1910 	do {
1911 		cpuset_mems_cookie = read_mems_allowed_begin();
1912 		nid = next_node_in(current->il_prev, policy->nodes);
1913 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1914 
1915 	if (nid < MAX_NUMNODES)
1916 		current->il_prev = nid;
1917 	return nid;
1918 }
1919 
1920 /*
1921  * Depending on the memory policy provide a node from which to allocate the
1922  * next slab entry.
1923  */
1924 unsigned int mempolicy_slab_node(void)
1925 {
1926 	struct mempolicy *policy;
1927 	int node = numa_mem_id();
1928 
1929 	if (!in_task())
1930 		return node;
1931 
1932 	policy = current->mempolicy;
1933 	if (!policy)
1934 		return node;
1935 
1936 	switch (policy->mode) {
1937 	case MPOL_PREFERRED:
1938 		return first_node(policy->nodes);
1939 
1940 	case MPOL_INTERLEAVE:
1941 		return interleave_nodes(policy);
1942 
1943 	case MPOL_WEIGHTED_INTERLEAVE:
1944 		return weighted_interleave_nodes(policy);
1945 
1946 	case MPOL_BIND:
1947 	case MPOL_PREFERRED_MANY:
1948 	{
1949 		struct zoneref *z;
1950 
1951 		/*
1952 		 * Follow bind policy behavior and start allocation at the
1953 		 * first node.
1954 		 */
1955 		struct zonelist *zonelist;
1956 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1957 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1958 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1959 							&policy->nodes);
1960 		return zonelist_zone(z) ? zonelist_node_idx(z) : node;
1961 	}
1962 	case MPOL_LOCAL:
1963 		return node;
1964 
1965 	default:
1966 		BUG();
1967 	}
1968 }
1969 
1970 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1971 					      nodemask_t *mask)
1972 {
1973 	/*
1974 	 * barrier stabilizes the nodemask locally so that it can be iterated
1975 	 * over safely without concern for changes. Allocators validate node
1976 	 * selection does not violate mems_allowed, so this is safe.
1977 	 */
1978 	barrier();
1979 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1980 	barrier();
1981 	return nodes_weight(*mask);
1982 }
1983 
1984 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1985 {
1986 	nodemask_t nodemask;
1987 	unsigned int target, nr_nodes;
1988 	u8 *table;
1989 	unsigned int weight_total = 0;
1990 	u8 weight;
1991 	int nid;
1992 
1993 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1994 	if (!nr_nodes)
1995 		return numa_node_id();
1996 
1997 	rcu_read_lock();
1998 	table = rcu_dereference(iw_table);
1999 	/* calculate the total weight */
2000 	for_each_node_mask(nid, nodemask) {
2001 		/* detect system default usage */
2002 		weight = table ? table[nid] : 1;
2003 		weight = weight ? weight : 1;
2004 		weight_total += weight;
2005 	}
2006 
2007 	/* Calculate the node offset based on totals */
2008 	target = ilx % weight_total;
2009 	nid = first_node(nodemask);
2010 	while (target) {
2011 		/* detect system default usage */
2012 		weight = table ? table[nid] : 1;
2013 		weight = weight ? weight : 1;
2014 		if (target < weight)
2015 			break;
2016 		target -= weight;
2017 		nid = next_node_in(nid, nodemask);
2018 	}
2019 	rcu_read_unlock();
2020 	return nid;
2021 }
2022 
2023 /*
2024  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2025  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2026  * exceeds the number of present nodes.
2027  */
2028 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2029 {
2030 	nodemask_t nodemask;
2031 	unsigned int target, nnodes;
2032 	int i;
2033 	int nid;
2034 
2035 	nnodes = read_once_policy_nodemask(pol, &nodemask);
2036 	if (!nnodes)
2037 		return numa_node_id();
2038 	target = ilx % nnodes;
2039 	nid = first_node(nodemask);
2040 	for (i = 0; i < target; i++)
2041 		nid = next_node(nid, nodemask);
2042 	return nid;
2043 }
2044 
2045 /*
2046  * Return a nodemask representing a mempolicy for filtering nodes for
2047  * page allocation, together with preferred node id (or the input node id).
2048  */
2049 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2050 				   pgoff_t ilx, int *nid)
2051 {
2052 	nodemask_t *nodemask = NULL;
2053 
2054 	switch (pol->mode) {
2055 	case MPOL_PREFERRED:
2056 		/* Override input node id */
2057 		*nid = first_node(pol->nodes);
2058 		break;
2059 	case MPOL_PREFERRED_MANY:
2060 		nodemask = &pol->nodes;
2061 		if (pol->home_node != NUMA_NO_NODE)
2062 			*nid = pol->home_node;
2063 		break;
2064 	case MPOL_BIND:
2065 		/* Restrict to nodemask (but not on lower zones) */
2066 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2067 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2068 			nodemask = &pol->nodes;
2069 		if (pol->home_node != NUMA_NO_NODE)
2070 			*nid = pol->home_node;
2071 		/*
2072 		 * __GFP_THISNODE shouldn't even be used with the bind policy
2073 		 * because we might easily break the expectation to stay on the
2074 		 * requested node and not break the policy.
2075 		 */
2076 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2077 		break;
2078 	case MPOL_INTERLEAVE:
2079 		/* Override input node id */
2080 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 			interleave_nodes(pol) : interleave_nid(pol, ilx);
2082 		break;
2083 	case MPOL_WEIGHTED_INTERLEAVE:
2084 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2085 			weighted_interleave_nodes(pol) :
2086 			weighted_interleave_nid(pol, ilx);
2087 		break;
2088 	}
2089 
2090 	return nodemask;
2091 }
2092 
2093 #ifdef CONFIG_HUGETLBFS
2094 /*
2095  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2096  * @vma: virtual memory area whose policy is sought
2097  * @addr: address in @vma for shared policy lookup and interleave policy
2098  * @gfp_flags: for requested zone
2099  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2100  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2101  *
2102  * Returns a nid suitable for a huge page allocation and a pointer
2103  * to the struct mempolicy for conditional unref after allocation.
2104  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2105  * to the mempolicy's @nodemask for filtering the zonelist.
2106  */
2107 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2108 		struct mempolicy **mpol, nodemask_t **nodemask)
2109 {
2110 	pgoff_t ilx;
2111 	int nid;
2112 
2113 	nid = numa_node_id();
2114 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2115 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2116 	return nid;
2117 }
2118 
2119 /*
2120  * init_nodemask_of_mempolicy
2121  *
2122  * If the current task's mempolicy is "default" [NULL], return 'false'
2123  * to indicate default policy.  Otherwise, extract the policy nodemask
2124  * for 'bind' or 'interleave' policy into the argument nodemask, or
2125  * initialize the argument nodemask to contain the single node for
2126  * 'preferred' or 'local' policy and return 'true' to indicate presence
2127  * of non-default mempolicy.
2128  *
2129  * We don't bother with reference counting the mempolicy [mpol_get/put]
2130  * because the current task is examining it's own mempolicy and a task's
2131  * mempolicy is only ever changed by the task itself.
2132  *
2133  * N.B., it is the caller's responsibility to free a returned nodemask.
2134  */
2135 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2136 {
2137 	struct mempolicy *mempolicy;
2138 
2139 	if (!(mask && current->mempolicy))
2140 		return false;
2141 
2142 	task_lock(current);
2143 	mempolicy = current->mempolicy;
2144 	switch (mempolicy->mode) {
2145 	case MPOL_PREFERRED:
2146 	case MPOL_PREFERRED_MANY:
2147 	case MPOL_BIND:
2148 	case MPOL_INTERLEAVE:
2149 	case MPOL_WEIGHTED_INTERLEAVE:
2150 		*mask = mempolicy->nodes;
2151 		break;
2152 
2153 	case MPOL_LOCAL:
2154 		init_nodemask_of_node(mask, numa_node_id());
2155 		break;
2156 
2157 	default:
2158 		BUG();
2159 	}
2160 	task_unlock(current);
2161 
2162 	return true;
2163 }
2164 #endif
2165 
2166 /*
2167  * mempolicy_in_oom_domain
2168  *
2169  * If tsk's mempolicy is "bind", check for intersection between mask and
2170  * the policy nodemask. Otherwise, return true for all other policies
2171  * including "interleave", as a tsk with "interleave" policy may have
2172  * memory allocated from all nodes in system.
2173  *
2174  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2175  */
2176 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2177 					const nodemask_t *mask)
2178 {
2179 	struct mempolicy *mempolicy;
2180 	bool ret = true;
2181 
2182 	if (!mask)
2183 		return ret;
2184 
2185 	task_lock(tsk);
2186 	mempolicy = tsk->mempolicy;
2187 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2188 		ret = nodes_intersects(mempolicy->nodes, *mask);
2189 	task_unlock(tsk);
2190 
2191 	return ret;
2192 }
2193 
2194 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2195 						int nid, nodemask_t *nodemask)
2196 {
2197 	struct page *page;
2198 	gfp_t preferred_gfp;
2199 
2200 	/*
2201 	 * This is a two pass approach. The first pass will only try the
2202 	 * preferred nodes but skip the direct reclaim and allow the
2203 	 * allocation to fail, while the second pass will try all the
2204 	 * nodes in system.
2205 	 */
2206 	preferred_gfp = gfp | __GFP_NOWARN;
2207 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2208 	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2209 	if (!page)
2210 		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2211 
2212 	return page;
2213 }
2214 
2215 /**
2216  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2217  * @gfp: GFP flags.
2218  * @order: Order of the page allocation.
2219  * @pol: Pointer to the NUMA mempolicy.
2220  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2221  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2222  *
2223  * Return: The page on success or NULL if allocation fails.
2224  */
2225 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2226 		struct mempolicy *pol, pgoff_t ilx, int nid)
2227 {
2228 	nodemask_t *nodemask;
2229 	struct page *page;
2230 
2231 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2232 
2233 	if (pol->mode == MPOL_PREFERRED_MANY)
2234 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2235 
2236 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237 	    /* filter "hugepage" allocation, unless from alloc_pages() */
2238 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2239 		/*
2240 		 * For hugepage allocation and non-interleave policy which
2241 		 * allows the current node (or other explicitly preferred
2242 		 * node) we only try to allocate from the current/preferred
2243 		 * node and don't fall back to other nodes, as the cost of
2244 		 * remote accesses would likely offset THP benefits.
2245 		 *
2246 		 * If the policy is interleave or does not allow the current
2247 		 * node in its nodemask, we allocate the standard way.
2248 		 */
2249 		if (pol->mode != MPOL_INTERLEAVE &&
2250 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2251 		    (!nodemask || node_isset(nid, *nodemask))) {
2252 			/*
2253 			 * First, try to allocate THP only on local node, but
2254 			 * don't reclaim unnecessarily, just compact.
2255 			 */
2256 			page = __alloc_pages_node_noprof(nid,
2257 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2258 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2259 				return page;
2260 			/*
2261 			 * If hugepage allocations are configured to always
2262 			 * synchronous compact or the vma has been madvised
2263 			 * to prefer hugepage backing, retry allowing remote
2264 			 * memory with both reclaim and compact as well.
2265 			 */
2266 		}
2267 	}
2268 
2269 	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2270 
2271 	if (unlikely(pol->mode == MPOL_INTERLEAVE ||
2272 		     pol->mode == MPOL_WEIGHTED_INTERLEAVE) && page) {
2273 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2274 		if (static_branch_likely(&vm_numa_stat_key) &&
2275 		    page_to_nid(page) == nid) {
2276 			preempt_disable();
2277 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2278 			preempt_enable();
2279 		}
2280 	}
2281 
2282 	return page;
2283 }
2284 
2285 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2286 		struct mempolicy *pol, pgoff_t ilx, int nid)
2287 {
2288 	return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2289 							order, pol, ilx, nid));
2290 }
2291 
2292 /**
2293  * vma_alloc_folio - Allocate a folio for a VMA.
2294  * @gfp: GFP flags.
2295  * @order: Order of the folio.
2296  * @vma: Pointer to VMA.
2297  * @addr: Virtual address of the allocation.  Must be inside @vma.
2298  *
2299  * Allocate a folio for a specific address in @vma, using the appropriate
2300  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2301  * VMA to prevent it from going away.  Should be used for all allocations
2302  * for folios that will be mapped into user space, excepting hugetlbfs, and
2303  * excepting where direct use of alloc_pages_mpol() is more appropriate.
2304  *
2305  * Return: The folio on success or NULL if allocation fails.
2306  */
2307 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2308 		unsigned long addr)
2309 {
2310 	struct mempolicy *pol;
2311 	pgoff_t ilx;
2312 	struct folio *folio;
2313 
2314 	if (vma->vm_flags & VM_DROPPABLE)
2315 		gfp |= __GFP_NOWARN;
2316 
2317 	pol = get_vma_policy(vma, addr, order, &ilx);
2318 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2319 	mpol_cond_put(pol);
2320 	return folio;
2321 }
2322 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2323 
2324 /**
2325  * alloc_pages - Allocate pages.
2326  * @gfp: GFP flags.
2327  * @order: Power of two of number of pages to allocate.
2328  *
2329  * Allocate 1 << @order contiguous pages.  The physical address of the
2330  * first page is naturally aligned (eg an order-3 allocation will be aligned
2331  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2332  * process is honoured when in process context.
2333  *
2334  * Context: Can be called from any context, providing the appropriate GFP
2335  * flags are used.
2336  * Return: The page on success or NULL if allocation fails.
2337  */
2338 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2339 {
2340 	struct mempolicy *pol = &default_policy;
2341 
2342 	/*
2343 	 * No reference counting needed for current->mempolicy
2344 	 * nor system default_policy
2345 	 */
2346 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2347 		pol = get_task_policy(current);
2348 
2349 	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2350 				       numa_node_id());
2351 }
2352 EXPORT_SYMBOL(alloc_pages_noprof);
2353 
2354 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2355 {
2356 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2357 }
2358 EXPORT_SYMBOL(folio_alloc_noprof);
2359 
2360 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2361 		struct mempolicy *pol, unsigned long nr_pages,
2362 		struct page **page_array)
2363 {
2364 	int nodes;
2365 	unsigned long nr_pages_per_node;
2366 	int delta;
2367 	int i;
2368 	unsigned long nr_allocated;
2369 	unsigned long total_allocated = 0;
2370 
2371 	nodes = nodes_weight(pol->nodes);
2372 	nr_pages_per_node = nr_pages / nodes;
2373 	delta = nr_pages - nodes * nr_pages_per_node;
2374 
2375 	for (i = 0; i < nodes; i++) {
2376 		if (delta) {
2377 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2378 					interleave_nodes(pol), NULL,
2379 					nr_pages_per_node + 1, NULL,
2380 					page_array);
2381 			delta--;
2382 		} else {
2383 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2384 					interleave_nodes(pol), NULL,
2385 					nr_pages_per_node, NULL, page_array);
2386 		}
2387 
2388 		page_array += nr_allocated;
2389 		total_allocated += nr_allocated;
2390 	}
2391 
2392 	return total_allocated;
2393 }
2394 
2395 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2396 		struct mempolicy *pol, unsigned long nr_pages,
2397 		struct page **page_array)
2398 {
2399 	struct task_struct *me = current;
2400 	unsigned int cpuset_mems_cookie;
2401 	unsigned long total_allocated = 0;
2402 	unsigned long nr_allocated = 0;
2403 	unsigned long rounds;
2404 	unsigned long node_pages, delta;
2405 	u8 *table, *weights, weight;
2406 	unsigned int weight_total = 0;
2407 	unsigned long rem_pages = nr_pages;
2408 	nodemask_t nodes;
2409 	int nnodes, node;
2410 	int resume_node = MAX_NUMNODES - 1;
2411 	u8 resume_weight = 0;
2412 	int prev_node;
2413 	int i;
2414 
2415 	if (!nr_pages)
2416 		return 0;
2417 
2418 	/* read the nodes onto the stack, retry if done during rebind */
2419 	do {
2420 		cpuset_mems_cookie = read_mems_allowed_begin();
2421 		nnodes = read_once_policy_nodemask(pol, &nodes);
2422 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2423 
2424 	/* if the nodemask has become invalid, we cannot do anything */
2425 	if (!nnodes)
2426 		return 0;
2427 
2428 	/* Continue allocating from most recent node and adjust the nr_pages */
2429 	node = me->il_prev;
2430 	weight = me->il_weight;
2431 	if (weight && node_isset(node, nodes)) {
2432 		node_pages = min(rem_pages, weight);
2433 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2434 						  NULL, page_array);
2435 		page_array += nr_allocated;
2436 		total_allocated += nr_allocated;
2437 		/* if that's all the pages, no need to interleave */
2438 		if (rem_pages <= weight) {
2439 			me->il_weight -= rem_pages;
2440 			return total_allocated;
2441 		}
2442 		/* Otherwise we adjust remaining pages, continue from there */
2443 		rem_pages -= weight;
2444 	}
2445 	/* clear active weight in case of an allocation failure */
2446 	me->il_weight = 0;
2447 	prev_node = node;
2448 
2449 	/* create a local copy of node weights to operate on outside rcu */
2450 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2451 	if (!weights)
2452 		return total_allocated;
2453 
2454 	rcu_read_lock();
2455 	table = rcu_dereference(iw_table);
2456 	if (table)
2457 		memcpy(weights, table, nr_node_ids);
2458 	rcu_read_unlock();
2459 
2460 	/* calculate total, detect system default usage */
2461 	for_each_node_mask(node, nodes) {
2462 		if (!weights[node])
2463 			weights[node] = 1;
2464 		weight_total += weights[node];
2465 	}
2466 
2467 	/*
2468 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2469 	 * Track which node weighted interleave should resume from.
2470 	 *
2471 	 * if (rounds > 0) and (delta == 0), resume_node will always be
2472 	 * the node following prev_node and its weight.
2473 	 */
2474 	rounds = rem_pages / weight_total;
2475 	delta = rem_pages % weight_total;
2476 	resume_node = next_node_in(prev_node, nodes);
2477 	resume_weight = weights[resume_node];
2478 	for (i = 0; i < nnodes; i++) {
2479 		node = next_node_in(prev_node, nodes);
2480 		weight = weights[node];
2481 		node_pages = weight * rounds;
2482 		/* If a delta exists, add this node's portion of the delta */
2483 		if (delta > weight) {
2484 			node_pages += weight;
2485 			delta -= weight;
2486 		} else if (delta) {
2487 			/* when delta is depleted, resume from that node */
2488 			node_pages += delta;
2489 			resume_node = node;
2490 			resume_weight = weight - delta;
2491 			delta = 0;
2492 		}
2493 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2494 		if (!node_pages)
2495 			break;
2496 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2497 						  NULL, page_array);
2498 		page_array += nr_allocated;
2499 		total_allocated += nr_allocated;
2500 		if (total_allocated == nr_pages)
2501 			break;
2502 		prev_node = node;
2503 	}
2504 	me->il_prev = resume_node;
2505 	me->il_weight = resume_weight;
2506 	kfree(weights);
2507 	return total_allocated;
2508 }
2509 
2510 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2511 		struct mempolicy *pol, unsigned long nr_pages,
2512 		struct page **page_array)
2513 {
2514 	gfp_t preferred_gfp;
2515 	unsigned long nr_allocated = 0;
2516 
2517 	preferred_gfp = gfp | __GFP_NOWARN;
2518 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2519 
2520 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2521 					   nr_pages, NULL, page_array);
2522 
2523 	if (nr_allocated < nr_pages)
2524 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2525 				nr_pages - nr_allocated, NULL,
2526 				page_array + nr_allocated);
2527 	return nr_allocated;
2528 }
2529 
2530 /* alloc pages bulk and mempolicy should be considered at the
2531  * same time in some situation such as vmalloc.
2532  *
2533  * It can accelerate memory allocation especially interleaving
2534  * allocate memory.
2535  */
2536 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2537 		unsigned long nr_pages, struct page **page_array)
2538 {
2539 	struct mempolicy *pol = &default_policy;
2540 	nodemask_t *nodemask;
2541 	int nid;
2542 
2543 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2544 		pol = get_task_policy(current);
2545 
2546 	if (pol->mode == MPOL_INTERLEAVE)
2547 		return alloc_pages_bulk_array_interleave(gfp, pol,
2548 							 nr_pages, page_array);
2549 
2550 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2551 		return alloc_pages_bulk_array_weighted_interleave(
2552 				  gfp, pol, nr_pages, page_array);
2553 
2554 	if (pol->mode == MPOL_PREFERRED_MANY)
2555 		return alloc_pages_bulk_array_preferred_many(gfp,
2556 				numa_node_id(), pol, nr_pages, page_array);
2557 
2558 	nid = numa_node_id();
2559 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2560 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2561 				       nr_pages, NULL, page_array);
2562 }
2563 
2564 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2565 {
2566 	struct mempolicy *pol = mpol_dup(src->vm_policy);
2567 
2568 	if (IS_ERR(pol))
2569 		return PTR_ERR(pol);
2570 	dst->vm_policy = pol;
2571 	return 0;
2572 }
2573 
2574 /*
2575  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2576  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2577  * with the mems_allowed returned by cpuset_mems_allowed().  This
2578  * keeps mempolicies cpuset relative after its cpuset moves.  See
2579  * further kernel/cpuset.c update_nodemask().
2580  *
2581  * current's mempolicy may be rebinded by the other task(the task that changes
2582  * cpuset's mems), so we needn't do rebind work for current task.
2583  */
2584 
2585 /* Slow path of a mempolicy duplicate */
2586 struct mempolicy *__mpol_dup(struct mempolicy *old)
2587 {
2588 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2589 
2590 	if (!new)
2591 		return ERR_PTR(-ENOMEM);
2592 
2593 	/* task's mempolicy is protected by alloc_lock */
2594 	if (old == current->mempolicy) {
2595 		task_lock(current);
2596 		*new = *old;
2597 		task_unlock(current);
2598 	} else
2599 		*new = *old;
2600 
2601 	if (current_cpuset_is_being_rebound()) {
2602 		nodemask_t mems = cpuset_mems_allowed(current);
2603 		mpol_rebind_policy(new, &mems);
2604 	}
2605 	atomic_set(&new->refcnt, 1);
2606 	return new;
2607 }
2608 
2609 /* Slow path of a mempolicy comparison */
2610 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2611 {
2612 	if (!a || !b)
2613 		return false;
2614 	if (a->mode != b->mode)
2615 		return false;
2616 	if (a->flags != b->flags)
2617 		return false;
2618 	if (a->home_node != b->home_node)
2619 		return false;
2620 	if (mpol_store_user_nodemask(a))
2621 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2622 			return false;
2623 
2624 	switch (a->mode) {
2625 	case MPOL_BIND:
2626 	case MPOL_INTERLEAVE:
2627 	case MPOL_PREFERRED:
2628 	case MPOL_PREFERRED_MANY:
2629 	case MPOL_WEIGHTED_INTERLEAVE:
2630 		return !!nodes_equal(a->nodes, b->nodes);
2631 	case MPOL_LOCAL:
2632 		return true;
2633 	default:
2634 		BUG();
2635 		return false;
2636 	}
2637 }
2638 
2639 /*
2640  * Shared memory backing store policy support.
2641  *
2642  * Remember policies even when nobody has shared memory mapped.
2643  * The policies are kept in Red-Black tree linked from the inode.
2644  * They are protected by the sp->lock rwlock, which should be held
2645  * for any accesses to the tree.
2646  */
2647 
2648 /*
2649  * lookup first element intersecting start-end.  Caller holds sp->lock for
2650  * reading or for writing
2651  */
2652 static struct sp_node *sp_lookup(struct shared_policy *sp,
2653 					pgoff_t start, pgoff_t end)
2654 {
2655 	struct rb_node *n = sp->root.rb_node;
2656 
2657 	while (n) {
2658 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2659 
2660 		if (start >= p->end)
2661 			n = n->rb_right;
2662 		else if (end <= p->start)
2663 			n = n->rb_left;
2664 		else
2665 			break;
2666 	}
2667 	if (!n)
2668 		return NULL;
2669 	for (;;) {
2670 		struct sp_node *w = NULL;
2671 		struct rb_node *prev = rb_prev(n);
2672 		if (!prev)
2673 			break;
2674 		w = rb_entry(prev, struct sp_node, nd);
2675 		if (w->end <= start)
2676 			break;
2677 		n = prev;
2678 	}
2679 	return rb_entry(n, struct sp_node, nd);
2680 }
2681 
2682 /*
2683  * Insert a new shared policy into the list.  Caller holds sp->lock for
2684  * writing.
2685  */
2686 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2687 {
2688 	struct rb_node **p = &sp->root.rb_node;
2689 	struct rb_node *parent = NULL;
2690 	struct sp_node *nd;
2691 
2692 	while (*p) {
2693 		parent = *p;
2694 		nd = rb_entry(parent, struct sp_node, nd);
2695 		if (new->start < nd->start)
2696 			p = &(*p)->rb_left;
2697 		else if (new->end > nd->end)
2698 			p = &(*p)->rb_right;
2699 		else
2700 			BUG();
2701 	}
2702 	rb_link_node(&new->nd, parent, p);
2703 	rb_insert_color(&new->nd, &sp->root);
2704 }
2705 
2706 /* Find shared policy intersecting idx */
2707 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2708 						pgoff_t idx)
2709 {
2710 	struct mempolicy *pol = NULL;
2711 	struct sp_node *sn;
2712 
2713 	if (!sp->root.rb_node)
2714 		return NULL;
2715 	read_lock(&sp->lock);
2716 	sn = sp_lookup(sp, idx, idx+1);
2717 	if (sn) {
2718 		mpol_get(sn->policy);
2719 		pol = sn->policy;
2720 	}
2721 	read_unlock(&sp->lock);
2722 	return pol;
2723 }
2724 
2725 static void sp_free(struct sp_node *n)
2726 {
2727 	mpol_put(n->policy);
2728 	kmem_cache_free(sn_cache, n);
2729 }
2730 
2731 /**
2732  * mpol_misplaced - check whether current folio node is valid in policy
2733  *
2734  * @folio: folio to be checked
2735  * @vmf: structure describing the fault
2736  * @addr: virtual address in @vma for shared policy lookup and interleave policy
2737  *
2738  * Lookup current policy node id for vma,addr and "compare to" folio's
2739  * node id.  Policy determination "mimics" alloc_page_vma().
2740  * Called from fault path where we know the vma and faulting address.
2741  *
2742  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2743  * policy, or a suitable node ID to allocate a replacement folio from.
2744  */
2745 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2746 		   unsigned long addr)
2747 {
2748 	struct mempolicy *pol;
2749 	pgoff_t ilx;
2750 	struct zoneref *z;
2751 	int curnid = folio_nid(folio);
2752 	struct vm_area_struct *vma = vmf->vma;
2753 	int thiscpu = raw_smp_processor_id();
2754 	int thisnid = numa_node_id();
2755 	int polnid = NUMA_NO_NODE;
2756 	int ret = NUMA_NO_NODE;
2757 
2758 	/*
2759 	 * Make sure ptl is held so that we don't preempt and we
2760 	 * have a stable smp processor id
2761 	 */
2762 	lockdep_assert_held(vmf->ptl);
2763 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2764 	if (!(pol->flags & MPOL_F_MOF))
2765 		goto out;
2766 
2767 	switch (pol->mode) {
2768 	case MPOL_INTERLEAVE:
2769 		polnid = interleave_nid(pol, ilx);
2770 		break;
2771 
2772 	case MPOL_WEIGHTED_INTERLEAVE:
2773 		polnid = weighted_interleave_nid(pol, ilx);
2774 		break;
2775 
2776 	case MPOL_PREFERRED:
2777 		if (node_isset(curnid, pol->nodes))
2778 			goto out;
2779 		polnid = first_node(pol->nodes);
2780 		break;
2781 
2782 	case MPOL_LOCAL:
2783 		polnid = numa_node_id();
2784 		break;
2785 
2786 	case MPOL_BIND:
2787 	case MPOL_PREFERRED_MANY:
2788 		/*
2789 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2790 		 * policy nodemask we don't allow numa migration to nodes
2791 		 * outside policy nodemask for now. This is done so that if we
2792 		 * want demotion to slow memory to happen, before allocating
2793 		 * from some DRAM node say 'x', we will end up using a
2794 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2795 		 * we should not promote to node 'x' from slow memory node.
2796 		 */
2797 		if (pol->flags & MPOL_F_MORON) {
2798 			/*
2799 			 * Optimize placement among multiple nodes
2800 			 * via NUMA balancing
2801 			 */
2802 			if (node_isset(thisnid, pol->nodes))
2803 				break;
2804 			goto out;
2805 		}
2806 
2807 		/*
2808 		 * use current page if in policy nodemask,
2809 		 * else select nearest allowed node, if any.
2810 		 * If no allowed nodes, use current [!misplaced].
2811 		 */
2812 		if (node_isset(curnid, pol->nodes))
2813 			goto out;
2814 		z = first_zones_zonelist(
2815 				node_zonelist(thisnid, GFP_HIGHUSER),
2816 				gfp_zone(GFP_HIGHUSER),
2817 				&pol->nodes);
2818 		polnid = zonelist_node_idx(z);
2819 		break;
2820 
2821 	default:
2822 		BUG();
2823 	}
2824 
2825 	/* Migrate the folio towards the node whose CPU is referencing it */
2826 	if (pol->flags & MPOL_F_MORON) {
2827 		polnid = thisnid;
2828 
2829 		if (!should_numa_migrate_memory(current, folio, curnid,
2830 						thiscpu))
2831 			goto out;
2832 	}
2833 
2834 	if (curnid != polnid)
2835 		ret = polnid;
2836 out:
2837 	mpol_cond_put(pol);
2838 
2839 	return ret;
2840 }
2841 
2842 /*
2843  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2844  * dropped after task->mempolicy is set to NULL so that any allocation done as
2845  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2846  * policy.
2847  */
2848 void mpol_put_task_policy(struct task_struct *task)
2849 {
2850 	struct mempolicy *pol;
2851 
2852 	task_lock(task);
2853 	pol = task->mempolicy;
2854 	task->mempolicy = NULL;
2855 	task_unlock(task);
2856 	mpol_put(pol);
2857 }
2858 
2859 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2860 {
2861 	rb_erase(&n->nd, &sp->root);
2862 	sp_free(n);
2863 }
2864 
2865 static void sp_node_init(struct sp_node *node, unsigned long start,
2866 			unsigned long end, struct mempolicy *pol)
2867 {
2868 	node->start = start;
2869 	node->end = end;
2870 	node->policy = pol;
2871 }
2872 
2873 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2874 				struct mempolicy *pol)
2875 {
2876 	struct sp_node *n;
2877 	struct mempolicy *newpol;
2878 
2879 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2880 	if (!n)
2881 		return NULL;
2882 
2883 	newpol = mpol_dup(pol);
2884 	if (IS_ERR(newpol)) {
2885 		kmem_cache_free(sn_cache, n);
2886 		return NULL;
2887 	}
2888 	newpol->flags |= MPOL_F_SHARED;
2889 	sp_node_init(n, start, end, newpol);
2890 
2891 	return n;
2892 }
2893 
2894 /* Replace a policy range. */
2895 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2896 				 pgoff_t end, struct sp_node *new)
2897 {
2898 	struct sp_node *n;
2899 	struct sp_node *n_new = NULL;
2900 	struct mempolicy *mpol_new = NULL;
2901 	int ret = 0;
2902 
2903 restart:
2904 	write_lock(&sp->lock);
2905 	n = sp_lookup(sp, start, end);
2906 	/* Take care of old policies in the same range. */
2907 	while (n && n->start < end) {
2908 		struct rb_node *next = rb_next(&n->nd);
2909 		if (n->start >= start) {
2910 			if (n->end <= end)
2911 				sp_delete(sp, n);
2912 			else
2913 				n->start = end;
2914 		} else {
2915 			/* Old policy spanning whole new range. */
2916 			if (n->end > end) {
2917 				if (!n_new)
2918 					goto alloc_new;
2919 
2920 				*mpol_new = *n->policy;
2921 				atomic_set(&mpol_new->refcnt, 1);
2922 				sp_node_init(n_new, end, n->end, mpol_new);
2923 				n->end = start;
2924 				sp_insert(sp, n_new);
2925 				n_new = NULL;
2926 				mpol_new = NULL;
2927 				break;
2928 			} else
2929 				n->end = start;
2930 		}
2931 		if (!next)
2932 			break;
2933 		n = rb_entry(next, struct sp_node, nd);
2934 	}
2935 	if (new)
2936 		sp_insert(sp, new);
2937 	write_unlock(&sp->lock);
2938 	ret = 0;
2939 
2940 err_out:
2941 	if (mpol_new)
2942 		mpol_put(mpol_new);
2943 	if (n_new)
2944 		kmem_cache_free(sn_cache, n_new);
2945 
2946 	return ret;
2947 
2948 alloc_new:
2949 	write_unlock(&sp->lock);
2950 	ret = -ENOMEM;
2951 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2952 	if (!n_new)
2953 		goto err_out;
2954 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2955 	if (!mpol_new)
2956 		goto err_out;
2957 	atomic_set(&mpol_new->refcnt, 1);
2958 	goto restart;
2959 }
2960 
2961 /**
2962  * mpol_shared_policy_init - initialize shared policy for inode
2963  * @sp: pointer to inode shared policy
2964  * @mpol:  struct mempolicy to install
2965  *
2966  * Install non-NULL @mpol in inode's shared policy rb-tree.
2967  * On entry, the current task has a reference on a non-NULL @mpol.
2968  * This must be released on exit.
2969  * This is called at get_inode() calls and we can use GFP_KERNEL.
2970  */
2971 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2972 {
2973 	int ret;
2974 
2975 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2976 	rwlock_init(&sp->lock);
2977 
2978 	if (mpol) {
2979 		struct sp_node *sn;
2980 		struct mempolicy *npol;
2981 		NODEMASK_SCRATCH(scratch);
2982 
2983 		if (!scratch)
2984 			goto put_mpol;
2985 
2986 		/* contextualize the tmpfs mount point mempolicy to this file */
2987 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2988 		if (IS_ERR(npol))
2989 			goto free_scratch; /* no valid nodemask intersection */
2990 
2991 		task_lock(current);
2992 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2993 		task_unlock(current);
2994 		if (ret)
2995 			goto put_npol;
2996 
2997 		/* alloc node covering entire file; adds ref to file's npol */
2998 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2999 		if (sn)
3000 			sp_insert(sp, sn);
3001 put_npol:
3002 		mpol_put(npol);	/* drop initial ref on file's npol */
3003 free_scratch:
3004 		NODEMASK_SCRATCH_FREE(scratch);
3005 put_mpol:
3006 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
3007 	}
3008 }
3009 
3010 int mpol_set_shared_policy(struct shared_policy *sp,
3011 			struct vm_area_struct *vma, struct mempolicy *pol)
3012 {
3013 	int err;
3014 	struct sp_node *new = NULL;
3015 	unsigned long sz = vma_pages(vma);
3016 
3017 	if (pol) {
3018 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3019 		if (!new)
3020 			return -ENOMEM;
3021 	}
3022 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3023 	if (err && new)
3024 		sp_free(new);
3025 	return err;
3026 }
3027 
3028 /* Free a backing policy store on inode delete. */
3029 void mpol_free_shared_policy(struct shared_policy *sp)
3030 {
3031 	struct sp_node *n;
3032 	struct rb_node *next;
3033 
3034 	if (!sp->root.rb_node)
3035 		return;
3036 	write_lock(&sp->lock);
3037 	next = rb_first(&sp->root);
3038 	while (next) {
3039 		n = rb_entry(next, struct sp_node, nd);
3040 		next = rb_next(&n->nd);
3041 		sp_delete(sp, n);
3042 	}
3043 	write_unlock(&sp->lock);
3044 }
3045 
3046 #ifdef CONFIG_NUMA_BALANCING
3047 static int __initdata numabalancing_override;
3048 
3049 static void __init check_numabalancing_enable(void)
3050 {
3051 	bool numabalancing_default = false;
3052 
3053 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3054 		numabalancing_default = true;
3055 
3056 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3057 	if (numabalancing_override)
3058 		set_numabalancing_state(numabalancing_override == 1);
3059 
3060 	if (num_online_nodes() > 1 && !numabalancing_override) {
3061 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3062 			numabalancing_default ? "Enabling" : "Disabling");
3063 		set_numabalancing_state(numabalancing_default);
3064 	}
3065 }
3066 
3067 static int __init setup_numabalancing(char *str)
3068 {
3069 	int ret = 0;
3070 	if (!str)
3071 		goto out;
3072 
3073 	if (!strcmp(str, "enable")) {
3074 		numabalancing_override = 1;
3075 		ret = 1;
3076 	} else if (!strcmp(str, "disable")) {
3077 		numabalancing_override = -1;
3078 		ret = 1;
3079 	}
3080 out:
3081 	if (!ret)
3082 		pr_warn("Unable to parse numa_balancing=\n");
3083 
3084 	return ret;
3085 }
3086 __setup("numa_balancing=", setup_numabalancing);
3087 #else
3088 static inline void __init check_numabalancing_enable(void)
3089 {
3090 }
3091 #endif /* CONFIG_NUMA_BALANCING */
3092 
3093 void __init numa_policy_init(void)
3094 {
3095 	nodemask_t interleave_nodes;
3096 	unsigned long largest = 0;
3097 	int nid, prefer = 0;
3098 
3099 	policy_cache = kmem_cache_create("numa_policy",
3100 					 sizeof(struct mempolicy),
3101 					 0, SLAB_PANIC, NULL);
3102 
3103 	sn_cache = kmem_cache_create("shared_policy_node",
3104 				     sizeof(struct sp_node),
3105 				     0, SLAB_PANIC, NULL);
3106 
3107 	for_each_node(nid) {
3108 		preferred_node_policy[nid] = (struct mempolicy) {
3109 			.refcnt = ATOMIC_INIT(1),
3110 			.mode = MPOL_PREFERRED,
3111 			.flags = MPOL_F_MOF | MPOL_F_MORON,
3112 			.nodes = nodemask_of_node(nid),
3113 		};
3114 	}
3115 
3116 	/*
3117 	 * Set interleaving policy for system init. Interleaving is only
3118 	 * enabled across suitably sized nodes (default is >= 16MB), or
3119 	 * fall back to the largest node if they're all smaller.
3120 	 */
3121 	nodes_clear(interleave_nodes);
3122 	for_each_node_state(nid, N_MEMORY) {
3123 		unsigned long total_pages = node_present_pages(nid);
3124 
3125 		/* Preserve the largest node */
3126 		if (largest < total_pages) {
3127 			largest = total_pages;
3128 			prefer = nid;
3129 		}
3130 
3131 		/* Interleave this node? */
3132 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3133 			node_set(nid, interleave_nodes);
3134 	}
3135 
3136 	/* All too small, use the largest */
3137 	if (unlikely(nodes_empty(interleave_nodes)))
3138 		node_set(prefer, interleave_nodes);
3139 
3140 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3141 		pr_err("%s: interleaving failed\n", __func__);
3142 
3143 	check_numabalancing_enable();
3144 }
3145 
3146 /* Reset policy of current process to default */
3147 void numa_default_policy(void)
3148 {
3149 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3150 }
3151 
3152 /*
3153  * Parse and format mempolicy from/to strings
3154  */
3155 static const char * const policy_modes[] =
3156 {
3157 	[MPOL_DEFAULT]    = "default",
3158 	[MPOL_PREFERRED]  = "prefer",
3159 	[MPOL_BIND]       = "bind",
3160 	[MPOL_INTERLEAVE] = "interleave",
3161 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3162 	[MPOL_LOCAL]      = "local",
3163 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3164 };
3165 
3166 #ifdef CONFIG_TMPFS
3167 /**
3168  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3169  * @str:  string containing mempolicy to parse
3170  * @mpol:  pointer to struct mempolicy pointer, returned on success.
3171  *
3172  * Format of input:
3173  *	<mode>[=<flags>][:<nodelist>]
3174  *
3175  * Return: %0 on success, else %1
3176  */
3177 int mpol_parse_str(char *str, struct mempolicy **mpol)
3178 {
3179 	struct mempolicy *new = NULL;
3180 	unsigned short mode_flags;
3181 	nodemask_t nodes;
3182 	char *nodelist = strchr(str, ':');
3183 	char *flags = strchr(str, '=');
3184 	int err = 1, mode;
3185 
3186 	if (flags)
3187 		*flags++ = '\0';	/* terminate mode string */
3188 
3189 	if (nodelist) {
3190 		/* NUL-terminate mode or flags string */
3191 		*nodelist++ = '\0';
3192 		if (nodelist_parse(nodelist, nodes))
3193 			goto out;
3194 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3195 			goto out;
3196 	} else
3197 		nodes_clear(nodes);
3198 
3199 	mode = match_string(policy_modes, MPOL_MAX, str);
3200 	if (mode < 0)
3201 		goto out;
3202 
3203 	switch (mode) {
3204 	case MPOL_PREFERRED:
3205 		/*
3206 		 * Insist on a nodelist of one node only, although later
3207 		 * we use first_node(nodes) to grab a single node, so here
3208 		 * nodelist (or nodes) cannot be empty.
3209 		 */
3210 		if (nodelist) {
3211 			char *rest = nodelist;
3212 			while (isdigit(*rest))
3213 				rest++;
3214 			if (*rest)
3215 				goto out;
3216 			if (nodes_empty(nodes))
3217 				goto out;
3218 		}
3219 		break;
3220 	case MPOL_INTERLEAVE:
3221 	case MPOL_WEIGHTED_INTERLEAVE:
3222 		/*
3223 		 * Default to online nodes with memory if no nodelist
3224 		 */
3225 		if (!nodelist)
3226 			nodes = node_states[N_MEMORY];
3227 		break;
3228 	case MPOL_LOCAL:
3229 		/*
3230 		 * Don't allow a nodelist;  mpol_new() checks flags
3231 		 */
3232 		if (nodelist)
3233 			goto out;
3234 		break;
3235 	case MPOL_DEFAULT:
3236 		/*
3237 		 * Insist on a empty nodelist
3238 		 */
3239 		if (!nodelist)
3240 			err = 0;
3241 		goto out;
3242 	case MPOL_PREFERRED_MANY:
3243 	case MPOL_BIND:
3244 		/*
3245 		 * Insist on a nodelist
3246 		 */
3247 		if (!nodelist)
3248 			goto out;
3249 	}
3250 
3251 	mode_flags = 0;
3252 	if (flags) {
3253 		/*
3254 		 * Currently, we only support two mutually exclusive
3255 		 * mode flags.
3256 		 */
3257 		if (!strcmp(flags, "static"))
3258 			mode_flags |= MPOL_F_STATIC_NODES;
3259 		else if (!strcmp(flags, "relative"))
3260 			mode_flags |= MPOL_F_RELATIVE_NODES;
3261 		else
3262 			goto out;
3263 	}
3264 
3265 	new = mpol_new(mode, mode_flags, &nodes);
3266 	if (IS_ERR(new))
3267 		goto out;
3268 
3269 	/*
3270 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3271 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3272 	 */
3273 	if (mode != MPOL_PREFERRED) {
3274 		new->nodes = nodes;
3275 	} else if (nodelist) {
3276 		nodes_clear(new->nodes);
3277 		node_set(first_node(nodes), new->nodes);
3278 	} else {
3279 		new->mode = MPOL_LOCAL;
3280 	}
3281 
3282 	/*
3283 	 * Save nodes for contextualization: this will be used to "clone"
3284 	 * the mempolicy in a specific context [cpuset] at a later time.
3285 	 */
3286 	new->w.user_nodemask = nodes;
3287 
3288 	err = 0;
3289 
3290 out:
3291 	/* Restore string for error message */
3292 	if (nodelist)
3293 		*--nodelist = ':';
3294 	if (flags)
3295 		*--flags = '=';
3296 	if (!err)
3297 		*mpol = new;
3298 	return err;
3299 }
3300 #endif /* CONFIG_TMPFS */
3301 
3302 /**
3303  * mpol_to_str - format a mempolicy structure for printing
3304  * @buffer:  to contain formatted mempolicy string
3305  * @maxlen:  length of @buffer
3306  * @pol:  pointer to mempolicy to be formatted
3307  *
3308  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3309  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3310  * interleave", plus the longest flag flags, "relative|balancing", and to
3311  * display at least a few node ids.
3312  */
3313 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3314 {
3315 	char *p = buffer;
3316 	nodemask_t nodes = NODE_MASK_NONE;
3317 	unsigned short mode = MPOL_DEFAULT;
3318 	unsigned short flags = 0;
3319 
3320 	if (pol &&
3321 	    pol != &default_policy &&
3322 	    !(pol >= &preferred_node_policy[0] &&
3323 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3324 		mode = pol->mode;
3325 		flags = pol->flags;
3326 	}
3327 
3328 	switch (mode) {
3329 	case MPOL_DEFAULT:
3330 	case MPOL_LOCAL:
3331 		break;
3332 	case MPOL_PREFERRED:
3333 	case MPOL_PREFERRED_MANY:
3334 	case MPOL_BIND:
3335 	case MPOL_INTERLEAVE:
3336 	case MPOL_WEIGHTED_INTERLEAVE:
3337 		nodes = pol->nodes;
3338 		break;
3339 	default:
3340 		WARN_ON_ONCE(1);
3341 		snprintf(p, maxlen, "unknown");
3342 		return;
3343 	}
3344 
3345 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3346 
3347 	if (flags & MPOL_MODE_FLAGS) {
3348 		p += snprintf(p, buffer + maxlen - p, "=");
3349 
3350 		/*
3351 		 * Static and relative are mutually exclusive.
3352 		 */
3353 		if (flags & MPOL_F_STATIC_NODES)
3354 			p += snprintf(p, buffer + maxlen - p, "static");
3355 		else if (flags & MPOL_F_RELATIVE_NODES)
3356 			p += snprintf(p, buffer + maxlen - p, "relative");
3357 
3358 		if (flags & MPOL_F_NUMA_BALANCING) {
3359 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3360 				p += snprintf(p, buffer + maxlen - p, "|");
3361 			p += snprintf(p, buffer + maxlen - p, "balancing");
3362 		}
3363 	}
3364 
3365 	if (!nodes_empty(nodes))
3366 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3367 			       nodemask_pr_args(&nodes));
3368 }
3369 
3370 #ifdef CONFIG_SYSFS
3371 struct iw_node_attr {
3372 	struct kobj_attribute kobj_attr;
3373 	int nid;
3374 };
3375 
3376 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3377 			 char *buf)
3378 {
3379 	struct iw_node_attr *node_attr;
3380 	u8 weight;
3381 
3382 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3383 	weight = get_il_weight(node_attr->nid);
3384 	return sysfs_emit(buf, "%d\n", weight);
3385 }
3386 
3387 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3388 			  const char *buf, size_t count)
3389 {
3390 	struct iw_node_attr *node_attr;
3391 	u8 *new;
3392 	u8 *old;
3393 	u8 weight = 0;
3394 
3395 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3396 	if (count == 0 || sysfs_streq(buf, ""))
3397 		weight = 0;
3398 	else if (kstrtou8(buf, 0, &weight))
3399 		return -EINVAL;
3400 
3401 	new = kzalloc(nr_node_ids, GFP_KERNEL);
3402 	if (!new)
3403 		return -ENOMEM;
3404 
3405 	mutex_lock(&iw_table_lock);
3406 	old = rcu_dereference_protected(iw_table,
3407 					lockdep_is_held(&iw_table_lock));
3408 	if (old)
3409 		memcpy(new, old, nr_node_ids);
3410 	new[node_attr->nid] = weight;
3411 	rcu_assign_pointer(iw_table, new);
3412 	mutex_unlock(&iw_table_lock);
3413 	synchronize_rcu();
3414 	kfree(old);
3415 	return count;
3416 }
3417 
3418 static struct iw_node_attr **node_attrs;
3419 
3420 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3421 				  struct kobject *parent)
3422 {
3423 	if (!node_attr)
3424 		return;
3425 	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3426 	kfree(node_attr->kobj_attr.attr.name);
3427 	kfree(node_attr);
3428 }
3429 
3430 static void sysfs_wi_release(struct kobject *wi_kobj)
3431 {
3432 	int i;
3433 
3434 	for (i = 0; i < nr_node_ids; i++)
3435 		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3436 	kobject_put(wi_kobj);
3437 }
3438 
3439 static const struct kobj_type wi_ktype = {
3440 	.sysfs_ops = &kobj_sysfs_ops,
3441 	.release = sysfs_wi_release,
3442 };
3443 
3444 static int add_weight_node(int nid, struct kobject *wi_kobj)
3445 {
3446 	struct iw_node_attr *node_attr;
3447 	char *name;
3448 
3449 	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3450 	if (!node_attr)
3451 		return -ENOMEM;
3452 
3453 	name = kasprintf(GFP_KERNEL, "node%d", nid);
3454 	if (!name) {
3455 		kfree(node_attr);
3456 		return -ENOMEM;
3457 	}
3458 
3459 	sysfs_attr_init(&node_attr->kobj_attr.attr);
3460 	node_attr->kobj_attr.attr.name = name;
3461 	node_attr->kobj_attr.attr.mode = 0644;
3462 	node_attr->kobj_attr.show = node_show;
3463 	node_attr->kobj_attr.store = node_store;
3464 	node_attr->nid = nid;
3465 
3466 	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3467 		kfree(node_attr->kobj_attr.attr.name);
3468 		kfree(node_attr);
3469 		pr_err("failed to add attribute to weighted_interleave\n");
3470 		return -ENOMEM;
3471 	}
3472 
3473 	node_attrs[nid] = node_attr;
3474 	return 0;
3475 }
3476 
3477 static int add_weighted_interleave_group(struct kobject *root_kobj)
3478 {
3479 	struct kobject *wi_kobj;
3480 	int nid, err;
3481 
3482 	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3483 	if (!wi_kobj)
3484 		return -ENOMEM;
3485 
3486 	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3487 				   "weighted_interleave");
3488 	if (err) {
3489 		kfree(wi_kobj);
3490 		return err;
3491 	}
3492 
3493 	for_each_node_state(nid, N_POSSIBLE) {
3494 		err = add_weight_node(nid, wi_kobj);
3495 		if (err) {
3496 			pr_err("failed to add sysfs [node%d]\n", nid);
3497 			break;
3498 		}
3499 	}
3500 	if (err)
3501 		kobject_put(wi_kobj);
3502 	return 0;
3503 }
3504 
3505 static void mempolicy_kobj_release(struct kobject *kobj)
3506 {
3507 	u8 *old;
3508 
3509 	mutex_lock(&iw_table_lock);
3510 	old = rcu_dereference_protected(iw_table,
3511 					lockdep_is_held(&iw_table_lock));
3512 	rcu_assign_pointer(iw_table, NULL);
3513 	mutex_unlock(&iw_table_lock);
3514 	synchronize_rcu();
3515 	kfree(old);
3516 	kfree(node_attrs);
3517 	kfree(kobj);
3518 }
3519 
3520 static const struct kobj_type mempolicy_ktype = {
3521 	.release = mempolicy_kobj_release
3522 };
3523 
3524 static int __init mempolicy_sysfs_init(void)
3525 {
3526 	int err;
3527 	static struct kobject *mempolicy_kobj;
3528 
3529 	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3530 	if (!mempolicy_kobj) {
3531 		err = -ENOMEM;
3532 		goto err_out;
3533 	}
3534 
3535 	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3536 			     GFP_KERNEL);
3537 	if (!node_attrs) {
3538 		err = -ENOMEM;
3539 		goto mempol_out;
3540 	}
3541 
3542 	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3543 				   "mempolicy");
3544 	if (err)
3545 		goto node_out;
3546 
3547 	err = add_weighted_interleave_group(mempolicy_kobj);
3548 	if (err) {
3549 		pr_err("mempolicy sysfs structure failed to initialize\n");
3550 		kobject_put(mempolicy_kobj);
3551 		return err;
3552 	}
3553 
3554 	return err;
3555 node_out:
3556 	kfree(node_attrs);
3557 mempol_out:
3558 	kfree(mempolicy_kobj);
3559 err_out:
3560 	pr_err("failed to add mempolicy kobject to the system\n");
3561 	return err;
3562 }
3563 
3564 late_initcall(mempolicy_sysfs_init);
3565 #endif /* CONFIG_SYSFS */
3566