xref: /linux/mm/mempolicy.c (revision a06835227280436c1aae021a3f43d3abfcba3835)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma) {
388 		vma_start_write(vma);
389 		mpol_rebind_policy(vma->vm_policy, new);
390 	}
391 	mmap_write_unlock(mm);
392 }
393 
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
395 	[MPOL_DEFAULT] = {
396 		.rebind = mpol_rebind_default,
397 	},
398 	[MPOL_INTERLEAVE] = {
399 		.create = mpol_new_nodemask,
400 		.rebind = mpol_rebind_nodemask,
401 	},
402 	[MPOL_PREFERRED] = {
403 		.create = mpol_new_preferred,
404 		.rebind = mpol_rebind_preferred,
405 	},
406 	[MPOL_BIND] = {
407 		.create = mpol_new_nodemask,
408 		.rebind = mpol_rebind_nodemask,
409 	},
410 	[MPOL_LOCAL] = {
411 		.rebind = mpol_rebind_default,
412 	},
413 	[MPOL_PREFERRED_MANY] = {
414 		.create = mpol_new_nodemask,
415 		.rebind = mpol_rebind_preferred,
416 	},
417 };
418 
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 				unsigned long flags);
421 
422 struct queue_pages {
423 	struct list_head *pagelist;
424 	unsigned long flags;
425 	nodemask_t *nmask;
426 	unsigned long start;
427 	unsigned long end;
428 	struct vm_area_struct *first;
429 };
430 
431 /*
432  * Check if the folio's nid is in qp->nmask.
433  *
434  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
435  * in the invert of qp->nmask.
436  */
437 static inline bool queue_folio_required(struct folio *folio,
438 					struct queue_pages *qp)
439 {
440 	int nid = folio_nid(folio);
441 	unsigned long flags = qp->flags;
442 
443 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
444 }
445 
446 /*
447  * queue_folios_pmd() has three possible return values:
448  * 0 - folios are placed on the right node or queued successfully, or
449  *     special page is met, i.e. huge zero page.
450  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
451  *     specified.
452  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453  *        existing folio was already on a node that does not follow the
454  *        policy.
455  */
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 				unsigned long end, struct mm_walk *walk)
458 	__releases(ptl)
459 {
460 	int ret = 0;
461 	struct folio *folio;
462 	struct queue_pages *qp = walk->private;
463 	unsigned long flags;
464 
465 	if (unlikely(is_pmd_migration_entry(*pmd))) {
466 		ret = -EIO;
467 		goto unlock;
468 	}
469 	folio = pfn_folio(pmd_pfn(*pmd));
470 	if (is_huge_zero_page(&folio->page)) {
471 		walk->action = ACTION_CONTINUE;
472 		goto unlock;
473 	}
474 	if (!queue_folio_required(folio, qp))
475 		goto unlock;
476 
477 	flags = qp->flags;
478 	/* go to folio migration */
479 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 		if (!vma_migratable(walk->vma) ||
481 		    migrate_folio_add(folio, qp->pagelist, flags)) {
482 			ret = 1;
483 			goto unlock;
484 		}
485 	} else
486 		ret = -EIO;
487 unlock:
488 	spin_unlock(ptl);
489 	return ret;
490 }
491 
492 /*
493  * Scan through pages checking if pages follow certain conditions,
494  * and move them to the pagelist if they do.
495  *
496  * queue_folios_pte_range() has three possible return values:
497  * 0 - folios are placed on the right node or queued successfully, or
498  *     special page is met, i.e. zero page.
499  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
500  *     specified.
501  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
502  *        on a node that does not follow the policy.
503  */
504 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
505 			unsigned long end, struct mm_walk *walk)
506 {
507 	struct vm_area_struct *vma = walk->vma;
508 	struct folio *folio;
509 	struct queue_pages *qp = walk->private;
510 	unsigned long flags = qp->flags;
511 	bool has_unmovable = false;
512 	pte_t *pte, *mapped_pte;
513 	pte_t ptent;
514 	spinlock_t *ptl;
515 
516 	ptl = pmd_trans_huge_lock(pmd, vma);
517 	if (ptl)
518 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	if (!pte) {
522 		walk->action = ACTION_AGAIN;
523 		return 0;
524 	}
525 	for (; addr != end; pte++, addr += PAGE_SIZE) {
526 		ptent = ptep_get(pte);
527 		if (!pte_present(ptent))
528 			continue;
529 		folio = vm_normal_folio(vma, addr, ptent);
530 		if (!folio || folio_is_zone_device(folio))
531 			continue;
532 		/*
533 		 * vm_normal_folio() filters out zero pages, but there might
534 		 * still be reserved folios to skip, perhaps in a VDSO.
535 		 */
536 		if (folio_test_reserved(folio))
537 			continue;
538 		if (!queue_folio_required(folio, qp))
539 			continue;
540 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
541 			/* MPOL_MF_STRICT must be specified if we get here */
542 			if (!vma_migratable(vma)) {
543 				has_unmovable = true;
544 				break;
545 			}
546 
547 			/*
548 			 * Do not abort immediately since there may be
549 			 * temporary off LRU pages in the range.  Still
550 			 * need migrate other LRU pages.
551 			 */
552 			if (migrate_folio_add(folio, qp->pagelist, flags))
553 				has_unmovable = true;
554 		} else
555 			break;
556 	}
557 	pte_unmap_unlock(mapped_pte, ptl);
558 	cond_resched();
559 
560 	if (has_unmovable)
561 		return 1;
562 
563 	return addr != end ? -EIO : 0;
564 }
565 
566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
567 			       unsigned long addr, unsigned long end,
568 			       struct mm_walk *walk)
569 {
570 	int ret = 0;
571 #ifdef CONFIG_HUGETLB_PAGE
572 	struct queue_pages *qp = walk->private;
573 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
574 	struct folio *folio;
575 	spinlock_t *ptl;
576 	pte_t entry;
577 
578 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
579 	entry = huge_ptep_get(pte);
580 	if (!pte_present(entry))
581 		goto unlock;
582 	folio = pfn_folio(pte_pfn(entry));
583 	if (!queue_folio_required(folio, qp))
584 		goto unlock;
585 
586 	if (flags == MPOL_MF_STRICT) {
587 		/*
588 		 * STRICT alone means only detecting misplaced folio and no
589 		 * need to further check other vma.
590 		 */
591 		ret = -EIO;
592 		goto unlock;
593 	}
594 
595 	if (!vma_migratable(walk->vma)) {
596 		/*
597 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
598 		 * stopped walking current vma.
599 		 * Detecting misplaced folio but allow migrating folios which
600 		 * have been queued.
601 		 */
602 		ret = 1;
603 		goto unlock;
604 	}
605 
606 	/*
607 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
608 	 * is shared it is likely not worth migrating.
609 	 *
610 	 * To check if the folio is shared, ideally we want to make sure
611 	 * every page is mapped to the same process. Doing that is very
612 	 * expensive, so check the estimated mapcount of the folio instead.
613 	 */
614 	if (flags & (MPOL_MF_MOVE_ALL) ||
615 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
616 	     !hugetlb_pmd_shared(pte))) {
617 		if (!isolate_hugetlb(folio, qp->pagelist) &&
618 			(flags & MPOL_MF_STRICT))
619 			/*
620 			 * Failed to isolate folio but allow migrating pages
621 			 * which have been queued.
622 			 */
623 			ret = 1;
624 	}
625 unlock:
626 	spin_unlock(ptl);
627 #else
628 	BUG();
629 #endif
630 	return ret;
631 }
632 
633 #ifdef CONFIG_NUMA_BALANCING
634 /*
635  * This is used to mark a range of virtual addresses to be inaccessible.
636  * These are later cleared by a NUMA hinting fault. Depending on these
637  * faults, pages may be migrated for better NUMA placement.
638  *
639  * This is assuming that NUMA faults are handled using PROT_NONE. If
640  * an architecture makes a different choice, it will need further
641  * changes to the core.
642  */
643 unsigned long change_prot_numa(struct vm_area_struct *vma,
644 			unsigned long addr, unsigned long end)
645 {
646 	struct mmu_gather tlb;
647 	long nr_updated;
648 
649 	tlb_gather_mmu(&tlb, vma->vm_mm);
650 
651 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
652 	if (nr_updated > 0)
653 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
654 
655 	tlb_finish_mmu(&tlb);
656 
657 	return nr_updated;
658 }
659 #else
660 static unsigned long change_prot_numa(struct vm_area_struct *vma,
661 			unsigned long addr, unsigned long end)
662 {
663 	return 0;
664 }
665 #endif /* CONFIG_NUMA_BALANCING */
666 
667 static int queue_pages_test_walk(unsigned long start, unsigned long end,
668 				struct mm_walk *walk)
669 {
670 	struct vm_area_struct *next, *vma = walk->vma;
671 	struct queue_pages *qp = walk->private;
672 	unsigned long endvma = vma->vm_end;
673 	unsigned long flags = qp->flags;
674 
675 	/* range check first */
676 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
677 
678 	if (!qp->first) {
679 		qp->first = vma;
680 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
681 			(qp->start < vma->vm_start))
682 			/* hole at head side of range */
683 			return -EFAULT;
684 	}
685 	next = find_vma(vma->vm_mm, vma->vm_end);
686 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
687 		((vma->vm_end < qp->end) &&
688 		(!next || vma->vm_end < next->vm_start)))
689 		/* hole at middle or tail of range */
690 		return -EFAULT;
691 
692 	/*
693 	 * Need check MPOL_MF_STRICT to return -EIO if possible
694 	 * regardless of vma_migratable
695 	 */
696 	if (!vma_migratable(vma) &&
697 	    !(flags & MPOL_MF_STRICT))
698 		return 1;
699 
700 	if (endvma > end)
701 		endvma = end;
702 
703 	if (flags & MPOL_MF_LAZY) {
704 		/* Similar to task_numa_work, skip inaccessible VMAs */
705 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
706 			!(vma->vm_flags & VM_MIXEDMAP))
707 			change_prot_numa(vma, start, endvma);
708 		return 1;
709 	}
710 
711 	/* queue pages from current vma */
712 	if (flags & MPOL_MF_VALID)
713 		return 0;
714 	return 1;
715 }
716 
717 static const struct mm_walk_ops queue_pages_walk_ops = {
718 	.hugetlb_entry		= queue_folios_hugetlb,
719 	.pmd_entry		= queue_folios_pte_range,
720 	.test_walk		= queue_pages_test_walk,
721 	.walk_lock		= PGWALK_RDLOCK,
722 };
723 
724 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
725 	.hugetlb_entry		= queue_folios_hugetlb,
726 	.pmd_entry		= queue_folios_pte_range,
727 	.test_walk		= queue_pages_test_walk,
728 	.walk_lock		= PGWALK_WRLOCK,
729 };
730 
731 /*
732  * Walk through page tables and collect pages to be migrated.
733  *
734  * If pages found in a given range are on a set of nodes (determined by
735  * @nodes and @flags,) it's isolated and queued to the pagelist which is
736  * passed via @private.
737  *
738  * queue_pages_range() has three possible return values:
739  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
740  *     specified.
741  * 0 - queue pages successfully or no misplaced page.
742  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
743  *         memory range specified by nodemask and maxnode points outside
744  *         your accessible address space (-EFAULT)
745  */
746 static int
747 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
748 		nodemask_t *nodes, unsigned long flags,
749 		struct list_head *pagelist, bool lock_vma)
750 {
751 	int err;
752 	struct queue_pages qp = {
753 		.pagelist = pagelist,
754 		.flags = flags,
755 		.nmask = nodes,
756 		.start = start,
757 		.end = end,
758 		.first = NULL,
759 	};
760 	const struct mm_walk_ops *ops = lock_vma ?
761 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
762 
763 	err = walk_page_range(mm, start, end, ops, &qp);
764 
765 	if (!qp.first)
766 		/* whole range in hole */
767 		err = -EFAULT;
768 
769 	return err;
770 }
771 
772 /*
773  * Apply policy to a single VMA
774  * This must be called with the mmap_lock held for writing.
775  */
776 static int vma_replace_policy(struct vm_area_struct *vma,
777 						struct mempolicy *pol)
778 {
779 	int err;
780 	struct mempolicy *old;
781 	struct mempolicy *new;
782 
783 	vma_assert_write_locked(vma);
784 
785 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
786 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
787 		 vma->vm_ops, vma->vm_file,
788 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
789 
790 	new = mpol_dup(pol);
791 	if (IS_ERR(new))
792 		return PTR_ERR(new);
793 
794 	if (vma->vm_ops && vma->vm_ops->set_policy) {
795 		err = vma->vm_ops->set_policy(vma, new);
796 		if (err)
797 			goto err_out;
798 	}
799 
800 	old = vma->vm_policy;
801 	vma->vm_policy = new; /* protected by mmap_lock */
802 	mpol_put(old);
803 
804 	return 0;
805  err_out:
806 	mpol_put(new);
807 	return err;
808 }
809 
810 /* Split or merge the VMA (if required) and apply the new policy */
811 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
812 		struct vm_area_struct **prev, unsigned long start,
813 		unsigned long end, struct mempolicy *new_pol)
814 {
815 	struct vm_area_struct *merged;
816 	unsigned long vmstart, vmend;
817 	pgoff_t pgoff;
818 	int err;
819 
820 	vmend = min(end, vma->vm_end);
821 	if (start > vma->vm_start) {
822 		*prev = vma;
823 		vmstart = start;
824 	} else {
825 		vmstart = vma->vm_start;
826 	}
827 
828 	if (mpol_equal(vma_policy(vma), new_pol)) {
829 		*prev = vma;
830 		return 0;
831 	}
832 
833 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
834 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
835 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
836 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
837 	if (merged) {
838 		*prev = merged;
839 		return vma_replace_policy(merged, new_pol);
840 	}
841 
842 	if (vma->vm_start != vmstart) {
843 		err = split_vma(vmi, vma, vmstart, 1);
844 		if (err)
845 			return err;
846 	}
847 
848 	if (vma->vm_end != vmend) {
849 		err = split_vma(vmi, vma, vmend, 0);
850 		if (err)
851 			return err;
852 	}
853 
854 	*prev = vma;
855 	return vma_replace_policy(vma, new_pol);
856 }
857 
858 /* Set the process memory policy */
859 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
860 			     nodemask_t *nodes)
861 {
862 	struct mempolicy *new, *old;
863 	NODEMASK_SCRATCH(scratch);
864 	int ret;
865 
866 	if (!scratch)
867 		return -ENOMEM;
868 
869 	new = mpol_new(mode, flags, nodes);
870 	if (IS_ERR(new)) {
871 		ret = PTR_ERR(new);
872 		goto out;
873 	}
874 
875 	task_lock(current);
876 	ret = mpol_set_nodemask(new, nodes, scratch);
877 	if (ret) {
878 		task_unlock(current);
879 		mpol_put(new);
880 		goto out;
881 	}
882 
883 	old = current->mempolicy;
884 	current->mempolicy = new;
885 	if (new && new->mode == MPOL_INTERLEAVE)
886 		current->il_prev = MAX_NUMNODES-1;
887 	task_unlock(current);
888 	mpol_put(old);
889 	ret = 0;
890 out:
891 	NODEMASK_SCRATCH_FREE(scratch);
892 	return ret;
893 }
894 
895 /*
896  * Return nodemask for policy for get_mempolicy() query
897  *
898  * Called with task's alloc_lock held
899  */
900 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
901 {
902 	nodes_clear(*nodes);
903 	if (p == &default_policy)
904 		return;
905 
906 	switch (p->mode) {
907 	case MPOL_BIND:
908 	case MPOL_INTERLEAVE:
909 	case MPOL_PREFERRED:
910 	case MPOL_PREFERRED_MANY:
911 		*nodes = p->nodes;
912 		break;
913 	case MPOL_LOCAL:
914 		/* return empty node mask for local allocation */
915 		break;
916 	default:
917 		BUG();
918 	}
919 }
920 
921 static int lookup_node(struct mm_struct *mm, unsigned long addr)
922 {
923 	struct page *p = NULL;
924 	int ret;
925 
926 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
927 	if (ret > 0) {
928 		ret = page_to_nid(p);
929 		put_page(p);
930 	}
931 	return ret;
932 }
933 
934 /* Retrieve NUMA policy */
935 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
936 			     unsigned long addr, unsigned long flags)
937 {
938 	int err;
939 	struct mm_struct *mm = current->mm;
940 	struct vm_area_struct *vma = NULL;
941 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
942 
943 	if (flags &
944 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
945 		return -EINVAL;
946 
947 	if (flags & MPOL_F_MEMS_ALLOWED) {
948 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
949 			return -EINVAL;
950 		*policy = 0;	/* just so it's initialized */
951 		task_lock(current);
952 		*nmask  = cpuset_current_mems_allowed;
953 		task_unlock(current);
954 		return 0;
955 	}
956 
957 	if (flags & MPOL_F_ADDR) {
958 		/*
959 		 * Do NOT fall back to task policy if the
960 		 * vma/shared policy at addr is NULL.  We
961 		 * want to return MPOL_DEFAULT in this case.
962 		 */
963 		mmap_read_lock(mm);
964 		vma = vma_lookup(mm, addr);
965 		if (!vma) {
966 			mmap_read_unlock(mm);
967 			return -EFAULT;
968 		}
969 		if (vma->vm_ops && vma->vm_ops->get_policy)
970 			pol = vma->vm_ops->get_policy(vma, addr);
971 		else
972 			pol = vma->vm_policy;
973 	} else if (addr)
974 		return -EINVAL;
975 
976 	if (!pol)
977 		pol = &default_policy;	/* indicates default behavior */
978 
979 	if (flags & MPOL_F_NODE) {
980 		if (flags & MPOL_F_ADDR) {
981 			/*
982 			 * Take a refcount on the mpol, because we are about to
983 			 * drop the mmap_lock, after which only "pol" remains
984 			 * valid, "vma" is stale.
985 			 */
986 			pol_refcount = pol;
987 			vma = NULL;
988 			mpol_get(pol);
989 			mmap_read_unlock(mm);
990 			err = lookup_node(mm, addr);
991 			if (err < 0)
992 				goto out;
993 			*policy = err;
994 		} else if (pol == current->mempolicy &&
995 				pol->mode == MPOL_INTERLEAVE) {
996 			*policy = next_node_in(current->il_prev, pol->nodes);
997 		} else {
998 			err = -EINVAL;
999 			goto out;
1000 		}
1001 	} else {
1002 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1003 						pol->mode;
1004 		/*
1005 		 * Internal mempolicy flags must be masked off before exposing
1006 		 * the policy to userspace.
1007 		 */
1008 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1009 	}
1010 
1011 	err = 0;
1012 	if (nmask) {
1013 		if (mpol_store_user_nodemask(pol)) {
1014 			*nmask = pol->w.user_nodemask;
1015 		} else {
1016 			task_lock(current);
1017 			get_policy_nodemask(pol, nmask);
1018 			task_unlock(current);
1019 		}
1020 	}
1021 
1022  out:
1023 	mpol_cond_put(pol);
1024 	if (vma)
1025 		mmap_read_unlock(mm);
1026 	if (pol_refcount)
1027 		mpol_put(pol_refcount);
1028 	return err;
1029 }
1030 
1031 #ifdef CONFIG_MIGRATION
1032 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1033 				unsigned long flags)
1034 {
1035 	/*
1036 	 * We try to migrate only unshared folios. If it is shared it
1037 	 * is likely not worth migrating.
1038 	 *
1039 	 * To check if the folio is shared, ideally we want to make sure
1040 	 * every page is mapped to the same process. Doing that is very
1041 	 * expensive, so check the estimated mapcount of the folio instead.
1042 	 */
1043 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1044 		if (folio_isolate_lru(folio)) {
1045 			list_add_tail(&folio->lru, foliolist);
1046 			node_stat_mod_folio(folio,
1047 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1048 				folio_nr_pages(folio));
1049 		} else if (flags & MPOL_MF_STRICT) {
1050 			/*
1051 			 * Non-movable folio may reach here.  And, there may be
1052 			 * temporary off LRU folios or non-LRU movable folios.
1053 			 * Treat them as unmovable folios since they can't be
1054 			 * isolated, so they can't be moved at the moment.  It
1055 			 * should return -EIO for this case too.
1056 			 */
1057 			return -EIO;
1058 		}
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 /*
1065  * Migrate pages from one node to a target node.
1066  * Returns error or the number of pages not migrated.
1067  */
1068 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1069 			   int flags)
1070 {
1071 	nodemask_t nmask;
1072 	struct vm_area_struct *vma;
1073 	LIST_HEAD(pagelist);
1074 	int err = 0;
1075 	struct migration_target_control mtc = {
1076 		.nid = dest,
1077 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1078 	};
1079 
1080 	nodes_clear(nmask);
1081 	node_set(source, nmask);
1082 
1083 	/*
1084 	 * This does not "check" the range but isolates all pages that
1085 	 * need migration.  Between passing in the full user address
1086 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1087 	 */
1088 	vma = find_vma(mm, 0);
1089 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1090 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1091 			flags | MPOL_MF_DISCONTIG_OK, &pagelist, false);
1092 
1093 	if (!list_empty(&pagelist)) {
1094 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1095 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1096 		if (err)
1097 			putback_movable_pages(&pagelist);
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 /*
1104  * Move pages between the two nodesets so as to preserve the physical
1105  * layout as much as possible.
1106  *
1107  * Returns the number of page that could not be moved.
1108  */
1109 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1110 		     const nodemask_t *to, int flags)
1111 {
1112 	int busy = 0;
1113 	int err = 0;
1114 	nodemask_t tmp;
1115 
1116 	lru_cache_disable();
1117 
1118 	mmap_read_lock(mm);
1119 
1120 	/*
1121 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1122 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1123 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1124 	 * The pair of nodemasks 'to' and 'from' define the map.
1125 	 *
1126 	 * If no pair of bits is found that way, fallback to picking some
1127 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1128 	 * 'source' and 'dest' bits are the same, this represents a node
1129 	 * that will be migrating to itself, so no pages need move.
1130 	 *
1131 	 * If no bits are left in 'tmp', or if all remaining bits left
1132 	 * in 'tmp' correspond to the same bit in 'to', return false
1133 	 * (nothing left to migrate).
1134 	 *
1135 	 * This lets us pick a pair of nodes to migrate between, such that
1136 	 * if possible the dest node is not already occupied by some other
1137 	 * source node, minimizing the risk of overloading the memory on a
1138 	 * node that would happen if we migrated incoming memory to a node
1139 	 * before migrating outgoing memory source that same node.
1140 	 *
1141 	 * A single scan of tmp is sufficient.  As we go, we remember the
1142 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1143 	 * that not only moved, but what's better, moved to an empty slot
1144 	 * (d is not set in tmp), then we break out then, with that pair.
1145 	 * Otherwise when we finish scanning from_tmp, we at least have the
1146 	 * most recent <s, d> pair that moved.  If we get all the way through
1147 	 * the scan of tmp without finding any node that moved, much less
1148 	 * moved to an empty node, then there is nothing left worth migrating.
1149 	 */
1150 
1151 	tmp = *from;
1152 	while (!nodes_empty(tmp)) {
1153 		int s, d;
1154 		int source = NUMA_NO_NODE;
1155 		int dest = 0;
1156 
1157 		for_each_node_mask(s, tmp) {
1158 
1159 			/*
1160 			 * do_migrate_pages() tries to maintain the relative
1161 			 * node relationship of the pages established between
1162 			 * threads and memory areas.
1163                          *
1164 			 * However if the number of source nodes is not equal to
1165 			 * the number of destination nodes we can not preserve
1166 			 * this node relative relationship.  In that case, skip
1167 			 * copying memory from a node that is in the destination
1168 			 * mask.
1169 			 *
1170 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1171 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1172 			 */
1173 
1174 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1175 						(node_isset(s, *to)))
1176 				continue;
1177 
1178 			d = node_remap(s, *from, *to);
1179 			if (s == d)
1180 				continue;
1181 
1182 			source = s;	/* Node moved. Memorize */
1183 			dest = d;
1184 
1185 			/* dest not in remaining from nodes? */
1186 			if (!node_isset(dest, tmp))
1187 				break;
1188 		}
1189 		if (source == NUMA_NO_NODE)
1190 			break;
1191 
1192 		node_clear(source, tmp);
1193 		err = migrate_to_node(mm, source, dest, flags);
1194 		if (err > 0)
1195 			busy += err;
1196 		if (err < 0)
1197 			break;
1198 	}
1199 	mmap_read_unlock(mm);
1200 
1201 	lru_cache_enable();
1202 	if (err < 0)
1203 		return err;
1204 	return busy;
1205 
1206 }
1207 
1208 /*
1209  * Allocate a new page for page migration based on vma policy.
1210  * Start by assuming the page is mapped by the same vma as contains @start.
1211  * Search forward from there, if not.  N.B., this assumes that the
1212  * list of pages handed to migrate_pages()--which is how we get here--
1213  * is in virtual address order.
1214  */
1215 static struct folio *new_folio(struct folio *src, unsigned long start)
1216 {
1217 	struct vm_area_struct *vma;
1218 	unsigned long address;
1219 	VMA_ITERATOR(vmi, current->mm, start);
1220 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1221 
1222 	for_each_vma(vmi, vma) {
1223 		address = page_address_in_vma(&src->page, vma);
1224 		if (address != -EFAULT)
1225 			break;
1226 	}
1227 
1228 	if (folio_test_hugetlb(src)) {
1229 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1230 				vma, address);
1231 	}
1232 
1233 	if (folio_test_large(src))
1234 		gfp = GFP_TRANSHUGE;
1235 
1236 	/*
1237 	 * if !vma, vma_alloc_folio() will use task or system default policy
1238 	 */
1239 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1240 			folio_test_large(src));
1241 }
1242 #else
1243 
1244 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1245 				unsigned long flags)
1246 {
1247 	return -EIO;
1248 }
1249 
1250 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1251 		     const nodemask_t *to, int flags)
1252 {
1253 	return -ENOSYS;
1254 }
1255 
1256 static struct folio *new_folio(struct folio *src, unsigned long start)
1257 {
1258 	return NULL;
1259 }
1260 #endif
1261 
1262 static long do_mbind(unsigned long start, unsigned long len,
1263 		     unsigned short mode, unsigned short mode_flags,
1264 		     nodemask_t *nmask, unsigned long flags)
1265 {
1266 	struct mm_struct *mm = current->mm;
1267 	struct vm_area_struct *vma, *prev;
1268 	struct vma_iterator vmi;
1269 	struct mempolicy *new;
1270 	unsigned long end;
1271 	int err;
1272 	int ret;
1273 	LIST_HEAD(pagelist);
1274 
1275 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1276 		return -EINVAL;
1277 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1278 		return -EPERM;
1279 
1280 	if (start & ~PAGE_MASK)
1281 		return -EINVAL;
1282 
1283 	if (mode == MPOL_DEFAULT)
1284 		flags &= ~MPOL_MF_STRICT;
1285 
1286 	len = PAGE_ALIGN(len);
1287 	end = start + len;
1288 
1289 	if (end < start)
1290 		return -EINVAL;
1291 	if (end == start)
1292 		return 0;
1293 
1294 	new = mpol_new(mode, mode_flags, nmask);
1295 	if (IS_ERR(new))
1296 		return PTR_ERR(new);
1297 
1298 	if (flags & MPOL_MF_LAZY)
1299 		new->flags |= MPOL_F_MOF;
1300 
1301 	/*
1302 	 * If we are using the default policy then operation
1303 	 * on discontinuous address spaces is okay after all
1304 	 */
1305 	if (!new)
1306 		flags |= MPOL_MF_DISCONTIG_OK;
1307 
1308 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1309 		 start, start + len, mode, mode_flags,
1310 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1311 
1312 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1313 
1314 		lru_cache_disable();
1315 	}
1316 	{
1317 		NODEMASK_SCRATCH(scratch);
1318 		if (scratch) {
1319 			mmap_write_lock(mm);
1320 			err = mpol_set_nodemask(new, nmask, scratch);
1321 			if (err)
1322 				mmap_write_unlock(mm);
1323 		} else
1324 			err = -ENOMEM;
1325 		NODEMASK_SCRATCH_FREE(scratch);
1326 	}
1327 	if (err)
1328 		goto mpol_out;
1329 
1330 	/*
1331 	 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1332 	 * miss a concurrently inserted page.
1333 	 */
1334 	ret = queue_pages_range(mm, start, end, nmask,
1335 			  flags | MPOL_MF_INVERT, &pagelist, true);
1336 
1337 	if (ret < 0) {
1338 		err = ret;
1339 		goto up_out;
1340 	}
1341 
1342 	vma_iter_init(&vmi, mm, start);
1343 	prev = vma_prev(&vmi);
1344 	for_each_vma_range(vmi, vma, end) {
1345 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1346 		if (err)
1347 			break;
1348 	}
1349 
1350 	if (!err) {
1351 		int nr_failed = 0;
1352 
1353 		if (!list_empty(&pagelist)) {
1354 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1355 			nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1356 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1357 			if (nr_failed)
1358 				putback_movable_pages(&pagelist);
1359 		}
1360 
1361 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1362 			err = -EIO;
1363 	} else {
1364 up_out:
1365 		if (!list_empty(&pagelist))
1366 			putback_movable_pages(&pagelist);
1367 	}
1368 
1369 	mmap_write_unlock(mm);
1370 mpol_out:
1371 	mpol_put(new);
1372 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1373 		lru_cache_enable();
1374 	return err;
1375 }
1376 
1377 /*
1378  * User space interface with variable sized bitmaps for nodelists.
1379  */
1380 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1381 		      unsigned long maxnode)
1382 {
1383 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1384 	int ret;
1385 
1386 	if (in_compat_syscall())
1387 		ret = compat_get_bitmap(mask,
1388 					(const compat_ulong_t __user *)nmask,
1389 					maxnode);
1390 	else
1391 		ret = copy_from_user(mask, nmask,
1392 				     nlongs * sizeof(unsigned long));
1393 
1394 	if (ret)
1395 		return -EFAULT;
1396 
1397 	if (maxnode % BITS_PER_LONG)
1398 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1399 
1400 	return 0;
1401 }
1402 
1403 /* Copy a node mask from user space. */
1404 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1405 		     unsigned long maxnode)
1406 {
1407 	--maxnode;
1408 	nodes_clear(*nodes);
1409 	if (maxnode == 0 || !nmask)
1410 		return 0;
1411 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1412 		return -EINVAL;
1413 
1414 	/*
1415 	 * When the user specified more nodes than supported just check
1416 	 * if the non supported part is all zero, one word at a time,
1417 	 * starting at the end.
1418 	 */
1419 	while (maxnode > MAX_NUMNODES) {
1420 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1421 		unsigned long t;
1422 
1423 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1424 			return -EFAULT;
1425 
1426 		if (maxnode - bits >= MAX_NUMNODES) {
1427 			maxnode -= bits;
1428 		} else {
1429 			maxnode = MAX_NUMNODES;
1430 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1431 		}
1432 		if (t)
1433 			return -EINVAL;
1434 	}
1435 
1436 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1437 }
1438 
1439 /* Copy a kernel node mask to user space */
1440 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1441 			      nodemask_t *nodes)
1442 {
1443 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1444 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1445 	bool compat = in_compat_syscall();
1446 
1447 	if (compat)
1448 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1449 
1450 	if (copy > nbytes) {
1451 		if (copy > PAGE_SIZE)
1452 			return -EINVAL;
1453 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1454 			return -EFAULT;
1455 		copy = nbytes;
1456 		maxnode = nr_node_ids;
1457 	}
1458 
1459 	if (compat)
1460 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1461 					 nodes_addr(*nodes), maxnode);
1462 
1463 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1464 }
1465 
1466 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1467 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1468 {
1469 	*flags = *mode & MPOL_MODE_FLAGS;
1470 	*mode &= ~MPOL_MODE_FLAGS;
1471 
1472 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1473 		return -EINVAL;
1474 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1475 		return -EINVAL;
1476 	if (*flags & MPOL_F_NUMA_BALANCING) {
1477 		if (*mode != MPOL_BIND)
1478 			return -EINVAL;
1479 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1480 	}
1481 	return 0;
1482 }
1483 
1484 static long kernel_mbind(unsigned long start, unsigned long len,
1485 			 unsigned long mode, const unsigned long __user *nmask,
1486 			 unsigned long maxnode, unsigned int flags)
1487 {
1488 	unsigned short mode_flags;
1489 	nodemask_t nodes;
1490 	int lmode = mode;
1491 	int err;
1492 
1493 	start = untagged_addr(start);
1494 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1495 	if (err)
1496 		return err;
1497 
1498 	err = get_nodes(&nodes, nmask, maxnode);
1499 	if (err)
1500 		return err;
1501 
1502 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1503 }
1504 
1505 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1506 		unsigned long, home_node, unsigned long, flags)
1507 {
1508 	struct mm_struct *mm = current->mm;
1509 	struct vm_area_struct *vma, *prev;
1510 	struct mempolicy *new, *old;
1511 	unsigned long end;
1512 	int err = -ENOENT;
1513 	VMA_ITERATOR(vmi, mm, start);
1514 
1515 	start = untagged_addr(start);
1516 	if (start & ~PAGE_MASK)
1517 		return -EINVAL;
1518 	/*
1519 	 * flags is used for future extension if any.
1520 	 */
1521 	if (flags != 0)
1522 		return -EINVAL;
1523 
1524 	/*
1525 	 * Check home_node is online to avoid accessing uninitialized
1526 	 * NODE_DATA.
1527 	 */
1528 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1529 		return -EINVAL;
1530 
1531 	len = PAGE_ALIGN(len);
1532 	end = start + len;
1533 
1534 	if (end < start)
1535 		return -EINVAL;
1536 	if (end == start)
1537 		return 0;
1538 	mmap_write_lock(mm);
1539 	prev = vma_prev(&vmi);
1540 	for_each_vma_range(vmi, vma, end) {
1541 		/*
1542 		 * If any vma in the range got policy other than MPOL_BIND
1543 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1544 		 * the home node for vmas we already updated before.
1545 		 */
1546 		old = vma_policy(vma);
1547 		if (!old)
1548 			continue;
1549 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1550 			err = -EOPNOTSUPP;
1551 			break;
1552 		}
1553 		new = mpol_dup(old);
1554 		if (IS_ERR(new)) {
1555 			err = PTR_ERR(new);
1556 			break;
1557 		}
1558 
1559 		vma_start_write(vma);
1560 		new->home_node = home_node;
1561 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1562 		mpol_put(new);
1563 		if (err)
1564 			break;
1565 	}
1566 	mmap_write_unlock(mm);
1567 	return err;
1568 }
1569 
1570 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1571 		unsigned long, mode, const unsigned long __user *, nmask,
1572 		unsigned long, maxnode, unsigned int, flags)
1573 {
1574 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1575 }
1576 
1577 /* Set the process memory policy */
1578 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1579 				 unsigned long maxnode)
1580 {
1581 	unsigned short mode_flags;
1582 	nodemask_t nodes;
1583 	int lmode = mode;
1584 	int err;
1585 
1586 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1587 	if (err)
1588 		return err;
1589 
1590 	err = get_nodes(&nodes, nmask, maxnode);
1591 	if (err)
1592 		return err;
1593 
1594 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1595 }
1596 
1597 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1598 		unsigned long, maxnode)
1599 {
1600 	return kernel_set_mempolicy(mode, nmask, maxnode);
1601 }
1602 
1603 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1604 				const unsigned long __user *old_nodes,
1605 				const unsigned long __user *new_nodes)
1606 {
1607 	struct mm_struct *mm = NULL;
1608 	struct task_struct *task;
1609 	nodemask_t task_nodes;
1610 	int err;
1611 	nodemask_t *old;
1612 	nodemask_t *new;
1613 	NODEMASK_SCRATCH(scratch);
1614 
1615 	if (!scratch)
1616 		return -ENOMEM;
1617 
1618 	old = &scratch->mask1;
1619 	new = &scratch->mask2;
1620 
1621 	err = get_nodes(old, old_nodes, maxnode);
1622 	if (err)
1623 		goto out;
1624 
1625 	err = get_nodes(new, new_nodes, maxnode);
1626 	if (err)
1627 		goto out;
1628 
1629 	/* Find the mm_struct */
1630 	rcu_read_lock();
1631 	task = pid ? find_task_by_vpid(pid) : current;
1632 	if (!task) {
1633 		rcu_read_unlock();
1634 		err = -ESRCH;
1635 		goto out;
1636 	}
1637 	get_task_struct(task);
1638 
1639 	err = -EINVAL;
1640 
1641 	/*
1642 	 * Check if this process has the right to modify the specified process.
1643 	 * Use the regular "ptrace_may_access()" checks.
1644 	 */
1645 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1646 		rcu_read_unlock();
1647 		err = -EPERM;
1648 		goto out_put;
1649 	}
1650 	rcu_read_unlock();
1651 
1652 	task_nodes = cpuset_mems_allowed(task);
1653 	/* Is the user allowed to access the target nodes? */
1654 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1655 		err = -EPERM;
1656 		goto out_put;
1657 	}
1658 
1659 	task_nodes = cpuset_mems_allowed(current);
1660 	nodes_and(*new, *new, task_nodes);
1661 	if (nodes_empty(*new))
1662 		goto out_put;
1663 
1664 	err = security_task_movememory(task);
1665 	if (err)
1666 		goto out_put;
1667 
1668 	mm = get_task_mm(task);
1669 	put_task_struct(task);
1670 
1671 	if (!mm) {
1672 		err = -EINVAL;
1673 		goto out;
1674 	}
1675 
1676 	err = do_migrate_pages(mm, old, new,
1677 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1678 
1679 	mmput(mm);
1680 out:
1681 	NODEMASK_SCRATCH_FREE(scratch);
1682 
1683 	return err;
1684 
1685 out_put:
1686 	put_task_struct(task);
1687 	goto out;
1688 
1689 }
1690 
1691 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1692 		const unsigned long __user *, old_nodes,
1693 		const unsigned long __user *, new_nodes)
1694 {
1695 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1696 }
1697 
1698 
1699 /* Retrieve NUMA policy */
1700 static int kernel_get_mempolicy(int __user *policy,
1701 				unsigned long __user *nmask,
1702 				unsigned long maxnode,
1703 				unsigned long addr,
1704 				unsigned long flags)
1705 {
1706 	int err;
1707 	int pval;
1708 	nodemask_t nodes;
1709 
1710 	if (nmask != NULL && maxnode < nr_node_ids)
1711 		return -EINVAL;
1712 
1713 	addr = untagged_addr(addr);
1714 
1715 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1716 
1717 	if (err)
1718 		return err;
1719 
1720 	if (policy && put_user(pval, policy))
1721 		return -EFAULT;
1722 
1723 	if (nmask)
1724 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1725 
1726 	return err;
1727 }
1728 
1729 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1730 		unsigned long __user *, nmask, unsigned long, maxnode,
1731 		unsigned long, addr, unsigned long, flags)
1732 {
1733 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1734 }
1735 
1736 bool vma_migratable(struct vm_area_struct *vma)
1737 {
1738 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1739 		return false;
1740 
1741 	/*
1742 	 * DAX device mappings require predictable access latency, so avoid
1743 	 * incurring periodic faults.
1744 	 */
1745 	if (vma_is_dax(vma))
1746 		return false;
1747 
1748 	if (is_vm_hugetlb_page(vma) &&
1749 		!hugepage_migration_supported(hstate_vma(vma)))
1750 		return false;
1751 
1752 	/*
1753 	 * Migration allocates pages in the highest zone. If we cannot
1754 	 * do so then migration (at least from node to node) is not
1755 	 * possible.
1756 	 */
1757 	if (vma->vm_file &&
1758 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1759 			< policy_zone)
1760 		return false;
1761 	return true;
1762 }
1763 
1764 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1765 						unsigned long addr)
1766 {
1767 	struct mempolicy *pol = NULL;
1768 
1769 	if (vma) {
1770 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1771 			pol = vma->vm_ops->get_policy(vma, addr);
1772 		} else if (vma->vm_policy) {
1773 			pol = vma->vm_policy;
1774 
1775 			/*
1776 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1777 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1778 			 * count on these policies which will be dropped by
1779 			 * mpol_cond_put() later
1780 			 */
1781 			if (mpol_needs_cond_ref(pol))
1782 				mpol_get(pol);
1783 		}
1784 	}
1785 
1786 	return pol;
1787 }
1788 
1789 /*
1790  * get_vma_policy(@vma, @addr)
1791  * @vma: virtual memory area whose policy is sought
1792  * @addr: address in @vma for shared policy lookup
1793  *
1794  * Returns effective policy for a VMA at specified address.
1795  * Falls back to current->mempolicy or system default policy, as necessary.
1796  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1797  * count--added by the get_policy() vm_op, as appropriate--to protect against
1798  * freeing by another task.  It is the caller's responsibility to free the
1799  * extra reference for shared policies.
1800  */
1801 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1802 						unsigned long addr)
1803 {
1804 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1805 
1806 	if (!pol)
1807 		pol = get_task_policy(current);
1808 
1809 	return pol;
1810 }
1811 
1812 bool vma_policy_mof(struct vm_area_struct *vma)
1813 {
1814 	struct mempolicy *pol;
1815 
1816 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1817 		bool ret = false;
1818 
1819 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1820 		if (pol && (pol->flags & MPOL_F_MOF))
1821 			ret = true;
1822 		mpol_cond_put(pol);
1823 
1824 		return ret;
1825 	}
1826 
1827 	pol = vma->vm_policy;
1828 	if (!pol)
1829 		pol = get_task_policy(current);
1830 
1831 	return pol->flags & MPOL_F_MOF;
1832 }
1833 
1834 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1835 {
1836 	enum zone_type dynamic_policy_zone = policy_zone;
1837 
1838 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1839 
1840 	/*
1841 	 * if policy->nodes has movable memory only,
1842 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1843 	 *
1844 	 * policy->nodes is intersect with node_states[N_MEMORY].
1845 	 * so if the following test fails, it implies
1846 	 * policy->nodes has movable memory only.
1847 	 */
1848 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1849 		dynamic_policy_zone = ZONE_MOVABLE;
1850 
1851 	return zone >= dynamic_policy_zone;
1852 }
1853 
1854 /*
1855  * Return a nodemask representing a mempolicy for filtering nodes for
1856  * page allocation
1857  */
1858 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1859 {
1860 	int mode = policy->mode;
1861 
1862 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1863 	if (unlikely(mode == MPOL_BIND) &&
1864 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1865 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1866 		return &policy->nodes;
1867 
1868 	if (mode == MPOL_PREFERRED_MANY)
1869 		return &policy->nodes;
1870 
1871 	return NULL;
1872 }
1873 
1874 /*
1875  * Return the  preferred node id for 'prefer' mempolicy, and return
1876  * the given id for all other policies.
1877  *
1878  * policy_node() is always coupled with policy_nodemask(), which
1879  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1880  */
1881 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1882 {
1883 	if (policy->mode == MPOL_PREFERRED) {
1884 		nd = first_node(policy->nodes);
1885 	} else {
1886 		/*
1887 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 		 * because we might easily break the expectation to stay on the
1889 		 * requested node and not break the policy.
1890 		 */
1891 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1892 	}
1893 
1894 	if ((policy->mode == MPOL_BIND ||
1895 	     policy->mode == MPOL_PREFERRED_MANY) &&
1896 	    policy->home_node != NUMA_NO_NODE)
1897 		return policy->home_node;
1898 
1899 	return nd;
1900 }
1901 
1902 /* Do dynamic interleaving for a process */
1903 static unsigned interleave_nodes(struct mempolicy *policy)
1904 {
1905 	unsigned next;
1906 	struct task_struct *me = current;
1907 
1908 	next = next_node_in(me->il_prev, policy->nodes);
1909 	if (next < MAX_NUMNODES)
1910 		me->il_prev = next;
1911 	return next;
1912 }
1913 
1914 /*
1915  * Depending on the memory policy provide a node from which to allocate the
1916  * next slab entry.
1917  */
1918 unsigned int mempolicy_slab_node(void)
1919 {
1920 	struct mempolicy *policy;
1921 	int node = numa_mem_id();
1922 
1923 	if (!in_task())
1924 		return node;
1925 
1926 	policy = current->mempolicy;
1927 	if (!policy)
1928 		return node;
1929 
1930 	switch (policy->mode) {
1931 	case MPOL_PREFERRED:
1932 		return first_node(policy->nodes);
1933 
1934 	case MPOL_INTERLEAVE:
1935 		return interleave_nodes(policy);
1936 
1937 	case MPOL_BIND:
1938 	case MPOL_PREFERRED_MANY:
1939 	{
1940 		struct zoneref *z;
1941 
1942 		/*
1943 		 * Follow bind policy behavior and start allocation at the
1944 		 * first node.
1945 		 */
1946 		struct zonelist *zonelist;
1947 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1948 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1949 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1950 							&policy->nodes);
1951 		return z->zone ? zone_to_nid(z->zone) : node;
1952 	}
1953 	case MPOL_LOCAL:
1954 		return node;
1955 
1956 	default:
1957 		BUG();
1958 	}
1959 }
1960 
1961 /*
1962  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1963  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1964  * number of present nodes.
1965  */
1966 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1967 {
1968 	nodemask_t nodemask = pol->nodes;
1969 	unsigned int target, nnodes;
1970 	int i;
1971 	int nid;
1972 	/*
1973 	 * The barrier will stabilize the nodemask in a register or on
1974 	 * the stack so that it will stop changing under the code.
1975 	 *
1976 	 * Between first_node() and next_node(), pol->nodes could be changed
1977 	 * by other threads. So we put pol->nodes in a local stack.
1978 	 */
1979 	barrier();
1980 
1981 	nnodes = nodes_weight(nodemask);
1982 	if (!nnodes)
1983 		return numa_node_id();
1984 	target = (unsigned int)n % nnodes;
1985 	nid = first_node(nodemask);
1986 	for (i = 0; i < target; i++)
1987 		nid = next_node(nid, nodemask);
1988 	return nid;
1989 }
1990 
1991 /* Determine a node number for interleave */
1992 static inline unsigned interleave_nid(struct mempolicy *pol,
1993 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1994 {
1995 	if (vma) {
1996 		unsigned long off;
1997 
1998 		/*
1999 		 * for small pages, there is no difference between
2000 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2001 		 * for huge pages, since vm_pgoff is in units of small
2002 		 * pages, we need to shift off the always 0 bits to get
2003 		 * a useful offset.
2004 		 */
2005 		BUG_ON(shift < PAGE_SHIFT);
2006 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2007 		off += (addr - vma->vm_start) >> shift;
2008 		return offset_il_node(pol, off);
2009 	} else
2010 		return interleave_nodes(pol);
2011 }
2012 
2013 #ifdef CONFIG_HUGETLBFS
2014 /*
2015  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2016  * @vma: virtual memory area whose policy is sought
2017  * @addr: address in @vma for shared policy lookup and interleave policy
2018  * @gfp_flags: for requested zone
2019  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2020  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2021  *
2022  * Returns a nid suitable for a huge page allocation and a pointer
2023  * to the struct mempolicy for conditional unref after allocation.
2024  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2025  * to the mempolicy's @nodemask for filtering the zonelist.
2026  *
2027  * Must be protected by read_mems_allowed_begin()
2028  */
2029 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2030 				struct mempolicy **mpol, nodemask_t **nodemask)
2031 {
2032 	int nid;
2033 	int mode;
2034 
2035 	*mpol = get_vma_policy(vma, addr);
2036 	*nodemask = NULL;
2037 	mode = (*mpol)->mode;
2038 
2039 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2040 		nid = interleave_nid(*mpol, vma, addr,
2041 					huge_page_shift(hstate_vma(vma)));
2042 	} else {
2043 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2044 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2045 			*nodemask = &(*mpol)->nodes;
2046 	}
2047 	return nid;
2048 }
2049 
2050 /*
2051  * init_nodemask_of_mempolicy
2052  *
2053  * If the current task's mempolicy is "default" [NULL], return 'false'
2054  * to indicate default policy.  Otherwise, extract the policy nodemask
2055  * for 'bind' or 'interleave' policy into the argument nodemask, or
2056  * initialize the argument nodemask to contain the single node for
2057  * 'preferred' or 'local' policy and return 'true' to indicate presence
2058  * of non-default mempolicy.
2059  *
2060  * We don't bother with reference counting the mempolicy [mpol_get/put]
2061  * because the current task is examining it's own mempolicy and a task's
2062  * mempolicy is only ever changed by the task itself.
2063  *
2064  * N.B., it is the caller's responsibility to free a returned nodemask.
2065  */
2066 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2067 {
2068 	struct mempolicy *mempolicy;
2069 
2070 	if (!(mask && current->mempolicy))
2071 		return false;
2072 
2073 	task_lock(current);
2074 	mempolicy = current->mempolicy;
2075 	switch (mempolicy->mode) {
2076 	case MPOL_PREFERRED:
2077 	case MPOL_PREFERRED_MANY:
2078 	case MPOL_BIND:
2079 	case MPOL_INTERLEAVE:
2080 		*mask = mempolicy->nodes;
2081 		break;
2082 
2083 	case MPOL_LOCAL:
2084 		init_nodemask_of_node(mask, numa_node_id());
2085 		break;
2086 
2087 	default:
2088 		BUG();
2089 	}
2090 	task_unlock(current);
2091 
2092 	return true;
2093 }
2094 #endif
2095 
2096 /*
2097  * mempolicy_in_oom_domain
2098  *
2099  * If tsk's mempolicy is "bind", check for intersection between mask and
2100  * the policy nodemask. Otherwise, return true for all other policies
2101  * including "interleave", as a tsk with "interleave" policy may have
2102  * memory allocated from all nodes in system.
2103  *
2104  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2105  */
2106 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2107 					const nodemask_t *mask)
2108 {
2109 	struct mempolicy *mempolicy;
2110 	bool ret = true;
2111 
2112 	if (!mask)
2113 		return ret;
2114 
2115 	task_lock(tsk);
2116 	mempolicy = tsk->mempolicy;
2117 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2118 		ret = nodes_intersects(mempolicy->nodes, *mask);
2119 	task_unlock(tsk);
2120 
2121 	return ret;
2122 }
2123 
2124 /* Allocate a page in interleaved policy.
2125    Own path because it needs to do special accounting. */
2126 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2127 					unsigned nid)
2128 {
2129 	struct page *page;
2130 
2131 	page = __alloc_pages(gfp, order, nid, NULL);
2132 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2133 	if (!static_branch_likely(&vm_numa_stat_key))
2134 		return page;
2135 	if (page && page_to_nid(page) == nid) {
2136 		preempt_disable();
2137 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2138 		preempt_enable();
2139 	}
2140 	return page;
2141 }
2142 
2143 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2144 						int nid, struct mempolicy *pol)
2145 {
2146 	struct page *page;
2147 	gfp_t preferred_gfp;
2148 
2149 	/*
2150 	 * This is a two pass approach. The first pass will only try the
2151 	 * preferred nodes but skip the direct reclaim and allow the
2152 	 * allocation to fail, while the second pass will try all the
2153 	 * nodes in system.
2154 	 */
2155 	preferred_gfp = gfp | __GFP_NOWARN;
2156 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2157 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2158 	if (!page)
2159 		page = __alloc_pages(gfp, order, nid, NULL);
2160 
2161 	return page;
2162 }
2163 
2164 /**
2165  * vma_alloc_folio - Allocate a folio for a VMA.
2166  * @gfp: GFP flags.
2167  * @order: Order of the folio.
2168  * @vma: Pointer to VMA or NULL if not available.
2169  * @addr: Virtual address of the allocation.  Must be inside @vma.
2170  * @hugepage: For hugepages try only the preferred node if possible.
2171  *
2172  * Allocate a folio for a specific address in @vma, using the appropriate
2173  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2174  * of the mm_struct of the VMA to prevent it from going away.  Should be
2175  * used for all allocations for folios that will be mapped into user space.
2176  *
2177  * Return: The folio on success or NULL if allocation fails.
2178  */
2179 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2180 		unsigned long addr, bool hugepage)
2181 {
2182 	struct mempolicy *pol;
2183 	int node = numa_node_id();
2184 	struct folio *folio;
2185 	int preferred_nid;
2186 	nodemask_t *nmask;
2187 
2188 	pol = get_vma_policy(vma, addr);
2189 
2190 	if (pol->mode == MPOL_INTERLEAVE) {
2191 		struct page *page;
2192 		unsigned nid;
2193 
2194 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2195 		mpol_cond_put(pol);
2196 		gfp |= __GFP_COMP;
2197 		page = alloc_page_interleave(gfp, order, nid);
2198 		folio = (struct folio *)page;
2199 		if (folio && order > 1)
2200 			folio_prep_large_rmappable(folio);
2201 		goto out;
2202 	}
2203 
2204 	if (pol->mode == MPOL_PREFERRED_MANY) {
2205 		struct page *page;
2206 
2207 		node = policy_node(gfp, pol, node);
2208 		gfp |= __GFP_COMP;
2209 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2210 		mpol_cond_put(pol);
2211 		folio = (struct folio *)page;
2212 		if (folio && order > 1)
2213 			folio_prep_large_rmappable(folio);
2214 		goto out;
2215 	}
2216 
2217 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2218 		int hpage_node = node;
2219 
2220 		/*
2221 		 * For hugepage allocation and non-interleave policy which
2222 		 * allows the current node (or other explicitly preferred
2223 		 * node) we only try to allocate from the current/preferred
2224 		 * node and don't fall back to other nodes, as the cost of
2225 		 * remote accesses would likely offset THP benefits.
2226 		 *
2227 		 * If the policy is interleave or does not allow the current
2228 		 * node in its nodemask, we allocate the standard way.
2229 		 */
2230 		if (pol->mode == MPOL_PREFERRED)
2231 			hpage_node = first_node(pol->nodes);
2232 
2233 		nmask = policy_nodemask(gfp, pol);
2234 		if (!nmask || node_isset(hpage_node, *nmask)) {
2235 			mpol_cond_put(pol);
2236 			/*
2237 			 * First, try to allocate THP only on local node, but
2238 			 * don't reclaim unnecessarily, just compact.
2239 			 */
2240 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2241 					__GFP_NORETRY, order, hpage_node);
2242 
2243 			/*
2244 			 * If hugepage allocations are configured to always
2245 			 * synchronous compact or the vma has been madvised
2246 			 * to prefer hugepage backing, retry allowing remote
2247 			 * memory with both reclaim and compact as well.
2248 			 */
2249 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2250 				folio = __folio_alloc(gfp, order, hpage_node,
2251 						      nmask);
2252 
2253 			goto out;
2254 		}
2255 	}
2256 
2257 	nmask = policy_nodemask(gfp, pol);
2258 	preferred_nid = policy_node(gfp, pol, node);
2259 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2260 	mpol_cond_put(pol);
2261 out:
2262 	return folio;
2263 }
2264 EXPORT_SYMBOL(vma_alloc_folio);
2265 
2266 /**
2267  * alloc_pages - Allocate pages.
2268  * @gfp: GFP flags.
2269  * @order: Power of two of number of pages to allocate.
2270  *
2271  * Allocate 1 << @order contiguous pages.  The physical address of the
2272  * first page is naturally aligned (eg an order-3 allocation will be aligned
2273  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2274  * process is honoured when in process context.
2275  *
2276  * Context: Can be called from any context, providing the appropriate GFP
2277  * flags are used.
2278  * Return: The page on success or NULL if allocation fails.
2279  */
2280 struct page *alloc_pages(gfp_t gfp, unsigned order)
2281 {
2282 	struct mempolicy *pol = &default_policy;
2283 	struct page *page;
2284 
2285 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2286 		pol = get_task_policy(current);
2287 
2288 	/*
2289 	 * No reference counting needed for current->mempolicy
2290 	 * nor system default_policy
2291 	 */
2292 	if (pol->mode == MPOL_INTERLEAVE)
2293 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2294 	else if (pol->mode == MPOL_PREFERRED_MANY)
2295 		page = alloc_pages_preferred_many(gfp, order,
2296 				  policy_node(gfp, pol, numa_node_id()), pol);
2297 	else
2298 		page = __alloc_pages(gfp, order,
2299 				policy_node(gfp, pol, numa_node_id()),
2300 				policy_nodemask(gfp, pol));
2301 
2302 	return page;
2303 }
2304 EXPORT_SYMBOL(alloc_pages);
2305 
2306 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2307 {
2308 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2309 	struct folio *folio = (struct folio *)page;
2310 
2311 	if (folio && order > 1)
2312 		folio_prep_large_rmappable(folio);
2313 	return folio;
2314 }
2315 EXPORT_SYMBOL(folio_alloc);
2316 
2317 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2318 		struct mempolicy *pol, unsigned long nr_pages,
2319 		struct page **page_array)
2320 {
2321 	int nodes;
2322 	unsigned long nr_pages_per_node;
2323 	int delta;
2324 	int i;
2325 	unsigned long nr_allocated;
2326 	unsigned long total_allocated = 0;
2327 
2328 	nodes = nodes_weight(pol->nodes);
2329 	nr_pages_per_node = nr_pages / nodes;
2330 	delta = nr_pages - nodes * nr_pages_per_node;
2331 
2332 	for (i = 0; i < nodes; i++) {
2333 		if (delta) {
2334 			nr_allocated = __alloc_pages_bulk(gfp,
2335 					interleave_nodes(pol), NULL,
2336 					nr_pages_per_node + 1, NULL,
2337 					page_array);
2338 			delta--;
2339 		} else {
2340 			nr_allocated = __alloc_pages_bulk(gfp,
2341 					interleave_nodes(pol), NULL,
2342 					nr_pages_per_node, NULL, page_array);
2343 		}
2344 
2345 		page_array += nr_allocated;
2346 		total_allocated += nr_allocated;
2347 	}
2348 
2349 	return total_allocated;
2350 }
2351 
2352 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2353 		struct mempolicy *pol, unsigned long nr_pages,
2354 		struct page **page_array)
2355 {
2356 	gfp_t preferred_gfp;
2357 	unsigned long nr_allocated = 0;
2358 
2359 	preferred_gfp = gfp | __GFP_NOWARN;
2360 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2361 
2362 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2363 					   nr_pages, NULL, page_array);
2364 
2365 	if (nr_allocated < nr_pages)
2366 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2367 				nr_pages - nr_allocated, NULL,
2368 				page_array + nr_allocated);
2369 	return nr_allocated;
2370 }
2371 
2372 /* alloc pages bulk and mempolicy should be considered at the
2373  * same time in some situation such as vmalloc.
2374  *
2375  * It can accelerate memory allocation especially interleaving
2376  * allocate memory.
2377  */
2378 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2379 		unsigned long nr_pages, struct page **page_array)
2380 {
2381 	struct mempolicy *pol = &default_policy;
2382 
2383 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2384 		pol = get_task_policy(current);
2385 
2386 	if (pol->mode == MPOL_INTERLEAVE)
2387 		return alloc_pages_bulk_array_interleave(gfp, pol,
2388 							 nr_pages, page_array);
2389 
2390 	if (pol->mode == MPOL_PREFERRED_MANY)
2391 		return alloc_pages_bulk_array_preferred_many(gfp,
2392 				numa_node_id(), pol, nr_pages, page_array);
2393 
2394 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2395 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2396 				  page_array);
2397 }
2398 
2399 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2400 {
2401 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2402 
2403 	if (IS_ERR(pol))
2404 		return PTR_ERR(pol);
2405 	dst->vm_policy = pol;
2406 	return 0;
2407 }
2408 
2409 /*
2410  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2411  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2412  * with the mems_allowed returned by cpuset_mems_allowed().  This
2413  * keeps mempolicies cpuset relative after its cpuset moves.  See
2414  * further kernel/cpuset.c update_nodemask().
2415  *
2416  * current's mempolicy may be rebinded by the other task(the task that changes
2417  * cpuset's mems), so we needn't do rebind work for current task.
2418  */
2419 
2420 /* Slow path of a mempolicy duplicate */
2421 struct mempolicy *__mpol_dup(struct mempolicy *old)
2422 {
2423 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2424 
2425 	if (!new)
2426 		return ERR_PTR(-ENOMEM);
2427 
2428 	/* task's mempolicy is protected by alloc_lock */
2429 	if (old == current->mempolicy) {
2430 		task_lock(current);
2431 		*new = *old;
2432 		task_unlock(current);
2433 	} else
2434 		*new = *old;
2435 
2436 	if (current_cpuset_is_being_rebound()) {
2437 		nodemask_t mems = cpuset_mems_allowed(current);
2438 		mpol_rebind_policy(new, &mems);
2439 	}
2440 	atomic_set(&new->refcnt, 1);
2441 	return new;
2442 }
2443 
2444 /* Slow path of a mempolicy comparison */
2445 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2446 {
2447 	if (!a || !b)
2448 		return false;
2449 	if (a->mode != b->mode)
2450 		return false;
2451 	if (a->flags != b->flags)
2452 		return false;
2453 	if (a->home_node != b->home_node)
2454 		return false;
2455 	if (mpol_store_user_nodemask(a))
2456 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2457 			return false;
2458 
2459 	switch (a->mode) {
2460 	case MPOL_BIND:
2461 	case MPOL_INTERLEAVE:
2462 	case MPOL_PREFERRED:
2463 	case MPOL_PREFERRED_MANY:
2464 		return !!nodes_equal(a->nodes, b->nodes);
2465 	case MPOL_LOCAL:
2466 		return true;
2467 	default:
2468 		BUG();
2469 		return false;
2470 	}
2471 }
2472 
2473 /*
2474  * Shared memory backing store policy support.
2475  *
2476  * Remember policies even when nobody has shared memory mapped.
2477  * The policies are kept in Red-Black tree linked from the inode.
2478  * They are protected by the sp->lock rwlock, which should be held
2479  * for any accesses to the tree.
2480  */
2481 
2482 /*
2483  * lookup first element intersecting start-end.  Caller holds sp->lock for
2484  * reading or for writing
2485  */
2486 static struct sp_node *
2487 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2488 {
2489 	struct rb_node *n = sp->root.rb_node;
2490 
2491 	while (n) {
2492 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2493 
2494 		if (start >= p->end)
2495 			n = n->rb_right;
2496 		else if (end <= p->start)
2497 			n = n->rb_left;
2498 		else
2499 			break;
2500 	}
2501 	if (!n)
2502 		return NULL;
2503 	for (;;) {
2504 		struct sp_node *w = NULL;
2505 		struct rb_node *prev = rb_prev(n);
2506 		if (!prev)
2507 			break;
2508 		w = rb_entry(prev, struct sp_node, nd);
2509 		if (w->end <= start)
2510 			break;
2511 		n = prev;
2512 	}
2513 	return rb_entry(n, struct sp_node, nd);
2514 }
2515 
2516 /*
2517  * Insert a new shared policy into the list.  Caller holds sp->lock for
2518  * writing.
2519  */
2520 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2521 {
2522 	struct rb_node **p = &sp->root.rb_node;
2523 	struct rb_node *parent = NULL;
2524 	struct sp_node *nd;
2525 
2526 	while (*p) {
2527 		parent = *p;
2528 		nd = rb_entry(parent, struct sp_node, nd);
2529 		if (new->start < nd->start)
2530 			p = &(*p)->rb_left;
2531 		else if (new->end > nd->end)
2532 			p = &(*p)->rb_right;
2533 		else
2534 			BUG();
2535 	}
2536 	rb_link_node(&new->nd, parent, p);
2537 	rb_insert_color(&new->nd, &sp->root);
2538 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2539 		 new->policy ? new->policy->mode : 0);
2540 }
2541 
2542 /* Find shared policy intersecting idx */
2543 struct mempolicy *
2544 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2545 {
2546 	struct mempolicy *pol = NULL;
2547 	struct sp_node *sn;
2548 
2549 	if (!sp->root.rb_node)
2550 		return NULL;
2551 	read_lock(&sp->lock);
2552 	sn = sp_lookup(sp, idx, idx+1);
2553 	if (sn) {
2554 		mpol_get(sn->policy);
2555 		pol = sn->policy;
2556 	}
2557 	read_unlock(&sp->lock);
2558 	return pol;
2559 }
2560 
2561 static void sp_free(struct sp_node *n)
2562 {
2563 	mpol_put(n->policy);
2564 	kmem_cache_free(sn_cache, n);
2565 }
2566 
2567 /**
2568  * mpol_misplaced - check whether current page node is valid in policy
2569  *
2570  * @page: page to be checked
2571  * @vma: vm area where page mapped
2572  * @addr: virtual address where page mapped
2573  *
2574  * Lookup current policy node id for vma,addr and "compare to" page's
2575  * node id.  Policy determination "mimics" alloc_page_vma().
2576  * Called from fault path where we know the vma and faulting address.
2577  *
2578  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2579  * policy, or a suitable node ID to allocate a replacement page from.
2580  */
2581 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2582 {
2583 	struct mempolicy *pol;
2584 	struct zoneref *z;
2585 	int curnid = page_to_nid(page);
2586 	unsigned long pgoff;
2587 	int thiscpu = raw_smp_processor_id();
2588 	int thisnid = cpu_to_node(thiscpu);
2589 	int polnid = NUMA_NO_NODE;
2590 	int ret = NUMA_NO_NODE;
2591 
2592 	pol = get_vma_policy(vma, addr);
2593 	if (!(pol->flags & MPOL_F_MOF))
2594 		goto out;
2595 
2596 	switch (pol->mode) {
2597 	case MPOL_INTERLEAVE:
2598 		pgoff = vma->vm_pgoff;
2599 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2600 		polnid = offset_il_node(pol, pgoff);
2601 		break;
2602 
2603 	case MPOL_PREFERRED:
2604 		if (node_isset(curnid, pol->nodes))
2605 			goto out;
2606 		polnid = first_node(pol->nodes);
2607 		break;
2608 
2609 	case MPOL_LOCAL:
2610 		polnid = numa_node_id();
2611 		break;
2612 
2613 	case MPOL_BIND:
2614 		/* Optimize placement among multiple nodes via NUMA balancing */
2615 		if (pol->flags & MPOL_F_MORON) {
2616 			if (node_isset(thisnid, pol->nodes))
2617 				break;
2618 			goto out;
2619 		}
2620 		fallthrough;
2621 
2622 	case MPOL_PREFERRED_MANY:
2623 		/*
2624 		 * use current page if in policy nodemask,
2625 		 * else select nearest allowed node, if any.
2626 		 * If no allowed nodes, use current [!misplaced].
2627 		 */
2628 		if (node_isset(curnid, pol->nodes))
2629 			goto out;
2630 		z = first_zones_zonelist(
2631 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2632 				gfp_zone(GFP_HIGHUSER),
2633 				&pol->nodes);
2634 		polnid = zone_to_nid(z->zone);
2635 		break;
2636 
2637 	default:
2638 		BUG();
2639 	}
2640 
2641 	/* Migrate the page towards the node whose CPU is referencing it */
2642 	if (pol->flags & MPOL_F_MORON) {
2643 		polnid = thisnid;
2644 
2645 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2646 			goto out;
2647 	}
2648 
2649 	if (curnid != polnid)
2650 		ret = polnid;
2651 out:
2652 	mpol_cond_put(pol);
2653 
2654 	return ret;
2655 }
2656 
2657 /*
2658  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2659  * dropped after task->mempolicy is set to NULL so that any allocation done as
2660  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2661  * policy.
2662  */
2663 void mpol_put_task_policy(struct task_struct *task)
2664 {
2665 	struct mempolicy *pol;
2666 
2667 	task_lock(task);
2668 	pol = task->mempolicy;
2669 	task->mempolicy = NULL;
2670 	task_unlock(task);
2671 	mpol_put(pol);
2672 }
2673 
2674 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2675 {
2676 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2677 	rb_erase(&n->nd, &sp->root);
2678 	sp_free(n);
2679 }
2680 
2681 static void sp_node_init(struct sp_node *node, unsigned long start,
2682 			unsigned long end, struct mempolicy *pol)
2683 {
2684 	node->start = start;
2685 	node->end = end;
2686 	node->policy = pol;
2687 }
2688 
2689 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2690 				struct mempolicy *pol)
2691 {
2692 	struct sp_node *n;
2693 	struct mempolicy *newpol;
2694 
2695 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2696 	if (!n)
2697 		return NULL;
2698 
2699 	newpol = mpol_dup(pol);
2700 	if (IS_ERR(newpol)) {
2701 		kmem_cache_free(sn_cache, n);
2702 		return NULL;
2703 	}
2704 	newpol->flags |= MPOL_F_SHARED;
2705 	sp_node_init(n, start, end, newpol);
2706 
2707 	return n;
2708 }
2709 
2710 /* Replace a policy range. */
2711 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2712 				 unsigned long end, struct sp_node *new)
2713 {
2714 	struct sp_node *n;
2715 	struct sp_node *n_new = NULL;
2716 	struct mempolicy *mpol_new = NULL;
2717 	int ret = 0;
2718 
2719 restart:
2720 	write_lock(&sp->lock);
2721 	n = sp_lookup(sp, start, end);
2722 	/* Take care of old policies in the same range. */
2723 	while (n && n->start < end) {
2724 		struct rb_node *next = rb_next(&n->nd);
2725 		if (n->start >= start) {
2726 			if (n->end <= end)
2727 				sp_delete(sp, n);
2728 			else
2729 				n->start = end;
2730 		} else {
2731 			/* Old policy spanning whole new range. */
2732 			if (n->end > end) {
2733 				if (!n_new)
2734 					goto alloc_new;
2735 
2736 				*mpol_new = *n->policy;
2737 				atomic_set(&mpol_new->refcnt, 1);
2738 				sp_node_init(n_new, end, n->end, mpol_new);
2739 				n->end = start;
2740 				sp_insert(sp, n_new);
2741 				n_new = NULL;
2742 				mpol_new = NULL;
2743 				break;
2744 			} else
2745 				n->end = start;
2746 		}
2747 		if (!next)
2748 			break;
2749 		n = rb_entry(next, struct sp_node, nd);
2750 	}
2751 	if (new)
2752 		sp_insert(sp, new);
2753 	write_unlock(&sp->lock);
2754 	ret = 0;
2755 
2756 err_out:
2757 	if (mpol_new)
2758 		mpol_put(mpol_new);
2759 	if (n_new)
2760 		kmem_cache_free(sn_cache, n_new);
2761 
2762 	return ret;
2763 
2764 alloc_new:
2765 	write_unlock(&sp->lock);
2766 	ret = -ENOMEM;
2767 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2768 	if (!n_new)
2769 		goto err_out;
2770 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2771 	if (!mpol_new)
2772 		goto err_out;
2773 	atomic_set(&mpol_new->refcnt, 1);
2774 	goto restart;
2775 }
2776 
2777 /**
2778  * mpol_shared_policy_init - initialize shared policy for inode
2779  * @sp: pointer to inode shared policy
2780  * @mpol:  struct mempolicy to install
2781  *
2782  * Install non-NULL @mpol in inode's shared policy rb-tree.
2783  * On entry, the current task has a reference on a non-NULL @mpol.
2784  * This must be released on exit.
2785  * This is called at get_inode() calls and we can use GFP_KERNEL.
2786  */
2787 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2788 {
2789 	int ret;
2790 
2791 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2792 	rwlock_init(&sp->lock);
2793 
2794 	if (mpol) {
2795 		struct vm_area_struct pvma;
2796 		struct mempolicy *new;
2797 		NODEMASK_SCRATCH(scratch);
2798 
2799 		if (!scratch)
2800 			goto put_mpol;
2801 		/* contextualize the tmpfs mount point mempolicy */
2802 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2803 		if (IS_ERR(new))
2804 			goto free_scratch; /* no valid nodemask intersection */
2805 
2806 		task_lock(current);
2807 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2808 		task_unlock(current);
2809 		if (ret)
2810 			goto put_new;
2811 
2812 		/* Create pseudo-vma that contains just the policy */
2813 		vma_init(&pvma, NULL);
2814 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2815 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2816 
2817 put_new:
2818 		mpol_put(new);			/* drop initial ref */
2819 free_scratch:
2820 		NODEMASK_SCRATCH_FREE(scratch);
2821 put_mpol:
2822 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2823 	}
2824 }
2825 
2826 int mpol_set_shared_policy(struct shared_policy *info,
2827 			struct vm_area_struct *vma, struct mempolicy *npol)
2828 {
2829 	int err;
2830 	struct sp_node *new = NULL;
2831 	unsigned long sz = vma_pages(vma);
2832 
2833 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2834 		 vma->vm_pgoff,
2835 		 sz, npol ? npol->mode : -1,
2836 		 npol ? npol->flags : -1,
2837 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2838 
2839 	if (npol) {
2840 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2841 		if (!new)
2842 			return -ENOMEM;
2843 	}
2844 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2845 	if (err && new)
2846 		sp_free(new);
2847 	return err;
2848 }
2849 
2850 /* Free a backing policy store on inode delete. */
2851 void mpol_free_shared_policy(struct shared_policy *p)
2852 {
2853 	struct sp_node *n;
2854 	struct rb_node *next;
2855 
2856 	if (!p->root.rb_node)
2857 		return;
2858 	write_lock(&p->lock);
2859 	next = rb_first(&p->root);
2860 	while (next) {
2861 		n = rb_entry(next, struct sp_node, nd);
2862 		next = rb_next(&n->nd);
2863 		sp_delete(p, n);
2864 	}
2865 	write_unlock(&p->lock);
2866 }
2867 
2868 #ifdef CONFIG_NUMA_BALANCING
2869 static int __initdata numabalancing_override;
2870 
2871 static void __init check_numabalancing_enable(void)
2872 {
2873 	bool numabalancing_default = false;
2874 
2875 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2876 		numabalancing_default = true;
2877 
2878 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2879 	if (numabalancing_override)
2880 		set_numabalancing_state(numabalancing_override == 1);
2881 
2882 	if (num_online_nodes() > 1 && !numabalancing_override) {
2883 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2884 			numabalancing_default ? "Enabling" : "Disabling");
2885 		set_numabalancing_state(numabalancing_default);
2886 	}
2887 }
2888 
2889 static int __init setup_numabalancing(char *str)
2890 {
2891 	int ret = 0;
2892 	if (!str)
2893 		goto out;
2894 
2895 	if (!strcmp(str, "enable")) {
2896 		numabalancing_override = 1;
2897 		ret = 1;
2898 	} else if (!strcmp(str, "disable")) {
2899 		numabalancing_override = -1;
2900 		ret = 1;
2901 	}
2902 out:
2903 	if (!ret)
2904 		pr_warn("Unable to parse numa_balancing=\n");
2905 
2906 	return ret;
2907 }
2908 __setup("numa_balancing=", setup_numabalancing);
2909 #else
2910 static inline void __init check_numabalancing_enable(void)
2911 {
2912 }
2913 #endif /* CONFIG_NUMA_BALANCING */
2914 
2915 /* assumes fs == KERNEL_DS */
2916 void __init numa_policy_init(void)
2917 {
2918 	nodemask_t interleave_nodes;
2919 	unsigned long largest = 0;
2920 	int nid, prefer = 0;
2921 
2922 	policy_cache = kmem_cache_create("numa_policy",
2923 					 sizeof(struct mempolicy),
2924 					 0, SLAB_PANIC, NULL);
2925 
2926 	sn_cache = kmem_cache_create("shared_policy_node",
2927 				     sizeof(struct sp_node),
2928 				     0, SLAB_PANIC, NULL);
2929 
2930 	for_each_node(nid) {
2931 		preferred_node_policy[nid] = (struct mempolicy) {
2932 			.refcnt = ATOMIC_INIT(1),
2933 			.mode = MPOL_PREFERRED,
2934 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2935 			.nodes = nodemask_of_node(nid),
2936 		};
2937 	}
2938 
2939 	/*
2940 	 * Set interleaving policy for system init. Interleaving is only
2941 	 * enabled across suitably sized nodes (default is >= 16MB), or
2942 	 * fall back to the largest node if they're all smaller.
2943 	 */
2944 	nodes_clear(interleave_nodes);
2945 	for_each_node_state(nid, N_MEMORY) {
2946 		unsigned long total_pages = node_present_pages(nid);
2947 
2948 		/* Preserve the largest node */
2949 		if (largest < total_pages) {
2950 			largest = total_pages;
2951 			prefer = nid;
2952 		}
2953 
2954 		/* Interleave this node? */
2955 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2956 			node_set(nid, interleave_nodes);
2957 	}
2958 
2959 	/* All too small, use the largest */
2960 	if (unlikely(nodes_empty(interleave_nodes)))
2961 		node_set(prefer, interleave_nodes);
2962 
2963 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2964 		pr_err("%s: interleaving failed\n", __func__);
2965 
2966 	check_numabalancing_enable();
2967 }
2968 
2969 /* Reset policy of current process to default */
2970 void numa_default_policy(void)
2971 {
2972 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2973 }
2974 
2975 /*
2976  * Parse and format mempolicy from/to strings
2977  */
2978 
2979 static const char * const policy_modes[] =
2980 {
2981 	[MPOL_DEFAULT]    = "default",
2982 	[MPOL_PREFERRED]  = "prefer",
2983 	[MPOL_BIND]       = "bind",
2984 	[MPOL_INTERLEAVE] = "interleave",
2985 	[MPOL_LOCAL]      = "local",
2986 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2987 };
2988 
2989 
2990 #ifdef CONFIG_TMPFS
2991 /**
2992  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2993  * @str:  string containing mempolicy to parse
2994  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2995  *
2996  * Format of input:
2997  *	<mode>[=<flags>][:<nodelist>]
2998  *
2999  * Return: %0 on success, else %1
3000  */
3001 int mpol_parse_str(char *str, struct mempolicy **mpol)
3002 {
3003 	struct mempolicy *new = NULL;
3004 	unsigned short mode_flags;
3005 	nodemask_t nodes;
3006 	char *nodelist = strchr(str, ':');
3007 	char *flags = strchr(str, '=');
3008 	int err = 1, mode;
3009 
3010 	if (flags)
3011 		*flags++ = '\0';	/* terminate mode string */
3012 
3013 	if (nodelist) {
3014 		/* NUL-terminate mode or flags string */
3015 		*nodelist++ = '\0';
3016 		if (nodelist_parse(nodelist, nodes))
3017 			goto out;
3018 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3019 			goto out;
3020 	} else
3021 		nodes_clear(nodes);
3022 
3023 	mode = match_string(policy_modes, MPOL_MAX, str);
3024 	if (mode < 0)
3025 		goto out;
3026 
3027 	switch (mode) {
3028 	case MPOL_PREFERRED:
3029 		/*
3030 		 * Insist on a nodelist of one node only, although later
3031 		 * we use first_node(nodes) to grab a single node, so here
3032 		 * nodelist (or nodes) cannot be empty.
3033 		 */
3034 		if (nodelist) {
3035 			char *rest = nodelist;
3036 			while (isdigit(*rest))
3037 				rest++;
3038 			if (*rest)
3039 				goto out;
3040 			if (nodes_empty(nodes))
3041 				goto out;
3042 		}
3043 		break;
3044 	case MPOL_INTERLEAVE:
3045 		/*
3046 		 * Default to online nodes with memory if no nodelist
3047 		 */
3048 		if (!nodelist)
3049 			nodes = node_states[N_MEMORY];
3050 		break;
3051 	case MPOL_LOCAL:
3052 		/*
3053 		 * Don't allow a nodelist;  mpol_new() checks flags
3054 		 */
3055 		if (nodelist)
3056 			goto out;
3057 		break;
3058 	case MPOL_DEFAULT:
3059 		/*
3060 		 * Insist on a empty nodelist
3061 		 */
3062 		if (!nodelist)
3063 			err = 0;
3064 		goto out;
3065 	case MPOL_PREFERRED_MANY:
3066 	case MPOL_BIND:
3067 		/*
3068 		 * Insist on a nodelist
3069 		 */
3070 		if (!nodelist)
3071 			goto out;
3072 	}
3073 
3074 	mode_flags = 0;
3075 	if (flags) {
3076 		/*
3077 		 * Currently, we only support two mutually exclusive
3078 		 * mode flags.
3079 		 */
3080 		if (!strcmp(flags, "static"))
3081 			mode_flags |= MPOL_F_STATIC_NODES;
3082 		else if (!strcmp(flags, "relative"))
3083 			mode_flags |= MPOL_F_RELATIVE_NODES;
3084 		else
3085 			goto out;
3086 	}
3087 
3088 	new = mpol_new(mode, mode_flags, &nodes);
3089 	if (IS_ERR(new))
3090 		goto out;
3091 
3092 	/*
3093 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3094 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3095 	 */
3096 	if (mode != MPOL_PREFERRED) {
3097 		new->nodes = nodes;
3098 	} else if (nodelist) {
3099 		nodes_clear(new->nodes);
3100 		node_set(first_node(nodes), new->nodes);
3101 	} else {
3102 		new->mode = MPOL_LOCAL;
3103 	}
3104 
3105 	/*
3106 	 * Save nodes for contextualization: this will be used to "clone"
3107 	 * the mempolicy in a specific context [cpuset] at a later time.
3108 	 */
3109 	new->w.user_nodemask = nodes;
3110 
3111 	err = 0;
3112 
3113 out:
3114 	/* Restore string for error message */
3115 	if (nodelist)
3116 		*--nodelist = ':';
3117 	if (flags)
3118 		*--flags = '=';
3119 	if (!err)
3120 		*mpol = new;
3121 	return err;
3122 }
3123 #endif /* CONFIG_TMPFS */
3124 
3125 /**
3126  * mpol_to_str - format a mempolicy structure for printing
3127  * @buffer:  to contain formatted mempolicy string
3128  * @maxlen:  length of @buffer
3129  * @pol:  pointer to mempolicy to be formatted
3130  *
3131  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3132  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3133  * longest flag, "relative", and to display at least a few node ids.
3134  */
3135 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3136 {
3137 	char *p = buffer;
3138 	nodemask_t nodes = NODE_MASK_NONE;
3139 	unsigned short mode = MPOL_DEFAULT;
3140 	unsigned short flags = 0;
3141 
3142 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3143 		mode = pol->mode;
3144 		flags = pol->flags;
3145 	}
3146 
3147 	switch (mode) {
3148 	case MPOL_DEFAULT:
3149 	case MPOL_LOCAL:
3150 		break;
3151 	case MPOL_PREFERRED:
3152 	case MPOL_PREFERRED_MANY:
3153 	case MPOL_BIND:
3154 	case MPOL_INTERLEAVE:
3155 		nodes = pol->nodes;
3156 		break;
3157 	default:
3158 		WARN_ON_ONCE(1);
3159 		snprintf(p, maxlen, "unknown");
3160 		return;
3161 	}
3162 
3163 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3164 
3165 	if (flags & MPOL_MODE_FLAGS) {
3166 		p += snprintf(p, buffer + maxlen - p, "=");
3167 
3168 		/*
3169 		 * Currently, the only defined flags are mutually exclusive
3170 		 */
3171 		if (flags & MPOL_F_STATIC_NODES)
3172 			p += snprintf(p, buffer + maxlen - p, "static");
3173 		else if (flags & MPOL_F_RELATIVE_NODES)
3174 			p += snprintf(p, buffer + maxlen - p, "relative");
3175 	}
3176 
3177 	if (!nodes_empty(nodes))
3178 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3179 			       nodemask_pr_args(&nodes));
3180 }
3181