1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/mm.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/slab.h> 79 #include <linux/string.h> 80 #include <linux/export.h> 81 #include <linux/nsproxy.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/swap.h> 86 #include <linux/seq_file.h> 87 #include <linux/proc_fs.h> 88 #include <linux/migrate.h> 89 #include <linux/ksm.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 #include <linux/syscalls.h> 93 #include <linux/ctype.h> 94 #include <linux/mm_inline.h> 95 #include <linux/mmu_notifier.h> 96 #include <linux/printk.h> 97 98 #include <asm/tlbflush.h> 99 #include <asm/uaccess.h> 100 #include <linux/random.h> 101 102 #include "internal.h" 103 104 /* Internal flags */ 105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 107 108 static struct kmem_cache *policy_cache; 109 static struct kmem_cache *sn_cache; 110 111 /* Highest zone. An specific allocation for a zone below that is not 112 policied. */ 113 enum zone_type policy_zone = 0; 114 115 /* 116 * run-time system-wide default policy => local allocation 117 */ 118 static struct mempolicy default_policy = { 119 .refcnt = ATOMIC_INIT(1), /* never free it */ 120 .mode = MPOL_PREFERRED, 121 .flags = MPOL_F_LOCAL, 122 }; 123 124 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 125 126 struct mempolicy *get_task_policy(struct task_struct *p) 127 { 128 struct mempolicy *pol = p->mempolicy; 129 int node; 130 131 if (pol) 132 return pol; 133 134 node = numa_node_id(); 135 if (node != NUMA_NO_NODE) { 136 pol = &preferred_node_policy[node]; 137 /* preferred_node_policy is not initialised early in boot */ 138 if (pol->mode) 139 return pol; 140 } 141 142 return &default_policy; 143 } 144 145 static const struct mempolicy_operations { 146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 147 /* 148 * If read-side task has no lock to protect task->mempolicy, write-side 149 * task will rebind the task->mempolicy by two step. The first step is 150 * setting all the newly nodes, and the second step is cleaning all the 151 * disallowed nodes. In this way, we can avoid finding no node to alloc 152 * page. 153 * If we have a lock to protect task->mempolicy in read-side, we do 154 * rebind directly. 155 * 156 * step: 157 * MPOL_REBIND_ONCE - do rebind work at once 158 * MPOL_REBIND_STEP1 - set all the newly nodes 159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 160 */ 161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 162 enum mpol_rebind_step step); 163 } mpol_ops[MPOL_MAX]; 164 165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 166 { 167 return pol->flags & MPOL_MODE_FLAGS; 168 } 169 170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 171 const nodemask_t *rel) 172 { 173 nodemask_t tmp; 174 nodes_fold(tmp, *orig, nodes_weight(*rel)); 175 nodes_onto(*ret, tmp, *rel); 176 } 177 178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 179 { 180 if (nodes_empty(*nodes)) 181 return -EINVAL; 182 pol->v.nodes = *nodes; 183 return 0; 184 } 185 186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (!nodes) 189 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 190 else if (nodes_empty(*nodes)) 191 return -EINVAL; /* no allowed nodes */ 192 else 193 pol->v.preferred_node = first_node(*nodes); 194 return 0; 195 } 196 197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 198 { 199 if (nodes_empty(*nodes)) 200 return -EINVAL; 201 pol->v.nodes = *nodes; 202 return 0; 203 } 204 205 /* 206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 207 * any, for the new policy. mpol_new() has already validated the nodes 208 * parameter with respect to the policy mode and flags. But, we need to 209 * handle an empty nodemask with MPOL_PREFERRED here. 210 * 211 * Must be called holding task's alloc_lock to protect task's mems_allowed 212 * and mempolicy. May also be called holding the mmap_semaphore for write. 213 */ 214 static int mpol_set_nodemask(struct mempolicy *pol, 215 const nodemask_t *nodes, struct nodemask_scratch *nsc) 216 { 217 int ret; 218 219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 220 if (pol == NULL) 221 return 0; 222 /* Check N_MEMORY */ 223 nodes_and(nsc->mask1, 224 cpuset_current_mems_allowed, node_states[N_MEMORY]); 225 226 VM_BUG_ON(!nodes); 227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 228 nodes = NULL; /* explicit local allocation */ 229 else { 230 if (pol->flags & MPOL_F_RELATIVE_NODES) 231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 232 else 233 nodes_and(nsc->mask2, *nodes, nsc->mask1); 234 235 if (mpol_store_user_nodemask(pol)) 236 pol->w.user_nodemask = *nodes; 237 else 238 pol->w.cpuset_mems_allowed = 239 cpuset_current_mems_allowed; 240 } 241 242 if (nodes) 243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 244 else 245 ret = mpol_ops[pol->mode].create(pol, NULL); 246 return ret; 247 } 248 249 /* 250 * This function just creates a new policy, does some check and simple 251 * initialization. You must invoke mpol_set_nodemask() to set nodes. 252 */ 253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 254 nodemask_t *nodes) 255 { 256 struct mempolicy *policy; 257 258 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 260 261 if (mode == MPOL_DEFAULT) { 262 if (nodes && !nodes_empty(*nodes)) 263 return ERR_PTR(-EINVAL); 264 return NULL; 265 } 266 VM_BUG_ON(!nodes); 267 268 /* 269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 271 * All other modes require a valid pointer to a non-empty nodemask. 272 */ 273 if (mode == MPOL_PREFERRED) { 274 if (nodes_empty(*nodes)) { 275 if (((flags & MPOL_F_STATIC_NODES) || 276 (flags & MPOL_F_RELATIVE_NODES))) 277 return ERR_PTR(-EINVAL); 278 } 279 } else if (mode == MPOL_LOCAL) { 280 if (!nodes_empty(*nodes)) 281 return ERR_PTR(-EINVAL); 282 mode = MPOL_PREFERRED; 283 } else if (nodes_empty(*nodes)) 284 return ERR_PTR(-EINVAL); 285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 286 if (!policy) 287 return ERR_PTR(-ENOMEM); 288 atomic_set(&policy->refcnt, 1); 289 policy->mode = mode; 290 policy->flags = flags; 291 292 return policy; 293 } 294 295 /* Slow path of a mpol destructor. */ 296 void __mpol_put(struct mempolicy *p) 297 { 298 if (!atomic_dec_and_test(&p->refcnt)) 299 return; 300 kmem_cache_free(policy_cache, p); 301 } 302 303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 } 307 308 /* 309 * step: 310 * MPOL_REBIND_ONCE - do rebind work at once 311 * MPOL_REBIND_STEP1 - set all the newly nodes 312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 313 */ 314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 315 enum mpol_rebind_step step) 316 { 317 nodemask_t tmp; 318 319 if (pol->flags & MPOL_F_STATIC_NODES) 320 nodes_and(tmp, pol->w.user_nodemask, *nodes); 321 else if (pol->flags & MPOL_F_RELATIVE_NODES) 322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 323 else { 324 /* 325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 326 * result 327 */ 328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 329 nodes_remap(tmp, pol->v.nodes, 330 pol->w.cpuset_mems_allowed, *nodes); 331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 332 } else if (step == MPOL_REBIND_STEP2) { 333 tmp = pol->w.cpuset_mems_allowed; 334 pol->w.cpuset_mems_allowed = *nodes; 335 } else 336 BUG(); 337 } 338 339 if (nodes_empty(tmp)) 340 tmp = *nodes; 341 342 if (step == MPOL_REBIND_STEP1) 343 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 345 pol->v.nodes = tmp; 346 else 347 BUG(); 348 349 if (!node_isset(current->il_next, tmp)) { 350 current->il_next = next_node(current->il_next, tmp); 351 if (current->il_next >= MAX_NUMNODES) 352 current->il_next = first_node(tmp); 353 if (current->il_next >= MAX_NUMNODES) 354 current->il_next = numa_node_id(); 355 } 356 } 357 358 static void mpol_rebind_preferred(struct mempolicy *pol, 359 const nodemask_t *nodes, 360 enum mpol_rebind_step step) 361 { 362 nodemask_t tmp; 363 364 if (pol->flags & MPOL_F_STATIC_NODES) { 365 int node = first_node(pol->w.user_nodemask); 366 367 if (node_isset(node, *nodes)) { 368 pol->v.preferred_node = node; 369 pol->flags &= ~MPOL_F_LOCAL; 370 } else 371 pol->flags |= MPOL_F_LOCAL; 372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 374 pol->v.preferred_node = first_node(tmp); 375 } else if (!(pol->flags & MPOL_F_LOCAL)) { 376 pol->v.preferred_node = node_remap(pol->v.preferred_node, 377 pol->w.cpuset_mems_allowed, 378 *nodes); 379 pol->w.cpuset_mems_allowed = *nodes; 380 } 381 } 382 383 /* 384 * mpol_rebind_policy - Migrate a policy to a different set of nodes 385 * 386 * If read-side task has no lock to protect task->mempolicy, write-side 387 * task will rebind the task->mempolicy by two step. The first step is 388 * setting all the newly nodes, and the second step is cleaning all the 389 * disallowed nodes. In this way, we can avoid finding no node to alloc 390 * page. 391 * If we have a lock to protect task->mempolicy in read-side, we do 392 * rebind directly. 393 * 394 * step: 395 * MPOL_REBIND_ONCE - do rebind work at once 396 * MPOL_REBIND_STEP1 - set all the newly nodes 397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 398 */ 399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 400 enum mpol_rebind_step step) 401 { 402 if (!pol) 403 return; 404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 406 return; 407 408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 409 return; 410 411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 412 BUG(); 413 414 if (step == MPOL_REBIND_STEP1) 415 pol->flags |= MPOL_F_REBINDING; 416 else if (step == MPOL_REBIND_STEP2) 417 pol->flags &= ~MPOL_F_REBINDING; 418 else if (step >= MPOL_REBIND_NSTEP) 419 BUG(); 420 421 mpol_ops[pol->mode].rebind(pol, newmask, step); 422 } 423 424 /* 425 * Wrapper for mpol_rebind_policy() that just requires task 426 * pointer, and updates task mempolicy. 427 * 428 * Called with task's alloc_lock held. 429 */ 430 431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 432 enum mpol_rebind_step step) 433 { 434 mpol_rebind_policy(tsk->mempolicy, new, step); 435 } 436 437 /* 438 * Rebind each vma in mm to new nodemask. 439 * 440 * Call holding a reference to mm. Takes mm->mmap_sem during call. 441 */ 442 443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 444 { 445 struct vm_area_struct *vma; 446 447 down_write(&mm->mmap_sem); 448 for (vma = mm->mmap; vma; vma = vma->vm_next) 449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 450 up_write(&mm->mmap_sem); 451 } 452 453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 454 [MPOL_DEFAULT] = { 455 .rebind = mpol_rebind_default, 456 }, 457 [MPOL_INTERLEAVE] = { 458 .create = mpol_new_interleave, 459 .rebind = mpol_rebind_nodemask, 460 }, 461 [MPOL_PREFERRED] = { 462 .create = mpol_new_preferred, 463 .rebind = mpol_rebind_preferred, 464 }, 465 [MPOL_BIND] = { 466 .create = mpol_new_bind, 467 .rebind = mpol_rebind_nodemask, 468 }, 469 }; 470 471 static void migrate_page_add(struct page *page, struct list_head *pagelist, 472 unsigned long flags); 473 474 struct queue_pages { 475 struct list_head *pagelist; 476 unsigned long flags; 477 nodemask_t *nmask; 478 struct vm_area_struct *prev; 479 }; 480 481 /* 482 * Scan through pages checking if pages follow certain conditions, 483 * and move them to the pagelist if they do. 484 */ 485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 486 unsigned long end, struct mm_walk *walk) 487 { 488 struct vm_area_struct *vma = walk->vma; 489 struct page *page; 490 struct queue_pages *qp = walk->private; 491 unsigned long flags = qp->flags; 492 int nid; 493 pte_t *pte; 494 spinlock_t *ptl; 495 496 split_huge_page_pmd(vma, addr, pmd); 497 if (pmd_trans_unstable(pmd)) 498 return 0; 499 500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 501 for (; addr != end; pte++, addr += PAGE_SIZE) { 502 if (!pte_present(*pte)) 503 continue; 504 page = vm_normal_page(vma, addr, *pte); 505 if (!page) 506 continue; 507 /* 508 * vm_normal_page() filters out zero pages, but there might 509 * still be PageReserved pages to skip, perhaps in a VDSO. 510 */ 511 if (PageReserved(page)) 512 continue; 513 nid = page_to_nid(page); 514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 515 continue; 516 517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 518 migrate_page_add(page, qp->pagelist, flags); 519 } 520 pte_unmap_unlock(pte - 1, ptl); 521 cond_resched(); 522 return 0; 523 } 524 525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 526 unsigned long addr, unsigned long end, 527 struct mm_walk *walk) 528 { 529 #ifdef CONFIG_HUGETLB_PAGE 530 struct queue_pages *qp = walk->private; 531 unsigned long flags = qp->flags; 532 int nid; 533 struct page *page; 534 spinlock_t *ptl; 535 pte_t entry; 536 537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 538 entry = huge_ptep_get(pte); 539 if (!pte_present(entry)) 540 goto unlock; 541 page = pte_page(entry); 542 nid = page_to_nid(page); 543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT)) 544 goto unlock; 545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 546 if (flags & (MPOL_MF_MOVE_ALL) || 547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) 548 isolate_huge_page(page, qp->pagelist); 549 unlock: 550 spin_unlock(ptl); 551 #else 552 BUG(); 553 #endif 554 return 0; 555 } 556 557 #ifdef CONFIG_NUMA_BALANCING 558 /* 559 * This is used to mark a range of virtual addresses to be inaccessible. 560 * These are later cleared by a NUMA hinting fault. Depending on these 561 * faults, pages may be migrated for better NUMA placement. 562 * 563 * This is assuming that NUMA faults are handled using PROT_NONE. If 564 * an architecture makes a different choice, it will need further 565 * changes to the core. 566 */ 567 unsigned long change_prot_numa(struct vm_area_struct *vma, 568 unsigned long addr, unsigned long end) 569 { 570 int nr_updated; 571 572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1); 573 if (nr_updated) 574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 575 576 return nr_updated; 577 } 578 #else 579 static unsigned long change_prot_numa(struct vm_area_struct *vma, 580 unsigned long addr, unsigned long end) 581 { 582 return 0; 583 } 584 #endif /* CONFIG_NUMA_BALANCING */ 585 586 static int queue_pages_test_walk(unsigned long start, unsigned long end, 587 struct mm_walk *walk) 588 { 589 struct vm_area_struct *vma = walk->vma; 590 struct queue_pages *qp = walk->private; 591 unsigned long endvma = vma->vm_end; 592 unsigned long flags = qp->flags; 593 594 if (vma->vm_flags & VM_PFNMAP) 595 return 1; 596 597 if (endvma > end) 598 endvma = end; 599 if (vma->vm_start > start) 600 start = vma->vm_start; 601 602 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 603 if (!vma->vm_next && vma->vm_end < end) 604 return -EFAULT; 605 if (qp->prev && qp->prev->vm_end < vma->vm_start) 606 return -EFAULT; 607 } 608 609 qp->prev = vma; 610 611 if (vma->vm_flags & VM_PFNMAP) 612 return 1; 613 614 if (flags & MPOL_MF_LAZY) { 615 /* Similar to task_numa_work, skip inaccessible VMAs */ 616 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) 617 change_prot_numa(vma, start, endvma); 618 return 1; 619 } 620 621 if ((flags & MPOL_MF_STRICT) || 622 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 623 vma_migratable(vma))) 624 /* queue pages from current vma */ 625 return 0; 626 return 1; 627 } 628 629 /* 630 * Walk through page tables and collect pages to be migrated. 631 * 632 * If pages found in a given range are on a set of nodes (determined by 633 * @nodes and @flags,) it's isolated and queued to the pagelist which is 634 * passed via @private.) 635 */ 636 static int 637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 638 nodemask_t *nodes, unsigned long flags, 639 struct list_head *pagelist) 640 { 641 struct queue_pages qp = { 642 .pagelist = pagelist, 643 .flags = flags, 644 .nmask = nodes, 645 .prev = NULL, 646 }; 647 struct mm_walk queue_pages_walk = { 648 .hugetlb_entry = queue_pages_hugetlb, 649 .pmd_entry = queue_pages_pte_range, 650 .test_walk = queue_pages_test_walk, 651 .mm = mm, 652 .private = &qp, 653 }; 654 655 return walk_page_range(start, end, &queue_pages_walk); 656 } 657 658 /* 659 * Apply policy to a single VMA 660 * This must be called with the mmap_sem held for writing. 661 */ 662 static int vma_replace_policy(struct vm_area_struct *vma, 663 struct mempolicy *pol) 664 { 665 int err; 666 struct mempolicy *old; 667 struct mempolicy *new; 668 669 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 670 vma->vm_start, vma->vm_end, vma->vm_pgoff, 671 vma->vm_ops, vma->vm_file, 672 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 673 674 new = mpol_dup(pol); 675 if (IS_ERR(new)) 676 return PTR_ERR(new); 677 678 if (vma->vm_ops && vma->vm_ops->set_policy) { 679 err = vma->vm_ops->set_policy(vma, new); 680 if (err) 681 goto err_out; 682 } 683 684 old = vma->vm_policy; 685 vma->vm_policy = new; /* protected by mmap_sem */ 686 mpol_put(old); 687 688 return 0; 689 err_out: 690 mpol_put(new); 691 return err; 692 } 693 694 /* Step 2: apply policy to a range and do splits. */ 695 static int mbind_range(struct mm_struct *mm, unsigned long start, 696 unsigned long end, struct mempolicy *new_pol) 697 { 698 struct vm_area_struct *next; 699 struct vm_area_struct *prev; 700 struct vm_area_struct *vma; 701 int err = 0; 702 pgoff_t pgoff; 703 unsigned long vmstart; 704 unsigned long vmend; 705 706 vma = find_vma(mm, start); 707 if (!vma || vma->vm_start > start) 708 return -EFAULT; 709 710 prev = vma->vm_prev; 711 if (start > vma->vm_start) 712 prev = vma; 713 714 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 715 next = vma->vm_next; 716 vmstart = max(start, vma->vm_start); 717 vmend = min(end, vma->vm_end); 718 719 if (mpol_equal(vma_policy(vma), new_pol)) 720 continue; 721 722 pgoff = vma->vm_pgoff + 723 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 724 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 725 vma->anon_vma, vma->vm_file, pgoff, 726 new_pol); 727 if (prev) { 728 vma = prev; 729 next = vma->vm_next; 730 if (mpol_equal(vma_policy(vma), new_pol)) 731 continue; 732 /* vma_merge() joined vma && vma->next, case 8 */ 733 goto replace; 734 } 735 if (vma->vm_start != vmstart) { 736 err = split_vma(vma->vm_mm, vma, vmstart, 1); 737 if (err) 738 goto out; 739 } 740 if (vma->vm_end != vmend) { 741 err = split_vma(vma->vm_mm, vma, vmend, 0); 742 if (err) 743 goto out; 744 } 745 replace: 746 err = vma_replace_policy(vma, new_pol); 747 if (err) 748 goto out; 749 } 750 751 out: 752 return err; 753 } 754 755 /* Set the process memory policy */ 756 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 757 nodemask_t *nodes) 758 { 759 struct mempolicy *new, *old; 760 NODEMASK_SCRATCH(scratch); 761 int ret; 762 763 if (!scratch) 764 return -ENOMEM; 765 766 new = mpol_new(mode, flags, nodes); 767 if (IS_ERR(new)) { 768 ret = PTR_ERR(new); 769 goto out; 770 } 771 772 task_lock(current); 773 ret = mpol_set_nodemask(new, nodes, scratch); 774 if (ret) { 775 task_unlock(current); 776 mpol_put(new); 777 goto out; 778 } 779 old = current->mempolicy; 780 current->mempolicy = new; 781 if (new && new->mode == MPOL_INTERLEAVE && 782 nodes_weight(new->v.nodes)) 783 current->il_next = first_node(new->v.nodes); 784 task_unlock(current); 785 mpol_put(old); 786 ret = 0; 787 out: 788 NODEMASK_SCRATCH_FREE(scratch); 789 return ret; 790 } 791 792 /* 793 * Return nodemask for policy for get_mempolicy() query 794 * 795 * Called with task's alloc_lock held 796 */ 797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 798 { 799 nodes_clear(*nodes); 800 if (p == &default_policy) 801 return; 802 803 switch (p->mode) { 804 case MPOL_BIND: 805 /* Fall through */ 806 case MPOL_INTERLEAVE: 807 *nodes = p->v.nodes; 808 break; 809 case MPOL_PREFERRED: 810 if (!(p->flags & MPOL_F_LOCAL)) 811 node_set(p->v.preferred_node, *nodes); 812 /* else return empty node mask for local allocation */ 813 break; 814 default: 815 BUG(); 816 } 817 } 818 819 static int lookup_node(struct mm_struct *mm, unsigned long addr) 820 { 821 struct page *p; 822 int err; 823 824 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 825 if (err >= 0) { 826 err = page_to_nid(p); 827 put_page(p); 828 } 829 return err; 830 } 831 832 /* Retrieve NUMA policy */ 833 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 834 unsigned long addr, unsigned long flags) 835 { 836 int err; 837 struct mm_struct *mm = current->mm; 838 struct vm_area_struct *vma = NULL; 839 struct mempolicy *pol = current->mempolicy; 840 841 if (flags & 842 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 843 return -EINVAL; 844 845 if (flags & MPOL_F_MEMS_ALLOWED) { 846 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 847 return -EINVAL; 848 *policy = 0; /* just so it's initialized */ 849 task_lock(current); 850 *nmask = cpuset_current_mems_allowed; 851 task_unlock(current); 852 return 0; 853 } 854 855 if (flags & MPOL_F_ADDR) { 856 /* 857 * Do NOT fall back to task policy if the 858 * vma/shared policy at addr is NULL. We 859 * want to return MPOL_DEFAULT in this case. 860 */ 861 down_read(&mm->mmap_sem); 862 vma = find_vma_intersection(mm, addr, addr+1); 863 if (!vma) { 864 up_read(&mm->mmap_sem); 865 return -EFAULT; 866 } 867 if (vma->vm_ops && vma->vm_ops->get_policy) 868 pol = vma->vm_ops->get_policy(vma, addr); 869 else 870 pol = vma->vm_policy; 871 } else if (addr) 872 return -EINVAL; 873 874 if (!pol) 875 pol = &default_policy; /* indicates default behavior */ 876 877 if (flags & MPOL_F_NODE) { 878 if (flags & MPOL_F_ADDR) { 879 err = lookup_node(mm, addr); 880 if (err < 0) 881 goto out; 882 *policy = err; 883 } else if (pol == current->mempolicy && 884 pol->mode == MPOL_INTERLEAVE) { 885 *policy = current->il_next; 886 } else { 887 err = -EINVAL; 888 goto out; 889 } 890 } else { 891 *policy = pol == &default_policy ? MPOL_DEFAULT : 892 pol->mode; 893 /* 894 * Internal mempolicy flags must be masked off before exposing 895 * the policy to userspace. 896 */ 897 *policy |= (pol->flags & MPOL_MODE_FLAGS); 898 } 899 900 if (vma) { 901 up_read(¤t->mm->mmap_sem); 902 vma = NULL; 903 } 904 905 err = 0; 906 if (nmask) { 907 if (mpol_store_user_nodemask(pol)) { 908 *nmask = pol->w.user_nodemask; 909 } else { 910 task_lock(current); 911 get_policy_nodemask(pol, nmask); 912 task_unlock(current); 913 } 914 } 915 916 out: 917 mpol_cond_put(pol); 918 if (vma) 919 up_read(¤t->mm->mmap_sem); 920 return err; 921 } 922 923 #ifdef CONFIG_MIGRATION 924 /* 925 * page migration 926 */ 927 static void migrate_page_add(struct page *page, struct list_head *pagelist, 928 unsigned long flags) 929 { 930 /* 931 * Avoid migrating a page that is shared with others. 932 */ 933 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 934 if (!isolate_lru_page(page)) { 935 list_add_tail(&page->lru, pagelist); 936 inc_zone_page_state(page, NR_ISOLATED_ANON + 937 page_is_file_cache(page)); 938 } 939 } 940 } 941 942 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 943 { 944 if (PageHuge(page)) 945 return alloc_huge_page_node(page_hstate(compound_head(page)), 946 node); 947 else 948 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE | 949 __GFP_THISNODE, 0); 950 } 951 952 /* 953 * Migrate pages from one node to a target node. 954 * Returns error or the number of pages not migrated. 955 */ 956 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 957 int flags) 958 { 959 nodemask_t nmask; 960 LIST_HEAD(pagelist); 961 int err = 0; 962 963 nodes_clear(nmask); 964 node_set(source, nmask); 965 966 /* 967 * This does not "check" the range but isolates all pages that 968 * need migration. Between passing in the full user address 969 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 970 */ 971 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 972 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 973 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 974 975 if (!list_empty(&pagelist)) { 976 err = migrate_pages(&pagelist, new_node_page, NULL, dest, 977 MIGRATE_SYNC, MR_SYSCALL); 978 if (err) 979 putback_movable_pages(&pagelist); 980 } 981 982 return err; 983 } 984 985 /* 986 * Move pages between the two nodesets so as to preserve the physical 987 * layout as much as possible. 988 * 989 * Returns the number of page that could not be moved. 990 */ 991 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 992 const nodemask_t *to, int flags) 993 { 994 int busy = 0; 995 int err; 996 nodemask_t tmp; 997 998 err = migrate_prep(); 999 if (err) 1000 return err; 1001 1002 down_read(&mm->mmap_sem); 1003 1004 /* 1005 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1006 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1007 * bit in 'tmp', and return that <source, dest> pair for migration. 1008 * The pair of nodemasks 'to' and 'from' define the map. 1009 * 1010 * If no pair of bits is found that way, fallback to picking some 1011 * pair of 'source' and 'dest' bits that are not the same. If the 1012 * 'source' and 'dest' bits are the same, this represents a node 1013 * that will be migrating to itself, so no pages need move. 1014 * 1015 * If no bits are left in 'tmp', or if all remaining bits left 1016 * in 'tmp' correspond to the same bit in 'to', return false 1017 * (nothing left to migrate). 1018 * 1019 * This lets us pick a pair of nodes to migrate between, such that 1020 * if possible the dest node is not already occupied by some other 1021 * source node, minimizing the risk of overloading the memory on a 1022 * node that would happen if we migrated incoming memory to a node 1023 * before migrating outgoing memory source that same node. 1024 * 1025 * A single scan of tmp is sufficient. As we go, we remember the 1026 * most recent <s, d> pair that moved (s != d). If we find a pair 1027 * that not only moved, but what's better, moved to an empty slot 1028 * (d is not set in tmp), then we break out then, with that pair. 1029 * Otherwise when we finish scanning from_tmp, we at least have the 1030 * most recent <s, d> pair that moved. If we get all the way through 1031 * the scan of tmp without finding any node that moved, much less 1032 * moved to an empty node, then there is nothing left worth migrating. 1033 */ 1034 1035 tmp = *from; 1036 while (!nodes_empty(tmp)) { 1037 int s,d; 1038 int source = NUMA_NO_NODE; 1039 int dest = 0; 1040 1041 for_each_node_mask(s, tmp) { 1042 1043 /* 1044 * do_migrate_pages() tries to maintain the relative 1045 * node relationship of the pages established between 1046 * threads and memory areas. 1047 * 1048 * However if the number of source nodes is not equal to 1049 * the number of destination nodes we can not preserve 1050 * this node relative relationship. In that case, skip 1051 * copying memory from a node that is in the destination 1052 * mask. 1053 * 1054 * Example: [2,3,4] -> [3,4,5] moves everything. 1055 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1056 */ 1057 1058 if ((nodes_weight(*from) != nodes_weight(*to)) && 1059 (node_isset(s, *to))) 1060 continue; 1061 1062 d = node_remap(s, *from, *to); 1063 if (s == d) 1064 continue; 1065 1066 source = s; /* Node moved. Memorize */ 1067 dest = d; 1068 1069 /* dest not in remaining from nodes? */ 1070 if (!node_isset(dest, tmp)) 1071 break; 1072 } 1073 if (source == NUMA_NO_NODE) 1074 break; 1075 1076 node_clear(source, tmp); 1077 err = migrate_to_node(mm, source, dest, flags); 1078 if (err > 0) 1079 busy += err; 1080 if (err < 0) 1081 break; 1082 } 1083 up_read(&mm->mmap_sem); 1084 if (err < 0) 1085 return err; 1086 return busy; 1087 1088 } 1089 1090 /* 1091 * Allocate a new page for page migration based on vma policy. 1092 * Start by assuming the page is mapped by the same vma as contains @start. 1093 * Search forward from there, if not. N.B., this assumes that the 1094 * list of pages handed to migrate_pages()--which is how we get here-- 1095 * is in virtual address order. 1096 */ 1097 static struct page *new_page(struct page *page, unsigned long start, int **x) 1098 { 1099 struct vm_area_struct *vma; 1100 unsigned long uninitialized_var(address); 1101 1102 vma = find_vma(current->mm, start); 1103 while (vma) { 1104 address = page_address_in_vma(page, vma); 1105 if (address != -EFAULT) 1106 break; 1107 vma = vma->vm_next; 1108 } 1109 1110 if (PageHuge(page)) { 1111 BUG_ON(!vma); 1112 return alloc_huge_page_noerr(vma, address, 1); 1113 } 1114 /* 1115 * if !vma, alloc_page_vma() will use task or system default policy 1116 */ 1117 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1118 } 1119 #else 1120 1121 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1122 unsigned long flags) 1123 { 1124 } 1125 1126 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1127 const nodemask_t *to, int flags) 1128 { 1129 return -ENOSYS; 1130 } 1131 1132 static struct page *new_page(struct page *page, unsigned long start, int **x) 1133 { 1134 return NULL; 1135 } 1136 #endif 1137 1138 static long do_mbind(unsigned long start, unsigned long len, 1139 unsigned short mode, unsigned short mode_flags, 1140 nodemask_t *nmask, unsigned long flags) 1141 { 1142 struct mm_struct *mm = current->mm; 1143 struct mempolicy *new; 1144 unsigned long end; 1145 int err; 1146 LIST_HEAD(pagelist); 1147 1148 if (flags & ~(unsigned long)MPOL_MF_VALID) 1149 return -EINVAL; 1150 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1151 return -EPERM; 1152 1153 if (start & ~PAGE_MASK) 1154 return -EINVAL; 1155 1156 if (mode == MPOL_DEFAULT) 1157 flags &= ~MPOL_MF_STRICT; 1158 1159 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1160 end = start + len; 1161 1162 if (end < start) 1163 return -EINVAL; 1164 if (end == start) 1165 return 0; 1166 1167 new = mpol_new(mode, mode_flags, nmask); 1168 if (IS_ERR(new)) 1169 return PTR_ERR(new); 1170 1171 if (flags & MPOL_MF_LAZY) 1172 new->flags |= MPOL_F_MOF; 1173 1174 /* 1175 * If we are using the default policy then operation 1176 * on discontinuous address spaces is okay after all 1177 */ 1178 if (!new) 1179 flags |= MPOL_MF_DISCONTIG_OK; 1180 1181 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1182 start, start + len, mode, mode_flags, 1183 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1184 1185 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1186 1187 err = migrate_prep(); 1188 if (err) 1189 goto mpol_out; 1190 } 1191 { 1192 NODEMASK_SCRATCH(scratch); 1193 if (scratch) { 1194 down_write(&mm->mmap_sem); 1195 task_lock(current); 1196 err = mpol_set_nodemask(new, nmask, scratch); 1197 task_unlock(current); 1198 if (err) 1199 up_write(&mm->mmap_sem); 1200 } else 1201 err = -ENOMEM; 1202 NODEMASK_SCRATCH_FREE(scratch); 1203 } 1204 if (err) 1205 goto mpol_out; 1206 1207 err = queue_pages_range(mm, start, end, nmask, 1208 flags | MPOL_MF_INVERT, &pagelist); 1209 if (!err) 1210 err = mbind_range(mm, start, end, new); 1211 1212 if (!err) { 1213 int nr_failed = 0; 1214 1215 if (!list_empty(&pagelist)) { 1216 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1217 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1218 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1219 if (nr_failed) 1220 putback_movable_pages(&pagelist); 1221 } 1222 1223 if (nr_failed && (flags & MPOL_MF_STRICT)) 1224 err = -EIO; 1225 } else 1226 putback_movable_pages(&pagelist); 1227 1228 up_write(&mm->mmap_sem); 1229 mpol_out: 1230 mpol_put(new); 1231 return err; 1232 } 1233 1234 /* 1235 * User space interface with variable sized bitmaps for nodelists. 1236 */ 1237 1238 /* Copy a node mask from user space. */ 1239 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1240 unsigned long maxnode) 1241 { 1242 unsigned long k; 1243 unsigned long nlongs; 1244 unsigned long endmask; 1245 1246 --maxnode; 1247 nodes_clear(*nodes); 1248 if (maxnode == 0 || !nmask) 1249 return 0; 1250 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1251 return -EINVAL; 1252 1253 nlongs = BITS_TO_LONGS(maxnode); 1254 if ((maxnode % BITS_PER_LONG) == 0) 1255 endmask = ~0UL; 1256 else 1257 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1258 1259 /* When the user specified more nodes than supported just check 1260 if the non supported part is all zero. */ 1261 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1262 if (nlongs > PAGE_SIZE/sizeof(long)) 1263 return -EINVAL; 1264 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1265 unsigned long t; 1266 if (get_user(t, nmask + k)) 1267 return -EFAULT; 1268 if (k == nlongs - 1) { 1269 if (t & endmask) 1270 return -EINVAL; 1271 } else if (t) 1272 return -EINVAL; 1273 } 1274 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1275 endmask = ~0UL; 1276 } 1277 1278 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1279 return -EFAULT; 1280 nodes_addr(*nodes)[nlongs-1] &= endmask; 1281 return 0; 1282 } 1283 1284 /* Copy a kernel node mask to user space */ 1285 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1286 nodemask_t *nodes) 1287 { 1288 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1289 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1290 1291 if (copy > nbytes) { 1292 if (copy > PAGE_SIZE) 1293 return -EINVAL; 1294 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1295 return -EFAULT; 1296 copy = nbytes; 1297 } 1298 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1299 } 1300 1301 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1302 unsigned long, mode, const unsigned long __user *, nmask, 1303 unsigned long, maxnode, unsigned, flags) 1304 { 1305 nodemask_t nodes; 1306 int err; 1307 unsigned short mode_flags; 1308 1309 mode_flags = mode & MPOL_MODE_FLAGS; 1310 mode &= ~MPOL_MODE_FLAGS; 1311 if (mode >= MPOL_MAX) 1312 return -EINVAL; 1313 if ((mode_flags & MPOL_F_STATIC_NODES) && 1314 (mode_flags & MPOL_F_RELATIVE_NODES)) 1315 return -EINVAL; 1316 err = get_nodes(&nodes, nmask, maxnode); 1317 if (err) 1318 return err; 1319 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1320 } 1321 1322 /* Set the process memory policy */ 1323 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1324 unsigned long, maxnode) 1325 { 1326 int err; 1327 nodemask_t nodes; 1328 unsigned short flags; 1329 1330 flags = mode & MPOL_MODE_FLAGS; 1331 mode &= ~MPOL_MODE_FLAGS; 1332 if ((unsigned int)mode >= MPOL_MAX) 1333 return -EINVAL; 1334 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1335 return -EINVAL; 1336 err = get_nodes(&nodes, nmask, maxnode); 1337 if (err) 1338 return err; 1339 return do_set_mempolicy(mode, flags, &nodes); 1340 } 1341 1342 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1343 const unsigned long __user *, old_nodes, 1344 const unsigned long __user *, new_nodes) 1345 { 1346 const struct cred *cred = current_cred(), *tcred; 1347 struct mm_struct *mm = NULL; 1348 struct task_struct *task; 1349 nodemask_t task_nodes; 1350 int err; 1351 nodemask_t *old; 1352 nodemask_t *new; 1353 NODEMASK_SCRATCH(scratch); 1354 1355 if (!scratch) 1356 return -ENOMEM; 1357 1358 old = &scratch->mask1; 1359 new = &scratch->mask2; 1360 1361 err = get_nodes(old, old_nodes, maxnode); 1362 if (err) 1363 goto out; 1364 1365 err = get_nodes(new, new_nodes, maxnode); 1366 if (err) 1367 goto out; 1368 1369 /* Find the mm_struct */ 1370 rcu_read_lock(); 1371 task = pid ? find_task_by_vpid(pid) : current; 1372 if (!task) { 1373 rcu_read_unlock(); 1374 err = -ESRCH; 1375 goto out; 1376 } 1377 get_task_struct(task); 1378 1379 err = -EINVAL; 1380 1381 /* 1382 * Check if this process has the right to modify the specified 1383 * process. The right exists if the process has administrative 1384 * capabilities, superuser privileges or the same 1385 * userid as the target process. 1386 */ 1387 tcred = __task_cred(task); 1388 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1389 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1390 !capable(CAP_SYS_NICE)) { 1391 rcu_read_unlock(); 1392 err = -EPERM; 1393 goto out_put; 1394 } 1395 rcu_read_unlock(); 1396 1397 task_nodes = cpuset_mems_allowed(task); 1398 /* Is the user allowed to access the target nodes? */ 1399 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1400 err = -EPERM; 1401 goto out_put; 1402 } 1403 1404 if (!nodes_subset(*new, node_states[N_MEMORY])) { 1405 err = -EINVAL; 1406 goto out_put; 1407 } 1408 1409 err = security_task_movememory(task); 1410 if (err) 1411 goto out_put; 1412 1413 mm = get_task_mm(task); 1414 put_task_struct(task); 1415 1416 if (!mm) { 1417 err = -EINVAL; 1418 goto out; 1419 } 1420 1421 err = do_migrate_pages(mm, old, new, 1422 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1423 1424 mmput(mm); 1425 out: 1426 NODEMASK_SCRATCH_FREE(scratch); 1427 1428 return err; 1429 1430 out_put: 1431 put_task_struct(task); 1432 goto out; 1433 1434 } 1435 1436 1437 /* Retrieve NUMA policy */ 1438 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1439 unsigned long __user *, nmask, unsigned long, maxnode, 1440 unsigned long, addr, unsigned long, flags) 1441 { 1442 int err; 1443 int uninitialized_var(pval); 1444 nodemask_t nodes; 1445 1446 if (nmask != NULL && maxnode < MAX_NUMNODES) 1447 return -EINVAL; 1448 1449 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1450 1451 if (err) 1452 return err; 1453 1454 if (policy && put_user(pval, policy)) 1455 return -EFAULT; 1456 1457 if (nmask) 1458 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1459 1460 return err; 1461 } 1462 1463 #ifdef CONFIG_COMPAT 1464 1465 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1466 compat_ulong_t __user *, nmask, 1467 compat_ulong_t, maxnode, 1468 compat_ulong_t, addr, compat_ulong_t, flags) 1469 { 1470 long err; 1471 unsigned long __user *nm = NULL; 1472 unsigned long nr_bits, alloc_size; 1473 DECLARE_BITMAP(bm, MAX_NUMNODES); 1474 1475 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1476 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1477 1478 if (nmask) 1479 nm = compat_alloc_user_space(alloc_size); 1480 1481 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1482 1483 if (!err && nmask) { 1484 unsigned long copy_size; 1485 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1486 err = copy_from_user(bm, nm, copy_size); 1487 /* ensure entire bitmap is zeroed */ 1488 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1489 err |= compat_put_bitmap(nmask, bm, nr_bits); 1490 } 1491 1492 return err; 1493 } 1494 1495 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1496 compat_ulong_t, maxnode) 1497 { 1498 long err = 0; 1499 unsigned long __user *nm = NULL; 1500 unsigned long nr_bits, alloc_size; 1501 DECLARE_BITMAP(bm, MAX_NUMNODES); 1502 1503 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1504 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1505 1506 if (nmask) { 1507 err = compat_get_bitmap(bm, nmask, nr_bits); 1508 nm = compat_alloc_user_space(alloc_size); 1509 err |= copy_to_user(nm, bm, alloc_size); 1510 } 1511 1512 if (err) 1513 return -EFAULT; 1514 1515 return sys_set_mempolicy(mode, nm, nr_bits+1); 1516 } 1517 1518 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1519 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1520 compat_ulong_t, maxnode, compat_ulong_t, flags) 1521 { 1522 long err = 0; 1523 unsigned long __user *nm = NULL; 1524 unsigned long nr_bits, alloc_size; 1525 nodemask_t bm; 1526 1527 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1528 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1529 1530 if (nmask) { 1531 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1532 nm = compat_alloc_user_space(alloc_size); 1533 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1534 } 1535 1536 if (err) 1537 return -EFAULT; 1538 1539 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1540 } 1541 1542 #endif 1543 1544 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1545 unsigned long addr) 1546 { 1547 struct mempolicy *pol = NULL; 1548 1549 if (vma) { 1550 if (vma->vm_ops && vma->vm_ops->get_policy) { 1551 pol = vma->vm_ops->get_policy(vma, addr); 1552 } else if (vma->vm_policy) { 1553 pol = vma->vm_policy; 1554 1555 /* 1556 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1557 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1558 * count on these policies which will be dropped by 1559 * mpol_cond_put() later 1560 */ 1561 if (mpol_needs_cond_ref(pol)) 1562 mpol_get(pol); 1563 } 1564 } 1565 1566 return pol; 1567 } 1568 1569 /* 1570 * get_vma_policy(@vma, @addr) 1571 * @vma: virtual memory area whose policy is sought 1572 * @addr: address in @vma for shared policy lookup 1573 * 1574 * Returns effective policy for a VMA at specified address. 1575 * Falls back to current->mempolicy or system default policy, as necessary. 1576 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1577 * count--added by the get_policy() vm_op, as appropriate--to protect against 1578 * freeing by another task. It is the caller's responsibility to free the 1579 * extra reference for shared policies. 1580 */ 1581 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1582 unsigned long addr) 1583 { 1584 struct mempolicy *pol = __get_vma_policy(vma, addr); 1585 1586 if (!pol) 1587 pol = get_task_policy(current); 1588 1589 return pol; 1590 } 1591 1592 bool vma_policy_mof(struct vm_area_struct *vma) 1593 { 1594 struct mempolicy *pol; 1595 1596 if (vma->vm_ops && vma->vm_ops->get_policy) { 1597 bool ret = false; 1598 1599 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1600 if (pol && (pol->flags & MPOL_F_MOF)) 1601 ret = true; 1602 mpol_cond_put(pol); 1603 1604 return ret; 1605 } 1606 1607 pol = vma->vm_policy; 1608 if (!pol) 1609 pol = get_task_policy(current); 1610 1611 return pol->flags & MPOL_F_MOF; 1612 } 1613 1614 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1615 { 1616 enum zone_type dynamic_policy_zone = policy_zone; 1617 1618 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1619 1620 /* 1621 * if policy->v.nodes has movable memory only, 1622 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1623 * 1624 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1625 * so if the following test faile, it implies 1626 * policy->v.nodes has movable memory only. 1627 */ 1628 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1629 dynamic_policy_zone = ZONE_MOVABLE; 1630 1631 return zone >= dynamic_policy_zone; 1632 } 1633 1634 /* 1635 * Return a nodemask representing a mempolicy for filtering nodes for 1636 * page allocation 1637 */ 1638 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1639 { 1640 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1641 if (unlikely(policy->mode == MPOL_BIND) && 1642 apply_policy_zone(policy, gfp_zone(gfp)) && 1643 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1644 return &policy->v.nodes; 1645 1646 return NULL; 1647 } 1648 1649 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1650 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1651 int nd) 1652 { 1653 switch (policy->mode) { 1654 case MPOL_PREFERRED: 1655 if (!(policy->flags & MPOL_F_LOCAL)) 1656 nd = policy->v.preferred_node; 1657 break; 1658 case MPOL_BIND: 1659 /* 1660 * Normally, MPOL_BIND allocations are node-local within the 1661 * allowed nodemask. However, if __GFP_THISNODE is set and the 1662 * current node isn't part of the mask, we use the zonelist for 1663 * the first node in the mask instead. 1664 */ 1665 if (unlikely(gfp & __GFP_THISNODE) && 1666 unlikely(!node_isset(nd, policy->v.nodes))) 1667 nd = first_node(policy->v.nodes); 1668 break; 1669 default: 1670 BUG(); 1671 } 1672 return node_zonelist(nd, gfp); 1673 } 1674 1675 /* Do dynamic interleaving for a process */ 1676 static unsigned interleave_nodes(struct mempolicy *policy) 1677 { 1678 unsigned nid, next; 1679 struct task_struct *me = current; 1680 1681 nid = me->il_next; 1682 next = next_node(nid, policy->v.nodes); 1683 if (next >= MAX_NUMNODES) 1684 next = first_node(policy->v.nodes); 1685 if (next < MAX_NUMNODES) 1686 me->il_next = next; 1687 return nid; 1688 } 1689 1690 /* 1691 * Depending on the memory policy provide a node from which to allocate the 1692 * next slab entry. 1693 */ 1694 unsigned int mempolicy_slab_node(void) 1695 { 1696 struct mempolicy *policy; 1697 int node = numa_mem_id(); 1698 1699 if (in_interrupt()) 1700 return node; 1701 1702 policy = current->mempolicy; 1703 if (!policy || policy->flags & MPOL_F_LOCAL) 1704 return node; 1705 1706 switch (policy->mode) { 1707 case MPOL_PREFERRED: 1708 /* 1709 * handled MPOL_F_LOCAL above 1710 */ 1711 return policy->v.preferred_node; 1712 1713 case MPOL_INTERLEAVE: 1714 return interleave_nodes(policy); 1715 1716 case MPOL_BIND: { 1717 /* 1718 * Follow bind policy behavior and start allocation at the 1719 * first node. 1720 */ 1721 struct zonelist *zonelist; 1722 struct zone *zone; 1723 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1724 zonelist = &NODE_DATA(node)->node_zonelists[0]; 1725 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1726 &policy->v.nodes, 1727 &zone); 1728 return zone ? zone->node : node; 1729 } 1730 1731 default: 1732 BUG(); 1733 } 1734 } 1735 1736 /* Do static interleaving for a VMA with known offset. */ 1737 static unsigned offset_il_node(struct mempolicy *pol, 1738 struct vm_area_struct *vma, unsigned long off) 1739 { 1740 unsigned nnodes = nodes_weight(pol->v.nodes); 1741 unsigned target; 1742 int c; 1743 int nid = NUMA_NO_NODE; 1744 1745 if (!nnodes) 1746 return numa_node_id(); 1747 target = (unsigned int)off % nnodes; 1748 c = 0; 1749 do { 1750 nid = next_node(nid, pol->v.nodes); 1751 c++; 1752 } while (c <= target); 1753 return nid; 1754 } 1755 1756 /* Determine a node number for interleave */ 1757 static inline unsigned interleave_nid(struct mempolicy *pol, 1758 struct vm_area_struct *vma, unsigned long addr, int shift) 1759 { 1760 if (vma) { 1761 unsigned long off; 1762 1763 /* 1764 * for small pages, there is no difference between 1765 * shift and PAGE_SHIFT, so the bit-shift is safe. 1766 * for huge pages, since vm_pgoff is in units of small 1767 * pages, we need to shift off the always 0 bits to get 1768 * a useful offset. 1769 */ 1770 BUG_ON(shift < PAGE_SHIFT); 1771 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1772 off += (addr - vma->vm_start) >> shift; 1773 return offset_il_node(pol, vma, off); 1774 } else 1775 return interleave_nodes(pol); 1776 } 1777 1778 /* 1779 * Return the bit number of a random bit set in the nodemask. 1780 * (returns NUMA_NO_NODE if nodemask is empty) 1781 */ 1782 int node_random(const nodemask_t *maskp) 1783 { 1784 int w, bit = NUMA_NO_NODE; 1785 1786 w = nodes_weight(*maskp); 1787 if (w) 1788 bit = bitmap_ord_to_pos(maskp->bits, 1789 get_random_int() % w, MAX_NUMNODES); 1790 return bit; 1791 } 1792 1793 #ifdef CONFIG_HUGETLBFS 1794 /* 1795 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1796 * @vma: virtual memory area whose policy is sought 1797 * @addr: address in @vma for shared policy lookup and interleave policy 1798 * @gfp_flags: for requested zone 1799 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 1800 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 1801 * 1802 * Returns a zonelist suitable for a huge page allocation and a pointer 1803 * to the struct mempolicy for conditional unref after allocation. 1804 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1805 * @nodemask for filtering the zonelist. 1806 * 1807 * Must be protected by read_mems_allowed_begin() 1808 */ 1809 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1810 gfp_t gfp_flags, struct mempolicy **mpol, 1811 nodemask_t **nodemask) 1812 { 1813 struct zonelist *zl; 1814 1815 *mpol = get_vma_policy(vma, addr); 1816 *nodemask = NULL; /* assume !MPOL_BIND */ 1817 1818 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1819 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1820 huge_page_shift(hstate_vma(vma))), gfp_flags); 1821 } else { 1822 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1823 if ((*mpol)->mode == MPOL_BIND) 1824 *nodemask = &(*mpol)->v.nodes; 1825 } 1826 return zl; 1827 } 1828 1829 /* 1830 * init_nodemask_of_mempolicy 1831 * 1832 * If the current task's mempolicy is "default" [NULL], return 'false' 1833 * to indicate default policy. Otherwise, extract the policy nodemask 1834 * for 'bind' or 'interleave' policy into the argument nodemask, or 1835 * initialize the argument nodemask to contain the single node for 1836 * 'preferred' or 'local' policy and return 'true' to indicate presence 1837 * of non-default mempolicy. 1838 * 1839 * We don't bother with reference counting the mempolicy [mpol_get/put] 1840 * because the current task is examining it's own mempolicy and a task's 1841 * mempolicy is only ever changed by the task itself. 1842 * 1843 * N.B., it is the caller's responsibility to free a returned nodemask. 1844 */ 1845 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1846 { 1847 struct mempolicy *mempolicy; 1848 int nid; 1849 1850 if (!(mask && current->mempolicy)) 1851 return false; 1852 1853 task_lock(current); 1854 mempolicy = current->mempolicy; 1855 switch (mempolicy->mode) { 1856 case MPOL_PREFERRED: 1857 if (mempolicy->flags & MPOL_F_LOCAL) 1858 nid = numa_node_id(); 1859 else 1860 nid = mempolicy->v.preferred_node; 1861 init_nodemask_of_node(mask, nid); 1862 break; 1863 1864 case MPOL_BIND: 1865 /* Fall through */ 1866 case MPOL_INTERLEAVE: 1867 *mask = mempolicy->v.nodes; 1868 break; 1869 1870 default: 1871 BUG(); 1872 } 1873 task_unlock(current); 1874 1875 return true; 1876 } 1877 #endif 1878 1879 /* 1880 * mempolicy_nodemask_intersects 1881 * 1882 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1883 * policy. Otherwise, check for intersection between mask and the policy 1884 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1885 * policy, always return true since it may allocate elsewhere on fallback. 1886 * 1887 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1888 */ 1889 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1890 const nodemask_t *mask) 1891 { 1892 struct mempolicy *mempolicy; 1893 bool ret = true; 1894 1895 if (!mask) 1896 return ret; 1897 task_lock(tsk); 1898 mempolicy = tsk->mempolicy; 1899 if (!mempolicy) 1900 goto out; 1901 1902 switch (mempolicy->mode) { 1903 case MPOL_PREFERRED: 1904 /* 1905 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1906 * allocate from, they may fallback to other nodes when oom. 1907 * Thus, it's possible for tsk to have allocated memory from 1908 * nodes in mask. 1909 */ 1910 break; 1911 case MPOL_BIND: 1912 case MPOL_INTERLEAVE: 1913 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1914 break; 1915 default: 1916 BUG(); 1917 } 1918 out: 1919 task_unlock(tsk); 1920 return ret; 1921 } 1922 1923 /* Allocate a page in interleaved policy. 1924 Own path because it needs to do special accounting. */ 1925 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1926 unsigned nid) 1927 { 1928 struct zonelist *zl; 1929 struct page *page; 1930 1931 zl = node_zonelist(nid, gfp); 1932 page = __alloc_pages(gfp, order, zl); 1933 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1934 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1935 return page; 1936 } 1937 1938 /** 1939 * alloc_pages_vma - Allocate a page for a VMA. 1940 * 1941 * @gfp: 1942 * %GFP_USER user allocation. 1943 * %GFP_KERNEL kernel allocations, 1944 * %GFP_HIGHMEM highmem/user allocations, 1945 * %GFP_FS allocation should not call back into a file system. 1946 * %GFP_ATOMIC don't sleep. 1947 * 1948 * @order:Order of the GFP allocation. 1949 * @vma: Pointer to VMA or NULL if not available. 1950 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1951 * @node: Which node to prefer for allocation (modulo policy). 1952 * @hugepage: for hugepages try only the preferred node if possible 1953 * 1954 * This function allocates a page from the kernel page pool and applies 1955 * a NUMA policy associated with the VMA or the current process. 1956 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1957 * mm_struct of the VMA to prevent it from going away. Should be used for 1958 * all allocations for pages that will be mapped into user space. Returns 1959 * NULL when no page can be allocated. 1960 */ 1961 struct page * 1962 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1963 unsigned long addr, int node, bool hugepage) 1964 { 1965 struct mempolicy *pol; 1966 struct page *page; 1967 unsigned int cpuset_mems_cookie; 1968 struct zonelist *zl; 1969 nodemask_t *nmask; 1970 1971 retry_cpuset: 1972 pol = get_vma_policy(vma, addr); 1973 cpuset_mems_cookie = read_mems_allowed_begin(); 1974 1975 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage && 1976 pol->mode != MPOL_INTERLEAVE)) { 1977 /* 1978 * For hugepage allocation and non-interleave policy which 1979 * allows the current node, we only try to allocate from the 1980 * current node and don't fall back to other nodes, as the 1981 * cost of remote accesses would likely offset THP benefits. 1982 * 1983 * If the policy is interleave, or does not allow the current 1984 * node in its nodemask, we allocate the standard way. 1985 */ 1986 nmask = policy_nodemask(gfp, pol); 1987 if (!nmask || node_isset(node, *nmask)) { 1988 mpol_cond_put(pol); 1989 page = alloc_pages_exact_node(node, 1990 gfp | __GFP_THISNODE, order); 1991 goto out; 1992 } 1993 } 1994 1995 if (pol->mode == MPOL_INTERLEAVE) { 1996 unsigned nid; 1997 1998 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1999 mpol_cond_put(pol); 2000 page = alloc_page_interleave(gfp, order, nid); 2001 goto out; 2002 } 2003 2004 nmask = policy_nodemask(gfp, pol); 2005 zl = policy_zonelist(gfp, pol, node); 2006 mpol_cond_put(pol); 2007 page = __alloc_pages_nodemask(gfp, order, zl, nmask); 2008 out: 2009 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2010 goto retry_cpuset; 2011 return page; 2012 } 2013 2014 /** 2015 * alloc_pages_current - Allocate pages. 2016 * 2017 * @gfp: 2018 * %GFP_USER user allocation, 2019 * %GFP_KERNEL kernel allocation, 2020 * %GFP_HIGHMEM highmem allocation, 2021 * %GFP_FS don't call back into a file system. 2022 * %GFP_ATOMIC don't sleep. 2023 * @order: Power of two of allocation size in pages. 0 is a single page. 2024 * 2025 * Allocate a page from the kernel page pool. When not in 2026 * interrupt context and apply the current process NUMA policy. 2027 * Returns NULL when no page can be allocated. 2028 * 2029 * Don't call cpuset_update_task_memory_state() unless 2030 * 1) it's ok to take cpuset_sem (can WAIT), and 2031 * 2) allocating for current task (not interrupt). 2032 */ 2033 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2034 { 2035 struct mempolicy *pol = &default_policy; 2036 struct page *page; 2037 unsigned int cpuset_mems_cookie; 2038 2039 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2040 pol = get_task_policy(current); 2041 2042 retry_cpuset: 2043 cpuset_mems_cookie = read_mems_allowed_begin(); 2044 2045 /* 2046 * No reference counting needed for current->mempolicy 2047 * nor system default_policy 2048 */ 2049 if (pol->mode == MPOL_INTERLEAVE) 2050 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2051 else 2052 page = __alloc_pages_nodemask(gfp, order, 2053 policy_zonelist(gfp, pol, numa_node_id()), 2054 policy_nodemask(gfp, pol)); 2055 2056 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 2057 goto retry_cpuset; 2058 2059 return page; 2060 } 2061 EXPORT_SYMBOL(alloc_pages_current); 2062 2063 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2064 { 2065 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2066 2067 if (IS_ERR(pol)) 2068 return PTR_ERR(pol); 2069 dst->vm_policy = pol; 2070 return 0; 2071 } 2072 2073 /* 2074 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2075 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2076 * with the mems_allowed returned by cpuset_mems_allowed(). This 2077 * keeps mempolicies cpuset relative after its cpuset moves. See 2078 * further kernel/cpuset.c update_nodemask(). 2079 * 2080 * current's mempolicy may be rebinded by the other task(the task that changes 2081 * cpuset's mems), so we needn't do rebind work for current task. 2082 */ 2083 2084 /* Slow path of a mempolicy duplicate */ 2085 struct mempolicy *__mpol_dup(struct mempolicy *old) 2086 { 2087 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2088 2089 if (!new) 2090 return ERR_PTR(-ENOMEM); 2091 2092 /* task's mempolicy is protected by alloc_lock */ 2093 if (old == current->mempolicy) { 2094 task_lock(current); 2095 *new = *old; 2096 task_unlock(current); 2097 } else 2098 *new = *old; 2099 2100 if (current_cpuset_is_being_rebound()) { 2101 nodemask_t mems = cpuset_mems_allowed(current); 2102 if (new->flags & MPOL_F_REBINDING) 2103 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2104 else 2105 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2106 } 2107 atomic_set(&new->refcnt, 1); 2108 return new; 2109 } 2110 2111 /* Slow path of a mempolicy comparison */ 2112 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2113 { 2114 if (!a || !b) 2115 return false; 2116 if (a->mode != b->mode) 2117 return false; 2118 if (a->flags != b->flags) 2119 return false; 2120 if (mpol_store_user_nodemask(a)) 2121 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2122 return false; 2123 2124 switch (a->mode) { 2125 case MPOL_BIND: 2126 /* Fall through */ 2127 case MPOL_INTERLEAVE: 2128 return !!nodes_equal(a->v.nodes, b->v.nodes); 2129 case MPOL_PREFERRED: 2130 return a->v.preferred_node == b->v.preferred_node; 2131 default: 2132 BUG(); 2133 return false; 2134 } 2135 } 2136 2137 /* 2138 * Shared memory backing store policy support. 2139 * 2140 * Remember policies even when nobody has shared memory mapped. 2141 * The policies are kept in Red-Black tree linked from the inode. 2142 * They are protected by the sp->lock spinlock, which should be held 2143 * for any accesses to the tree. 2144 */ 2145 2146 /* lookup first element intersecting start-end */ 2147 /* Caller holds sp->lock */ 2148 static struct sp_node * 2149 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2150 { 2151 struct rb_node *n = sp->root.rb_node; 2152 2153 while (n) { 2154 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2155 2156 if (start >= p->end) 2157 n = n->rb_right; 2158 else if (end <= p->start) 2159 n = n->rb_left; 2160 else 2161 break; 2162 } 2163 if (!n) 2164 return NULL; 2165 for (;;) { 2166 struct sp_node *w = NULL; 2167 struct rb_node *prev = rb_prev(n); 2168 if (!prev) 2169 break; 2170 w = rb_entry(prev, struct sp_node, nd); 2171 if (w->end <= start) 2172 break; 2173 n = prev; 2174 } 2175 return rb_entry(n, struct sp_node, nd); 2176 } 2177 2178 /* Insert a new shared policy into the list. */ 2179 /* Caller holds sp->lock */ 2180 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2181 { 2182 struct rb_node **p = &sp->root.rb_node; 2183 struct rb_node *parent = NULL; 2184 struct sp_node *nd; 2185 2186 while (*p) { 2187 parent = *p; 2188 nd = rb_entry(parent, struct sp_node, nd); 2189 if (new->start < nd->start) 2190 p = &(*p)->rb_left; 2191 else if (new->end > nd->end) 2192 p = &(*p)->rb_right; 2193 else 2194 BUG(); 2195 } 2196 rb_link_node(&new->nd, parent, p); 2197 rb_insert_color(&new->nd, &sp->root); 2198 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2199 new->policy ? new->policy->mode : 0); 2200 } 2201 2202 /* Find shared policy intersecting idx */ 2203 struct mempolicy * 2204 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2205 { 2206 struct mempolicy *pol = NULL; 2207 struct sp_node *sn; 2208 2209 if (!sp->root.rb_node) 2210 return NULL; 2211 spin_lock(&sp->lock); 2212 sn = sp_lookup(sp, idx, idx+1); 2213 if (sn) { 2214 mpol_get(sn->policy); 2215 pol = sn->policy; 2216 } 2217 spin_unlock(&sp->lock); 2218 return pol; 2219 } 2220 2221 static void sp_free(struct sp_node *n) 2222 { 2223 mpol_put(n->policy); 2224 kmem_cache_free(sn_cache, n); 2225 } 2226 2227 /** 2228 * mpol_misplaced - check whether current page node is valid in policy 2229 * 2230 * @page: page to be checked 2231 * @vma: vm area where page mapped 2232 * @addr: virtual address where page mapped 2233 * 2234 * Lookup current policy node id for vma,addr and "compare to" page's 2235 * node id. 2236 * 2237 * Returns: 2238 * -1 - not misplaced, page is in the right node 2239 * node - node id where the page should be 2240 * 2241 * Policy determination "mimics" alloc_page_vma(). 2242 * Called from fault path where we know the vma and faulting address. 2243 */ 2244 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2245 { 2246 struct mempolicy *pol; 2247 struct zone *zone; 2248 int curnid = page_to_nid(page); 2249 unsigned long pgoff; 2250 int thiscpu = raw_smp_processor_id(); 2251 int thisnid = cpu_to_node(thiscpu); 2252 int polnid = -1; 2253 int ret = -1; 2254 2255 BUG_ON(!vma); 2256 2257 pol = get_vma_policy(vma, addr); 2258 if (!(pol->flags & MPOL_F_MOF)) 2259 goto out; 2260 2261 switch (pol->mode) { 2262 case MPOL_INTERLEAVE: 2263 BUG_ON(addr >= vma->vm_end); 2264 BUG_ON(addr < vma->vm_start); 2265 2266 pgoff = vma->vm_pgoff; 2267 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2268 polnid = offset_il_node(pol, vma, pgoff); 2269 break; 2270 2271 case MPOL_PREFERRED: 2272 if (pol->flags & MPOL_F_LOCAL) 2273 polnid = numa_node_id(); 2274 else 2275 polnid = pol->v.preferred_node; 2276 break; 2277 2278 case MPOL_BIND: 2279 /* 2280 * allows binding to multiple nodes. 2281 * use current page if in policy nodemask, 2282 * else select nearest allowed node, if any. 2283 * If no allowed nodes, use current [!misplaced]. 2284 */ 2285 if (node_isset(curnid, pol->v.nodes)) 2286 goto out; 2287 (void)first_zones_zonelist( 2288 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2289 gfp_zone(GFP_HIGHUSER), 2290 &pol->v.nodes, &zone); 2291 polnid = zone->node; 2292 break; 2293 2294 default: 2295 BUG(); 2296 } 2297 2298 /* Migrate the page towards the node whose CPU is referencing it */ 2299 if (pol->flags & MPOL_F_MORON) { 2300 polnid = thisnid; 2301 2302 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2303 goto out; 2304 } 2305 2306 if (curnid != polnid) 2307 ret = polnid; 2308 out: 2309 mpol_cond_put(pol); 2310 2311 return ret; 2312 } 2313 2314 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2315 { 2316 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2317 rb_erase(&n->nd, &sp->root); 2318 sp_free(n); 2319 } 2320 2321 static void sp_node_init(struct sp_node *node, unsigned long start, 2322 unsigned long end, struct mempolicy *pol) 2323 { 2324 node->start = start; 2325 node->end = end; 2326 node->policy = pol; 2327 } 2328 2329 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2330 struct mempolicy *pol) 2331 { 2332 struct sp_node *n; 2333 struct mempolicy *newpol; 2334 2335 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2336 if (!n) 2337 return NULL; 2338 2339 newpol = mpol_dup(pol); 2340 if (IS_ERR(newpol)) { 2341 kmem_cache_free(sn_cache, n); 2342 return NULL; 2343 } 2344 newpol->flags |= MPOL_F_SHARED; 2345 sp_node_init(n, start, end, newpol); 2346 2347 return n; 2348 } 2349 2350 /* Replace a policy range. */ 2351 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2352 unsigned long end, struct sp_node *new) 2353 { 2354 struct sp_node *n; 2355 struct sp_node *n_new = NULL; 2356 struct mempolicy *mpol_new = NULL; 2357 int ret = 0; 2358 2359 restart: 2360 spin_lock(&sp->lock); 2361 n = sp_lookup(sp, start, end); 2362 /* Take care of old policies in the same range. */ 2363 while (n && n->start < end) { 2364 struct rb_node *next = rb_next(&n->nd); 2365 if (n->start >= start) { 2366 if (n->end <= end) 2367 sp_delete(sp, n); 2368 else 2369 n->start = end; 2370 } else { 2371 /* Old policy spanning whole new range. */ 2372 if (n->end > end) { 2373 if (!n_new) 2374 goto alloc_new; 2375 2376 *mpol_new = *n->policy; 2377 atomic_set(&mpol_new->refcnt, 1); 2378 sp_node_init(n_new, end, n->end, mpol_new); 2379 n->end = start; 2380 sp_insert(sp, n_new); 2381 n_new = NULL; 2382 mpol_new = NULL; 2383 break; 2384 } else 2385 n->end = start; 2386 } 2387 if (!next) 2388 break; 2389 n = rb_entry(next, struct sp_node, nd); 2390 } 2391 if (new) 2392 sp_insert(sp, new); 2393 spin_unlock(&sp->lock); 2394 ret = 0; 2395 2396 err_out: 2397 if (mpol_new) 2398 mpol_put(mpol_new); 2399 if (n_new) 2400 kmem_cache_free(sn_cache, n_new); 2401 2402 return ret; 2403 2404 alloc_new: 2405 spin_unlock(&sp->lock); 2406 ret = -ENOMEM; 2407 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2408 if (!n_new) 2409 goto err_out; 2410 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2411 if (!mpol_new) 2412 goto err_out; 2413 goto restart; 2414 } 2415 2416 /** 2417 * mpol_shared_policy_init - initialize shared policy for inode 2418 * @sp: pointer to inode shared policy 2419 * @mpol: struct mempolicy to install 2420 * 2421 * Install non-NULL @mpol in inode's shared policy rb-tree. 2422 * On entry, the current task has a reference on a non-NULL @mpol. 2423 * This must be released on exit. 2424 * This is called at get_inode() calls and we can use GFP_KERNEL. 2425 */ 2426 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2427 { 2428 int ret; 2429 2430 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2431 spin_lock_init(&sp->lock); 2432 2433 if (mpol) { 2434 struct vm_area_struct pvma; 2435 struct mempolicy *new; 2436 NODEMASK_SCRATCH(scratch); 2437 2438 if (!scratch) 2439 goto put_mpol; 2440 /* contextualize the tmpfs mount point mempolicy */ 2441 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2442 if (IS_ERR(new)) 2443 goto free_scratch; /* no valid nodemask intersection */ 2444 2445 task_lock(current); 2446 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2447 task_unlock(current); 2448 if (ret) 2449 goto put_new; 2450 2451 /* Create pseudo-vma that contains just the policy */ 2452 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2453 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2454 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2455 2456 put_new: 2457 mpol_put(new); /* drop initial ref */ 2458 free_scratch: 2459 NODEMASK_SCRATCH_FREE(scratch); 2460 put_mpol: 2461 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2462 } 2463 } 2464 2465 int mpol_set_shared_policy(struct shared_policy *info, 2466 struct vm_area_struct *vma, struct mempolicy *npol) 2467 { 2468 int err; 2469 struct sp_node *new = NULL; 2470 unsigned long sz = vma_pages(vma); 2471 2472 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2473 vma->vm_pgoff, 2474 sz, npol ? npol->mode : -1, 2475 npol ? npol->flags : -1, 2476 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2477 2478 if (npol) { 2479 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2480 if (!new) 2481 return -ENOMEM; 2482 } 2483 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2484 if (err && new) 2485 sp_free(new); 2486 return err; 2487 } 2488 2489 /* Free a backing policy store on inode delete. */ 2490 void mpol_free_shared_policy(struct shared_policy *p) 2491 { 2492 struct sp_node *n; 2493 struct rb_node *next; 2494 2495 if (!p->root.rb_node) 2496 return; 2497 spin_lock(&p->lock); 2498 next = rb_first(&p->root); 2499 while (next) { 2500 n = rb_entry(next, struct sp_node, nd); 2501 next = rb_next(&n->nd); 2502 sp_delete(p, n); 2503 } 2504 spin_unlock(&p->lock); 2505 } 2506 2507 #ifdef CONFIG_NUMA_BALANCING 2508 static int __initdata numabalancing_override; 2509 2510 static void __init check_numabalancing_enable(void) 2511 { 2512 bool numabalancing_default = false; 2513 2514 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2515 numabalancing_default = true; 2516 2517 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2518 if (numabalancing_override) 2519 set_numabalancing_state(numabalancing_override == 1); 2520 2521 if (nr_node_ids > 1 && !numabalancing_override) { 2522 pr_info("%s automatic NUMA balancing. " 2523 "Configure with numa_balancing= or the " 2524 "kernel.numa_balancing sysctl", 2525 numabalancing_default ? "Enabling" : "Disabling"); 2526 set_numabalancing_state(numabalancing_default); 2527 } 2528 } 2529 2530 static int __init setup_numabalancing(char *str) 2531 { 2532 int ret = 0; 2533 if (!str) 2534 goto out; 2535 2536 if (!strcmp(str, "enable")) { 2537 numabalancing_override = 1; 2538 ret = 1; 2539 } else if (!strcmp(str, "disable")) { 2540 numabalancing_override = -1; 2541 ret = 1; 2542 } 2543 out: 2544 if (!ret) 2545 pr_warn("Unable to parse numa_balancing=\n"); 2546 2547 return ret; 2548 } 2549 __setup("numa_balancing=", setup_numabalancing); 2550 #else 2551 static inline void __init check_numabalancing_enable(void) 2552 { 2553 } 2554 #endif /* CONFIG_NUMA_BALANCING */ 2555 2556 /* assumes fs == KERNEL_DS */ 2557 void __init numa_policy_init(void) 2558 { 2559 nodemask_t interleave_nodes; 2560 unsigned long largest = 0; 2561 int nid, prefer = 0; 2562 2563 policy_cache = kmem_cache_create("numa_policy", 2564 sizeof(struct mempolicy), 2565 0, SLAB_PANIC, NULL); 2566 2567 sn_cache = kmem_cache_create("shared_policy_node", 2568 sizeof(struct sp_node), 2569 0, SLAB_PANIC, NULL); 2570 2571 for_each_node(nid) { 2572 preferred_node_policy[nid] = (struct mempolicy) { 2573 .refcnt = ATOMIC_INIT(1), 2574 .mode = MPOL_PREFERRED, 2575 .flags = MPOL_F_MOF | MPOL_F_MORON, 2576 .v = { .preferred_node = nid, }, 2577 }; 2578 } 2579 2580 /* 2581 * Set interleaving policy for system init. Interleaving is only 2582 * enabled across suitably sized nodes (default is >= 16MB), or 2583 * fall back to the largest node if they're all smaller. 2584 */ 2585 nodes_clear(interleave_nodes); 2586 for_each_node_state(nid, N_MEMORY) { 2587 unsigned long total_pages = node_present_pages(nid); 2588 2589 /* Preserve the largest node */ 2590 if (largest < total_pages) { 2591 largest = total_pages; 2592 prefer = nid; 2593 } 2594 2595 /* Interleave this node? */ 2596 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2597 node_set(nid, interleave_nodes); 2598 } 2599 2600 /* All too small, use the largest */ 2601 if (unlikely(nodes_empty(interleave_nodes))) 2602 node_set(prefer, interleave_nodes); 2603 2604 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2605 pr_err("%s: interleaving failed\n", __func__); 2606 2607 check_numabalancing_enable(); 2608 } 2609 2610 /* Reset policy of current process to default */ 2611 void numa_default_policy(void) 2612 { 2613 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2614 } 2615 2616 /* 2617 * Parse and format mempolicy from/to strings 2618 */ 2619 2620 /* 2621 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2622 */ 2623 static const char * const policy_modes[] = 2624 { 2625 [MPOL_DEFAULT] = "default", 2626 [MPOL_PREFERRED] = "prefer", 2627 [MPOL_BIND] = "bind", 2628 [MPOL_INTERLEAVE] = "interleave", 2629 [MPOL_LOCAL] = "local", 2630 }; 2631 2632 2633 #ifdef CONFIG_TMPFS 2634 /** 2635 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2636 * @str: string containing mempolicy to parse 2637 * @mpol: pointer to struct mempolicy pointer, returned on success. 2638 * 2639 * Format of input: 2640 * <mode>[=<flags>][:<nodelist>] 2641 * 2642 * On success, returns 0, else 1 2643 */ 2644 int mpol_parse_str(char *str, struct mempolicy **mpol) 2645 { 2646 struct mempolicy *new = NULL; 2647 unsigned short mode; 2648 unsigned short mode_flags; 2649 nodemask_t nodes; 2650 char *nodelist = strchr(str, ':'); 2651 char *flags = strchr(str, '='); 2652 int err = 1; 2653 2654 if (nodelist) { 2655 /* NUL-terminate mode or flags string */ 2656 *nodelist++ = '\0'; 2657 if (nodelist_parse(nodelist, nodes)) 2658 goto out; 2659 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2660 goto out; 2661 } else 2662 nodes_clear(nodes); 2663 2664 if (flags) 2665 *flags++ = '\0'; /* terminate mode string */ 2666 2667 for (mode = 0; mode < MPOL_MAX; mode++) { 2668 if (!strcmp(str, policy_modes[mode])) { 2669 break; 2670 } 2671 } 2672 if (mode >= MPOL_MAX) 2673 goto out; 2674 2675 switch (mode) { 2676 case MPOL_PREFERRED: 2677 /* 2678 * Insist on a nodelist of one node only 2679 */ 2680 if (nodelist) { 2681 char *rest = nodelist; 2682 while (isdigit(*rest)) 2683 rest++; 2684 if (*rest) 2685 goto out; 2686 } 2687 break; 2688 case MPOL_INTERLEAVE: 2689 /* 2690 * Default to online nodes with memory if no nodelist 2691 */ 2692 if (!nodelist) 2693 nodes = node_states[N_MEMORY]; 2694 break; 2695 case MPOL_LOCAL: 2696 /* 2697 * Don't allow a nodelist; mpol_new() checks flags 2698 */ 2699 if (nodelist) 2700 goto out; 2701 mode = MPOL_PREFERRED; 2702 break; 2703 case MPOL_DEFAULT: 2704 /* 2705 * Insist on a empty nodelist 2706 */ 2707 if (!nodelist) 2708 err = 0; 2709 goto out; 2710 case MPOL_BIND: 2711 /* 2712 * Insist on a nodelist 2713 */ 2714 if (!nodelist) 2715 goto out; 2716 } 2717 2718 mode_flags = 0; 2719 if (flags) { 2720 /* 2721 * Currently, we only support two mutually exclusive 2722 * mode flags. 2723 */ 2724 if (!strcmp(flags, "static")) 2725 mode_flags |= MPOL_F_STATIC_NODES; 2726 else if (!strcmp(flags, "relative")) 2727 mode_flags |= MPOL_F_RELATIVE_NODES; 2728 else 2729 goto out; 2730 } 2731 2732 new = mpol_new(mode, mode_flags, &nodes); 2733 if (IS_ERR(new)) 2734 goto out; 2735 2736 /* 2737 * Save nodes for mpol_to_str() to show the tmpfs mount options 2738 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2739 */ 2740 if (mode != MPOL_PREFERRED) 2741 new->v.nodes = nodes; 2742 else if (nodelist) 2743 new->v.preferred_node = first_node(nodes); 2744 else 2745 new->flags |= MPOL_F_LOCAL; 2746 2747 /* 2748 * Save nodes for contextualization: this will be used to "clone" 2749 * the mempolicy in a specific context [cpuset] at a later time. 2750 */ 2751 new->w.user_nodemask = nodes; 2752 2753 err = 0; 2754 2755 out: 2756 /* Restore string for error message */ 2757 if (nodelist) 2758 *--nodelist = ':'; 2759 if (flags) 2760 *--flags = '='; 2761 if (!err) 2762 *mpol = new; 2763 return err; 2764 } 2765 #endif /* CONFIG_TMPFS */ 2766 2767 /** 2768 * mpol_to_str - format a mempolicy structure for printing 2769 * @buffer: to contain formatted mempolicy string 2770 * @maxlen: length of @buffer 2771 * @pol: pointer to mempolicy to be formatted 2772 * 2773 * Convert @pol into a string. If @buffer is too short, truncate the string. 2774 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 2775 * longest flag, "relative", and to display at least a few node ids. 2776 */ 2777 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 2778 { 2779 char *p = buffer; 2780 nodemask_t nodes = NODE_MASK_NONE; 2781 unsigned short mode = MPOL_DEFAULT; 2782 unsigned short flags = 0; 2783 2784 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 2785 mode = pol->mode; 2786 flags = pol->flags; 2787 } 2788 2789 switch (mode) { 2790 case MPOL_DEFAULT: 2791 break; 2792 case MPOL_PREFERRED: 2793 if (flags & MPOL_F_LOCAL) 2794 mode = MPOL_LOCAL; 2795 else 2796 node_set(pol->v.preferred_node, nodes); 2797 break; 2798 case MPOL_BIND: 2799 case MPOL_INTERLEAVE: 2800 nodes = pol->v.nodes; 2801 break; 2802 default: 2803 WARN_ON_ONCE(1); 2804 snprintf(p, maxlen, "unknown"); 2805 return; 2806 } 2807 2808 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 2809 2810 if (flags & MPOL_MODE_FLAGS) { 2811 p += snprintf(p, buffer + maxlen - p, "="); 2812 2813 /* 2814 * Currently, the only defined flags are mutually exclusive 2815 */ 2816 if (flags & MPOL_F_STATIC_NODES) 2817 p += snprintf(p, buffer + maxlen - p, "static"); 2818 else if (flags & MPOL_F_RELATIVE_NODES) 2819 p += snprintf(p, buffer + maxlen - p, "relative"); 2820 } 2821 2822 if (!nodes_empty(nodes)) 2823 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 2824 nodemask_pr_args(&nodes)); 2825 } 2826