1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_page_add(struct page *page, struct list_head *pagelist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the page's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_pages_required(struct page *page, 436 struct queue_pages *qp) 437 { 438 int nid = page_to_nid(page); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_pages_pmd() has three possible return values: 446 * 0 - pages are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing page was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct page *page; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 page = pmd_page(*pmd); 468 if (is_huge_zero_page(page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_pages_pte_range() has three possible return values: 495 * 0 - pages are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct page *page; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_pages_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 page = vm_normal_page(vma, addr, *pte); 525 if (!page || is_zone_device_page(page)) 526 continue; 527 /* 528 * vm_normal_page() filters out zero pages, but there might 529 * still be PageReserved pages to skip, perhaps in a VDSO. 530 */ 531 if (PageReserved(page)) 532 continue; 533 if (!queue_pages_required(page, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_page_add(page, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct page *page; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 page = pte_page(entry); 578 if (!queue_pages_required(page, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced page and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced page but allow migrating pages which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 602 if (flags & (MPOL_MF_MOVE_ALL) || 603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 && 604 !hugetlb_pmd_shared(pte))) { 605 if (isolate_hugetlb(page, qp->pagelist) && 606 (flags & MPOL_MF_STRICT)) 607 /* 608 * Failed to isolate page but allow migrating pages 609 * which have been queued. 610 */ 611 ret = 1; 612 } 613 unlock: 614 spin_unlock(ptl); 615 #else 616 BUG(); 617 #endif 618 return ret; 619 } 620 621 #ifdef CONFIG_NUMA_BALANCING 622 /* 623 * This is used to mark a range of virtual addresses to be inaccessible. 624 * These are later cleared by a NUMA hinting fault. Depending on these 625 * faults, pages may be migrated for better NUMA placement. 626 * 627 * This is assuming that NUMA faults are handled using PROT_NONE. If 628 * an architecture makes a different choice, it will need further 629 * changes to the core. 630 */ 631 unsigned long change_prot_numa(struct vm_area_struct *vma, 632 unsigned long addr, unsigned long end) 633 { 634 struct mmu_gather tlb; 635 int nr_updated; 636 637 tlb_gather_mmu(&tlb, vma->vm_mm); 638 639 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE, 640 MM_CP_PROT_NUMA); 641 if (nr_updated) 642 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 643 644 tlb_finish_mmu(&tlb); 645 646 return nr_updated; 647 } 648 #else 649 static unsigned long change_prot_numa(struct vm_area_struct *vma, 650 unsigned long addr, unsigned long end) 651 { 652 return 0; 653 } 654 #endif /* CONFIG_NUMA_BALANCING */ 655 656 static int queue_pages_test_walk(unsigned long start, unsigned long end, 657 struct mm_walk *walk) 658 { 659 struct vm_area_struct *next, *vma = walk->vma; 660 struct queue_pages *qp = walk->private; 661 unsigned long endvma = vma->vm_end; 662 unsigned long flags = qp->flags; 663 664 /* range check first */ 665 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 666 667 if (!qp->first) { 668 qp->first = vma; 669 if (!(flags & MPOL_MF_DISCONTIG_OK) && 670 (qp->start < vma->vm_start)) 671 /* hole at head side of range */ 672 return -EFAULT; 673 } 674 next = find_vma(vma->vm_mm, vma->vm_end); 675 if (!(flags & MPOL_MF_DISCONTIG_OK) && 676 ((vma->vm_end < qp->end) && 677 (!next || vma->vm_end < next->vm_start))) 678 /* hole at middle or tail of range */ 679 return -EFAULT; 680 681 /* 682 * Need check MPOL_MF_STRICT to return -EIO if possible 683 * regardless of vma_migratable 684 */ 685 if (!vma_migratable(vma) && 686 !(flags & MPOL_MF_STRICT)) 687 return 1; 688 689 if (endvma > end) 690 endvma = end; 691 692 if (flags & MPOL_MF_LAZY) { 693 /* Similar to task_numa_work, skip inaccessible VMAs */ 694 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 695 !(vma->vm_flags & VM_MIXEDMAP)) 696 change_prot_numa(vma, start, endvma); 697 return 1; 698 } 699 700 /* queue pages from current vma */ 701 if (flags & MPOL_MF_VALID) 702 return 0; 703 return 1; 704 } 705 706 static const struct mm_walk_ops queue_pages_walk_ops = { 707 .hugetlb_entry = queue_pages_hugetlb, 708 .pmd_entry = queue_pages_pte_range, 709 .test_walk = queue_pages_test_walk, 710 }; 711 712 /* 713 * Walk through page tables and collect pages to be migrated. 714 * 715 * If pages found in a given range are on a set of nodes (determined by 716 * @nodes and @flags,) it's isolated and queued to the pagelist which is 717 * passed via @private. 718 * 719 * queue_pages_range() has three possible return values: 720 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 721 * specified. 722 * 0 - queue pages successfully or no misplaced page. 723 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 724 * memory range specified by nodemask and maxnode points outside 725 * your accessible address space (-EFAULT) 726 */ 727 static int 728 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 729 nodemask_t *nodes, unsigned long flags, 730 struct list_head *pagelist) 731 { 732 int err; 733 struct queue_pages qp = { 734 .pagelist = pagelist, 735 .flags = flags, 736 .nmask = nodes, 737 .start = start, 738 .end = end, 739 .first = NULL, 740 }; 741 742 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 743 744 if (!qp.first) 745 /* whole range in hole */ 746 err = -EFAULT; 747 748 return err; 749 } 750 751 /* 752 * Apply policy to a single VMA 753 * This must be called with the mmap_lock held for writing. 754 */ 755 static int vma_replace_policy(struct vm_area_struct *vma, 756 struct mempolicy *pol) 757 { 758 int err; 759 struct mempolicy *old; 760 struct mempolicy *new; 761 762 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 763 vma->vm_start, vma->vm_end, vma->vm_pgoff, 764 vma->vm_ops, vma->vm_file, 765 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 766 767 new = mpol_dup(pol); 768 if (IS_ERR(new)) 769 return PTR_ERR(new); 770 771 if (vma->vm_ops && vma->vm_ops->set_policy) { 772 err = vma->vm_ops->set_policy(vma, new); 773 if (err) 774 goto err_out; 775 } 776 777 old = vma->vm_policy; 778 vma->vm_policy = new; /* protected by mmap_lock */ 779 mpol_put(old); 780 781 return 0; 782 err_out: 783 mpol_put(new); 784 return err; 785 } 786 787 /* Step 2: apply policy to a range and do splits. */ 788 static int mbind_range(struct mm_struct *mm, unsigned long start, 789 unsigned long end, struct mempolicy *new_pol) 790 { 791 MA_STATE(mas, &mm->mm_mt, start, start); 792 struct vm_area_struct *prev; 793 struct vm_area_struct *vma; 794 int err = 0; 795 pgoff_t pgoff; 796 797 prev = mas_prev(&mas, 0); 798 if (unlikely(!prev)) 799 mas_set(&mas, start); 800 801 vma = mas_find(&mas, end - 1); 802 if (WARN_ON(!vma)) 803 return 0; 804 805 if (start > vma->vm_start) 806 prev = vma; 807 808 for (; vma; vma = mas_next(&mas, end - 1)) { 809 unsigned long vmstart = max(start, vma->vm_start); 810 unsigned long vmend = min(end, vma->vm_end); 811 812 if (mpol_equal(vma_policy(vma), new_pol)) 813 goto next; 814 815 pgoff = vma->vm_pgoff + 816 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 817 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 818 vma->anon_vma, vma->vm_file, pgoff, 819 new_pol, vma->vm_userfaultfd_ctx, 820 anon_vma_name(vma)); 821 if (prev) { 822 /* vma_merge() invalidated the mas */ 823 mas_pause(&mas); 824 vma = prev; 825 goto replace; 826 } 827 if (vma->vm_start != vmstart) { 828 err = split_vma(vma->vm_mm, vma, vmstart, 1); 829 if (err) 830 goto out; 831 /* split_vma() invalidated the mas */ 832 mas_pause(&mas); 833 } 834 if (vma->vm_end != vmend) { 835 err = split_vma(vma->vm_mm, vma, vmend, 0); 836 if (err) 837 goto out; 838 /* split_vma() invalidated the mas */ 839 mas_pause(&mas); 840 } 841 replace: 842 err = vma_replace_policy(vma, new_pol); 843 if (err) 844 goto out; 845 next: 846 prev = vma; 847 } 848 849 out: 850 return err; 851 } 852 853 /* Set the process memory policy */ 854 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 855 nodemask_t *nodes) 856 { 857 struct mempolicy *new, *old; 858 NODEMASK_SCRATCH(scratch); 859 int ret; 860 861 if (!scratch) 862 return -ENOMEM; 863 864 new = mpol_new(mode, flags, nodes); 865 if (IS_ERR(new)) { 866 ret = PTR_ERR(new); 867 goto out; 868 } 869 870 task_lock(current); 871 ret = mpol_set_nodemask(new, nodes, scratch); 872 if (ret) { 873 task_unlock(current); 874 mpol_put(new); 875 goto out; 876 } 877 878 old = current->mempolicy; 879 current->mempolicy = new; 880 if (new && new->mode == MPOL_INTERLEAVE) 881 current->il_prev = MAX_NUMNODES-1; 882 task_unlock(current); 883 mpol_put(old); 884 ret = 0; 885 out: 886 NODEMASK_SCRATCH_FREE(scratch); 887 return ret; 888 } 889 890 /* 891 * Return nodemask for policy for get_mempolicy() query 892 * 893 * Called with task's alloc_lock held 894 */ 895 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 896 { 897 nodes_clear(*nodes); 898 if (p == &default_policy) 899 return; 900 901 switch (p->mode) { 902 case MPOL_BIND: 903 case MPOL_INTERLEAVE: 904 case MPOL_PREFERRED: 905 case MPOL_PREFERRED_MANY: 906 *nodes = p->nodes; 907 break; 908 case MPOL_LOCAL: 909 /* return empty node mask for local allocation */ 910 break; 911 default: 912 BUG(); 913 } 914 } 915 916 static int lookup_node(struct mm_struct *mm, unsigned long addr) 917 { 918 struct page *p = NULL; 919 int ret; 920 921 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 922 if (ret > 0) { 923 ret = page_to_nid(p); 924 put_page(p); 925 } 926 return ret; 927 } 928 929 /* Retrieve NUMA policy */ 930 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 931 unsigned long addr, unsigned long flags) 932 { 933 int err; 934 struct mm_struct *mm = current->mm; 935 struct vm_area_struct *vma = NULL; 936 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 937 938 if (flags & 939 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 940 return -EINVAL; 941 942 if (flags & MPOL_F_MEMS_ALLOWED) { 943 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 944 return -EINVAL; 945 *policy = 0; /* just so it's initialized */ 946 task_lock(current); 947 *nmask = cpuset_current_mems_allowed; 948 task_unlock(current); 949 return 0; 950 } 951 952 if (flags & MPOL_F_ADDR) { 953 /* 954 * Do NOT fall back to task policy if the 955 * vma/shared policy at addr is NULL. We 956 * want to return MPOL_DEFAULT in this case. 957 */ 958 mmap_read_lock(mm); 959 vma = vma_lookup(mm, addr); 960 if (!vma) { 961 mmap_read_unlock(mm); 962 return -EFAULT; 963 } 964 if (vma->vm_ops && vma->vm_ops->get_policy) 965 pol = vma->vm_ops->get_policy(vma, addr); 966 else 967 pol = vma->vm_policy; 968 } else if (addr) 969 return -EINVAL; 970 971 if (!pol) 972 pol = &default_policy; /* indicates default behavior */ 973 974 if (flags & MPOL_F_NODE) { 975 if (flags & MPOL_F_ADDR) { 976 /* 977 * Take a refcount on the mpol, because we are about to 978 * drop the mmap_lock, after which only "pol" remains 979 * valid, "vma" is stale. 980 */ 981 pol_refcount = pol; 982 vma = NULL; 983 mpol_get(pol); 984 mmap_read_unlock(mm); 985 err = lookup_node(mm, addr); 986 if (err < 0) 987 goto out; 988 *policy = err; 989 } else if (pol == current->mempolicy && 990 pol->mode == MPOL_INTERLEAVE) { 991 *policy = next_node_in(current->il_prev, pol->nodes); 992 } else { 993 err = -EINVAL; 994 goto out; 995 } 996 } else { 997 *policy = pol == &default_policy ? MPOL_DEFAULT : 998 pol->mode; 999 /* 1000 * Internal mempolicy flags must be masked off before exposing 1001 * the policy to userspace. 1002 */ 1003 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1004 } 1005 1006 err = 0; 1007 if (nmask) { 1008 if (mpol_store_user_nodemask(pol)) { 1009 *nmask = pol->w.user_nodemask; 1010 } else { 1011 task_lock(current); 1012 get_policy_nodemask(pol, nmask); 1013 task_unlock(current); 1014 } 1015 } 1016 1017 out: 1018 mpol_cond_put(pol); 1019 if (vma) 1020 mmap_read_unlock(mm); 1021 if (pol_refcount) 1022 mpol_put(pol_refcount); 1023 return err; 1024 } 1025 1026 #ifdef CONFIG_MIGRATION 1027 /* 1028 * page migration, thp tail pages can be passed. 1029 */ 1030 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1031 unsigned long flags) 1032 { 1033 struct page *head = compound_head(page); 1034 /* 1035 * Avoid migrating a page that is shared with others. 1036 */ 1037 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1038 if (!isolate_lru_page(head)) { 1039 list_add_tail(&head->lru, pagelist); 1040 mod_node_page_state(page_pgdat(head), 1041 NR_ISOLATED_ANON + page_is_file_lru(head), 1042 thp_nr_pages(head)); 1043 } else if (flags & MPOL_MF_STRICT) { 1044 /* 1045 * Non-movable page may reach here. And, there may be 1046 * temporary off LRU pages or non-LRU movable pages. 1047 * Treat them as unmovable pages since they can't be 1048 * isolated, so they can't be moved at the moment. It 1049 * should return -EIO for this case too. 1050 */ 1051 return -EIO; 1052 } 1053 } 1054 1055 return 0; 1056 } 1057 1058 /* 1059 * Migrate pages from one node to a target node. 1060 * Returns error or the number of pages not migrated. 1061 */ 1062 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1063 int flags) 1064 { 1065 nodemask_t nmask; 1066 struct vm_area_struct *vma; 1067 LIST_HEAD(pagelist); 1068 int err = 0; 1069 struct migration_target_control mtc = { 1070 .nid = dest, 1071 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1072 }; 1073 1074 nodes_clear(nmask); 1075 node_set(source, nmask); 1076 1077 /* 1078 * This does not "check" the range but isolates all pages that 1079 * need migration. Between passing in the full user address 1080 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1081 */ 1082 vma = find_vma(mm, 0); 1083 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1084 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1085 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1086 1087 if (!list_empty(&pagelist)) { 1088 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1089 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1090 if (err) 1091 putback_movable_pages(&pagelist); 1092 } 1093 1094 return err; 1095 } 1096 1097 /* 1098 * Move pages between the two nodesets so as to preserve the physical 1099 * layout as much as possible. 1100 * 1101 * Returns the number of page that could not be moved. 1102 */ 1103 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1104 const nodemask_t *to, int flags) 1105 { 1106 int busy = 0; 1107 int err = 0; 1108 nodemask_t tmp; 1109 1110 lru_cache_disable(); 1111 1112 mmap_read_lock(mm); 1113 1114 /* 1115 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1116 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1117 * bit in 'tmp', and return that <source, dest> pair for migration. 1118 * The pair of nodemasks 'to' and 'from' define the map. 1119 * 1120 * If no pair of bits is found that way, fallback to picking some 1121 * pair of 'source' and 'dest' bits that are not the same. If the 1122 * 'source' and 'dest' bits are the same, this represents a node 1123 * that will be migrating to itself, so no pages need move. 1124 * 1125 * If no bits are left in 'tmp', or if all remaining bits left 1126 * in 'tmp' correspond to the same bit in 'to', return false 1127 * (nothing left to migrate). 1128 * 1129 * This lets us pick a pair of nodes to migrate between, such that 1130 * if possible the dest node is not already occupied by some other 1131 * source node, minimizing the risk of overloading the memory on a 1132 * node that would happen if we migrated incoming memory to a node 1133 * before migrating outgoing memory source that same node. 1134 * 1135 * A single scan of tmp is sufficient. As we go, we remember the 1136 * most recent <s, d> pair that moved (s != d). If we find a pair 1137 * that not only moved, but what's better, moved to an empty slot 1138 * (d is not set in tmp), then we break out then, with that pair. 1139 * Otherwise when we finish scanning from_tmp, we at least have the 1140 * most recent <s, d> pair that moved. If we get all the way through 1141 * the scan of tmp without finding any node that moved, much less 1142 * moved to an empty node, then there is nothing left worth migrating. 1143 */ 1144 1145 tmp = *from; 1146 while (!nodes_empty(tmp)) { 1147 int s, d; 1148 int source = NUMA_NO_NODE; 1149 int dest = 0; 1150 1151 for_each_node_mask(s, tmp) { 1152 1153 /* 1154 * do_migrate_pages() tries to maintain the relative 1155 * node relationship of the pages established between 1156 * threads and memory areas. 1157 * 1158 * However if the number of source nodes is not equal to 1159 * the number of destination nodes we can not preserve 1160 * this node relative relationship. In that case, skip 1161 * copying memory from a node that is in the destination 1162 * mask. 1163 * 1164 * Example: [2,3,4] -> [3,4,5] moves everything. 1165 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1166 */ 1167 1168 if ((nodes_weight(*from) != nodes_weight(*to)) && 1169 (node_isset(s, *to))) 1170 continue; 1171 1172 d = node_remap(s, *from, *to); 1173 if (s == d) 1174 continue; 1175 1176 source = s; /* Node moved. Memorize */ 1177 dest = d; 1178 1179 /* dest not in remaining from nodes? */ 1180 if (!node_isset(dest, tmp)) 1181 break; 1182 } 1183 if (source == NUMA_NO_NODE) 1184 break; 1185 1186 node_clear(source, tmp); 1187 err = migrate_to_node(mm, source, dest, flags); 1188 if (err > 0) 1189 busy += err; 1190 if (err < 0) 1191 break; 1192 } 1193 mmap_read_unlock(mm); 1194 1195 lru_cache_enable(); 1196 if (err < 0) 1197 return err; 1198 return busy; 1199 1200 } 1201 1202 /* 1203 * Allocate a new page for page migration based on vma policy. 1204 * Start by assuming the page is mapped by the same vma as contains @start. 1205 * Search forward from there, if not. N.B., this assumes that the 1206 * list of pages handed to migrate_pages()--which is how we get here-- 1207 * is in virtual address order. 1208 */ 1209 static struct page *new_page(struct page *page, unsigned long start) 1210 { 1211 struct folio *dst, *src = page_folio(page); 1212 struct vm_area_struct *vma; 1213 unsigned long address; 1214 VMA_ITERATOR(vmi, current->mm, start); 1215 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1216 1217 for_each_vma(vmi, vma) { 1218 address = page_address_in_vma(page, vma); 1219 if (address != -EFAULT) 1220 break; 1221 } 1222 1223 if (folio_test_hugetlb(src)) 1224 return alloc_huge_page_vma(page_hstate(&src->page), 1225 vma, address); 1226 1227 if (folio_test_large(src)) 1228 gfp = GFP_TRANSHUGE; 1229 1230 /* 1231 * if !vma, vma_alloc_folio() will use task or system default policy 1232 */ 1233 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1234 folio_test_large(src)); 1235 return &dst->page; 1236 } 1237 #else 1238 1239 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1240 unsigned long flags) 1241 { 1242 return -EIO; 1243 } 1244 1245 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1246 const nodemask_t *to, int flags) 1247 { 1248 return -ENOSYS; 1249 } 1250 1251 static struct page *new_page(struct page *page, unsigned long start) 1252 { 1253 return NULL; 1254 } 1255 #endif 1256 1257 static long do_mbind(unsigned long start, unsigned long len, 1258 unsigned short mode, unsigned short mode_flags, 1259 nodemask_t *nmask, unsigned long flags) 1260 { 1261 struct mm_struct *mm = current->mm; 1262 struct mempolicy *new; 1263 unsigned long end; 1264 int err; 1265 int ret; 1266 LIST_HEAD(pagelist); 1267 1268 if (flags & ~(unsigned long)MPOL_MF_VALID) 1269 return -EINVAL; 1270 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1271 return -EPERM; 1272 1273 if (start & ~PAGE_MASK) 1274 return -EINVAL; 1275 1276 if (mode == MPOL_DEFAULT) 1277 flags &= ~MPOL_MF_STRICT; 1278 1279 len = PAGE_ALIGN(len); 1280 end = start + len; 1281 1282 if (end < start) 1283 return -EINVAL; 1284 if (end == start) 1285 return 0; 1286 1287 new = mpol_new(mode, mode_flags, nmask); 1288 if (IS_ERR(new)) 1289 return PTR_ERR(new); 1290 1291 if (flags & MPOL_MF_LAZY) 1292 new->flags |= MPOL_F_MOF; 1293 1294 /* 1295 * If we are using the default policy then operation 1296 * on discontinuous address spaces is okay after all 1297 */ 1298 if (!new) 1299 flags |= MPOL_MF_DISCONTIG_OK; 1300 1301 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1302 start, start + len, mode, mode_flags, 1303 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1304 1305 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1306 1307 lru_cache_disable(); 1308 } 1309 { 1310 NODEMASK_SCRATCH(scratch); 1311 if (scratch) { 1312 mmap_write_lock(mm); 1313 err = mpol_set_nodemask(new, nmask, scratch); 1314 if (err) 1315 mmap_write_unlock(mm); 1316 } else 1317 err = -ENOMEM; 1318 NODEMASK_SCRATCH_FREE(scratch); 1319 } 1320 if (err) 1321 goto mpol_out; 1322 1323 ret = queue_pages_range(mm, start, end, nmask, 1324 flags | MPOL_MF_INVERT, &pagelist); 1325 1326 if (ret < 0) { 1327 err = ret; 1328 goto up_out; 1329 } 1330 1331 err = mbind_range(mm, start, end, new); 1332 1333 if (!err) { 1334 int nr_failed = 0; 1335 1336 if (!list_empty(&pagelist)) { 1337 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1338 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1339 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1340 if (nr_failed) 1341 putback_movable_pages(&pagelist); 1342 } 1343 1344 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1345 err = -EIO; 1346 } else { 1347 up_out: 1348 if (!list_empty(&pagelist)) 1349 putback_movable_pages(&pagelist); 1350 } 1351 1352 mmap_write_unlock(mm); 1353 mpol_out: 1354 mpol_put(new); 1355 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1356 lru_cache_enable(); 1357 return err; 1358 } 1359 1360 /* 1361 * User space interface with variable sized bitmaps for nodelists. 1362 */ 1363 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1364 unsigned long maxnode) 1365 { 1366 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1367 int ret; 1368 1369 if (in_compat_syscall()) 1370 ret = compat_get_bitmap(mask, 1371 (const compat_ulong_t __user *)nmask, 1372 maxnode); 1373 else 1374 ret = copy_from_user(mask, nmask, 1375 nlongs * sizeof(unsigned long)); 1376 1377 if (ret) 1378 return -EFAULT; 1379 1380 if (maxnode % BITS_PER_LONG) 1381 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1382 1383 return 0; 1384 } 1385 1386 /* Copy a node mask from user space. */ 1387 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1388 unsigned long maxnode) 1389 { 1390 --maxnode; 1391 nodes_clear(*nodes); 1392 if (maxnode == 0 || !nmask) 1393 return 0; 1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1395 return -EINVAL; 1396 1397 /* 1398 * When the user specified more nodes than supported just check 1399 * if the non supported part is all zero, one word at a time, 1400 * starting at the end. 1401 */ 1402 while (maxnode > MAX_NUMNODES) { 1403 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1404 unsigned long t; 1405 1406 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1407 return -EFAULT; 1408 1409 if (maxnode - bits >= MAX_NUMNODES) { 1410 maxnode -= bits; 1411 } else { 1412 maxnode = MAX_NUMNODES; 1413 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1414 } 1415 if (t) 1416 return -EINVAL; 1417 } 1418 1419 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1420 } 1421 1422 /* Copy a kernel node mask to user space */ 1423 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1424 nodemask_t *nodes) 1425 { 1426 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1427 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1428 bool compat = in_compat_syscall(); 1429 1430 if (compat) 1431 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1432 1433 if (copy > nbytes) { 1434 if (copy > PAGE_SIZE) 1435 return -EINVAL; 1436 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1437 return -EFAULT; 1438 copy = nbytes; 1439 maxnode = nr_node_ids; 1440 } 1441 1442 if (compat) 1443 return compat_put_bitmap((compat_ulong_t __user *)mask, 1444 nodes_addr(*nodes), maxnode); 1445 1446 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1447 } 1448 1449 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1450 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1451 { 1452 *flags = *mode & MPOL_MODE_FLAGS; 1453 *mode &= ~MPOL_MODE_FLAGS; 1454 1455 if ((unsigned int)(*mode) >= MPOL_MAX) 1456 return -EINVAL; 1457 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1458 return -EINVAL; 1459 if (*flags & MPOL_F_NUMA_BALANCING) { 1460 if (*mode != MPOL_BIND) 1461 return -EINVAL; 1462 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1463 } 1464 return 0; 1465 } 1466 1467 static long kernel_mbind(unsigned long start, unsigned long len, 1468 unsigned long mode, const unsigned long __user *nmask, 1469 unsigned long maxnode, unsigned int flags) 1470 { 1471 unsigned short mode_flags; 1472 nodemask_t nodes; 1473 int lmode = mode; 1474 int err; 1475 1476 start = untagged_addr(start); 1477 err = sanitize_mpol_flags(&lmode, &mode_flags); 1478 if (err) 1479 return err; 1480 1481 err = get_nodes(&nodes, nmask, maxnode); 1482 if (err) 1483 return err; 1484 1485 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1486 } 1487 1488 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1489 unsigned long, home_node, unsigned long, flags) 1490 { 1491 struct mm_struct *mm = current->mm; 1492 struct vm_area_struct *vma; 1493 struct mempolicy *new; 1494 unsigned long vmstart; 1495 unsigned long vmend; 1496 unsigned long end; 1497 int err = -ENOENT; 1498 VMA_ITERATOR(vmi, mm, start); 1499 1500 start = untagged_addr(start); 1501 if (start & ~PAGE_MASK) 1502 return -EINVAL; 1503 /* 1504 * flags is used for future extension if any. 1505 */ 1506 if (flags != 0) 1507 return -EINVAL; 1508 1509 /* 1510 * Check home_node is online to avoid accessing uninitialized 1511 * NODE_DATA. 1512 */ 1513 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1514 return -EINVAL; 1515 1516 len = PAGE_ALIGN(len); 1517 end = start + len; 1518 1519 if (end < start) 1520 return -EINVAL; 1521 if (end == start) 1522 return 0; 1523 mmap_write_lock(mm); 1524 for_each_vma_range(vmi, vma, end) { 1525 vmstart = max(start, vma->vm_start); 1526 vmend = min(end, vma->vm_end); 1527 new = mpol_dup(vma_policy(vma)); 1528 if (IS_ERR(new)) { 1529 err = PTR_ERR(new); 1530 break; 1531 } 1532 /* 1533 * Only update home node if there is an existing vma policy 1534 */ 1535 if (!new) 1536 continue; 1537 1538 /* 1539 * If any vma in the range got policy other than MPOL_BIND 1540 * or MPOL_PREFERRED_MANY we return error. We don't reset 1541 * the home node for vmas we already updated before. 1542 */ 1543 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) { 1544 mpol_put(new); 1545 err = -EOPNOTSUPP; 1546 break; 1547 } 1548 1549 new->home_node = home_node; 1550 err = mbind_range(mm, vmstart, vmend, new); 1551 mpol_put(new); 1552 if (err) 1553 break; 1554 } 1555 mmap_write_unlock(mm); 1556 return err; 1557 } 1558 1559 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1560 unsigned long, mode, const unsigned long __user *, nmask, 1561 unsigned long, maxnode, unsigned int, flags) 1562 { 1563 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1564 } 1565 1566 /* Set the process memory policy */ 1567 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1568 unsigned long maxnode) 1569 { 1570 unsigned short mode_flags; 1571 nodemask_t nodes; 1572 int lmode = mode; 1573 int err; 1574 1575 err = sanitize_mpol_flags(&lmode, &mode_flags); 1576 if (err) 1577 return err; 1578 1579 err = get_nodes(&nodes, nmask, maxnode); 1580 if (err) 1581 return err; 1582 1583 return do_set_mempolicy(lmode, mode_flags, &nodes); 1584 } 1585 1586 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1587 unsigned long, maxnode) 1588 { 1589 return kernel_set_mempolicy(mode, nmask, maxnode); 1590 } 1591 1592 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1593 const unsigned long __user *old_nodes, 1594 const unsigned long __user *new_nodes) 1595 { 1596 struct mm_struct *mm = NULL; 1597 struct task_struct *task; 1598 nodemask_t task_nodes; 1599 int err; 1600 nodemask_t *old; 1601 nodemask_t *new; 1602 NODEMASK_SCRATCH(scratch); 1603 1604 if (!scratch) 1605 return -ENOMEM; 1606 1607 old = &scratch->mask1; 1608 new = &scratch->mask2; 1609 1610 err = get_nodes(old, old_nodes, maxnode); 1611 if (err) 1612 goto out; 1613 1614 err = get_nodes(new, new_nodes, maxnode); 1615 if (err) 1616 goto out; 1617 1618 /* Find the mm_struct */ 1619 rcu_read_lock(); 1620 task = pid ? find_task_by_vpid(pid) : current; 1621 if (!task) { 1622 rcu_read_unlock(); 1623 err = -ESRCH; 1624 goto out; 1625 } 1626 get_task_struct(task); 1627 1628 err = -EINVAL; 1629 1630 /* 1631 * Check if this process has the right to modify the specified process. 1632 * Use the regular "ptrace_may_access()" checks. 1633 */ 1634 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1635 rcu_read_unlock(); 1636 err = -EPERM; 1637 goto out_put; 1638 } 1639 rcu_read_unlock(); 1640 1641 task_nodes = cpuset_mems_allowed(task); 1642 /* Is the user allowed to access the target nodes? */ 1643 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1644 err = -EPERM; 1645 goto out_put; 1646 } 1647 1648 task_nodes = cpuset_mems_allowed(current); 1649 nodes_and(*new, *new, task_nodes); 1650 if (nodes_empty(*new)) 1651 goto out_put; 1652 1653 err = security_task_movememory(task); 1654 if (err) 1655 goto out_put; 1656 1657 mm = get_task_mm(task); 1658 put_task_struct(task); 1659 1660 if (!mm) { 1661 err = -EINVAL; 1662 goto out; 1663 } 1664 1665 err = do_migrate_pages(mm, old, new, 1666 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1667 1668 mmput(mm); 1669 out: 1670 NODEMASK_SCRATCH_FREE(scratch); 1671 1672 return err; 1673 1674 out_put: 1675 put_task_struct(task); 1676 goto out; 1677 1678 } 1679 1680 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1681 const unsigned long __user *, old_nodes, 1682 const unsigned long __user *, new_nodes) 1683 { 1684 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1685 } 1686 1687 1688 /* Retrieve NUMA policy */ 1689 static int kernel_get_mempolicy(int __user *policy, 1690 unsigned long __user *nmask, 1691 unsigned long maxnode, 1692 unsigned long addr, 1693 unsigned long flags) 1694 { 1695 int err; 1696 int pval; 1697 nodemask_t nodes; 1698 1699 if (nmask != NULL && maxnode < nr_node_ids) 1700 return -EINVAL; 1701 1702 addr = untagged_addr(addr); 1703 1704 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1705 1706 if (err) 1707 return err; 1708 1709 if (policy && put_user(pval, policy)) 1710 return -EFAULT; 1711 1712 if (nmask) 1713 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1714 1715 return err; 1716 } 1717 1718 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1719 unsigned long __user *, nmask, unsigned long, maxnode, 1720 unsigned long, addr, unsigned long, flags) 1721 { 1722 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1723 } 1724 1725 bool vma_migratable(struct vm_area_struct *vma) 1726 { 1727 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1728 return false; 1729 1730 /* 1731 * DAX device mappings require predictable access latency, so avoid 1732 * incurring periodic faults. 1733 */ 1734 if (vma_is_dax(vma)) 1735 return false; 1736 1737 if (is_vm_hugetlb_page(vma) && 1738 !hugepage_migration_supported(hstate_vma(vma))) 1739 return false; 1740 1741 /* 1742 * Migration allocates pages in the highest zone. If we cannot 1743 * do so then migration (at least from node to node) is not 1744 * possible. 1745 */ 1746 if (vma->vm_file && 1747 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1748 < policy_zone) 1749 return false; 1750 return true; 1751 } 1752 1753 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1754 unsigned long addr) 1755 { 1756 struct mempolicy *pol = NULL; 1757 1758 if (vma) { 1759 if (vma->vm_ops && vma->vm_ops->get_policy) { 1760 pol = vma->vm_ops->get_policy(vma, addr); 1761 } else if (vma->vm_policy) { 1762 pol = vma->vm_policy; 1763 1764 /* 1765 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1766 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1767 * count on these policies which will be dropped by 1768 * mpol_cond_put() later 1769 */ 1770 if (mpol_needs_cond_ref(pol)) 1771 mpol_get(pol); 1772 } 1773 } 1774 1775 return pol; 1776 } 1777 1778 /* 1779 * get_vma_policy(@vma, @addr) 1780 * @vma: virtual memory area whose policy is sought 1781 * @addr: address in @vma for shared policy lookup 1782 * 1783 * Returns effective policy for a VMA at specified address. 1784 * Falls back to current->mempolicy or system default policy, as necessary. 1785 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1786 * count--added by the get_policy() vm_op, as appropriate--to protect against 1787 * freeing by another task. It is the caller's responsibility to free the 1788 * extra reference for shared policies. 1789 */ 1790 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1791 unsigned long addr) 1792 { 1793 struct mempolicy *pol = __get_vma_policy(vma, addr); 1794 1795 if (!pol) 1796 pol = get_task_policy(current); 1797 1798 return pol; 1799 } 1800 1801 bool vma_policy_mof(struct vm_area_struct *vma) 1802 { 1803 struct mempolicy *pol; 1804 1805 if (vma->vm_ops && vma->vm_ops->get_policy) { 1806 bool ret = false; 1807 1808 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1809 if (pol && (pol->flags & MPOL_F_MOF)) 1810 ret = true; 1811 mpol_cond_put(pol); 1812 1813 return ret; 1814 } 1815 1816 pol = vma->vm_policy; 1817 if (!pol) 1818 pol = get_task_policy(current); 1819 1820 return pol->flags & MPOL_F_MOF; 1821 } 1822 1823 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1824 { 1825 enum zone_type dynamic_policy_zone = policy_zone; 1826 1827 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1828 1829 /* 1830 * if policy->nodes has movable memory only, 1831 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1832 * 1833 * policy->nodes is intersect with node_states[N_MEMORY]. 1834 * so if the following test fails, it implies 1835 * policy->nodes has movable memory only. 1836 */ 1837 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1838 dynamic_policy_zone = ZONE_MOVABLE; 1839 1840 return zone >= dynamic_policy_zone; 1841 } 1842 1843 /* 1844 * Return a nodemask representing a mempolicy for filtering nodes for 1845 * page allocation 1846 */ 1847 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1848 { 1849 int mode = policy->mode; 1850 1851 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1852 if (unlikely(mode == MPOL_BIND) && 1853 apply_policy_zone(policy, gfp_zone(gfp)) && 1854 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1855 return &policy->nodes; 1856 1857 if (mode == MPOL_PREFERRED_MANY) 1858 return &policy->nodes; 1859 1860 return NULL; 1861 } 1862 1863 /* 1864 * Return the preferred node id for 'prefer' mempolicy, and return 1865 * the given id for all other policies. 1866 * 1867 * policy_node() is always coupled with policy_nodemask(), which 1868 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1869 */ 1870 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1871 { 1872 if (policy->mode == MPOL_PREFERRED) { 1873 nd = first_node(policy->nodes); 1874 } else { 1875 /* 1876 * __GFP_THISNODE shouldn't even be used with the bind policy 1877 * because we might easily break the expectation to stay on the 1878 * requested node and not break the policy. 1879 */ 1880 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1881 } 1882 1883 if ((policy->mode == MPOL_BIND || 1884 policy->mode == MPOL_PREFERRED_MANY) && 1885 policy->home_node != NUMA_NO_NODE) 1886 return policy->home_node; 1887 1888 return nd; 1889 } 1890 1891 /* Do dynamic interleaving for a process */ 1892 static unsigned interleave_nodes(struct mempolicy *policy) 1893 { 1894 unsigned next; 1895 struct task_struct *me = current; 1896 1897 next = next_node_in(me->il_prev, policy->nodes); 1898 if (next < MAX_NUMNODES) 1899 me->il_prev = next; 1900 return next; 1901 } 1902 1903 /* 1904 * Depending on the memory policy provide a node from which to allocate the 1905 * next slab entry. 1906 */ 1907 unsigned int mempolicy_slab_node(void) 1908 { 1909 struct mempolicy *policy; 1910 int node = numa_mem_id(); 1911 1912 if (!in_task()) 1913 return node; 1914 1915 policy = current->mempolicy; 1916 if (!policy) 1917 return node; 1918 1919 switch (policy->mode) { 1920 case MPOL_PREFERRED: 1921 return first_node(policy->nodes); 1922 1923 case MPOL_INTERLEAVE: 1924 return interleave_nodes(policy); 1925 1926 case MPOL_BIND: 1927 case MPOL_PREFERRED_MANY: 1928 { 1929 struct zoneref *z; 1930 1931 /* 1932 * Follow bind policy behavior and start allocation at the 1933 * first node. 1934 */ 1935 struct zonelist *zonelist; 1936 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1937 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1938 z = first_zones_zonelist(zonelist, highest_zoneidx, 1939 &policy->nodes); 1940 return z->zone ? zone_to_nid(z->zone) : node; 1941 } 1942 case MPOL_LOCAL: 1943 return node; 1944 1945 default: 1946 BUG(); 1947 } 1948 } 1949 1950 /* 1951 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1952 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1953 * number of present nodes. 1954 */ 1955 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1956 { 1957 nodemask_t nodemask = pol->nodes; 1958 unsigned int target, nnodes; 1959 int i; 1960 int nid; 1961 /* 1962 * The barrier will stabilize the nodemask in a register or on 1963 * the stack so that it will stop changing under the code. 1964 * 1965 * Between first_node() and next_node(), pol->nodes could be changed 1966 * by other threads. So we put pol->nodes in a local stack. 1967 */ 1968 barrier(); 1969 1970 nnodes = nodes_weight(nodemask); 1971 if (!nnodes) 1972 return numa_node_id(); 1973 target = (unsigned int)n % nnodes; 1974 nid = first_node(nodemask); 1975 for (i = 0; i < target; i++) 1976 nid = next_node(nid, nodemask); 1977 return nid; 1978 } 1979 1980 /* Determine a node number for interleave */ 1981 static inline unsigned interleave_nid(struct mempolicy *pol, 1982 struct vm_area_struct *vma, unsigned long addr, int shift) 1983 { 1984 if (vma) { 1985 unsigned long off; 1986 1987 /* 1988 * for small pages, there is no difference between 1989 * shift and PAGE_SHIFT, so the bit-shift is safe. 1990 * for huge pages, since vm_pgoff is in units of small 1991 * pages, we need to shift off the always 0 bits to get 1992 * a useful offset. 1993 */ 1994 BUG_ON(shift < PAGE_SHIFT); 1995 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1996 off += (addr - vma->vm_start) >> shift; 1997 return offset_il_node(pol, off); 1998 } else 1999 return interleave_nodes(pol); 2000 } 2001 2002 #ifdef CONFIG_HUGETLBFS 2003 /* 2004 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2005 * @vma: virtual memory area whose policy is sought 2006 * @addr: address in @vma for shared policy lookup and interleave policy 2007 * @gfp_flags: for requested zone 2008 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2009 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2010 * 2011 * Returns a nid suitable for a huge page allocation and a pointer 2012 * to the struct mempolicy for conditional unref after allocation. 2013 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2014 * to the mempolicy's @nodemask for filtering the zonelist. 2015 * 2016 * Must be protected by read_mems_allowed_begin() 2017 */ 2018 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2019 struct mempolicy **mpol, nodemask_t **nodemask) 2020 { 2021 int nid; 2022 int mode; 2023 2024 *mpol = get_vma_policy(vma, addr); 2025 *nodemask = NULL; 2026 mode = (*mpol)->mode; 2027 2028 if (unlikely(mode == MPOL_INTERLEAVE)) { 2029 nid = interleave_nid(*mpol, vma, addr, 2030 huge_page_shift(hstate_vma(vma))); 2031 } else { 2032 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2033 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2034 *nodemask = &(*mpol)->nodes; 2035 } 2036 return nid; 2037 } 2038 2039 /* 2040 * init_nodemask_of_mempolicy 2041 * 2042 * If the current task's mempolicy is "default" [NULL], return 'false' 2043 * to indicate default policy. Otherwise, extract the policy nodemask 2044 * for 'bind' or 'interleave' policy into the argument nodemask, or 2045 * initialize the argument nodemask to contain the single node for 2046 * 'preferred' or 'local' policy and return 'true' to indicate presence 2047 * of non-default mempolicy. 2048 * 2049 * We don't bother with reference counting the mempolicy [mpol_get/put] 2050 * because the current task is examining it's own mempolicy and a task's 2051 * mempolicy is only ever changed by the task itself. 2052 * 2053 * N.B., it is the caller's responsibility to free a returned nodemask. 2054 */ 2055 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2056 { 2057 struct mempolicy *mempolicy; 2058 2059 if (!(mask && current->mempolicy)) 2060 return false; 2061 2062 task_lock(current); 2063 mempolicy = current->mempolicy; 2064 switch (mempolicy->mode) { 2065 case MPOL_PREFERRED: 2066 case MPOL_PREFERRED_MANY: 2067 case MPOL_BIND: 2068 case MPOL_INTERLEAVE: 2069 *mask = mempolicy->nodes; 2070 break; 2071 2072 case MPOL_LOCAL: 2073 init_nodemask_of_node(mask, numa_node_id()); 2074 break; 2075 2076 default: 2077 BUG(); 2078 } 2079 task_unlock(current); 2080 2081 return true; 2082 } 2083 #endif 2084 2085 /* 2086 * mempolicy_in_oom_domain 2087 * 2088 * If tsk's mempolicy is "bind", check for intersection between mask and 2089 * the policy nodemask. Otherwise, return true for all other policies 2090 * including "interleave", as a tsk with "interleave" policy may have 2091 * memory allocated from all nodes in system. 2092 * 2093 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2094 */ 2095 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2096 const nodemask_t *mask) 2097 { 2098 struct mempolicy *mempolicy; 2099 bool ret = true; 2100 2101 if (!mask) 2102 return ret; 2103 2104 task_lock(tsk); 2105 mempolicy = tsk->mempolicy; 2106 if (mempolicy && mempolicy->mode == MPOL_BIND) 2107 ret = nodes_intersects(mempolicy->nodes, *mask); 2108 task_unlock(tsk); 2109 2110 return ret; 2111 } 2112 2113 /* Allocate a page in interleaved policy. 2114 Own path because it needs to do special accounting. */ 2115 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2116 unsigned nid) 2117 { 2118 struct page *page; 2119 2120 page = __alloc_pages(gfp, order, nid, NULL); 2121 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2122 if (!static_branch_likely(&vm_numa_stat_key)) 2123 return page; 2124 if (page && page_to_nid(page) == nid) { 2125 preempt_disable(); 2126 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2127 preempt_enable(); 2128 } 2129 return page; 2130 } 2131 2132 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2133 int nid, struct mempolicy *pol) 2134 { 2135 struct page *page; 2136 gfp_t preferred_gfp; 2137 2138 /* 2139 * This is a two pass approach. The first pass will only try the 2140 * preferred nodes but skip the direct reclaim and allow the 2141 * allocation to fail, while the second pass will try all the 2142 * nodes in system. 2143 */ 2144 preferred_gfp = gfp | __GFP_NOWARN; 2145 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2146 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2147 if (!page) 2148 page = __alloc_pages(gfp, order, nid, NULL); 2149 2150 return page; 2151 } 2152 2153 /** 2154 * vma_alloc_folio - Allocate a folio for a VMA. 2155 * @gfp: GFP flags. 2156 * @order: Order of the folio. 2157 * @vma: Pointer to VMA or NULL if not available. 2158 * @addr: Virtual address of the allocation. Must be inside @vma. 2159 * @hugepage: For hugepages try only the preferred node if possible. 2160 * 2161 * Allocate a folio for a specific address in @vma, using the appropriate 2162 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2163 * of the mm_struct of the VMA to prevent it from going away. Should be 2164 * used for all allocations for folios that will be mapped into user space. 2165 * 2166 * Return: The folio on success or NULL if allocation fails. 2167 */ 2168 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2169 unsigned long addr, bool hugepage) 2170 { 2171 struct mempolicy *pol; 2172 int node = numa_node_id(); 2173 struct folio *folio; 2174 int preferred_nid; 2175 nodemask_t *nmask; 2176 2177 pol = get_vma_policy(vma, addr); 2178 2179 if (pol->mode == MPOL_INTERLEAVE) { 2180 struct page *page; 2181 unsigned nid; 2182 2183 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2184 mpol_cond_put(pol); 2185 gfp |= __GFP_COMP; 2186 page = alloc_page_interleave(gfp, order, nid); 2187 if (page && order > 1) 2188 prep_transhuge_page(page); 2189 folio = (struct folio *)page; 2190 goto out; 2191 } 2192 2193 if (pol->mode == MPOL_PREFERRED_MANY) { 2194 struct page *page; 2195 2196 node = policy_node(gfp, pol, node); 2197 gfp |= __GFP_COMP; 2198 page = alloc_pages_preferred_many(gfp, order, node, pol); 2199 mpol_cond_put(pol); 2200 if (page && order > 1) 2201 prep_transhuge_page(page); 2202 folio = (struct folio *)page; 2203 goto out; 2204 } 2205 2206 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2207 int hpage_node = node; 2208 2209 /* 2210 * For hugepage allocation and non-interleave policy which 2211 * allows the current node (or other explicitly preferred 2212 * node) we only try to allocate from the current/preferred 2213 * node and don't fall back to other nodes, as the cost of 2214 * remote accesses would likely offset THP benefits. 2215 * 2216 * If the policy is interleave or does not allow the current 2217 * node in its nodemask, we allocate the standard way. 2218 */ 2219 if (pol->mode == MPOL_PREFERRED) 2220 hpage_node = first_node(pol->nodes); 2221 2222 nmask = policy_nodemask(gfp, pol); 2223 if (!nmask || node_isset(hpage_node, *nmask)) { 2224 mpol_cond_put(pol); 2225 /* 2226 * First, try to allocate THP only on local node, but 2227 * don't reclaim unnecessarily, just compact. 2228 */ 2229 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2230 __GFP_NORETRY, order, hpage_node); 2231 2232 /* 2233 * If hugepage allocations are configured to always 2234 * synchronous compact or the vma has been madvised 2235 * to prefer hugepage backing, retry allowing remote 2236 * memory with both reclaim and compact as well. 2237 */ 2238 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2239 folio = __folio_alloc(gfp, order, hpage_node, 2240 nmask); 2241 2242 goto out; 2243 } 2244 } 2245 2246 nmask = policy_nodemask(gfp, pol); 2247 preferred_nid = policy_node(gfp, pol, node); 2248 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2249 mpol_cond_put(pol); 2250 out: 2251 return folio; 2252 } 2253 EXPORT_SYMBOL(vma_alloc_folio); 2254 2255 /** 2256 * alloc_pages - Allocate pages. 2257 * @gfp: GFP flags. 2258 * @order: Power of two of number of pages to allocate. 2259 * 2260 * Allocate 1 << @order contiguous pages. The physical address of the 2261 * first page is naturally aligned (eg an order-3 allocation will be aligned 2262 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2263 * process is honoured when in process context. 2264 * 2265 * Context: Can be called from any context, providing the appropriate GFP 2266 * flags are used. 2267 * Return: The page on success or NULL if allocation fails. 2268 */ 2269 struct page *alloc_pages(gfp_t gfp, unsigned order) 2270 { 2271 struct mempolicy *pol = &default_policy; 2272 struct page *page; 2273 2274 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2275 pol = get_task_policy(current); 2276 2277 /* 2278 * No reference counting needed for current->mempolicy 2279 * nor system default_policy 2280 */ 2281 if (pol->mode == MPOL_INTERLEAVE) 2282 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2283 else if (pol->mode == MPOL_PREFERRED_MANY) 2284 page = alloc_pages_preferred_many(gfp, order, 2285 policy_node(gfp, pol, numa_node_id()), pol); 2286 else 2287 page = __alloc_pages(gfp, order, 2288 policy_node(gfp, pol, numa_node_id()), 2289 policy_nodemask(gfp, pol)); 2290 2291 return page; 2292 } 2293 EXPORT_SYMBOL(alloc_pages); 2294 2295 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2296 { 2297 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2298 2299 if (page && order > 1) 2300 prep_transhuge_page(page); 2301 return (struct folio *)page; 2302 } 2303 EXPORT_SYMBOL(folio_alloc); 2304 2305 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2306 struct mempolicy *pol, unsigned long nr_pages, 2307 struct page **page_array) 2308 { 2309 int nodes; 2310 unsigned long nr_pages_per_node; 2311 int delta; 2312 int i; 2313 unsigned long nr_allocated; 2314 unsigned long total_allocated = 0; 2315 2316 nodes = nodes_weight(pol->nodes); 2317 nr_pages_per_node = nr_pages / nodes; 2318 delta = nr_pages - nodes * nr_pages_per_node; 2319 2320 for (i = 0; i < nodes; i++) { 2321 if (delta) { 2322 nr_allocated = __alloc_pages_bulk(gfp, 2323 interleave_nodes(pol), NULL, 2324 nr_pages_per_node + 1, NULL, 2325 page_array); 2326 delta--; 2327 } else { 2328 nr_allocated = __alloc_pages_bulk(gfp, 2329 interleave_nodes(pol), NULL, 2330 nr_pages_per_node, NULL, page_array); 2331 } 2332 2333 page_array += nr_allocated; 2334 total_allocated += nr_allocated; 2335 } 2336 2337 return total_allocated; 2338 } 2339 2340 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2341 struct mempolicy *pol, unsigned long nr_pages, 2342 struct page **page_array) 2343 { 2344 gfp_t preferred_gfp; 2345 unsigned long nr_allocated = 0; 2346 2347 preferred_gfp = gfp | __GFP_NOWARN; 2348 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2349 2350 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2351 nr_pages, NULL, page_array); 2352 2353 if (nr_allocated < nr_pages) 2354 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2355 nr_pages - nr_allocated, NULL, 2356 page_array + nr_allocated); 2357 return nr_allocated; 2358 } 2359 2360 /* alloc pages bulk and mempolicy should be considered at the 2361 * same time in some situation such as vmalloc. 2362 * 2363 * It can accelerate memory allocation especially interleaving 2364 * allocate memory. 2365 */ 2366 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2367 unsigned long nr_pages, struct page **page_array) 2368 { 2369 struct mempolicy *pol = &default_policy; 2370 2371 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2372 pol = get_task_policy(current); 2373 2374 if (pol->mode == MPOL_INTERLEAVE) 2375 return alloc_pages_bulk_array_interleave(gfp, pol, 2376 nr_pages, page_array); 2377 2378 if (pol->mode == MPOL_PREFERRED_MANY) 2379 return alloc_pages_bulk_array_preferred_many(gfp, 2380 numa_node_id(), pol, nr_pages, page_array); 2381 2382 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2383 policy_nodemask(gfp, pol), nr_pages, NULL, 2384 page_array); 2385 } 2386 2387 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2388 { 2389 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2390 2391 if (IS_ERR(pol)) 2392 return PTR_ERR(pol); 2393 dst->vm_policy = pol; 2394 return 0; 2395 } 2396 2397 /* 2398 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2399 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2400 * with the mems_allowed returned by cpuset_mems_allowed(). This 2401 * keeps mempolicies cpuset relative after its cpuset moves. See 2402 * further kernel/cpuset.c update_nodemask(). 2403 * 2404 * current's mempolicy may be rebinded by the other task(the task that changes 2405 * cpuset's mems), so we needn't do rebind work for current task. 2406 */ 2407 2408 /* Slow path of a mempolicy duplicate */ 2409 struct mempolicy *__mpol_dup(struct mempolicy *old) 2410 { 2411 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2412 2413 if (!new) 2414 return ERR_PTR(-ENOMEM); 2415 2416 /* task's mempolicy is protected by alloc_lock */ 2417 if (old == current->mempolicy) { 2418 task_lock(current); 2419 *new = *old; 2420 task_unlock(current); 2421 } else 2422 *new = *old; 2423 2424 if (current_cpuset_is_being_rebound()) { 2425 nodemask_t mems = cpuset_mems_allowed(current); 2426 mpol_rebind_policy(new, &mems); 2427 } 2428 atomic_set(&new->refcnt, 1); 2429 return new; 2430 } 2431 2432 /* Slow path of a mempolicy comparison */ 2433 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2434 { 2435 if (!a || !b) 2436 return false; 2437 if (a->mode != b->mode) 2438 return false; 2439 if (a->flags != b->flags) 2440 return false; 2441 if (a->home_node != b->home_node) 2442 return false; 2443 if (mpol_store_user_nodemask(a)) 2444 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2445 return false; 2446 2447 switch (a->mode) { 2448 case MPOL_BIND: 2449 case MPOL_INTERLEAVE: 2450 case MPOL_PREFERRED: 2451 case MPOL_PREFERRED_MANY: 2452 return !!nodes_equal(a->nodes, b->nodes); 2453 case MPOL_LOCAL: 2454 return true; 2455 default: 2456 BUG(); 2457 return false; 2458 } 2459 } 2460 2461 /* 2462 * Shared memory backing store policy support. 2463 * 2464 * Remember policies even when nobody has shared memory mapped. 2465 * The policies are kept in Red-Black tree linked from the inode. 2466 * They are protected by the sp->lock rwlock, which should be held 2467 * for any accesses to the tree. 2468 */ 2469 2470 /* 2471 * lookup first element intersecting start-end. Caller holds sp->lock for 2472 * reading or for writing 2473 */ 2474 static struct sp_node * 2475 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2476 { 2477 struct rb_node *n = sp->root.rb_node; 2478 2479 while (n) { 2480 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2481 2482 if (start >= p->end) 2483 n = n->rb_right; 2484 else if (end <= p->start) 2485 n = n->rb_left; 2486 else 2487 break; 2488 } 2489 if (!n) 2490 return NULL; 2491 for (;;) { 2492 struct sp_node *w = NULL; 2493 struct rb_node *prev = rb_prev(n); 2494 if (!prev) 2495 break; 2496 w = rb_entry(prev, struct sp_node, nd); 2497 if (w->end <= start) 2498 break; 2499 n = prev; 2500 } 2501 return rb_entry(n, struct sp_node, nd); 2502 } 2503 2504 /* 2505 * Insert a new shared policy into the list. Caller holds sp->lock for 2506 * writing. 2507 */ 2508 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2509 { 2510 struct rb_node **p = &sp->root.rb_node; 2511 struct rb_node *parent = NULL; 2512 struct sp_node *nd; 2513 2514 while (*p) { 2515 parent = *p; 2516 nd = rb_entry(parent, struct sp_node, nd); 2517 if (new->start < nd->start) 2518 p = &(*p)->rb_left; 2519 else if (new->end > nd->end) 2520 p = &(*p)->rb_right; 2521 else 2522 BUG(); 2523 } 2524 rb_link_node(&new->nd, parent, p); 2525 rb_insert_color(&new->nd, &sp->root); 2526 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2527 new->policy ? new->policy->mode : 0); 2528 } 2529 2530 /* Find shared policy intersecting idx */ 2531 struct mempolicy * 2532 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2533 { 2534 struct mempolicy *pol = NULL; 2535 struct sp_node *sn; 2536 2537 if (!sp->root.rb_node) 2538 return NULL; 2539 read_lock(&sp->lock); 2540 sn = sp_lookup(sp, idx, idx+1); 2541 if (sn) { 2542 mpol_get(sn->policy); 2543 pol = sn->policy; 2544 } 2545 read_unlock(&sp->lock); 2546 return pol; 2547 } 2548 2549 static void sp_free(struct sp_node *n) 2550 { 2551 mpol_put(n->policy); 2552 kmem_cache_free(sn_cache, n); 2553 } 2554 2555 /** 2556 * mpol_misplaced - check whether current page node is valid in policy 2557 * 2558 * @page: page to be checked 2559 * @vma: vm area where page mapped 2560 * @addr: virtual address where page mapped 2561 * 2562 * Lookup current policy node id for vma,addr and "compare to" page's 2563 * node id. Policy determination "mimics" alloc_page_vma(). 2564 * Called from fault path where we know the vma and faulting address. 2565 * 2566 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2567 * policy, or a suitable node ID to allocate a replacement page from. 2568 */ 2569 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2570 { 2571 struct mempolicy *pol; 2572 struct zoneref *z; 2573 int curnid = page_to_nid(page); 2574 unsigned long pgoff; 2575 int thiscpu = raw_smp_processor_id(); 2576 int thisnid = cpu_to_node(thiscpu); 2577 int polnid = NUMA_NO_NODE; 2578 int ret = NUMA_NO_NODE; 2579 2580 pol = get_vma_policy(vma, addr); 2581 if (!(pol->flags & MPOL_F_MOF)) 2582 goto out; 2583 2584 switch (pol->mode) { 2585 case MPOL_INTERLEAVE: 2586 pgoff = vma->vm_pgoff; 2587 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2588 polnid = offset_il_node(pol, pgoff); 2589 break; 2590 2591 case MPOL_PREFERRED: 2592 if (node_isset(curnid, pol->nodes)) 2593 goto out; 2594 polnid = first_node(pol->nodes); 2595 break; 2596 2597 case MPOL_LOCAL: 2598 polnid = numa_node_id(); 2599 break; 2600 2601 case MPOL_BIND: 2602 /* Optimize placement among multiple nodes via NUMA balancing */ 2603 if (pol->flags & MPOL_F_MORON) { 2604 if (node_isset(thisnid, pol->nodes)) 2605 break; 2606 goto out; 2607 } 2608 fallthrough; 2609 2610 case MPOL_PREFERRED_MANY: 2611 /* 2612 * use current page if in policy nodemask, 2613 * else select nearest allowed node, if any. 2614 * If no allowed nodes, use current [!misplaced]. 2615 */ 2616 if (node_isset(curnid, pol->nodes)) 2617 goto out; 2618 z = first_zones_zonelist( 2619 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2620 gfp_zone(GFP_HIGHUSER), 2621 &pol->nodes); 2622 polnid = zone_to_nid(z->zone); 2623 break; 2624 2625 default: 2626 BUG(); 2627 } 2628 2629 /* Migrate the page towards the node whose CPU is referencing it */ 2630 if (pol->flags & MPOL_F_MORON) { 2631 polnid = thisnid; 2632 2633 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2634 goto out; 2635 } 2636 2637 if (curnid != polnid) 2638 ret = polnid; 2639 out: 2640 mpol_cond_put(pol); 2641 2642 return ret; 2643 } 2644 2645 /* 2646 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2647 * dropped after task->mempolicy is set to NULL so that any allocation done as 2648 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2649 * policy. 2650 */ 2651 void mpol_put_task_policy(struct task_struct *task) 2652 { 2653 struct mempolicy *pol; 2654 2655 task_lock(task); 2656 pol = task->mempolicy; 2657 task->mempolicy = NULL; 2658 task_unlock(task); 2659 mpol_put(pol); 2660 } 2661 2662 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2663 { 2664 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2665 rb_erase(&n->nd, &sp->root); 2666 sp_free(n); 2667 } 2668 2669 static void sp_node_init(struct sp_node *node, unsigned long start, 2670 unsigned long end, struct mempolicy *pol) 2671 { 2672 node->start = start; 2673 node->end = end; 2674 node->policy = pol; 2675 } 2676 2677 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2678 struct mempolicy *pol) 2679 { 2680 struct sp_node *n; 2681 struct mempolicy *newpol; 2682 2683 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2684 if (!n) 2685 return NULL; 2686 2687 newpol = mpol_dup(pol); 2688 if (IS_ERR(newpol)) { 2689 kmem_cache_free(sn_cache, n); 2690 return NULL; 2691 } 2692 newpol->flags |= MPOL_F_SHARED; 2693 sp_node_init(n, start, end, newpol); 2694 2695 return n; 2696 } 2697 2698 /* Replace a policy range. */ 2699 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2700 unsigned long end, struct sp_node *new) 2701 { 2702 struct sp_node *n; 2703 struct sp_node *n_new = NULL; 2704 struct mempolicy *mpol_new = NULL; 2705 int ret = 0; 2706 2707 restart: 2708 write_lock(&sp->lock); 2709 n = sp_lookup(sp, start, end); 2710 /* Take care of old policies in the same range. */ 2711 while (n && n->start < end) { 2712 struct rb_node *next = rb_next(&n->nd); 2713 if (n->start >= start) { 2714 if (n->end <= end) 2715 sp_delete(sp, n); 2716 else 2717 n->start = end; 2718 } else { 2719 /* Old policy spanning whole new range. */ 2720 if (n->end > end) { 2721 if (!n_new) 2722 goto alloc_new; 2723 2724 *mpol_new = *n->policy; 2725 atomic_set(&mpol_new->refcnt, 1); 2726 sp_node_init(n_new, end, n->end, mpol_new); 2727 n->end = start; 2728 sp_insert(sp, n_new); 2729 n_new = NULL; 2730 mpol_new = NULL; 2731 break; 2732 } else 2733 n->end = start; 2734 } 2735 if (!next) 2736 break; 2737 n = rb_entry(next, struct sp_node, nd); 2738 } 2739 if (new) 2740 sp_insert(sp, new); 2741 write_unlock(&sp->lock); 2742 ret = 0; 2743 2744 err_out: 2745 if (mpol_new) 2746 mpol_put(mpol_new); 2747 if (n_new) 2748 kmem_cache_free(sn_cache, n_new); 2749 2750 return ret; 2751 2752 alloc_new: 2753 write_unlock(&sp->lock); 2754 ret = -ENOMEM; 2755 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2756 if (!n_new) 2757 goto err_out; 2758 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2759 if (!mpol_new) 2760 goto err_out; 2761 atomic_set(&mpol_new->refcnt, 1); 2762 goto restart; 2763 } 2764 2765 /** 2766 * mpol_shared_policy_init - initialize shared policy for inode 2767 * @sp: pointer to inode shared policy 2768 * @mpol: struct mempolicy to install 2769 * 2770 * Install non-NULL @mpol in inode's shared policy rb-tree. 2771 * On entry, the current task has a reference on a non-NULL @mpol. 2772 * This must be released on exit. 2773 * This is called at get_inode() calls and we can use GFP_KERNEL. 2774 */ 2775 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2776 { 2777 int ret; 2778 2779 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2780 rwlock_init(&sp->lock); 2781 2782 if (mpol) { 2783 struct vm_area_struct pvma; 2784 struct mempolicy *new; 2785 NODEMASK_SCRATCH(scratch); 2786 2787 if (!scratch) 2788 goto put_mpol; 2789 /* contextualize the tmpfs mount point mempolicy */ 2790 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2791 if (IS_ERR(new)) 2792 goto free_scratch; /* no valid nodemask intersection */ 2793 2794 task_lock(current); 2795 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2796 task_unlock(current); 2797 if (ret) 2798 goto put_new; 2799 2800 /* Create pseudo-vma that contains just the policy */ 2801 vma_init(&pvma, NULL); 2802 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2803 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2804 2805 put_new: 2806 mpol_put(new); /* drop initial ref */ 2807 free_scratch: 2808 NODEMASK_SCRATCH_FREE(scratch); 2809 put_mpol: 2810 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2811 } 2812 } 2813 2814 int mpol_set_shared_policy(struct shared_policy *info, 2815 struct vm_area_struct *vma, struct mempolicy *npol) 2816 { 2817 int err; 2818 struct sp_node *new = NULL; 2819 unsigned long sz = vma_pages(vma); 2820 2821 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2822 vma->vm_pgoff, 2823 sz, npol ? npol->mode : -1, 2824 npol ? npol->flags : -1, 2825 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2826 2827 if (npol) { 2828 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2829 if (!new) 2830 return -ENOMEM; 2831 } 2832 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2833 if (err && new) 2834 sp_free(new); 2835 return err; 2836 } 2837 2838 /* Free a backing policy store on inode delete. */ 2839 void mpol_free_shared_policy(struct shared_policy *p) 2840 { 2841 struct sp_node *n; 2842 struct rb_node *next; 2843 2844 if (!p->root.rb_node) 2845 return; 2846 write_lock(&p->lock); 2847 next = rb_first(&p->root); 2848 while (next) { 2849 n = rb_entry(next, struct sp_node, nd); 2850 next = rb_next(&n->nd); 2851 sp_delete(p, n); 2852 } 2853 write_unlock(&p->lock); 2854 } 2855 2856 #ifdef CONFIG_NUMA_BALANCING 2857 static int __initdata numabalancing_override; 2858 2859 static void __init check_numabalancing_enable(void) 2860 { 2861 bool numabalancing_default = false; 2862 2863 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2864 numabalancing_default = true; 2865 2866 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2867 if (numabalancing_override) 2868 set_numabalancing_state(numabalancing_override == 1); 2869 2870 if (num_online_nodes() > 1 && !numabalancing_override) { 2871 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2872 numabalancing_default ? "Enabling" : "Disabling"); 2873 set_numabalancing_state(numabalancing_default); 2874 } 2875 } 2876 2877 static int __init setup_numabalancing(char *str) 2878 { 2879 int ret = 0; 2880 if (!str) 2881 goto out; 2882 2883 if (!strcmp(str, "enable")) { 2884 numabalancing_override = 1; 2885 ret = 1; 2886 } else if (!strcmp(str, "disable")) { 2887 numabalancing_override = -1; 2888 ret = 1; 2889 } 2890 out: 2891 if (!ret) 2892 pr_warn("Unable to parse numa_balancing=\n"); 2893 2894 return ret; 2895 } 2896 __setup("numa_balancing=", setup_numabalancing); 2897 #else 2898 static inline void __init check_numabalancing_enable(void) 2899 { 2900 } 2901 #endif /* CONFIG_NUMA_BALANCING */ 2902 2903 /* assumes fs == KERNEL_DS */ 2904 void __init numa_policy_init(void) 2905 { 2906 nodemask_t interleave_nodes; 2907 unsigned long largest = 0; 2908 int nid, prefer = 0; 2909 2910 policy_cache = kmem_cache_create("numa_policy", 2911 sizeof(struct mempolicy), 2912 0, SLAB_PANIC, NULL); 2913 2914 sn_cache = kmem_cache_create("shared_policy_node", 2915 sizeof(struct sp_node), 2916 0, SLAB_PANIC, NULL); 2917 2918 for_each_node(nid) { 2919 preferred_node_policy[nid] = (struct mempolicy) { 2920 .refcnt = ATOMIC_INIT(1), 2921 .mode = MPOL_PREFERRED, 2922 .flags = MPOL_F_MOF | MPOL_F_MORON, 2923 .nodes = nodemask_of_node(nid), 2924 }; 2925 } 2926 2927 /* 2928 * Set interleaving policy for system init. Interleaving is only 2929 * enabled across suitably sized nodes (default is >= 16MB), or 2930 * fall back to the largest node if they're all smaller. 2931 */ 2932 nodes_clear(interleave_nodes); 2933 for_each_node_state(nid, N_MEMORY) { 2934 unsigned long total_pages = node_present_pages(nid); 2935 2936 /* Preserve the largest node */ 2937 if (largest < total_pages) { 2938 largest = total_pages; 2939 prefer = nid; 2940 } 2941 2942 /* Interleave this node? */ 2943 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2944 node_set(nid, interleave_nodes); 2945 } 2946 2947 /* All too small, use the largest */ 2948 if (unlikely(nodes_empty(interleave_nodes))) 2949 node_set(prefer, interleave_nodes); 2950 2951 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2952 pr_err("%s: interleaving failed\n", __func__); 2953 2954 check_numabalancing_enable(); 2955 } 2956 2957 /* Reset policy of current process to default */ 2958 void numa_default_policy(void) 2959 { 2960 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2961 } 2962 2963 /* 2964 * Parse and format mempolicy from/to strings 2965 */ 2966 2967 static const char * const policy_modes[] = 2968 { 2969 [MPOL_DEFAULT] = "default", 2970 [MPOL_PREFERRED] = "prefer", 2971 [MPOL_BIND] = "bind", 2972 [MPOL_INTERLEAVE] = "interleave", 2973 [MPOL_LOCAL] = "local", 2974 [MPOL_PREFERRED_MANY] = "prefer (many)", 2975 }; 2976 2977 2978 #ifdef CONFIG_TMPFS 2979 /** 2980 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2981 * @str: string containing mempolicy to parse 2982 * @mpol: pointer to struct mempolicy pointer, returned on success. 2983 * 2984 * Format of input: 2985 * <mode>[=<flags>][:<nodelist>] 2986 * 2987 * Return: %0 on success, else %1 2988 */ 2989 int mpol_parse_str(char *str, struct mempolicy **mpol) 2990 { 2991 struct mempolicy *new = NULL; 2992 unsigned short mode_flags; 2993 nodemask_t nodes; 2994 char *nodelist = strchr(str, ':'); 2995 char *flags = strchr(str, '='); 2996 int err = 1, mode; 2997 2998 if (flags) 2999 *flags++ = '\0'; /* terminate mode string */ 3000 3001 if (nodelist) { 3002 /* NUL-terminate mode or flags string */ 3003 *nodelist++ = '\0'; 3004 if (nodelist_parse(nodelist, nodes)) 3005 goto out; 3006 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3007 goto out; 3008 } else 3009 nodes_clear(nodes); 3010 3011 mode = match_string(policy_modes, MPOL_MAX, str); 3012 if (mode < 0) 3013 goto out; 3014 3015 switch (mode) { 3016 case MPOL_PREFERRED: 3017 /* 3018 * Insist on a nodelist of one node only, although later 3019 * we use first_node(nodes) to grab a single node, so here 3020 * nodelist (or nodes) cannot be empty. 3021 */ 3022 if (nodelist) { 3023 char *rest = nodelist; 3024 while (isdigit(*rest)) 3025 rest++; 3026 if (*rest) 3027 goto out; 3028 if (nodes_empty(nodes)) 3029 goto out; 3030 } 3031 break; 3032 case MPOL_INTERLEAVE: 3033 /* 3034 * Default to online nodes with memory if no nodelist 3035 */ 3036 if (!nodelist) 3037 nodes = node_states[N_MEMORY]; 3038 break; 3039 case MPOL_LOCAL: 3040 /* 3041 * Don't allow a nodelist; mpol_new() checks flags 3042 */ 3043 if (nodelist) 3044 goto out; 3045 break; 3046 case MPOL_DEFAULT: 3047 /* 3048 * Insist on a empty nodelist 3049 */ 3050 if (!nodelist) 3051 err = 0; 3052 goto out; 3053 case MPOL_PREFERRED_MANY: 3054 case MPOL_BIND: 3055 /* 3056 * Insist on a nodelist 3057 */ 3058 if (!nodelist) 3059 goto out; 3060 } 3061 3062 mode_flags = 0; 3063 if (flags) { 3064 /* 3065 * Currently, we only support two mutually exclusive 3066 * mode flags. 3067 */ 3068 if (!strcmp(flags, "static")) 3069 mode_flags |= MPOL_F_STATIC_NODES; 3070 else if (!strcmp(flags, "relative")) 3071 mode_flags |= MPOL_F_RELATIVE_NODES; 3072 else 3073 goto out; 3074 } 3075 3076 new = mpol_new(mode, mode_flags, &nodes); 3077 if (IS_ERR(new)) 3078 goto out; 3079 3080 /* 3081 * Save nodes for mpol_to_str() to show the tmpfs mount options 3082 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3083 */ 3084 if (mode != MPOL_PREFERRED) { 3085 new->nodes = nodes; 3086 } else if (nodelist) { 3087 nodes_clear(new->nodes); 3088 node_set(first_node(nodes), new->nodes); 3089 } else { 3090 new->mode = MPOL_LOCAL; 3091 } 3092 3093 /* 3094 * Save nodes for contextualization: this will be used to "clone" 3095 * the mempolicy in a specific context [cpuset] at a later time. 3096 */ 3097 new->w.user_nodemask = nodes; 3098 3099 err = 0; 3100 3101 out: 3102 /* Restore string for error message */ 3103 if (nodelist) 3104 *--nodelist = ':'; 3105 if (flags) 3106 *--flags = '='; 3107 if (!err) 3108 *mpol = new; 3109 return err; 3110 } 3111 #endif /* CONFIG_TMPFS */ 3112 3113 /** 3114 * mpol_to_str - format a mempolicy structure for printing 3115 * @buffer: to contain formatted mempolicy string 3116 * @maxlen: length of @buffer 3117 * @pol: pointer to mempolicy to be formatted 3118 * 3119 * Convert @pol into a string. If @buffer is too short, truncate the string. 3120 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3121 * longest flag, "relative", and to display at least a few node ids. 3122 */ 3123 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3124 { 3125 char *p = buffer; 3126 nodemask_t nodes = NODE_MASK_NONE; 3127 unsigned short mode = MPOL_DEFAULT; 3128 unsigned short flags = 0; 3129 3130 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3131 mode = pol->mode; 3132 flags = pol->flags; 3133 } 3134 3135 switch (mode) { 3136 case MPOL_DEFAULT: 3137 case MPOL_LOCAL: 3138 break; 3139 case MPOL_PREFERRED: 3140 case MPOL_PREFERRED_MANY: 3141 case MPOL_BIND: 3142 case MPOL_INTERLEAVE: 3143 nodes = pol->nodes; 3144 break; 3145 default: 3146 WARN_ON_ONCE(1); 3147 snprintf(p, maxlen, "unknown"); 3148 return; 3149 } 3150 3151 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3152 3153 if (flags & MPOL_MODE_FLAGS) { 3154 p += snprintf(p, buffer + maxlen - p, "="); 3155 3156 /* 3157 * Currently, the only defined flags are mutually exclusive 3158 */ 3159 if (flags & MPOL_F_STATIC_NODES) 3160 p += snprintf(p, buffer + maxlen - p, "static"); 3161 else if (flags & MPOL_F_RELATIVE_NODES) 3162 p += snprintf(p, buffer + maxlen - p, "relative"); 3163 } 3164 3165 if (!nodes_empty(nodes)) 3166 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3167 nodemask_pr_args(&nodes)); 3168 } 3169