xref: /linux/mm/mempolicy.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support six policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * weighted interleave
23  *                Allocate memory interleaved over a set of nodes based on
24  *                a set of weights (per-node), with normal fallback if it
25  *                fails.  Otherwise operates the same as interleave.
26  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27  *                on node 0 for every 1 page allocated on node 1.
28  *
29  * bind           Only allocate memory on a specific set of nodes,
30  *                no fallback.
31  *                FIXME: memory is allocated starting with the first node
32  *                to the last. It would be better if bind would truly restrict
33  *                the allocation to memory nodes instead
34  *
35  * preferred      Try a specific node first before normal fallback.
36  *                As a special case NUMA_NO_NODE here means do the allocation
37  *                on the local CPU. This is normally identical to default,
38  *                but useful to set in a VMA when you have a non default
39  *                process policy.
40  *
41  * preferred many Try a set of nodes first before normal fallback. This is
42  *                similar to preferred without the special case.
43  *
44  * default        Allocate on the local node first, or when on a VMA
45  *                use the process policy. This is what Linux always did
46  *		  in a NUMA aware kernel and still does by, ahem, default.
47  *
48  * The process policy is applied for most non interrupt memory allocations
49  * in that process' context. Interrupts ignore the policies and always
50  * try to allocate on the local CPU. The VMA policy is only applied for memory
51  * allocations for a VMA in the VM.
52  *
53  * Currently there are a few corner cases in swapping where the policy
54  * is not applied, but the majority should be handled. When process policy
55  * is used it is not remembered over swap outs/swap ins.
56  *
57  * Only the highest zone in the zone hierarchy gets policied. Allocations
58  * requesting a lower zone just use default policy. This implies that
59  * on systems with highmem kernel lowmem allocation don't get policied.
60  * Same with GFP_DMA allocations.
61  *
62  * For shmem/tmpfs shared memory the policy is shared between
63  * all users and remembered even when nobody has memory mapped.
64  */
65 
66 /* Notebook:
67    fix mmap readahead to honour policy and enable policy for any page cache
68    object
69    statistics for bigpages
70    global policy for page cache? currently it uses process policy. Requires
71    first item above.
72    handle mremap for shared memory (currently ignored for the policy)
73    grows down?
74    make bind policy root only? It can trigger oom much faster and the
75    kernel is not always grateful with that.
76 */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116 
117 #include "internal.h"
118 
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123 
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126 
127 /* Highest zone. An specific allocation for a zone below that is not
128    policied. */
129 enum zone_type policy_zone = 0;
130 
131 /*
132  * run-time system-wide default policy => local allocation
133  */
134 static struct mempolicy default_policy = {
135 	.refcnt = ATOMIC_INIT(1), /* never free it */
136 	.mode = MPOL_LOCAL,
137 };
138 
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140 
141 /*
142  * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143  * system-default value should be used. A NULL iw_table also denotes that
144  * system-default values should be used. Until the system-default table
145  * is implemented, the system-default is always 1.
146  *
147  * iw_table is RCU protected
148  */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151 
152 static u8 get_il_weight(int node)
153 {
154 	u8 *table;
155 	u8 weight;
156 
157 	rcu_read_lock();
158 	table = rcu_dereference(iw_table);
159 	/* if no iw_table, use system default */
160 	weight = table ? table[node] : 1;
161 	/* if value in iw_table is 0, use system default */
162 	weight = weight ? weight : 1;
163 	rcu_read_unlock();
164 	return weight;
165 }
166 
167 /**
168  * numa_nearest_node - Find nearest node by state
169  * @node: Node id to start the search
170  * @state: State to filter the search
171  *
172  * Lookup the closest node by distance if @nid is not in state.
173  *
174  * Return: this @node if it is in state, otherwise the closest node by distance
175  */
176 int numa_nearest_node(int node, unsigned int state)
177 {
178 	int min_dist = INT_MAX, dist, n, min_node;
179 
180 	if (state >= NR_NODE_STATES)
181 		return -EINVAL;
182 
183 	if (node == NUMA_NO_NODE || node_state(node, state))
184 		return node;
185 
186 	min_node = node;
187 	for_each_node_state(n, state) {
188 		dist = node_distance(node, n);
189 		if (dist < min_dist) {
190 			min_dist = dist;
191 			min_node = n;
192 		}
193 	}
194 
195 	return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198 
199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 	struct mempolicy *pol = p->mempolicy;
202 	int node;
203 
204 	if (pol)
205 		return pol;
206 
207 	node = numa_node_id();
208 	if (node != NUMA_NO_NODE) {
209 		pol = &preferred_node_policy[node];
210 		/* preferred_node_policy is not initialised early in boot */
211 		if (pol->mode)
212 			return pol;
213 	}
214 
215 	return &default_policy;
216 }
217 
218 static const struct mempolicy_operations {
219 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222 
223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 	return pol->flags & MPOL_MODE_FLAGS;
226 }
227 
228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 				   const nodemask_t *rel)
230 {
231 	nodemask_t tmp;
232 	nodes_fold(tmp, *orig, nodes_weight(*rel));
233 	nodes_onto(*ret, tmp, *rel);
234 }
235 
236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 	if (nodes_empty(*nodes))
239 		return -EINVAL;
240 	pol->nodes = *nodes;
241 	return 0;
242 }
243 
244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 	if (nodes_empty(*nodes))
247 		return -EINVAL;
248 
249 	nodes_clear(pol->nodes);
250 	node_set(first_node(*nodes), pol->nodes);
251 	return 0;
252 }
253 
254 /*
255  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256  * any, for the new policy.  mpol_new() has already validated the nodes
257  * parameter with respect to the policy mode and flags.
258  *
259  * Must be called holding task's alloc_lock to protect task's mems_allowed
260  * and mempolicy.  May also be called holding the mmap_lock for write.
261  */
262 static int mpol_set_nodemask(struct mempolicy *pol,
263 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 	int ret;
266 
267 	/*
268 	 * Default (pol==NULL) resp. local memory policies are not a
269 	 * subject of any remapping. They also do not need any special
270 	 * constructor.
271 	 */
272 	if (!pol || pol->mode == MPOL_LOCAL)
273 		return 0;
274 
275 	/* Check N_MEMORY */
276 	nodes_and(nsc->mask1,
277 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278 
279 	VM_BUG_ON(!nodes);
280 
281 	if (pol->flags & MPOL_F_RELATIVE_NODES)
282 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 	else
284 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285 
286 	if (mpol_store_user_nodemask(pol))
287 		pol->w.user_nodemask = *nodes;
288 	else
289 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290 
291 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 	return ret;
293 }
294 
295 /*
296  * This function just creates a new policy, does some check and simple
297  * initialization. You must invoke mpol_set_nodemask() to set nodes.
298  */
299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 				  nodemask_t *nodes)
301 {
302 	struct mempolicy *policy;
303 
304 	if (mode == MPOL_DEFAULT) {
305 		if (nodes && !nodes_empty(*nodes))
306 			return ERR_PTR(-EINVAL);
307 		return NULL;
308 	}
309 	VM_BUG_ON(!nodes);
310 
311 	/*
312 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 	 * All other modes require a valid pointer to a non-empty nodemask.
315 	 */
316 	if (mode == MPOL_PREFERRED) {
317 		if (nodes_empty(*nodes)) {
318 			if (((flags & MPOL_F_STATIC_NODES) ||
319 			     (flags & MPOL_F_RELATIVE_NODES)))
320 				return ERR_PTR(-EINVAL);
321 
322 			mode = MPOL_LOCAL;
323 		}
324 	} else if (mode == MPOL_LOCAL) {
325 		if (!nodes_empty(*nodes) ||
326 		    (flags & MPOL_F_STATIC_NODES) ||
327 		    (flags & MPOL_F_RELATIVE_NODES))
328 			return ERR_PTR(-EINVAL);
329 	} else if (nodes_empty(*nodes))
330 		return ERR_PTR(-EINVAL);
331 
332 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 	if (!policy)
334 		return ERR_PTR(-ENOMEM);
335 	atomic_set(&policy->refcnt, 1);
336 	policy->mode = mode;
337 	policy->flags = flags;
338 	policy->home_node = NUMA_NO_NODE;
339 
340 	return policy;
341 }
342 
343 /* Slow path of a mpol destructor. */
344 void __mpol_put(struct mempolicy *pol)
345 {
346 	if (!atomic_dec_and_test(&pol->refcnt))
347 		return;
348 	kmem_cache_free(policy_cache, pol);
349 }
350 
351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354 
355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 	nodemask_t tmp;
358 
359 	if (pol->flags & MPOL_F_STATIC_NODES)
360 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 	else {
364 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 								*nodes);
366 		pol->w.cpuset_mems_allowed = *nodes;
367 	}
368 
369 	if (nodes_empty(tmp))
370 		tmp = *nodes;
371 
372 	pol->nodes = tmp;
373 }
374 
375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 						const nodemask_t *nodes)
377 {
378 	pol->w.cpuset_mems_allowed = *nodes;
379 }
380 
381 /*
382  * mpol_rebind_policy - Migrate a policy to a different set of nodes
383  *
384  * Per-vma policies are protected by mmap_lock. Allocations using per-task
385  * policies are protected by task->mems_allowed_seq to prevent a premature
386  * OOM/allocation failure due to parallel nodemask modification.
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 	if (!pol || pol->mode == MPOL_LOCAL)
391 		return;
392 	if (!mpol_store_user_nodemask(pol) &&
393 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 		return;
395 
396 	mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398 
399 /*
400  * Wrapper for mpol_rebind_policy() that just requires task
401  * pointer, and updates task mempolicy.
402  *
403  * Called with task's alloc_lock held.
404  */
405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 	mpol_rebind_policy(tsk->mempolicy, new);
408 }
409 
410 /*
411  * Rebind each vma in mm to new nodemask.
412  *
413  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414  */
415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 	struct vm_area_struct *vma;
418 	VMA_ITERATOR(vmi, mm, 0);
419 
420 	mmap_write_lock(mm);
421 	for_each_vma(vmi, vma) {
422 		vma_start_write(vma);
423 		mpol_rebind_policy(vma->vm_policy, new);
424 	}
425 	mmap_write_unlock(mm);
426 }
427 
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 	[MPOL_DEFAULT] = {
430 		.rebind = mpol_rebind_default,
431 	},
432 	[MPOL_INTERLEAVE] = {
433 		.create = mpol_new_nodemask,
434 		.rebind = mpol_rebind_nodemask,
435 	},
436 	[MPOL_PREFERRED] = {
437 		.create = mpol_new_preferred,
438 		.rebind = mpol_rebind_preferred,
439 	},
440 	[MPOL_BIND] = {
441 		.create = mpol_new_nodemask,
442 		.rebind = mpol_rebind_nodemask,
443 	},
444 	[MPOL_LOCAL] = {
445 		.rebind = mpol_rebind_default,
446 	},
447 	[MPOL_PREFERRED_MANY] = {
448 		.create = mpol_new_nodemask,
449 		.rebind = mpol_rebind_preferred,
450 	},
451 	[MPOL_WEIGHTED_INTERLEAVE] = {
452 		.create = mpol_new_nodemask,
453 		.rebind = mpol_rebind_nodemask,
454 	},
455 };
456 
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 				unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 				pgoff_t ilx, int *nid);
461 
462 static bool strictly_unmovable(unsigned long flags)
463 {
464 	/*
465 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 	 * if any misplaced page is found.
467 	 */
468 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 			 MPOL_MF_STRICT;
470 }
471 
472 struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473 	struct mempolicy *pol;
474 	pgoff_t ilx;
475 };
476 
477 struct queue_pages {
478 	struct list_head *pagelist;
479 	unsigned long flags;
480 	nodemask_t *nmask;
481 	unsigned long start;
482 	unsigned long end;
483 	struct vm_area_struct *first;
484 	struct folio *large;		/* note last large folio encountered */
485 	long nr_failed;			/* could not be isolated at this time */
486 };
487 
488 /*
489  * Check if the folio's nid is in qp->nmask.
490  *
491  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492  * in the invert of qp->nmask.
493  */
494 static inline bool queue_folio_required(struct folio *folio,
495 					struct queue_pages *qp)
496 {
497 	int nid = folio_nid(folio);
498 	unsigned long flags = qp->flags;
499 
500 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502 
503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 	struct folio *folio;
506 	struct queue_pages *qp = walk->private;
507 
508 	if (unlikely(is_pmd_migration_entry(*pmd))) {
509 		qp->nr_failed++;
510 		return;
511 	}
512 	folio = pmd_folio(*pmd);
513 	if (is_huge_zero_folio(folio)) {
514 		walk->action = ACTION_CONTINUE;
515 		return;
516 	}
517 	if (!queue_folio_required(folio, qp))
518 		return;
519 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 	    !vma_migratable(walk->vma) ||
521 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 		qp->nr_failed++;
523 }
524 
525 /*
526  * Scan through folios, checking if they satisfy the required conditions,
527  * moving them from LRU to local pagelist for migration if they do (or not).
528  *
529  * queue_folios_pte_range() has two possible return values:
530  * 0 - continue walking to scan for more, even if an existing folio on the
531  *     wrong node could not be isolated and queued for migration.
532  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533  *        and an existing folio was on a node that does not follow the policy.
534  */
535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 			unsigned long end, struct mm_walk *walk)
537 {
538 	struct vm_area_struct *vma = walk->vma;
539 	struct folio *folio;
540 	struct queue_pages *qp = walk->private;
541 	unsigned long flags = qp->flags;
542 	pte_t *pte, *mapped_pte;
543 	pte_t ptent;
544 	spinlock_t *ptl;
545 
546 	ptl = pmd_trans_huge_lock(pmd, vma);
547 	if (ptl) {
548 		queue_folios_pmd(pmd, walk);
549 		spin_unlock(ptl);
550 		goto out;
551 	}
552 
553 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 	if (!pte) {
555 		walk->action = ACTION_AGAIN;
556 		return 0;
557 	}
558 	for (; addr != end; pte++, addr += PAGE_SIZE) {
559 		ptent = ptep_get(pte);
560 		if (pte_none(ptent))
561 			continue;
562 		if (!pte_present(ptent)) {
563 			if (is_migration_entry(pte_to_swp_entry(ptent)))
564 				qp->nr_failed++;
565 			continue;
566 		}
567 		folio = vm_normal_folio(vma, addr, ptent);
568 		if (!folio || folio_is_zone_device(folio))
569 			continue;
570 		/*
571 		 * vm_normal_folio() filters out zero pages, but there might
572 		 * still be reserved folios to skip, perhaps in a VDSO.
573 		 */
574 		if (folio_test_reserved(folio))
575 			continue;
576 		if (!queue_folio_required(folio, qp))
577 			continue;
578 		if (folio_test_large(folio)) {
579 			/*
580 			 * A large folio can only be isolated from LRU once,
581 			 * but may be mapped by many PTEs (and Copy-On-Write may
582 			 * intersperse PTEs of other, order 0, folios).  This is
583 			 * a common case, so don't mistake it for failure (but
584 			 * there can be other cases of multi-mapped pages which
585 			 * this quick check does not help to filter out - and a
586 			 * search of the pagelist might grow to be prohibitive).
587 			 *
588 			 * migrate_pages(&pagelist) returns nr_failed folios, so
589 			 * check "large" now so that queue_pages_range() returns
590 			 * a comparable nr_failed folios.  This does imply that
591 			 * if folio could not be isolated for some racy reason
592 			 * at its first PTE, later PTEs will not give it another
593 			 * chance of isolation; but keeps the accounting simple.
594 			 */
595 			if (folio == qp->large)
596 				continue;
597 			qp->large = folio;
598 		}
599 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 		    !vma_migratable(vma) ||
601 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602 			qp->nr_failed++;
603 			if (strictly_unmovable(flags))
604 				break;
605 		}
606 	}
607 	pte_unmap_unlock(mapped_pte, ptl);
608 	cond_resched();
609 out:
610 	if (qp->nr_failed && strictly_unmovable(flags))
611 		return -EIO;
612 	return 0;
613 }
614 
615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 			       unsigned long addr, unsigned long end,
617 			       struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 	struct queue_pages *qp = walk->private;
621 	unsigned long flags = qp->flags;
622 	struct folio *folio;
623 	spinlock_t *ptl;
624 	pte_t entry;
625 
626 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 	entry = huge_ptep_get(walk->mm, addr, pte);
628 	if (!pte_present(entry)) {
629 		if (unlikely(is_hugetlb_entry_migration(entry)))
630 			qp->nr_failed++;
631 		goto unlock;
632 	}
633 	folio = pfn_folio(pte_pfn(entry));
634 	if (!queue_folio_required(folio, qp))
635 		goto unlock;
636 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 	    !vma_migratable(walk->vma)) {
638 		qp->nr_failed++;
639 		goto unlock;
640 	}
641 	/*
642 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 	 * Choosing not to migrate a shared folio is not counted as a failure.
644 	 *
645 	 * See folio_likely_mapped_shared() on possible imprecision when we
646 	 * cannot easily detect if a folio is shared.
647 	 */
648 	if ((flags & MPOL_MF_MOVE_ALL) ||
649 	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 		if (!isolate_hugetlb(folio, qp->pagelist))
651 			qp->nr_failed++;
652 unlock:
653 	spin_unlock(ptl);
654 	if (qp->nr_failed && strictly_unmovable(flags))
655 		return -EIO;
656 #endif
657 	return 0;
658 }
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662  * This is used to mark a range of virtual addresses to be inaccessible.
663  * These are later cleared by a NUMA hinting fault. Depending on these
664  * faults, pages may be migrated for better NUMA placement.
665  *
666  * This is assuming that NUMA faults are handled using PROT_NONE. If
667  * an architecture makes a different choice, it will need further
668  * changes to the core.
669  */
670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 			unsigned long addr, unsigned long end)
672 {
673 	struct mmu_gather tlb;
674 	long nr_updated;
675 
676 	tlb_gather_mmu(&tlb, vma->vm_mm);
677 
678 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 	if (nr_updated > 0) {
680 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
682 	}
683 
684 	tlb_finish_mmu(&tlb);
685 
686 	return nr_updated;
687 }
688 #endif /* CONFIG_NUMA_BALANCING */
689 
690 static int queue_pages_test_walk(unsigned long start, unsigned long end,
691 				struct mm_walk *walk)
692 {
693 	struct vm_area_struct *next, *vma = walk->vma;
694 	struct queue_pages *qp = walk->private;
695 	unsigned long flags = qp->flags;
696 
697 	/* range check first */
698 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
699 
700 	if (!qp->first) {
701 		qp->first = vma;
702 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
703 			(qp->start < vma->vm_start))
704 			/* hole at head side of range */
705 			return -EFAULT;
706 	}
707 	next = find_vma(vma->vm_mm, vma->vm_end);
708 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
709 		((vma->vm_end < qp->end) &&
710 		(!next || vma->vm_end < next->vm_start)))
711 		/* hole at middle or tail of range */
712 		return -EFAULT;
713 
714 	/*
715 	 * Need check MPOL_MF_STRICT to return -EIO if possible
716 	 * regardless of vma_migratable
717 	 */
718 	if (!vma_migratable(vma) &&
719 	    !(flags & MPOL_MF_STRICT))
720 		return 1;
721 
722 	/*
723 	 * Check page nodes, and queue pages to move, in the current vma.
724 	 * But if no moving, and no strict checking, the scan can be skipped.
725 	 */
726 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
727 		return 0;
728 	return 1;
729 }
730 
731 static const struct mm_walk_ops queue_pages_walk_ops = {
732 	.hugetlb_entry		= queue_folios_hugetlb,
733 	.pmd_entry		= queue_folios_pte_range,
734 	.test_walk		= queue_pages_test_walk,
735 	.walk_lock		= PGWALK_RDLOCK,
736 };
737 
738 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
739 	.hugetlb_entry		= queue_folios_hugetlb,
740 	.pmd_entry		= queue_folios_pte_range,
741 	.test_walk		= queue_pages_test_walk,
742 	.walk_lock		= PGWALK_WRLOCK,
743 };
744 
745 /*
746  * Walk through page tables and collect pages to be migrated.
747  *
748  * If pages found in a given range are not on the required set of @nodes,
749  * and migration is allowed, they are isolated and queued to @pagelist.
750  *
751  * queue_pages_range() may return:
752  * 0 - all pages already on the right node, or successfully queued for moving
753  *     (or neither strict checking nor moving requested: only range checking).
754  * >0 - this number of misplaced folios could not be queued for moving
755  *      (a hugetlbfs page or a transparent huge page being counted as 1).
756  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
757  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
758  */
759 static long
760 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
761 		nodemask_t *nodes, unsigned long flags,
762 		struct list_head *pagelist)
763 {
764 	int err;
765 	struct queue_pages qp = {
766 		.pagelist = pagelist,
767 		.flags = flags,
768 		.nmask = nodes,
769 		.start = start,
770 		.end = end,
771 		.first = NULL,
772 	};
773 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
774 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
775 
776 	err = walk_page_range(mm, start, end, ops, &qp);
777 
778 	if (!qp.first)
779 		/* whole range in hole */
780 		err = -EFAULT;
781 
782 	return err ? : qp.nr_failed;
783 }
784 
785 /*
786  * Apply policy to a single VMA
787  * This must be called with the mmap_lock held for writing.
788  */
789 static int vma_replace_policy(struct vm_area_struct *vma,
790 				struct mempolicy *pol)
791 {
792 	int err;
793 	struct mempolicy *old;
794 	struct mempolicy *new;
795 
796 	vma_assert_write_locked(vma);
797 
798 	new = mpol_dup(pol);
799 	if (IS_ERR(new))
800 		return PTR_ERR(new);
801 
802 	if (vma->vm_ops && vma->vm_ops->set_policy) {
803 		err = vma->vm_ops->set_policy(vma, new);
804 		if (err)
805 			goto err_out;
806 	}
807 
808 	old = vma->vm_policy;
809 	vma->vm_policy = new; /* protected by mmap_lock */
810 	mpol_put(old);
811 
812 	return 0;
813  err_out:
814 	mpol_put(new);
815 	return err;
816 }
817 
818 /* Split or merge the VMA (if required) and apply the new policy */
819 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
820 		struct vm_area_struct **prev, unsigned long start,
821 		unsigned long end, struct mempolicy *new_pol)
822 {
823 	unsigned long vmstart, vmend;
824 
825 	vmend = min(end, vma->vm_end);
826 	if (start > vma->vm_start) {
827 		*prev = vma;
828 		vmstart = start;
829 	} else {
830 		vmstart = vma->vm_start;
831 	}
832 
833 	if (mpol_equal(vma->vm_policy, new_pol)) {
834 		*prev = vma;
835 		return 0;
836 	}
837 
838 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
839 	if (IS_ERR(vma))
840 		return PTR_ERR(vma);
841 
842 	*prev = vma;
843 	return vma_replace_policy(vma, new_pol);
844 }
845 
846 /* Set the process memory policy */
847 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
848 			     nodemask_t *nodes)
849 {
850 	struct mempolicy *new, *old;
851 	NODEMASK_SCRATCH(scratch);
852 	int ret;
853 
854 	if (!scratch)
855 		return -ENOMEM;
856 
857 	new = mpol_new(mode, flags, nodes);
858 	if (IS_ERR(new)) {
859 		ret = PTR_ERR(new);
860 		goto out;
861 	}
862 
863 	task_lock(current);
864 	ret = mpol_set_nodemask(new, nodes, scratch);
865 	if (ret) {
866 		task_unlock(current);
867 		mpol_put(new);
868 		goto out;
869 	}
870 
871 	old = current->mempolicy;
872 	current->mempolicy = new;
873 	if (new && (new->mode == MPOL_INTERLEAVE ||
874 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
875 		current->il_prev = MAX_NUMNODES-1;
876 		current->il_weight = 0;
877 	}
878 	task_unlock(current);
879 	mpol_put(old);
880 	ret = 0;
881 out:
882 	NODEMASK_SCRATCH_FREE(scratch);
883 	return ret;
884 }
885 
886 /*
887  * Return nodemask for policy for get_mempolicy() query
888  *
889  * Called with task's alloc_lock held
890  */
891 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
892 {
893 	nodes_clear(*nodes);
894 	if (pol == &default_policy)
895 		return;
896 
897 	switch (pol->mode) {
898 	case MPOL_BIND:
899 	case MPOL_INTERLEAVE:
900 	case MPOL_PREFERRED:
901 	case MPOL_PREFERRED_MANY:
902 	case MPOL_WEIGHTED_INTERLEAVE:
903 		*nodes = pol->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int ret;
917 
918 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 	if (ret > 0) {
920 		ret = page_to_nid(p);
921 		put_page(p);
922 	}
923 	return ret;
924 }
925 
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 			     unsigned long addr, unsigned long flags)
929 {
930 	int err;
931 	struct mm_struct *mm = current->mm;
932 	struct vm_area_struct *vma = NULL;
933 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 
935 	if (flags &
936 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 		return -EINVAL;
938 
939 	if (flags & MPOL_F_MEMS_ALLOWED) {
940 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 			return -EINVAL;
942 		*policy = 0;	/* just so it's initialized */
943 		task_lock(current);
944 		*nmask  = cpuset_current_mems_allowed;
945 		task_unlock(current);
946 		return 0;
947 	}
948 
949 	if (flags & MPOL_F_ADDR) {
950 		pgoff_t ilx;		/* ignored here */
951 		/*
952 		 * Do NOT fall back to task policy if the
953 		 * vma/shared policy at addr is NULL.  We
954 		 * want to return MPOL_DEFAULT in this case.
955 		 */
956 		mmap_read_lock(mm);
957 		vma = vma_lookup(mm, addr);
958 		if (!vma) {
959 			mmap_read_unlock(mm);
960 			return -EFAULT;
961 		}
962 		pol = __get_vma_policy(vma, addr, &ilx);
963 	} else if (addr)
964 		return -EINVAL;
965 
966 	if (!pol)
967 		pol = &default_policy;	/* indicates default behavior */
968 
969 	if (flags & MPOL_F_NODE) {
970 		if (flags & MPOL_F_ADDR) {
971 			/*
972 			 * Take a refcount on the mpol, because we are about to
973 			 * drop the mmap_lock, after which only "pol" remains
974 			 * valid, "vma" is stale.
975 			 */
976 			pol_refcount = pol;
977 			vma = NULL;
978 			mpol_get(pol);
979 			mmap_read_unlock(mm);
980 			err = lookup_node(mm, addr);
981 			if (err < 0)
982 				goto out;
983 			*policy = err;
984 		} else if (pol == current->mempolicy &&
985 				pol->mode == MPOL_INTERLEAVE) {
986 			*policy = next_node_in(current->il_prev, pol->nodes);
987 		} else if (pol == current->mempolicy &&
988 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
989 			if (current->il_weight)
990 				*policy = current->il_prev;
991 			else
992 				*policy = next_node_in(current->il_prev,
993 						       pol->nodes);
994 		} else {
995 			err = -EINVAL;
996 			goto out;
997 		}
998 	} else {
999 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1000 						pol->mode;
1001 		/*
1002 		 * Internal mempolicy flags must be masked off before exposing
1003 		 * the policy to userspace.
1004 		 */
1005 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1006 	}
1007 
1008 	err = 0;
1009 	if (nmask) {
1010 		if (mpol_store_user_nodemask(pol)) {
1011 			*nmask = pol->w.user_nodemask;
1012 		} else {
1013 			task_lock(current);
1014 			get_policy_nodemask(pol, nmask);
1015 			task_unlock(current);
1016 		}
1017 	}
1018 
1019  out:
1020 	mpol_cond_put(pol);
1021 	if (vma)
1022 		mmap_read_unlock(mm);
1023 	if (pol_refcount)
1024 		mpol_put(pol_refcount);
1025 	return err;
1026 }
1027 
1028 #ifdef CONFIG_MIGRATION
1029 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1030 				unsigned long flags)
1031 {
1032 	/*
1033 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034 	 * Choosing not to migrate a shared folio is not counted as a failure.
1035 	 *
1036 	 * See folio_likely_mapped_shared() on possible imprecision when we
1037 	 * cannot easily detect if a folio is shared.
1038 	 */
1039 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040 		if (folio_isolate_lru(folio)) {
1041 			list_add_tail(&folio->lru, foliolist);
1042 			node_stat_mod_folio(folio,
1043 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044 				folio_nr_pages(folio));
1045 		} else {
1046 			/*
1047 			 * Non-movable folio may reach here.  And, there may be
1048 			 * temporary off LRU folios or non-LRU movable folios.
1049 			 * Treat them as unmovable folios since they can't be
1050 			 * isolated, so they can't be moved at the moment.
1051 			 */
1052 			return false;
1053 		}
1054 	}
1055 	return true;
1056 }
1057 
1058 /*
1059  * Migrate pages from one node to a target node.
1060  * Returns error or the number of pages not migrated.
1061  */
1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 			    int flags)
1064 {
1065 	nodemask_t nmask;
1066 	struct vm_area_struct *vma;
1067 	LIST_HEAD(pagelist);
1068 	long nr_failed;
1069 	long err = 0;
1070 	struct migration_target_control mtc = {
1071 		.nid = dest,
1072 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 		.reason = MR_SYSCALL,
1074 	};
1075 
1076 	nodes_clear(nmask);
1077 	node_set(source, nmask);
1078 
1079 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080 
1081 	mmap_read_lock(mm);
1082 	vma = find_vma(mm, 0);
1083 
1084 	/*
1085 	 * This does not migrate the range, but isolates all pages that
1086 	 * need migration.  Between passing in the full user address
1087 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1088 	 * but passes back the count of pages which could not be isolated.
1089 	 */
1090 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1091 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1092 	mmap_read_unlock(mm);
1093 
1094 	if (!list_empty(&pagelist)) {
1095 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1096 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1097 		if (err)
1098 			putback_movable_pages(&pagelist);
1099 	}
1100 
1101 	if (err >= 0)
1102 		err += nr_failed;
1103 	return err;
1104 }
1105 
1106 /*
1107  * Move pages between the two nodesets so as to preserve the physical
1108  * layout as much as possible.
1109  *
1110  * Returns the number of page that could not be moved.
1111  */
1112 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1113 		     const nodemask_t *to, int flags)
1114 {
1115 	long nr_failed = 0;
1116 	long err = 0;
1117 	nodemask_t tmp;
1118 
1119 	lru_cache_disable();
1120 
1121 	/*
1122 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1123 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1124 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1125 	 * The pair of nodemasks 'to' and 'from' define the map.
1126 	 *
1127 	 * If no pair of bits is found that way, fallback to picking some
1128 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1129 	 * 'source' and 'dest' bits are the same, this represents a node
1130 	 * that will be migrating to itself, so no pages need move.
1131 	 *
1132 	 * If no bits are left in 'tmp', or if all remaining bits left
1133 	 * in 'tmp' correspond to the same bit in 'to', return false
1134 	 * (nothing left to migrate).
1135 	 *
1136 	 * This lets us pick a pair of nodes to migrate between, such that
1137 	 * if possible the dest node is not already occupied by some other
1138 	 * source node, minimizing the risk of overloading the memory on a
1139 	 * node that would happen if we migrated incoming memory to a node
1140 	 * before migrating outgoing memory source that same node.
1141 	 *
1142 	 * A single scan of tmp is sufficient.  As we go, we remember the
1143 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1144 	 * that not only moved, but what's better, moved to an empty slot
1145 	 * (d is not set in tmp), then we break out then, with that pair.
1146 	 * Otherwise when we finish scanning from_tmp, we at least have the
1147 	 * most recent <s, d> pair that moved.  If we get all the way through
1148 	 * the scan of tmp without finding any node that moved, much less
1149 	 * moved to an empty node, then there is nothing left worth migrating.
1150 	 */
1151 
1152 	tmp = *from;
1153 	while (!nodes_empty(tmp)) {
1154 		int s, d;
1155 		int source = NUMA_NO_NODE;
1156 		int dest = 0;
1157 
1158 		for_each_node_mask(s, tmp) {
1159 
1160 			/*
1161 			 * do_migrate_pages() tries to maintain the relative
1162 			 * node relationship of the pages established between
1163 			 * threads and memory areas.
1164                          *
1165 			 * However if the number of source nodes is not equal to
1166 			 * the number of destination nodes we can not preserve
1167 			 * this node relative relationship.  In that case, skip
1168 			 * copying memory from a node that is in the destination
1169 			 * mask.
1170 			 *
1171 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1172 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1173 			 */
1174 
1175 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1176 						(node_isset(s, *to)))
1177 				continue;
1178 
1179 			d = node_remap(s, *from, *to);
1180 			if (s == d)
1181 				continue;
1182 
1183 			source = s;	/* Node moved. Memorize */
1184 			dest = d;
1185 
1186 			/* dest not in remaining from nodes? */
1187 			if (!node_isset(dest, tmp))
1188 				break;
1189 		}
1190 		if (source == NUMA_NO_NODE)
1191 			break;
1192 
1193 		node_clear(source, tmp);
1194 		err = migrate_to_node(mm, source, dest, flags);
1195 		if (err > 0)
1196 			nr_failed += err;
1197 		if (err < 0)
1198 			break;
1199 	}
1200 
1201 	lru_cache_enable();
1202 	if (err < 0)
1203 		return err;
1204 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1205 }
1206 
1207 /*
1208  * Allocate a new folio for page migration, according to NUMA mempolicy.
1209  */
1210 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1211 						    unsigned long private)
1212 {
1213 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1214 	struct mempolicy *pol = mmpol->pol;
1215 	pgoff_t ilx = mmpol->ilx;
1216 	unsigned int order;
1217 	int nid = numa_node_id();
1218 	gfp_t gfp;
1219 
1220 	order = folio_order(src);
1221 	ilx += src->index >> order;
1222 
1223 	if (folio_test_hugetlb(src)) {
1224 		nodemask_t *nodemask;
1225 		struct hstate *h;
1226 
1227 		h = folio_hstate(src);
1228 		gfp = htlb_alloc_mask(h);
1229 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1230 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1231 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1232 	}
1233 
1234 	if (folio_test_large(src))
1235 		gfp = GFP_TRANSHUGE;
1236 	else
1237 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1238 
1239 	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1240 }
1241 #else
1242 
1243 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 				unsigned long flags)
1245 {
1246 	return false;
1247 }
1248 
1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 		     const nodemask_t *to, int flags)
1251 {
1252 	return -ENOSYS;
1253 }
1254 
1255 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1256 						    unsigned long private)
1257 {
1258 	return NULL;
1259 }
1260 #endif
1261 
1262 static long do_mbind(unsigned long start, unsigned long len,
1263 		     unsigned short mode, unsigned short mode_flags,
1264 		     nodemask_t *nmask, unsigned long flags)
1265 {
1266 	struct mm_struct *mm = current->mm;
1267 	struct vm_area_struct *vma, *prev;
1268 	struct vma_iterator vmi;
1269 	struct migration_mpol mmpol;
1270 	struct mempolicy *new;
1271 	unsigned long end;
1272 	long err;
1273 	long nr_failed;
1274 	LIST_HEAD(pagelist);
1275 
1276 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1277 		return -EINVAL;
1278 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1279 		return -EPERM;
1280 
1281 	if (start & ~PAGE_MASK)
1282 		return -EINVAL;
1283 
1284 	if (mode == MPOL_DEFAULT)
1285 		flags &= ~MPOL_MF_STRICT;
1286 
1287 	len = PAGE_ALIGN(len);
1288 	end = start + len;
1289 
1290 	if (end < start)
1291 		return -EINVAL;
1292 	if (end == start)
1293 		return 0;
1294 
1295 	new = mpol_new(mode, mode_flags, nmask);
1296 	if (IS_ERR(new))
1297 		return PTR_ERR(new);
1298 
1299 	/*
1300 	 * If we are using the default policy then operation
1301 	 * on discontinuous address spaces is okay after all
1302 	 */
1303 	if (!new)
1304 		flags |= MPOL_MF_DISCONTIG_OK;
1305 
1306 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1307 		lru_cache_disable();
1308 	{
1309 		NODEMASK_SCRATCH(scratch);
1310 		if (scratch) {
1311 			mmap_write_lock(mm);
1312 			err = mpol_set_nodemask(new, nmask, scratch);
1313 			if (err)
1314 				mmap_write_unlock(mm);
1315 		} else
1316 			err = -ENOMEM;
1317 		NODEMASK_SCRATCH_FREE(scratch);
1318 	}
1319 	if (err)
1320 		goto mpol_out;
1321 
1322 	/*
1323 	 * Lock the VMAs before scanning for pages to migrate,
1324 	 * to ensure we don't miss a concurrently inserted page.
1325 	 */
1326 	nr_failed = queue_pages_range(mm, start, end, nmask,
1327 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1328 
1329 	if (nr_failed < 0) {
1330 		err = nr_failed;
1331 		nr_failed = 0;
1332 	} else {
1333 		vma_iter_init(&vmi, mm, start);
1334 		prev = vma_prev(&vmi);
1335 		for_each_vma_range(vmi, vma, end) {
1336 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1337 			if (err)
1338 				break;
1339 		}
1340 	}
1341 
1342 	if (!err && !list_empty(&pagelist)) {
1343 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1344 		if (!new) {
1345 			new = get_task_policy(current);
1346 			mpol_get(new);
1347 		}
1348 		mmpol.pol = new;
1349 		mmpol.ilx = 0;
1350 
1351 		/*
1352 		 * In the interleaved case, attempt to allocate on exactly the
1353 		 * targeted nodes, for the first VMA to be migrated; for later
1354 		 * VMAs, the nodes will still be interleaved from the targeted
1355 		 * nodemask, but one by one may be selected differently.
1356 		 */
1357 		if (new->mode == MPOL_INTERLEAVE ||
1358 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1359 			struct folio *folio;
1360 			unsigned int order;
1361 			unsigned long addr = -EFAULT;
1362 
1363 			list_for_each_entry(folio, &pagelist, lru) {
1364 				if (!folio_test_ksm(folio))
1365 					break;
1366 			}
1367 			if (!list_entry_is_head(folio, &pagelist, lru)) {
1368 				vma_iter_init(&vmi, mm, start);
1369 				for_each_vma_range(vmi, vma, end) {
1370 					addr = page_address_in_vma(folio,
1371 						folio_page(folio, 0), vma);
1372 					if (addr != -EFAULT)
1373 						break;
1374 				}
1375 			}
1376 			if (addr != -EFAULT) {
1377 				order = folio_order(folio);
1378 				/* We already know the pol, but not the ilx */
1379 				mpol_cond_put(get_vma_policy(vma, addr, order,
1380 							     &mmpol.ilx));
1381 				/* Set base from which to increment by index */
1382 				mmpol.ilx -= folio->index >> order;
1383 			}
1384 		}
1385 	}
1386 
1387 	mmap_write_unlock(mm);
1388 
1389 	if (!err && !list_empty(&pagelist)) {
1390 		nr_failed |= migrate_pages(&pagelist,
1391 				alloc_migration_target_by_mpol, NULL,
1392 				(unsigned long)&mmpol, MIGRATE_SYNC,
1393 				MR_MEMPOLICY_MBIND, NULL);
1394 	}
1395 
1396 	if (nr_failed && (flags & MPOL_MF_STRICT))
1397 		err = -EIO;
1398 	if (!list_empty(&pagelist))
1399 		putback_movable_pages(&pagelist);
1400 mpol_out:
1401 	mpol_put(new);
1402 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1403 		lru_cache_enable();
1404 	return err;
1405 }
1406 
1407 /*
1408  * User space interface with variable sized bitmaps for nodelists.
1409  */
1410 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1411 		      unsigned long maxnode)
1412 {
1413 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1414 	int ret;
1415 
1416 	if (in_compat_syscall())
1417 		ret = compat_get_bitmap(mask,
1418 					(const compat_ulong_t __user *)nmask,
1419 					maxnode);
1420 	else
1421 		ret = copy_from_user(mask, nmask,
1422 				     nlongs * sizeof(unsigned long));
1423 
1424 	if (ret)
1425 		return -EFAULT;
1426 
1427 	if (maxnode % BITS_PER_LONG)
1428 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1429 
1430 	return 0;
1431 }
1432 
1433 /* Copy a node mask from user space. */
1434 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1435 		     unsigned long maxnode)
1436 {
1437 	--maxnode;
1438 	nodes_clear(*nodes);
1439 	if (maxnode == 0 || !nmask)
1440 		return 0;
1441 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1442 		return -EINVAL;
1443 
1444 	/*
1445 	 * When the user specified more nodes than supported just check
1446 	 * if the non supported part is all zero, one word at a time,
1447 	 * starting at the end.
1448 	 */
1449 	while (maxnode > MAX_NUMNODES) {
1450 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1451 		unsigned long t;
1452 
1453 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1454 			return -EFAULT;
1455 
1456 		if (maxnode - bits >= MAX_NUMNODES) {
1457 			maxnode -= bits;
1458 		} else {
1459 			maxnode = MAX_NUMNODES;
1460 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1461 		}
1462 		if (t)
1463 			return -EINVAL;
1464 	}
1465 
1466 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1467 }
1468 
1469 /* Copy a kernel node mask to user space */
1470 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1471 			      nodemask_t *nodes)
1472 {
1473 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1474 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1475 	bool compat = in_compat_syscall();
1476 
1477 	if (compat)
1478 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1479 
1480 	if (copy > nbytes) {
1481 		if (copy > PAGE_SIZE)
1482 			return -EINVAL;
1483 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1484 			return -EFAULT;
1485 		copy = nbytes;
1486 		maxnode = nr_node_ids;
1487 	}
1488 
1489 	if (compat)
1490 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1491 					 nodes_addr(*nodes), maxnode);
1492 
1493 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1494 }
1495 
1496 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1497 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1498 {
1499 	*flags = *mode & MPOL_MODE_FLAGS;
1500 	*mode &= ~MPOL_MODE_FLAGS;
1501 
1502 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1503 		return -EINVAL;
1504 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1505 		return -EINVAL;
1506 	if (*flags & MPOL_F_NUMA_BALANCING) {
1507 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1508 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1509 		else
1510 			return -EINVAL;
1511 	}
1512 	return 0;
1513 }
1514 
1515 static long kernel_mbind(unsigned long start, unsigned long len,
1516 			 unsigned long mode, const unsigned long __user *nmask,
1517 			 unsigned long maxnode, unsigned int flags)
1518 {
1519 	unsigned short mode_flags;
1520 	nodemask_t nodes;
1521 	int lmode = mode;
1522 	int err;
1523 
1524 	start = untagged_addr(start);
1525 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1526 	if (err)
1527 		return err;
1528 
1529 	err = get_nodes(&nodes, nmask, maxnode);
1530 	if (err)
1531 		return err;
1532 
1533 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1534 }
1535 
1536 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1537 		unsigned long, home_node, unsigned long, flags)
1538 {
1539 	struct mm_struct *mm = current->mm;
1540 	struct vm_area_struct *vma, *prev;
1541 	struct mempolicy *new, *old;
1542 	unsigned long end;
1543 	int err = -ENOENT;
1544 	VMA_ITERATOR(vmi, mm, start);
1545 
1546 	start = untagged_addr(start);
1547 	if (start & ~PAGE_MASK)
1548 		return -EINVAL;
1549 	/*
1550 	 * flags is used for future extension if any.
1551 	 */
1552 	if (flags != 0)
1553 		return -EINVAL;
1554 
1555 	/*
1556 	 * Check home_node is online to avoid accessing uninitialized
1557 	 * NODE_DATA.
1558 	 */
1559 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1560 		return -EINVAL;
1561 
1562 	len = PAGE_ALIGN(len);
1563 	end = start + len;
1564 
1565 	if (end < start)
1566 		return -EINVAL;
1567 	if (end == start)
1568 		return 0;
1569 	mmap_write_lock(mm);
1570 	prev = vma_prev(&vmi);
1571 	for_each_vma_range(vmi, vma, end) {
1572 		/*
1573 		 * If any vma in the range got policy other than MPOL_BIND
1574 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1575 		 * the home node for vmas we already updated before.
1576 		 */
1577 		old = vma_policy(vma);
1578 		if (!old) {
1579 			prev = vma;
1580 			continue;
1581 		}
1582 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1583 			err = -EOPNOTSUPP;
1584 			break;
1585 		}
1586 		new = mpol_dup(old);
1587 		if (IS_ERR(new)) {
1588 			err = PTR_ERR(new);
1589 			break;
1590 		}
1591 
1592 		vma_start_write(vma);
1593 		new->home_node = home_node;
1594 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1595 		mpol_put(new);
1596 		if (err)
1597 			break;
1598 	}
1599 	mmap_write_unlock(mm);
1600 	return err;
1601 }
1602 
1603 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1604 		unsigned long, mode, const unsigned long __user *, nmask,
1605 		unsigned long, maxnode, unsigned int, flags)
1606 {
1607 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1608 }
1609 
1610 /* Set the process memory policy */
1611 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1612 				 unsigned long maxnode)
1613 {
1614 	unsigned short mode_flags;
1615 	nodemask_t nodes;
1616 	int lmode = mode;
1617 	int err;
1618 
1619 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1620 	if (err)
1621 		return err;
1622 
1623 	err = get_nodes(&nodes, nmask, maxnode);
1624 	if (err)
1625 		return err;
1626 
1627 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1628 }
1629 
1630 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1631 		unsigned long, maxnode)
1632 {
1633 	return kernel_set_mempolicy(mode, nmask, maxnode);
1634 }
1635 
1636 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1637 				const unsigned long __user *old_nodes,
1638 				const unsigned long __user *new_nodes)
1639 {
1640 	struct mm_struct *mm = NULL;
1641 	struct task_struct *task;
1642 	nodemask_t task_nodes;
1643 	int err;
1644 	nodemask_t *old;
1645 	nodemask_t *new;
1646 	NODEMASK_SCRATCH(scratch);
1647 
1648 	if (!scratch)
1649 		return -ENOMEM;
1650 
1651 	old = &scratch->mask1;
1652 	new = &scratch->mask2;
1653 
1654 	err = get_nodes(old, old_nodes, maxnode);
1655 	if (err)
1656 		goto out;
1657 
1658 	err = get_nodes(new, new_nodes, maxnode);
1659 	if (err)
1660 		goto out;
1661 
1662 	/* Find the mm_struct */
1663 	rcu_read_lock();
1664 	task = pid ? find_task_by_vpid(pid) : current;
1665 	if (!task) {
1666 		rcu_read_unlock();
1667 		err = -ESRCH;
1668 		goto out;
1669 	}
1670 	get_task_struct(task);
1671 
1672 	err = -EINVAL;
1673 
1674 	/*
1675 	 * Check if this process has the right to modify the specified process.
1676 	 * Use the regular "ptrace_may_access()" checks.
1677 	 */
1678 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1679 		rcu_read_unlock();
1680 		err = -EPERM;
1681 		goto out_put;
1682 	}
1683 	rcu_read_unlock();
1684 
1685 	task_nodes = cpuset_mems_allowed(task);
1686 	/* Is the user allowed to access the target nodes? */
1687 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1688 		err = -EPERM;
1689 		goto out_put;
1690 	}
1691 
1692 	task_nodes = cpuset_mems_allowed(current);
1693 	nodes_and(*new, *new, task_nodes);
1694 	if (nodes_empty(*new))
1695 		goto out_put;
1696 
1697 	err = security_task_movememory(task);
1698 	if (err)
1699 		goto out_put;
1700 
1701 	mm = get_task_mm(task);
1702 	put_task_struct(task);
1703 
1704 	if (!mm) {
1705 		err = -EINVAL;
1706 		goto out;
1707 	}
1708 
1709 	err = do_migrate_pages(mm, old, new,
1710 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1711 
1712 	mmput(mm);
1713 out:
1714 	NODEMASK_SCRATCH_FREE(scratch);
1715 
1716 	return err;
1717 
1718 out_put:
1719 	put_task_struct(task);
1720 	goto out;
1721 }
1722 
1723 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1724 		const unsigned long __user *, old_nodes,
1725 		const unsigned long __user *, new_nodes)
1726 {
1727 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1728 }
1729 
1730 /* Retrieve NUMA policy */
1731 static int kernel_get_mempolicy(int __user *policy,
1732 				unsigned long __user *nmask,
1733 				unsigned long maxnode,
1734 				unsigned long addr,
1735 				unsigned long flags)
1736 {
1737 	int err;
1738 	int pval;
1739 	nodemask_t nodes;
1740 
1741 	if (nmask != NULL && maxnode < nr_node_ids)
1742 		return -EINVAL;
1743 
1744 	addr = untagged_addr(addr);
1745 
1746 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1747 
1748 	if (err)
1749 		return err;
1750 
1751 	if (policy && put_user(pval, policy))
1752 		return -EFAULT;
1753 
1754 	if (nmask)
1755 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1756 
1757 	return err;
1758 }
1759 
1760 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1761 		unsigned long __user *, nmask, unsigned long, maxnode,
1762 		unsigned long, addr, unsigned long, flags)
1763 {
1764 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1765 }
1766 
1767 bool vma_migratable(struct vm_area_struct *vma)
1768 {
1769 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1770 		return false;
1771 
1772 	/*
1773 	 * DAX device mappings require predictable access latency, so avoid
1774 	 * incurring periodic faults.
1775 	 */
1776 	if (vma_is_dax(vma))
1777 		return false;
1778 
1779 	if (is_vm_hugetlb_page(vma) &&
1780 		!hugepage_migration_supported(hstate_vma(vma)))
1781 		return false;
1782 
1783 	/*
1784 	 * Migration allocates pages in the highest zone. If we cannot
1785 	 * do so then migration (at least from node to node) is not
1786 	 * possible.
1787 	 */
1788 	if (vma->vm_file &&
1789 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1790 			< policy_zone)
1791 		return false;
1792 	return true;
1793 }
1794 
1795 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1796 				   unsigned long addr, pgoff_t *ilx)
1797 {
1798 	*ilx = 0;
1799 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1800 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1801 }
1802 
1803 /*
1804  * get_vma_policy(@vma, @addr, @order, @ilx)
1805  * @vma: virtual memory area whose policy is sought
1806  * @addr: address in @vma for shared policy lookup
1807  * @order: 0, or appropriate huge_page_order for interleaving
1808  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1809  *       MPOL_WEIGHTED_INTERLEAVE
1810  *
1811  * Returns effective policy for a VMA at specified address.
1812  * Falls back to current->mempolicy or system default policy, as necessary.
1813  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1814  * count--added by the get_policy() vm_op, as appropriate--to protect against
1815  * freeing by another task.  It is the caller's responsibility to free the
1816  * extra reference for shared policies.
1817  */
1818 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1819 				 unsigned long addr, int order, pgoff_t *ilx)
1820 {
1821 	struct mempolicy *pol;
1822 
1823 	pol = __get_vma_policy(vma, addr, ilx);
1824 	if (!pol)
1825 		pol = get_task_policy(current);
1826 	if (pol->mode == MPOL_INTERLEAVE ||
1827 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1828 		*ilx += vma->vm_pgoff >> order;
1829 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1830 	}
1831 	return pol;
1832 }
1833 
1834 bool vma_policy_mof(struct vm_area_struct *vma)
1835 {
1836 	struct mempolicy *pol;
1837 
1838 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1839 		bool ret = false;
1840 		pgoff_t ilx;		/* ignored here */
1841 
1842 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1843 		if (pol && (pol->flags & MPOL_F_MOF))
1844 			ret = true;
1845 		mpol_cond_put(pol);
1846 
1847 		return ret;
1848 	}
1849 
1850 	pol = vma->vm_policy;
1851 	if (!pol)
1852 		pol = get_task_policy(current);
1853 
1854 	return pol->flags & MPOL_F_MOF;
1855 }
1856 
1857 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1858 {
1859 	enum zone_type dynamic_policy_zone = policy_zone;
1860 
1861 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1862 
1863 	/*
1864 	 * if policy->nodes has movable memory only,
1865 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1866 	 *
1867 	 * policy->nodes is intersect with node_states[N_MEMORY].
1868 	 * so if the following test fails, it implies
1869 	 * policy->nodes has movable memory only.
1870 	 */
1871 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1872 		dynamic_policy_zone = ZONE_MOVABLE;
1873 
1874 	return zone >= dynamic_policy_zone;
1875 }
1876 
1877 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1878 {
1879 	unsigned int node;
1880 	unsigned int cpuset_mems_cookie;
1881 
1882 retry:
1883 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1884 	cpuset_mems_cookie = read_mems_allowed_begin();
1885 	node = current->il_prev;
1886 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1887 		node = next_node_in(node, policy->nodes);
1888 		if (read_mems_allowed_retry(cpuset_mems_cookie))
1889 			goto retry;
1890 		if (node == MAX_NUMNODES)
1891 			return node;
1892 		current->il_prev = node;
1893 		current->il_weight = get_il_weight(node);
1894 	}
1895 	current->il_weight--;
1896 	return node;
1897 }
1898 
1899 /* Do dynamic interleaving for a process */
1900 static unsigned int interleave_nodes(struct mempolicy *policy)
1901 {
1902 	unsigned int nid;
1903 	unsigned int cpuset_mems_cookie;
1904 
1905 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1906 	do {
1907 		cpuset_mems_cookie = read_mems_allowed_begin();
1908 		nid = next_node_in(current->il_prev, policy->nodes);
1909 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1910 
1911 	if (nid < MAX_NUMNODES)
1912 		current->il_prev = nid;
1913 	return nid;
1914 }
1915 
1916 /*
1917  * Depending on the memory policy provide a node from which to allocate the
1918  * next slab entry.
1919  */
1920 unsigned int mempolicy_slab_node(void)
1921 {
1922 	struct mempolicy *policy;
1923 	int node = numa_mem_id();
1924 
1925 	if (!in_task())
1926 		return node;
1927 
1928 	policy = current->mempolicy;
1929 	if (!policy)
1930 		return node;
1931 
1932 	switch (policy->mode) {
1933 	case MPOL_PREFERRED:
1934 		return first_node(policy->nodes);
1935 
1936 	case MPOL_INTERLEAVE:
1937 		return interleave_nodes(policy);
1938 
1939 	case MPOL_WEIGHTED_INTERLEAVE:
1940 		return weighted_interleave_nodes(policy);
1941 
1942 	case MPOL_BIND:
1943 	case MPOL_PREFERRED_MANY:
1944 	{
1945 		struct zoneref *z;
1946 
1947 		/*
1948 		 * Follow bind policy behavior and start allocation at the
1949 		 * first node.
1950 		 */
1951 		struct zonelist *zonelist;
1952 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1953 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1954 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1955 							&policy->nodes);
1956 		return zonelist_zone(z) ? zonelist_node_idx(z) : node;
1957 	}
1958 	case MPOL_LOCAL:
1959 		return node;
1960 
1961 	default:
1962 		BUG();
1963 	}
1964 }
1965 
1966 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1967 					      nodemask_t *mask)
1968 {
1969 	/*
1970 	 * barrier stabilizes the nodemask locally so that it can be iterated
1971 	 * over safely without concern for changes. Allocators validate node
1972 	 * selection does not violate mems_allowed, so this is safe.
1973 	 */
1974 	barrier();
1975 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1976 	barrier();
1977 	return nodes_weight(*mask);
1978 }
1979 
1980 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1981 {
1982 	nodemask_t nodemask;
1983 	unsigned int target, nr_nodes;
1984 	u8 *table;
1985 	unsigned int weight_total = 0;
1986 	u8 weight;
1987 	int nid;
1988 
1989 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1990 	if (!nr_nodes)
1991 		return numa_node_id();
1992 
1993 	rcu_read_lock();
1994 	table = rcu_dereference(iw_table);
1995 	/* calculate the total weight */
1996 	for_each_node_mask(nid, nodemask) {
1997 		/* detect system default usage */
1998 		weight = table ? table[nid] : 1;
1999 		weight = weight ? weight : 1;
2000 		weight_total += weight;
2001 	}
2002 
2003 	/* Calculate the node offset based on totals */
2004 	target = ilx % weight_total;
2005 	nid = first_node(nodemask);
2006 	while (target) {
2007 		/* detect system default usage */
2008 		weight = table ? table[nid] : 1;
2009 		weight = weight ? weight : 1;
2010 		if (target < weight)
2011 			break;
2012 		target -= weight;
2013 		nid = next_node_in(nid, nodemask);
2014 	}
2015 	rcu_read_unlock();
2016 	return nid;
2017 }
2018 
2019 /*
2020  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2021  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2022  * exceeds the number of present nodes.
2023  */
2024 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2025 {
2026 	nodemask_t nodemask;
2027 	unsigned int target, nnodes;
2028 	int i;
2029 	int nid;
2030 
2031 	nnodes = read_once_policy_nodemask(pol, &nodemask);
2032 	if (!nnodes)
2033 		return numa_node_id();
2034 	target = ilx % nnodes;
2035 	nid = first_node(nodemask);
2036 	for (i = 0; i < target; i++)
2037 		nid = next_node(nid, nodemask);
2038 	return nid;
2039 }
2040 
2041 /*
2042  * Return a nodemask representing a mempolicy for filtering nodes for
2043  * page allocation, together with preferred node id (or the input node id).
2044  */
2045 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2046 				   pgoff_t ilx, int *nid)
2047 {
2048 	nodemask_t *nodemask = NULL;
2049 
2050 	switch (pol->mode) {
2051 	case MPOL_PREFERRED:
2052 		/* Override input node id */
2053 		*nid = first_node(pol->nodes);
2054 		break;
2055 	case MPOL_PREFERRED_MANY:
2056 		nodemask = &pol->nodes;
2057 		if (pol->home_node != NUMA_NO_NODE)
2058 			*nid = pol->home_node;
2059 		break;
2060 	case MPOL_BIND:
2061 		/* Restrict to nodemask (but not on lower zones) */
2062 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2063 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2064 			nodemask = &pol->nodes;
2065 		if (pol->home_node != NUMA_NO_NODE)
2066 			*nid = pol->home_node;
2067 		/*
2068 		 * __GFP_THISNODE shouldn't even be used with the bind policy
2069 		 * because we might easily break the expectation to stay on the
2070 		 * requested node and not break the policy.
2071 		 */
2072 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2073 		break;
2074 	case MPOL_INTERLEAVE:
2075 		/* Override input node id */
2076 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2077 			interleave_nodes(pol) : interleave_nid(pol, ilx);
2078 		break;
2079 	case MPOL_WEIGHTED_INTERLEAVE:
2080 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 			weighted_interleave_nodes(pol) :
2082 			weighted_interleave_nid(pol, ilx);
2083 		break;
2084 	}
2085 
2086 	return nodemask;
2087 }
2088 
2089 #ifdef CONFIG_HUGETLBFS
2090 /*
2091  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2092  * @vma: virtual memory area whose policy is sought
2093  * @addr: address in @vma for shared policy lookup and interleave policy
2094  * @gfp_flags: for requested zone
2095  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2096  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2097  *
2098  * Returns a nid suitable for a huge page allocation and a pointer
2099  * to the struct mempolicy for conditional unref after allocation.
2100  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2101  * to the mempolicy's @nodemask for filtering the zonelist.
2102  */
2103 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2104 		struct mempolicy **mpol, nodemask_t **nodemask)
2105 {
2106 	pgoff_t ilx;
2107 	int nid;
2108 
2109 	nid = numa_node_id();
2110 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2111 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2112 	return nid;
2113 }
2114 
2115 /*
2116  * init_nodemask_of_mempolicy
2117  *
2118  * If the current task's mempolicy is "default" [NULL], return 'false'
2119  * to indicate default policy.  Otherwise, extract the policy nodemask
2120  * for 'bind' or 'interleave' policy into the argument nodemask, or
2121  * initialize the argument nodemask to contain the single node for
2122  * 'preferred' or 'local' policy and return 'true' to indicate presence
2123  * of non-default mempolicy.
2124  *
2125  * We don't bother with reference counting the mempolicy [mpol_get/put]
2126  * because the current task is examining it's own mempolicy and a task's
2127  * mempolicy is only ever changed by the task itself.
2128  *
2129  * N.B., it is the caller's responsibility to free a returned nodemask.
2130  */
2131 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2132 {
2133 	struct mempolicy *mempolicy;
2134 
2135 	if (!(mask && current->mempolicy))
2136 		return false;
2137 
2138 	task_lock(current);
2139 	mempolicy = current->mempolicy;
2140 	switch (mempolicy->mode) {
2141 	case MPOL_PREFERRED:
2142 	case MPOL_PREFERRED_MANY:
2143 	case MPOL_BIND:
2144 	case MPOL_INTERLEAVE:
2145 	case MPOL_WEIGHTED_INTERLEAVE:
2146 		*mask = mempolicy->nodes;
2147 		break;
2148 
2149 	case MPOL_LOCAL:
2150 		init_nodemask_of_node(mask, numa_node_id());
2151 		break;
2152 
2153 	default:
2154 		BUG();
2155 	}
2156 	task_unlock(current);
2157 
2158 	return true;
2159 }
2160 #endif
2161 
2162 /*
2163  * mempolicy_in_oom_domain
2164  *
2165  * If tsk's mempolicy is "bind", check for intersection between mask and
2166  * the policy nodemask. Otherwise, return true for all other policies
2167  * including "interleave", as a tsk with "interleave" policy may have
2168  * memory allocated from all nodes in system.
2169  *
2170  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2171  */
2172 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2173 					const nodemask_t *mask)
2174 {
2175 	struct mempolicy *mempolicy;
2176 	bool ret = true;
2177 
2178 	if (!mask)
2179 		return ret;
2180 
2181 	task_lock(tsk);
2182 	mempolicy = tsk->mempolicy;
2183 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2184 		ret = nodes_intersects(mempolicy->nodes, *mask);
2185 	task_unlock(tsk);
2186 
2187 	return ret;
2188 }
2189 
2190 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2191 						int nid, nodemask_t *nodemask)
2192 {
2193 	struct page *page;
2194 	gfp_t preferred_gfp;
2195 
2196 	/*
2197 	 * This is a two pass approach. The first pass will only try the
2198 	 * preferred nodes but skip the direct reclaim and allow the
2199 	 * allocation to fail, while the second pass will try all the
2200 	 * nodes in system.
2201 	 */
2202 	preferred_gfp = gfp | __GFP_NOWARN;
2203 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2204 	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2205 	if (!page)
2206 		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2207 
2208 	return page;
2209 }
2210 
2211 /**
2212  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2213  * @gfp: GFP flags.
2214  * @order: Order of the page allocation.
2215  * @pol: Pointer to the NUMA mempolicy.
2216  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2217  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2218  *
2219  * Return: The page on success or NULL if allocation fails.
2220  */
2221 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2222 		struct mempolicy *pol, pgoff_t ilx, int nid)
2223 {
2224 	nodemask_t *nodemask;
2225 	struct page *page;
2226 
2227 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2228 
2229 	if (pol->mode == MPOL_PREFERRED_MANY)
2230 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2231 
2232 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2233 	    /* filter "hugepage" allocation, unless from alloc_pages() */
2234 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2235 		/*
2236 		 * For hugepage allocation and non-interleave policy which
2237 		 * allows the current node (or other explicitly preferred
2238 		 * node) we only try to allocate from the current/preferred
2239 		 * node and don't fall back to other nodes, as the cost of
2240 		 * remote accesses would likely offset THP benefits.
2241 		 *
2242 		 * If the policy is interleave or does not allow the current
2243 		 * node in its nodemask, we allocate the standard way.
2244 		 */
2245 		if (pol->mode != MPOL_INTERLEAVE &&
2246 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2247 		    (!nodemask || node_isset(nid, *nodemask))) {
2248 			/*
2249 			 * First, try to allocate THP only on local node, but
2250 			 * don't reclaim unnecessarily, just compact.
2251 			 */
2252 			page = __alloc_pages_node_noprof(nid,
2253 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2254 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2255 				return page;
2256 			/*
2257 			 * If hugepage allocations are configured to always
2258 			 * synchronous compact or the vma has been madvised
2259 			 * to prefer hugepage backing, retry allowing remote
2260 			 * memory with both reclaim and compact as well.
2261 			 */
2262 		}
2263 	}
2264 
2265 	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2266 
2267 	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2268 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2269 		if (static_branch_likely(&vm_numa_stat_key) &&
2270 		    page_to_nid(page) == nid) {
2271 			preempt_disable();
2272 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2273 			preempt_enable();
2274 		}
2275 	}
2276 
2277 	return page;
2278 }
2279 
2280 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2281 		struct mempolicy *pol, pgoff_t ilx, int nid)
2282 {
2283 	return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2284 							order, pol, ilx, nid));
2285 }
2286 
2287 /**
2288  * vma_alloc_folio - Allocate a folio for a VMA.
2289  * @gfp: GFP flags.
2290  * @order: Order of the folio.
2291  * @vma: Pointer to VMA.
2292  * @addr: Virtual address of the allocation.  Must be inside @vma.
2293  *
2294  * Allocate a folio for a specific address in @vma, using the appropriate
2295  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2296  * VMA to prevent it from going away.  Should be used for all allocations
2297  * for folios that will be mapped into user space, excepting hugetlbfs, and
2298  * excepting where direct use of alloc_pages_mpol() is more appropriate.
2299  *
2300  * Return: The folio on success or NULL if allocation fails.
2301  */
2302 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2303 		unsigned long addr)
2304 {
2305 	struct mempolicy *pol;
2306 	pgoff_t ilx;
2307 	struct folio *folio;
2308 
2309 	if (vma->vm_flags & VM_DROPPABLE)
2310 		gfp |= __GFP_NOWARN;
2311 
2312 	pol = get_vma_policy(vma, addr, order, &ilx);
2313 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2314 	mpol_cond_put(pol);
2315 	return folio;
2316 }
2317 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2318 
2319 /**
2320  * alloc_pages - Allocate pages.
2321  * @gfp: GFP flags.
2322  * @order: Power of two of number of pages to allocate.
2323  *
2324  * Allocate 1 << @order contiguous pages.  The physical address of the
2325  * first page is naturally aligned (eg an order-3 allocation will be aligned
2326  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2327  * process is honoured when in process context.
2328  *
2329  * Context: Can be called from any context, providing the appropriate GFP
2330  * flags are used.
2331  * Return: The page on success or NULL if allocation fails.
2332  */
2333 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2334 {
2335 	struct mempolicy *pol = &default_policy;
2336 
2337 	/*
2338 	 * No reference counting needed for current->mempolicy
2339 	 * nor system default_policy
2340 	 */
2341 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2342 		pol = get_task_policy(current);
2343 
2344 	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2345 				       numa_node_id());
2346 }
2347 EXPORT_SYMBOL(alloc_pages_noprof);
2348 
2349 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2350 {
2351 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2352 }
2353 EXPORT_SYMBOL(folio_alloc_noprof);
2354 
2355 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2356 		struct mempolicy *pol, unsigned long nr_pages,
2357 		struct page **page_array)
2358 {
2359 	int nodes;
2360 	unsigned long nr_pages_per_node;
2361 	int delta;
2362 	int i;
2363 	unsigned long nr_allocated;
2364 	unsigned long total_allocated = 0;
2365 
2366 	nodes = nodes_weight(pol->nodes);
2367 	nr_pages_per_node = nr_pages / nodes;
2368 	delta = nr_pages - nodes * nr_pages_per_node;
2369 
2370 	for (i = 0; i < nodes; i++) {
2371 		if (delta) {
2372 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2373 					interleave_nodes(pol), NULL,
2374 					nr_pages_per_node + 1, NULL,
2375 					page_array);
2376 			delta--;
2377 		} else {
2378 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2379 					interleave_nodes(pol), NULL,
2380 					nr_pages_per_node, NULL, page_array);
2381 		}
2382 
2383 		page_array += nr_allocated;
2384 		total_allocated += nr_allocated;
2385 	}
2386 
2387 	return total_allocated;
2388 }
2389 
2390 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2391 		struct mempolicy *pol, unsigned long nr_pages,
2392 		struct page **page_array)
2393 {
2394 	struct task_struct *me = current;
2395 	unsigned int cpuset_mems_cookie;
2396 	unsigned long total_allocated = 0;
2397 	unsigned long nr_allocated = 0;
2398 	unsigned long rounds;
2399 	unsigned long node_pages, delta;
2400 	u8 *table, *weights, weight;
2401 	unsigned int weight_total = 0;
2402 	unsigned long rem_pages = nr_pages;
2403 	nodemask_t nodes;
2404 	int nnodes, node;
2405 	int resume_node = MAX_NUMNODES - 1;
2406 	u8 resume_weight = 0;
2407 	int prev_node;
2408 	int i;
2409 
2410 	if (!nr_pages)
2411 		return 0;
2412 
2413 	/* read the nodes onto the stack, retry if done during rebind */
2414 	do {
2415 		cpuset_mems_cookie = read_mems_allowed_begin();
2416 		nnodes = read_once_policy_nodemask(pol, &nodes);
2417 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2418 
2419 	/* if the nodemask has become invalid, we cannot do anything */
2420 	if (!nnodes)
2421 		return 0;
2422 
2423 	/* Continue allocating from most recent node and adjust the nr_pages */
2424 	node = me->il_prev;
2425 	weight = me->il_weight;
2426 	if (weight && node_isset(node, nodes)) {
2427 		node_pages = min(rem_pages, weight);
2428 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2429 						  NULL, page_array);
2430 		page_array += nr_allocated;
2431 		total_allocated += nr_allocated;
2432 		/* if that's all the pages, no need to interleave */
2433 		if (rem_pages <= weight) {
2434 			me->il_weight -= rem_pages;
2435 			return total_allocated;
2436 		}
2437 		/* Otherwise we adjust remaining pages, continue from there */
2438 		rem_pages -= weight;
2439 	}
2440 	/* clear active weight in case of an allocation failure */
2441 	me->il_weight = 0;
2442 	prev_node = node;
2443 
2444 	/* create a local copy of node weights to operate on outside rcu */
2445 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2446 	if (!weights)
2447 		return total_allocated;
2448 
2449 	rcu_read_lock();
2450 	table = rcu_dereference(iw_table);
2451 	if (table)
2452 		memcpy(weights, table, nr_node_ids);
2453 	rcu_read_unlock();
2454 
2455 	/* calculate total, detect system default usage */
2456 	for_each_node_mask(node, nodes) {
2457 		if (!weights[node])
2458 			weights[node] = 1;
2459 		weight_total += weights[node];
2460 	}
2461 
2462 	/*
2463 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2464 	 * Track which node weighted interleave should resume from.
2465 	 *
2466 	 * if (rounds > 0) and (delta == 0), resume_node will always be
2467 	 * the node following prev_node and its weight.
2468 	 */
2469 	rounds = rem_pages / weight_total;
2470 	delta = rem_pages % weight_total;
2471 	resume_node = next_node_in(prev_node, nodes);
2472 	resume_weight = weights[resume_node];
2473 	for (i = 0; i < nnodes; i++) {
2474 		node = next_node_in(prev_node, nodes);
2475 		weight = weights[node];
2476 		node_pages = weight * rounds;
2477 		/* If a delta exists, add this node's portion of the delta */
2478 		if (delta > weight) {
2479 			node_pages += weight;
2480 			delta -= weight;
2481 		} else if (delta) {
2482 			/* when delta is depleted, resume from that node */
2483 			node_pages += delta;
2484 			resume_node = node;
2485 			resume_weight = weight - delta;
2486 			delta = 0;
2487 		}
2488 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2489 		if (!node_pages)
2490 			break;
2491 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2492 						  NULL, page_array);
2493 		page_array += nr_allocated;
2494 		total_allocated += nr_allocated;
2495 		if (total_allocated == nr_pages)
2496 			break;
2497 		prev_node = node;
2498 	}
2499 	me->il_prev = resume_node;
2500 	me->il_weight = resume_weight;
2501 	kfree(weights);
2502 	return total_allocated;
2503 }
2504 
2505 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2506 		struct mempolicy *pol, unsigned long nr_pages,
2507 		struct page **page_array)
2508 {
2509 	gfp_t preferred_gfp;
2510 	unsigned long nr_allocated = 0;
2511 
2512 	preferred_gfp = gfp | __GFP_NOWARN;
2513 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2514 
2515 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2516 					   nr_pages, NULL, page_array);
2517 
2518 	if (nr_allocated < nr_pages)
2519 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2520 				nr_pages - nr_allocated, NULL,
2521 				page_array + nr_allocated);
2522 	return nr_allocated;
2523 }
2524 
2525 /* alloc pages bulk and mempolicy should be considered at the
2526  * same time in some situation such as vmalloc.
2527  *
2528  * It can accelerate memory allocation especially interleaving
2529  * allocate memory.
2530  */
2531 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2532 		unsigned long nr_pages, struct page **page_array)
2533 {
2534 	struct mempolicy *pol = &default_policy;
2535 	nodemask_t *nodemask;
2536 	int nid;
2537 
2538 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2539 		pol = get_task_policy(current);
2540 
2541 	if (pol->mode == MPOL_INTERLEAVE)
2542 		return alloc_pages_bulk_array_interleave(gfp, pol,
2543 							 nr_pages, page_array);
2544 
2545 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2546 		return alloc_pages_bulk_array_weighted_interleave(
2547 				  gfp, pol, nr_pages, page_array);
2548 
2549 	if (pol->mode == MPOL_PREFERRED_MANY)
2550 		return alloc_pages_bulk_array_preferred_many(gfp,
2551 				numa_node_id(), pol, nr_pages, page_array);
2552 
2553 	nid = numa_node_id();
2554 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2555 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2556 				       nr_pages, NULL, page_array);
2557 }
2558 
2559 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2560 {
2561 	struct mempolicy *pol = mpol_dup(src->vm_policy);
2562 
2563 	if (IS_ERR(pol))
2564 		return PTR_ERR(pol);
2565 	dst->vm_policy = pol;
2566 	return 0;
2567 }
2568 
2569 /*
2570  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2571  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2572  * with the mems_allowed returned by cpuset_mems_allowed().  This
2573  * keeps mempolicies cpuset relative after its cpuset moves.  See
2574  * further kernel/cpuset.c update_nodemask().
2575  *
2576  * current's mempolicy may be rebinded by the other task(the task that changes
2577  * cpuset's mems), so we needn't do rebind work for current task.
2578  */
2579 
2580 /* Slow path of a mempolicy duplicate */
2581 struct mempolicy *__mpol_dup(struct mempolicy *old)
2582 {
2583 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2584 
2585 	if (!new)
2586 		return ERR_PTR(-ENOMEM);
2587 
2588 	/* task's mempolicy is protected by alloc_lock */
2589 	if (old == current->mempolicy) {
2590 		task_lock(current);
2591 		*new = *old;
2592 		task_unlock(current);
2593 	} else
2594 		*new = *old;
2595 
2596 	if (current_cpuset_is_being_rebound()) {
2597 		nodemask_t mems = cpuset_mems_allowed(current);
2598 		mpol_rebind_policy(new, &mems);
2599 	}
2600 	atomic_set(&new->refcnt, 1);
2601 	return new;
2602 }
2603 
2604 /* Slow path of a mempolicy comparison */
2605 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2606 {
2607 	if (!a || !b)
2608 		return false;
2609 	if (a->mode != b->mode)
2610 		return false;
2611 	if (a->flags != b->flags)
2612 		return false;
2613 	if (a->home_node != b->home_node)
2614 		return false;
2615 	if (mpol_store_user_nodemask(a))
2616 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2617 			return false;
2618 
2619 	switch (a->mode) {
2620 	case MPOL_BIND:
2621 	case MPOL_INTERLEAVE:
2622 	case MPOL_PREFERRED:
2623 	case MPOL_PREFERRED_MANY:
2624 	case MPOL_WEIGHTED_INTERLEAVE:
2625 		return !!nodes_equal(a->nodes, b->nodes);
2626 	case MPOL_LOCAL:
2627 		return true;
2628 	default:
2629 		BUG();
2630 		return false;
2631 	}
2632 }
2633 
2634 /*
2635  * Shared memory backing store policy support.
2636  *
2637  * Remember policies even when nobody has shared memory mapped.
2638  * The policies are kept in Red-Black tree linked from the inode.
2639  * They are protected by the sp->lock rwlock, which should be held
2640  * for any accesses to the tree.
2641  */
2642 
2643 /*
2644  * lookup first element intersecting start-end.  Caller holds sp->lock for
2645  * reading or for writing
2646  */
2647 static struct sp_node *sp_lookup(struct shared_policy *sp,
2648 					pgoff_t start, pgoff_t end)
2649 {
2650 	struct rb_node *n = sp->root.rb_node;
2651 
2652 	while (n) {
2653 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2654 
2655 		if (start >= p->end)
2656 			n = n->rb_right;
2657 		else if (end <= p->start)
2658 			n = n->rb_left;
2659 		else
2660 			break;
2661 	}
2662 	if (!n)
2663 		return NULL;
2664 	for (;;) {
2665 		struct sp_node *w = NULL;
2666 		struct rb_node *prev = rb_prev(n);
2667 		if (!prev)
2668 			break;
2669 		w = rb_entry(prev, struct sp_node, nd);
2670 		if (w->end <= start)
2671 			break;
2672 		n = prev;
2673 	}
2674 	return rb_entry(n, struct sp_node, nd);
2675 }
2676 
2677 /*
2678  * Insert a new shared policy into the list.  Caller holds sp->lock for
2679  * writing.
2680  */
2681 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2682 {
2683 	struct rb_node **p = &sp->root.rb_node;
2684 	struct rb_node *parent = NULL;
2685 	struct sp_node *nd;
2686 
2687 	while (*p) {
2688 		parent = *p;
2689 		nd = rb_entry(parent, struct sp_node, nd);
2690 		if (new->start < nd->start)
2691 			p = &(*p)->rb_left;
2692 		else if (new->end > nd->end)
2693 			p = &(*p)->rb_right;
2694 		else
2695 			BUG();
2696 	}
2697 	rb_link_node(&new->nd, parent, p);
2698 	rb_insert_color(&new->nd, &sp->root);
2699 }
2700 
2701 /* Find shared policy intersecting idx */
2702 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2703 						pgoff_t idx)
2704 {
2705 	struct mempolicy *pol = NULL;
2706 	struct sp_node *sn;
2707 
2708 	if (!sp->root.rb_node)
2709 		return NULL;
2710 	read_lock(&sp->lock);
2711 	sn = sp_lookup(sp, idx, idx+1);
2712 	if (sn) {
2713 		mpol_get(sn->policy);
2714 		pol = sn->policy;
2715 	}
2716 	read_unlock(&sp->lock);
2717 	return pol;
2718 }
2719 
2720 static void sp_free(struct sp_node *n)
2721 {
2722 	mpol_put(n->policy);
2723 	kmem_cache_free(sn_cache, n);
2724 }
2725 
2726 /**
2727  * mpol_misplaced - check whether current folio node is valid in policy
2728  *
2729  * @folio: folio to be checked
2730  * @vmf: structure describing the fault
2731  * @addr: virtual address in @vma for shared policy lookup and interleave policy
2732  *
2733  * Lookup current policy node id for vma,addr and "compare to" folio's
2734  * node id.  Policy determination "mimics" alloc_page_vma().
2735  * Called from fault path where we know the vma and faulting address.
2736  *
2737  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2738  * policy, or a suitable node ID to allocate a replacement folio from.
2739  */
2740 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2741 		   unsigned long addr)
2742 {
2743 	struct mempolicy *pol;
2744 	pgoff_t ilx;
2745 	struct zoneref *z;
2746 	int curnid = folio_nid(folio);
2747 	struct vm_area_struct *vma = vmf->vma;
2748 	int thiscpu = raw_smp_processor_id();
2749 	int thisnid = numa_node_id();
2750 	int polnid = NUMA_NO_NODE;
2751 	int ret = NUMA_NO_NODE;
2752 
2753 	/*
2754 	 * Make sure ptl is held so that we don't preempt and we
2755 	 * have a stable smp processor id
2756 	 */
2757 	lockdep_assert_held(vmf->ptl);
2758 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2759 	if (!(pol->flags & MPOL_F_MOF))
2760 		goto out;
2761 
2762 	switch (pol->mode) {
2763 	case MPOL_INTERLEAVE:
2764 		polnid = interleave_nid(pol, ilx);
2765 		break;
2766 
2767 	case MPOL_WEIGHTED_INTERLEAVE:
2768 		polnid = weighted_interleave_nid(pol, ilx);
2769 		break;
2770 
2771 	case MPOL_PREFERRED:
2772 		if (node_isset(curnid, pol->nodes))
2773 			goto out;
2774 		polnid = first_node(pol->nodes);
2775 		break;
2776 
2777 	case MPOL_LOCAL:
2778 		polnid = numa_node_id();
2779 		break;
2780 
2781 	case MPOL_BIND:
2782 	case MPOL_PREFERRED_MANY:
2783 		/*
2784 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2785 		 * policy nodemask we don't allow numa migration to nodes
2786 		 * outside policy nodemask for now. This is done so that if we
2787 		 * want demotion to slow memory to happen, before allocating
2788 		 * from some DRAM node say 'x', we will end up using a
2789 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2790 		 * we should not promote to node 'x' from slow memory node.
2791 		 */
2792 		if (pol->flags & MPOL_F_MORON) {
2793 			/*
2794 			 * Optimize placement among multiple nodes
2795 			 * via NUMA balancing
2796 			 */
2797 			if (node_isset(thisnid, pol->nodes))
2798 				break;
2799 			goto out;
2800 		}
2801 
2802 		/*
2803 		 * use current page if in policy nodemask,
2804 		 * else select nearest allowed node, if any.
2805 		 * If no allowed nodes, use current [!misplaced].
2806 		 */
2807 		if (node_isset(curnid, pol->nodes))
2808 			goto out;
2809 		z = first_zones_zonelist(
2810 				node_zonelist(thisnid, GFP_HIGHUSER),
2811 				gfp_zone(GFP_HIGHUSER),
2812 				&pol->nodes);
2813 		polnid = zonelist_node_idx(z);
2814 		break;
2815 
2816 	default:
2817 		BUG();
2818 	}
2819 
2820 	/* Migrate the folio towards the node whose CPU is referencing it */
2821 	if (pol->flags & MPOL_F_MORON) {
2822 		polnid = thisnid;
2823 
2824 		if (!should_numa_migrate_memory(current, folio, curnid,
2825 						thiscpu))
2826 			goto out;
2827 	}
2828 
2829 	if (curnid != polnid)
2830 		ret = polnid;
2831 out:
2832 	mpol_cond_put(pol);
2833 
2834 	return ret;
2835 }
2836 
2837 /*
2838  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2839  * dropped after task->mempolicy is set to NULL so that any allocation done as
2840  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2841  * policy.
2842  */
2843 void mpol_put_task_policy(struct task_struct *task)
2844 {
2845 	struct mempolicy *pol;
2846 
2847 	task_lock(task);
2848 	pol = task->mempolicy;
2849 	task->mempolicy = NULL;
2850 	task_unlock(task);
2851 	mpol_put(pol);
2852 }
2853 
2854 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2855 {
2856 	rb_erase(&n->nd, &sp->root);
2857 	sp_free(n);
2858 }
2859 
2860 static void sp_node_init(struct sp_node *node, unsigned long start,
2861 			unsigned long end, struct mempolicy *pol)
2862 {
2863 	node->start = start;
2864 	node->end = end;
2865 	node->policy = pol;
2866 }
2867 
2868 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2869 				struct mempolicy *pol)
2870 {
2871 	struct sp_node *n;
2872 	struct mempolicy *newpol;
2873 
2874 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2875 	if (!n)
2876 		return NULL;
2877 
2878 	newpol = mpol_dup(pol);
2879 	if (IS_ERR(newpol)) {
2880 		kmem_cache_free(sn_cache, n);
2881 		return NULL;
2882 	}
2883 	newpol->flags |= MPOL_F_SHARED;
2884 	sp_node_init(n, start, end, newpol);
2885 
2886 	return n;
2887 }
2888 
2889 /* Replace a policy range. */
2890 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2891 				 pgoff_t end, struct sp_node *new)
2892 {
2893 	struct sp_node *n;
2894 	struct sp_node *n_new = NULL;
2895 	struct mempolicy *mpol_new = NULL;
2896 	int ret = 0;
2897 
2898 restart:
2899 	write_lock(&sp->lock);
2900 	n = sp_lookup(sp, start, end);
2901 	/* Take care of old policies in the same range. */
2902 	while (n && n->start < end) {
2903 		struct rb_node *next = rb_next(&n->nd);
2904 		if (n->start >= start) {
2905 			if (n->end <= end)
2906 				sp_delete(sp, n);
2907 			else
2908 				n->start = end;
2909 		} else {
2910 			/* Old policy spanning whole new range. */
2911 			if (n->end > end) {
2912 				if (!n_new)
2913 					goto alloc_new;
2914 
2915 				*mpol_new = *n->policy;
2916 				atomic_set(&mpol_new->refcnt, 1);
2917 				sp_node_init(n_new, end, n->end, mpol_new);
2918 				n->end = start;
2919 				sp_insert(sp, n_new);
2920 				n_new = NULL;
2921 				mpol_new = NULL;
2922 				break;
2923 			} else
2924 				n->end = start;
2925 		}
2926 		if (!next)
2927 			break;
2928 		n = rb_entry(next, struct sp_node, nd);
2929 	}
2930 	if (new)
2931 		sp_insert(sp, new);
2932 	write_unlock(&sp->lock);
2933 	ret = 0;
2934 
2935 err_out:
2936 	if (mpol_new)
2937 		mpol_put(mpol_new);
2938 	if (n_new)
2939 		kmem_cache_free(sn_cache, n_new);
2940 
2941 	return ret;
2942 
2943 alloc_new:
2944 	write_unlock(&sp->lock);
2945 	ret = -ENOMEM;
2946 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2947 	if (!n_new)
2948 		goto err_out;
2949 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2950 	if (!mpol_new)
2951 		goto err_out;
2952 	atomic_set(&mpol_new->refcnt, 1);
2953 	goto restart;
2954 }
2955 
2956 /**
2957  * mpol_shared_policy_init - initialize shared policy for inode
2958  * @sp: pointer to inode shared policy
2959  * @mpol:  struct mempolicy to install
2960  *
2961  * Install non-NULL @mpol in inode's shared policy rb-tree.
2962  * On entry, the current task has a reference on a non-NULL @mpol.
2963  * This must be released on exit.
2964  * This is called at get_inode() calls and we can use GFP_KERNEL.
2965  */
2966 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2967 {
2968 	int ret;
2969 
2970 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2971 	rwlock_init(&sp->lock);
2972 
2973 	if (mpol) {
2974 		struct sp_node *sn;
2975 		struct mempolicy *npol;
2976 		NODEMASK_SCRATCH(scratch);
2977 
2978 		if (!scratch)
2979 			goto put_mpol;
2980 
2981 		/* contextualize the tmpfs mount point mempolicy to this file */
2982 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2983 		if (IS_ERR(npol))
2984 			goto free_scratch; /* no valid nodemask intersection */
2985 
2986 		task_lock(current);
2987 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2988 		task_unlock(current);
2989 		if (ret)
2990 			goto put_npol;
2991 
2992 		/* alloc node covering entire file; adds ref to file's npol */
2993 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2994 		if (sn)
2995 			sp_insert(sp, sn);
2996 put_npol:
2997 		mpol_put(npol);	/* drop initial ref on file's npol */
2998 free_scratch:
2999 		NODEMASK_SCRATCH_FREE(scratch);
3000 put_mpol:
3001 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
3002 	}
3003 }
3004 
3005 int mpol_set_shared_policy(struct shared_policy *sp,
3006 			struct vm_area_struct *vma, struct mempolicy *pol)
3007 {
3008 	int err;
3009 	struct sp_node *new = NULL;
3010 	unsigned long sz = vma_pages(vma);
3011 
3012 	if (pol) {
3013 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3014 		if (!new)
3015 			return -ENOMEM;
3016 	}
3017 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3018 	if (err && new)
3019 		sp_free(new);
3020 	return err;
3021 }
3022 
3023 /* Free a backing policy store on inode delete. */
3024 void mpol_free_shared_policy(struct shared_policy *sp)
3025 {
3026 	struct sp_node *n;
3027 	struct rb_node *next;
3028 
3029 	if (!sp->root.rb_node)
3030 		return;
3031 	write_lock(&sp->lock);
3032 	next = rb_first(&sp->root);
3033 	while (next) {
3034 		n = rb_entry(next, struct sp_node, nd);
3035 		next = rb_next(&n->nd);
3036 		sp_delete(sp, n);
3037 	}
3038 	write_unlock(&sp->lock);
3039 }
3040 
3041 #ifdef CONFIG_NUMA_BALANCING
3042 static int __initdata numabalancing_override;
3043 
3044 static void __init check_numabalancing_enable(void)
3045 {
3046 	bool numabalancing_default = false;
3047 
3048 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3049 		numabalancing_default = true;
3050 
3051 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3052 	if (numabalancing_override)
3053 		set_numabalancing_state(numabalancing_override == 1);
3054 
3055 	if (num_online_nodes() > 1 && !numabalancing_override) {
3056 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3057 			numabalancing_default ? "Enabling" : "Disabling");
3058 		set_numabalancing_state(numabalancing_default);
3059 	}
3060 }
3061 
3062 static int __init setup_numabalancing(char *str)
3063 {
3064 	int ret = 0;
3065 	if (!str)
3066 		goto out;
3067 
3068 	if (!strcmp(str, "enable")) {
3069 		numabalancing_override = 1;
3070 		ret = 1;
3071 	} else if (!strcmp(str, "disable")) {
3072 		numabalancing_override = -1;
3073 		ret = 1;
3074 	}
3075 out:
3076 	if (!ret)
3077 		pr_warn("Unable to parse numa_balancing=\n");
3078 
3079 	return ret;
3080 }
3081 __setup("numa_balancing=", setup_numabalancing);
3082 #else
3083 static inline void __init check_numabalancing_enable(void)
3084 {
3085 }
3086 #endif /* CONFIG_NUMA_BALANCING */
3087 
3088 void __init numa_policy_init(void)
3089 {
3090 	nodemask_t interleave_nodes;
3091 	unsigned long largest = 0;
3092 	int nid, prefer = 0;
3093 
3094 	policy_cache = kmem_cache_create("numa_policy",
3095 					 sizeof(struct mempolicy),
3096 					 0, SLAB_PANIC, NULL);
3097 
3098 	sn_cache = kmem_cache_create("shared_policy_node",
3099 				     sizeof(struct sp_node),
3100 				     0, SLAB_PANIC, NULL);
3101 
3102 	for_each_node(nid) {
3103 		preferred_node_policy[nid] = (struct mempolicy) {
3104 			.refcnt = ATOMIC_INIT(1),
3105 			.mode = MPOL_PREFERRED,
3106 			.flags = MPOL_F_MOF | MPOL_F_MORON,
3107 			.nodes = nodemask_of_node(nid),
3108 		};
3109 	}
3110 
3111 	/*
3112 	 * Set interleaving policy for system init. Interleaving is only
3113 	 * enabled across suitably sized nodes (default is >= 16MB), or
3114 	 * fall back to the largest node if they're all smaller.
3115 	 */
3116 	nodes_clear(interleave_nodes);
3117 	for_each_node_state(nid, N_MEMORY) {
3118 		unsigned long total_pages = node_present_pages(nid);
3119 
3120 		/* Preserve the largest node */
3121 		if (largest < total_pages) {
3122 			largest = total_pages;
3123 			prefer = nid;
3124 		}
3125 
3126 		/* Interleave this node? */
3127 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3128 			node_set(nid, interleave_nodes);
3129 	}
3130 
3131 	/* All too small, use the largest */
3132 	if (unlikely(nodes_empty(interleave_nodes)))
3133 		node_set(prefer, interleave_nodes);
3134 
3135 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3136 		pr_err("%s: interleaving failed\n", __func__);
3137 
3138 	check_numabalancing_enable();
3139 }
3140 
3141 /* Reset policy of current process to default */
3142 void numa_default_policy(void)
3143 {
3144 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3145 }
3146 
3147 /*
3148  * Parse and format mempolicy from/to strings
3149  */
3150 static const char * const policy_modes[] =
3151 {
3152 	[MPOL_DEFAULT]    = "default",
3153 	[MPOL_PREFERRED]  = "prefer",
3154 	[MPOL_BIND]       = "bind",
3155 	[MPOL_INTERLEAVE] = "interleave",
3156 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3157 	[MPOL_LOCAL]      = "local",
3158 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3159 };
3160 
3161 #ifdef CONFIG_TMPFS
3162 /**
3163  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3164  * @str:  string containing mempolicy to parse
3165  * @mpol:  pointer to struct mempolicy pointer, returned on success.
3166  *
3167  * Format of input:
3168  *	<mode>[=<flags>][:<nodelist>]
3169  *
3170  * Return: %0 on success, else %1
3171  */
3172 int mpol_parse_str(char *str, struct mempolicy **mpol)
3173 {
3174 	struct mempolicy *new = NULL;
3175 	unsigned short mode_flags;
3176 	nodemask_t nodes;
3177 	char *nodelist = strchr(str, ':');
3178 	char *flags = strchr(str, '=');
3179 	int err = 1, mode;
3180 
3181 	if (flags)
3182 		*flags++ = '\0';	/* terminate mode string */
3183 
3184 	if (nodelist) {
3185 		/* NUL-terminate mode or flags string */
3186 		*nodelist++ = '\0';
3187 		if (nodelist_parse(nodelist, nodes))
3188 			goto out;
3189 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3190 			goto out;
3191 	} else
3192 		nodes_clear(nodes);
3193 
3194 	mode = match_string(policy_modes, MPOL_MAX, str);
3195 	if (mode < 0)
3196 		goto out;
3197 
3198 	switch (mode) {
3199 	case MPOL_PREFERRED:
3200 		/*
3201 		 * Insist on a nodelist of one node only, although later
3202 		 * we use first_node(nodes) to grab a single node, so here
3203 		 * nodelist (or nodes) cannot be empty.
3204 		 */
3205 		if (nodelist) {
3206 			char *rest = nodelist;
3207 			while (isdigit(*rest))
3208 				rest++;
3209 			if (*rest)
3210 				goto out;
3211 			if (nodes_empty(nodes))
3212 				goto out;
3213 		}
3214 		break;
3215 	case MPOL_INTERLEAVE:
3216 	case MPOL_WEIGHTED_INTERLEAVE:
3217 		/*
3218 		 * Default to online nodes with memory if no nodelist
3219 		 */
3220 		if (!nodelist)
3221 			nodes = node_states[N_MEMORY];
3222 		break;
3223 	case MPOL_LOCAL:
3224 		/*
3225 		 * Don't allow a nodelist;  mpol_new() checks flags
3226 		 */
3227 		if (nodelist)
3228 			goto out;
3229 		break;
3230 	case MPOL_DEFAULT:
3231 		/*
3232 		 * Insist on a empty nodelist
3233 		 */
3234 		if (!nodelist)
3235 			err = 0;
3236 		goto out;
3237 	case MPOL_PREFERRED_MANY:
3238 	case MPOL_BIND:
3239 		/*
3240 		 * Insist on a nodelist
3241 		 */
3242 		if (!nodelist)
3243 			goto out;
3244 	}
3245 
3246 	mode_flags = 0;
3247 	if (flags) {
3248 		/*
3249 		 * Currently, we only support two mutually exclusive
3250 		 * mode flags.
3251 		 */
3252 		if (!strcmp(flags, "static"))
3253 			mode_flags |= MPOL_F_STATIC_NODES;
3254 		else if (!strcmp(flags, "relative"))
3255 			mode_flags |= MPOL_F_RELATIVE_NODES;
3256 		else
3257 			goto out;
3258 	}
3259 
3260 	new = mpol_new(mode, mode_flags, &nodes);
3261 	if (IS_ERR(new))
3262 		goto out;
3263 
3264 	/*
3265 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3266 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3267 	 */
3268 	if (mode != MPOL_PREFERRED) {
3269 		new->nodes = nodes;
3270 	} else if (nodelist) {
3271 		nodes_clear(new->nodes);
3272 		node_set(first_node(nodes), new->nodes);
3273 	} else {
3274 		new->mode = MPOL_LOCAL;
3275 	}
3276 
3277 	/*
3278 	 * Save nodes for contextualization: this will be used to "clone"
3279 	 * the mempolicy in a specific context [cpuset] at a later time.
3280 	 */
3281 	new->w.user_nodemask = nodes;
3282 
3283 	err = 0;
3284 
3285 out:
3286 	/* Restore string for error message */
3287 	if (nodelist)
3288 		*--nodelist = ':';
3289 	if (flags)
3290 		*--flags = '=';
3291 	if (!err)
3292 		*mpol = new;
3293 	return err;
3294 }
3295 #endif /* CONFIG_TMPFS */
3296 
3297 /**
3298  * mpol_to_str - format a mempolicy structure for printing
3299  * @buffer:  to contain formatted mempolicy string
3300  * @maxlen:  length of @buffer
3301  * @pol:  pointer to mempolicy to be formatted
3302  *
3303  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3304  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3305  * interleave", plus the longest flag flags, "relative|balancing", and to
3306  * display at least a few node ids.
3307  */
3308 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3309 {
3310 	char *p = buffer;
3311 	nodemask_t nodes = NODE_MASK_NONE;
3312 	unsigned short mode = MPOL_DEFAULT;
3313 	unsigned short flags = 0;
3314 
3315 	if (pol &&
3316 	    pol != &default_policy &&
3317 	    !(pol >= &preferred_node_policy[0] &&
3318 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3319 		mode = pol->mode;
3320 		flags = pol->flags;
3321 	}
3322 
3323 	switch (mode) {
3324 	case MPOL_DEFAULT:
3325 	case MPOL_LOCAL:
3326 		break;
3327 	case MPOL_PREFERRED:
3328 	case MPOL_PREFERRED_MANY:
3329 	case MPOL_BIND:
3330 	case MPOL_INTERLEAVE:
3331 	case MPOL_WEIGHTED_INTERLEAVE:
3332 		nodes = pol->nodes;
3333 		break;
3334 	default:
3335 		WARN_ON_ONCE(1);
3336 		snprintf(p, maxlen, "unknown");
3337 		return;
3338 	}
3339 
3340 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3341 
3342 	if (flags & MPOL_MODE_FLAGS) {
3343 		p += snprintf(p, buffer + maxlen - p, "=");
3344 
3345 		/*
3346 		 * Static and relative are mutually exclusive.
3347 		 */
3348 		if (flags & MPOL_F_STATIC_NODES)
3349 			p += snprintf(p, buffer + maxlen - p, "static");
3350 		else if (flags & MPOL_F_RELATIVE_NODES)
3351 			p += snprintf(p, buffer + maxlen - p, "relative");
3352 
3353 		if (flags & MPOL_F_NUMA_BALANCING) {
3354 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3355 				p += snprintf(p, buffer + maxlen - p, "|");
3356 			p += snprintf(p, buffer + maxlen - p, "balancing");
3357 		}
3358 	}
3359 
3360 	if (!nodes_empty(nodes))
3361 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3362 			       nodemask_pr_args(&nodes));
3363 }
3364 
3365 #ifdef CONFIG_SYSFS
3366 struct iw_node_attr {
3367 	struct kobj_attribute kobj_attr;
3368 	int nid;
3369 };
3370 
3371 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3372 			 char *buf)
3373 {
3374 	struct iw_node_attr *node_attr;
3375 	u8 weight;
3376 
3377 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3378 	weight = get_il_weight(node_attr->nid);
3379 	return sysfs_emit(buf, "%d\n", weight);
3380 }
3381 
3382 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3383 			  const char *buf, size_t count)
3384 {
3385 	struct iw_node_attr *node_attr;
3386 	u8 *new;
3387 	u8 *old;
3388 	u8 weight = 0;
3389 
3390 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3391 	if (count == 0 || sysfs_streq(buf, ""))
3392 		weight = 0;
3393 	else if (kstrtou8(buf, 0, &weight))
3394 		return -EINVAL;
3395 
3396 	new = kzalloc(nr_node_ids, GFP_KERNEL);
3397 	if (!new)
3398 		return -ENOMEM;
3399 
3400 	mutex_lock(&iw_table_lock);
3401 	old = rcu_dereference_protected(iw_table,
3402 					lockdep_is_held(&iw_table_lock));
3403 	if (old)
3404 		memcpy(new, old, nr_node_ids);
3405 	new[node_attr->nid] = weight;
3406 	rcu_assign_pointer(iw_table, new);
3407 	mutex_unlock(&iw_table_lock);
3408 	synchronize_rcu();
3409 	kfree(old);
3410 	return count;
3411 }
3412 
3413 static struct iw_node_attr **node_attrs;
3414 
3415 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3416 				  struct kobject *parent)
3417 {
3418 	if (!node_attr)
3419 		return;
3420 	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3421 	kfree(node_attr->kobj_attr.attr.name);
3422 	kfree(node_attr);
3423 }
3424 
3425 static void sysfs_wi_release(struct kobject *wi_kobj)
3426 {
3427 	int i;
3428 
3429 	for (i = 0; i < nr_node_ids; i++)
3430 		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3431 	kobject_put(wi_kobj);
3432 }
3433 
3434 static const struct kobj_type wi_ktype = {
3435 	.sysfs_ops = &kobj_sysfs_ops,
3436 	.release = sysfs_wi_release,
3437 };
3438 
3439 static int add_weight_node(int nid, struct kobject *wi_kobj)
3440 {
3441 	struct iw_node_attr *node_attr;
3442 	char *name;
3443 
3444 	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3445 	if (!node_attr)
3446 		return -ENOMEM;
3447 
3448 	name = kasprintf(GFP_KERNEL, "node%d", nid);
3449 	if (!name) {
3450 		kfree(node_attr);
3451 		return -ENOMEM;
3452 	}
3453 
3454 	sysfs_attr_init(&node_attr->kobj_attr.attr);
3455 	node_attr->kobj_attr.attr.name = name;
3456 	node_attr->kobj_attr.attr.mode = 0644;
3457 	node_attr->kobj_attr.show = node_show;
3458 	node_attr->kobj_attr.store = node_store;
3459 	node_attr->nid = nid;
3460 
3461 	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3462 		kfree(node_attr->kobj_attr.attr.name);
3463 		kfree(node_attr);
3464 		pr_err("failed to add attribute to weighted_interleave\n");
3465 		return -ENOMEM;
3466 	}
3467 
3468 	node_attrs[nid] = node_attr;
3469 	return 0;
3470 }
3471 
3472 static int add_weighted_interleave_group(struct kobject *root_kobj)
3473 {
3474 	struct kobject *wi_kobj;
3475 	int nid, err;
3476 
3477 	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3478 	if (!wi_kobj)
3479 		return -ENOMEM;
3480 
3481 	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3482 				   "weighted_interleave");
3483 	if (err) {
3484 		kfree(wi_kobj);
3485 		return err;
3486 	}
3487 
3488 	for_each_node_state(nid, N_POSSIBLE) {
3489 		err = add_weight_node(nid, wi_kobj);
3490 		if (err) {
3491 			pr_err("failed to add sysfs [node%d]\n", nid);
3492 			break;
3493 		}
3494 	}
3495 	if (err)
3496 		kobject_put(wi_kobj);
3497 	return 0;
3498 }
3499 
3500 static void mempolicy_kobj_release(struct kobject *kobj)
3501 {
3502 	u8 *old;
3503 
3504 	mutex_lock(&iw_table_lock);
3505 	old = rcu_dereference_protected(iw_table,
3506 					lockdep_is_held(&iw_table_lock));
3507 	rcu_assign_pointer(iw_table, NULL);
3508 	mutex_unlock(&iw_table_lock);
3509 	synchronize_rcu();
3510 	kfree(old);
3511 	kfree(node_attrs);
3512 	kfree(kobj);
3513 }
3514 
3515 static const struct kobj_type mempolicy_ktype = {
3516 	.release = mempolicy_kobj_release
3517 };
3518 
3519 static int __init mempolicy_sysfs_init(void)
3520 {
3521 	int err;
3522 	static struct kobject *mempolicy_kobj;
3523 
3524 	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3525 	if (!mempolicy_kobj) {
3526 		err = -ENOMEM;
3527 		goto err_out;
3528 	}
3529 
3530 	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3531 			     GFP_KERNEL);
3532 	if (!node_attrs) {
3533 		err = -ENOMEM;
3534 		goto mempol_out;
3535 	}
3536 
3537 	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3538 				   "mempolicy");
3539 	if (err)
3540 		goto node_out;
3541 
3542 	err = add_weighted_interleave_group(mempolicy_kobj);
3543 	if (err) {
3544 		pr_err("mempolicy sysfs structure failed to initialize\n");
3545 		kobject_put(mempolicy_kobj);
3546 		return err;
3547 	}
3548 
3549 	return err;
3550 node_out:
3551 	kfree(node_attrs);
3552 mempol_out:
3553 	kfree(mempolicy_kobj);
3554 err_out:
3555 	pr_err("failed to add mempolicy kobject to the system\n");
3556 	return err;
3557 }
3558 
3559 late_initcall(mempolicy_sysfs_init);
3560 #endif /* CONFIG_SYSFS */
3561