1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the folio's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_folio_required(struct folio *folio, 436 struct queue_pages *qp) 437 { 438 int nid = folio_nid(folio); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_folios_pmd() has three possible return values: 446 * 0 - folios are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing folio was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct folio *folio; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 folio = pfn_folio(pmd_pfn(*pmd)); 468 if (is_huge_zero_page(&folio->page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_folio_required(folio, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to folio migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_folio_add(folio, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_folios_pte_range() has three possible return values: 495 * 0 - folios are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct folio *folio; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_folios_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 folio = vm_normal_folio(vma, addr, *pte); 525 if (!folio || folio_is_zone_device(folio)) 526 continue; 527 /* 528 * vm_normal_folio() filters out zero pages, but there might 529 * still be reserved folios to skip, perhaps in a VDSO. 530 */ 531 if (folio_test_reserved(folio)) 532 continue; 533 if (!queue_folio_required(folio, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_folio_add(folio, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct folio *folio; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 folio = pfn_folio(pte_pfn(entry)); 578 if (!queue_folio_required(folio, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced folio and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced folio but allow migrating folios which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* 602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it 603 * is shared it is likely not worth migrating. 604 * 605 * To check if the folio is shared, ideally we want to make sure 606 * every page is mapped to the same process. Doing that is very 607 * expensive, so check the estimated mapcount of the folio instead. 608 */ 609 if (flags & (MPOL_MF_MOVE_ALL) || 610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 && 611 !hugetlb_pmd_shared(pte))) { 612 if (!isolate_hugetlb(folio, qp->pagelist) && 613 (flags & MPOL_MF_STRICT)) 614 /* 615 * Failed to isolate folio but allow migrating pages 616 * which have been queued. 617 */ 618 ret = 1; 619 } 620 unlock: 621 spin_unlock(ptl); 622 #else 623 BUG(); 624 #endif 625 return ret; 626 } 627 628 #ifdef CONFIG_NUMA_BALANCING 629 /* 630 * This is used to mark a range of virtual addresses to be inaccessible. 631 * These are later cleared by a NUMA hinting fault. Depending on these 632 * faults, pages may be migrated for better NUMA placement. 633 * 634 * This is assuming that NUMA faults are handled using PROT_NONE. If 635 * an architecture makes a different choice, it will need further 636 * changes to the core. 637 */ 638 unsigned long change_prot_numa(struct vm_area_struct *vma, 639 unsigned long addr, unsigned long end) 640 { 641 struct mmu_gather tlb; 642 long nr_updated; 643 644 tlb_gather_mmu(&tlb, vma->vm_mm); 645 646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA); 647 if (nr_updated > 0) 648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 649 650 tlb_finish_mmu(&tlb); 651 652 return nr_updated; 653 } 654 #else 655 static unsigned long change_prot_numa(struct vm_area_struct *vma, 656 unsigned long addr, unsigned long end) 657 { 658 return 0; 659 } 660 #endif /* CONFIG_NUMA_BALANCING */ 661 662 static int queue_pages_test_walk(unsigned long start, unsigned long end, 663 struct mm_walk *walk) 664 { 665 struct vm_area_struct *next, *vma = walk->vma; 666 struct queue_pages *qp = walk->private; 667 unsigned long endvma = vma->vm_end; 668 unsigned long flags = qp->flags; 669 670 /* range check first */ 671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 672 673 if (!qp->first) { 674 qp->first = vma; 675 if (!(flags & MPOL_MF_DISCONTIG_OK) && 676 (qp->start < vma->vm_start)) 677 /* hole at head side of range */ 678 return -EFAULT; 679 } 680 next = find_vma(vma->vm_mm, vma->vm_end); 681 if (!(flags & MPOL_MF_DISCONTIG_OK) && 682 ((vma->vm_end < qp->end) && 683 (!next || vma->vm_end < next->vm_start))) 684 /* hole at middle or tail of range */ 685 return -EFAULT; 686 687 /* 688 * Need check MPOL_MF_STRICT to return -EIO if possible 689 * regardless of vma_migratable 690 */ 691 if (!vma_migratable(vma) && 692 !(flags & MPOL_MF_STRICT)) 693 return 1; 694 695 if (endvma > end) 696 endvma = end; 697 698 if (flags & MPOL_MF_LAZY) { 699 /* Similar to task_numa_work, skip inaccessible VMAs */ 700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 701 !(vma->vm_flags & VM_MIXEDMAP)) 702 change_prot_numa(vma, start, endvma); 703 return 1; 704 } 705 706 /* queue pages from current vma */ 707 if (flags & MPOL_MF_VALID) 708 return 0; 709 return 1; 710 } 711 712 static const struct mm_walk_ops queue_pages_walk_ops = { 713 .hugetlb_entry = queue_folios_hugetlb, 714 .pmd_entry = queue_folios_pte_range, 715 .test_walk = queue_pages_test_walk, 716 }; 717 718 /* 719 * Walk through page tables and collect pages to be migrated. 720 * 721 * If pages found in a given range are on a set of nodes (determined by 722 * @nodes and @flags,) it's isolated and queued to the pagelist which is 723 * passed via @private. 724 * 725 * queue_pages_range() has three possible return values: 726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 727 * specified. 728 * 0 - queue pages successfully or no misplaced page. 729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 730 * memory range specified by nodemask and maxnode points outside 731 * your accessible address space (-EFAULT) 732 */ 733 static int 734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 735 nodemask_t *nodes, unsigned long flags, 736 struct list_head *pagelist) 737 { 738 int err; 739 struct queue_pages qp = { 740 .pagelist = pagelist, 741 .flags = flags, 742 .nmask = nodes, 743 .start = start, 744 .end = end, 745 .first = NULL, 746 }; 747 748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 749 750 if (!qp.first) 751 /* whole range in hole */ 752 err = -EFAULT; 753 754 return err; 755 } 756 757 /* 758 * Apply policy to a single VMA 759 * This must be called with the mmap_lock held for writing. 760 */ 761 static int vma_replace_policy(struct vm_area_struct *vma, 762 struct mempolicy *pol) 763 { 764 int err; 765 struct mempolicy *old; 766 struct mempolicy *new; 767 768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 769 vma->vm_start, vma->vm_end, vma->vm_pgoff, 770 vma->vm_ops, vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 772 773 new = mpol_dup(pol); 774 if (IS_ERR(new)) 775 return PTR_ERR(new); 776 777 if (vma->vm_ops && vma->vm_ops->set_policy) { 778 err = vma->vm_ops->set_policy(vma, new); 779 if (err) 780 goto err_out; 781 } 782 783 old = vma->vm_policy; 784 vma->vm_policy = new; /* protected by mmap_lock */ 785 mpol_put(old); 786 787 return 0; 788 err_out: 789 mpol_put(new); 790 return err; 791 } 792 793 /* Step 2: apply policy to a range and do splits. */ 794 static int mbind_range(struct mm_struct *mm, unsigned long start, 795 unsigned long end, struct mempolicy *new_pol) 796 { 797 VMA_ITERATOR(vmi, mm, start); 798 struct vm_area_struct *prev; 799 struct vm_area_struct *vma; 800 int err = 0; 801 pgoff_t pgoff; 802 803 prev = vma_prev(&vmi); 804 vma = vma_find(&vmi, end); 805 if (WARN_ON(!vma)) 806 return 0; 807 808 if (start > vma->vm_start) 809 prev = vma; 810 811 do { 812 unsigned long vmstart = max(start, vma->vm_start); 813 unsigned long vmend = min(end, vma->vm_end); 814 815 if (mpol_equal(vma_policy(vma), new_pol)) 816 goto next; 817 818 pgoff = vma->vm_pgoff + 819 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 820 prev = vma_merge(&vmi, mm, prev, vmstart, vmend, vma->vm_flags, 821 vma->anon_vma, vma->vm_file, pgoff, 822 new_pol, vma->vm_userfaultfd_ctx, 823 anon_vma_name(vma)); 824 if (prev) { 825 vma = prev; 826 goto replace; 827 } 828 if (vma->vm_start != vmstart) { 829 err = split_vma(&vmi, vma, vmstart, 1); 830 if (err) 831 goto out; 832 } 833 if (vma->vm_end != vmend) { 834 err = split_vma(&vmi, vma, vmend, 0); 835 if (err) 836 goto out; 837 } 838 replace: 839 err = vma_replace_policy(vma, new_pol); 840 if (err) 841 goto out; 842 next: 843 prev = vma; 844 } for_each_vma_range(vmi, vma, end); 845 846 out: 847 return err; 848 } 849 850 /* Set the process memory policy */ 851 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 852 nodemask_t *nodes) 853 { 854 struct mempolicy *new, *old; 855 NODEMASK_SCRATCH(scratch); 856 int ret; 857 858 if (!scratch) 859 return -ENOMEM; 860 861 new = mpol_new(mode, flags, nodes); 862 if (IS_ERR(new)) { 863 ret = PTR_ERR(new); 864 goto out; 865 } 866 867 task_lock(current); 868 ret = mpol_set_nodemask(new, nodes, scratch); 869 if (ret) { 870 task_unlock(current); 871 mpol_put(new); 872 goto out; 873 } 874 875 old = current->mempolicy; 876 current->mempolicy = new; 877 if (new && new->mode == MPOL_INTERLEAVE) 878 current->il_prev = MAX_NUMNODES-1; 879 task_unlock(current); 880 mpol_put(old); 881 ret = 0; 882 out: 883 NODEMASK_SCRATCH_FREE(scratch); 884 return ret; 885 } 886 887 /* 888 * Return nodemask for policy for get_mempolicy() query 889 * 890 * Called with task's alloc_lock held 891 */ 892 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 893 { 894 nodes_clear(*nodes); 895 if (p == &default_policy) 896 return; 897 898 switch (p->mode) { 899 case MPOL_BIND: 900 case MPOL_INTERLEAVE: 901 case MPOL_PREFERRED: 902 case MPOL_PREFERRED_MANY: 903 *nodes = p->nodes; 904 break; 905 case MPOL_LOCAL: 906 /* return empty node mask for local allocation */ 907 break; 908 default: 909 BUG(); 910 } 911 } 912 913 static int lookup_node(struct mm_struct *mm, unsigned long addr) 914 { 915 struct page *p = NULL; 916 int ret; 917 918 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 919 if (ret > 0) { 920 ret = page_to_nid(p); 921 put_page(p); 922 } 923 return ret; 924 } 925 926 /* Retrieve NUMA policy */ 927 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 928 unsigned long addr, unsigned long flags) 929 { 930 int err; 931 struct mm_struct *mm = current->mm; 932 struct vm_area_struct *vma = NULL; 933 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 934 935 if (flags & 936 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 937 return -EINVAL; 938 939 if (flags & MPOL_F_MEMS_ALLOWED) { 940 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 941 return -EINVAL; 942 *policy = 0; /* just so it's initialized */ 943 task_lock(current); 944 *nmask = cpuset_current_mems_allowed; 945 task_unlock(current); 946 return 0; 947 } 948 949 if (flags & MPOL_F_ADDR) { 950 /* 951 * Do NOT fall back to task policy if the 952 * vma/shared policy at addr is NULL. We 953 * want to return MPOL_DEFAULT in this case. 954 */ 955 mmap_read_lock(mm); 956 vma = vma_lookup(mm, addr); 957 if (!vma) { 958 mmap_read_unlock(mm); 959 return -EFAULT; 960 } 961 if (vma->vm_ops && vma->vm_ops->get_policy) 962 pol = vma->vm_ops->get_policy(vma, addr); 963 else 964 pol = vma->vm_policy; 965 } else if (addr) 966 return -EINVAL; 967 968 if (!pol) 969 pol = &default_policy; /* indicates default behavior */ 970 971 if (flags & MPOL_F_NODE) { 972 if (flags & MPOL_F_ADDR) { 973 /* 974 * Take a refcount on the mpol, because we are about to 975 * drop the mmap_lock, after which only "pol" remains 976 * valid, "vma" is stale. 977 */ 978 pol_refcount = pol; 979 vma = NULL; 980 mpol_get(pol); 981 mmap_read_unlock(mm); 982 err = lookup_node(mm, addr); 983 if (err < 0) 984 goto out; 985 *policy = err; 986 } else if (pol == current->mempolicy && 987 pol->mode == MPOL_INTERLEAVE) { 988 *policy = next_node_in(current->il_prev, pol->nodes); 989 } else { 990 err = -EINVAL; 991 goto out; 992 } 993 } else { 994 *policy = pol == &default_policy ? MPOL_DEFAULT : 995 pol->mode; 996 /* 997 * Internal mempolicy flags must be masked off before exposing 998 * the policy to userspace. 999 */ 1000 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1001 } 1002 1003 err = 0; 1004 if (nmask) { 1005 if (mpol_store_user_nodemask(pol)) { 1006 *nmask = pol->w.user_nodemask; 1007 } else { 1008 task_lock(current); 1009 get_policy_nodemask(pol, nmask); 1010 task_unlock(current); 1011 } 1012 } 1013 1014 out: 1015 mpol_cond_put(pol); 1016 if (vma) 1017 mmap_read_unlock(mm); 1018 if (pol_refcount) 1019 mpol_put(pol_refcount); 1020 return err; 1021 } 1022 1023 #ifdef CONFIG_MIGRATION 1024 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1025 unsigned long flags) 1026 { 1027 /* 1028 * We try to migrate only unshared folios. If it is shared it 1029 * is likely not worth migrating. 1030 * 1031 * To check if the folio is shared, ideally we want to make sure 1032 * every page is mapped to the same process. Doing that is very 1033 * expensive, so check the estimated mapcount of the folio instead. 1034 */ 1035 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) { 1036 if (folio_isolate_lru(folio)) { 1037 list_add_tail(&folio->lru, foliolist); 1038 node_stat_mod_folio(folio, 1039 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1040 folio_nr_pages(folio)); 1041 } else if (flags & MPOL_MF_STRICT) { 1042 /* 1043 * Non-movable folio may reach here. And, there may be 1044 * temporary off LRU folios or non-LRU movable folios. 1045 * Treat them as unmovable folios since they can't be 1046 * isolated, so they can't be moved at the moment. It 1047 * should return -EIO for this case too. 1048 */ 1049 return -EIO; 1050 } 1051 } 1052 1053 return 0; 1054 } 1055 1056 /* 1057 * Migrate pages from one node to a target node. 1058 * Returns error or the number of pages not migrated. 1059 */ 1060 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1061 int flags) 1062 { 1063 nodemask_t nmask; 1064 struct vm_area_struct *vma; 1065 LIST_HEAD(pagelist); 1066 int err = 0; 1067 struct migration_target_control mtc = { 1068 .nid = dest, 1069 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1070 }; 1071 1072 nodes_clear(nmask); 1073 node_set(source, nmask); 1074 1075 /* 1076 * This does not "check" the range but isolates all pages that 1077 * need migration. Between passing in the full user address 1078 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1079 */ 1080 vma = find_vma(mm, 0); 1081 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1082 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1083 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1084 1085 if (!list_empty(&pagelist)) { 1086 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1087 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1088 if (err) 1089 putback_movable_pages(&pagelist); 1090 } 1091 1092 return err; 1093 } 1094 1095 /* 1096 * Move pages between the two nodesets so as to preserve the physical 1097 * layout as much as possible. 1098 * 1099 * Returns the number of page that could not be moved. 1100 */ 1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1102 const nodemask_t *to, int flags) 1103 { 1104 int busy = 0; 1105 int err = 0; 1106 nodemask_t tmp; 1107 1108 lru_cache_disable(); 1109 1110 mmap_read_lock(mm); 1111 1112 /* 1113 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1114 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1115 * bit in 'tmp', and return that <source, dest> pair for migration. 1116 * The pair of nodemasks 'to' and 'from' define the map. 1117 * 1118 * If no pair of bits is found that way, fallback to picking some 1119 * pair of 'source' and 'dest' bits that are not the same. If the 1120 * 'source' and 'dest' bits are the same, this represents a node 1121 * that will be migrating to itself, so no pages need move. 1122 * 1123 * If no bits are left in 'tmp', or if all remaining bits left 1124 * in 'tmp' correspond to the same bit in 'to', return false 1125 * (nothing left to migrate). 1126 * 1127 * This lets us pick a pair of nodes to migrate between, such that 1128 * if possible the dest node is not already occupied by some other 1129 * source node, minimizing the risk of overloading the memory on a 1130 * node that would happen if we migrated incoming memory to a node 1131 * before migrating outgoing memory source that same node. 1132 * 1133 * A single scan of tmp is sufficient. As we go, we remember the 1134 * most recent <s, d> pair that moved (s != d). If we find a pair 1135 * that not only moved, but what's better, moved to an empty slot 1136 * (d is not set in tmp), then we break out then, with that pair. 1137 * Otherwise when we finish scanning from_tmp, we at least have the 1138 * most recent <s, d> pair that moved. If we get all the way through 1139 * the scan of tmp without finding any node that moved, much less 1140 * moved to an empty node, then there is nothing left worth migrating. 1141 */ 1142 1143 tmp = *from; 1144 while (!nodes_empty(tmp)) { 1145 int s, d; 1146 int source = NUMA_NO_NODE; 1147 int dest = 0; 1148 1149 for_each_node_mask(s, tmp) { 1150 1151 /* 1152 * do_migrate_pages() tries to maintain the relative 1153 * node relationship of the pages established between 1154 * threads and memory areas. 1155 * 1156 * However if the number of source nodes is not equal to 1157 * the number of destination nodes we can not preserve 1158 * this node relative relationship. In that case, skip 1159 * copying memory from a node that is in the destination 1160 * mask. 1161 * 1162 * Example: [2,3,4] -> [3,4,5] moves everything. 1163 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1164 */ 1165 1166 if ((nodes_weight(*from) != nodes_weight(*to)) && 1167 (node_isset(s, *to))) 1168 continue; 1169 1170 d = node_remap(s, *from, *to); 1171 if (s == d) 1172 continue; 1173 1174 source = s; /* Node moved. Memorize */ 1175 dest = d; 1176 1177 /* dest not in remaining from nodes? */ 1178 if (!node_isset(dest, tmp)) 1179 break; 1180 } 1181 if (source == NUMA_NO_NODE) 1182 break; 1183 1184 node_clear(source, tmp); 1185 err = migrate_to_node(mm, source, dest, flags); 1186 if (err > 0) 1187 busy += err; 1188 if (err < 0) 1189 break; 1190 } 1191 mmap_read_unlock(mm); 1192 1193 lru_cache_enable(); 1194 if (err < 0) 1195 return err; 1196 return busy; 1197 1198 } 1199 1200 /* 1201 * Allocate a new page for page migration based on vma policy. 1202 * Start by assuming the page is mapped by the same vma as contains @start. 1203 * Search forward from there, if not. N.B., this assumes that the 1204 * list of pages handed to migrate_pages()--which is how we get here-- 1205 * is in virtual address order. 1206 */ 1207 static struct page *new_page(struct page *page, unsigned long start) 1208 { 1209 struct folio *dst, *src = page_folio(page); 1210 struct vm_area_struct *vma; 1211 unsigned long address; 1212 VMA_ITERATOR(vmi, current->mm, start); 1213 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1214 1215 for_each_vma(vmi, vma) { 1216 address = page_address_in_vma(page, vma); 1217 if (address != -EFAULT) 1218 break; 1219 } 1220 1221 if (folio_test_hugetlb(src)) { 1222 dst = alloc_hugetlb_folio_vma(folio_hstate(src), 1223 vma, address); 1224 return &dst->page; 1225 } 1226 1227 if (folio_test_large(src)) 1228 gfp = GFP_TRANSHUGE; 1229 1230 /* 1231 * if !vma, vma_alloc_folio() will use task or system default policy 1232 */ 1233 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1234 folio_test_large(src)); 1235 return &dst->page; 1236 } 1237 #else 1238 1239 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist, 1240 unsigned long flags) 1241 { 1242 return -EIO; 1243 } 1244 1245 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1246 const nodemask_t *to, int flags) 1247 { 1248 return -ENOSYS; 1249 } 1250 1251 static struct page *new_page(struct page *page, unsigned long start) 1252 { 1253 return NULL; 1254 } 1255 #endif 1256 1257 static long do_mbind(unsigned long start, unsigned long len, 1258 unsigned short mode, unsigned short mode_flags, 1259 nodemask_t *nmask, unsigned long flags) 1260 { 1261 struct mm_struct *mm = current->mm; 1262 struct mempolicy *new; 1263 unsigned long end; 1264 int err; 1265 int ret; 1266 LIST_HEAD(pagelist); 1267 1268 if (flags & ~(unsigned long)MPOL_MF_VALID) 1269 return -EINVAL; 1270 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1271 return -EPERM; 1272 1273 if (start & ~PAGE_MASK) 1274 return -EINVAL; 1275 1276 if (mode == MPOL_DEFAULT) 1277 flags &= ~MPOL_MF_STRICT; 1278 1279 len = PAGE_ALIGN(len); 1280 end = start + len; 1281 1282 if (end < start) 1283 return -EINVAL; 1284 if (end == start) 1285 return 0; 1286 1287 new = mpol_new(mode, mode_flags, nmask); 1288 if (IS_ERR(new)) 1289 return PTR_ERR(new); 1290 1291 if (flags & MPOL_MF_LAZY) 1292 new->flags |= MPOL_F_MOF; 1293 1294 /* 1295 * If we are using the default policy then operation 1296 * on discontinuous address spaces is okay after all 1297 */ 1298 if (!new) 1299 flags |= MPOL_MF_DISCONTIG_OK; 1300 1301 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1302 start, start + len, mode, mode_flags, 1303 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1304 1305 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1306 1307 lru_cache_disable(); 1308 } 1309 { 1310 NODEMASK_SCRATCH(scratch); 1311 if (scratch) { 1312 mmap_write_lock(mm); 1313 err = mpol_set_nodemask(new, nmask, scratch); 1314 if (err) 1315 mmap_write_unlock(mm); 1316 } else 1317 err = -ENOMEM; 1318 NODEMASK_SCRATCH_FREE(scratch); 1319 } 1320 if (err) 1321 goto mpol_out; 1322 1323 ret = queue_pages_range(mm, start, end, nmask, 1324 flags | MPOL_MF_INVERT, &pagelist); 1325 1326 if (ret < 0) { 1327 err = ret; 1328 goto up_out; 1329 } 1330 1331 err = mbind_range(mm, start, end, new); 1332 1333 if (!err) { 1334 int nr_failed = 0; 1335 1336 if (!list_empty(&pagelist)) { 1337 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1338 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1339 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1340 if (nr_failed) 1341 putback_movable_pages(&pagelist); 1342 } 1343 1344 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1345 err = -EIO; 1346 } else { 1347 up_out: 1348 if (!list_empty(&pagelist)) 1349 putback_movable_pages(&pagelist); 1350 } 1351 1352 mmap_write_unlock(mm); 1353 mpol_out: 1354 mpol_put(new); 1355 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1356 lru_cache_enable(); 1357 return err; 1358 } 1359 1360 /* 1361 * User space interface with variable sized bitmaps for nodelists. 1362 */ 1363 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1364 unsigned long maxnode) 1365 { 1366 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1367 int ret; 1368 1369 if (in_compat_syscall()) 1370 ret = compat_get_bitmap(mask, 1371 (const compat_ulong_t __user *)nmask, 1372 maxnode); 1373 else 1374 ret = copy_from_user(mask, nmask, 1375 nlongs * sizeof(unsigned long)); 1376 1377 if (ret) 1378 return -EFAULT; 1379 1380 if (maxnode % BITS_PER_LONG) 1381 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1382 1383 return 0; 1384 } 1385 1386 /* Copy a node mask from user space. */ 1387 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1388 unsigned long maxnode) 1389 { 1390 --maxnode; 1391 nodes_clear(*nodes); 1392 if (maxnode == 0 || !nmask) 1393 return 0; 1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1395 return -EINVAL; 1396 1397 /* 1398 * When the user specified more nodes than supported just check 1399 * if the non supported part is all zero, one word at a time, 1400 * starting at the end. 1401 */ 1402 while (maxnode > MAX_NUMNODES) { 1403 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1404 unsigned long t; 1405 1406 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1407 return -EFAULT; 1408 1409 if (maxnode - bits >= MAX_NUMNODES) { 1410 maxnode -= bits; 1411 } else { 1412 maxnode = MAX_NUMNODES; 1413 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1414 } 1415 if (t) 1416 return -EINVAL; 1417 } 1418 1419 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1420 } 1421 1422 /* Copy a kernel node mask to user space */ 1423 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1424 nodemask_t *nodes) 1425 { 1426 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1427 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1428 bool compat = in_compat_syscall(); 1429 1430 if (compat) 1431 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1432 1433 if (copy > nbytes) { 1434 if (copy > PAGE_SIZE) 1435 return -EINVAL; 1436 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1437 return -EFAULT; 1438 copy = nbytes; 1439 maxnode = nr_node_ids; 1440 } 1441 1442 if (compat) 1443 return compat_put_bitmap((compat_ulong_t __user *)mask, 1444 nodes_addr(*nodes), maxnode); 1445 1446 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1447 } 1448 1449 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1450 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1451 { 1452 *flags = *mode & MPOL_MODE_FLAGS; 1453 *mode &= ~MPOL_MODE_FLAGS; 1454 1455 if ((unsigned int)(*mode) >= MPOL_MAX) 1456 return -EINVAL; 1457 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1458 return -EINVAL; 1459 if (*flags & MPOL_F_NUMA_BALANCING) { 1460 if (*mode != MPOL_BIND) 1461 return -EINVAL; 1462 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1463 } 1464 return 0; 1465 } 1466 1467 static long kernel_mbind(unsigned long start, unsigned long len, 1468 unsigned long mode, const unsigned long __user *nmask, 1469 unsigned long maxnode, unsigned int flags) 1470 { 1471 unsigned short mode_flags; 1472 nodemask_t nodes; 1473 int lmode = mode; 1474 int err; 1475 1476 start = untagged_addr(start); 1477 err = sanitize_mpol_flags(&lmode, &mode_flags); 1478 if (err) 1479 return err; 1480 1481 err = get_nodes(&nodes, nmask, maxnode); 1482 if (err) 1483 return err; 1484 1485 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1486 } 1487 1488 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1489 unsigned long, home_node, unsigned long, flags) 1490 { 1491 struct mm_struct *mm = current->mm; 1492 struct vm_area_struct *vma; 1493 struct mempolicy *new, *old; 1494 unsigned long vmstart; 1495 unsigned long vmend; 1496 unsigned long end; 1497 int err = -ENOENT; 1498 VMA_ITERATOR(vmi, mm, start); 1499 1500 start = untagged_addr(start); 1501 if (start & ~PAGE_MASK) 1502 return -EINVAL; 1503 /* 1504 * flags is used for future extension if any. 1505 */ 1506 if (flags != 0) 1507 return -EINVAL; 1508 1509 /* 1510 * Check home_node is online to avoid accessing uninitialized 1511 * NODE_DATA. 1512 */ 1513 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1514 return -EINVAL; 1515 1516 len = PAGE_ALIGN(len); 1517 end = start + len; 1518 1519 if (end < start) 1520 return -EINVAL; 1521 if (end == start) 1522 return 0; 1523 mmap_write_lock(mm); 1524 for_each_vma_range(vmi, vma, end) { 1525 /* 1526 * If any vma in the range got policy other than MPOL_BIND 1527 * or MPOL_PREFERRED_MANY we return error. We don't reset 1528 * the home node for vmas we already updated before. 1529 */ 1530 old = vma_policy(vma); 1531 if (!old) 1532 continue; 1533 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) { 1534 err = -EOPNOTSUPP; 1535 break; 1536 } 1537 new = mpol_dup(old); 1538 if (IS_ERR(new)) { 1539 err = PTR_ERR(new); 1540 break; 1541 } 1542 1543 new->home_node = home_node; 1544 vmstart = max(start, vma->vm_start); 1545 vmend = min(end, vma->vm_end); 1546 err = mbind_range(mm, vmstart, vmend, new); 1547 mpol_put(new); 1548 if (err) 1549 break; 1550 } 1551 mmap_write_unlock(mm); 1552 return err; 1553 } 1554 1555 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1556 unsigned long, mode, const unsigned long __user *, nmask, 1557 unsigned long, maxnode, unsigned int, flags) 1558 { 1559 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1560 } 1561 1562 /* Set the process memory policy */ 1563 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1564 unsigned long maxnode) 1565 { 1566 unsigned short mode_flags; 1567 nodemask_t nodes; 1568 int lmode = mode; 1569 int err; 1570 1571 err = sanitize_mpol_flags(&lmode, &mode_flags); 1572 if (err) 1573 return err; 1574 1575 err = get_nodes(&nodes, nmask, maxnode); 1576 if (err) 1577 return err; 1578 1579 return do_set_mempolicy(lmode, mode_flags, &nodes); 1580 } 1581 1582 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1583 unsigned long, maxnode) 1584 { 1585 return kernel_set_mempolicy(mode, nmask, maxnode); 1586 } 1587 1588 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1589 const unsigned long __user *old_nodes, 1590 const unsigned long __user *new_nodes) 1591 { 1592 struct mm_struct *mm = NULL; 1593 struct task_struct *task; 1594 nodemask_t task_nodes; 1595 int err; 1596 nodemask_t *old; 1597 nodemask_t *new; 1598 NODEMASK_SCRATCH(scratch); 1599 1600 if (!scratch) 1601 return -ENOMEM; 1602 1603 old = &scratch->mask1; 1604 new = &scratch->mask2; 1605 1606 err = get_nodes(old, old_nodes, maxnode); 1607 if (err) 1608 goto out; 1609 1610 err = get_nodes(new, new_nodes, maxnode); 1611 if (err) 1612 goto out; 1613 1614 /* Find the mm_struct */ 1615 rcu_read_lock(); 1616 task = pid ? find_task_by_vpid(pid) : current; 1617 if (!task) { 1618 rcu_read_unlock(); 1619 err = -ESRCH; 1620 goto out; 1621 } 1622 get_task_struct(task); 1623 1624 err = -EINVAL; 1625 1626 /* 1627 * Check if this process has the right to modify the specified process. 1628 * Use the regular "ptrace_may_access()" checks. 1629 */ 1630 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1631 rcu_read_unlock(); 1632 err = -EPERM; 1633 goto out_put; 1634 } 1635 rcu_read_unlock(); 1636 1637 task_nodes = cpuset_mems_allowed(task); 1638 /* Is the user allowed to access the target nodes? */ 1639 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1640 err = -EPERM; 1641 goto out_put; 1642 } 1643 1644 task_nodes = cpuset_mems_allowed(current); 1645 nodes_and(*new, *new, task_nodes); 1646 if (nodes_empty(*new)) 1647 goto out_put; 1648 1649 err = security_task_movememory(task); 1650 if (err) 1651 goto out_put; 1652 1653 mm = get_task_mm(task); 1654 put_task_struct(task); 1655 1656 if (!mm) { 1657 err = -EINVAL; 1658 goto out; 1659 } 1660 1661 err = do_migrate_pages(mm, old, new, 1662 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1663 1664 mmput(mm); 1665 out: 1666 NODEMASK_SCRATCH_FREE(scratch); 1667 1668 return err; 1669 1670 out_put: 1671 put_task_struct(task); 1672 goto out; 1673 1674 } 1675 1676 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1677 const unsigned long __user *, old_nodes, 1678 const unsigned long __user *, new_nodes) 1679 { 1680 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1681 } 1682 1683 1684 /* Retrieve NUMA policy */ 1685 static int kernel_get_mempolicy(int __user *policy, 1686 unsigned long __user *nmask, 1687 unsigned long maxnode, 1688 unsigned long addr, 1689 unsigned long flags) 1690 { 1691 int err; 1692 int pval; 1693 nodemask_t nodes; 1694 1695 if (nmask != NULL && maxnode < nr_node_ids) 1696 return -EINVAL; 1697 1698 addr = untagged_addr(addr); 1699 1700 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1701 1702 if (err) 1703 return err; 1704 1705 if (policy && put_user(pval, policy)) 1706 return -EFAULT; 1707 1708 if (nmask) 1709 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1710 1711 return err; 1712 } 1713 1714 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1715 unsigned long __user *, nmask, unsigned long, maxnode, 1716 unsigned long, addr, unsigned long, flags) 1717 { 1718 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1719 } 1720 1721 bool vma_migratable(struct vm_area_struct *vma) 1722 { 1723 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1724 return false; 1725 1726 /* 1727 * DAX device mappings require predictable access latency, so avoid 1728 * incurring periodic faults. 1729 */ 1730 if (vma_is_dax(vma)) 1731 return false; 1732 1733 if (is_vm_hugetlb_page(vma) && 1734 !hugepage_migration_supported(hstate_vma(vma))) 1735 return false; 1736 1737 /* 1738 * Migration allocates pages in the highest zone. If we cannot 1739 * do so then migration (at least from node to node) is not 1740 * possible. 1741 */ 1742 if (vma->vm_file && 1743 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1744 < policy_zone) 1745 return false; 1746 return true; 1747 } 1748 1749 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1750 unsigned long addr) 1751 { 1752 struct mempolicy *pol = NULL; 1753 1754 if (vma) { 1755 if (vma->vm_ops && vma->vm_ops->get_policy) { 1756 pol = vma->vm_ops->get_policy(vma, addr); 1757 } else if (vma->vm_policy) { 1758 pol = vma->vm_policy; 1759 1760 /* 1761 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1762 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1763 * count on these policies which will be dropped by 1764 * mpol_cond_put() later 1765 */ 1766 if (mpol_needs_cond_ref(pol)) 1767 mpol_get(pol); 1768 } 1769 } 1770 1771 return pol; 1772 } 1773 1774 /* 1775 * get_vma_policy(@vma, @addr) 1776 * @vma: virtual memory area whose policy is sought 1777 * @addr: address in @vma for shared policy lookup 1778 * 1779 * Returns effective policy for a VMA at specified address. 1780 * Falls back to current->mempolicy or system default policy, as necessary. 1781 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1782 * count--added by the get_policy() vm_op, as appropriate--to protect against 1783 * freeing by another task. It is the caller's responsibility to free the 1784 * extra reference for shared policies. 1785 */ 1786 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1787 unsigned long addr) 1788 { 1789 struct mempolicy *pol = __get_vma_policy(vma, addr); 1790 1791 if (!pol) 1792 pol = get_task_policy(current); 1793 1794 return pol; 1795 } 1796 1797 bool vma_policy_mof(struct vm_area_struct *vma) 1798 { 1799 struct mempolicy *pol; 1800 1801 if (vma->vm_ops && vma->vm_ops->get_policy) { 1802 bool ret = false; 1803 1804 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1805 if (pol && (pol->flags & MPOL_F_MOF)) 1806 ret = true; 1807 mpol_cond_put(pol); 1808 1809 return ret; 1810 } 1811 1812 pol = vma->vm_policy; 1813 if (!pol) 1814 pol = get_task_policy(current); 1815 1816 return pol->flags & MPOL_F_MOF; 1817 } 1818 1819 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1820 { 1821 enum zone_type dynamic_policy_zone = policy_zone; 1822 1823 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1824 1825 /* 1826 * if policy->nodes has movable memory only, 1827 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1828 * 1829 * policy->nodes is intersect with node_states[N_MEMORY]. 1830 * so if the following test fails, it implies 1831 * policy->nodes has movable memory only. 1832 */ 1833 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1834 dynamic_policy_zone = ZONE_MOVABLE; 1835 1836 return zone >= dynamic_policy_zone; 1837 } 1838 1839 /* 1840 * Return a nodemask representing a mempolicy for filtering nodes for 1841 * page allocation 1842 */ 1843 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1844 { 1845 int mode = policy->mode; 1846 1847 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1848 if (unlikely(mode == MPOL_BIND) && 1849 apply_policy_zone(policy, gfp_zone(gfp)) && 1850 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1851 return &policy->nodes; 1852 1853 if (mode == MPOL_PREFERRED_MANY) 1854 return &policy->nodes; 1855 1856 return NULL; 1857 } 1858 1859 /* 1860 * Return the preferred node id for 'prefer' mempolicy, and return 1861 * the given id for all other policies. 1862 * 1863 * policy_node() is always coupled with policy_nodemask(), which 1864 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1865 */ 1866 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1867 { 1868 if (policy->mode == MPOL_PREFERRED) { 1869 nd = first_node(policy->nodes); 1870 } else { 1871 /* 1872 * __GFP_THISNODE shouldn't even be used with the bind policy 1873 * because we might easily break the expectation to stay on the 1874 * requested node and not break the policy. 1875 */ 1876 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1877 } 1878 1879 if ((policy->mode == MPOL_BIND || 1880 policy->mode == MPOL_PREFERRED_MANY) && 1881 policy->home_node != NUMA_NO_NODE) 1882 return policy->home_node; 1883 1884 return nd; 1885 } 1886 1887 /* Do dynamic interleaving for a process */ 1888 static unsigned interleave_nodes(struct mempolicy *policy) 1889 { 1890 unsigned next; 1891 struct task_struct *me = current; 1892 1893 next = next_node_in(me->il_prev, policy->nodes); 1894 if (next < MAX_NUMNODES) 1895 me->il_prev = next; 1896 return next; 1897 } 1898 1899 /* 1900 * Depending on the memory policy provide a node from which to allocate the 1901 * next slab entry. 1902 */ 1903 unsigned int mempolicy_slab_node(void) 1904 { 1905 struct mempolicy *policy; 1906 int node = numa_mem_id(); 1907 1908 if (!in_task()) 1909 return node; 1910 1911 policy = current->mempolicy; 1912 if (!policy) 1913 return node; 1914 1915 switch (policy->mode) { 1916 case MPOL_PREFERRED: 1917 return first_node(policy->nodes); 1918 1919 case MPOL_INTERLEAVE: 1920 return interleave_nodes(policy); 1921 1922 case MPOL_BIND: 1923 case MPOL_PREFERRED_MANY: 1924 { 1925 struct zoneref *z; 1926 1927 /* 1928 * Follow bind policy behavior and start allocation at the 1929 * first node. 1930 */ 1931 struct zonelist *zonelist; 1932 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1933 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1934 z = first_zones_zonelist(zonelist, highest_zoneidx, 1935 &policy->nodes); 1936 return z->zone ? zone_to_nid(z->zone) : node; 1937 } 1938 case MPOL_LOCAL: 1939 return node; 1940 1941 default: 1942 BUG(); 1943 } 1944 } 1945 1946 /* 1947 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1948 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1949 * number of present nodes. 1950 */ 1951 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1952 { 1953 nodemask_t nodemask = pol->nodes; 1954 unsigned int target, nnodes; 1955 int i; 1956 int nid; 1957 /* 1958 * The barrier will stabilize the nodemask in a register or on 1959 * the stack so that it will stop changing under the code. 1960 * 1961 * Between first_node() and next_node(), pol->nodes could be changed 1962 * by other threads. So we put pol->nodes in a local stack. 1963 */ 1964 barrier(); 1965 1966 nnodes = nodes_weight(nodemask); 1967 if (!nnodes) 1968 return numa_node_id(); 1969 target = (unsigned int)n % nnodes; 1970 nid = first_node(nodemask); 1971 for (i = 0; i < target; i++) 1972 nid = next_node(nid, nodemask); 1973 return nid; 1974 } 1975 1976 /* Determine a node number for interleave */ 1977 static inline unsigned interleave_nid(struct mempolicy *pol, 1978 struct vm_area_struct *vma, unsigned long addr, int shift) 1979 { 1980 if (vma) { 1981 unsigned long off; 1982 1983 /* 1984 * for small pages, there is no difference between 1985 * shift and PAGE_SHIFT, so the bit-shift is safe. 1986 * for huge pages, since vm_pgoff is in units of small 1987 * pages, we need to shift off the always 0 bits to get 1988 * a useful offset. 1989 */ 1990 BUG_ON(shift < PAGE_SHIFT); 1991 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1992 off += (addr - vma->vm_start) >> shift; 1993 return offset_il_node(pol, off); 1994 } else 1995 return interleave_nodes(pol); 1996 } 1997 1998 #ifdef CONFIG_HUGETLBFS 1999 /* 2000 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2001 * @vma: virtual memory area whose policy is sought 2002 * @addr: address in @vma for shared policy lookup and interleave policy 2003 * @gfp_flags: for requested zone 2004 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2005 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2006 * 2007 * Returns a nid suitable for a huge page allocation and a pointer 2008 * to the struct mempolicy for conditional unref after allocation. 2009 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2010 * to the mempolicy's @nodemask for filtering the zonelist. 2011 * 2012 * Must be protected by read_mems_allowed_begin() 2013 */ 2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2015 struct mempolicy **mpol, nodemask_t **nodemask) 2016 { 2017 int nid; 2018 int mode; 2019 2020 *mpol = get_vma_policy(vma, addr); 2021 *nodemask = NULL; 2022 mode = (*mpol)->mode; 2023 2024 if (unlikely(mode == MPOL_INTERLEAVE)) { 2025 nid = interleave_nid(*mpol, vma, addr, 2026 huge_page_shift(hstate_vma(vma))); 2027 } else { 2028 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2029 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2030 *nodemask = &(*mpol)->nodes; 2031 } 2032 return nid; 2033 } 2034 2035 /* 2036 * init_nodemask_of_mempolicy 2037 * 2038 * If the current task's mempolicy is "default" [NULL], return 'false' 2039 * to indicate default policy. Otherwise, extract the policy nodemask 2040 * for 'bind' or 'interleave' policy into the argument nodemask, or 2041 * initialize the argument nodemask to contain the single node for 2042 * 'preferred' or 'local' policy and return 'true' to indicate presence 2043 * of non-default mempolicy. 2044 * 2045 * We don't bother with reference counting the mempolicy [mpol_get/put] 2046 * because the current task is examining it's own mempolicy and a task's 2047 * mempolicy is only ever changed by the task itself. 2048 * 2049 * N.B., it is the caller's responsibility to free a returned nodemask. 2050 */ 2051 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2052 { 2053 struct mempolicy *mempolicy; 2054 2055 if (!(mask && current->mempolicy)) 2056 return false; 2057 2058 task_lock(current); 2059 mempolicy = current->mempolicy; 2060 switch (mempolicy->mode) { 2061 case MPOL_PREFERRED: 2062 case MPOL_PREFERRED_MANY: 2063 case MPOL_BIND: 2064 case MPOL_INTERLEAVE: 2065 *mask = mempolicy->nodes; 2066 break; 2067 2068 case MPOL_LOCAL: 2069 init_nodemask_of_node(mask, numa_node_id()); 2070 break; 2071 2072 default: 2073 BUG(); 2074 } 2075 task_unlock(current); 2076 2077 return true; 2078 } 2079 #endif 2080 2081 /* 2082 * mempolicy_in_oom_domain 2083 * 2084 * If tsk's mempolicy is "bind", check for intersection between mask and 2085 * the policy nodemask. Otherwise, return true for all other policies 2086 * including "interleave", as a tsk with "interleave" policy may have 2087 * memory allocated from all nodes in system. 2088 * 2089 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2090 */ 2091 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2092 const nodemask_t *mask) 2093 { 2094 struct mempolicy *mempolicy; 2095 bool ret = true; 2096 2097 if (!mask) 2098 return ret; 2099 2100 task_lock(tsk); 2101 mempolicy = tsk->mempolicy; 2102 if (mempolicy && mempolicy->mode == MPOL_BIND) 2103 ret = nodes_intersects(mempolicy->nodes, *mask); 2104 task_unlock(tsk); 2105 2106 return ret; 2107 } 2108 2109 /* Allocate a page in interleaved policy. 2110 Own path because it needs to do special accounting. */ 2111 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2112 unsigned nid) 2113 { 2114 struct page *page; 2115 2116 page = __alloc_pages(gfp, order, nid, NULL); 2117 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2118 if (!static_branch_likely(&vm_numa_stat_key)) 2119 return page; 2120 if (page && page_to_nid(page) == nid) { 2121 preempt_disable(); 2122 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2123 preempt_enable(); 2124 } 2125 return page; 2126 } 2127 2128 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2129 int nid, struct mempolicy *pol) 2130 { 2131 struct page *page; 2132 gfp_t preferred_gfp; 2133 2134 /* 2135 * This is a two pass approach. The first pass will only try the 2136 * preferred nodes but skip the direct reclaim and allow the 2137 * allocation to fail, while the second pass will try all the 2138 * nodes in system. 2139 */ 2140 preferred_gfp = gfp | __GFP_NOWARN; 2141 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2142 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2143 if (!page) 2144 page = __alloc_pages(gfp, order, nid, NULL); 2145 2146 return page; 2147 } 2148 2149 /** 2150 * vma_alloc_folio - Allocate a folio for a VMA. 2151 * @gfp: GFP flags. 2152 * @order: Order of the folio. 2153 * @vma: Pointer to VMA or NULL if not available. 2154 * @addr: Virtual address of the allocation. Must be inside @vma. 2155 * @hugepage: For hugepages try only the preferred node if possible. 2156 * 2157 * Allocate a folio for a specific address in @vma, using the appropriate 2158 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2159 * of the mm_struct of the VMA to prevent it from going away. Should be 2160 * used for all allocations for folios that will be mapped into user space. 2161 * 2162 * Return: The folio on success or NULL if allocation fails. 2163 */ 2164 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2165 unsigned long addr, bool hugepage) 2166 { 2167 struct mempolicy *pol; 2168 int node = numa_node_id(); 2169 struct folio *folio; 2170 int preferred_nid; 2171 nodemask_t *nmask; 2172 2173 pol = get_vma_policy(vma, addr); 2174 2175 if (pol->mode == MPOL_INTERLEAVE) { 2176 struct page *page; 2177 unsigned nid; 2178 2179 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2180 mpol_cond_put(pol); 2181 gfp |= __GFP_COMP; 2182 page = alloc_page_interleave(gfp, order, nid); 2183 if (page && order > 1) 2184 prep_transhuge_page(page); 2185 folio = (struct folio *)page; 2186 goto out; 2187 } 2188 2189 if (pol->mode == MPOL_PREFERRED_MANY) { 2190 struct page *page; 2191 2192 node = policy_node(gfp, pol, node); 2193 gfp |= __GFP_COMP; 2194 page = alloc_pages_preferred_many(gfp, order, node, pol); 2195 mpol_cond_put(pol); 2196 if (page && order > 1) 2197 prep_transhuge_page(page); 2198 folio = (struct folio *)page; 2199 goto out; 2200 } 2201 2202 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2203 int hpage_node = node; 2204 2205 /* 2206 * For hugepage allocation and non-interleave policy which 2207 * allows the current node (or other explicitly preferred 2208 * node) we only try to allocate from the current/preferred 2209 * node and don't fall back to other nodes, as the cost of 2210 * remote accesses would likely offset THP benefits. 2211 * 2212 * If the policy is interleave or does not allow the current 2213 * node in its nodemask, we allocate the standard way. 2214 */ 2215 if (pol->mode == MPOL_PREFERRED) 2216 hpage_node = first_node(pol->nodes); 2217 2218 nmask = policy_nodemask(gfp, pol); 2219 if (!nmask || node_isset(hpage_node, *nmask)) { 2220 mpol_cond_put(pol); 2221 /* 2222 * First, try to allocate THP only on local node, but 2223 * don't reclaim unnecessarily, just compact. 2224 */ 2225 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2226 __GFP_NORETRY, order, hpage_node); 2227 2228 /* 2229 * If hugepage allocations are configured to always 2230 * synchronous compact or the vma has been madvised 2231 * to prefer hugepage backing, retry allowing remote 2232 * memory with both reclaim and compact as well. 2233 */ 2234 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2235 folio = __folio_alloc(gfp, order, hpage_node, 2236 nmask); 2237 2238 goto out; 2239 } 2240 } 2241 2242 nmask = policy_nodemask(gfp, pol); 2243 preferred_nid = policy_node(gfp, pol, node); 2244 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2245 mpol_cond_put(pol); 2246 out: 2247 return folio; 2248 } 2249 EXPORT_SYMBOL(vma_alloc_folio); 2250 2251 /** 2252 * alloc_pages - Allocate pages. 2253 * @gfp: GFP flags. 2254 * @order: Power of two of number of pages to allocate. 2255 * 2256 * Allocate 1 << @order contiguous pages. The physical address of the 2257 * first page is naturally aligned (eg an order-3 allocation will be aligned 2258 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2259 * process is honoured when in process context. 2260 * 2261 * Context: Can be called from any context, providing the appropriate GFP 2262 * flags are used. 2263 * Return: The page on success or NULL if allocation fails. 2264 */ 2265 struct page *alloc_pages(gfp_t gfp, unsigned order) 2266 { 2267 struct mempolicy *pol = &default_policy; 2268 struct page *page; 2269 2270 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2271 pol = get_task_policy(current); 2272 2273 /* 2274 * No reference counting needed for current->mempolicy 2275 * nor system default_policy 2276 */ 2277 if (pol->mode == MPOL_INTERLEAVE) 2278 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2279 else if (pol->mode == MPOL_PREFERRED_MANY) 2280 page = alloc_pages_preferred_many(gfp, order, 2281 policy_node(gfp, pol, numa_node_id()), pol); 2282 else 2283 page = __alloc_pages(gfp, order, 2284 policy_node(gfp, pol, numa_node_id()), 2285 policy_nodemask(gfp, pol)); 2286 2287 return page; 2288 } 2289 EXPORT_SYMBOL(alloc_pages); 2290 2291 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2292 { 2293 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2294 2295 if (page && order > 1) 2296 prep_transhuge_page(page); 2297 return (struct folio *)page; 2298 } 2299 EXPORT_SYMBOL(folio_alloc); 2300 2301 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2302 struct mempolicy *pol, unsigned long nr_pages, 2303 struct page **page_array) 2304 { 2305 int nodes; 2306 unsigned long nr_pages_per_node; 2307 int delta; 2308 int i; 2309 unsigned long nr_allocated; 2310 unsigned long total_allocated = 0; 2311 2312 nodes = nodes_weight(pol->nodes); 2313 nr_pages_per_node = nr_pages / nodes; 2314 delta = nr_pages - nodes * nr_pages_per_node; 2315 2316 for (i = 0; i < nodes; i++) { 2317 if (delta) { 2318 nr_allocated = __alloc_pages_bulk(gfp, 2319 interleave_nodes(pol), NULL, 2320 nr_pages_per_node + 1, NULL, 2321 page_array); 2322 delta--; 2323 } else { 2324 nr_allocated = __alloc_pages_bulk(gfp, 2325 interleave_nodes(pol), NULL, 2326 nr_pages_per_node, NULL, page_array); 2327 } 2328 2329 page_array += nr_allocated; 2330 total_allocated += nr_allocated; 2331 } 2332 2333 return total_allocated; 2334 } 2335 2336 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2337 struct mempolicy *pol, unsigned long nr_pages, 2338 struct page **page_array) 2339 { 2340 gfp_t preferred_gfp; 2341 unsigned long nr_allocated = 0; 2342 2343 preferred_gfp = gfp | __GFP_NOWARN; 2344 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2345 2346 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2347 nr_pages, NULL, page_array); 2348 2349 if (nr_allocated < nr_pages) 2350 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2351 nr_pages - nr_allocated, NULL, 2352 page_array + nr_allocated); 2353 return nr_allocated; 2354 } 2355 2356 /* alloc pages bulk and mempolicy should be considered at the 2357 * same time in some situation such as vmalloc. 2358 * 2359 * It can accelerate memory allocation especially interleaving 2360 * allocate memory. 2361 */ 2362 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2363 unsigned long nr_pages, struct page **page_array) 2364 { 2365 struct mempolicy *pol = &default_policy; 2366 2367 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2368 pol = get_task_policy(current); 2369 2370 if (pol->mode == MPOL_INTERLEAVE) 2371 return alloc_pages_bulk_array_interleave(gfp, pol, 2372 nr_pages, page_array); 2373 2374 if (pol->mode == MPOL_PREFERRED_MANY) 2375 return alloc_pages_bulk_array_preferred_many(gfp, 2376 numa_node_id(), pol, nr_pages, page_array); 2377 2378 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2379 policy_nodemask(gfp, pol), nr_pages, NULL, 2380 page_array); 2381 } 2382 2383 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2384 { 2385 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2386 2387 if (IS_ERR(pol)) 2388 return PTR_ERR(pol); 2389 dst->vm_policy = pol; 2390 return 0; 2391 } 2392 2393 /* 2394 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2395 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2396 * with the mems_allowed returned by cpuset_mems_allowed(). This 2397 * keeps mempolicies cpuset relative after its cpuset moves. See 2398 * further kernel/cpuset.c update_nodemask(). 2399 * 2400 * current's mempolicy may be rebinded by the other task(the task that changes 2401 * cpuset's mems), so we needn't do rebind work for current task. 2402 */ 2403 2404 /* Slow path of a mempolicy duplicate */ 2405 struct mempolicy *__mpol_dup(struct mempolicy *old) 2406 { 2407 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2408 2409 if (!new) 2410 return ERR_PTR(-ENOMEM); 2411 2412 /* task's mempolicy is protected by alloc_lock */ 2413 if (old == current->mempolicy) { 2414 task_lock(current); 2415 *new = *old; 2416 task_unlock(current); 2417 } else 2418 *new = *old; 2419 2420 if (current_cpuset_is_being_rebound()) { 2421 nodemask_t mems = cpuset_mems_allowed(current); 2422 mpol_rebind_policy(new, &mems); 2423 } 2424 atomic_set(&new->refcnt, 1); 2425 return new; 2426 } 2427 2428 /* Slow path of a mempolicy comparison */ 2429 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2430 { 2431 if (!a || !b) 2432 return false; 2433 if (a->mode != b->mode) 2434 return false; 2435 if (a->flags != b->flags) 2436 return false; 2437 if (a->home_node != b->home_node) 2438 return false; 2439 if (mpol_store_user_nodemask(a)) 2440 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2441 return false; 2442 2443 switch (a->mode) { 2444 case MPOL_BIND: 2445 case MPOL_INTERLEAVE: 2446 case MPOL_PREFERRED: 2447 case MPOL_PREFERRED_MANY: 2448 return !!nodes_equal(a->nodes, b->nodes); 2449 case MPOL_LOCAL: 2450 return true; 2451 default: 2452 BUG(); 2453 return false; 2454 } 2455 } 2456 2457 /* 2458 * Shared memory backing store policy support. 2459 * 2460 * Remember policies even when nobody has shared memory mapped. 2461 * The policies are kept in Red-Black tree linked from the inode. 2462 * They are protected by the sp->lock rwlock, which should be held 2463 * for any accesses to the tree. 2464 */ 2465 2466 /* 2467 * lookup first element intersecting start-end. Caller holds sp->lock for 2468 * reading or for writing 2469 */ 2470 static struct sp_node * 2471 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2472 { 2473 struct rb_node *n = sp->root.rb_node; 2474 2475 while (n) { 2476 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2477 2478 if (start >= p->end) 2479 n = n->rb_right; 2480 else if (end <= p->start) 2481 n = n->rb_left; 2482 else 2483 break; 2484 } 2485 if (!n) 2486 return NULL; 2487 for (;;) { 2488 struct sp_node *w = NULL; 2489 struct rb_node *prev = rb_prev(n); 2490 if (!prev) 2491 break; 2492 w = rb_entry(prev, struct sp_node, nd); 2493 if (w->end <= start) 2494 break; 2495 n = prev; 2496 } 2497 return rb_entry(n, struct sp_node, nd); 2498 } 2499 2500 /* 2501 * Insert a new shared policy into the list. Caller holds sp->lock for 2502 * writing. 2503 */ 2504 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2505 { 2506 struct rb_node **p = &sp->root.rb_node; 2507 struct rb_node *parent = NULL; 2508 struct sp_node *nd; 2509 2510 while (*p) { 2511 parent = *p; 2512 nd = rb_entry(parent, struct sp_node, nd); 2513 if (new->start < nd->start) 2514 p = &(*p)->rb_left; 2515 else if (new->end > nd->end) 2516 p = &(*p)->rb_right; 2517 else 2518 BUG(); 2519 } 2520 rb_link_node(&new->nd, parent, p); 2521 rb_insert_color(&new->nd, &sp->root); 2522 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2523 new->policy ? new->policy->mode : 0); 2524 } 2525 2526 /* Find shared policy intersecting idx */ 2527 struct mempolicy * 2528 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2529 { 2530 struct mempolicy *pol = NULL; 2531 struct sp_node *sn; 2532 2533 if (!sp->root.rb_node) 2534 return NULL; 2535 read_lock(&sp->lock); 2536 sn = sp_lookup(sp, idx, idx+1); 2537 if (sn) { 2538 mpol_get(sn->policy); 2539 pol = sn->policy; 2540 } 2541 read_unlock(&sp->lock); 2542 return pol; 2543 } 2544 2545 static void sp_free(struct sp_node *n) 2546 { 2547 mpol_put(n->policy); 2548 kmem_cache_free(sn_cache, n); 2549 } 2550 2551 /** 2552 * mpol_misplaced - check whether current page node is valid in policy 2553 * 2554 * @page: page to be checked 2555 * @vma: vm area where page mapped 2556 * @addr: virtual address where page mapped 2557 * 2558 * Lookup current policy node id for vma,addr and "compare to" page's 2559 * node id. Policy determination "mimics" alloc_page_vma(). 2560 * Called from fault path where we know the vma and faulting address. 2561 * 2562 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2563 * policy, or a suitable node ID to allocate a replacement page from. 2564 */ 2565 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2566 { 2567 struct mempolicy *pol; 2568 struct zoneref *z; 2569 int curnid = page_to_nid(page); 2570 unsigned long pgoff; 2571 int thiscpu = raw_smp_processor_id(); 2572 int thisnid = cpu_to_node(thiscpu); 2573 int polnid = NUMA_NO_NODE; 2574 int ret = NUMA_NO_NODE; 2575 2576 pol = get_vma_policy(vma, addr); 2577 if (!(pol->flags & MPOL_F_MOF)) 2578 goto out; 2579 2580 switch (pol->mode) { 2581 case MPOL_INTERLEAVE: 2582 pgoff = vma->vm_pgoff; 2583 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2584 polnid = offset_il_node(pol, pgoff); 2585 break; 2586 2587 case MPOL_PREFERRED: 2588 if (node_isset(curnid, pol->nodes)) 2589 goto out; 2590 polnid = first_node(pol->nodes); 2591 break; 2592 2593 case MPOL_LOCAL: 2594 polnid = numa_node_id(); 2595 break; 2596 2597 case MPOL_BIND: 2598 /* Optimize placement among multiple nodes via NUMA balancing */ 2599 if (pol->flags & MPOL_F_MORON) { 2600 if (node_isset(thisnid, pol->nodes)) 2601 break; 2602 goto out; 2603 } 2604 fallthrough; 2605 2606 case MPOL_PREFERRED_MANY: 2607 /* 2608 * use current page if in policy nodemask, 2609 * else select nearest allowed node, if any. 2610 * If no allowed nodes, use current [!misplaced]. 2611 */ 2612 if (node_isset(curnid, pol->nodes)) 2613 goto out; 2614 z = first_zones_zonelist( 2615 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2616 gfp_zone(GFP_HIGHUSER), 2617 &pol->nodes); 2618 polnid = zone_to_nid(z->zone); 2619 break; 2620 2621 default: 2622 BUG(); 2623 } 2624 2625 /* Migrate the page towards the node whose CPU is referencing it */ 2626 if (pol->flags & MPOL_F_MORON) { 2627 polnid = thisnid; 2628 2629 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2630 goto out; 2631 } 2632 2633 if (curnid != polnid) 2634 ret = polnid; 2635 out: 2636 mpol_cond_put(pol); 2637 2638 return ret; 2639 } 2640 2641 /* 2642 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2643 * dropped after task->mempolicy is set to NULL so that any allocation done as 2644 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2645 * policy. 2646 */ 2647 void mpol_put_task_policy(struct task_struct *task) 2648 { 2649 struct mempolicy *pol; 2650 2651 task_lock(task); 2652 pol = task->mempolicy; 2653 task->mempolicy = NULL; 2654 task_unlock(task); 2655 mpol_put(pol); 2656 } 2657 2658 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2659 { 2660 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2661 rb_erase(&n->nd, &sp->root); 2662 sp_free(n); 2663 } 2664 2665 static void sp_node_init(struct sp_node *node, unsigned long start, 2666 unsigned long end, struct mempolicy *pol) 2667 { 2668 node->start = start; 2669 node->end = end; 2670 node->policy = pol; 2671 } 2672 2673 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2674 struct mempolicy *pol) 2675 { 2676 struct sp_node *n; 2677 struct mempolicy *newpol; 2678 2679 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2680 if (!n) 2681 return NULL; 2682 2683 newpol = mpol_dup(pol); 2684 if (IS_ERR(newpol)) { 2685 kmem_cache_free(sn_cache, n); 2686 return NULL; 2687 } 2688 newpol->flags |= MPOL_F_SHARED; 2689 sp_node_init(n, start, end, newpol); 2690 2691 return n; 2692 } 2693 2694 /* Replace a policy range. */ 2695 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2696 unsigned long end, struct sp_node *new) 2697 { 2698 struct sp_node *n; 2699 struct sp_node *n_new = NULL; 2700 struct mempolicy *mpol_new = NULL; 2701 int ret = 0; 2702 2703 restart: 2704 write_lock(&sp->lock); 2705 n = sp_lookup(sp, start, end); 2706 /* Take care of old policies in the same range. */ 2707 while (n && n->start < end) { 2708 struct rb_node *next = rb_next(&n->nd); 2709 if (n->start >= start) { 2710 if (n->end <= end) 2711 sp_delete(sp, n); 2712 else 2713 n->start = end; 2714 } else { 2715 /* Old policy spanning whole new range. */ 2716 if (n->end > end) { 2717 if (!n_new) 2718 goto alloc_new; 2719 2720 *mpol_new = *n->policy; 2721 atomic_set(&mpol_new->refcnt, 1); 2722 sp_node_init(n_new, end, n->end, mpol_new); 2723 n->end = start; 2724 sp_insert(sp, n_new); 2725 n_new = NULL; 2726 mpol_new = NULL; 2727 break; 2728 } else 2729 n->end = start; 2730 } 2731 if (!next) 2732 break; 2733 n = rb_entry(next, struct sp_node, nd); 2734 } 2735 if (new) 2736 sp_insert(sp, new); 2737 write_unlock(&sp->lock); 2738 ret = 0; 2739 2740 err_out: 2741 if (mpol_new) 2742 mpol_put(mpol_new); 2743 if (n_new) 2744 kmem_cache_free(sn_cache, n_new); 2745 2746 return ret; 2747 2748 alloc_new: 2749 write_unlock(&sp->lock); 2750 ret = -ENOMEM; 2751 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2752 if (!n_new) 2753 goto err_out; 2754 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2755 if (!mpol_new) 2756 goto err_out; 2757 atomic_set(&mpol_new->refcnt, 1); 2758 goto restart; 2759 } 2760 2761 /** 2762 * mpol_shared_policy_init - initialize shared policy for inode 2763 * @sp: pointer to inode shared policy 2764 * @mpol: struct mempolicy to install 2765 * 2766 * Install non-NULL @mpol in inode's shared policy rb-tree. 2767 * On entry, the current task has a reference on a non-NULL @mpol. 2768 * This must be released on exit. 2769 * This is called at get_inode() calls and we can use GFP_KERNEL. 2770 */ 2771 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2772 { 2773 int ret; 2774 2775 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2776 rwlock_init(&sp->lock); 2777 2778 if (mpol) { 2779 struct vm_area_struct pvma; 2780 struct mempolicy *new; 2781 NODEMASK_SCRATCH(scratch); 2782 2783 if (!scratch) 2784 goto put_mpol; 2785 /* contextualize the tmpfs mount point mempolicy */ 2786 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2787 if (IS_ERR(new)) 2788 goto free_scratch; /* no valid nodemask intersection */ 2789 2790 task_lock(current); 2791 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2792 task_unlock(current); 2793 if (ret) 2794 goto put_new; 2795 2796 /* Create pseudo-vma that contains just the policy */ 2797 vma_init(&pvma, NULL); 2798 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2799 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2800 2801 put_new: 2802 mpol_put(new); /* drop initial ref */ 2803 free_scratch: 2804 NODEMASK_SCRATCH_FREE(scratch); 2805 put_mpol: 2806 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2807 } 2808 } 2809 2810 int mpol_set_shared_policy(struct shared_policy *info, 2811 struct vm_area_struct *vma, struct mempolicy *npol) 2812 { 2813 int err; 2814 struct sp_node *new = NULL; 2815 unsigned long sz = vma_pages(vma); 2816 2817 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2818 vma->vm_pgoff, 2819 sz, npol ? npol->mode : -1, 2820 npol ? npol->flags : -1, 2821 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2822 2823 if (npol) { 2824 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2825 if (!new) 2826 return -ENOMEM; 2827 } 2828 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2829 if (err && new) 2830 sp_free(new); 2831 return err; 2832 } 2833 2834 /* Free a backing policy store on inode delete. */ 2835 void mpol_free_shared_policy(struct shared_policy *p) 2836 { 2837 struct sp_node *n; 2838 struct rb_node *next; 2839 2840 if (!p->root.rb_node) 2841 return; 2842 write_lock(&p->lock); 2843 next = rb_first(&p->root); 2844 while (next) { 2845 n = rb_entry(next, struct sp_node, nd); 2846 next = rb_next(&n->nd); 2847 sp_delete(p, n); 2848 } 2849 write_unlock(&p->lock); 2850 } 2851 2852 #ifdef CONFIG_NUMA_BALANCING 2853 static int __initdata numabalancing_override; 2854 2855 static void __init check_numabalancing_enable(void) 2856 { 2857 bool numabalancing_default = false; 2858 2859 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2860 numabalancing_default = true; 2861 2862 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2863 if (numabalancing_override) 2864 set_numabalancing_state(numabalancing_override == 1); 2865 2866 if (num_online_nodes() > 1 && !numabalancing_override) { 2867 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2868 numabalancing_default ? "Enabling" : "Disabling"); 2869 set_numabalancing_state(numabalancing_default); 2870 } 2871 } 2872 2873 static int __init setup_numabalancing(char *str) 2874 { 2875 int ret = 0; 2876 if (!str) 2877 goto out; 2878 2879 if (!strcmp(str, "enable")) { 2880 numabalancing_override = 1; 2881 ret = 1; 2882 } else if (!strcmp(str, "disable")) { 2883 numabalancing_override = -1; 2884 ret = 1; 2885 } 2886 out: 2887 if (!ret) 2888 pr_warn("Unable to parse numa_balancing=\n"); 2889 2890 return ret; 2891 } 2892 __setup("numa_balancing=", setup_numabalancing); 2893 #else 2894 static inline void __init check_numabalancing_enable(void) 2895 { 2896 } 2897 #endif /* CONFIG_NUMA_BALANCING */ 2898 2899 /* assumes fs == KERNEL_DS */ 2900 void __init numa_policy_init(void) 2901 { 2902 nodemask_t interleave_nodes; 2903 unsigned long largest = 0; 2904 int nid, prefer = 0; 2905 2906 policy_cache = kmem_cache_create("numa_policy", 2907 sizeof(struct mempolicy), 2908 0, SLAB_PANIC, NULL); 2909 2910 sn_cache = kmem_cache_create("shared_policy_node", 2911 sizeof(struct sp_node), 2912 0, SLAB_PANIC, NULL); 2913 2914 for_each_node(nid) { 2915 preferred_node_policy[nid] = (struct mempolicy) { 2916 .refcnt = ATOMIC_INIT(1), 2917 .mode = MPOL_PREFERRED, 2918 .flags = MPOL_F_MOF | MPOL_F_MORON, 2919 .nodes = nodemask_of_node(nid), 2920 }; 2921 } 2922 2923 /* 2924 * Set interleaving policy for system init. Interleaving is only 2925 * enabled across suitably sized nodes (default is >= 16MB), or 2926 * fall back to the largest node if they're all smaller. 2927 */ 2928 nodes_clear(interleave_nodes); 2929 for_each_node_state(nid, N_MEMORY) { 2930 unsigned long total_pages = node_present_pages(nid); 2931 2932 /* Preserve the largest node */ 2933 if (largest < total_pages) { 2934 largest = total_pages; 2935 prefer = nid; 2936 } 2937 2938 /* Interleave this node? */ 2939 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2940 node_set(nid, interleave_nodes); 2941 } 2942 2943 /* All too small, use the largest */ 2944 if (unlikely(nodes_empty(interleave_nodes))) 2945 node_set(prefer, interleave_nodes); 2946 2947 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2948 pr_err("%s: interleaving failed\n", __func__); 2949 2950 check_numabalancing_enable(); 2951 } 2952 2953 /* Reset policy of current process to default */ 2954 void numa_default_policy(void) 2955 { 2956 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2957 } 2958 2959 /* 2960 * Parse and format mempolicy from/to strings 2961 */ 2962 2963 static const char * const policy_modes[] = 2964 { 2965 [MPOL_DEFAULT] = "default", 2966 [MPOL_PREFERRED] = "prefer", 2967 [MPOL_BIND] = "bind", 2968 [MPOL_INTERLEAVE] = "interleave", 2969 [MPOL_LOCAL] = "local", 2970 [MPOL_PREFERRED_MANY] = "prefer (many)", 2971 }; 2972 2973 2974 #ifdef CONFIG_TMPFS 2975 /** 2976 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2977 * @str: string containing mempolicy to parse 2978 * @mpol: pointer to struct mempolicy pointer, returned on success. 2979 * 2980 * Format of input: 2981 * <mode>[=<flags>][:<nodelist>] 2982 * 2983 * Return: %0 on success, else %1 2984 */ 2985 int mpol_parse_str(char *str, struct mempolicy **mpol) 2986 { 2987 struct mempolicy *new = NULL; 2988 unsigned short mode_flags; 2989 nodemask_t nodes; 2990 char *nodelist = strchr(str, ':'); 2991 char *flags = strchr(str, '='); 2992 int err = 1, mode; 2993 2994 if (flags) 2995 *flags++ = '\0'; /* terminate mode string */ 2996 2997 if (nodelist) { 2998 /* NUL-terminate mode or flags string */ 2999 *nodelist++ = '\0'; 3000 if (nodelist_parse(nodelist, nodes)) 3001 goto out; 3002 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3003 goto out; 3004 } else 3005 nodes_clear(nodes); 3006 3007 mode = match_string(policy_modes, MPOL_MAX, str); 3008 if (mode < 0) 3009 goto out; 3010 3011 switch (mode) { 3012 case MPOL_PREFERRED: 3013 /* 3014 * Insist on a nodelist of one node only, although later 3015 * we use first_node(nodes) to grab a single node, so here 3016 * nodelist (or nodes) cannot be empty. 3017 */ 3018 if (nodelist) { 3019 char *rest = nodelist; 3020 while (isdigit(*rest)) 3021 rest++; 3022 if (*rest) 3023 goto out; 3024 if (nodes_empty(nodes)) 3025 goto out; 3026 } 3027 break; 3028 case MPOL_INTERLEAVE: 3029 /* 3030 * Default to online nodes with memory if no nodelist 3031 */ 3032 if (!nodelist) 3033 nodes = node_states[N_MEMORY]; 3034 break; 3035 case MPOL_LOCAL: 3036 /* 3037 * Don't allow a nodelist; mpol_new() checks flags 3038 */ 3039 if (nodelist) 3040 goto out; 3041 break; 3042 case MPOL_DEFAULT: 3043 /* 3044 * Insist on a empty nodelist 3045 */ 3046 if (!nodelist) 3047 err = 0; 3048 goto out; 3049 case MPOL_PREFERRED_MANY: 3050 case MPOL_BIND: 3051 /* 3052 * Insist on a nodelist 3053 */ 3054 if (!nodelist) 3055 goto out; 3056 } 3057 3058 mode_flags = 0; 3059 if (flags) { 3060 /* 3061 * Currently, we only support two mutually exclusive 3062 * mode flags. 3063 */ 3064 if (!strcmp(flags, "static")) 3065 mode_flags |= MPOL_F_STATIC_NODES; 3066 else if (!strcmp(flags, "relative")) 3067 mode_flags |= MPOL_F_RELATIVE_NODES; 3068 else 3069 goto out; 3070 } 3071 3072 new = mpol_new(mode, mode_flags, &nodes); 3073 if (IS_ERR(new)) 3074 goto out; 3075 3076 /* 3077 * Save nodes for mpol_to_str() to show the tmpfs mount options 3078 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3079 */ 3080 if (mode != MPOL_PREFERRED) { 3081 new->nodes = nodes; 3082 } else if (nodelist) { 3083 nodes_clear(new->nodes); 3084 node_set(first_node(nodes), new->nodes); 3085 } else { 3086 new->mode = MPOL_LOCAL; 3087 } 3088 3089 /* 3090 * Save nodes for contextualization: this will be used to "clone" 3091 * the mempolicy in a specific context [cpuset] at a later time. 3092 */ 3093 new->w.user_nodemask = nodes; 3094 3095 err = 0; 3096 3097 out: 3098 /* Restore string for error message */ 3099 if (nodelist) 3100 *--nodelist = ':'; 3101 if (flags) 3102 *--flags = '='; 3103 if (!err) 3104 *mpol = new; 3105 return err; 3106 } 3107 #endif /* CONFIG_TMPFS */ 3108 3109 /** 3110 * mpol_to_str - format a mempolicy structure for printing 3111 * @buffer: to contain formatted mempolicy string 3112 * @maxlen: length of @buffer 3113 * @pol: pointer to mempolicy to be formatted 3114 * 3115 * Convert @pol into a string. If @buffer is too short, truncate the string. 3116 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3117 * longest flag, "relative", and to display at least a few node ids. 3118 */ 3119 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3120 { 3121 char *p = buffer; 3122 nodemask_t nodes = NODE_MASK_NONE; 3123 unsigned short mode = MPOL_DEFAULT; 3124 unsigned short flags = 0; 3125 3126 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3127 mode = pol->mode; 3128 flags = pol->flags; 3129 } 3130 3131 switch (mode) { 3132 case MPOL_DEFAULT: 3133 case MPOL_LOCAL: 3134 break; 3135 case MPOL_PREFERRED: 3136 case MPOL_PREFERRED_MANY: 3137 case MPOL_BIND: 3138 case MPOL_INTERLEAVE: 3139 nodes = pol->nodes; 3140 break; 3141 default: 3142 WARN_ON_ONCE(1); 3143 snprintf(p, maxlen, "unknown"); 3144 return; 3145 } 3146 3147 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3148 3149 if (flags & MPOL_MODE_FLAGS) { 3150 p += snprintf(p, buffer + maxlen - p, "="); 3151 3152 /* 3153 * Currently, the only defined flags are mutually exclusive 3154 */ 3155 if (flags & MPOL_F_STATIC_NODES) 3156 p += snprintf(p, buffer + maxlen - p, "static"); 3157 else if (flags & MPOL_F_RELATIVE_NODES) 3158 p += snprintf(p, buffer + maxlen - p, "relative"); 3159 } 3160 3161 if (!nodes_empty(nodes)) 3162 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3163 nodemask_pr_args(&nodes)); 3164 } 3165