xref: /linux/mm/mempolicy.c (revision 7effbd18e496a954540fb6319db0d87d28a70496)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma)
388 		mpol_rebind_policy(vma->vm_policy, new);
389 	mmap_write_unlock(mm);
390 }
391 
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 	[MPOL_DEFAULT] = {
394 		.rebind = mpol_rebind_default,
395 	},
396 	[MPOL_INTERLEAVE] = {
397 		.create = mpol_new_nodemask,
398 		.rebind = mpol_rebind_nodemask,
399 	},
400 	[MPOL_PREFERRED] = {
401 		.create = mpol_new_preferred,
402 		.rebind = mpol_rebind_preferred,
403 	},
404 	[MPOL_BIND] = {
405 		.create = mpol_new_nodemask,
406 		.rebind = mpol_rebind_nodemask,
407 	},
408 	[MPOL_LOCAL] = {
409 		.rebind = mpol_rebind_default,
410 	},
411 	[MPOL_PREFERRED_MANY] = {
412 		.create = mpol_new_nodemask,
413 		.rebind = mpol_rebind_preferred,
414 	},
415 };
416 
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 				unsigned long flags);
419 
420 struct queue_pages {
421 	struct list_head *pagelist;
422 	unsigned long flags;
423 	nodemask_t *nmask;
424 	unsigned long start;
425 	unsigned long end;
426 	struct vm_area_struct *first;
427 };
428 
429 /*
430  * Check if the folio's nid is in qp->nmask.
431  *
432  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433  * in the invert of qp->nmask.
434  */
435 static inline bool queue_folio_required(struct folio *folio,
436 					struct queue_pages *qp)
437 {
438 	int nid = folio_nid(folio);
439 	unsigned long flags = qp->flags;
440 
441 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
442 }
443 
444 /*
445  * queue_folios_pmd() has three possible return values:
446  * 0 - folios are placed on the right node or queued successfully, or
447  *     special page is met, i.e. huge zero page.
448  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449  *     specified.
450  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451  *        existing folio was already on a node that does not follow the
452  *        policy.
453  */
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 				unsigned long end, struct mm_walk *walk)
456 	__releases(ptl)
457 {
458 	int ret = 0;
459 	struct folio *folio;
460 	struct queue_pages *qp = walk->private;
461 	unsigned long flags;
462 
463 	if (unlikely(is_pmd_migration_entry(*pmd))) {
464 		ret = -EIO;
465 		goto unlock;
466 	}
467 	folio = pfn_folio(pmd_pfn(*pmd));
468 	if (is_huge_zero_page(&folio->page)) {
469 		walk->action = ACTION_CONTINUE;
470 		goto unlock;
471 	}
472 	if (!queue_folio_required(folio, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to folio migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_folio_add(folio, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 	return ret;
488 }
489 
490 /*
491  * Scan through pages checking if pages follow certain conditions,
492  * and move them to the pagelist if they do.
493  *
494  * queue_folios_pte_range() has three possible return values:
495  * 0 - folios are placed on the right node or queued successfully, or
496  *     special page is met, i.e. zero page.
497  * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498  *     specified.
499  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500  *        on a node that does not follow the policy.
501  */
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 			unsigned long end, struct mm_walk *walk)
504 {
505 	struct vm_area_struct *vma = walk->vma;
506 	struct folio *folio;
507 	struct queue_pages *qp = walk->private;
508 	unsigned long flags = qp->flags;
509 	bool has_unmovable = false;
510 	pte_t *pte, *mapped_pte;
511 	spinlock_t *ptl;
512 
513 	ptl = pmd_trans_huge_lock(pmd, vma);
514 	if (ptl)
515 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
516 
517 	if (pmd_trans_unstable(pmd))
518 		return 0;
519 
520 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 	for (; addr != end; pte++, addr += PAGE_SIZE) {
522 		if (!pte_present(*pte))
523 			continue;
524 		folio = vm_normal_folio(vma, addr, *pte);
525 		if (!folio || folio_is_zone_device(folio))
526 			continue;
527 		/*
528 		 * vm_normal_folio() filters out zero pages, but there might
529 		 * still be reserved folios to skip, perhaps in a VDSO.
530 		 */
531 		if (folio_test_reserved(folio))
532 			continue;
533 		if (!queue_folio_required(folio, qp))
534 			continue;
535 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 			/* MPOL_MF_STRICT must be specified if we get here */
537 			if (!vma_migratable(vma)) {
538 				has_unmovable = true;
539 				break;
540 			}
541 
542 			/*
543 			 * Do not abort immediately since there may be
544 			 * temporary off LRU pages in the range.  Still
545 			 * need migrate other LRU pages.
546 			 */
547 			if (migrate_folio_add(folio, qp->pagelist, flags))
548 				has_unmovable = true;
549 		} else
550 			break;
551 	}
552 	pte_unmap_unlock(mapped_pte, ptl);
553 	cond_resched();
554 
555 	if (has_unmovable)
556 		return 1;
557 
558 	return addr != end ? -EIO : 0;
559 }
560 
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 			       unsigned long addr, unsigned long end,
563 			       struct mm_walk *walk)
564 {
565 	int ret = 0;
566 #ifdef CONFIG_HUGETLB_PAGE
567 	struct queue_pages *qp = walk->private;
568 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
569 	struct folio *folio;
570 	spinlock_t *ptl;
571 	pte_t entry;
572 
573 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 	entry = huge_ptep_get(pte);
575 	if (!pte_present(entry))
576 		goto unlock;
577 	folio = pfn_folio(pte_pfn(entry));
578 	if (!queue_folio_required(folio, qp))
579 		goto unlock;
580 
581 	if (flags == MPOL_MF_STRICT) {
582 		/*
583 		 * STRICT alone means only detecting misplaced folio and no
584 		 * need to further check other vma.
585 		 */
586 		ret = -EIO;
587 		goto unlock;
588 	}
589 
590 	if (!vma_migratable(walk->vma)) {
591 		/*
592 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 		 * stopped walking current vma.
594 		 * Detecting misplaced folio but allow migrating folios which
595 		 * have been queued.
596 		 */
597 		ret = 1;
598 		goto unlock;
599 	}
600 
601 	/*
602 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 	 * is shared it is likely not worth migrating.
604 	 *
605 	 * To check if the folio is shared, ideally we want to make sure
606 	 * every page is mapped to the same process. Doing that is very
607 	 * expensive, so check the estimated mapcount of the folio instead.
608 	 */
609 	if (flags & (MPOL_MF_MOVE_ALL) ||
610 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 	     !hugetlb_pmd_shared(pte))) {
612 		if (!isolate_hugetlb(folio, qp->pagelist) &&
613 			(flags & MPOL_MF_STRICT))
614 			/*
615 			 * Failed to isolate folio but allow migrating pages
616 			 * which have been queued.
617 			 */
618 			ret = 1;
619 	}
620 unlock:
621 	spin_unlock(ptl);
622 #else
623 	BUG();
624 #endif
625 	return ret;
626 }
627 
628 #ifdef CONFIG_NUMA_BALANCING
629 /*
630  * This is used to mark a range of virtual addresses to be inaccessible.
631  * These are later cleared by a NUMA hinting fault. Depending on these
632  * faults, pages may be migrated for better NUMA placement.
633  *
634  * This is assuming that NUMA faults are handled using PROT_NONE. If
635  * an architecture makes a different choice, it will need further
636  * changes to the core.
637  */
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 			unsigned long addr, unsigned long end)
640 {
641 	struct mmu_gather tlb;
642 	long nr_updated;
643 
644 	tlb_gather_mmu(&tlb, vma->vm_mm);
645 
646 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
647 	if (nr_updated > 0)
648 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
649 
650 	tlb_finish_mmu(&tlb);
651 
652 	return nr_updated;
653 }
654 #else
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 			unsigned long addr, unsigned long end)
657 {
658 	return 0;
659 }
660 #endif /* CONFIG_NUMA_BALANCING */
661 
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 				struct mm_walk *walk)
664 {
665 	struct vm_area_struct *next, *vma = walk->vma;
666 	struct queue_pages *qp = walk->private;
667 	unsigned long endvma = vma->vm_end;
668 	unsigned long flags = qp->flags;
669 
670 	/* range check first */
671 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
672 
673 	if (!qp->first) {
674 		qp->first = vma;
675 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 			(qp->start < vma->vm_start))
677 			/* hole at head side of range */
678 			return -EFAULT;
679 	}
680 	next = find_vma(vma->vm_mm, vma->vm_end);
681 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 		((vma->vm_end < qp->end) &&
683 		(!next || vma->vm_end < next->vm_start)))
684 		/* hole at middle or tail of range */
685 		return -EFAULT;
686 
687 	/*
688 	 * Need check MPOL_MF_STRICT to return -EIO if possible
689 	 * regardless of vma_migratable
690 	 */
691 	if (!vma_migratable(vma) &&
692 	    !(flags & MPOL_MF_STRICT))
693 		return 1;
694 
695 	if (endvma > end)
696 		endvma = end;
697 
698 	if (flags & MPOL_MF_LAZY) {
699 		/* Similar to task_numa_work, skip inaccessible VMAs */
700 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 			!(vma->vm_flags & VM_MIXEDMAP))
702 			change_prot_numa(vma, start, endvma);
703 		return 1;
704 	}
705 
706 	/* queue pages from current vma */
707 	if (flags & MPOL_MF_VALID)
708 		return 0;
709 	return 1;
710 }
711 
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 	.hugetlb_entry		= queue_folios_hugetlb,
714 	.pmd_entry		= queue_folios_pte_range,
715 	.test_walk		= queue_pages_test_walk,
716 };
717 
718 /*
719  * Walk through page tables and collect pages to be migrated.
720  *
721  * If pages found in a given range are on a set of nodes (determined by
722  * @nodes and @flags,) it's isolated and queued to the pagelist which is
723  * passed via @private.
724  *
725  * queue_pages_range() has three possible return values:
726  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
727  *     specified.
728  * 0 - queue pages successfully or no misplaced page.
729  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730  *         memory range specified by nodemask and maxnode points outside
731  *         your accessible address space (-EFAULT)
732  */
733 static int
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 		nodemask_t *nodes, unsigned long flags,
736 		struct list_head *pagelist)
737 {
738 	int err;
739 	struct queue_pages qp = {
740 		.pagelist = pagelist,
741 		.flags = flags,
742 		.nmask = nodes,
743 		.start = start,
744 		.end = end,
745 		.first = NULL,
746 	};
747 
748 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
749 
750 	if (!qp.first)
751 		/* whole range in hole */
752 		err = -EFAULT;
753 
754 	return err;
755 }
756 
757 /*
758  * Apply policy to a single VMA
759  * This must be called with the mmap_lock held for writing.
760  */
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 						struct mempolicy *pol)
763 {
764 	int err;
765 	struct mempolicy *old;
766 	struct mempolicy *new;
767 
768 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 		 vma->vm_ops, vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
772 
773 	new = mpol_dup(pol);
774 	if (IS_ERR(new))
775 		return PTR_ERR(new);
776 
777 	if (vma->vm_ops && vma->vm_ops->set_policy) {
778 		err = vma->vm_ops->set_policy(vma, new);
779 		if (err)
780 			goto err_out;
781 	}
782 
783 	old = vma->vm_policy;
784 	vma->vm_policy = new; /* protected by mmap_lock */
785 	mpol_put(old);
786 
787 	return 0;
788  err_out:
789 	mpol_put(new);
790 	return err;
791 }
792 
793 /* Step 2: apply policy to a range and do splits. */
794 static int mbind_range(struct mm_struct *mm, unsigned long start,
795 		       unsigned long end, struct mempolicy *new_pol)
796 {
797 	VMA_ITERATOR(vmi, mm, start);
798 	struct vm_area_struct *prev;
799 	struct vm_area_struct *vma;
800 	int err = 0;
801 	pgoff_t pgoff;
802 
803 	prev = vma_prev(&vmi);
804 	vma = vma_find(&vmi, end);
805 	if (WARN_ON(!vma))
806 		return 0;
807 
808 	if (start > vma->vm_start)
809 		prev = vma;
810 
811 	do {
812 		unsigned long vmstart = max(start, vma->vm_start);
813 		unsigned long vmend = min(end, vma->vm_end);
814 
815 		if (mpol_equal(vma_policy(vma), new_pol))
816 			goto next;
817 
818 		pgoff = vma->vm_pgoff +
819 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
820 		prev = vma_merge(&vmi, mm, prev, vmstart, vmend, vma->vm_flags,
821 				 vma->anon_vma, vma->vm_file, pgoff,
822 				 new_pol, vma->vm_userfaultfd_ctx,
823 				 anon_vma_name(vma));
824 		if (prev) {
825 			vma = prev;
826 			goto replace;
827 		}
828 		if (vma->vm_start != vmstart) {
829 			err = split_vma(&vmi, vma, vmstart, 1);
830 			if (err)
831 				goto out;
832 		}
833 		if (vma->vm_end != vmend) {
834 			err = split_vma(&vmi, vma, vmend, 0);
835 			if (err)
836 				goto out;
837 		}
838 replace:
839 		err = vma_replace_policy(vma, new_pol);
840 		if (err)
841 			goto out;
842 next:
843 		prev = vma;
844 	} for_each_vma_range(vmi, vma, end);
845 
846 out:
847 	return err;
848 }
849 
850 /* Set the process memory policy */
851 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
852 			     nodemask_t *nodes)
853 {
854 	struct mempolicy *new, *old;
855 	NODEMASK_SCRATCH(scratch);
856 	int ret;
857 
858 	if (!scratch)
859 		return -ENOMEM;
860 
861 	new = mpol_new(mode, flags, nodes);
862 	if (IS_ERR(new)) {
863 		ret = PTR_ERR(new);
864 		goto out;
865 	}
866 
867 	task_lock(current);
868 	ret = mpol_set_nodemask(new, nodes, scratch);
869 	if (ret) {
870 		task_unlock(current);
871 		mpol_put(new);
872 		goto out;
873 	}
874 
875 	old = current->mempolicy;
876 	current->mempolicy = new;
877 	if (new && new->mode == MPOL_INTERLEAVE)
878 		current->il_prev = MAX_NUMNODES-1;
879 	task_unlock(current);
880 	mpol_put(old);
881 	ret = 0;
882 out:
883 	NODEMASK_SCRATCH_FREE(scratch);
884 	return ret;
885 }
886 
887 /*
888  * Return nodemask for policy for get_mempolicy() query
889  *
890  * Called with task's alloc_lock held
891  */
892 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
893 {
894 	nodes_clear(*nodes);
895 	if (p == &default_policy)
896 		return;
897 
898 	switch (p->mode) {
899 	case MPOL_BIND:
900 	case MPOL_INTERLEAVE:
901 	case MPOL_PREFERRED:
902 	case MPOL_PREFERRED_MANY:
903 		*nodes = p->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int ret;
917 
918 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 	if (ret > 0) {
920 		ret = page_to_nid(p);
921 		put_page(p);
922 	}
923 	return ret;
924 }
925 
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 			     unsigned long addr, unsigned long flags)
929 {
930 	int err;
931 	struct mm_struct *mm = current->mm;
932 	struct vm_area_struct *vma = NULL;
933 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 
935 	if (flags &
936 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 		return -EINVAL;
938 
939 	if (flags & MPOL_F_MEMS_ALLOWED) {
940 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 			return -EINVAL;
942 		*policy = 0;	/* just so it's initialized */
943 		task_lock(current);
944 		*nmask  = cpuset_current_mems_allowed;
945 		task_unlock(current);
946 		return 0;
947 	}
948 
949 	if (flags & MPOL_F_ADDR) {
950 		/*
951 		 * Do NOT fall back to task policy if the
952 		 * vma/shared policy at addr is NULL.  We
953 		 * want to return MPOL_DEFAULT in this case.
954 		 */
955 		mmap_read_lock(mm);
956 		vma = vma_lookup(mm, addr);
957 		if (!vma) {
958 			mmap_read_unlock(mm);
959 			return -EFAULT;
960 		}
961 		if (vma->vm_ops && vma->vm_ops->get_policy)
962 			pol = vma->vm_ops->get_policy(vma, addr);
963 		else
964 			pol = vma->vm_policy;
965 	} else if (addr)
966 		return -EINVAL;
967 
968 	if (!pol)
969 		pol = &default_policy;	/* indicates default behavior */
970 
971 	if (flags & MPOL_F_NODE) {
972 		if (flags & MPOL_F_ADDR) {
973 			/*
974 			 * Take a refcount on the mpol, because we are about to
975 			 * drop the mmap_lock, after which only "pol" remains
976 			 * valid, "vma" is stale.
977 			 */
978 			pol_refcount = pol;
979 			vma = NULL;
980 			mpol_get(pol);
981 			mmap_read_unlock(mm);
982 			err = lookup_node(mm, addr);
983 			if (err < 0)
984 				goto out;
985 			*policy = err;
986 		} else if (pol == current->mempolicy &&
987 				pol->mode == MPOL_INTERLEAVE) {
988 			*policy = next_node_in(current->il_prev, pol->nodes);
989 		} else {
990 			err = -EINVAL;
991 			goto out;
992 		}
993 	} else {
994 		*policy = pol == &default_policy ? MPOL_DEFAULT :
995 						pol->mode;
996 		/*
997 		 * Internal mempolicy flags must be masked off before exposing
998 		 * the policy to userspace.
999 		 */
1000 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1001 	}
1002 
1003 	err = 0;
1004 	if (nmask) {
1005 		if (mpol_store_user_nodemask(pol)) {
1006 			*nmask = pol->w.user_nodemask;
1007 		} else {
1008 			task_lock(current);
1009 			get_policy_nodemask(pol, nmask);
1010 			task_unlock(current);
1011 		}
1012 	}
1013 
1014  out:
1015 	mpol_cond_put(pol);
1016 	if (vma)
1017 		mmap_read_unlock(mm);
1018 	if (pol_refcount)
1019 		mpol_put(pol_refcount);
1020 	return err;
1021 }
1022 
1023 #ifdef CONFIG_MIGRATION
1024 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1025 				unsigned long flags)
1026 {
1027 	/*
1028 	 * We try to migrate only unshared folios. If it is shared it
1029 	 * is likely not worth migrating.
1030 	 *
1031 	 * To check if the folio is shared, ideally we want to make sure
1032 	 * every page is mapped to the same process. Doing that is very
1033 	 * expensive, so check the estimated mapcount of the folio instead.
1034 	 */
1035 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1036 		if (folio_isolate_lru(folio)) {
1037 			list_add_tail(&folio->lru, foliolist);
1038 			node_stat_mod_folio(folio,
1039 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1040 				folio_nr_pages(folio));
1041 		} else if (flags & MPOL_MF_STRICT) {
1042 			/*
1043 			 * Non-movable folio may reach here.  And, there may be
1044 			 * temporary off LRU folios or non-LRU movable folios.
1045 			 * Treat them as unmovable folios since they can't be
1046 			 * isolated, so they can't be moved at the moment.  It
1047 			 * should return -EIO for this case too.
1048 			 */
1049 			return -EIO;
1050 		}
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Migrate pages from one node to a target node.
1058  * Returns error or the number of pages not migrated.
1059  */
1060 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1061 			   int flags)
1062 {
1063 	nodemask_t nmask;
1064 	struct vm_area_struct *vma;
1065 	LIST_HEAD(pagelist);
1066 	int err = 0;
1067 	struct migration_target_control mtc = {
1068 		.nid = dest,
1069 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1070 	};
1071 
1072 	nodes_clear(nmask);
1073 	node_set(source, nmask);
1074 
1075 	/*
1076 	 * This does not "check" the range but isolates all pages that
1077 	 * need migration.  Between passing in the full user address
1078 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1079 	 */
1080 	vma = find_vma(mm, 0);
1081 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1082 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1083 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1084 
1085 	if (!list_empty(&pagelist)) {
1086 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1087 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1088 		if (err)
1089 			putback_movable_pages(&pagelist);
1090 	}
1091 
1092 	return err;
1093 }
1094 
1095 /*
1096  * Move pages between the two nodesets so as to preserve the physical
1097  * layout as much as possible.
1098  *
1099  * Returns the number of page that could not be moved.
1100  */
1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1102 		     const nodemask_t *to, int flags)
1103 {
1104 	int busy = 0;
1105 	int err = 0;
1106 	nodemask_t tmp;
1107 
1108 	lru_cache_disable();
1109 
1110 	mmap_read_lock(mm);
1111 
1112 	/*
1113 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1114 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1115 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1116 	 * The pair of nodemasks 'to' and 'from' define the map.
1117 	 *
1118 	 * If no pair of bits is found that way, fallback to picking some
1119 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1120 	 * 'source' and 'dest' bits are the same, this represents a node
1121 	 * that will be migrating to itself, so no pages need move.
1122 	 *
1123 	 * If no bits are left in 'tmp', or if all remaining bits left
1124 	 * in 'tmp' correspond to the same bit in 'to', return false
1125 	 * (nothing left to migrate).
1126 	 *
1127 	 * This lets us pick a pair of nodes to migrate between, such that
1128 	 * if possible the dest node is not already occupied by some other
1129 	 * source node, minimizing the risk of overloading the memory on a
1130 	 * node that would happen if we migrated incoming memory to a node
1131 	 * before migrating outgoing memory source that same node.
1132 	 *
1133 	 * A single scan of tmp is sufficient.  As we go, we remember the
1134 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1135 	 * that not only moved, but what's better, moved to an empty slot
1136 	 * (d is not set in tmp), then we break out then, with that pair.
1137 	 * Otherwise when we finish scanning from_tmp, we at least have the
1138 	 * most recent <s, d> pair that moved.  If we get all the way through
1139 	 * the scan of tmp without finding any node that moved, much less
1140 	 * moved to an empty node, then there is nothing left worth migrating.
1141 	 */
1142 
1143 	tmp = *from;
1144 	while (!nodes_empty(tmp)) {
1145 		int s, d;
1146 		int source = NUMA_NO_NODE;
1147 		int dest = 0;
1148 
1149 		for_each_node_mask(s, tmp) {
1150 
1151 			/*
1152 			 * do_migrate_pages() tries to maintain the relative
1153 			 * node relationship of the pages established between
1154 			 * threads and memory areas.
1155                          *
1156 			 * However if the number of source nodes is not equal to
1157 			 * the number of destination nodes we can not preserve
1158 			 * this node relative relationship.  In that case, skip
1159 			 * copying memory from a node that is in the destination
1160 			 * mask.
1161 			 *
1162 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1163 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1164 			 */
1165 
1166 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1167 						(node_isset(s, *to)))
1168 				continue;
1169 
1170 			d = node_remap(s, *from, *to);
1171 			if (s == d)
1172 				continue;
1173 
1174 			source = s;	/* Node moved. Memorize */
1175 			dest = d;
1176 
1177 			/* dest not in remaining from nodes? */
1178 			if (!node_isset(dest, tmp))
1179 				break;
1180 		}
1181 		if (source == NUMA_NO_NODE)
1182 			break;
1183 
1184 		node_clear(source, tmp);
1185 		err = migrate_to_node(mm, source, dest, flags);
1186 		if (err > 0)
1187 			busy += err;
1188 		if (err < 0)
1189 			break;
1190 	}
1191 	mmap_read_unlock(mm);
1192 
1193 	lru_cache_enable();
1194 	if (err < 0)
1195 		return err;
1196 	return busy;
1197 
1198 }
1199 
1200 /*
1201  * Allocate a new page for page migration based on vma policy.
1202  * Start by assuming the page is mapped by the same vma as contains @start.
1203  * Search forward from there, if not.  N.B., this assumes that the
1204  * list of pages handed to migrate_pages()--which is how we get here--
1205  * is in virtual address order.
1206  */
1207 static struct page *new_page(struct page *page, unsigned long start)
1208 {
1209 	struct folio *dst, *src = page_folio(page);
1210 	struct vm_area_struct *vma;
1211 	unsigned long address;
1212 	VMA_ITERATOR(vmi, current->mm, start);
1213 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1214 
1215 	for_each_vma(vmi, vma) {
1216 		address = page_address_in_vma(page, vma);
1217 		if (address != -EFAULT)
1218 			break;
1219 	}
1220 
1221 	if (folio_test_hugetlb(src)) {
1222 		dst = alloc_hugetlb_folio_vma(folio_hstate(src),
1223 				vma, address);
1224 		return &dst->page;
1225 	}
1226 
1227 	if (folio_test_large(src))
1228 		gfp = GFP_TRANSHUGE;
1229 
1230 	/*
1231 	 * if !vma, vma_alloc_folio() will use task or system default policy
1232 	 */
1233 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234 			folio_test_large(src));
1235 	return &dst->page;
1236 }
1237 #else
1238 
1239 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1240 				unsigned long flags)
1241 {
1242 	return -EIO;
1243 }
1244 
1245 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246 		     const nodemask_t *to, int flags)
1247 {
1248 	return -ENOSYS;
1249 }
1250 
1251 static struct page *new_page(struct page *page, unsigned long start)
1252 {
1253 	return NULL;
1254 }
1255 #endif
1256 
1257 static long do_mbind(unsigned long start, unsigned long len,
1258 		     unsigned short mode, unsigned short mode_flags,
1259 		     nodemask_t *nmask, unsigned long flags)
1260 {
1261 	struct mm_struct *mm = current->mm;
1262 	struct mempolicy *new;
1263 	unsigned long end;
1264 	int err;
1265 	int ret;
1266 	LIST_HEAD(pagelist);
1267 
1268 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1269 		return -EINVAL;
1270 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1271 		return -EPERM;
1272 
1273 	if (start & ~PAGE_MASK)
1274 		return -EINVAL;
1275 
1276 	if (mode == MPOL_DEFAULT)
1277 		flags &= ~MPOL_MF_STRICT;
1278 
1279 	len = PAGE_ALIGN(len);
1280 	end = start + len;
1281 
1282 	if (end < start)
1283 		return -EINVAL;
1284 	if (end == start)
1285 		return 0;
1286 
1287 	new = mpol_new(mode, mode_flags, nmask);
1288 	if (IS_ERR(new))
1289 		return PTR_ERR(new);
1290 
1291 	if (flags & MPOL_MF_LAZY)
1292 		new->flags |= MPOL_F_MOF;
1293 
1294 	/*
1295 	 * If we are using the default policy then operation
1296 	 * on discontinuous address spaces is okay after all
1297 	 */
1298 	if (!new)
1299 		flags |= MPOL_MF_DISCONTIG_OK;
1300 
1301 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302 		 start, start + len, mode, mode_flags,
1303 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304 
1305 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306 
1307 		lru_cache_disable();
1308 	}
1309 	{
1310 		NODEMASK_SCRATCH(scratch);
1311 		if (scratch) {
1312 			mmap_write_lock(mm);
1313 			err = mpol_set_nodemask(new, nmask, scratch);
1314 			if (err)
1315 				mmap_write_unlock(mm);
1316 		} else
1317 			err = -ENOMEM;
1318 		NODEMASK_SCRATCH_FREE(scratch);
1319 	}
1320 	if (err)
1321 		goto mpol_out;
1322 
1323 	ret = queue_pages_range(mm, start, end, nmask,
1324 			  flags | MPOL_MF_INVERT, &pagelist);
1325 
1326 	if (ret < 0) {
1327 		err = ret;
1328 		goto up_out;
1329 	}
1330 
1331 	err = mbind_range(mm, start, end, new);
1332 
1333 	if (!err) {
1334 		int nr_failed = 0;
1335 
1336 		if (!list_empty(&pagelist)) {
1337 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340 			if (nr_failed)
1341 				putback_movable_pages(&pagelist);
1342 		}
1343 
1344 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345 			err = -EIO;
1346 	} else {
1347 up_out:
1348 		if (!list_empty(&pagelist))
1349 			putback_movable_pages(&pagelist);
1350 	}
1351 
1352 	mmap_write_unlock(mm);
1353 mpol_out:
1354 	mpol_put(new);
1355 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1356 		lru_cache_enable();
1357 	return err;
1358 }
1359 
1360 /*
1361  * User space interface with variable sized bitmaps for nodelists.
1362  */
1363 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364 		      unsigned long maxnode)
1365 {
1366 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1367 	int ret;
1368 
1369 	if (in_compat_syscall())
1370 		ret = compat_get_bitmap(mask,
1371 					(const compat_ulong_t __user *)nmask,
1372 					maxnode);
1373 	else
1374 		ret = copy_from_user(mask, nmask,
1375 				     nlongs * sizeof(unsigned long));
1376 
1377 	if (ret)
1378 		return -EFAULT;
1379 
1380 	if (maxnode % BITS_PER_LONG)
1381 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1382 
1383 	return 0;
1384 }
1385 
1386 /* Copy a node mask from user space. */
1387 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388 		     unsigned long maxnode)
1389 {
1390 	--maxnode;
1391 	nodes_clear(*nodes);
1392 	if (maxnode == 0 || !nmask)
1393 		return 0;
1394 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395 		return -EINVAL;
1396 
1397 	/*
1398 	 * When the user specified more nodes than supported just check
1399 	 * if the non supported part is all zero, one word at a time,
1400 	 * starting at the end.
1401 	 */
1402 	while (maxnode > MAX_NUMNODES) {
1403 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1404 		unsigned long t;
1405 
1406 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1407 			return -EFAULT;
1408 
1409 		if (maxnode - bits >= MAX_NUMNODES) {
1410 			maxnode -= bits;
1411 		} else {
1412 			maxnode = MAX_NUMNODES;
1413 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1414 		}
1415 		if (t)
1416 			return -EINVAL;
1417 	}
1418 
1419 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1420 }
1421 
1422 /* Copy a kernel node mask to user space */
1423 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1424 			      nodemask_t *nodes)
1425 {
1426 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428 	bool compat = in_compat_syscall();
1429 
1430 	if (compat)
1431 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432 
1433 	if (copy > nbytes) {
1434 		if (copy > PAGE_SIZE)
1435 			return -EINVAL;
1436 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1437 			return -EFAULT;
1438 		copy = nbytes;
1439 		maxnode = nr_node_ids;
1440 	}
1441 
1442 	if (compat)
1443 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1444 					 nodes_addr(*nodes), maxnode);
1445 
1446 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447 }
1448 
1449 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1451 {
1452 	*flags = *mode & MPOL_MODE_FLAGS;
1453 	*mode &= ~MPOL_MODE_FLAGS;
1454 
1455 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1456 		return -EINVAL;
1457 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1458 		return -EINVAL;
1459 	if (*flags & MPOL_F_NUMA_BALANCING) {
1460 		if (*mode != MPOL_BIND)
1461 			return -EINVAL;
1462 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1463 	}
1464 	return 0;
1465 }
1466 
1467 static long kernel_mbind(unsigned long start, unsigned long len,
1468 			 unsigned long mode, const unsigned long __user *nmask,
1469 			 unsigned long maxnode, unsigned int flags)
1470 {
1471 	unsigned short mode_flags;
1472 	nodemask_t nodes;
1473 	int lmode = mode;
1474 	int err;
1475 
1476 	start = untagged_addr(start);
1477 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1478 	if (err)
1479 		return err;
1480 
1481 	err = get_nodes(&nodes, nmask, maxnode);
1482 	if (err)
1483 		return err;
1484 
1485 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1486 }
1487 
1488 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489 		unsigned long, home_node, unsigned long, flags)
1490 {
1491 	struct mm_struct *mm = current->mm;
1492 	struct vm_area_struct *vma;
1493 	struct mempolicy *new, *old;
1494 	unsigned long vmstart;
1495 	unsigned long vmend;
1496 	unsigned long end;
1497 	int err = -ENOENT;
1498 	VMA_ITERATOR(vmi, mm, start);
1499 
1500 	start = untagged_addr(start);
1501 	if (start & ~PAGE_MASK)
1502 		return -EINVAL;
1503 	/*
1504 	 * flags is used for future extension if any.
1505 	 */
1506 	if (flags != 0)
1507 		return -EINVAL;
1508 
1509 	/*
1510 	 * Check home_node is online to avoid accessing uninitialized
1511 	 * NODE_DATA.
1512 	 */
1513 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1514 		return -EINVAL;
1515 
1516 	len = PAGE_ALIGN(len);
1517 	end = start + len;
1518 
1519 	if (end < start)
1520 		return -EINVAL;
1521 	if (end == start)
1522 		return 0;
1523 	mmap_write_lock(mm);
1524 	for_each_vma_range(vmi, vma, end) {
1525 		/*
1526 		 * If any vma in the range got policy other than MPOL_BIND
1527 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1528 		 * the home node for vmas we already updated before.
1529 		 */
1530 		old = vma_policy(vma);
1531 		if (!old)
1532 			continue;
1533 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1534 			err = -EOPNOTSUPP;
1535 			break;
1536 		}
1537 		new = mpol_dup(old);
1538 		if (IS_ERR(new)) {
1539 			err = PTR_ERR(new);
1540 			break;
1541 		}
1542 
1543 		new->home_node = home_node;
1544 		vmstart = max(start, vma->vm_start);
1545 		vmend   = min(end, vma->vm_end);
1546 		err = mbind_range(mm, vmstart, vmend, new);
1547 		mpol_put(new);
1548 		if (err)
1549 			break;
1550 	}
1551 	mmap_write_unlock(mm);
1552 	return err;
1553 }
1554 
1555 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1556 		unsigned long, mode, const unsigned long __user *, nmask,
1557 		unsigned long, maxnode, unsigned int, flags)
1558 {
1559 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1560 }
1561 
1562 /* Set the process memory policy */
1563 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1564 				 unsigned long maxnode)
1565 {
1566 	unsigned short mode_flags;
1567 	nodemask_t nodes;
1568 	int lmode = mode;
1569 	int err;
1570 
1571 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1572 	if (err)
1573 		return err;
1574 
1575 	err = get_nodes(&nodes, nmask, maxnode);
1576 	if (err)
1577 		return err;
1578 
1579 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1580 }
1581 
1582 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1583 		unsigned long, maxnode)
1584 {
1585 	return kernel_set_mempolicy(mode, nmask, maxnode);
1586 }
1587 
1588 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1589 				const unsigned long __user *old_nodes,
1590 				const unsigned long __user *new_nodes)
1591 {
1592 	struct mm_struct *mm = NULL;
1593 	struct task_struct *task;
1594 	nodemask_t task_nodes;
1595 	int err;
1596 	nodemask_t *old;
1597 	nodemask_t *new;
1598 	NODEMASK_SCRATCH(scratch);
1599 
1600 	if (!scratch)
1601 		return -ENOMEM;
1602 
1603 	old = &scratch->mask1;
1604 	new = &scratch->mask2;
1605 
1606 	err = get_nodes(old, old_nodes, maxnode);
1607 	if (err)
1608 		goto out;
1609 
1610 	err = get_nodes(new, new_nodes, maxnode);
1611 	if (err)
1612 		goto out;
1613 
1614 	/* Find the mm_struct */
1615 	rcu_read_lock();
1616 	task = pid ? find_task_by_vpid(pid) : current;
1617 	if (!task) {
1618 		rcu_read_unlock();
1619 		err = -ESRCH;
1620 		goto out;
1621 	}
1622 	get_task_struct(task);
1623 
1624 	err = -EINVAL;
1625 
1626 	/*
1627 	 * Check if this process has the right to modify the specified process.
1628 	 * Use the regular "ptrace_may_access()" checks.
1629 	 */
1630 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1631 		rcu_read_unlock();
1632 		err = -EPERM;
1633 		goto out_put;
1634 	}
1635 	rcu_read_unlock();
1636 
1637 	task_nodes = cpuset_mems_allowed(task);
1638 	/* Is the user allowed to access the target nodes? */
1639 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1640 		err = -EPERM;
1641 		goto out_put;
1642 	}
1643 
1644 	task_nodes = cpuset_mems_allowed(current);
1645 	nodes_and(*new, *new, task_nodes);
1646 	if (nodes_empty(*new))
1647 		goto out_put;
1648 
1649 	err = security_task_movememory(task);
1650 	if (err)
1651 		goto out_put;
1652 
1653 	mm = get_task_mm(task);
1654 	put_task_struct(task);
1655 
1656 	if (!mm) {
1657 		err = -EINVAL;
1658 		goto out;
1659 	}
1660 
1661 	err = do_migrate_pages(mm, old, new,
1662 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1663 
1664 	mmput(mm);
1665 out:
1666 	NODEMASK_SCRATCH_FREE(scratch);
1667 
1668 	return err;
1669 
1670 out_put:
1671 	put_task_struct(task);
1672 	goto out;
1673 
1674 }
1675 
1676 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1677 		const unsigned long __user *, old_nodes,
1678 		const unsigned long __user *, new_nodes)
1679 {
1680 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1681 }
1682 
1683 
1684 /* Retrieve NUMA policy */
1685 static int kernel_get_mempolicy(int __user *policy,
1686 				unsigned long __user *nmask,
1687 				unsigned long maxnode,
1688 				unsigned long addr,
1689 				unsigned long flags)
1690 {
1691 	int err;
1692 	int pval;
1693 	nodemask_t nodes;
1694 
1695 	if (nmask != NULL && maxnode < nr_node_ids)
1696 		return -EINVAL;
1697 
1698 	addr = untagged_addr(addr);
1699 
1700 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1701 
1702 	if (err)
1703 		return err;
1704 
1705 	if (policy && put_user(pval, policy))
1706 		return -EFAULT;
1707 
1708 	if (nmask)
1709 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1710 
1711 	return err;
1712 }
1713 
1714 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1715 		unsigned long __user *, nmask, unsigned long, maxnode,
1716 		unsigned long, addr, unsigned long, flags)
1717 {
1718 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1719 }
1720 
1721 bool vma_migratable(struct vm_area_struct *vma)
1722 {
1723 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1724 		return false;
1725 
1726 	/*
1727 	 * DAX device mappings require predictable access latency, so avoid
1728 	 * incurring periodic faults.
1729 	 */
1730 	if (vma_is_dax(vma))
1731 		return false;
1732 
1733 	if (is_vm_hugetlb_page(vma) &&
1734 		!hugepage_migration_supported(hstate_vma(vma)))
1735 		return false;
1736 
1737 	/*
1738 	 * Migration allocates pages in the highest zone. If we cannot
1739 	 * do so then migration (at least from node to node) is not
1740 	 * possible.
1741 	 */
1742 	if (vma->vm_file &&
1743 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1744 			< policy_zone)
1745 		return false;
1746 	return true;
1747 }
1748 
1749 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1750 						unsigned long addr)
1751 {
1752 	struct mempolicy *pol = NULL;
1753 
1754 	if (vma) {
1755 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1756 			pol = vma->vm_ops->get_policy(vma, addr);
1757 		} else if (vma->vm_policy) {
1758 			pol = vma->vm_policy;
1759 
1760 			/*
1761 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1762 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1763 			 * count on these policies which will be dropped by
1764 			 * mpol_cond_put() later
1765 			 */
1766 			if (mpol_needs_cond_ref(pol))
1767 				mpol_get(pol);
1768 		}
1769 	}
1770 
1771 	return pol;
1772 }
1773 
1774 /*
1775  * get_vma_policy(@vma, @addr)
1776  * @vma: virtual memory area whose policy is sought
1777  * @addr: address in @vma for shared policy lookup
1778  *
1779  * Returns effective policy for a VMA at specified address.
1780  * Falls back to current->mempolicy or system default policy, as necessary.
1781  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1782  * count--added by the get_policy() vm_op, as appropriate--to protect against
1783  * freeing by another task.  It is the caller's responsibility to free the
1784  * extra reference for shared policies.
1785  */
1786 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1787 						unsigned long addr)
1788 {
1789 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1790 
1791 	if (!pol)
1792 		pol = get_task_policy(current);
1793 
1794 	return pol;
1795 }
1796 
1797 bool vma_policy_mof(struct vm_area_struct *vma)
1798 {
1799 	struct mempolicy *pol;
1800 
1801 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1802 		bool ret = false;
1803 
1804 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1805 		if (pol && (pol->flags & MPOL_F_MOF))
1806 			ret = true;
1807 		mpol_cond_put(pol);
1808 
1809 		return ret;
1810 	}
1811 
1812 	pol = vma->vm_policy;
1813 	if (!pol)
1814 		pol = get_task_policy(current);
1815 
1816 	return pol->flags & MPOL_F_MOF;
1817 }
1818 
1819 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1820 {
1821 	enum zone_type dynamic_policy_zone = policy_zone;
1822 
1823 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1824 
1825 	/*
1826 	 * if policy->nodes has movable memory only,
1827 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1828 	 *
1829 	 * policy->nodes is intersect with node_states[N_MEMORY].
1830 	 * so if the following test fails, it implies
1831 	 * policy->nodes has movable memory only.
1832 	 */
1833 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1834 		dynamic_policy_zone = ZONE_MOVABLE;
1835 
1836 	return zone >= dynamic_policy_zone;
1837 }
1838 
1839 /*
1840  * Return a nodemask representing a mempolicy for filtering nodes for
1841  * page allocation
1842  */
1843 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1844 {
1845 	int mode = policy->mode;
1846 
1847 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1848 	if (unlikely(mode == MPOL_BIND) &&
1849 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1850 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1851 		return &policy->nodes;
1852 
1853 	if (mode == MPOL_PREFERRED_MANY)
1854 		return &policy->nodes;
1855 
1856 	return NULL;
1857 }
1858 
1859 /*
1860  * Return the  preferred node id for 'prefer' mempolicy, and return
1861  * the given id for all other policies.
1862  *
1863  * policy_node() is always coupled with policy_nodemask(), which
1864  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1865  */
1866 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1867 {
1868 	if (policy->mode == MPOL_PREFERRED) {
1869 		nd = first_node(policy->nodes);
1870 	} else {
1871 		/*
1872 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1873 		 * because we might easily break the expectation to stay on the
1874 		 * requested node and not break the policy.
1875 		 */
1876 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1877 	}
1878 
1879 	if ((policy->mode == MPOL_BIND ||
1880 	     policy->mode == MPOL_PREFERRED_MANY) &&
1881 	    policy->home_node != NUMA_NO_NODE)
1882 		return policy->home_node;
1883 
1884 	return nd;
1885 }
1886 
1887 /* Do dynamic interleaving for a process */
1888 static unsigned interleave_nodes(struct mempolicy *policy)
1889 {
1890 	unsigned next;
1891 	struct task_struct *me = current;
1892 
1893 	next = next_node_in(me->il_prev, policy->nodes);
1894 	if (next < MAX_NUMNODES)
1895 		me->il_prev = next;
1896 	return next;
1897 }
1898 
1899 /*
1900  * Depending on the memory policy provide a node from which to allocate the
1901  * next slab entry.
1902  */
1903 unsigned int mempolicy_slab_node(void)
1904 {
1905 	struct mempolicy *policy;
1906 	int node = numa_mem_id();
1907 
1908 	if (!in_task())
1909 		return node;
1910 
1911 	policy = current->mempolicy;
1912 	if (!policy)
1913 		return node;
1914 
1915 	switch (policy->mode) {
1916 	case MPOL_PREFERRED:
1917 		return first_node(policy->nodes);
1918 
1919 	case MPOL_INTERLEAVE:
1920 		return interleave_nodes(policy);
1921 
1922 	case MPOL_BIND:
1923 	case MPOL_PREFERRED_MANY:
1924 	{
1925 		struct zoneref *z;
1926 
1927 		/*
1928 		 * Follow bind policy behavior and start allocation at the
1929 		 * first node.
1930 		 */
1931 		struct zonelist *zonelist;
1932 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1933 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1934 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1935 							&policy->nodes);
1936 		return z->zone ? zone_to_nid(z->zone) : node;
1937 	}
1938 	case MPOL_LOCAL:
1939 		return node;
1940 
1941 	default:
1942 		BUG();
1943 	}
1944 }
1945 
1946 /*
1947  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1948  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1949  * number of present nodes.
1950  */
1951 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1952 {
1953 	nodemask_t nodemask = pol->nodes;
1954 	unsigned int target, nnodes;
1955 	int i;
1956 	int nid;
1957 	/*
1958 	 * The barrier will stabilize the nodemask in a register or on
1959 	 * the stack so that it will stop changing under the code.
1960 	 *
1961 	 * Between first_node() and next_node(), pol->nodes could be changed
1962 	 * by other threads. So we put pol->nodes in a local stack.
1963 	 */
1964 	barrier();
1965 
1966 	nnodes = nodes_weight(nodemask);
1967 	if (!nnodes)
1968 		return numa_node_id();
1969 	target = (unsigned int)n % nnodes;
1970 	nid = first_node(nodemask);
1971 	for (i = 0; i < target; i++)
1972 		nid = next_node(nid, nodemask);
1973 	return nid;
1974 }
1975 
1976 /* Determine a node number for interleave */
1977 static inline unsigned interleave_nid(struct mempolicy *pol,
1978 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1979 {
1980 	if (vma) {
1981 		unsigned long off;
1982 
1983 		/*
1984 		 * for small pages, there is no difference between
1985 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 		 * for huge pages, since vm_pgoff is in units of small
1987 		 * pages, we need to shift off the always 0 bits to get
1988 		 * a useful offset.
1989 		 */
1990 		BUG_ON(shift < PAGE_SHIFT);
1991 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1992 		off += (addr - vma->vm_start) >> shift;
1993 		return offset_il_node(pol, off);
1994 	} else
1995 		return interleave_nodes(pol);
1996 }
1997 
1998 #ifdef CONFIG_HUGETLBFS
1999 /*
2000  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001  * @vma: virtual memory area whose policy is sought
2002  * @addr: address in @vma for shared policy lookup and interleave policy
2003  * @gfp_flags: for requested zone
2004  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2006  *
2007  * Returns a nid suitable for a huge page allocation and a pointer
2008  * to the struct mempolicy for conditional unref after allocation.
2009  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2010  * to the mempolicy's @nodemask for filtering the zonelist.
2011  *
2012  * Must be protected by read_mems_allowed_begin()
2013  */
2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2015 				struct mempolicy **mpol, nodemask_t **nodemask)
2016 {
2017 	int nid;
2018 	int mode;
2019 
2020 	*mpol = get_vma_policy(vma, addr);
2021 	*nodemask = NULL;
2022 	mode = (*mpol)->mode;
2023 
2024 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2025 		nid = interleave_nid(*mpol, vma, addr,
2026 					huge_page_shift(hstate_vma(vma)));
2027 	} else {
2028 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2029 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2030 			*nodemask = &(*mpol)->nodes;
2031 	}
2032 	return nid;
2033 }
2034 
2035 /*
2036  * init_nodemask_of_mempolicy
2037  *
2038  * If the current task's mempolicy is "default" [NULL], return 'false'
2039  * to indicate default policy.  Otherwise, extract the policy nodemask
2040  * for 'bind' or 'interleave' policy into the argument nodemask, or
2041  * initialize the argument nodemask to contain the single node for
2042  * 'preferred' or 'local' policy and return 'true' to indicate presence
2043  * of non-default mempolicy.
2044  *
2045  * We don't bother with reference counting the mempolicy [mpol_get/put]
2046  * because the current task is examining it's own mempolicy and a task's
2047  * mempolicy is only ever changed by the task itself.
2048  *
2049  * N.B., it is the caller's responsibility to free a returned nodemask.
2050  */
2051 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2052 {
2053 	struct mempolicy *mempolicy;
2054 
2055 	if (!(mask && current->mempolicy))
2056 		return false;
2057 
2058 	task_lock(current);
2059 	mempolicy = current->mempolicy;
2060 	switch (mempolicy->mode) {
2061 	case MPOL_PREFERRED:
2062 	case MPOL_PREFERRED_MANY:
2063 	case MPOL_BIND:
2064 	case MPOL_INTERLEAVE:
2065 		*mask = mempolicy->nodes;
2066 		break;
2067 
2068 	case MPOL_LOCAL:
2069 		init_nodemask_of_node(mask, numa_node_id());
2070 		break;
2071 
2072 	default:
2073 		BUG();
2074 	}
2075 	task_unlock(current);
2076 
2077 	return true;
2078 }
2079 #endif
2080 
2081 /*
2082  * mempolicy_in_oom_domain
2083  *
2084  * If tsk's mempolicy is "bind", check for intersection between mask and
2085  * the policy nodemask. Otherwise, return true for all other policies
2086  * including "interleave", as a tsk with "interleave" policy may have
2087  * memory allocated from all nodes in system.
2088  *
2089  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2090  */
2091 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2092 					const nodemask_t *mask)
2093 {
2094 	struct mempolicy *mempolicy;
2095 	bool ret = true;
2096 
2097 	if (!mask)
2098 		return ret;
2099 
2100 	task_lock(tsk);
2101 	mempolicy = tsk->mempolicy;
2102 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2103 		ret = nodes_intersects(mempolicy->nodes, *mask);
2104 	task_unlock(tsk);
2105 
2106 	return ret;
2107 }
2108 
2109 /* Allocate a page in interleaved policy.
2110    Own path because it needs to do special accounting. */
2111 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2112 					unsigned nid)
2113 {
2114 	struct page *page;
2115 
2116 	page = __alloc_pages(gfp, order, nid, NULL);
2117 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2118 	if (!static_branch_likely(&vm_numa_stat_key))
2119 		return page;
2120 	if (page && page_to_nid(page) == nid) {
2121 		preempt_disable();
2122 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2123 		preempt_enable();
2124 	}
2125 	return page;
2126 }
2127 
2128 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2129 						int nid, struct mempolicy *pol)
2130 {
2131 	struct page *page;
2132 	gfp_t preferred_gfp;
2133 
2134 	/*
2135 	 * This is a two pass approach. The first pass will only try the
2136 	 * preferred nodes but skip the direct reclaim and allow the
2137 	 * allocation to fail, while the second pass will try all the
2138 	 * nodes in system.
2139 	 */
2140 	preferred_gfp = gfp | __GFP_NOWARN;
2141 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2142 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2143 	if (!page)
2144 		page = __alloc_pages(gfp, order, nid, NULL);
2145 
2146 	return page;
2147 }
2148 
2149 /**
2150  * vma_alloc_folio - Allocate a folio for a VMA.
2151  * @gfp: GFP flags.
2152  * @order: Order of the folio.
2153  * @vma: Pointer to VMA or NULL if not available.
2154  * @addr: Virtual address of the allocation.  Must be inside @vma.
2155  * @hugepage: For hugepages try only the preferred node if possible.
2156  *
2157  * Allocate a folio for a specific address in @vma, using the appropriate
2158  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2159  * of the mm_struct of the VMA to prevent it from going away.  Should be
2160  * used for all allocations for folios that will be mapped into user space.
2161  *
2162  * Return: The folio on success or NULL if allocation fails.
2163  */
2164 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2165 		unsigned long addr, bool hugepage)
2166 {
2167 	struct mempolicy *pol;
2168 	int node = numa_node_id();
2169 	struct folio *folio;
2170 	int preferred_nid;
2171 	nodemask_t *nmask;
2172 
2173 	pol = get_vma_policy(vma, addr);
2174 
2175 	if (pol->mode == MPOL_INTERLEAVE) {
2176 		struct page *page;
2177 		unsigned nid;
2178 
2179 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2180 		mpol_cond_put(pol);
2181 		gfp |= __GFP_COMP;
2182 		page = alloc_page_interleave(gfp, order, nid);
2183 		if (page && order > 1)
2184 			prep_transhuge_page(page);
2185 		folio = (struct folio *)page;
2186 		goto out;
2187 	}
2188 
2189 	if (pol->mode == MPOL_PREFERRED_MANY) {
2190 		struct page *page;
2191 
2192 		node = policy_node(gfp, pol, node);
2193 		gfp |= __GFP_COMP;
2194 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2195 		mpol_cond_put(pol);
2196 		if (page && order > 1)
2197 			prep_transhuge_page(page);
2198 		folio = (struct folio *)page;
2199 		goto out;
2200 	}
2201 
2202 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2203 		int hpage_node = node;
2204 
2205 		/*
2206 		 * For hugepage allocation and non-interleave policy which
2207 		 * allows the current node (or other explicitly preferred
2208 		 * node) we only try to allocate from the current/preferred
2209 		 * node and don't fall back to other nodes, as the cost of
2210 		 * remote accesses would likely offset THP benefits.
2211 		 *
2212 		 * If the policy is interleave or does not allow the current
2213 		 * node in its nodemask, we allocate the standard way.
2214 		 */
2215 		if (pol->mode == MPOL_PREFERRED)
2216 			hpage_node = first_node(pol->nodes);
2217 
2218 		nmask = policy_nodemask(gfp, pol);
2219 		if (!nmask || node_isset(hpage_node, *nmask)) {
2220 			mpol_cond_put(pol);
2221 			/*
2222 			 * First, try to allocate THP only on local node, but
2223 			 * don't reclaim unnecessarily, just compact.
2224 			 */
2225 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2226 					__GFP_NORETRY, order, hpage_node);
2227 
2228 			/*
2229 			 * If hugepage allocations are configured to always
2230 			 * synchronous compact or the vma has been madvised
2231 			 * to prefer hugepage backing, retry allowing remote
2232 			 * memory with both reclaim and compact as well.
2233 			 */
2234 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2235 				folio = __folio_alloc(gfp, order, hpage_node,
2236 						      nmask);
2237 
2238 			goto out;
2239 		}
2240 	}
2241 
2242 	nmask = policy_nodemask(gfp, pol);
2243 	preferred_nid = policy_node(gfp, pol, node);
2244 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2245 	mpol_cond_put(pol);
2246 out:
2247 	return folio;
2248 }
2249 EXPORT_SYMBOL(vma_alloc_folio);
2250 
2251 /**
2252  * alloc_pages - Allocate pages.
2253  * @gfp: GFP flags.
2254  * @order: Power of two of number of pages to allocate.
2255  *
2256  * Allocate 1 << @order contiguous pages.  The physical address of the
2257  * first page is naturally aligned (eg an order-3 allocation will be aligned
2258  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2259  * process is honoured when in process context.
2260  *
2261  * Context: Can be called from any context, providing the appropriate GFP
2262  * flags are used.
2263  * Return: The page on success or NULL if allocation fails.
2264  */
2265 struct page *alloc_pages(gfp_t gfp, unsigned order)
2266 {
2267 	struct mempolicy *pol = &default_policy;
2268 	struct page *page;
2269 
2270 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2271 		pol = get_task_policy(current);
2272 
2273 	/*
2274 	 * No reference counting needed for current->mempolicy
2275 	 * nor system default_policy
2276 	 */
2277 	if (pol->mode == MPOL_INTERLEAVE)
2278 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2279 	else if (pol->mode == MPOL_PREFERRED_MANY)
2280 		page = alloc_pages_preferred_many(gfp, order,
2281 				  policy_node(gfp, pol, numa_node_id()), pol);
2282 	else
2283 		page = __alloc_pages(gfp, order,
2284 				policy_node(gfp, pol, numa_node_id()),
2285 				policy_nodemask(gfp, pol));
2286 
2287 	return page;
2288 }
2289 EXPORT_SYMBOL(alloc_pages);
2290 
2291 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2292 {
2293 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2294 
2295 	if (page && order > 1)
2296 		prep_transhuge_page(page);
2297 	return (struct folio *)page;
2298 }
2299 EXPORT_SYMBOL(folio_alloc);
2300 
2301 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2302 		struct mempolicy *pol, unsigned long nr_pages,
2303 		struct page **page_array)
2304 {
2305 	int nodes;
2306 	unsigned long nr_pages_per_node;
2307 	int delta;
2308 	int i;
2309 	unsigned long nr_allocated;
2310 	unsigned long total_allocated = 0;
2311 
2312 	nodes = nodes_weight(pol->nodes);
2313 	nr_pages_per_node = nr_pages / nodes;
2314 	delta = nr_pages - nodes * nr_pages_per_node;
2315 
2316 	for (i = 0; i < nodes; i++) {
2317 		if (delta) {
2318 			nr_allocated = __alloc_pages_bulk(gfp,
2319 					interleave_nodes(pol), NULL,
2320 					nr_pages_per_node + 1, NULL,
2321 					page_array);
2322 			delta--;
2323 		} else {
2324 			nr_allocated = __alloc_pages_bulk(gfp,
2325 					interleave_nodes(pol), NULL,
2326 					nr_pages_per_node, NULL, page_array);
2327 		}
2328 
2329 		page_array += nr_allocated;
2330 		total_allocated += nr_allocated;
2331 	}
2332 
2333 	return total_allocated;
2334 }
2335 
2336 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2337 		struct mempolicy *pol, unsigned long nr_pages,
2338 		struct page **page_array)
2339 {
2340 	gfp_t preferred_gfp;
2341 	unsigned long nr_allocated = 0;
2342 
2343 	preferred_gfp = gfp | __GFP_NOWARN;
2344 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2345 
2346 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2347 					   nr_pages, NULL, page_array);
2348 
2349 	if (nr_allocated < nr_pages)
2350 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2351 				nr_pages - nr_allocated, NULL,
2352 				page_array + nr_allocated);
2353 	return nr_allocated;
2354 }
2355 
2356 /* alloc pages bulk and mempolicy should be considered at the
2357  * same time in some situation such as vmalloc.
2358  *
2359  * It can accelerate memory allocation especially interleaving
2360  * allocate memory.
2361  */
2362 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2363 		unsigned long nr_pages, struct page **page_array)
2364 {
2365 	struct mempolicy *pol = &default_policy;
2366 
2367 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2368 		pol = get_task_policy(current);
2369 
2370 	if (pol->mode == MPOL_INTERLEAVE)
2371 		return alloc_pages_bulk_array_interleave(gfp, pol,
2372 							 nr_pages, page_array);
2373 
2374 	if (pol->mode == MPOL_PREFERRED_MANY)
2375 		return alloc_pages_bulk_array_preferred_many(gfp,
2376 				numa_node_id(), pol, nr_pages, page_array);
2377 
2378 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2379 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2380 				  page_array);
2381 }
2382 
2383 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2384 {
2385 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2386 
2387 	if (IS_ERR(pol))
2388 		return PTR_ERR(pol);
2389 	dst->vm_policy = pol;
2390 	return 0;
2391 }
2392 
2393 /*
2394  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2395  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2396  * with the mems_allowed returned by cpuset_mems_allowed().  This
2397  * keeps mempolicies cpuset relative after its cpuset moves.  See
2398  * further kernel/cpuset.c update_nodemask().
2399  *
2400  * current's mempolicy may be rebinded by the other task(the task that changes
2401  * cpuset's mems), so we needn't do rebind work for current task.
2402  */
2403 
2404 /* Slow path of a mempolicy duplicate */
2405 struct mempolicy *__mpol_dup(struct mempolicy *old)
2406 {
2407 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2408 
2409 	if (!new)
2410 		return ERR_PTR(-ENOMEM);
2411 
2412 	/* task's mempolicy is protected by alloc_lock */
2413 	if (old == current->mempolicy) {
2414 		task_lock(current);
2415 		*new = *old;
2416 		task_unlock(current);
2417 	} else
2418 		*new = *old;
2419 
2420 	if (current_cpuset_is_being_rebound()) {
2421 		nodemask_t mems = cpuset_mems_allowed(current);
2422 		mpol_rebind_policy(new, &mems);
2423 	}
2424 	atomic_set(&new->refcnt, 1);
2425 	return new;
2426 }
2427 
2428 /* Slow path of a mempolicy comparison */
2429 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2430 {
2431 	if (!a || !b)
2432 		return false;
2433 	if (a->mode != b->mode)
2434 		return false;
2435 	if (a->flags != b->flags)
2436 		return false;
2437 	if (a->home_node != b->home_node)
2438 		return false;
2439 	if (mpol_store_user_nodemask(a))
2440 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2441 			return false;
2442 
2443 	switch (a->mode) {
2444 	case MPOL_BIND:
2445 	case MPOL_INTERLEAVE:
2446 	case MPOL_PREFERRED:
2447 	case MPOL_PREFERRED_MANY:
2448 		return !!nodes_equal(a->nodes, b->nodes);
2449 	case MPOL_LOCAL:
2450 		return true;
2451 	default:
2452 		BUG();
2453 		return false;
2454 	}
2455 }
2456 
2457 /*
2458  * Shared memory backing store policy support.
2459  *
2460  * Remember policies even when nobody has shared memory mapped.
2461  * The policies are kept in Red-Black tree linked from the inode.
2462  * They are protected by the sp->lock rwlock, which should be held
2463  * for any accesses to the tree.
2464  */
2465 
2466 /*
2467  * lookup first element intersecting start-end.  Caller holds sp->lock for
2468  * reading or for writing
2469  */
2470 static struct sp_node *
2471 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2472 {
2473 	struct rb_node *n = sp->root.rb_node;
2474 
2475 	while (n) {
2476 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2477 
2478 		if (start >= p->end)
2479 			n = n->rb_right;
2480 		else if (end <= p->start)
2481 			n = n->rb_left;
2482 		else
2483 			break;
2484 	}
2485 	if (!n)
2486 		return NULL;
2487 	for (;;) {
2488 		struct sp_node *w = NULL;
2489 		struct rb_node *prev = rb_prev(n);
2490 		if (!prev)
2491 			break;
2492 		w = rb_entry(prev, struct sp_node, nd);
2493 		if (w->end <= start)
2494 			break;
2495 		n = prev;
2496 	}
2497 	return rb_entry(n, struct sp_node, nd);
2498 }
2499 
2500 /*
2501  * Insert a new shared policy into the list.  Caller holds sp->lock for
2502  * writing.
2503  */
2504 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2505 {
2506 	struct rb_node **p = &sp->root.rb_node;
2507 	struct rb_node *parent = NULL;
2508 	struct sp_node *nd;
2509 
2510 	while (*p) {
2511 		parent = *p;
2512 		nd = rb_entry(parent, struct sp_node, nd);
2513 		if (new->start < nd->start)
2514 			p = &(*p)->rb_left;
2515 		else if (new->end > nd->end)
2516 			p = &(*p)->rb_right;
2517 		else
2518 			BUG();
2519 	}
2520 	rb_link_node(&new->nd, parent, p);
2521 	rb_insert_color(&new->nd, &sp->root);
2522 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2523 		 new->policy ? new->policy->mode : 0);
2524 }
2525 
2526 /* Find shared policy intersecting idx */
2527 struct mempolicy *
2528 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2529 {
2530 	struct mempolicy *pol = NULL;
2531 	struct sp_node *sn;
2532 
2533 	if (!sp->root.rb_node)
2534 		return NULL;
2535 	read_lock(&sp->lock);
2536 	sn = sp_lookup(sp, idx, idx+1);
2537 	if (sn) {
2538 		mpol_get(sn->policy);
2539 		pol = sn->policy;
2540 	}
2541 	read_unlock(&sp->lock);
2542 	return pol;
2543 }
2544 
2545 static void sp_free(struct sp_node *n)
2546 {
2547 	mpol_put(n->policy);
2548 	kmem_cache_free(sn_cache, n);
2549 }
2550 
2551 /**
2552  * mpol_misplaced - check whether current page node is valid in policy
2553  *
2554  * @page: page to be checked
2555  * @vma: vm area where page mapped
2556  * @addr: virtual address where page mapped
2557  *
2558  * Lookup current policy node id for vma,addr and "compare to" page's
2559  * node id.  Policy determination "mimics" alloc_page_vma().
2560  * Called from fault path where we know the vma and faulting address.
2561  *
2562  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2563  * policy, or a suitable node ID to allocate a replacement page from.
2564  */
2565 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2566 {
2567 	struct mempolicy *pol;
2568 	struct zoneref *z;
2569 	int curnid = page_to_nid(page);
2570 	unsigned long pgoff;
2571 	int thiscpu = raw_smp_processor_id();
2572 	int thisnid = cpu_to_node(thiscpu);
2573 	int polnid = NUMA_NO_NODE;
2574 	int ret = NUMA_NO_NODE;
2575 
2576 	pol = get_vma_policy(vma, addr);
2577 	if (!(pol->flags & MPOL_F_MOF))
2578 		goto out;
2579 
2580 	switch (pol->mode) {
2581 	case MPOL_INTERLEAVE:
2582 		pgoff = vma->vm_pgoff;
2583 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2584 		polnid = offset_il_node(pol, pgoff);
2585 		break;
2586 
2587 	case MPOL_PREFERRED:
2588 		if (node_isset(curnid, pol->nodes))
2589 			goto out;
2590 		polnid = first_node(pol->nodes);
2591 		break;
2592 
2593 	case MPOL_LOCAL:
2594 		polnid = numa_node_id();
2595 		break;
2596 
2597 	case MPOL_BIND:
2598 		/* Optimize placement among multiple nodes via NUMA balancing */
2599 		if (pol->flags & MPOL_F_MORON) {
2600 			if (node_isset(thisnid, pol->nodes))
2601 				break;
2602 			goto out;
2603 		}
2604 		fallthrough;
2605 
2606 	case MPOL_PREFERRED_MANY:
2607 		/*
2608 		 * use current page if in policy nodemask,
2609 		 * else select nearest allowed node, if any.
2610 		 * If no allowed nodes, use current [!misplaced].
2611 		 */
2612 		if (node_isset(curnid, pol->nodes))
2613 			goto out;
2614 		z = first_zones_zonelist(
2615 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2616 				gfp_zone(GFP_HIGHUSER),
2617 				&pol->nodes);
2618 		polnid = zone_to_nid(z->zone);
2619 		break;
2620 
2621 	default:
2622 		BUG();
2623 	}
2624 
2625 	/* Migrate the page towards the node whose CPU is referencing it */
2626 	if (pol->flags & MPOL_F_MORON) {
2627 		polnid = thisnid;
2628 
2629 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2630 			goto out;
2631 	}
2632 
2633 	if (curnid != polnid)
2634 		ret = polnid;
2635 out:
2636 	mpol_cond_put(pol);
2637 
2638 	return ret;
2639 }
2640 
2641 /*
2642  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2643  * dropped after task->mempolicy is set to NULL so that any allocation done as
2644  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2645  * policy.
2646  */
2647 void mpol_put_task_policy(struct task_struct *task)
2648 {
2649 	struct mempolicy *pol;
2650 
2651 	task_lock(task);
2652 	pol = task->mempolicy;
2653 	task->mempolicy = NULL;
2654 	task_unlock(task);
2655 	mpol_put(pol);
2656 }
2657 
2658 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2659 {
2660 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2661 	rb_erase(&n->nd, &sp->root);
2662 	sp_free(n);
2663 }
2664 
2665 static void sp_node_init(struct sp_node *node, unsigned long start,
2666 			unsigned long end, struct mempolicy *pol)
2667 {
2668 	node->start = start;
2669 	node->end = end;
2670 	node->policy = pol;
2671 }
2672 
2673 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2674 				struct mempolicy *pol)
2675 {
2676 	struct sp_node *n;
2677 	struct mempolicy *newpol;
2678 
2679 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2680 	if (!n)
2681 		return NULL;
2682 
2683 	newpol = mpol_dup(pol);
2684 	if (IS_ERR(newpol)) {
2685 		kmem_cache_free(sn_cache, n);
2686 		return NULL;
2687 	}
2688 	newpol->flags |= MPOL_F_SHARED;
2689 	sp_node_init(n, start, end, newpol);
2690 
2691 	return n;
2692 }
2693 
2694 /* Replace a policy range. */
2695 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2696 				 unsigned long end, struct sp_node *new)
2697 {
2698 	struct sp_node *n;
2699 	struct sp_node *n_new = NULL;
2700 	struct mempolicy *mpol_new = NULL;
2701 	int ret = 0;
2702 
2703 restart:
2704 	write_lock(&sp->lock);
2705 	n = sp_lookup(sp, start, end);
2706 	/* Take care of old policies in the same range. */
2707 	while (n && n->start < end) {
2708 		struct rb_node *next = rb_next(&n->nd);
2709 		if (n->start >= start) {
2710 			if (n->end <= end)
2711 				sp_delete(sp, n);
2712 			else
2713 				n->start = end;
2714 		} else {
2715 			/* Old policy spanning whole new range. */
2716 			if (n->end > end) {
2717 				if (!n_new)
2718 					goto alloc_new;
2719 
2720 				*mpol_new = *n->policy;
2721 				atomic_set(&mpol_new->refcnt, 1);
2722 				sp_node_init(n_new, end, n->end, mpol_new);
2723 				n->end = start;
2724 				sp_insert(sp, n_new);
2725 				n_new = NULL;
2726 				mpol_new = NULL;
2727 				break;
2728 			} else
2729 				n->end = start;
2730 		}
2731 		if (!next)
2732 			break;
2733 		n = rb_entry(next, struct sp_node, nd);
2734 	}
2735 	if (new)
2736 		sp_insert(sp, new);
2737 	write_unlock(&sp->lock);
2738 	ret = 0;
2739 
2740 err_out:
2741 	if (mpol_new)
2742 		mpol_put(mpol_new);
2743 	if (n_new)
2744 		kmem_cache_free(sn_cache, n_new);
2745 
2746 	return ret;
2747 
2748 alloc_new:
2749 	write_unlock(&sp->lock);
2750 	ret = -ENOMEM;
2751 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2752 	if (!n_new)
2753 		goto err_out;
2754 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2755 	if (!mpol_new)
2756 		goto err_out;
2757 	atomic_set(&mpol_new->refcnt, 1);
2758 	goto restart;
2759 }
2760 
2761 /**
2762  * mpol_shared_policy_init - initialize shared policy for inode
2763  * @sp: pointer to inode shared policy
2764  * @mpol:  struct mempolicy to install
2765  *
2766  * Install non-NULL @mpol in inode's shared policy rb-tree.
2767  * On entry, the current task has a reference on a non-NULL @mpol.
2768  * This must be released on exit.
2769  * This is called at get_inode() calls and we can use GFP_KERNEL.
2770  */
2771 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2772 {
2773 	int ret;
2774 
2775 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2776 	rwlock_init(&sp->lock);
2777 
2778 	if (mpol) {
2779 		struct vm_area_struct pvma;
2780 		struct mempolicy *new;
2781 		NODEMASK_SCRATCH(scratch);
2782 
2783 		if (!scratch)
2784 			goto put_mpol;
2785 		/* contextualize the tmpfs mount point mempolicy */
2786 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2787 		if (IS_ERR(new))
2788 			goto free_scratch; /* no valid nodemask intersection */
2789 
2790 		task_lock(current);
2791 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2792 		task_unlock(current);
2793 		if (ret)
2794 			goto put_new;
2795 
2796 		/* Create pseudo-vma that contains just the policy */
2797 		vma_init(&pvma, NULL);
2798 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2799 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2800 
2801 put_new:
2802 		mpol_put(new);			/* drop initial ref */
2803 free_scratch:
2804 		NODEMASK_SCRATCH_FREE(scratch);
2805 put_mpol:
2806 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2807 	}
2808 }
2809 
2810 int mpol_set_shared_policy(struct shared_policy *info,
2811 			struct vm_area_struct *vma, struct mempolicy *npol)
2812 {
2813 	int err;
2814 	struct sp_node *new = NULL;
2815 	unsigned long sz = vma_pages(vma);
2816 
2817 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2818 		 vma->vm_pgoff,
2819 		 sz, npol ? npol->mode : -1,
2820 		 npol ? npol->flags : -1,
2821 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2822 
2823 	if (npol) {
2824 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2825 		if (!new)
2826 			return -ENOMEM;
2827 	}
2828 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2829 	if (err && new)
2830 		sp_free(new);
2831 	return err;
2832 }
2833 
2834 /* Free a backing policy store on inode delete. */
2835 void mpol_free_shared_policy(struct shared_policy *p)
2836 {
2837 	struct sp_node *n;
2838 	struct rb_node *next;
2839 
2840 	if (!p->root.rb_node)
2841 		return;
2842 	write_lock(&p->lock);
2843 	next = rb_first(&p->root);
2844 	while (next) {
2845 		n = rb_entry(next, struct sp_node, nd);
2846 		next = rb_next(&n->nd);
2847 		sp_delete(p, n);
2848 	}
2849 	write_unlock(&p->lock);
2850 }
2851 
2852 #ifdef CONFIG_NUMA_BALANCING
2853 static int __initdata numabalancing_override;
2854 
2855 static void __init check_numabalancing_enable(void)
2856 {
2857 	bool numabalancing_default = false;
2858 
2859 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2860 		numabalancing_default = true;
2861 
2862 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2863 	if (numabalancing_override)
2864 		set_numabalancing_state(numabalancing_override == 1);
2865 
2866 	if (num_online_nodes() > 1 && !numabalancing_override) {
2867 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2868 			numabalancing_default ? "Enabling" : "Disabling");
2869 		set_numabalancing_state(numabalancing_default);
2870 	}
2871 }
2872 
2873 static int __init setup_numabalancing(char *str)
2874 {
2875 	int ret = 0;
2876 	if (!str)
2877 		goto out;
2878 
2879 	if (!strcmp(str, "enable")) {
2880 		numabalancing_override = 1;
2881 		ret = 1;
2882 	} else if (!strcmp(str, "disable")) {
2883 		numabalancing_override = -1;
2884 		ret = 1;
2885 	}
2886 out:
2887 	if (!ret)
2888 		pr_warn("Unable to parse numa_balancing=\n");
2889 
2890 	return ret;
2891 }
2892 __setup("numa_balancing=", setup_numabalancing);
2893 #else
2894 static inline void __init check_numabalancing_enable(void)
2895 {
2896 }
2897 #endif /* CONFIG_NUMA_BALANCING */
2898 
2899 /* assumes fs == KERNEL_DS */
2900 void __init numa_policy_init(void)
2901 {
2902 	nodemask_t interleave_nodes;
2903 	unsigned long largest = 0;
2904 	int nid, prefer = 0;
2905 
2906 	policy_cache = kmem_cache_create("numa_policy",
2907 					 sizeof(struct mempolicy),
2908 					 0, SLAB_PANIC, NULL);
2909 
2910 	sn_cache = kmem_cache_create("shared_policy_node",
2911 				     sizeof(struct sp_node),
2912 				     0, SLAB_PANIC, NULL);
2913 
2914 	for_each_node(nid) {
2915 		preferred_node_policy[nid] = (struct mempolicy) {
2916 			.refcnt = ATOMIC_INIT(1),
2917 			.mode = MPOL_PREFERRED,
2918 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2919 			.nodes = nodemask_of_node(nid),
2920 		};
2921 	}
2922 
2923 	/*
2924 	 * Set interleaving policy for system init. Interleaving is only
2925 	 * enabled across suitably sized nodes (default is >= 16MB), or
2926 	 * fall back to the largest node if they're all smaller.
2927 	 */
2928 	nodes_clear(interleave_nodes);
2929 	for_each_node_state(nid, N_MEMORY) {
2930 		unsigned long total_pages = node_present_pages(nid);
2931 
2932 		/* Preserve the largest node */
2933 		if (largest < total_pages) {
2934 			largest = total_pages;
2935 			prefer = nid;
2936 		}
2937 
2938 		/* Interleave this node? */
2939 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2940 			node_set(nid, interleave_nodes);
2941 	}
2942 
2943 	/* All too small, use the largest */
2944 	if (unlikely(nodes_empty(interleave_nodes)))
2945 		node_set(prefer, interleave_nodes);
2946 
2947 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2948 		pr_err("%s: interleaving failed\n", __func__);
2949 
2950 	check_numabalancing_enable();
2951 }
2952 
2953 /* Reset policy of current process to default */
2954 void numa_default_policy(void)
2955 {
2956 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2957 }
2958 
2959 /*
2960  * Parse and format mempolicy from/to strings
2961  */
2962 
2963 static const char * const policy_modes[] =
2964 {
2965 	[MPOL_DEFAULT]    = "default",
2966 	[MPOL_PREFERRED]  = "prefer",
2967 	[MPOL_BIND]       = "bind",
2968 	[MPOL_INTERLEAVE] = "interleave",
2969 	[MPOL_LOCAL]      = "local",
2970 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2971 };
2972 
2973 
2974 #ifdef CONFIG_TMPFS
2975 /**
2976  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2977  * @str:  string containing mempolicy to parse
2978  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2979  *
2980  * Format of input:
2981  *	<mode>[=<flags>][:<nodelist>]
2982  *
2983  * Return: %0 on success, else %1
2984  */
2985 int mpol_parse_str(char *str, struct mempolicy **mpol)
2986 {
2987 	struct mempolicy *new = NULL;
2988 	unsigned short mode_flags;
2989 	nodemask_t nodes;
2990 	char *nodelist = strchr(str, ':');
2991 	char *flags = strchr(str, '=');
2992 	int err = 1, mode;
2993 
2994 	if (flags)
2995 		*flags++ = '\0';	/* terminate mode string */
2996 
2997 	if (nodelist) {
2998 		/* NUL-terminate mode or flags string */
2999 		*nodelist++ = '\0';
3000 		if (nodelist_parse(nodelist, nodes))
3001 			goto out;
3002 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3003 			goto out;
3004 	} else
3005 		nodes_clear(nodes);
3006 
3007 	mode = match_string(policy_modes, MPOL_MAX, str);
3008 	if (mode < 0)
3009 		goto out;
3010 
3011 	switch (mode) {
3012 	case MPOL_PREFERRED:
3013 		/*
3014 		 * Insist on a nodelist of one node only, although later
3015 		 * we use first_node(nodes) to grab a single node, so here
3016 		 * nodelist (or nodes) cannot be empty.
3017 		 */
3018 		if (nodelist) {
3019 			char *rest = nodelist;
3020 			while (isdigit(*rest))
3021 				rest++;
3022 			if (*rest)
3023 				goto out;
3024 			if (nodes_empty(nodes))
3025 				goto out;
3026 		}
3027 		break;
3028 	case MPOL_INTERLEAVE:
3029 		/*
3030 		 * Default to online nodes with memory if no nodelist
3031 		 */
3032 		if (!nodelist)
3033 			nodes = node_states[N_MEMORY];
3034 		break;
3035 	case MPOL_LOCAL:
3036 		/*
3037 		 * Don't allow a nodelist;  mpol_new() checks flags
3038 		 */
3039 		if (nodelist)
3040 			goto out;
3041 		break;
3042 	case MPOL_DEFAULT:
3043 		/*
3044 		 * Insist on a empty nodelist
3045 		 */
3046 		if (!nodelist)
3047 			err = 0;
3048 		goto out;
3049 	case MPOL_PREFERRED_MANY:
3050 	case MPOL_BIND:
3051 		/*
3052 		 * Insist on a nodelist
3053 		 */
3054 		if (!nodelist)
3055 			goto out;
3056 	}
3057 
3058 	mode_flags = 0;
3059 	if (flags) {
3060 		/*
3061 		 * Currently, we only support two mutually exclusive
3062 		 * mode flags.
3063 		 */
3064 		if (!strcmp(flags, "static"))
3065 			mode_flags |= MPOL_F_STATIC_NODES;
3066 		else if (!strcmp(flags, "relative"))
3067 			mode_flags |= MPOL_F_RELATIVE_NODES;
3068 		else
3069 			goto out;
3070 	}
3071 
3072 	new = mpol_new(mode, mode_flags, &nodes);
3073 	if (IS_ERR(new))
3074 		goto out;
3075 
3076 	/*
3077 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3078 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3079 	 */
3080 	if (mode != MPOL_PREFERRED) {
3081 		new->nodes = nodes;
3082 	} else if (nodelist) {
3083 		nodes_clear(new->nodes);
3084 		node_set(first_node(nodes), new->nodes);
3085 	} else {
3086 		new->mode = MPOL_LOCAL;
3087 	}
3088 
3089 	/*
3090 	 * Save nodes for contextualization: this will be used to "clone"
3091 	 * the mempolicy in a specific context [cpuset] at a later time.
3092 	 */
3093 	new->w.user_nodemask = nodes;
3094 
3095 	err = 0;
3096 
3097 out:
3098 	/* Restore string for error message */
3099 	if (nodelist)
3100 		*--nodelist = ':';
3101 	if (flags)
3102 		*--flags = '=';
3103 	if (!err)
3104 		*mpol = new;
3105 	return err;
3106 }
3107 #endif /* CONFIG_TMPFS */
3108 
3109 /**
3110  * mpol_to_str - format a mempolicy structure for printing
3111  * @buffer:  to contain formatted mempolicy string
3112  * @maxlen:  length of @buffer
3113  * @pol:  pointer to mempolicy to be formatted
3114  *
3115  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3116  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3117  * longest flag, "relative", and to display at least a few node ids.
3118  */
3119 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3120 {
3121 	char *p = buffer;
3122 	nodemask_t nodes = NODE_MASK_NONE;
3123 	unsigned short mode = MPOL_DEFAULT;
3124 	unsigned short flags = 0;
3125 
3126 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3127 		mode = pol->mode;
3128 		flags = pol->flags;
3129 	}
3130 
3131 	switch (mode) {
3132 	case MPOL_DEFAULT:
3133 	case MPOL_LOCAL:
3134 		break;
3135 	case MPOL_PREFERRED:
3136 	case MPOL_PREFERRED_MANY:
3137 	case MPOL_BIND:
3138 	case MPOL_INTERLEAVE:
3139 		nodes = pol->nodes;
3140 		break;
3141 	default:
3142 		WARN_ON_ONCE(1);
3143 		snprintf(p, maxlen, "unknown");
3144 		return;
3145 	}
3146 
3147 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3148 
3149 	if (flags & MPOL_MODE_FLAGS) {
3150 		p += snprintf(p, buffer + maxlen - p, "=");
3151 
3152 		/*
3153 		 * Currently, the only defined flags are mutually exclusive
3154 		 */
3155 		if (flags & MPOL_F_STATIC_NODES)
3156 			p += snprintf(p, buffer + maxlen - p, "static");
3157 		else if (flags & MPOL_F_RELATIVE_NODES)
3158 			p += snprintf(p, buffer + maxlen - p, "relative");
3159 	}
3160 
3161 	if (!nodes_empty(nodes))
3162 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3163 			       nodemask_pr_args(&nodes));
3164 }
3165