xref: /linux/mm/mempolicy.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support six policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * weighted interleave
23  *                Allocate memory interleaved over a set of nodes based on
24  *                a set of weights (per-node), with normal fallback if it
25  *                fails.  Otherwise operates the same as interleave.
26  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27  *                on node 0 for every 1 page allocated on node 1.
28  *
29  * bind           Only allocate memory on a specific set of nodes,
30  *                no fallback.
31  *                FIXME: memory is allocated starting with the first node
32  *                to the last. It would be better if bind would truly restrict
33  *                the allocation to memory nodes instead
34  *
35  * preferred      Try a specific node first before normal fallback.
36  *                As a special case NUMA_NO_NODE here means do the allocation
37  *                on the local CPU. This is normally identical to default,
38  *                but useful to set in a VMA when you have a non default
39  *                process policy.
40  *
41  * preferred many Try a set of nodes first before normal fallback. This is
42  *                similar to preferred without the special case.
43  *
44  * default        Allocate on the local node first, or when on a VMA
45  *                use the process policy. This is what Linux always did
46  *		  in a NUMA aware kernel and still does by, ahem, default.
47  *
48  * The process policy is applied for most non interrupt memory allocations
49  * in that process' context. Interrupts ignore the policies and always
50  * try to allocate on the local CPU. The VMA policy is only applied for memory
51  * allocations for a VMA in the VM.
52  *
53  * Currently there are a few corner cases in swapping where the policy
54  * is not applied, but the majority should be handled. When process policy
55  * is used it is not remembered over swap outs/swap ins.
56  *
57  * Only the highest zone in the zone hierarchy gets policied. Allocations
58  * requesting a lower zone just use default policy. This implies that
59  * on systems with highmem kernel lowmem allocation don't get policied.
60  * Same with GFP_DMA allocations.
61  *
62  * For shmem/tmpfs shared memory the policy is shared between
63  * all users and remembered even when nobody has memory mapped.
64  */
65 
66 /* Notebook:
67    fix mmap readahead to honour policy and enable policy for any page cache
68    object
69    statistics for bigpages
70    global policy for page cache? currently it uses process policy. Requires
71    first item above.
72    handle mremap for shared memory (currently ignored for the policy)
73    grows down?
74    make bind policy root only? It can trigger oom much faster and the
75    kernel is not always grateful with that.
76 */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116 
117 #include "internal.h"
118 
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123 
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126 
127 /* Highest zone. An specific allocation for a zone below that is not
128    policied. */
129 enum zone_type policy_zone = 0;
130 
131 /*
132  * run-time system-wide default policy => local allocation
133  */
134 static struct mempolicy default_policy = {
135 	.refcnt = ATOMIC_INIT(1), /* never free it */
136 	.mode = MPOL_LOCAL,
137 };
138 
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140 
141 /*
142  * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143  * system-default value should be used. A NULL iw_table also denotes that
144  * system-default values should be used. Until the system-default table
145  * is implemented, the system-default is always 1.
146  *
147  * iw_table is RCU protected
148  */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151 
152 static u8 get_il_weight(int node)
153 {
154 	u8 *table;
155 	u8 weight;
156 
157 	rcu_read_lock();
158 	table = rcu_dereference(iw_table);
159 	/* if no iw_table, use system default */
160 	weight = table ? table[node] : 1;
161 	/* if value in iw_table is 0, use system default */
162 	weight = weight ? weight : 1;
163 	rcu_read_unlock();
164 	return weight;
165 }
166 
167 /**
168  * numa_nearest_node - Find nearest node by state
169  * @node: Node id to start the search
170  * @state: State to filter the search
171  *
172  * Lookup the closest node by distance if @nid is not in state.
173  *
174  * Return: this @node if it is in state, otherwise the closest node by distance
175  */
176 int numa_nearest_node(int node, unsigned int state)
177 {
178 	int min_dist = INT_MAX, dist, n, min_node;
179 
180 	if (state >= NR_NODE_STATES)
181 		return -EINVAL;
182 
183 	if (node == NUMA_NO_NODE || node_state(node, state))
184 		return node;
185 
186 	min_node = node;
187 	for_each_node_state(n, state) {
188 		dist = node_distance(node, n);
189 		if (dist < min_dist) {
190 			min_dist = dist;
191 			min_node = n;
192 		}
193 	}
194 
195 	return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198 
199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 	struct mempolicy *pol = p->mempolicy;
202 	int node;
203 
204 	if (pol)
205 		return pol;
206 
207 	node = numa_node_id();
208 	if (node != NUMA_NO_NODE) {
209 		pol = &preferred_node_policy[node];
210 		/* preferred_node_policy is not initialised early in boot */
211 		if (pol->mode)
212 			return pol;
213 	}
214 
215 	return &default_policy;
216 }
217 
218 static const struct mempolicy_operations {
219 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222 
223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 	return pol->flags & MPOL_MODE_FLAGS;
226 }
227 
228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 				   const nodemask_t *rel)
230 {
231 	nodemask_t tmp;
232 	nodes_fold(tmp, *orig, nodes_weight(*rel));
233 	nodes_onto(*ret, tmp, *rel);
234 }
235 
236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 	if (nodes_empty(*nodes))
239 		return -EINVAL;
240 	pol->nodes = *nodes;
241 	return 0;
242 }
243 
244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 	if (nodes_empty(*nodes))
247 		return -EINVAL;
248 
249 	nodes_clear(pol->nodes);
250 	node_set(first_node(*nodes), pol->nodes);
251 	return 0;
252 }
253 
254 /*
255  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256  * any, for the new policy.  mpol_new() has already validated the nodes
257  * parameter with respect to the policy mode and flags.
258  *
259  * Must be called holding task's alloc_lock to protect task's mems_allowed
260  * and mempolicy.  May also be called holding the mmap_lock for write.
261  */
262 static int mpol_set_nodemask(struct mempolicy *pol,
263 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 	int ret;
266 
267 	/*
268 	 * Default (pol==NULL) resp. local memory policies are not a
269 	 * subject of any remapping. They also do not need any special
270 	 * constructor.
271 	 */
272 	if (!pol || pol->mode == MPOL_LOCAL)
273 		return 0;
274 
275 	/* Check N_MEMORY */
276 	nodes_and(nsc->mask1,
277 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278 
279 	VM_BUG_ON(!nodes);
280 
281 	if (pol->flags & MPOL_F_RELATIVE_NODES)
282 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 	else
284 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285 
286 	if (mpol_store_user_nodemask(pol))
287 		pol->w.user_nodemask = *nodes;
288 	else
289 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290 
291 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 	return ret;
293 }
294 
295 /*
296  * This function just creates a new policy, does some check and simple
297  * initialization. You must invoke mpol_set_nodemask() to set nodes.
298  */
299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 				  nodemask_t *nodes)
301 {
302 	struct mempolicy *policy;
303 
304 	if (mode == MPOL_DEFAULT) {
305 		if (nodes && !nodes_empty(*nodes))
306 			return ERR_PTR(-EINVAL);
307 		return NULL;
308 	}
309 	VM_BUG_ON(!nodes);
310 
311 	/*
312 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 	 * All other modes require a valid pointer to a non-empty nodemask.
315 	 */
316 	if (mode == MPOL_PREFERRED) {
317 		if (nodes_empty(*nodes)) {
318 			if (((flags & MPOL_F_STATIC_NODES) ||
319 			     (flags & MPOL_F_RELATIVE_NODES)))
320 				return ERR_PTR(-EINVAL);
321 
322 			mode = MPOL_LOCAL;
323 		}
324 	} else if (mode == MPOL_LOCAL) {
325 		if (!nodes_empty(*nodes) ||
326 		    (flags & MPOL_F_STATIC_NODES) ||
327 		    (flags & MPOL_F_RELATIVE_NODES))
328 			return ERR_PTR(-EINVAL);
329 	} else if (nodes_empty(*nodes))
330 		return ERR_PTR(-EINVAL);
331 
332 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 	if (!policy)
334 		return ERR_PTR(-ENOMEM);
335 	atomic_set(&policy->refcnt, 1);
336 	policy->mode = mode;
337 	policy->flags = flags;
338 	policy->home_node = NUMA_NO_NODE;
339 
340 	return policy;
341 }
342 
343 /* Slow path of a mpol destructor. */
344 void __mpol_put(struct mempolicy *pol)
345 {
346 	if (!atomic_dec_and_test(&pol->refcnt))
347 		return;
348 	kmem_cache_free(policy_cache, pol);
349 }
350 
351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354 
355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 	nodemask_t tmp;
358 
359 	if (pol->flags & MPOL_F_STATIC_NODES)
360 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 	else {
364 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 								*nodes);
366 		pol->w.cpuset_mems_allowed = *nodes;
367 	}
368 
369 	if (nodes_empty(tmp))
370 		tmp = *nodes;
371 
372 	pol->nodes = tmp;
373 }
374 
375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 						const nodemask_t *nodes)
377 {
378 	pol->w.cpuset_mems_allowed = *nodes;
379 }
380 
381 /*
382  * mpol_rebind_policy - Migrate a policy to a different set of nodes
383  *
384  * Per-vma policies are protected by mmap_lock. Allocations using per-task
385  * policies are protected by task->mems_allowed_seq to prevent a premature
386  * OOM/allocation failure due to parallel nodemask modification.
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 	if (!pol || pol->mode == MPOL_LOCAL)
391 		return;
392 	if (!mpol_store_user_nodemask(pol) &&
393 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 		return;
395 
396 	mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398 
399 /*
400  * Wrapper for mpol_rebind_policy() that just requires task
401  * pointer, and updates task mempolicy.
402  *
403  * Called with task's alloc_lock held.
404  */
405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 	mpol_rebind_policy(tsk->mempolicy, new);
408 }
409 
410 /*
411  * Rebind each vma in mm to new nodemask.
412  *
413  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414  */
415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 	struct vm_area_struct *vma;
418 	VMA_ITERATOR(vmi, mm, 0);
419 
420 	mmap_write_lock(mm);
421 	for_each_vma(vmi, vma) {
422 		vma_start_write(vma);
423 		mpol_rebind_policy(vma->vm_policy, new);
424 	}
425 	mmap_write_unlock(mm);
426 }
427 
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 	[MPOL_DEFAULT] = {
430 		.rebind = mpol_rebind_default,
431 	},
432 	[MPOL_INTERLEAVE] = {
433 		.create = mpol_new_nodemask,
434 		.rebind = mpol_rebind_nodemask,
435 	},
436 	[MPOL_PREFERRED] = {
437 		.create = mpol_new_preferred,
438 		.rebind = mpol_rebind_preferred,
439 	},
440 	[MPOL_BIND] = {
441 		.create = mpol_new_nodemask,
442 		.rebind = mpol_rebind_nodemask,
443 	},
444 	[MPOL_LOCAL] = {
445 		.rebind = mpol_rebind_default,
446 	},
447 	[MPOL_PREFERRED_MANY] = {
448 		.create = mpol_new_nodemask,
449 		.rebind = mpol_rebind_preferred,
450 	},
451 	[MPOL_WEIGHTED_INTERLEAVE] = {
452 		.create = mpol_new_nodemask,
453 		.rebind = mpol_rebind_nodemask,
454 	},
455 };
456 
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 				unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 				pgoff_t ilx, int *nid);
461 
462 static bool strictly_unmovable(unsigned long flags)
463 {
464 	/*
465 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 	 * if any misplaced page is found.
467 	 */
468 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 			 MPOL_MF_STRICT;
470 }
471 
472 struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473 	struct mempolicy *pol;
474 	pgoff_t ilx;
475 };
476 
477 struct queue_pages {
478 	struct list_head *pagelist;
479 	unsigned long flags;
480 	nodemask_t *nmask;
481 	unsigned long start;
482 	unsigned long end;
483 	struct vm_area_struct *first;
484 	struct folio *large;		/* note last large folio encountered */
485 	long nr_failed;			/* could not be isolated at this time */
486 };
487 
488 /*
489  * Check if the folio's nid is in qp->nmask.
490  *
491  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492  * in the invert of qp->nmask.
493  */
494 static inline bool queue_folio_required(struct folio *folio,
495 					struct queue_pages *qp)
496 {
497 	int nid = folio_nid(folio);
498 	unsigned long flags = qp->flags;
499 
500 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502 
503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 	struct folio *folio;
506 	struct queue_pages *qp = walk->private;
507 
508 	if (unlikely(is_pmd_migration_entry(*pmd))) {
509 		qp->nr_failed++;
510 		return;
511 	}
512 	folio = pmd_folio(*pmd);
513 	if (is_huge_zero_folio(folio)) {
514 		walk->action = ACTION_CONTINUE;
515 		return;
516 	}
517 	if (!queue_folio_required(folio, qp))
518 		return;
519 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 	    !vma_migratable(walk->vma) ||
521 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 		qp->nr_failed++;
523 }
524 
525 /*
526  * Scan through folios, checking if they satisfy the required conditions,
527  * moving them from LRU to local pagelist for migration if they do (or not).
528  *
529  * queue_folios_pte_range() has two possible return values:
530  * 0 - continue walking to scan for more, even if an existing folio on the
531  *     wrong node could not be isolated and queued for migration.
532  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533  *        and an existing folio was on a node that does not follow the policy.
534  */
535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 			unsigned long end, struct mm_walk *walk)
537 {
538 	struct vm_area_struct *vma = walk->vma;
539 	struct folio *folio;
540 	struct queue_pages *qp = walk->private;
541 	unsigned long flags = qp->flags;
542 	pte_t *pte, *mapped_pte;
543 	pte_t ptent;
544 	spinlock_t *ptl;
545 
546 	ptl = pmd_trans_huge_lock(pmd, vma);
547 	if (ptl) {
548 		queue_folios_pmd(pmd, walk);
549 		spin_unlock(ptl);
550 		goto out;
551 	}
552 
553 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 	if (!pte) {
555 		walk->action = ACTION_AGAIN;
556 		return 0;
557 	}
558 	for (; addr != end; pte++, addr += PAGE_SIZE) {
559 		ptent = ptep_get(pte);
560 		if (pte_none(ptent))
561 			continue;
562 		if (!pte_present(ptent)) {
563 			if (is_migration_entry(pte_to_swp_entry(ptent)))
564 				qp->nr_failed++;
565 			continue;
566 		}
567 		folio = vm_normal_folio(vma, addr, ptent);
568 		if (!folio || folio_is_zone_device(folio))
569 			continue;
570 		/*
571 		 * vm_normal_folio() filters out zero pages, but there might
572 		 * still be reserved folios to skip, perhaps in a VDSO.
573 		 */
574 		if (folio_test_reserved(folio))
575 			continue;
576 		if (!queue_folio_required(folio, qp))
577 			continue;
578 		if (folio_test_large(folio)) {
579 			/*
580 			 * A large folio can only be isolated from LRU once,
581 			 * but may be mapped by many PTEs (and Copy-On-Write may
582 			 * intersperse PTEs of other, order 0, folios).  This is
583 			 * a common case, so don't mistake it for failure (but
584 			 * there can be other cases of multi-mapped pages which
585 			 * this quick check does not help to filter out - and a
586 			 * search of the pagelist might grow to be prohibitive).
587 			 *
588 			 * migrate_pages(&pagelist) returns nr_failed folios, so
589 			 * check "large" now so that queue_pages_range() returns
590 			 * a comparable nr_failed folios.  This does imply that
591 			 * if folio could not be isolated for some racy reason
592 			 * at its first PTE, later PTEs will not give it another
593 			 * chance of isolation; but keeps the accounting simple.
594 			 */
595 			if (folio == qp->large)
596 				continue;
597 			qp->large = folio;
598 		}
599 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 		    !vma_migratable(vma) ||
601 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602 			qp->nr_failed++;
603 			if (strictly_unmovable(flags))
604 				break;
605 		}
606 	}
607 	pte_unmap_unlock(mapped_pte, ptl);
608 	cond_resched();
609 out:
610 	if (qp->nr_failed && strictly_unmovable(flags))
611 		return -EIO;
612 	return 0;
613 }
614 
615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 			       unsigned long addr, unsigned long end,
617 			       struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 	struct queue_pages *qp = walk->private;
621 	unsigned long flags = qp->flags;
622 	struct folio *folio;
623 	spinlock_t *ptl;
624 	pte_t entry;
625 
626 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 	entry = huge_ptep_get(walk->mm, addr, pte);
628 	if (!pte_present(entry)) {
629 		if (unlikely(is_hugetlb_entry_migration(entry)))
630 			qp->nr_failed++;
631 		goto unlock;
632 	}
633 	folio = pfn_folio(pte_pfn(entry));
634 	if (!queue_folio_required(folio, qp))
635 		goto unlock;
636 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 	    !vma_migratable(walk->vma)) {
638 		qp->nr_failed++;
639 		goto unlock;
640 	}
641 	/*
642 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 	 * Choosing not to migrate a shared folio is not counted as a failure.
644 	 *
645 	 * See folio_likely_mapped_shared() on possible imprecision when we
646 	 * cannot easily detect if a folio is shared.
647 	 */
648 	if ((flags & MPOL_MF_MOVE_ALL) ||
649 	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 		if (!isolate_hugetlb(folio, qp->pagelist))
651 			qp->nr_failed++;
652 unlock:
653 	spin_unlock(ptl);
654 	if (qp->nr_failed && strictly_unmovable(flags))
655 		return -EIO;
656 #endif
657 	return 0;
658 }
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662  * This is used to mark a range of virtual addresses to be inaccessible.
663  * These are later cleared by a NUMA hinting fault. Depending on these
664  * faults, pages may be migrated for better NUMA placement.
665  *
666  * This is assuming that NUMA faults are handled using PROT_NONE. If
667  * an architecture makes a different choice, it will need further
668  * changes to the core.
669  */
670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 			unsigned long addr, unsigned long end)
672 {
673 	struct mmu_gather tlb;
674 	long nr_updated;
675 
676 	tlb_gather_mmu(&tlb, vma->vm_mm);
677 
678 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 	if (nr_updated > 0) {
680 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 		count_memcg_events_mm(vma->vm_mm, NUMA_PTE_UPDATES, nr_updated);
682 	}
683 
684 	tlb_finish_mmu(&tlb);
685 
686 	return nr_updated;
687 }
688 #endif /* CONFIG_NUMA_BALANCING */
689 
690 static int queue_pages_test_walk(unsigned long start, unsigned long end,
691 				struct mm_walk *walk)
692 {
693 	struct vm_area_struct *next, *vma = walk->vma;
694 	struct queue_pages *qp = walk->private;
695 	unsigned long flags = qp->flags;
696 
697 	/* range check first */
698 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
699 
700 	if (!qp->first) {
701 		qp->first = vma;
702 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
703 			(qp->start < vma->vm_start))
704 			/* hole at head side of range */
705 			return -EFAULT;
706 	}
707 	next = find_vma(vma->vm_mm, vma->vm_end);
708 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
709 		((vma->vm_end < qp->end) &&
710 		(!next || vma->vm_end < next->vm_start)))
711 		/* hole at middle or tail of range */
712 		return -EFAULT;
713 
714 	/*
715 	 * Need check MPOL_MF_STRICT to return -EIO if possible
716 	 * regardless of vma_migratable
717 	 */
718 	if (!vma_migratable(vma) &&
719 	    !(flags & MPOL_MF_STRICT))
720 		return 1;
721 
722 	/*
723 	 * Check page nodes, and queue pages to move, in the current vma.
724 	 * But if no moving, and no strict checking, the scan can be skipped.
725 	 */
726 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
727 		return 0;
728 	return 1;
729 }
730 
731 static const struct mm_walk_ops queue_pages_walk_ops = {
732 	.hugetlb_entry		= queue_folios_hugetlb,
733 	.pmd_entry		= queue_folios_pte_range,
734 	.test_walk		= queue_pages_test_walk,
735 	.walk_lock		= PGWALK_RDLOCK,
736 };
737 
738 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
739 	.hugetlb_entry		= queue_folios_hugetlb,
740 	.pmd_entry		= queue_folios_pte_range,
741 	.test_walk		= queue_pages_test_walk,
742 	.walk_lock		= PGWALK_WRLOCK,
743 };
744 
745 /*
746  * Walk through page tables and collect pages to be migrated.
747  *
748  * If pages found in a given range are not on the required set of @nodes,
749  * and migration is allowed, they are isolated and queued to @pagelist.
750  *
751  * queue_pages_range() may return:
752  * 0 - all pages already on the right node, or successfully queued for moving
753  *     (or neither strict checking nor moving requested: only range checking).
754  * >0 - this number of misplaced folios could not be queued for moving
755  *      (a hugetlbfs page or a transparent huge page being counted as 1).
756  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
757  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
758  */
759 static long
760 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
761 		nodemask_t *nodes, unsigned long flags,
762 		struct list_head *pagelist)
763 {
764 	int err;
765 	struct queue_pages qp = {
766 		.pagelist = pagelist,
767 		.flags = flags,
768 		.nmask = nodes,
769 		.start = start,
770 		.end = end,
771 		.first = NULL,
772 	};
773 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
774 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
775 
776 	err = walk_page_range(mm, start, end, ops, &qp);
777 
778 	if (!qp.first)
779 		/* whole range in hole */
780 		err = -EFAULT;
781 
782 	return err ? : qp.nr_failed;
783 }
784 
785 /*
786  * Apply policy to a single VMA
787  * This must be called with the mmap_lock held for writing.
788  */
789 static int vma_replace_policy(struct vm_area_struct *vma,
790 				struct mempolicy *pol)
791 {
792 	int err;
793 	struct mempolicy *old;
794 	struct mempolicy *new;
795 
796 	vma_assert_write_locked(vma);
797 
798 	new = mpol_dup(pol);
799 	if (IS_ERR(new))
800 		return PTR_ERR(new);
801 
802 	if (vma->vm_ops && vma->vm_ops->set_policy) {
803 		err = vma->vm_ops->set_policy(vma, new);
804 		if (err)
805 			goto err_out;
806 	}
807 
808 	old = vma->vm_policy;
809 	vma->vm_policy = new; /* protected by mmap_lock */
810 	mpol_put(old);
811 
812 	return 0;
813  err_out:
814 	mpol_put(new);
815 	return err;
816 }
817 
818 /* Split or merge the VMA (if required) and apply the new policy */
819 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
820 		struct vm_area_struct **prev, unsigned long start,
821 		unsigned long end, struct mempolicy *new_pol)
822 {
823 	unsigned long vmstart, vmend;
824 
825 	vmend = min(end, vma->vm_end);
826 	if (start > vma->vm_start) {
827 		*prev = vma;
828 		vmstart = start;
829 	} else {
830 		vmstart = vma->vm_start;
831 	}
832 
833 	if (mpol_equal(vma->vm_policy, new_pol)) {
834 		*prev = vma;
835 		return 0;
836 	}
837 
838 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
839 	if (IS_ERR(vma))
840 		return PTR_ERR(vma);
841 
842 	*prev = vma;
843 	return vma_replace_policy(vma, new_pol);
844 }
845 
846 /* Set the process memory policy */
847 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
848 			     nodemask_t *nodes)
849 {
850 	struct mempolicy *new, *old;
851 	NODEMASK_SCRATCH(scratch);
852 	int ret;
853 
854 	if (!scratch)
855 		return -ENOMEM;
856 
857 	new = mpol_new(mode, flags, nodes);
858 	if (IS_ERR(new)) {
859 		ret = PTR_ERR(new);
860 		goto out;
861 	}
862 
863 	task_lock(current);
864 	ret = mpol_set_nodemask(new, nodes, scratch);
865 	if (ret) {
866 		task_unlock(current);
867 		mpol_put(new);
868 		goto out;
869 	}
870 
871 	old = current->mempolicy;
872 	current->mempolicy = new;
873 	if (new && (new->mode == MPOL_INTERLEAVE ||
874 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
875 		current->il_prev = MAX_NUMNODES-1;
876 		current->il_weight = 0;
877 	}
878 	task_unlock(current);
879 	mpol_put(old);
880 	ret = 0;
881 out:
882 	NODEMASK_SCRATCH_FREE(scratch);
883 	return ret;
884 }
885 
886 /*
887  * Return nodemask for policy for get_mempolicy() query
888  *
889  * Called with task's alloc_lock held
890  */
891 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
892 {
893 	nodes_clear(*nodes);
894 	if (pol == &default_policy)
895 		return;
896 
897 	switch (pol->mode) {
898 	case MPOL_BIND:
899 	case MPOL_INTERLEAVE:
900 	case MPOL_PREFERRED:
901 	case MPOL_PREFERRED_MANY:
902 	case MPOL_WEIGHTED_INTERLEAVE:
903 		*nodes = pol->nodes;
904 		break;
905 	case MPOL_LOCAL:
906 		/* return empty node mask for local allocation */
907 		break;
908 	default:
909 		BUG();
910 	}
911 }
912 
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 	struct page *p = NULL;
916 	int ret;
917 
918 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
919 	if (ret > 0) {
920 		ret = page_to_nid(p);
921 		put_page(p);
922 	}
923 	return ret;
924 }
925 
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 			     unsigned long addr, unsigned long flags)
929 {
930 	int err;
931 	struct mm_struct *mm = current->mm;
932 	struct vm_area_struct *vma = NULL;
933 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 
935 	if (flags &
936 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 		return -EINVAL;
938 
939 	if (flags & MPOL_F_MEMS_ALLOWED) {
940 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
941 			return -EINVAL;
942 		*policy = 0;	/* just so it's initialized */
943 		task_lock(current);
944 		*nmask  = cpuset_current_mems_allowed;
945 		task_unlock(current);
946 		return 0;
947 	}
948 
949 	if (flags & MPOL_F_ADDR) {
950 		pgoff_t ilx;		/* ignored here */
951 		/*
952 		 * Do NOT fall back to task policy if the
953 		 * vma/shared policy at addr is NULL.  We
954 		 * want to return MPOL_DEFAULT in this case.
955 		 */
956 		mmap_read_lock(mm);
957 		vma = vma_lookup(mm, addr);
958 		if (!vma) {
959 			mmap_read_unlock(mm);
960 			return -EFAULT;
961 		}
962 		pol = __get_vma_policy(vma, addr, &ilx);
963 	} else if (addr)
964 		return -EINVAL;
965 
966 	if (!pol)
967 		pol = &default_policy;	/* indicates default behavior */
968 
969 	if (flags & MPOL_F_NODE) {
970 		if (flags & MPOL_F_ADDR) {
971 			/*
972 			 * Take a refcount on the mpol, because we are about to
973 			 * drop the mmap_lock, after which only "pol" remains
974 			 * valid, "vma" is stale.
975 			 */
976 			pol_refcount = pol;
977 			vma = NULL;
978 			mpol_get(pol);
979 			mmap_read_unlock(mm);
980 			err = lookup_node(mm, addr);
981 			if (err < 0)
982 				goto out;
983 			*policy = err;
984 		} else if (pol == current->mempolicy &&
985 				pol->mode == MPOL_INTERLEAVE) {
986 			*policy = next_node_in(current->il_prev, pol->nodes);
987 		} else if (pol == current->mempolicy &&
988 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
989 			if (current->il_weight)
990 				*policy = current->il_prev;
991 			else
992 				*policy = next_node_in(current->il_prev,
993 						       pol->nodes);
994 		} else {
995 			err = -EINVAL;
996 			goto out;
997 		}
998 	} else {
999 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1000 						pol->mode;
1001 		/*
1002 		 * Internal mempolicy flags must be masked off before exposing
1003 		 * the policy to userspace.
1004 		 */
1005 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1006 	}
1007 
1008 	err = 0;
1009 	if (nmask) {
1010 		if (mpol_store_user_nodemask(pol)) {
1011 			*nmask = pol->w.user_nodemask;
1012 		} else {
1013 			task_lock(current);
1014 			get_policy_nodemask(pol, nmask);
1015 			task_unlock(current);
1016 		}
1017 	}
1018 
1019  out:
1020 	mpol_cond_put(pol);
1021 	if (vma)
1022 		mmap_read_unlock(mm);
1023 	if (pol_refcount)
1024 		mpol_put(pol_refcount);
1025 	return err;
1026 }
1027 
1028 #ifdef CONFIG_MIGRATION
1029 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1030 				unsigned long flags)
1031 {
1032 	/*
1033 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1034 	 * Choosing not to migrate a shared folio is not counted as a failure.
1035 	 *
1036 	 * See folio_likely_mapped_shared() on possible imprecision when we
1037 	 * cannot easily detect if a folio is shared.
1038 	 */
1039 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1040 		if (folio_isolate_lru(folio)) {
1041 			list_add_tail(&folio->lru, foliolist);
1042 			node_stat_mod_folio(folio,
1043 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1044 				folio_nr_pages(folio));
1045 		} else {
1046 			/*
1047 			 * Non-movable folio may reach here.  And, there may be
1048 			 * temporary off LRU folios or non-LRU movable folios.
1049 			 * Treat them as unmovable folios since they can't be
1050 			 * isolated, so they can't be moved at the moment.
1051 			 */
1052 			return false;
1053 		}
1054 	}
1055 	return true;
1056 }
1057 
1058 /*
1059  * Migrate pages from one node to a target node.
1060  * Returns error or the number of pages not migrated.
1061  */
1062 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 			    int flags)
1064 {
1065 	nodemask_t nmask;
1066 	struct vm_area_struct *vma;
1067 	LIST_HEAD(pagelist);
1068 	long nr_failed;
1069 	long err = 0;
1070 	struct migration_target_control mtc = {
1071 		.nid = dest,
1072 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 		.reason = MR_SYSCALL,
1074 	};
1075 
1076 	nodes_clear(nmask);
1077 	node_set(source, nmask);
1078 
1079 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080 
1081 	mmap_read_lock(mm);
1082 	vma = find_vma(mm, 0);
1083 	if (unlikely(!vma)) {
1084 		mmap_read_unlock(mm);
1085 		return 0;
1086 	}
1087 
1088 	/*
1089 	 * This does not migrate the range, but isolates all pages that
1090 	 * need migration.  Between passing in the full user address
1091 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1092 	 * but passes back the count of pages which could not be isolated.
1093 	 */
1094 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1095 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1096 	mmap_read_unlock(mm);
1097 
1098 	if (!list_empty(&pagelist)) {
1099 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1100 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1101 		if (err)
1102 			putback_movable_pages(&pagelist);
1103 	}
1104 
1105 	if (err >= 0)
1106 		err += nr_failed;
1107 	return err;
1108 }
1109 
1110 /*
1111  * Move pages between the two nodesets so as to preserve the physical
1112  * layout as much as possible.
1113  *
1114  * Returns the number of page that could not be moved.
1115  */
1116 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1117 		     const nodemask_t *to, int flags)
1118 {
1119 	long nr_failed = 0;
1120 	long err = 0;
1121 	nodemask_t tmp;
1122 
1123 	lru_cache_disable();
1124 
1125 	/*
1126 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1127 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1128 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1129 	 * The pair of nodemasks 'to' and 'from' define the map.
1130 	 *
1131 	 * If no pair of bits is found that way, fallback to picking some
1132 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1133 	 * 'source' and 'dest' bits are the same, this represents a node
1134 	 * that will be migrating to itself, so no pages need move.
1135 	 *
1136 	 * If no bits are left in 'tmp', or if all remaining bits left
1137 	 * in 'tmp' correspond to the same bit in 'to', return false
1138 	 * (nothing left to migrate).
1139 	 *
1140 	 * This lets us pick a pair of nodes to migrate between, such that
1141 	 * if possible the dest node is not already occupied by some other
1142 	 * source node, minimizing the risk of overloading the memory on a
1143 	 * node that would happen if we migrated incoming memory to a node
1144 	 * before migrating outgoing memory source that same node.
1145 	 *
1146 	 * A single scan of tmp is sufficient.  As we go, we remember the
1147 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1148 	 * that not only moved, but what's better, moved to an empty slot
1149 	 * (d is not set in tmp), then we break out then, with that pair.
1150 	 * Otherwise when we finish scanning from_tmp, we at least have the
1151 	 * most recent <s, d> pair that moved.  If we get all the way through
1152 	 * the scan of tmp without finding any node that moved, much less
1153 	 * moved to an empty node, then there is nothing left worth migrating.
1154 	 */
1155 
1156 	tmp = *from;
1157 	while (!nodes_empty(tmp)) {
1158 		int s, d;
1159 		int source = NUMA_NO_NODE;
1160 		int dest = 0;
1161 
1162 		for_each_node_mask(s, tmp) {
1163 
1164 			/*
1165 			 * do_migrate_pages() tries to maintain the relative
1166 			 * node relationship of the pages established between
1167 			 * threads and memory areas.
1168                          *
1169 			 * However if the number of source nodes is not equal to
1170 			 * the number of destination nodes we can not preserve
1171 			 * this node relative relationship.  In that case, skip
1172 			 * copying memory from a node that is in the destination
1173 			 * mask.
1174 			 *
1175 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1176 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1177 			 */
1178 
1179 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1180 						(node_isset(s, *to)))
1181 				continue;
1182 
1183 			d = node_remap(s, *from, *to);
1184 			if (s == d)
1185 				continue;
1186 
1187 			source = s;	/* Node moved. Memorize */
1188 			dest = d;
1189 
1190 			/* dest not in remaining from nodes? */
1191 			if (!node_isset(dest, tmp))
1192 				break;
1193 		}
1194 		if (source == NUMA_NO_NODE)
1195 			break;
1196 
1197 		node_clear(source, tmp);
1198 		err = migrate_to_node(mm, source, dest, flags);
1199 		if (err > 0)
1200 			nr_failed += err;
1201 		if (err < 0)
1202 			break;
1203 	}
1204 
1205 	lru_cache_enable();
1206 	if (err < 0)
1207 		return err;
1208 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1209 }
1210 
1211 /*
1212  * Allocate a new folio for page migration, according to NUMA mempolicy.
1213  */
1214 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1215 						    unsigned long private)
1216 {
1217 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1218 	struct mempolicy *pol = mmpol->pol;
1219 	pgoff_t ilx = mmpol->ilx;
1220 	unsigned int order;
1221 	int nid = numa_node_id();
1222 	gfp_t gfp;
1223 
1224 	order = folio_order(src);
1225 	ilx += src->index >> order;
1226 
1227 	if (folio_test_hugetlb(src)) {
1228 		nodemask_t *nodemask;
1229 		struct hstate *h;
1230 
1231 		h = folio_hstate(src);
1232 		gfp = htlb_alloc_mask(h);
1233 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1234 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1235 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1236 	}
1237 
1238 	if (folio_test_large(src))
1239 		gfp = GFP_TRANSHUGE;
1240 	else
1241 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1242 
1243 	return folio_alloc_mpol(gfp, order, pol, ilx, nid);
1244 }
1245 #else
1246 
1247 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1248 				unsigned long flags)
1249 {
1250 	return false;
1251 }
1252 
1253 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1254 		     const nodemask_t *to, int flags)
1255 {
1256 	return -ENOSYS;
1257 }
1258 
1259 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1260 						    unsigned long private)
1261 {
1262 	return NULL;
1263 }
1264 #endif
1265 
1266 static long do_mbind(unsigned long start, unsigned long len,
1267 		     unsigned short mode, unsigned short mode_flags,
1268 		     nodemask_t *nmask, unsigned long flags)
1269 {
1270 	struct mm_struct *mm = current->mm;
1271 	struct vm_area_struct *vma, *prev;
1272 	struct vma_iterator vmi;
1273 	struct migration_mpol mmpol;
1274 	struct mempolicy *new;
1275 	unsigned long end;
1276 	long err;
1277 	long nr_failed;
1278 	LIST_HEAD(pagelist);
1279 
1280 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1281 		return -EINVAL;
1282 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1283 		return -EPERM;
1284 
1285 	if (start & ~PAGE_MASK)
1286 		return -EINVAL;
1287 
1288 	if (mode == MPOL_DEFAULT)
1289 		flags &= ~MPOL_MF_STRICT;
1290 
1291 	len = PAGE_ALIGN(len);
1292 	end = start + len;
1293 
1294 	if (end < start)
1295 		return -EINVAL;
1296 	if (end == start)
1297 		return 0;
1298 
1299 	new = mpol_new(mode, mode_flags, nmask);
1300 	if (IS_ERR(new))
1301 		return PTR_ERR(new);
1302 
1303 	/*
1304 	 * If we are using the default policy then operation
1305 	 * on discontinuous address spaces is okay after all
1306 	 */
1307 	if (!new)
1308 		flags |= MPOL_MF_DISCONTIG_OK;
1309 
1310 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1311 		lru_cache_disable();
1312 	{
1313 		NODEMASK_SCRATCH(scratch);
1314 		if (scratch) {
1315 			mmap_write_lock(mm);
1316 			err = mpol_set_nodemask(new, nmask, scratch);
1317 			if (err)
1318 				mmap_write_unlock(mm);
1319 		} else
1320 			err = -ENOMEM;
1321 		NODEMASK_SCRATCH_FREE(scratch);
1322 	}
1323 	if (err)
1324 		goto mpol_out;
1325 
1326 	/*
1327 	 * Lock the VMAs before scanning for pages to migrate,
1328 	 * to ensure we don't miss a concurrently inserted page.
1329 	 */
1330 	nr_failed = queue_pages_range(mm, start, end, nmask,
1331 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1332 
1333 	if (nr_failed < 0) {
1334 		err = nr_failed;
1335 		nr_failed = 0;
1336 	} else {
1337 		vma_iter_init(&vmi, mm, start);
1338 		prev = vma_prev(&vmi);
1339 		for_each_vma_range(vmi, vma, end) {
1340 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1341 			if (err)
1342 				break;
1343 		}
1344 	}
1345 
1346 	if (!err && !list_empty(&pagelist)) {
1347 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1348 		if (!new) {
1349 			new = get_task_policy(current);
1350 			mpol_get(new);
1351 		}
1352 		mmpol.pol = new;
1353 		mmpol.ilx = 0;
1354 
1355 		/*
1356 		 * In the interleaved case, attempt to allocate on exactly the
1357 		 * targeted nodes, for the first VMA to be migrated; for later
1358 		 * VMAs, the nodes will still be interleaved from the targeted
1359 		 * nodemask, but one by one may be selected differently.
1360 		 */
1361 		if (new->mode == MPOL_INTERLEAVE ||
1362 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1363 			struct folio *folio;
1364 			unsigned int order;
1365 			unsigned long addr = -EFAULT;
1366 
1367 			list_for_each_entry(folio, &pagelist, lru) {
1368 				if (!folio_test_ksm(folio))
1369 					break;
1370 			}
1371 			if (!list_entry_is_head(folio, &pagelist, lru)) {
1372 				vma_iter_init(&vmi, mm, start);
1373 				for_each_vma_range(vmi, vma, end) {
1374 					addr = page_address_in_vma(folio,
1375 						folio_page(folio, 0), vma);
1376 					if (addr != -EFAULT)
1377 						break;
1378 				}
1379 			}
1380 			if (addr != -EFAULT) {
1381 				order = folio_order(folio);
1382 				/* We already know the pol, but not the ilx */
1383 				mpol_cond_put(get_vma_policy(vma, addr, order,
1384 							     &mmpol.ilx));
1385 				/* Set base from which to increment by index */
1386 				mmpol.ilx -= folio->index >> order;
1387 			}
1388 		}
1389 	}
1390 
1391 	mmap_write_unlock(mm);
1392 
1393 	if (!err && !list_empty(&pagelist)) {
1394 		nr_failed |= migrate_pages(&pagelist,
1395 				alloc_migration_target_by_mpol, NULL,
1396 				(unsigned long)&mmpol, MIGRATE_SYNC,
1397 				MR_MEMPOLICY_MBIND, NULL);
1398 	}
1399 
1400 	if (nr_failed && (flags & MPOL_MF_STRICT))
1401 		err = -EIO;
1402 	if (!list_empty(&pagelist))
1403 		putback_movable_pages(&pagelist);
1404 mpol_out:
1405 	mpol_put(new);
1406 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1407 		lru_cache_enable();
1408 	return err;
1409 }
1410 
1411 /*
1412  * User space interface with variable sized bitmaps for nodelists.
1413  */
1414 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1415 		      unsigned long maxnode)
1416 {
1417 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1418 	int ret;
1419 
1420 	if (in_compat_syscall())
1421 		ret = compat_get_bitmap(mask,
1422 					(const compat_ulong_t __user *)nmask,
1423 					maxnode);
1424 	else
1425 		ret = copy_from_user(mask, nmask,
1426 				     nlongs * sizeof(unsigned long));
1427 
1428 	if (ret)
1429 		return -EFAULT;
1430 
1431 	if (maxnode % BITS_PER_LONG)
1432 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1433 
1434 	return 0;
1435 }
1436 
1437 /* Copy a node mask from user space. */
1438 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1439 		     unsigned long maxnode)
1440 {
1441 	--maxnode;
1442 	nodes_clear(*nodes);
1443 	if (maxnode == 0 || !nmask)
1444 		return 0;
1445 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1446 		return -EINVAL;
1447 
1448 	/*
1449 	 * When the user specified more nodes than supported just check
1450 	 * if the non supported part is all zero, one word at a time,
1451 	 * starting at the end.
1452 	 */
1453 	while (maxnode > MAX_NUMNODES) {
1454 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1455 		unsigned long t;
1456 
1457 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1458 			return -EFAULT;
1459 
1460 		if (maxnode - bits >= MAX_NUMNODES) {
1461 			maxnode -= bits;
1462 		} else {
1463 			maxnode = MAX_NUMNODES;
1464 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1465 		}
1466 		if (t)
1467 			return -EINVAL;
1468 	}
1469 
1470 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1471 }
1472 
1473 /* Copy a kernel node mask to user space */
1474 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1475 			      nodemask_t *nodes)
1476 {
1477 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1478 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1479 	bool compat = in_compat_syscall();
1480 
1481 	if (compat)
1482 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1483 
1484 	if (copy > nbytes) {
1485 		if (copy > PAGE_SIZE)
1486 			return -EINVAL;
1487 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1488 			return -EFAULT;
1489 		copy = nbytes;
1490 		maxnode = nr_node_ids;
1491 	}
1492 
1493 	if (compat)
1494 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1495 					 nodes_addr(*nodes), maxnode);
1496 
1497 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1498 }
1499 
1500 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1501 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1502 {
1503 	*flags = *mode & MPOL_MODE_FLAGS;
1504 	*mode &= ~MPOL_MODE_FLAGS;
1505 
1506 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1507 		return -EINVAL;
1508 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1509 		return -EINVAL;
1510 	if (*flags & MPOL_F_NUMA_BALANCING) {
1511 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1512 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1513 		else
1514 			return -EINVAL;
1515 	}
1516 	return 0;
1517 }
1518 
1519 static long kernel_mbind(unsigned long start, unsigned long len,
1520 			 unsigned long mode, const unsigned long __user *nmask,
1521 			 unsigned long maxnode, unsigned int flags)
1522 {
1523 	unsigned short mode_flags;
1524 	nodemask_t nodes;
1525 	int lmode = mode;
1526 	int err;
1527 
1528 	start = untagged_addr(start);
1529 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1530 	if (err)
1531 		return err;
1532 
1533 	err = get_nodes(&nodes, nmask, maxnode);
1534 	if (err)
1535 		return err;
1536 
1537 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1538 }
1539 
1540 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1541 		unsigned long, home_node, unsigned long, flags)
1542 {
1543 	struct mm_struct *mm = current->mm;
1544 	struct vm_area_struct *vma, *prev;
1545 	struct mempolicy *new, *old;
1546 	unsigned long end;
1547 	int err = -ENOENT;
1548 	VMA_ITERATOR(vmi, mm, start);
1549 
1550 	start = untagged_addr(start);
1551 	if (start & ~PAGE_MASK)
1552 		return -EINVAL;
1553 	/*
1554 	 * flags is used for future extension if any.
1555 	 */
1556 	if (flags != 0)
1557 		return -EINVAL;
1558 
1559 	/*
1560 	 * Check home_node is online to avoid accessing uninitialized
1561 	 * NODE_DATA.
1562 	 */
1563 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1564 		return -EINVAL;
1565 
1566 	len = PAGE_ALIGN(len);
1567 	end = start + len;
1568 
1569 	if (end < start)
1570 		return -EINVAL;
1571 	if (end == start)
1572 		return 0;
1573 	mmap_write_lock(mm);
1574 	prev = vma_prev(&vmi);
1575 	for_each_vma_range(vmi, vma, end) {
1576 		/*
1577 		 * If any vma in the range got policy other than MPOL_BIND
1578 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1579 		 * the home node for vmas we already updated before.
1580 		 */
1581 		old = vma_policy(vma);
1582 		if (!old) {
1583 			prev = vma;
1584 			continue;
1585 		}
1586 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1587 			err = -EOPNOTSUPP;
1588 			break;
1589 		}
1590 		new = mpol_dup(old);
1591 		if (IS_ERR(new)) {
1592 			err = PTR_ERR(new);
1593 			break;
1594 		}
1595 
1596 		vma_start_write(vma);
1597 		new->home_node = home_node;
1598 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1599 		mpol_put(new);
1600 		if (err)
1601 			break;
1602 	}
1603 	mmap_write_unlock(mm);
1604 	return err;
1605 }
1606 
1607 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1608 		unsigned long, mode, const unsigned long __user *, nmask,
1609 		unsigned long, maxnode, unsigned int, flags)
1610 {
1611 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1612 }
1613 
1614 /* Set the process memory policy */
1615 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1616 				 unsigned long maxnode)
1617 {
1618 	unsigned short mode_flags;
1619 	nodemask_t nodes;
1620 	int lmode = mode;
1621 	int err;
1622 
1623 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1624 	if (err)
1625 		return err;
1626 
1627 	err = get_nodes(&nodes, nmask, maxnode);
1628 	if (err)
1629 		return err;
1630 
1631 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1632 }
1633 
1634 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1635 		unsigned long, maxnode)
1636 {
1637 	return kernel_set_mempolicy(mode, nmask, maxnode);
1638 }
1639 
1640 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1641 				const unsigned long __user *old_nodes,
1642 				const unsigned long __user *new_nodes)
1643 {
1644 	struct mm_struct *mm = NULL;
1645 	struct task_struct *task;
1646 	nodemask_t task_nodes;
1647 	int err;
1648 	nodemask_t *old;
1649 	nodemask_t *new;
1650 	NODEMASK_SCRATCH(scratch);
1651 
1652 	if (!scratch)
1653 		return -ENOMEM;
1654 
1655 	old = &scratch->mask1;
1656 	new = &scratch->mask2;
1657 
1658 	err = get_nodes(old, old_nodes, maxnode);
1659 	if (err)
1660 		goto out;
1661 
1662 	err = get_nodes(new, new_nodes, maxnode);
1663 	if (err)
1664 		goto out;
1665 
1666 	/* Find the mm_struct */
1667 	rcu_read_lock();
1668 	task = pid ? find_task_by_vpid(pid) : current;
1669 	if (!task) {
1670 		rcu_read_unlock();
1671 		err = -ESRCH;
1672 		goto out;
1673 	}
1674 	get_task_struct(task);
1675 
1676 	err = -EINVAL;
1677 
1678 	/*
1679 	 * Check if this process has the right to modify the specified process.
1680 	 * Use the regular "ptrace_may_access()" checks.
1681 	 */
1682 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1683 		rcu_read_unlock();
1684 		err = -EPERM;
1685 		goto out_put;
1686 	}
1687 	rcu_read_unlock();
1688 
1689 	task_nodes = cpuset_mems_allowed(task);
1690 	/* Is the user allowed to access the target nodes? */
1691 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1692 		err = -EPERM;
1693 		goto out_put;
1694 	}
1695 
1696 	task_nodes = cpuset_mems_allowed(current);
1697 	nodes_and(*new, *new, task_nodes);
1698 	if (nodes_empty(*new))
1699 		goto out_put;
1700 
1701 	err = security_task_movememory(task);
1702 	if (err)
1703 		goto out_put;
1704 
1705 	mm = get_task_mm(task);
1706 	put_task_struct(task);
1707 
1708 	if (!mm) {
1709 		err = -EINVAL;
1710 		goto out;
1711 	}
1712 
1713 	err = do_migrate_pages(mm, old, new,
1714 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1715 
1716 	mmput(mm);
1717 out:
1718 	NODEMASK_SCRATCH_FREE(scratch);
1719 
1720 	return err;
1721 
1722 out_put:
1723 	put_task_struct(task);
1724 	goto out;
1725 }
1726 
1727 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1728 		const unsigned long __user *, old_nodes,
1729 		const unsigned long __user *, new_nodes)
1730 {
1731 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1732 }
1733 
1734 /* Retrieve NUMA policy */
1735 static int kernel_get_mempolicy(int __user *policy,
1736 				unsigned long __user *nmask,
1737 				unsigned long maxnode,
1738 				unsigned long addr,
1739 				unsigned long flags)
1740 {
1741 	int err;
1742 	int pval;
1743 	nodemask_t nodes;
1744 
1745 	if (nmask != NULL && maxnode < nr_node_ids)
1746 		return -EINVAL;
1747 
1748 	addr = untagged_addr(addr);
1749 
1750 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1751 
1752 	if (err)
1753 		return err;
1754 
1755 	if (policy && put_user(pval, policy))
1756 		return -EFAULT;
1757 
1758 	if (nmask)
1759 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1760 
1761 	return err;
1762 }
1763 
1764 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1765 		unsigned long __user *, nmask, unsigned long, maxnode,
1766 		unsigned long, addr, unsigned long, flags)
1767 {
1768 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1769 }
1770 
1771 bool vma_migratable(struct vm_area_struct *vma)
1772 {
1773 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774 		return false;
1775 
1776 	/*
1777 	 * DAX device mappings require predictable access latency, so avoid
1778 	 * incurring periodic faults.
1779 	 */
1780 	if (vma_is_dax(vma))
1781 		return false;
1782 
1783 	if (is_vm_hugetlb_page(vma) &&
1784 		!hugepage_migration_supported(hstate_vma(vma)))
1785 		return false;
1786 
1787 	/*
1788 	 * Migration allocates pages in the highest zone. If we cannot
1789 	 * do so then migration (at least from node to node) is not
1790 	 * possible.
1791 	 */
1792 	if (vma->vm_file &&
1793 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794 			< policy_zone)
1795 		return false;
1796 	return true;
1797 }
1798 
1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800 				   unsigned long addr, pgoff_t *ilx)
1801 {
1802 	*ilx = 0;
1803 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1804 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1805 }
1806 
1807 /*
1808  * get_vma_policy(@vma, @addr, @order, @ilx)
1809  * @vma: virtual memory area whose policy is sought
1810  * @addr: address in @vma for shared policy lookup
1811  * @order: 0, or appropriate huge_page_order for interleaving
1812  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1813  *       MPOL_WEIGHTED_INTERLEAVE
1814  *
1815  * Returns effective policy for a VMA at specified address.
1816  * Falls back to current->mempolicy or system default policy, as necessary.
1817  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1818  * count--added by the get_policy() vm_op, as appropriate--to protect against
1819  * freeing by another task.  It is the caller's responsibility to free the
1820  * extra reference for shared policies.
1821  */
1822 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1823 				 unsigned long addr, int order, pgoff_t *ilx)
1824 {
1825 	struct mempolicy *pol;
1826 
1827 	pol = __get_vma_policy(vma, addr, ilx);
1828 	if (!pol)
1829 		pol = get_task_policy(current);
1830 	if (pol->mode == MPOL_INTERLEAVE ||
1831 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1832 		*ilx += vma->vm_pgoff >> order;
1833 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1834 	}
1835 	return pol;
1836 }
1837 
1838 bool vma_policy_mof(struct vm_area_struct *vma)
1839 {
1840 	struct mempolicy *pol;
1841 
1842 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1843 		bool ret = false;
1844 		pgoff_t ilx;		/* ignored here */
1845 
1846 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1847 		if (pol && (pol->flags & MPOL_F_MOF))
1848 			ret = true;
1849 		mpol_cond_put(pol);
1850 
1851 		return ret;
1852 	}
1853 
1854 	pol = vma->vm_policy;
1855 	if (!pol)
1856 		pol = get_task_policy(current);
1857 
1858 	return pol->flags & MPOL_F_MOF;
1859 }
1860 
1861 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1862 {
1863 	enum zone_type dynamic_policy_zone = policy_zone;
1864 
1865 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1866 
1867 	/*
1868 	 * if policy->nodes has movable memory only,
1869 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1870 	 *
1871 	 * policy->nodes is intersect with node_states[N_MEMORY].
1872 	 * so if the following test fails, it implies
1873 	 * policy->nodes has movable memory only.
1874 	 */
1875 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1876 		dynamic_policy_zone = ZONE_MOVABLE;
1877 
1878 	return zone >= dynamic_policy_zone;
1879 }
1880 
1881 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1882 {
1883 	unsigned int node;
1884 	unsigned int cpuset_mems_cookie;
1885 
1886 retry:
1887 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1888 	cpuset_mems_cookie = read_mems_allowed_begin();
1889 	node = current->il_prev;
1890 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1891 		node = next_node_in(node, policy->nodes);
1892 		if (read_mems_allowed_retry(cpuset_mems_cookie))
1893 			goto retry;
1894 		if (node == MAX_NUMNODES)
1895 			return node;
1896 		current->il_prev = node;
1897 		current->il_weight = get_il_weight(node);
1898 	}
1899 	current->il_weight--;
1900 	return node;
1901 }
1902 
1903 /* Do dynamic interleaving for a process */
1904 static unsigned int interleave_nodes(struct mempolicy *policy)
1905 {
1906 	unsigned int nid;
1907 	unsigned int cpuset_mems_cookie;
1908 
1909 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1910 	do {
1911 		cpuset_mems_cookie = read_mems_allowed_begin();
1912 		nid = next_node_in(current->il_prev, policy->nodes);
1913 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1914 
1915 	if (nid < MAX_NUMNODES)
1916 		current->il_prev = nid;
1917 	return nid;
1918 }
1919 
1920 /*
1921  * Depending on the memory policy provide a node from which to allocate the
1922  * next slab entry.
1923  */
1924 unsigned int mempolicy_slab_node(void)
1925 {
1926 	struct mempolicy *policy;
1927 	int node = numa_mem_id();
1928 
1929 	if (!in_task())
1930 		return node;
1931 
1932 	policy = current->mempolicy;
1933 	if (!policy)
1934 		return node;
1935 
1936 	switch (policy->mode) {
1937 	case MPOL_PREFERRED:
1938 		return first_node(policy->nodes);
1939 
1940 	case MPOL_INTERLEAVE:
1941 		return interleave_nodes(policy);
1942 
1943 	case MPOL_WEIGHTED_INTERLEAVE:
1944 		return weighted_interleave_nodes(policy);
1945 
1946 	case MPOL_BIND:
1947 	case MPOL_PREFERRED_MANY:
1948 	{
1949 		struct zoneref *z;
1950 
1951 		/*
1952 		 * Follow bind policy behavior and start allocation at the
1953 		 * first node.
1954 		 */
1955 		struct zonelist *zonelist;
1956 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1957 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1958 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1959 							&policy->nodes);
1960 		return zonelist_zone(z) ? zonelist_node_idx(z) : node;
1961 	}
1962 	case MPOL_LOCAL:
1963 		return node;
1964 
1965 	default:
1966 		BUG();
1967 	}
1968 }
1969 
1970 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1971 					      nodemask_t *mask)
1972 {
1973 	/*
1974 	 * barrier stabilizes the nodemask locally so that it can be iterated
1975 	 * over safely without concern for changes. Allocators validate node
1976 	 * selection does not violate mems_allowed, so this is safe.
1977 	 */
1978 	barrier();
1979 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1980 	barrier();
1981 	return nodes_weight(*mask);
1982 }
1983 
1984 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1985 {
1986 	nodemask_t nodemask;
1987 	unsigned int target, nr_nodes;
1988 	u8 *table;
1989 	unsigned int weight_total = 0;
1990 	u8 weight;
1991 	int nid;
1992 
1993 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1994 	if (!nr_nodes)
1995 		return numa_node_id();
1996 
1997 	rcu_read_lock();
1998 	table = rcu_dereference(iw_table);
1999 	/* calculate the total weight */
2000 	for_each_node_mask(nid, nodemask) {
2001 		/* detect system default usage */
2002 		weight = table ? table[nid] : 1;
2003 		weight = weight ? weight : 1;
2004 		weight_total += weight;
2005 	}
2006 
2007 	/* Calculate the node offset based on totals */
2008 	target = ilx % weight_total;
2009 	nid = first_node(nodemask);
2010 	while (target) {
2011 		/* detect system default usage */
2012 		weight = table ? table[nid] : 1;
2013 		weight = weight ? weight : 1;
2014 		if (target < weight)
2015 			break;
2016 		target -= weight;
2017 		nid = next_node_in(nid, nodemask);
2018 	}
2019 	rcu_read_unlock();
2020 	return nid;
2021 }
2022 
2023 /*
2024  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2025  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2026  * exceeds the number of present nodes.
2027  */
2028 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2029 {
2030 	nodemask_t nodemask;
2031 	unsigned int target, nnodes;
2032 	int i;
2033 	int nid;
2034 
2035 	nnodes = read_once_policy_nodemask(pol, &nodemask);
2036 	if (!nnodes)
2037 		return numa_node_id();
2038 	target = ilx % nnodes;
2039 	nid = first_node(nodemask);
2040 	for (i = 0; i < target; i++)
2041 		nid = next_node(nid, nodemask);
2042 	return nid;
2043 }
2044 
2045 /*
2046  * Return a nodemask representing a mempolicy for filtering nodes for
2047  * page allocation, together with preferred node id (or the input node id).
2048  */
2049 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2050 				   pgoff_t ilx, int *nid)
2051 {
2052 	nodemask_t *nodemask = NULL;
2053 
2054 	switch (pol->mode) {
2055 	case MPOL_PREFERRED:
2056 		/* Override input node id */
2057 		*nid = first_node(pol->nodes);
2058 		break;
2059 	case MPOL_PREFERRED_MANY:
2060 		nodemask = &pol->nodes;
2061 		if (pol->home_node != NUMA_NO_NODE)
2062 			*nid = pol->home_node;
2063 		break;
2064 	case MPOL_BIND:
2065 		/* Restrict to nodemask (but not on lower zones) */
2066 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2067 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2068 			nodemask = &pol->nodes;
2069 		if (pol->home_node != NUMA_NO_NODE)
2070 			*nid = pol->home_node;
2071 		/*
2072 		 * __GFP_THISNODE shouldn't even be used with the bind policy
2073 		 * because we might easily break the expectation to stay on the
2074 		 * requested node and not break the policy.
2075 		 */
2076 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2077 		break;
2078 	case MPOL_INTERLEAVE:
2079 		/* Override input node id */
2080 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 			interleave_nodes(pol) : interleave_nid(pol, ilx);
2082 		break;
2083 	case MPOL_WEIGHTED_INTERLEAVE:
2084 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2085 			weighted_interleave_nodes(pol) :
2086 			weighted_interleave_nid(pol, ilx);
2087 		break;
2088 	}
2089 
2090 	return nodemask;
2091 }
2092 
2093 #ifdef CONFIG_HUGETLBFS
2094 /*
2095  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2096  * @vma: virtual memory area whose policy is sought
2097  * @addr: address in @vma for shared policy lookup and interleave policy
2098  * @gfp_flags: for requested zone
2099  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2100  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2101  *
2102  * Returns a nid suitable for a huge page allocation and a pointer
2103  * to the struct mempolicy for conditional unref after allocation.
2104  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2105  * to the mempolicy's @nodemask for filtering the zonelist.
2106  */
2107 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2108 		struct mempolicy **mpol, nodemask_t **nodemask)
2109 {
2110 	pgoff_t ilx;
2111 	int nid;
2112 
2113 	nid = numa_node_id();
2114 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2115 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2116 	return nid;
2117 }
2118 
2119 /*
2120  * init_nodemask_of_mempolicy
2121  *
2122  * If the current task's mempolicy is "default" [NULL], return 'false'
2123  * to indicate default policy.  Otherwise, extract the policy nodemask
2124  * for 'bind' or 'interleave' policy into the argument nodemask, or
2125  * initialize the argument nodemask to contain the single node for
2126  * 'preferred' or 'local' policy and return 'true' to indicate presence
2127  * of non-default mempolicy.
2128  *
2129  * We don't bother with reference counting the mempolicy [mpol_get/put]
2130  * because the current task is examining it's own mempolicy and a task's
2131  * mempolicy is only ever changed by the task itself.
2132  *
2133  * N.B., it is the caller's responsibility to free a returned nodemask.
2134  */
2135 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2136 {
2137 	struct mempolicy *mempolicy;
2138 
2139 	if (!(mask && current->mempolicy))
2140 		return false;
2141 
2142 	task_lock(current);
2143 	mempolicy = current->mempolicy;
2144 	switch (mempolicy->mode) {
2145 	case MPOL_PREFERRED:
2146 	case MPOL_PREFERRED_MANY:
2147 	case MPOL_BIND:
2148 	case MPOL_INTERLEAVE:
2149 	case MPOL_WEIGHTED_INTERLEAVE:
2150 		*mask = mempolicy->nodes;
2151 		break;
2152 
2153 	case MPOL_LOCAL:
2154 		init_nodemask_of_node(mask, numa_node_id());
2155 		break;
2156 
2157 	default:
2158 		BUG();
2159 	}
2160 	task_unlock(current);
2161 
2162 	return true;
2163 }
2164 #endif
2165 
2166 /*
2167  * mempolicy_in_oom_domain
2168  *
2169  * If tsk's mempolicy is "bind", check for intersection between mask and
2170  * the policy nodemask. Otherwise, return true for all other policies
2171  * including "interleave", as a tsk with "interleave" policy may have
2172  * memory allocated from all nodes in system.
2173  *
2174  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2175  */
2176 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2177 					const nodemask_t *mask)
2178 {
2179 	struct mempolicy *mempolicy;
2180 	bool ret = true;
2181 
2182 	if (!mask)
2183 		return ret;
2184 
2185 	task_lock(tsk);
2186 	mempolicy = tsk->mempolicy;
2187 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2188 		ret = nodes_intersects(mempolicy->nodes, *mask);
2189 	task_unlock(tsk);
2190 
2191 	return ret;
2192 }
2193 
2194 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2195 						int nid, nodemask_t *nodemask)
2196 {
2197 	struct page *page;
2198 	gfp_t preferred_gfp;
2199 
2200 	/*
2201 	 * This is a two pass approach. The first pass will only try the
2202 	 * preferred nodes but skip the direct reclaim and allow the
2203 	 * allocation to fail, while the second pass will try all the
2204 	 * nodes in system.
2205 	 */
2206 	preferred_gfp = gfp | __GFP_NOWARN;
2207 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2208 	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2209 	if (!page)
2210 		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2211 
2212 	return page;
2213 }
2214 
2215 /**
2216  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2217  * @gfp: GFP flags.
2218  * @order: Order of the page allocation.
2219  * @pol: Pointer to the NUMA mempolicy.
2220  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2221  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2222  *
2223  * Return: The page on success or NULL if allocation fails.
2224  */
2225 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2226 		struct mempolicy *pol, pgoff_t ilx, int nid)
2227 {
2228 	nodemask_t *nodemask;
2229 	struct page *page;
2230 
2231 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2232 
2233 	if (pol->mode == MPOL_PREFERRED_MANY)
2234 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2235 
2236 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2237 	    /* filter "hugepage" allocation, unless from alloc_pages() */
2238 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2239 		/*
2240 		 * For hugepage allocation and non-interleave policy which
2241 		 * allows the current node (or other explicitly preferred
2242 		 * node) we only try to allocate from the current/preferred
2243 		 * node and don't fall back to other nodes, as the cost of
2244 		 * remote accesses would likely offset THP benefits.
2245 		 *
2246 		 * If the policy is interleave or does not allow the current
2247 		 * node in its nodemask, we allocate the standard way.
2248 		 */
2249 		if (pol->mode != MPOL_INTERLEAVE &&
2250 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2251 		    (!nodemask || node_isset(nid, *nodemask))) {
2252 			/*
2253 			 * First, try to allocate THP only on local node, but
2254 			 * don't reclaim unnecessarily, just compact.
2255 			 */
2256 			page = __alloc_pages_node_noprof(nid,
2257 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2258 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2259 				return page;
2260 			/*
2261 			 * If hugepage allocations are configured to always
2262 			 * synchronous compact or the vma has been madvised
2263 			 * to prefer hugepage backing, retry allowing remote
2264 			 * memory with both reclaim and compact as well.
2265 			 */
2266 		}
2267 	}
2268 
2269 	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2270 
2271 	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2272 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2273 		if (static_branch_likely(&vm_numa_stat_key) &&
2274 		    page_to_nid(page) == nid) {
2275 			preempt_disable();
2276 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2277 			preempt_enable();
2278 		}
2279 	}
2280 
2281 	return page;
2282 }
2283 
2284 struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
2285 		struct mempolicy *pol, pgoff_t ilx, int nid)
2286 {
2287 	return page_rmappable_folio(alloc_pages_mpol_noprof(gfp | __GFP_COMP,
2288 							order, pol, ilx, nid));
2289 }
2290 
2291 /**
2292  * vma_alloc_folio - Allocate a folio for a VMA.
2293  * @gfp: GFP flags.
2294  * @order: Order of the folio.
2295  * @vma: Pointer to VMA.
2296  * @addr: Virtual address of the allocation.  Must be inside @vma.
2297  *
2298  * Allocate a folio for a specific address in @vma, using the appropriate
2299  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2300  * VMA to prevent it from going away.  Should be used for all allocations
2301  * for folios that will be mapped into user space, excepting hugetlbfs, and
2302  * excepting where direct use of alloc_pages_mpol() is more appropriate.
2303  *
2304  * Return: The folio on success or NULL if allocation fails.
2305  */
2306 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2307 		unsigned long addr)
2308 {
2309 	struct mempolicy *pol;
2310 	pgoff_t ilx;
2311 	struct folio *folio;
2312 
2313 	if (vma->vm_flags & VM_DROPPABLE)
2314 		gfp |= __GFP_NOWARN;
2315 
2316 	pol = get_vma_policy(vma, addr, order, &ilx);
2317 	folio = folio_alloc_mpol_noprof(gfp, order, pol, ilx, numa_node_id());
2318 	mpol_cond_put(pol);
2319 	return folio;
2320 }
2321 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2322 
2323 /**
2324  * alloc_pages - Allocate pages.
2325  * @gfp: GFP flags.
2326  * @order: Power of two of number of pages to allocate.
2327  *
2328  * Allocate 1 << @order contiguous pages.  The physical address of the
2329  * first page is naturally aligned (eg an order-3 allocation will be aligned
2330  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2331  * process is honoured when in process context.
2332  *
2333  * Context: Can be called from any context, providing the appropriate GFP
2334  * flags are used.
2335  * Return: The page on success or NULL if allocation fails.
2336  */
2337 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2338 {
2339 	struct mempolicy *pol = &default_policy;
2340 
2341 	/*
2342 	 * No reference counting needed for current->mempolicy
2343 	 * nor system default_policy
2344 	 */
2345 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2346 		pol = get_task_policy(current);
2347 
2348 	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2349 				       numa_node_id());
2350 }
2351 EXPORT_SYMBOL(alloc_pages_noprof);
2352 
2353 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2354 {
2355 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2356 }
2357 EXPORT_SYMBOL(folio_alloc_noprof);
2358 
2359 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2360 		struct mempolicy *pol, unsigned long nr_pages,
2361 		struct page **page_array)
2362 {
2363 	int nodes;
2364 	unsigned long nr_pages_per_node;
2365 	int delta;
2366 	int i;
2367 	unsigned long nr_allocated;
2368 	unsigned long total_allocated = 0;
2369 
2370 	nodes = nodes_weight(pol->nodes);
2371 	nr_pages_per_node = nr_pages / nodes;
2372 	delta = nr_pages - nodes * nr_pages_per_node;
2373 
2374 	for (i = 0; i < nodes; i++) {
2375 		if (delta) {
2376 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2377 					interleave_nodes(pol), NULL,
2378 					nr_pages_per_node + 1, NULL,
2379 					page_array);
2380 			delta--;
2381 		} else {
2382 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2383 					interleave_nodes(pol), NULL,
2384 					nr_pages_per_node, NULL, page_array);
2385 		}
2386 
2387 		page_array += nr_allocated;
2388 		total_allocated += nr_allocated;
2389 	}
2390 
2391 	return total_allocated;
2392 }
2393 
2394 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2395 		struct mempolicy *pol, unsigned long nr_pages,
2396 		struct page **page_array)
2397 {
2398 	struct task_struct *me = current;
2399 	unsigned int cpuset_mems_cookie;
2400 	unsigned long total_allocated = 0;
2401 	unsigned long nr_allocated = 0;
2402 	unsigned long rounds;
2403 	unsigned long node_pages, delta;
2404 	u8 *table, *weights, weight;
2405 	unsigned int weight_total = 0;
2406 	unsigned long rem_pages = nr_pages;
2407 	nodemask_t nodes;
2408 	int nnodes, node;
2409 	int resume_node = MAX_NUMNODES - 1;
2410 	u8 resume_weight = 0;
2411 	int prev_node;
2412 	int i;
2413 
2414 	if (!nr_pages)
2415 		return 0;
2416 
2417 	/* read the nodes onto the stack, retry if done during rebind */
2418 	do {
2419 		cpuset_mems_cookie = read_mems_allowed_begin();
2420 		nnodes = read_once_policy_nodemask(pol, &nodes);
2421 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2422 
2423 	/* if the nodemask has become invalid, we cannot do anything */
2424 	if (!nnodes)
2425 		return 0;
2426 
2427 	/* Continue allocating from most recent node and adjust the nr_pages */
2428 	node = me->il_prev;
2429 	weight = me->il_weight;
2430 	if (weight && node_isset(node, nodes)) {
2431 		node_pages = min(rem_pages, weight);
2432 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2433 						  NULL, page_array);
2434 		page_array += nr_allocated;
2435 		total_allocated += nr_allocated;
2436 		/* if that's all the pages, no need to interleave */
2437 		if (rem_pages <= weight) {
2438 			me->il_weight -= rem_pages;
2439 			return total_allocated;
2440 		}
2441 		/* Otherwise we adjust remaining pages, continue from there */
2442 		rem_pages -= weight;
2443 	}
2444 	/* clear active weight in case of an allocation failure */
2445 	me->il_weight = 0;
2446 	prev_node = node;
2447 
2448 	/* create a local copy of node weights to operate on outside rcu */
2449 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2450 	if (!weights)
2451 		return total_allocated;
2452 
2453 	rcu_read_lock();
2454 	table = rcu_dereference(iw_table);
2455 	if (table)
2456 		memcpy(weights, table, nr_node_ids);
2457 	rcu_read_unlock();
2458 
2459 	/* calculate total, detect system default usage */
2460 	for_each_node_mask(node, nodes) {
2461 		if (!weights[node])
2462 			weights[node] = 1;
2463 		weight_total += weights[node];
2464 	}
2465 
2466 	/*
2467 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2468 	 * Track which node weighted interleave should resume from.
2469 	 *
2470 	 * if (rounds > 0) and (delta == 0), resume_node will always be
2471 	 * the node following prev_node and its weight.
2472 	 */
2473 	rounds = rem_pages / weight_total;
2474 	delta = rem_pages % weight_total;
2475 	resume_node = next_node_in(prev_node, nodes);
2476 	resume_weight = weights[resume_node];
2477 	for (i = 0; i < nnodes; i++) {
2478 		node = next_node_in(prev_node, nodes);
2479 		weight = weights[node];
2480 		node_pages = weight * rounds;
2481 		/* If a delta exists, add this node's portion of the delta */
2482 		if (delta > weight) {
2483 			node_pages += weight;
2484 			delta -= weight;
2485 		} else if (delta) {
2486 			/* when delta is depleted, resume from that node */
2487 			node_pages += delta;
2488 			resume_node = node;
2489 			resume_weight = weight - delta;
2490 			delta = 0;
2491 		}
2492 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2493 		if (!node_pages)
2494 			break;
2495 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2496 						  NULL, page_array);
2497 		page_array += nr_allocated;
2498 		total_allocated += nr_allocated;
2499 		if (total_allocated == nr_pages)
2500 			break;
2501 		prev_node = node;
2502 	}
2503 	me->il_prev = resume_node;
2504 	me->il_weight = resume_weight;
2505 	kfree(weights);
2506 	return total_allocated;
2507 }
2508 
2509 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2510 		struct mempolicy *pol, unsigned long nr_pages,
2511 		struct page **page_array)
2512 {
2513 	gfp_t preferred_gfp;
2514 	unsigned long nr_allocated = 0;
2515 
2516 	preferred_gfp = gfp | __GFP_NOWARN;
2517 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2518 
2519 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2520 					   nr_pages, NULL, page_array);
2521 
2522 	if (nr_allocated < nr_pages)
2523 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2524 				nr_pages - nr_allocated, NULL,
2525 				page_array + nr_allocated);
2526 	return nr_allocated;
2527 }
2528 
2529 /* alloc pages bulk and mempolicy should be considered at the
2530  * same time in some situation such as vmalloc.
2531  *
2532  * It can accelerate memory allocation especially interleaving
2533  * allocate memory.
2534  */
2535 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2536 		unsigned long nr_pages, struct page **page_array)
2537 {
2538 	struct mempolicy *pol = &default_policy;
2539 	nodemask_t *nodemask;
2540 	int nid;
2541 
2542 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2543 		pol = get_task_policy(current);
2544 
2545 	if (pol->mode == MPOL_INTERLEAVE)
2546 		return alloc_pages_bulk_array_interleave(gfp, pol,
2547 							 nr_pages, page_array);
2548 
2549 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2550 		return alloc_pages_bulk_array_weighted_interleave(
2551 				  gfp, pol, nr_pages, page_array);
2552 
2553 	if (pol->mode == MPOL_PREFERRED_MANY)
2554 		return alloc_pages_bulk_array_preferred_many(gfp,
2555 				numa_node_id(), pol, nr_pages, page_array);
2556 
2557 	nid = numa_node_id();
2558 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2559 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2560 				       nr_pages, NULL, page_array);
2561 }
2562 
2563 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2564 {
2565 	struct mempolicy *pol = mpol_dup(src->vm_policy);
2566 
2567 	if (IS_ERR(pol))
2568 		return PTR_ERR(pol);
2569 	dst->vm_policy = pol;
2570 	return 0;
2571 }
2572 
2573 /*
2574  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2575  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2576  * with the mems_allowed returned by cpuset_mems_allowed().  This
2577  * keeps mempolicies cpuset relative after its cpuset moves.  See
2578  * further kernel/cpuset.c update_nodemask().
2579  *
2580  * current's mempolicy may be rebinded by the other task(the task that changes
2581  * cpuset's mems), so we needn't do rebind work for current task.
2582  */
2583 
2584 /* Slow path of a mempolicy duplicate */
2585 struct mempolicy *__mpol_dup(struct mempolicy *old)
2586 {
2587 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2588 
2589 	if (!new)
2590 		return ERR_PTR(-ENOMEM);
2591 
2592 	/* task's mempolicy is protected by alloc_lock */
2593 	if (old == current->mempolicy) {
2594 		task_lock(current);
2595 		*new = *old;
2596 		task_unlock(current);
2597 	} else
2598 		*new = *old;
2599 
2600 	if (current_cpuset_is_being_rebound()) {
2601 		nodemask_t mems = cpuset_mems_allowed(current);
2602 		mpol_rebind_policy(new, &mems);
2603 	}
2604 	atomic_set(&new->refcnt, 1);
2605 	return new;
2606 }
2607 
2608 /* Slow path of a mempolicy comparison */
2609 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2610 {
2611 	if (!a || !b)
2612 		return false;
2613 	if (a->mode != b->mode)
2614 		return false;
2615 	if (a->flags != b->flags)
2616 		return false;
2617 	if (a->home_node != b->home_node)
2618 		return false;
2619 	if (mpol_store_user_nodemask(a))
2620 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2621 			return false;
2622 
2623 	switch (a->mode) {
2624 	case MPOL_BIND:
2625 	case MPOL_INTERLEAVE:
2626 	case MPOL_PREFERRED:
2627 	case MPOL_PREFERRED_MANY:
2628 	case MPOL_WEIGHTED_INTERLEAVE:
2629 		return !!nodes_equal(a->nodes, b->nodes);
2630 	case MPOL_LOCAL:
2631 		return true;
2632 	default:
2633 		BUG();
2634 		return false;
2635 	}
2636 }
2637 
2638 /*
2639  * Shared memory backing store policy support.
2640  *
2641  * Remember policies even when nobody has shared memory mapped.
2642  * The policies are kept in Red-Black tree linked from the inode.
2643  * They are protected by the sp->lock rwlock, which should be held
2644  * for any accesses to the tree.
2645  */
2646 
2647 /*
2648  * lookup first element intersecting start-end.  Caller holds sp->lock for
2649  * reading or for writing
2650  */
2651 static struct sp_node *sp_lookup(struct shared_policy *sp,
2652 					pgoff_t start, pgoff_t end)
2653 {
2654 	struct rb_node *n = sp->root.rb_node;
2655 
2656 	while (n) {
2657 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2658 
2659 		if (start >= p->end)
2660 			n = n->rb_right;
2661 		else if (end <= p->start)
2662 			n = n->rb_left;
2663 		else
2664 			break;
2665 	}
2666 	if (!n)
2667 		return NULL;
2668 	for (;;) {
2669 		struct sp_node *w = NULL;
2670 		struct rb_node *prev = rb_prev(n);
2671 		if (!prev)
2672 			break;
2673 		w = rb_entry(prev, struct sp_node, nd);
2674 		if (w->end <= start)
2675 			break;
2676 		n = prev;
2677 	}
2678 	return rb_entry(n, struct sp_node, nd);
2679 }
2680 
2681 /*
2682  * Insert a new shared policy into the list.  Caller holds sp->lock for
2683  * writing.
2684  */
2685 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2686 {
2687 	struct rb_node **p = &sp->root.rb_node;
2688 	struct rb_node *parent = NULL;
2689 	struct sp_node *nd;
2690 
2691 	while (*p) {
2692 		parent = *p;
2693 		nd = rb_entry(parent, struct sp_node, nd);
2694 		if (new->start < nd->start)
2695 			p = &(*p)->rb_left;
2696 		else if (new->end > nd->end)
2697 			p = &(*p)->rb_right;
2698 		else
2699 			BUG();
2700 	}
2701 	rb_link_node(&new->nd, parent, p);
2702 	rb_insert_color(&new->nd, &sp->root);
2703 }
2704 
2705 /* Find shared policy intersecting idx */
2706 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2707 						pgoff_t idx)
2708 {
2709 	struct mempolicy *pol = NULL;
2710 	struct sp_node *sn;
2711 
2712 	if (!sp->root.rb_node)
2713 		return NULL;
2714 	read_lock(&sp->lock);
2715 	sn = sp_lookup(sp, idx, idx+1);
2716 	if (sn) {
2717 		mpol_get(sn->policy);
2718 		pol = sn->policy;
2719 	}
2720 	read_unlock(&sp->lock);
2721 	return pol;
2722 }
2723 
2724 static void sp_free(struct sp_node *n)
2725 {
2726 	mpol_put(n->policy);
2727 	kmem_cache_free(sn_cache, n);
2728 }
2729 
2730 /**
2731  * mpol_misplaced - check whether current folio node is valid in policy
2732  *
2733  * @folio: folio to be checked
2734  * @vmf: structure describing the fault
2735  * @addr: virtual address in @vma for shared policy lookup and interleave policy
2736  *
2737  * Lookup current policy node id for vma,addr and "compare to" folio's
2738  * node id.  Policy determination "mimics" alloc_page_vma().
2739  * Called from fault path where we know the vma and faulting address.
2740  *
2741  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2742  * policy, or a suitable node ID to allocate a replacement folio from.
2743  */
2744 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2745 		   unsigned long addr)
2746 {
2747 	struct mempolicy *pol;
2748 	pgoff_t ilx;
2749 	struct zoneref *z;
2750 	int curnid = folio_nid(folio);
2751 	struct vm_area_struct *vma = vmf->vma;
2752 	int thiscpu = raw_smp_processor_id();
2753 	int thisnid = numa_node_id();
2754 	int polnid = NUMA_NO_NODE;
2755 	int ret = NUMA_NO_NODE;
2756 
2757 	/*
2758 	 * Make sure ptl is held so that we don't preempt and we
2759 	 * have a stable smp processor id
2760 	 */
2761 	lockdep_assert_held(vmf->ptl);
2762 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2763 	if (!(pol->flags & MPOL_F_MOF))
2764 		goto out;
2765 
2766 	switch (pol->mode) {
2767 	case MPOL_INTERLEAVE:
2768 		polnid = interleave_nid(pol, ilx);
2769 		break;
2770 
2771 	case MPOL_WEIGHTED_INTERLEAVE:
2772 		polnid = weighted_interleave_nid(pol, ilx);
2773 		break;
2774 
2775 	case MPOL_PREFERRED:
2776 		if (node_isset(curnid, pol->nodes))
2777 			goto out;
2778 		polnid = first_node(pol->nodes);
2779 		break;
2780 
2781 	case MPOL_LOCAL:
2782 		polnid = numa_node_id();
2783 		break;
2784 
2785 	case MPOL_BIND:
2786 	case MPOL_PREFERRED_MANY:
2787 		/*
2788 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2789 		 * policy nodemask we don't allow numa migration to nodes
2790 		 * outside policy nodemask for now. This is done so that if we
2791 		 * want demotion to slow memory to happen, before allocating
2792 		 * from some DRAM node say 'x', we will end up using a
2793 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2794 		 * we should not promote to node 'x' from slow memory node.
2795 		 */
2796 		if (pol->flags & MPOL_F_MORON) {
2797 			/*
2798 			 * Optimize placement among multiple nodes
2799 			 * via NUMA balancing
2800 			 */
2801 			if (node_isset(thisnid, pol->nodes))
2802 				break;
2803 			goto out;
2804 		}
2805 
2806 		/*
2807 		 * use current page if in policy nodemask,
2808 		 * else select nearest allowed node, if any.
2809 		 * If no allowed nodes, use current [!misplaced].
2810 		 */
2811 		if (node_isset(curnid, pol->nodes))
2812 			goto out;
2813 		z = first_zones_zonelist(
2814 				node_zonelist(thisnid, GFP_HIGHUSER),
2815 				gfp_zone(GFP_HIGHUSER),
2816 				&pol->nodes);
2817 		polnid = zonelist_node_idx(z);
2818 		break;
2819 
2820 	default:
2821 		BUG();
2822 	}
2823 
2824 	/* Migrate the folio towards the node whose CPU is referencing it */
2825 	if (pol->flags & MPOL_F_MORON) {
2826 		polnid = thisnid;
2827 
2828 		if (!should_numa_migrate_memory(current, folio, curnid,
2829 						thiscpu))
2830 			goto out;
2831 	}
2832 
2833 	if (curnid != polnid)
2834 		ret = polnid;
2835 out:
2836 	mpol_cond_put(pol);
2837 
2838 	return ret;
2839 }
2840 
2841 /*
2842  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2843  * dropped after task->mempolicy is set to NULL so that any allocation done as
2844  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2845  * policy.
2846  */
2847 void mpol_put_task_policy(struct task_struct *task)
2848 {
2849 	struct mempolicy *pol;
2850 
2851 	task_lock(task);
2852 	pol = task->mempolicy;
2853 	task->mempolicy = NULL;
2854 	task_unlock(task);
2855 	mpol_put(pol);
2856 }
2857 
2858 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2859 {
2860 	rb_erase(&n->nd, &sp->root);
2861 	sp_free(n);
2862 }
2863 
2864 static void sp_node_init(struct sp_node *node, unsigned long start,
2865 			unsigned long end, struct mempolicy *pol)
2866 {
2867 	node->start = start;
2868 	node->end = end;
2869 	node->policy = pol;
2870 }
2871 
2872 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2873 				struct mempolicy *pol)
2874 {
2875 	struct sp_node *n;
2876 	struct mempolicy *newpol;
2877 
2878 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2879 	if (!n)
2880 		return NULL;
2881 
2882 	newpol = mpol_dup(pol);
2883 	if (IS_ERR(newpol)) {
2884 		kmem_cache_free(sn_cache, n);
2885 		return NULL;
2886 	}
2887 	newpol->flags |= MPOL_F_SHARED;
2888 	sp_node_init(n, start, end, newpol);
2889 
2890 	return n;
2891 }
2892 
2893 /* Replace a policy range. */
2894 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2895 				 pgoff_t end, struct sp_node *new)
2896 {
2897 	struct sp_node *n;
2898 	struct sp_node *n_new = NULL;
2899 	struct mempolicy *mpol_new = NULL;
2900 	int ret = 0;
2901 
2902 restart:
2903 	write_lock(&sp->lock);
2904 	n = sp_lookup(sp, start, end);
2905 	/* Take care of old policies in the same range. */
2906 	while (n && n->start < end) {
2907 		struct rb_node *next = rb_next(&n->nd);
2908 		if (n->start >= start) {
2909 			if (n->end <= end)
2910 				sp_delete(sp, n);
2911 			else
2912 				n->start = end;
2913 		} else {
2914 			/* Old policy spanning whole new range. */
2915 			if (n->end > end) {
2916 				if (!n_new)
2917 					goto alloc_new;
2918 
2919 				*mpol_new = *n->policy;
2920 				atomic_set(&mpol_new->refcnt, 1);
2921 				sp_node_init(n_new, end, n->end, mpol_new);
2922 				n->end = start;
2923 				sp_insert(sp, n_new);
2924 				n_new = NULL;
2925 				mpol_new = NULL;
2926 				break;
2927 			} else
2928 				n->end = start;
2929 		}
2930 		if (!next)
2931 			break;
2932 		n = rb_entry(next, struct sp_node, nd);
2933 	}
2934 	if (new)
2935 		sp_insert(sp, new);
2936 	write_unlock(&sp->lock);
2937 	ret = 0;
2938 
2939 err_out:
2940 	if (mpol_new)
2941 		mpol_put(mpol_new);
2942 	if (n_new)
2943 		kmem_cache_free(sn_cache, n_new);
2944 
2945 	return ret;
2946 
2947 alloc_new:
2948 	write_unlock(&sp->lock);
2949 	ret = -ENOMEM;
2950 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2951 	if (!n_new)
2952 		goto err_out;
2953 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2954 	if (!mpol_new)
2955 		goto err_out;
2956 	atomic_set(&mpol_new->refcnt, 1);
2957 	goto restart;
2958 }
2959 
2960 /**
2961  * mpol_shared_policy_init - initialize shared policy for inode
2962  * @sp: pointer to inode shared policy
2963  * @mpol:  struct mempolicy to install
2964  *
2965  * Install non-NULL @mpol in inode's shared policy rb-tree.
2966  * On entry, the current task has a reference on a non-NULL @mpol.
2967  * This must be released on exit.
2968  * This is called at get_inode() calls and we can use GFP_KERNEL.
2969  */
2970 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2971 {
2972 	int ret;
2973 
2974 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2975 	rwlock_init(&sp->lock);
2976 
2977 	if (mpol) {
2978 		struct sp_node *sn;
2979 		struct mempolicy *npol;
2980 		NODEMASK_SCRATCH(scratch);
2981 
2982 		if (!scratch)
2983 			goto put_mpol;
2984 
2985 		/* contextualize the tmpfs mount point mempolicy to this file */
2986 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2987 		if (IS_ERR(npol))
2988 			goto free_scratch; /* no valid nodemask intersection */
2989 
2990 		task_lock(current);
2991 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2992 		task_unlock(current);
2993 		if (ret)
2994 			goto put_npol;
2995 
2996 		/* alloc node covering entire file; adds ref to file's npol */
2997 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2998 		if (sn)
2999 			sp_insert(sp, sn);
3000 put_npol:
3001 		mpol_put(npol);	/* drop initial ref on file's npol */
3002 free_scratch:
3003 		NODEMASK_SCRATCH_FREE(scratch);
3004 put_mpol:
3005 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
3006 	}
3007 }
3008 
3009 int mpol_set_shared_policy(struct shared_policy *sp,
3010 			struct vm_area_struct *vma, struct mempolicy *pol)
3011 {
3012 	int err;
3013 	struct sp_node *new = NULL;
3014 	unsigned long sz = vma_pages(vma);
3015 
3016 	if (pol) {
3017 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3018 		if (!new)
3019 			return -ENOMEM;
3020 	}
3021 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3022 	if (err && new)
3023 		sp_free(new);
3024 	return err;
3025 }
3026 
3027 /* Free a backing policy store on inode delete. */
3028 void mpol_free_shared_policy(struct shared_policy *sp)
3029 {
3030 	struct sp_node *n;
3031 	struct rb_node *next;
3032 
3033 	if (!sp->root.rb_node)
3034 		return;
3035 	write_lock(&sp->lock);
3036 	next = rb_first(&sp->root);
3037 	while (next) {
3038 		n = rb_entry(next, struct sp_node, nd);
3039 		next = rb_next(&n->nd);
3040 		sp_delete(sp, n);
3041 	}
3042 	write_unlock(&sp->lock);
3043 }
3044 
3045 #ifdef CONFIG_NUMA_BALANCING
3046 static int __initdata numabalancing_override;
3047 
3048 static void __init check_numabalancing_enable(void)
3049 {
3050 	bool numabalancing_default = false;
3051 
3052 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3053 		numabalancing_default = true;
3054 
3055 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3056 	if (numabalancing_override)
3057 		set_numabalancing_state(numabalancing_override == 1);
3058 
3059 	if (num_online_nodes() > 1 && !numabalancing_override) {
3060 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3061 			numabalancing_default ? "Enabling" : "Disabling");
3062 		set_numabalancing_state(numabalancing_default);
3063 	}
3064 }
3065 
3066 static int __init setup_numabalancing(char *str)
3067 {
3068 	int ret = 0;
3069 	if (!str)
3070 		goto out;
3071 
3072 	if (!strcmp(str, "enable")) {
3073 		numabalancing_override = 1;
3074 		ret = 1;
3075 	} else if (!strcmp(str, "disable")) {
3076 		numabalancing_override = -1;
3077 		ret = 1;
3078 	}
3079 out:
3080 	if (!ret)
3081 		pr_warn("Unable to parse numa_balancing=\n");
3082 
3083 	return ret;
3084 }
3085 __setup("numa_balancing=", setup_numabalancing);
3086 #else
3087 static inline void __init check_numabalancing_enable(void)
3088 {
3089 }
3090 #endif /* CONFIG_NUMA_BALANCING */
3091 
3092 void __init numa_policy_init(void)
3093 {
3094 	nodemask_t interleave_nodes;
3095 	unsigned long largest = 0;
3096 	int nid, prefer = 0;
3097 
3098 	policy_cache = kmem_cache_create("numa_policy",
3099 					 sizeof(struct mempolicy),
3100 					 0, SLAB_PANIC, NULL);
3101 
3102 	sn_cache = kmem_cache_create("shared_policy_node",
3103 				     sizeof(struct sp_node),
3104 				     0, SLAB_PANIC, NULL);
3105 
3106 	for_each_node(nid) {
3107 		preferred_node_policy[nid] = (struct mempolicy) {
3108 			.refcnt = ATOMIC_INIT(1),
3109 			.mode = MPOL_PREFERRED,
3110 			.flags = MPOL_F_MOF | MPOL_F_MORON,
3111 			.nodes = nodemask_of_node(nid),
3112 		};
3113 	}
3114 
3115 	/*
3116 	 * Set interleaving policy for system init. Interleaving is only
3117 	 * enabled across suitably sized nodes (default is >= 16MB), or
3118 	 * fall back to the largest node if they're all smaller.
3119 	 */
3120 	nodes_clear(interleave_nodes);
3121 	for_each_node_state(nid, N_MEMORY) {
3122 		unsigned long total_pages = node_present_pages(nid);
3123 
3124 		/* Preserve the largest node */
3125 		if (largest < total_pages) {
3126 			largest = total_pages;
3127 			prefer = nid;
3128 		}
3129 
3130 		/* Interleave this node? */
3131 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3132 			node_set(nid, interleave_nodes);
3133 	}
3134 
3135 	/* All too small, use the largest */
3136 	if (unlikely(nodes_empty(interleave_nodes)))
3137 		node_set(prefer, interleave_nodes);
3138 
3139 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3140 		pr_err("%s: interleaving failed\n", __func__);
3141 
3142 	check_numabalancing_enable();
3143 }
3144 
3145 /* Reset policy of current process to default */
3146 void numa_default_policy(void)
3147 {
3148 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3149 }
3150 
3151 /*
3152  * Parse and format mempolicy from/to strings
3153  */
3154 static const char * const policy_modes[] =
3155 {
3156 	[MPOL_DEFAULT]    = "default",
3157 	[MPOL_PREFERRED]  = "prefer",
3158 	[MPOL_BIND]       = "bind",
3159 	[MPOL_INTERLEAVE] = "interleave",
3160 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3161 	[MPOL_LOCAL]      = "local",
3162 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3163 };
3164 
3165 #ifdef CONFIG_TMPFS
3166 /**
3167  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3168  * @str:  string containing mempolicy to parse
3169  * @mpol:  pointer to struct mempolicy pointer, returned on success.
3170  *
3171  * Format of input:
3172  *	<mode>[=<flags>][:<nodelist>]
3173  *
3174  * Return: %0 on success, else %1
3175  */
3176 int mpol_parse_str(char *str, struct mempolicy **mpol)
3177 {
3178 	struct mempolicy *new = NULL;
3179 	unsigned short mode_flags;
3180 	nodemask_t nodes;
3181 	char *nodelist = strchr(str, ':');
3182 	char *flags = strchr(str, '=');
3183 	int err = 1, mode;
3184 
3185 	if (flags)
3186 		*flags++ = '\0';	/* terminate mode string */
3187 
3188 	if (nodelist) {
3189 		/* NUL-terminate mode or flags string */
3190 		*nodelist++ = '\0';
3191 		if (nodelist_parse(nodelist, nodes))
3192 			goto out;
3193 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3194 			goto out;
3195 	} else
3196 		nodes_clear(nodes);
3197 
3198 	mode = match_string(policy_modes, MPOL_MAX, str);
3199 	if (mode < 0)
3200 		goto out;
3201 
3202 	switch (mode) {
3203 	case MPOL_PREFERRED:
3204 		/*
3205 		 * Insist on a nodelist of one node only, although later
3206 		 * we use first_node(nodes) to grab a single node, so here
3207 		 * nodelist (or nodes) cannot be empty.
3208 		 */
3209 		if (nodelist) {
3210 			char *rest = nodelist;
3211 			while (isdigit(*rest))
3212 				rest++;
3213 			if (*rest)
3214 				goto out;
3215 			if (nodes_empty(nodes))
3216 				goto out;
3217 		}
3218 		break;
3219 	case MPOL_INTERLEAVE:
3220 	case MPOL_WEIGHTED_INTERLEAVE:
3221 		/*
3222 		 * Default to online nodes with memory if no nodelist
3223 		 */
3224 		if (!nodelist)
3225 			nodes = node_states[N_MEMORY];
3226 		break;
3227 	case MPOL_LOCAL:
3228 		/*
3229 		 * Don't allow a nodelist;  mpol_new() checks flags
3230 		 */
3231 		if (nodelist)
3232 			goto out;
3233 		break;
3234 	case MPOL_DEFAULT:
3235 		/*
3236 		 * Insist on a empty nodelist
3237 		 */
3238 		if (!nodelist)
3239 			err = 0;
3240 		goto out;
3241 	case MPOL_PREFERRED_MANY:
3242 	case MPOL_BIND:
3243 		/*
3244 		 * Insist on a nodelist
3245 		 */
3246 		if (!nodelist)
3247 			goto out;
3248 	}
3249 
3250 	mode_flags = 0;
3251 	if (flags) {
3252 		/*
3253 		 * Currently, we only support two mutually exclusive
3254 		 * mode flags.
3255 		 */
3256 		if (!strcmp(flags, "static"))
3257 			mode_flags |= MPOL_F_STATIC_NODES;
3258 		else if (!strcmp(flags, "relative"))
3259 			mode_flags |= MPOL_F_RELATIVE_NODES;
3260 		else
3261 			goto out;
3262 	}
3263 
3264 	new = mpol_new(mode, mode_flags, &nodes);
3265 	if (IS_ERR(new))
3266 		goto out;
3267 
3268 	/*
3269 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3270 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3271 	 */
3272 	if (mode != MPOL_PREFERRED) {
3273 		new->nodes = nodes;
3274 	} else if (nodelist) {
3275 		nodes_clear(new->nodes);
3276 		node_set(first_node(nodes), new->nodes);
3277 	} else {
3278 		new->mode = MPOL_LOCAL;
3279 	}
3280 
3281 	/*
3282 	 * Save nodes for contextualization: this will be used to "clone"
3283 	 * the mempolicy in a specific context [cpuset] at a later time.
3284 	 */
3285 	new->w.user_nodemask = nodes;
3286 
3287 	err = 0;
3288 
3289 out:
3290 	/* Restore string for error message */
3291 	if (nodelist)
3292 		*--nodelist = ':';
3293 	if (flags)
3294 		*--flags = '=';
3295 	if (!err)
3296 		*mpol = new;
3297 	return err;
3298 }
3299 #endif /* CONFIG_TMPFS */
3300 
3301 /**
3302  * mpol_to_str - format a mempolicy structure for printing
3303  * @buffer:  to contain formatted mempolicy string
3304  * @maxlen:  length of @buffer
3305  * @pol:  pointer to mempolicy to be formatted
3306  *
3307  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3308  * Recommend a @maxlen of at least 51 for the longest mode, "weighted
3309  * interleave", plus the longest flag flags, "relative|balancing", and to
3310  * display at least a few node ids.
3311  */
3312 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3313 {
3314 	char *p = buffer;
3315 	nodemask_t nodes = NODE_MASK_NONE;
3316 	unsigned short mode = MPOL_DEFAULT;
3317 	unsigned short flags = 0;
3318 
3319 	if (pol &&
3320 	    pol != &default_policy &&
3321 	    !(pol >= &preferred_node_policy[0] &&
3322 	      pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) {
3323 		mode = pol->mode;
3324 		flags = pol->flags;
3325 	}
3326 
3327 	switch (mode) {
3328 	case MPOL_DEFAULT:
3329 	case MPOL_LOCAL:
3330 		break;
3331 	case MPOL_PREFERRED:
3332 	case MPOL_PREFERRED_MANY:
3333 	case MPOL_BIND:
3334 	case MPOL_INTERLEAVE:
3335 	case MPOL_WEIGHTED_INTERLEAVE:
3336 		nodes = pol->nodes;
3337 		break;
3338 	default:
3339 		WARN_ON_ONCE(1);
3340 		snprintf(p, maxlen, "unknown");
3341 		return;
3342 	}
3343 
3344 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3345 
3346 	if (flags & MPOL_MODE_FLAGS) {
3347 		p += snprintf(p, buffer + maxlen - p, "=");
3348 
3349 		/*
3350 		 * Static and relative are mutually exclusive.
3351 		 */
3352 		if (flags & MPOL_F_STATIC_NODES)
3353 			p += snprintf(p, buffer + maxlen - p, "static");
3354 		else if (flags & MPOL_F_RELATIVE_NODES)
3355 			p += snprintf(p, buffer + maxlen - p, "relative");
3356 
3357 		if (flags & MPOL_F_NUMA_BALANCING) {
3358 			if (!is_power_of_2(flags & MPOL_MODE_FLAGS))
3359 				p += snprintf(p, buffer + maxlen - p, "|");
3360 			p += snprintf(p, buffer + maxlen - p, "balancing");
3361 		}
3362 	}
3363 
3364 	if (!nodes_empty(nodes))
3365 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3366 			       nodemask_pr_args(&nodes));
3367 }
3368 
3369 #ifdef CONFIG_SYSFS
3370 struct iw_node_attr {
3371 	struct kobj_attribute kobj_attr;
3372 	int nid;
3373 };
3374 
3375 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3376 			 char *buf)
3377 {
3378 	struct iw_node_attr *node_attr;
3379 	u8 weight;
3380 
3381 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3382 	weight = get_il_weight(node_attr->nid);
3383 	return sysfs_emit(buf, "%d\n", weight);
3384 }
3385 
3386 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3387 			  const char *buf, size_t count)
3388 {
3389 	struct iw_node_attr *node_attr;
3390 	u8 *new;
3391 	u8 *old;
3392 	u8 weight = 0;
3393 
3394 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3395 	if (count == 0 || sysfs_streq(buf, ""))
3396 		weight = 0;
3397 	else if (kstrtou8(buf, 0, &weight))
3398 		return -EINVAL;
3399 
3400 	new = kzalloc(nr_node_ids, GFP_KERNEL);
3401 	if (!new)
3402 		return -ENOMEM;
3403 
3404 	mutex_lock(&iw_table_lock);
3405 	old = rcu_dereference_protected(iw_table,
3406 					lockdep_is_held(&iw_table_lock));
3407 	if (old)
3408 		memcpy(new, old, nr_node_ids);
3409 	new[node_attr->nid] = weight;
3410 	rcu_assign_pointer(iw_table, new);
3411 	mutex_unlock(&iw_table_lock);
3412 	synchronize_rcu();
3413 	kfree(old);
3414 	return count;
3415 }
3416 
3417 static struct iw_node_attr **node_attrs;
3418 
3419 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3420 				  struct kobject *parent)
3421 {
3422 	if (!node_attr)
3423 		return;
3424 	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3425 	kfree(node_attr->kobj_attr.attr.name);
3426 	kfree(node_attr);
3427 }
3428 
3429 static void sysfs_wi_release(struct kobject *wi_kobj)
3430 {
3431 	int i;
3432 
3433 	for (i = 0; i < nr_node_ids; i++)
3434 		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3435 	kobject_put(wi_kobj);
3436 }
3437 
3438 static const struct kobj_type wi_ktype = {
3439 	.sysfs_ops = &kobj_sysfs_ops,
3440 	.release = sysfs_wi_release,
3441 };
3442 
3443 static int add_weight_node(int nid, struct kobject *wi_kobj)
3444 {
3445 	struct iw_node_attr *node_attr;
3446 	char *name;
3447 
3448 	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3449 	if (!node_attr)
3450 		return -ENOMEM;
3451 
3452 	name = kasprintf(GFP_KERNEL, "node%d", nid);
3453 	if (!name) {
3454 		kfree(node_attr);
3455 		return -ENOMEM;
3456 	}
3457 
3458 	sysfs_attr_init(&node_attr->kobj_attr.attr);
3459 	node_attr->kobj_attr.attr.name = name;
3460 	node_attr->kobj_attr.attr.mode = 0644;
3461 	node_attr->kobj_attr.show = node_show;
3462 	node_attr->kobj_attr.store = node_store;
3463 	node_attr->nid = nid;
3464 
3465 	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3466 		kfree(node_attr->kobj_attr.attr.name);
3467 		kfree(node_attr);
3468 		pr_err("failed to add attribute to weighted_interleave\n");
3469 		return -ENOMEM;
3470 	}
3471 
3472 	node_attrs[nid] = node_attr;
3473 	return 0;
3474 }
3475 
3476 static int add_weighted_interleave_group(struct kobject *root_kobj)
3477 {
3478 	struct kobject *wi_kobj;
3479 	int nid, err;
3480 
3481 	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3482 	if (!wi_kobj)
3483 		return -ENOMEM;
3484 
3485 	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3486 				   "weighted_interleave");
3487 	if (err) {
3488 		kfree(wi_kobj);
3489 		return err;
3490 	}
3491 
3492 	for_each_node_state(nid, N_POSSIBLE) {
3493 		err = add_weight_node(nid, wi_kobj);
3494 		if (err) {
3495 			pr_err("failed to add sysfs [node%d]\n", nid);
3496 			break;
3497 		}
3498 	}
3499 	if (err)
3500 		kobject_put(wi_kobj);
3501 	return 0;
3502 }
3503 
3504 static void mempolicy_kobj_release(struct kobject *kobj)
3505 {
3506 	u8 *old;
3507 
3508 	mutex_lock(&iw_table_lock);
3509 	old = rcu_dereference_protected(iw_table,
3510 					lockdep_is_held(&iw_table_lock));
3511 	rcu_assign_pointer(iw_table, NULL);
3512 	mutex_unlock(&iw_table_lock);
3513 	synchronize_rcu();
3514 	kfree(old);
3515 	kfree(node_attrs);
3516 	kfree(kobj);
3517 }
3518 
3519 static const struct kobj_type mempolicy_ktype = {
3520 	.release = mempolicy_kobj_release
3521 };
3522 
3523 static int __init mempolicy_sysfs_init(void)
3524 {
3525 	int err;
3526 	static struct kobject *mempolicy_kobj;
3527 
3528 	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3529 	if (!mempolicy_kobj) {
3530 		err = -ENOMEM;
3531 		goto err_out;
3532 	}
3533 
3534 	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3535 			     GFP_KERNEL);
3536 	if (!node_attrs) {
3537 		err = -ENOMEM;
3538 		goto mempol_out;
3539 	}
3540 
3541 	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3542 				   "mempolicy");
3543 	if (err)
3544 		goto node_out;
3545 
3546 	err = add_weighted_interleave_group(mempolicy_kobj);
3547 	if (err) {
3548 		pr_err("mempolicy sysfs structure failed to initialize\n");
3549 		kobject_put(mempolicy_kobj);
3550 		return err;
3551 	}
3552 
3553 	return err;
3554 node_out:
3555 	kfree(node_attrs);
3556 mempol_out:
3557 	kfree(mempolicy_kobj);
3558 err_out:
3559 	pr_err("failed to add mempolicy kobject to the system\n");
3560 	return err;
3561 }
3562 
3563 late_initcall(mempolicy_sysfs_init);
3564 #endif /* CONFIG_SYSFS */
3565