xref: /linux/mm/mempolicy.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /*
611  * Apply policy to a single VMA
612  * This must be called with the mmap_sem held for writing.
613  */
614 static int vma_replace_policy(struct vm_area_struct *vma,
615 						struct mempolicy *pol)
616 {
617 	int err;
618 	struct mempolicy *old;
619 	struct mempolicy *new;
620 
621 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
622 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
623 		 vma->vm_ops, vma->vm_file,
624 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
625 
626 	new = mpol_dup(pol);
627 	if (IS_ERR(new))
628 		return PTR_ERR(new);
629 
630 	if (vma->vm_ops && vma->vm_ops->set_policy) {
631 		err = vma->vm_ops->set_policy(vma, new);
632 		if (err)
633 			goto err_out;
634 	}
635 
636 	old = vma->vm_policy;
637 	vma->vm_policy = new; /* protected by mmap_sem */
638 	mpol_put(old);
639 
640 	return 0;
641  err_out:
642 	mpol_put(new);
643 	return err;
644 }
645 
646 /* Step 2: apply policy to a range and do splits. */
647 static int mbind_range(struct mm_struct *mm, unsigned long start,
648 		       unsigned long end, struct mempolicy *new_pol)
649 {
650 	struct vm_area_struct *next;
651 	struct vm_area_struct *prev;
652 	struct vm_area_struct *vma;
653 	int err = 0;
654 	pgoff_t pgoff;
655 	unsigned long vmstart;
656 	unsigned long vmend;
657 
658 	vma = find_vma(mm, start);
659 	if (!vma || vma->vm_start > start)
660 		return -EFAULT;
661 
662 	prev = vma->vm_prev;
663 	if (start > vma->vm_start)
664 		prev = vma;
665 
666 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
667 		next = vma->vm_next;
668 		vmstart = max(start, vma->vm_start);
669 		vmend   = min(end, vma->vm_end);
670 
671 		if (mpol_equal(vma_policy(vma), new_pol))
672 			continue;
673 
674 		pgoff = vma->vm_pgoff +
675 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
676 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
677 				  vma->anon_vma, vma->vm_file, pgoff,
678 				  new_pol);
679 		if (prev) {
680 			vma = prev;
681 			next = vma->vm_next;
682 			continue;
683 		}
684 		if (vma->vm_start != vmstart) {
685 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
686 			if (err)
687 				goto out;
688 		}
689 		if (vma->vm_end != vmend) {
690 			err = split_vma(vma->vm_mm, vma, vmend, 0);
691 			if (err)
692 				goto out;
693 		}
694 		err = vma_replace_policy(vma, new_pol);
695 		if (err)
696 			goto out;
697 	}
698 
699  out:
700 	return err;
701 }
702 
703 /*
704  * Update task->flags PF_MEMPOLICY bit: set iff non-default
705  * mempolicy.  Allows more rapid checking of this (combined perhaps
706  * with other PF_* flag bits) on memory allocation hot code paths.
707  *
708  * If called from outside this file, the task 'p' should -only- be
709  * a newly forked child not yet visible on the task list, because
710  * manipulating the task flags of a visible task is not safe.
711  *
712  * The above limitation is why this routine has the funny name
713  * mpol_fix_fork_child_flag().
714  *
715  * It is also safe to call this with a task pointer of current,
716  * which the static wrapper mpol_set_task_struct_flag() does,
717  * for use within this file.
718  */
719 
720 void mpol_fix_fork_child_flag(struct task_struct *p)
721 {
722 	if (p->mempolicy)
723 		p->flags |= PF_MEMPOLICY;
724 	else
725 		p->flags &= ~PF_MEMPOLICY;
726 }
727 
728 static void mpol_set_task_struct_flag(void)
729 {
730 	mpol_fix_fork_child_flag(current);
731 }
732 
733 /* Set the process memory policy */
734 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
735 			     nodemask_t *nodes)
736 {
737 	struct mempolicy *new, *old;
738 	struct mm_struct *mm = current->mm;
739 	NODEMASK_SCRATCH(scratch);
740 	int ret;
741 
742 	if (!scratch)
743 		return -ENOMEM;
744 
745 	new = mpol_new(mode, flags, nodes);
746 	if (IS_ERR(new)) {
747 		ret = PTR_ERR(new);
748 		goto out;
749 	}
750 	/*
751 	 * prevent changing our mempolicy while show_numa_maps()
752 	 * is using it.
753 	 * Note:  do_set_mempolicy() can be called at init time
754 	 * with no 'mm'.
755 	 */
756 	if (mm)
757 		down_write(&mm->mmap_sem);
758 	task_lock(current);
759 	ret = mpol_set_nodemask(new, nodes, scratch);
760 	if (ret) {
761 		task_unlock(current);
762 		if (mm)
763 			up_write(&mm->mmap_sem);
764 		mpol_put(new);
765 		goto out;
766 	}
767 	old = current->mempolicy;
768 	current->mempolicy = new;
769 	mpol_set_task_struct_flag();
770 	if (new && new->mode == MPOL_INTERLEAVE &&
771 	    nodes_weight(new->v.nodes))
772 		current->il_next = first_node(new->v.nodes);
773 	task_unlock(current);
774 	if (mm)
775 		up_write(&mm->mmap_sem);
776 
777 	mpol_put(old);
778 	ret = 0;
779 out:
780 	NODEMASK_SCRATCH_FREE(scratch);
781 	return ret;
782 }
783 
784 /*
785  * Return nodemask for policy for get_mempolicy() query
786  *
787  * Called with task's alloc_lock held
788  */
789 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
790 {
791 	nodes_clear(*nodes);
792 	if (p == &default_policy)
793 		return;
794 
795 	switch (p->mode) {
796 	case MPOL_BIND:
797 		/* Fall through */
798 	case MPOL_INTERLEAVE:
799 		*nodes = p->v.nodes;
800 		break;
801 	case MPOL_PREFERRED:
802 		if (!(p->flags & MPOL_F_LOCAL))
803 			node_set(p->v.preferred_node, *nodes);
804 		/* else return empty node mask for local allocation */
805 		break;
806 	default:
807 		BUG();
808 	}
809 }
810 
811 static int lookup_node(struct mm_struct *mm, unsigned long addr)
812 {
813 	struct page *p;
814 	int err;
815 
816 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
817 	if (err >= 0) {
818 		err = page_to_nid(p);
819 		put_page(p);
820 	}
821 	return err;
822 }
823 
824 /* Retrieve NUMA policy */
825 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
826 			     unsigned long addr, unsigned long flags)
827 {
828 	int err;
829 	struct mm_struct *mm = current->mm;
830 	struct vm_area_struct *vma = NULL;
831 	struct mempolicy *pol = current->mempolicy;
832 
833 	if (flags &
834 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
835 		return -EINVAL;
836 
837 	if (flags & MPOL_F_MEMS_ALLOWED) {
838 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
839 			return -EINVAL;
840 		*policy = 0;	/* just so it's initialized */
841 		task_lock(current);
842 		*nmask  = cpuset_current_mems_allowed;
843 		task_unlock(current);
844 		return 0;
845 	}
846 
847 	if (flags & MPOL_F_ADDR) {
848 		/*
849 		 * Do NOT fall back to task policy if the
850 		 * vma/shared policy at addr is NULL.  We
851 		 * want to return MPOL_DEFAULT in this case.
852 		 */
853 		down_read(&mm->mmap_sem);
854 		vma = find_vma_intersection(mm, addr, addr+1);
855 		if (!vma) {
856 			up_read(&mm->mmap_sem);
857 			return -EFAULT;
858 		}
859 		if (vma->vm_ops && vma->vm_ops->get_policy)
860 			pol = vma->vm_ops->get_policy(vma, addr);
861 		else
862 			pol = vma->vm_policy;
863 	} else if (addr)
864 		return -EINVAL;
865 
866 	if (!pol)
867 		pol = &default_policy;	/* indicates default behavior */
868 
869 	if (flags & MPOL_F_NODE) {
870 		if (flags & MPOL_F_ADDR) {
871 			err = lookup_node(mm, addr);
872 			if (err < 0)
873 				goto out;
874 			*policy = err;
875 		} else if (pol == current->mempolicy &&
876 				pol->mode == MPOL_INTERLEAVE) {
877 			*policy = current->il_next;
878 		} else {
879 			err = -EINVAL;
880 			goto out;
881 		}
882 	} else {
883 		*policy = pol == &default_policy ? MPOL_DEFAULT :
884 						pol->mode;
885 		/*
886 		 * Internal mempolicy flags must be masked off before exposing
887 		 * the policy to userspace.
888 		 */
889 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
890 	}
891 
892 	if (vma) {
893 		up_read(&current->mm->mmap_sem);
894 		vma = NULL;
895 	}
896 
897 	err = 0;
898 	if (nmask) {
899 		if (mpol_store_user_nodemask(pol)) {
900 			*nmask = pol->w.user_nodemask;
901 		} else {
902 			task_lock(current);
903 			get_policy_nodemask(pol, nmask);
904 			task_unlock(current);
905 		}
906 	}
907 
908  out:
909 	mpol_cond_put(pol);
910 	if (vma)
911 		up_read(&current->mm->mmap_sem);
912 	return err;
913 }
914 
915 #ifdef CONFIG_MIGRATION
916 /*
917  * page migration
918  */
919 static void migrate_page_add(struct page *page, struct list_head *pagelist,
920 				unsigned long flags)
921 {
922 	/*
923 	 * Avoid migrating a page that is shared with others.
924 	 */
925 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
926 		if (!isolate_lru_page(page)) {
927 			list_add_tail(&page->lru, pagelist);
928 			inc_zone_page_state(page, NR_ISOLATED_ANON +
929 					    page_is_file_cache(page));
930 		}
931 	}
932 }
933 
934 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
935 {
936 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
937 }
938 
939 /*
940  * Migrate pages from one node to a target node.
941  * Returns error or the number of pages not migrated.
942  */
943 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
944 			   int flags)
945 {
946 	nodemask_t nmask;
947 	LIST_HEAD(pagelist);
948 	int err = 0;
949 
950 	nodes_clear(nmask);
951 	node_set(source, nmask);
952 
953 	/*
954 	 * This does not "check" the range but isolates all pages that
955 	 * need migration.  Between passing in the full user address
956 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
957 	 */
958 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
959 	check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
960 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
961 
962 	if (!list_empty(&pagelist)) {
963 		err = migrate_pages(&pagelist, new_node_page, dest,
964 							false, MIGRATE_SYNC);
965 		if (err)
966 			putback_lru_pages(&pagelist);
967 	}
968 
969 	return err;
970 }
971 
972 /*
973  * Move pages between the two nodesets so as to preserve the physical
974  * layout as much as possible.
975  *
976  * Returns the number of page that could not be moved.
977  */
978 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
979 		     const nodemask_t *to, int flags)
980 {
981 	int busy = 0;
982 	int err;
983 	nodemask_t tmp;
984 
985 	err = migrate_prep();
986 	if (err)
987 		return err;
988 
989 	down_read(&mm->mmap_sem);
990 
991 	err = migrate_vmas(mm, from, to, flags);
992 	if (err)
993 		goto out;
994 
995 	/*
996 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
997 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
998 	 * bit in 'tmp', and return that <source, dest> pair for migration.
999 	 * The pair of nodemasks 'to' and 'from' define the map.
1000 	 *
1001 	 * If no pair of bits is found that way, fallback to picking some
1002 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1003 	 * 'source' and 'dest' bits are the same, this represents a node
1004 	 * that will be migrating to itself, so no pages need move.
1005 	 *
1006 	 * If no bits are left in 'tmp', or if all remaining bits left
1007 	 * in 'tmp' correspond to the same bit in 'to', return false
1008 	 * (nothing left to migrate).
1009 	 *
1010 	 * This lets us pick a pair of nodes to migrate between, such that
1011 	 * if possible the dest node is not already occupied by some other
1012 	 * source node, minimizing the risk of overloading the memory on a
1013 	 * node that would happen if we migrated incoming memory to a node
1014 	 * before migrating outgoing memory source that same node.
1015 	 *
1016 	 * A single scan of tmp is sufficient.  As we go, we remember the
1017 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1018 	 * that not only moved, but what's better, moved to an empty slot
1019 	 * (d is not set in tmp), then we break out then, with that pair.
1020 	 * Otherwise when we finish scanning from_tmp, we at least have the
1021 	 * most recent <s, d> pair that moved.  If we get all the way through
1022 	 * the scan of tmp without finding any node that moved, much less
1023 	 * moved to an empty node, then there is nothing left worth migrating.
1024 	 */
1025 
1026 	tmp = *from;
1027 	while (!nodes_empty(tmp)) {
1028 		int s,d;
1029 		int source = -1;
1030 		int dest = 0;
1031 
1032 		for_each_node_mask(s, tmp) {
1033 
1034 			/*
1035 			 * do_migrate_pages() tries to maintain the relative
1036 			 * node relationship of the pages established between
1037 			 * threads and memory areas.
1038                          *
1039 			 * However if the number of source nodes is not equal to
1040 			 * the number of destination nodes we can not preserve
1041 			 * this node relative relationship.  In that case, skip
1042 			 * copying memory from a node that is in the destination
1043 			 * mask.
1044 			 *
1045 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1046 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1047 			 */
1048 
1049 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1050 						(node_isset(s, *to)))
1051 				continue;
1052 
1053 			d = node_remap(s, *from, *to);
1054 			if (s == d)
1055 				continue;
1056 
1057 			source = s;	/* Node moved. Memorize */
1058 			dest = d;
1059 
1060 			/* dest not in remaining from nodes? */
1061 			if (!node_isset(dest, tmp))
1062 				break;
1063 		}
1064 		if (source == -1)
1065 			break;
1066 
1067 		node_clear(source, tmp);
1068 		err = migrate_to_node(mm, source, dest, flags);
1069 		if (err > 0)
1070 			busy += err;
1071 		if (err < 0)
1072 			break;
1073 	}
1074 out:
1075 	up_read(&mm->mmap_sem);
1076 	if (err < 0)
1077 		return err;
1078 	return busy;
1079 
1080 }
1081 
1082 /*
1083  * Allocate a new page for page migration based on vma policy.
1084  * Start assuming that page is mapped by vma pointed to by @private.
1085  * Search forward from there, if not.  N.B., this assumes that the
1086  * list of pages handed to migrate_pages()--which is how we get here--
1087  * is in virtual address order.
1088  */
1089 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1090 {
1091 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1092 	unsigned long uninitialized_var(address);
1093 
1094 	while (vma) {
1095 		address = page_address_in_vma(page, vma);
1096 		if (address != -EFAULT)
1097 			break;
1098 		vma = vma->vm_next;
1099 	}
1100 
1101 	/*
1102 	 * if !vma, alloc_page_vma() will use task or system default policy
1103 	 */
1104 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1105 }
1106 #else
1107 
1108 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1109 				unsigned long flags)
1110 {
1111 }
1112 
1113 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1114 		     const nodemask_t *to, int flags)
1115 {
1116 	return -ENOSYS;
1117 }
1118 
1119 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1120 {
1121 	return NULL;
1122 }
1123 #endif
1124 
1125 static long do_mbind(unsigned long start, unsigned long len,
1126 		     unsigned short mode, unsigned short mode_flags,
1127 		     nodemask_t *nmask, unsigned long flags)
1128 {
1129 	struct vm_area_struct *vma;
1130 	struct mm_struct *mm = current->mm;
1131 	struct mempolicy *new;
1132 	unsigned long end;
1133 	int err;
1134 	LIST_HEAD(pagelist);
1135 
1136 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1137 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1138 		return -EINVAL;
1139 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1140 		return -EPERM;
1141 
1142 	if (start & ~PAGE_MASK)
1143 		return -EINVAL;
1144 
1145 	if (mode == MPOL_DEFAULT)
1146 		flags &= ~MPOL_MF_STRICT;
1147 
1148 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1149 	end = start + len;
1150 
1151 	if (end < start)
1152 		return -EINVAL;
1153 	if (end == start)
1154 		return 0;
1155 
1156 	new = mpol_new(mode, mode_flags, nmask);
1157 	if (IS_ERR(new))
1158 		return PTR_ERR(new);
1159 
1160 	/*
1161 	 * If we are using the default policy then operation
1162 	 * on discontinuous address spaces is okay after all
1163 	 */
1164 	if (!new)
1165 		flags |= MPOL_MF_DISCONTIG_OK;
1166 
1167 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1168 		 start, start + len, mode, mode_flags,
1169 		 nmask ? nodes_addr(*nmask)[0] : -1);
1170 
1171 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1172 
1173 		err = migrate_prep();
1174 		if (err)
1175 			goto mpol_out;
1176 	}
1177 	{
1178 		NODEMASK_SCRATCH(scratch);
1179 		if (scratch) {
1180 			down_write(&mm->mmap_sem);
1181 			task_lock(current);
1182 			err = mpol_set_nodemask(new, nmask, scratch);
1183 			task_unlock(current);
1184 			if (err)
1185 				up_write(&mm->mmap_sem);
1186 		} else
1187 			err = -ENOMEM;
1188 		NODEMASK_SCRATCH_FREE(scratch);
1189 	}
1190 	if (err)
1191 		goto mpol_out;
1192 
1193 	vma = check_range(mm, start, end, nmask,
1194 			  flags | MPOL_MF_INVERT, &pagelist);
1195 
1196 	err = PTR_ERR(vma);
1197 	if (!IS_ERR(vma)) {
1198 		int nr_failed = 0;
1199 
1200 		err = mbind_range(mm, start, end, new);
1201 
1202 		if (!list_empty(&pagelist)) {
1203 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1204 						(unsigned long)vma,
1205 						false, MIGRATE_SYNC);
1206 			if (nr_failed)
1207 				putback_lru_pages(&pagelist);
1208 		}
1209 
1210 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1211 			err = -EIO;
1212 	} else
1213 		putback_lru_pages(&pagelist);
1214 
1215 	up_write(&mm->mmap_sem);
1216  mpol_out:
1217 	mpol_put(new);
1218 	return err;
1219 }
1220 
1221 /*
1222  * User space interface with variable sized bitmaps for nodelists.
1223  */
1224 
1225 /* Copy a node mask from user space. */
1226 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1227 		     unsigned long maxnode)
1228 {
1229 	unsigned long k;
1230 	unsigned long nlongs;
1231 	unsigned long endmask;
1232 
1233 	--maxnode;
1234 	nodes_clear(*nodes);
1235 	if (maxnode == 0 || !nmask)
1236 		return 0;
1237 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1238 		return -EINVAL;
1239 
1240 	nlongs = BITS_TO_LONGS(maxnode);
1241 	if ((maxnode % BITS_PER_LONG) == 0)
1242 		endmask = ~0UL;
1243 	else
1244 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1245 
1246 	/* When the user specified more nodes than supported just check
1247 	   if the non supported part is all zero. */
1248 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1249 		if (nlongs > PAGE_SIZE/sizeof(long))
1250 			return -EINVAL;
1251 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1252 			unsigned long t;
1253 			if (get_user(t, nmask + k))
1254 				return -EFAULT;
1255 			if (k == nlongs - 1) {
1256 				if (t & endmask)
1257 					return -EINVAL;
1258 			} else if (t)
1259 				return -EINVAL;
1260 		}
1261 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1262 		endmask = ~0UL;
1263 	}
1264 
1265 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1266 		return -EFAULT;
1267 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1268 	return 0;
1269 }
1270 
1271 /* Copy a kernel node mask to user space */
1272 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1273 			      nodemask_t *nodes)
1274 {
1275 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1276 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1277 
1278 	if (copy > nbytes) {
1279 		if (copy > PAGE_SIZE)
1280 			return -EINVAL;
1281 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1282 			return -EFAULT;
1283 		copy = nbytes;
1284 	}
1285 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1286 }
1287 
1288 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1289 		unsigned long, mode, unsigned long __user *, nmask,
1290 		unsigned long, maxnode, unsigned, flags)
1291 {
1292 	nodemask_t nodes;
1293 	int err;
1294 	unsigned short mode_flags;
1295 
1296 	mode_flags = mode & MPOL_MODE_FLAGS;
1297 	mode &= ~MPOL_MODE_FLAGS;
1298 	if (mode >= MPOL_MAX)
1299 		return -EINVAL;
1300 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1301 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1302 		return -EINVAL;
1303 	err = get_nodes(&nodes, nmask, maxnode);
1304 	if (err)
1305 		return err;
1306 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1307 }
1308 
1309 /* Set the process memory policy */
1310 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1311 		unsigned long, maxnode)
1312 {
1313 	int err;
1314 	nodemask_t nodes;
1315 	unsigned short flags;
1316 
1317 	flags = mode & MPOL_MODE_FLAGS;
1318 	mode &= ~MPOL_MODE_FLAGS;
1319 	if ((unsigned int)mode >= MPOL_MAX)
1320 		return -EINVAL;
1321 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1322 		return -EINVAL;
1323 	err = get_nodes(&nodes, nmask, maxnode);
1324 	if (err)
1325 		return err;
1326 	return do_set_mempolicy(mode, flags, &nodes);
1327 }
1328 
1329 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1330 		const unsigned long __user *, old_nodes,
1331 		const unsigned long __user *, new_nodes)
1332 {
1333 	const struct cred *cred = current_cred(), *tcred;
1334 	struct mm_struct *mm = NULL;
1335 	struct task_struct *task;
1336 	nodemask_t task_nodes;
1337 	int err;
1338 	nodemask_t *old;
1339 	nodemask_t *new;
1340 	NODEMASK_SCRATCH(scratch);
1341 
1342 	if (!scratch)
1343 		return -ENOMEM;
1344 
1345 	old = &scratch->mask1;
1346 	new = &scratch->mask2;
1347 
1348 	err = get_nodes(old, old_nodes, maxnode);
1349 	if (err)
1350 		goto out;
1351 
1352 	err = get_nodes(new, new_nodes, maxnode);
1353 	if (err)
1354 		goto out;
1355 
1356 	/* Find the mm_struct */
1357 	rcu_read_lock();
1358 	task = pid ? find_task_by_vpid(pid) : current;
1359 	if (!task) {
1360 		rcu_read_unlock();
1361 		err = -ESRCH;
1362 		goto out;
1363 	}
1364 	get_task_struct(task);
1365 
1366 	err = -EINVAL;
1367 
1368 	/*
1369 	 * Check if this process has the right to modify the specified
1370 	 * process. The right exists if the process has administrative
1371 	 * capabilities, superuser privileges or the same
1372 	 * userid as the target process.
1373 	 */
1374 	tcred = __task_cred(task);
1375 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1376 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1377 	    !capable(CAP_SYS_NICE)) {
1378 		rcu_read_unlock();
1379 		err = -EPERM;
1380 		goto out_put;
1381 	}
1382 	rcu_read_unlock();
1383 
1384 	task_nodes = cpuset_mems_allowed(task);
1385 	/* Is the user allowed to access the target nodes? */
1386 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1387 		err = -EPERM;
1388 		goto out_put;
1389 	}
1390 
1391 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1392 		err = -EINVAL;
1393 		goto out_put;
1394 	}
1395 
1396 	err = security_task_movememory(task);
1397 	if (err)
1398 		goto out_put;
1399 
1400 	mm = get_task_mm(task);
1401 	put_task_struct(task);
1402 
1403 	if (!mm) {
1404 		err = -EINVAL;
1405 		goto out;
1406 	}
1407 
1408 	err = do_migrate_pages(mm, old, new,
1409 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1410 
1411 	mmput(mm);
1412 out:
1413 	NODEMASK_SCRATCH_FREE(scratch);
1414 
1415 	return err;
1416 
1417 out_put:
1418 	put_task_struct(task);
1419 	goto out;
1420 
1421 }
1422 
1423 
1424 /* Retrieve NUMA policy */
1425 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1426 		unsigned long __user *, nmask, unsigned long, maxnode,
1427 		unsigned long, addr, unsigned long, flags)
1428 {
1429 	int err;
1430 	int uninitialized_var(pval);
1431 	nodemask_t nodes;
1432 
1433 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1434 		return -EINVAL;
1435 
1436 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1437 
1438 	if (err)
1439 		return err;
1440 
1441 	if (policy && put_user(pval, policy))
1442 		return -EFAULT;
1443 
1444 	if (nmask)
1445 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1446 
1447 	return err;
1448 }
1449 
1450 #ifdef CONFIG_COMPAT
1451 
1452 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1453 				     compat_ulong_t __user *nmask,
1454 				     compat_ulong_t maxnode,
1455 				     compat_ulong_t addr, compat_ulong_t flags)
1456 {
1457 	long err;
1458 	unsigned long __user *nm = NULL;
1459 	unsigned long nr_bits, alloc_size;
1460 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1461 
1462 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1463 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1464 
1465 	if (nmask)
1466 		nm = compat_alloc_user_space(alloc_size);
1467 
1468 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1469 
1470 	if (!err && nmask) {
1471 		unsigned long copy_size;
1472 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1473 		err = copy_from_user(bm, nm, copy_size);
1474 		/* ensure entire bitmap is zeroed */
1475 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1476 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1477 	}
1478 
1479 	return err;
1480 }
1481 
1482 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1483 				     compat_ulong_t maxnode)
1484 {
1485 	long err = 0;
1486 	unsigned long __user *nm = NULL;
1487 	unsigned long nr_bits, alloc_size;
1488 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1489 
1490 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1491 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1492 
1493 	if (nmask) {
1494 		err = compat_get_bitmap(bm, nmask, nr_bits);
1495 		nm = compat_alloc_user_space(alloc_size);
1496 		err |= copy_to_user(nm, bm, alloc_size);
1497 	}
1498 
1499 	if (err)
1500 		return -EFAULT;
1501 
1502 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1503 }
1504 
1505 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1506 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1507 			     compat_ulong_t maxnode, compat_ulong_t flags)
1508 {
1509 	long err = 0;
1510 	unsigned long __user *nm = NULL;
1511 	unsigned long nr_bits, alloc_size;
1512 	nodemask_t bm;
1513 
1514 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1515 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1516 
1517 	if (nmask) {
1518 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1519 		nm = compat_alloc_user_space(alloc_size);
1520 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1521 	}
1522 
1523 	if (err)
1524 		return -EFAULT;
1525 
1526 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1527 }
1528 
1529 #endif
1530 
1531 /*
1532  * get_vma_policy(@task, @vma, @addr)
1533  * @task - task for fallback if vma policy == default
1534  * @vma   - virtual memory area whose policy is sought
1535  * @addr  - address in @vma for shared policy lookup
1536  *
1537  * Returns effective policy for a VMA at specified address.
1538  * Falls back to @task or system default policy, as necessary.
1539  * Current or other task's task mempolicy and non-shared vma policies
1540  * are protected by the task's mmap_sem, which must be held for read by
1541  * the caller.
1542  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1543  * count--added by the get_policy() vm_op, as appropriate--to protect against
1544  * freeing by another task.  It is the caller's responsibility to free the
1545  * extra reference for shared policies.
1546  */
1547 struct mempolicy *get_vma_policy(struct task_struct *task,
1548 		struct vm_area_struct *vma, unsigned long addr)
1549 {
1550 	struct mempolicy *pol = task->mempolicy;
1551 
1552 	if (vma) {
1553 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1554 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1555 									addr);
1556 			if (vpol)
1557 				pol = vpol;
1558 		} else if (vma->vm_policy) {
1559 			pol = vma->vm_policy;
1560 
1561 			/*
1562 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1563 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1564 			 * count on these policies which will be dropped by
1565 			 * mpol_cond_put() later
1566 			 */
1567 			if (mpol_needs_cond_ref(pol))
1568 				mpol_get(pol);
1569 		}
1570 	}
1571 	if (!pol)
1572 		pol = &default_policy;
1573 	return pol;
1574 }
1575 
1576 /*
1577  * Return a nodemask representing a mempolicy for filtering nodes for
1578  * page allocation
1579  */
1580 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1581 {
1582 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1583 	if (unlikely(policy->mode == MPOL_BIND) &&
1584 			gfp_zone(gfp) >= policy_zone &&
1585 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1586 		return &policy->v.nodes;
1587 
1588 	return NULL;
1589 }
1590 
1591 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1592 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1593 	int nd)
1594 {
1595 	switch (policy->mode) {
1596 	case MPOL_PREFERRED:
1597 		if (!(policy->flags & MPOL_F_LOCAL))
1598 			nd = policy->v.preferred_node;
1599 		break;
1600 	case MPOL_BIND:
1601 		/*
1602 		 * Normally, MPOL_BIND allocations are node-local within the
1603 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1604 		 * current node isn't part of the mask, we use the zonelist for
1605 		 * the first node in the mask instead.
1606 		 */
1607 		if (unlikely(gfp & __GFP_THISNODE) &&
1608 				unlikely(!node_isset(nd, policy->v.nodes)))
1609 			nd = first_node(policy->v.nodes);
1610 		break;
1611 	default:
1612 		BUG();
1613 	}
1614 	return node_zonelist(nd, gfp);
1615 }
1616 
1617 /* Do dynamic interleaving for a process */
1618 static unsigned interleave_nodes(struct mempolicy *policy)
1619 {
1620 	unsigned nid, next;
1621 	struct task_struct *me = current;
1622 
1623 	nid = me->il_next;
1624 	next = next_node(nid, policy->v.nodes);
1625 	if (next >= MAX_NUMNODES)
1626 		next = first_node(policy->v.nodes);
1627 	if (next < MAX_NUMNODES)
1628 		me->il_next = next;
1629 	return nid;
1630 }
1631 
1632 /*
1633  * Depending on the memory policy provide a node from which to allocate the
1634  * next slab entry.
1635  * @policy must be protected by freeing by the caller.  If @policy is
1636  * the current task's mempolicy, this protection is implicit, as only the
1637  * task can change it's policy.  The system default policy requires no
1638  * such protection.
1639  */
1640 unsigned slab_node(void)
1641 {
1642 	struct mempolicy *policy;
1643 
1644 	if (in_interrupt())
1645 		return numa_node_id();
1646 
1647 	policy = current->mempolicy;
1648 	if (!policy || policy->flags & MPOL_F_LOCAL)
1649 		return numa_node_id();
1650 
1651 	switch (policy->mode) {
1652 	case MPOL_PREFERRED:
1653 		/*
1654 		 * handled MPOL_F_LOCAL above
1655 		 */
1656 		return policy->v.preferred_node;
1657 
1658 	case MPOL_INTERLEAVE:
1659 		return interleave_nodes(policy);
1660 
1661 	case MPOL_BIND: {
1662 		/*
1663 		 * Follow bind policy behavior and start allocation at the
1664 		 * first node.
1665 		 */
1666 		struct zonelist *zonelist;
1667 		struct zone *zone;
1668 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1669 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1670 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1671 							&policy->v.nodes,
1672 							&zone);
1673 		return zone ? zone->node : numa_node_id();
1674 	}
1675 
1676 	default:
1677 		BUG();
1678 	}
1679 }
1680 
1681 /* Do static interleaving for a VMA with known offset. */
1682 static unsigned offset_il_node(struct mempolicy *pol,
1683 		struct vm_area_struct *vma, unsigned long off)
1684 {
1685 	unsigned nnodes = nodes_weight(pol->v.nodes);
1686 	unsigned target;
1687 	int c;
1688 	int nid = -1;
1689 
1690 	if (!nnodes)
1691 		return numa_node_id();
1692 	target = (unsigned int)off % nnodes;
1693 	c = 0;
1694 	do {
1695 		nid = next_node(nid, pol->v.nodes);
1696 		c++;
1697 	} while (c <= target);
1698 	return nid;
1699 }
1700 
1701 /* Determine a node number for interleave */
1702 static inline unsigned interleave_nid(struct mempolicy *pol,
1703 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1704 {
1705 	if (vma) {
1706 		unsigned long off;
1707 
1708 		/*
1709 		 * for small pages, there is no difference between
1710 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1711 		 * for huge pages, since vm_pgoff is in units of small
1712 		 * pages, we need to shift off the always 0 bits to get
1713 		 * a useful offset.
1714 		 */
1715 		BUG_ON(shift < PAGE_SHIFT);
1716 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1717 		off += (addr - vma->vm_start) >> shift;
1718 		return offset_il_node(pol, vma, off);
1719 	} else
1720 		return interleave_nodes(pol);
1721 }
1722 
1723 /*
1724  * Return the bit number of a random bit set in the nodemask.
1725  * (returns -1 if nodemask is empty)
1726  */
1727 int node_random(const nodemask_t *maskp)
1728 {
1729 	int w, bit = -1;
1730 
1731 	w = nodes_weight(*maskp);
1732 	if (w)
1733 		bit = bitmap_ord_to_pos(maskp->bits,
1734 			get_random_int() % w, MAX_NUMNODES);
1735 	return bit;
1736 }
1737 
1738 #ifdef CONFIG_HUGETLBFS
1739 /*
1740  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1741  * @vma = virtual memory area whose policy is sought
1742  * @addr = address in @vma for shared policy lookup and interleave policy
1743  * @gfp_flags = for requested zone
1744  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1745  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1746  *
1747  * Returns a zonelist suitable for a huge page allocation and a pointer
1748  * to the struct mempolicy for conditional unref after allocation.
1749  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1750  * @nodemask for filtering the zonelist.
1751  *
1752  * Must be protected by get_mems_allowed()
1753  */
1754 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1755 				gfp_t gfp_flags, struct mempolicy **mpol,
1756 				nodemask_t **nodemask)
1757 {
1758 	struct zonelist *zl;
1759 
1760 	*mpol = get_vma_policy(current, vma, addr);
1761 	*nodemask = NULL;	/* assume !MPOL_BIND */
1762 
1763 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1764 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1765 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1766 	} else {
1767 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1768 		if ((*mpol)->mode == MPOL_BIND)
1769 			*nodemask = &(*mpol)->v.nodes;
1770 	}
1771 	return zl;
1772 }
1773 
1774 /*
1775  * init_nodemask_of_mempolicy
1776  *
1777  * If the current task's mempolicy is "default" [NULL], return 'false'
1778  * to indicate default policy.  Otherwise, extract the policy nodemask
1779  * for 'bind' or 'interleave' policy into the argument nodemask, or
1780  * initialize the argument nodemask to contain the single node for
1781  * 'preferred' or 'local' policy and return 'true' to indicate presence
1782  * of non-default mempolicy.
1783  *
1784  * We don't bother with reference counting the mempolicy [mpol_get/put]
1785  * because the current task is examining it's own mempolicy and a task's
1786  * mempolicy is only ever changed by the task itself.
1787  *
1788  * N.B., it is the caller's responsibility to free a returned nodemask.
1789  */
1790 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1791 {
1792 	struct mempolicy *mempolicy;
1793 	int nid;
1794 
1795 	if (!(mask && current->mempolicy))
1796 		return false;
1797 
1798 	task_lock(current);
1799 	mempolicy = current->mempolicy;
1800 	switch (mempolicy->mode) {
1801 	case MPOL_PREFERRED:
1802 		if (mempolicy->flags & MPOL_F_LOCAL)
1803 			nid = numa_node_id();
1804 		else
1805 			nid = mempolicy->v.preferred_node;
1806 		init_nodemask_of_node(mask, nid);
1807 		break;
1808 
1809 	case MPOL_BIND:
1810 		/* Fall through */
1811 	case MPOL_INTERLEAVE:
1812 		*mask =  mempolicy->v.nodes;
1813 		break;
1814 
1815 	default:
1816 		BUG();
1817 	}
1818 	task_unlock(current);
1819 
1820 	return true;
1821 }
1822 #endif
1823 
1824 /*
1825  * mempolicy_nodemask_intersects
1826  *
1827  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1828  * policy.  Otherwise, check for intersection between mask and the policy
1829  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1830  * policy, always return true since it may allocate elsewhere on fallback.
1831  *
1832  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1833  */
1834 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1835 					const nodemask_t *mask)
1836 {
1837 	struct mempolicy *mempolicy;
1838 	bool ret = true;
1839 
1840 	if (!mask)
1841 		return ret;
1842 	task_lock(tsk);
1843 	mempolicy = tsk->mempolicy;
1844 	if (!mempolicy)
1845 		goto out;
1846 
1847 	switch (mempolicy->mode) {
1848 	case MPOL_PREFERRED:
1849 		/*
1850 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1851 		 * allocate from, they may fallback to other nodes when oom.
1852 		 * Thus, it's possible for tsk to have allocated memory from
1853 		 * nodes in mask.
1854 		 */
1855 		break;
1856 	case MPOL_BIND:
1857 	case MPOL_INTERLEAVE:
1858 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1859 		break;
1860 	default:
1861 		BUG();
1862 	}
1863 out:
1864 	task_unlock(tsk);
1865 	return ret;
1866 }
1867 
1868 /* Allocate a page in interleaved policy.
1869    Own path because it needs to do special accounting. */
1870 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1871 					unsigned nid)
1872 {
1873 	struct zonelist *zl;
1874 	struct page *page;
1875 
1876 	zl = node_zonelist(nid, gfp);
1877 	page = __alloc_pages(gfp, order, zl);
1878 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1879 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1880 	return page;
1881 }
1882 
1883 /**
1884  * 	alloc_pages_vma	- Allocate a page for a VMA.
1885  *
1886  * 	@gfp:
1887  *      %GFP_USER    user allocation.
1888  *      %GFP_KERNEL  kernel allocations,
1889  *      %GFP_HIGHMEM highmem/user allocations,
1890  *      %GFP_FS      allocation should not call back into a file system.
1891  *      %GFP_ATOMIC  don't sleep.
1892  *
1893  *	@order:Order of the GFP allocation.
1894  * 	@vma:  Pointer to VMA or NULL if not available.
1895  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1896  *
1897  * 	This function allocates a page from the kernel page pool and applies
1898  *	a NUMA policy associated with the VMA or the current process.
1899  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1900  *	mm_struct of the VMA to prevent it from going away. Should be used for
1901  *	all allocations for pages that will be mapped into
1902  * 	user space. Returns NULL when no page can be allocated.
1903  *
1904  *	Should be called with the mm_sem of the vma hold.
1905  */
1906 struct page *
1907 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1908 		unsigned long addr, int node)
1909 {
1910 	struct mempolicy *pol;
1911 	struct zonelist *zl;
1912 	struct page *page;
1913 	unsigned int cpuset_mems_cookie;
1914 
1915 retry_cpuset:
1916 	pol = get_vma_policy(current, vma, addr);
1917 	cpuset_mems_cookie = get_mems_allowed();
1918 
1919 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1920 		unsigned nid;
1921 
1922 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1923 		mpol_cond_put(pol);
1924 		page = alloc_page_interleave(gfp, order, nid);
1925 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1926 			goto retry_cpuset;
1927 
1928 		return page;
1929 	}
1930 	zl = policy_zonelist(gfp, pol, node);
1931 	if (unlikely(mpol_needs_cond_ref(pol))) {
1932 		/*
1933 		 * slow path: ref counted shared policy
1934 		 */
1935 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1936 						zl, policy_nodemask(gfp, pol));
1937 		__mpol_put(pol);
1938 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1939 			goto retry_cpuset;
1940 		return page;
1941 	}
1942 	/*
1943 	 * fast path:  default or task policy
1944 	 */
1945 	page = __alloc_pages_nodemask(gfp, order, zl,
1946 				      policy_nodemask(gfp, pol));
1947 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1948 		goto retry_cpuset;
1949 	return page;
1950 }
1951 
1952 /**
1953  * 	alloc_pages_current - Allocate pages.
1954  *
1955  *	@gfp:
1956  *		%GFP_USER   user allocation,
1957  *      	%GFP_KERNEL kernel allocation,
1958  *      	%GFP_HIGHMEM highmem allocation,
1959  *      	%GFP_FS     don't call back into a file system.
1960  *      	%GFP_ATOMIC don't sleep.
1961  *	@order: Power of two of allocation size in pages. 0 is a single page.
1962  *
1963  *	Allocate a page from the kernel page pool.  When not in
1964  *	interrupt context and apply the current process NUMA policy.
1965  *	Returns NULL when no page can be allocated.
1966  *
1967  *	Don't call cpuset_update_task_memory_state() unless
1968  *	1) it's ok to take cpuset_sem (can WAIT), and
1969  *	2) allocating for current task (not interrupt).
1970  */
1971 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1972 {
1973 	struct mempolicy *pol = current->mempolicy;
1974 	struct page *page;
1975 	unsigned int cpuset_mems_cookie;
1976 
1977 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1978 		pol = &default_policy;
1979 
1980 retry_cpuset:
1981 	cpuset_mems_cookie = get_mems_allowed();
1982 
1983 	/*
1984 	 * No reference counting needed for current->mempolicy
1985 	 * nor system default_policy
1986 	 */
1987 	if (pol->mode == MPOL_INTERLEAVE)
1988 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1989 	else
1990 		page = __alloc_pages_nodemask(gfp, order,
1991 				policy_zonelist(gfp, pol, numa_node_id()),
1992 				policy_nodemask(gfp, pol));
1993 
1994 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1995 		goto retry_cpuset;
1996 
1997 	return page;
1998 }
1999 EXPORT_SYMBOL(alloc_pages_current);
2000 
2001 /*
2002  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2003  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2004  * with the mems_allowed returned by cpuset_mems_allowed().  This
2005  * keeps mempolicies cpuset relative after its cpuset moves.  See
2006  * further kernel/cpuset.c update_nodemask().
2007  *
2008  * current's mempolicy may be rebinded by the other task(the task that changes
2009  * cpuset's mems), so we needn't do rebind work for current task.
2010  */
2011 
2012 /* Slow path of a mempolicy duplicate */
2013 struct mempolicy *__mpol_dup(struct mempolicy *old)
2014 {
2015 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2016 
2017 	if (!new)
2018 		return ERR_PTR(-ENOMEM);
2019 
2020 	/* task's mempolicy is protected by alloc_lock */
2021 	if (old == current->mempolicy) {
2022 		task_lock(current);
2023 		*new = *old;
2024 		task_unlock(current);
2025 	} else
2026 		*new = *old;
2027 
2028 	rcu_read_lock();
2029 	if (current_cpuset_is_being_rebound()) {
2030 		nodemask_t mems = cpuset_mems_allowed(current);
2031 		if (new->flags & MPOL_F_REBINDING)
2032 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2033 		else
2034 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2035 	}
2036 	rcu_read_unlock();
2037 	atomic_set(&new->refcnt, 1);
2038 	return new;
2039 }
2040 
2041 /*
2042  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2043  * eliminate the * MPOL_F_* flags that require conditional ref and
2044  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
2045  * after return.  Use the returned value.
2046  *
2047  * Allows use of a mempolicy for, e.g., multiple allocations with a single
2048  * policy lookup, even if the policy needs/has extra ref on lookup.
2049  * shmem_readahead needs this.
2050  */
2051 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2052 						struct mempolicy *frompol)
2053 {
2054 	if (!mpol_needs_cond_ref(frompol))
2055 		return frompol;
2056 
2057 	*tompol = *frompol;
2058 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
2059 	__mpol_put(frompol);
2060 	return tompol;
2061 }
2062 
2063 /* Slow path of a mempolicy comparison */
2064 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2065 {
2066 	if (!a || !b)
2067 		return false;
2068 	if (a->mode != b->mode)
2069 		return false;
2070 	if (a->flags != b->flags)
2071 		return false;
2072 	if (mpol_store_user_nodemask(a))
2073 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2074 			return false;
2075 
2076 	switch (a->mode) {
2077 	case MPOL_BIND:
2078 		/* Fall through */
2079 	case MPOL_INTERLEAVE:
2080 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2081 	case MPOL_PREFERRED:
2082 		return a->v.preferred_node == b->v.preferred_node;
2083 	default:
2084 		BUG();
2085 		return false;
2086 	}
2087 }
2088 
2089 /*
2090  * Shared memory backing store policy support.
2091  *
2092  * Remember policies even when nobody has shared memory mapped.
2093  * The policies are kept in Red-Black tree linked from the inode.
2094  * They are protected by the sp->lock spinlock, which should be held
2095  * for any accesses to the tree.
2096  */
2097 
2098 /* lookup first element intersecting start-end */
2099 /* Caller holds sp->mutex */
2100 static struct sp_node *
2101 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2102 {
2103 	struct rb_node *n = sp->root.rb_node;
2104 
2105 	while (n) {
2106 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2107 
2108 		if (start >= p->end)
2109 			n = n->rb_right;
2110 		else if (end <= p->start)
2111 			n = n->rb_left;
2112 		else
2113 			break;
2114 	}
2115 	if (!n)
2116 		return NULL;
2117 	for (;;) {
2118 		struct sp_node *w = NULL;
2119 		struct rb_node *prev = rb_prev(n);
2120 		if (!prev)
2121 			break;
2122 		w = rb_entry(prev, struct sp_node, nd);
2123 		if (w->end <= start)
2124 			break;
2125 		n = prev;
2126 	}
2127 	return rb_entry(n, struct sp_node, nd);
2128 }
2129 
2130 /* Insert a new shared policy into the list. */
2131 /* Caller holds sp->lock */
2132 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2133 {
2134 	struct rb_node **p = &sp->root.rb_node;
2135 	struct rb_node *parent = NULL;
2136 	struct sp_node *nd;
2137 
2138 	while (*p) {
2139 		parent = *p;
2140 		nd = rb_entry(parent, struct sp_node, nd);
2141 		if (new->start < nd->start)
2142 			p = &(*p)->rb_left;
2143 		else if (new->end > nd->end)
2144 			p = &(*p)->rb_right;
2145 		else
2146 			BUG();
2147 	}
2148 	rb_link_node(&new->nd, parent, p);
2149 	rb_insert_color(&new->nd, &sp->root);
2150 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2151 		 new->policy ? new->policy->mode : 0);
2152 }
2153 
2154 /* Find shared policy intersecting idx */
2155 struct mempolicy *
2156 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2157 {
2158 	struct mempolicy *pol = NULL;
2159 	struct sp_node *sn;
2160 
2161 	if (!sp->root.rb_node)
2162 		return NULL;
2163 	mutex_lock(&sp->mutex);
2164 	sn = sp_lookup(sp, idx, idx+1);
2165 	if (sn) {
2166 		mpol_get(sn->policy);
2167 		pol = sn->policy;
2168 	}
2169 	mutex_unlock(&sp->mutex);
2170 	return pol;
2171 }
2172 
2173 static void sp_free(struct sp_node *n)
2174 {
2175 	mpol_put(n->policy);
2176 	kmem_cache_free(sn_cache, n);
2177 }
2178 
2179 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2180 {
2181 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2182 	rb_erase(&n->nd, &sp->root);
2183 	sp_free(n);
2184 }
2185 
2186 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2187 				struct mempolicy *pol)
2188 {
2189 	struct sp_node *n;
2190 	struct mempolicy *newpol;
2191 
2192 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2193 	if (!n)
2194 		return NULL;
2195 
2196 	newpol = mpol_dup(pol);
2197 	if (IS_ERR(newpol)) {
2198 		kmem_cache_free(sn_cache, n);
2199 		return NULL;
2200 	}
2201 	newpol->flags |= MPOL_F_SHARED;
2202 
2203 	n->start = start;
2204 	n->end = end;
2205 	n->policy = newpol;
2206 
2207 	return n;
2208 }
2209 
2210 /* Replace a policy range. */
2211 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2212 				 unsigned long end, struct sp_node *new)
2213 {
2214 	struct sp_node *n;
2215 	int ret = 0;
2216 
2217 	mutex_lock(&sp->mutex);
2218 	n = sp_lookup(sp, start, end);
2219 	/* Take care of old policies in the same range. */
2220 	while (n && n->start < end) {
2221 		struct rb_node *next = rb_next(&n->nd);
2222 		if (n->start >= start) {
2223 			if (n->end <= end)
2224 				sp_delete(sp, n);
2225 			else
2226 				n->start = end;
2227 		} else {
2228 			/* Old policy spanning whole new range. */
2229 			if (n->end > end) {
2230 				struct sp_node *new2;
2231 				new2 = sp_alloc(end, n->end, n->policy);
2232 				if (!new2) {
2233 					ret = -ENOMEM;
2234 					goto out;
2235 				}
2236 				n->end = start;
2237 				sp_insert(sp, new2);
2238 				break;
2239 			} else
2240 				n->end = start;
2241 		}
2242 		if (!next)
2243 			break;
2244 		n = rb_entry(next, struct sp_node, nd);
2245 	}
2246 	if (new)
2247 		sp_insert(sp, new);
2248 out:
2249 	mutex_unlock(&sp->mutex);
2250 	return ret;
2251 }
2252 
2253 /**
2254  * mpol_shared_policy_init - initialize shared policy for inode
2255  * @sp: pointer to inode shared policy
2256  * @mpol:  struct mempolicy to install
2257  *
2258  * Install non-NULL @mpol in inode's shared policy rb-tree.
2259  * On entry, the current task has a reference on a non-NULL @mpol.
2260  * This must be released on exit.
2261  * This is called at get_inode() calls and we can use GFP_KERNEL.
2262  */
2263 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2264 {
2265 	int ret;
2266 
2267 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2268 	mutex_init(&sp->mutex);
2269 
2270 	if (mpol) {
2271 		struct vm_area_struct pvma;
2272 		struct mempolicy *new;
2273 		NODEMASK_SCRATCH(scratch);
2274 
2275 		if (!scratch)
2276 			goto put_mpol;
2277 		/* contextualize the tmpfs mount point mempolicy */
2278 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2279 		if (IS_ERR(new))
2280 			goto free_scratch; /* no valid nodemask intersection */
2281 
2282 		task_lock(current);
2283 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2284 		task_unlock(current);
2285 		if (ret)
2286 			goto put_new;
2287 
2288 		/* Create pseudo-vma that contains just the policy */
2289 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2290 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2291 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2292 
2293 put_new:
2294 		mpol_put(new);			/* drop initial ref */
2295 free_scratch:
2296 		NODEMASK_SCRATCH_FREE(scratch);
2297 put_mpol:
2298 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2299 	}
2300 }
2301 
2302 int mpol_set_shared_policy(struct shared_policy *info,
2303 			struct vm_area_struct *vma, struct mempolicy *npol)
2304 {
2305 	int err;
2306 	struct sp_node *new = NULL;
2307 	unsigned long sz = vma_pages(vma);
2308 
2309 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2310 		 vma->vm_pgoff,
2311 		 sz, npol ? npol->mode : -1,
2312 		 npol ? npol->flags : -1,
2313 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2314 
2315 	if (npol) {
2316 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2317 		if (!new)
2318 			return -ENOMEM;
2319 	}
2320 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2321 	if (err && new)
2322 		sp_free(new);
2323 	return err;
2324 }
2325 
2326 /* Free a backing policy store on inode delete. */
2327 void mpol_free_shared_policy(struct shared_policy *p)
2328 {
2329 	struct sp_node *n;
2330 	struct rb_node *next;
2331 
2332 	if (!p->root.rb_node)
2333 		return;
2334 	mutex_lock(&p->mutex);
2335 	next = rb_first(&p->root);
2336 	while (next) {
2337 		n = rb_entry(next, struct sp_node, nd);
2338 		next = rb_next(&n->nd);
2339 		sp_delete(p, n);
2340 	}
2341 	mutex_unlock(&p->mutex);
2342 }
2343 
2344 /* assumes fs == KERNEL_DS */
2345 void __init numa_policy_init(void)
2346 {
2347 	nodemask_t interleave_nodes;
2348 	unsigned long largest = 0;
2349 	int nid, prefer = 0;
2350 
2351 	policy_cache = kmem_cache_create("numa_policy",
2352 					 sizeof(struct mempolicy),
2353 					 0, SLAB_PANIC, NULL);
2354 
2355 	sn_cache = kmem_cache_create("shared_policy_node",
2356 				     sizeof(struct sp_node),
2357 				     0, SLAB_PANIC, NULL);
2358 
2359 	/*
2360 	 * Set interleaving policy for system init. Interleaving is only
2361 	 * enabled across suitably sized nodes (default is >= 16MB), or
2362 	 * fall back to the largest node if they're all smaller.
2363 	 */
2364 	nodes_clear(interleave_nodes);
2365 	for_each_node_state(nid, N_HIGH_MEMORY) {
2366 		unsigned long total_pages = node_present_pages(nid);
2367 
2368 		/* Preserve the largest node */
2369 		if (largest < total_pages) {
2370 			largest = total_pages;
2371 			prefer = nid;
2372 		}
2373 
2374 		/* Interleave this node? */
2375 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2376 			node_set(nid, interleave_nodes);
2377 	}
2378 
2379 	/* All too small, use the largest */
2380 	if (unlikely(nodes_empty(interleave_nodes)))
2381 		node_set(prefer, interleave_nodes);
2382 
2383 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2384 		printk("numa_policy_init: interleaving failed\n");
2385 }
2386 
2387 /* Reset policy of current process to default */
2388 void numa_default_policy(void)
2389 {
2390 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2391 }
2392 
2393 /*
2394  * Parse and format mempolicy from/to strings
2395  */
2396 
2397 /*
2398  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2399  * Used only for mpol_parse_str() and mpol_to_str()
2400  */
2401 #define MPOL_LOCAL MPOL_MAX
2402 static const char * const policy_modes[] =
2403 {
2404 	[MPOL_DEFAULT]    = "default",
2405 	[MPOL_PREFERRED]  = "prefer",
2406 	[MPOL_BIND]       = "bind",
2407 	[MPOL_INTERLEAVE] = "interleave",
2408 	[MPOL_LOCAL]      = "local"
2409 };
2410 
2411 
2412 #ifdef CONFIG_TMPFS
2413 /**
2414  * mpol_parse_str - parse string to mempolicy
2415  * @str:  string containing mempolicy to parse
2416  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2417  * @no_context:  flag whether to "contextualize" the mempolicy
2418  *
2419  * Format of input:
2420  *	<mode>[=<flags>][:<nodelist>]
2421  *
2422  * if @no_context is true, save the input nodemask in w.user_nodemask in
2423  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2424  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2425  * mount option.  Note that if 'static' or 'relative' mode flags were
2426  * specified, the input nodemask will already have been saved.  Saving
2427  * it again is redundant, but safe.
2428  *
2429  * On success, returns 0, else 1
2430  */
2431 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2432 {
2433 	struct mempolicy *new = NULL;
2434 	unsigned short mode;
2435 	unsigned short uninitialized_var(mode_flags);
2436 	nodemask_t nodes;
2437 	char *nodelist = strchr(str, ':');
2438 	char *flags = strchr(str, '=');
2439 	int err = 1;
2440 
2441 	if (nodelist) {
2442 		/* NUL-terminate mode or flags string */
2443 		*nodelist++ = '\0';
2444 		if (nodelist_parse(nodelist, nodes))
2445 			goto out;
2446 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2447 			goto out;
2448 	} else
2449 		nodes_clear(nodes);
2450 
2451 	if (flags)
2452 		*flags++ = '\0';	/* terminate mode string */
2453 
2454 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2455 		if (!strcmp(str, policy_modes[mode])) {
2456 			break;
2457 		}
2458 	}
2459 	if (mode > MPOL_LOCAL)
2460 		goto out;
2461 
2462 	switch (mode) {
2463 	case MPOL_PREFERRED:
2464 		/*
2465 		 * Insist on a nodelist of one node only
2466 		 */
2467 		if (nodelist) {
2468 			char *rest = nodelist;
2469 			while (isdigit(*rest))
2470 				rest++;
2471 			if (*rest)
2472 				goto out;
2473 		}
2474 		break;
2475 	case MPOL_INTERLEAVE:
2476 		/*
2477 		 * Default to online nodes with memory if no nodelist
2478 		 */
2479 		if (!nodelist)
2480 			nodes = node_states[N_HIGH_MEMORY];
2481 		break;
2482 	case MPOL_LOCAL:
2483 		/*
2484 		 * Don't allow a nodelist;  mpol_new() checks flags
2485 		 */
2486 		if (nodelist)
2487 			goto out;
2488 		mode = MPOL_PREFERRED;
2489 		break;
2490 	case MPOL_DEFAULT:
2491 		/*
2492 		 * Insist on a empty nodelist
2493 		 */
2494 		if (!nodelist)
2495 			err = 0;
2496 		goto out;
2497 	case MPOL_BIND:
2498 		/*
2499 		 * Insist on a nodelist
2500 		 */
2501 		if (!nodelist)
2502 			goto out;
2503 	}
2504 
2505 	mode_flags = 0;
2506 	if (flags) {
2507 		/*
2508 		 * Currently, we only support two mutually exclusive
2509 		 * mode flags.
2510 		 */
2511 		if (!strcmp(flags, "static"))
2512 			mode_flags |= MPOL_F_STATIC_NODES;
2513 		else if (!strcmp(flags, "relative"))
2514 			mode_flags |= MPOL_F_RELATIVE_NODES;
2515 		else
2516 			goto out;
2517 	}
2518 
2519 	new = mpol_new(mode, mode_flags, &nodes);
2520 	if (IS_ERR(new))
2521 		goto out;
2522 
2523 	if (no_context) {
2524 		/* save for contextualization */
2525 		new->w.user_nodemask = nodes;
2526 	} else {
2527 		int ret;
2528 		NODEMASK_SCRATCH(scratch);
2529 		if (scratch) {
2530 			task_lock(current);
2531 			ret = mpol_set_nodemask(new, &nodes, scratch);
2532 			task_unlock(current);
2533 		} else
2534 			ret = -ENOMEM;
2535 		NODEMASK_SCRATCH_FREE(scratch);
2536 		if (ret) {
2537 			mpol_put(new);
2538 			goto out;
2539 		}
2540 	}
2541 	err = 0;
2542 
2543 out:
2544 	/* Restore string for error message */
2545 	if (nodelist)
2546 		*--nodelist = ':';
2547 	if (flags)
2548 		*--flags = '=';
2549 	if (!err)
2550 		*mpol = new;
2551 	return err;
2552 }
2553 #endif /* CONFIG_TMPFS */
2554 
2555 /**
2556  * mpol_to_str - format a mempolicy structure for printing
2557  * @buffer:  to contain formatted mempolicy string
2558  * @maxlen:  length of @buffer
2559  * @pol:  pointer to mempolicy to be formatted
2560  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2561  *
2562  * Convert a mempolicy into a string.
2563  * Returns the number of characters in buffer (if positive)
2564  * or an error (negative)
2565  */
2566 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2567 {
2568 	char *p = buffer;
2569 	int l;
2570 	nodemask_t nodes;
2571 	unsigned short mode;
2572 	unsigned short flags = pol ? pol->flags : 0;
2573 
2574 	/*
2575 	 * Sanity check:  room for longest mode, flag and some nodes
2576 	 */
2577 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2578 
2579 	if (!pol || pol == &default_policy)
2580 		mode = MPOL_DEFAULT;
2581 	else
2582 		mode = pol->mode;
2583 
2584 	switch (mode) {
2585 	case MPOL_DEFAULT:
2586 		nodes_clear(nodes);
2587 		break;
2588 
2589 	case MPOL_PREFERRED:
2590 		nodes_clear(nodes);
2591 		if (flags & MPOL_F_LOCAL)
2592 			mode = MPOL_LOCAL;	/* pseudo-policy */
2593 		else
2594 			node_set(pol->v.preferred_node, nodes);
2595 		break;
2596 
2597 	case MPOL_BIND:
2598 		/* Fall through */
2599 	case MPOL_INTERLEAVE:
2600 		if (no_context)
2601 			nodes = pol->w.user_nodemask;
2602 		else
2603 			nodes = pol->v.nodes;
2604 		break;
2605 
2606 	default:
2607 		return -EINVAL;
2608 	}
2609 
2610 	l = strlen(policy_modes[mode]);
2611 	if (buffer + maxlen < p + l + 1)
2612 		return -ENOSPC;
2613 
2614 	strcpy(p, policy_modes[mode]);
2615 	p += l;
2616 
2617 	if (flags & MPOL_MODE_FLAGS) {
2618 		if (buffer + maxlen < p + 2)
2619 			return -ENOSPC;
2620 		*p++ = '=';
2621 
2622 		/*
2623 		 * Currently, the only defined flags are mutually exclusive
2624 		 */
2625 		if (flags & MPOL_F_STATIC_NODES)
2626 			p += snprintf(p, buffer + maxlen - p, "static");
2627 		else if (flags & MPOL_F_RELATIVE_NODES)
2628 			p += snprintf(p, buffer + maxlen - p, "relative");
2629 	}
2630 
2631 	if (!nodes_empty(nodes)) {
2632 		if (buffer + maxlen < p + 2)
2633 			return -ENOSPC;
2634 		*p++ = ':';
2635 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2636 	}
2637 	return p - buffer;
2638 }
2639