1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #include <linux/mempolicy.h> 69 #include <linux/mm.h> 70 #include <linux/highmem.h> 71 #include <linux/hugetlb.h> 72 #include <linux/kernel.h> 73 #include <linux/sched.h> 74 #include <linux/nodemask.h> 75 #include <linux/cpuset.h> 76 #include <linux/slab.h> 77 #include <linux/string.h> 78 #include <linux/export.h> 79 #include <linux/nsproxy.h> 80 #include <linux/interrupt.h> 81 #include <linux/init.h> 82 #include <linux/compat.h> 83 #include <linux/swap.h> 84 #include <linux/seq_file.h> 85 #include <linux/proc_fs.h> 86 #include <linux/migrate.h> 87 #include <linux/ksm.h> 88 #include <linux/rmap.h> 89 #include <linux/security.h> 90 #include <linux/syscalls.h> 91 #include <linux/ctype.h> 92 #include <linux/mm_inline.h> 93 94 #include <asm/tlbflush.h> 95 #include <asm/uaccess.h> 96 #include <linux/random.h> 97 98 #include "internal.h" 99 100 /* Internal flags */ 101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 103 104 static struct kmem_cache *policy_cache; 105 static struct kmem_cache *sn_cache; 106 107 /* Highest zone. An specific allocation for a zone below that is not 108 policied. */ 109 enum zone_type policy_zone = 0; 110 111 /* 112 * run-time system-wide default policy => local allocation 113 */ 114 static struct mempolicy default_policy = { 115 .refcnt = ATOMIC_INIT(1), /* never free it */ 116 .mode = MPOL_PREFERRED, 117 .flags = MPOL_F_LOCAL, 118 }; 119 120 static const struct mempolicy_operations { 121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 122 /* 123 * If read-side task has no lock to protect task->mempolicy, write-side 124 * task will rebind the task->mempolicy by two step. The first step is 125 * setting all the newly nodes, and the second step is cleaning all the 126 * disallowed nodes. In this way, we can avoid finding no node to alloc 127 * page. 128 * If we have a lock to protect task->mempolicy in read-side, we do 129 * rebind directly. 130 * 131 * step: 132 * MPOL_REBIND_ONCE - do rebind work at once 133 * MPOL_REBIND_STEP1 - set all the newly nodes 134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 135 */ 136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 137 enum mpol_rebind_step step); 138 } mpol_ops[MPOL_MAX]; 139 140 /* Check that the nodemask contains at least one populated zone */ 141 static int is_valid_nodemask(const nodemask_t *nodemask) 142 { 143 int nd, k; 144 145 for_each_node_mask(nd, *nodemask) { 146 struct zone *z; 147 148 for (k = 0; k <= policy_zone; k++) { 149 z = &NODE_DATA(nd)->node_zones[k]; 150 if (z->present_pages > 0) 151 return 1; 152 } 153 } 154 155 return 0; 156 } 157 158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 159 { 160 return pol->flags & MPOL_MODE_FLAGS; 161 } 162 163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 164 const nodemask_t *rel) 165 { 166 nodemask_t tmp; 167 nodes_fold(tmp, *orig, nodes_weight(*rel)); 168 nodes_onto(*ret, tmp, *rel); 169 } 170 171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 172 { 173 if (nodes_empty(*nodes)) 174 return -EINVAL; 175 pol->v.nodes = *nodes; 176 return 0; 177 } 178 179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 180 { 181 if (!nodes) 182 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 183 else if (nodes_empty(*nodes)) 184 return -EINVAL; /* no allowed nodes */ 185 else 186 pol->v.preferred_node = first_node(*nodes); 187 return 0; 188 } 189 190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 191 { 192 if (!is_valid_nodemask(nodes)) 193 return -EINVAL; 194 pol->v.nodes = *nodes; 195 return 0; 196 } 197 198 /* 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 200 * any, for the new policy. mpol_new() has already validated the nodes 201 * parameter with respect to the policy mode and flags. But, we need to 202 * handle an empty nodemask with MPOL_PREFERRED here. 203 * 204 * Must be called holding task's alloc_lock to protect task's mems_allowed 205 * and mempolicy. May also be called holding the mmap_semaphore for write. 206 */ 207 static int mpol_set_nodemask(struct mempolicy *pol, 208 const nodemask_t *nodes, struct nodemask_scratch *nsc) 209 { 210 int ret; 211 212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 213 if (pol == NULL) 214 return 0; 215 /* Check N_HIGH_MEMORY */ 216 nodes_and(nsc->mask1, 217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]); 218 219 VM_BUG_ON(!nodes); 220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 221 nodes = NULL; /* explicit local allocation */ 222 else { 223 if (pol->flags & MPOL_F_RELATIVE_NODES) 224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 225 else 226 nodes_and(nsc->mask2, *nodes, nsc->mask1); 227 228 if (mpol_store_user_nodemask(pol)) 229 pol->w.user_nodemask = *nodes; 230 else 231 pol->w.cpuset_mems_allowed = 232 cpuset_current_mems_allowed; 233 } 234 235 if (nodes) 236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 237 else 238 ret = mpol_ops[pol->mode].create(pol, NULL); 239 return ret; 240 } 241 242 /* 243 * This function just creates a new policy, does some check and simple 244 * initialization. You must invoke mpol_set_nodemask() to set nodes. 245 */ 246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 247 nodemask_t *nodes) 248 { 249 struct mempolicy *policy; 250 251 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); 253 254 if (mode == MPOL_DEFAULT) { 255 if (nodes && !nodes_empty(*nodes)) 256 return ERR_PTR(-EINVAL); 257 return NULL; /* simply delete any existing policy */ 258 } 259 VM_BUG_ON(!nodes); 260 261 /* 262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 264 * All other modes require a valid pointer to a non-empty nodemask. 265 */ 266 if (mode == MPOL_PREFERRED) { 267 if (nodes_empty(*nodes)) { 268 if (((flags & MPOL_F_STATIC_NODES) || 269 (flags & MPOL_F_RELATIVE_NODES))) 270 return ERR_PTR(-EINVAL); 271 } 272 } else if (nodes_empty(*nodes)) 273 return ERR_PTR(-EINVAL); 274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 275 if (!policy) 276 return ERR_PTR(-ENOMEM); 277 atomic_set(&policy->refcnt, 1); 278 policy->mode = mode; 279 policy->flags = flags; 280 281 return policy; 282 } 283 284 /* Slow path of a mpol destructor. */ 285 void __mpol_put(struct mempolicy *p) 286 { 287 if (!atomic_dec_and_test(&p->refcnt)) 288 return; 289 kmem_cache_free(policy_cache, p); 290 } 291 292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 293 enum mpol_rebind_step step) 294 { 295 } 296 297 /* 298 * step: 299 * MPOL_REBIND_ONCE - do rebind work at once 300 * MPOL_REBIND_STEP1 - set all the newly nodes 301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 302 */ 303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 nodemask_t tmp; 307 308 if (pol->flags & MPOL_F_STATIC_NODES) 309 nodes_and(tmp, pol->w.user_nodemask, *nodes); 310 else if (pol->flags & MPOL_F_RELATIVE_NODES) 311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 312 else { 313 /* 314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 315 * result 316 */ 317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 318 nodes_remap(tmp, pol->v.nodes, 319 pol->w.cpuset_mems_allowed, *nodes); 320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 321 } else if (step == MPOL_REBIND_STEP2) { 322 tmp = pol->w.cpuset_mems_allowed; 323 pol->w.cpuset_mems_allowed = *nodes; 324 } else 325 BUG(); 326 } 327 328 if (nodes_empty(tmp)) 329 tmp = *nodes; 330 331 if (step == MPOL_REBIND_STEP1) 332 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 334 pol->v.nodes = tmp; 335 else 336 BUG(); 337 338 if (!node_isset(current->il_next, tmp)) { 339 current->il_next = next_node(current->il_next, tmp); 340 if (current->il_next >= MAX_NUMNODES) 341 current->il_next = first_node(tmp); 342 if (current->il_next >= MAX_NUMNODES) 343 current->il_next = numa_node_id(); 344 } 345 } 346 347 static void mpol_rebind_preferred(struct mempolicy *pol, 348 const nodemask_t *nodes, 349 enum mpol_rebind_step step) 350 { 351 nodemask_t tmp; 352 353 if (pol->flags & MPOL_F_STATIC_NODES) { 354 int node = first_node(pol->w.user_nodemask); 355 356 if (node_isset(node, *nodes)) { 357 pol->v.preferred_node = node; 358 pol->flags &= ~MPOL_F_LOCAL; 359 } else 360 pol->flags |= MPOL_F_LOCAL; 361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 363 pol->v.preferred_node = first_node(tmp); 364 } else if (!(pol->flags & MPOL_F_LOCAL)) { 365 pol->v.preferred_node = node_remap(pol->v.preferred_node, 366 pol->w.cpuset_mems_allowed, 367 *nodes); 368 pol->w.cpuset_mems_allowed = *nodes; 369 } 370 } 371 372 /* 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes 374 * 375 * If read-side task has no lock to protect task->mempolicy, write-side 376 * task will rebind the task->mempolicy by two step. The first step is 377 * setting all the newly nodes, and the second step is cleaning all the 378 * disallowed nodes. In this way, we can avoid finding no node to alloc 379 * page. 380 * If we have a lock to protect task->mempolicy in read-side, we do 381 * rebind directly. 382 * 383 * step: 384 * MPOL_REBIND_ONCE - do rebind work at once 385 * MPOL_REBIND_STEP1 - set all the newly nodes 386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 387 */ 388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 389 enum mpol_rebind_step step) 390 { 391 if (!pol) 392 return; 393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && 394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 395 return; 396 397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 398 return; 399 400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 401 BUG(); 402 403 if (step == MPOL_REBIND_STEP1) 404 pol->flags |= MPOL_F_REBINDING; 405 else if (step == MPOL_REBIND_STEP2) 406 pol->flags &= ~MPOL_F_REBINDING; 407 else if (step >= MPOL_REBIND_NSTEP) 408 BUG(); 409 410 mpol_ops[pol->mode].rebind(pol, newmask, step); 411 } 412 413 /* 414 * Wrapper for mpol_rebind_policy() that just requires task 415 * pointer, and updates task mempolicy. 416 * 417 * Called with task's alloc_lock held. 418 */ 419 420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 421 enum mpol_rebind_step step) 422 { 423 mpol_rebind_policy(tsk->mempolicy, new, step); 424 } 425 426 /* 427 * Rebind each vma in mm to new nodemask. 428 * 429 * Call holding a reference to mm. Takes mm->mmap_sem during call. 430 */ 431 432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 433 { 434 struct vm_area_struct *vma; 435 436 down_write(&mm->mmap_sem); 437 for (vma = mm->mmap; vma; vma = vma->vm_next) 438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 439 up_write(&mm->mmap_sem); 440 } 441 442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 443 [MPOL_DEFAULT] = { 444 .rebind = mpol_rebind_default, 445 }, 446 [MPOL_INTERLEAVE] = { 447 .create = mpol_new_interleave, 448 .rebind = mpol_rebind_nodemask, 449 }, 450 [MPOL_PREFERRED] = { 451 .create = mpol_new_preferred, 452 .rebind = mpol_rebind_preferred, 453 }, 454 [MPOL_BIND] = { 455 .create = mpol_new_bind, 456 .rebind = mpol_rebind_nodemask, 457 }, 458 }; 459 460 static void migrate_page_add(struct page *page, struct list_head *pagelist, 461 unsigned long flags); 462 463 /* Scan through pages checking if pages follow certain conditions. */ 464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 465 unsigned long addr, unsigned long end, 466 const nodemask_t *nodes, unsigned long flags, 467 void *private) 468 { 469 pte_t *orig_pte; 470 pte_t *pte; 471 spinlock_t *ptl; 472 473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 474 do { 475 struct page *page; 476 int nid; 477 478 if (!pte_present(*pte)) 479 continue; 480 page = vm_normal_page(vma, addr, *pte); 481 if (!page) 482 continue; 483 /* 484 * vm_normal_page() filters out zero pages, but there might 485 * still be PageReserved pages to skip, perhaps in a VDSO. 486 * And we cannot move PageKsm pages sensibly or safely yet. 487 */ 488 if (PageReserved(page) || PageKsm(page)) 489 continue; 490 nid = page_to_nid(page); 491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 492 continue; 493 494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 495 migrate_page_add(page, private, flags); 496 else 497 break; 498 } while (pte++, addr += PAGE_SIZE, addr != end); 499 pte_unmap_unlock(orig_pte, ptl); 500 return addr != end; 501 } 502 503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 504 unsigned long addr, unsigned long end, 505 const nodemask_t *nodes, unsigned long flags, 506 void *private) 507 { 508 pmd_t *pmd; 509 unsigned long next; 510 511 pmd = pmd_offset(pud, addr); 512 do { 513 next = pmd_addr_end(addr, end); 514 split_huge_page_pmd(vma->vm_mm, pmd); 515 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 516 continue; 517 if (check_pte_range(vma, pmd, addr, next, nodes, 518 flags, private)) 519 return -EIO; 520 } while (pmd++, addr = next, addr != end); 521 return 0; 522 } 523 524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 525 unsigned long addr, unsigned long end, 526 const nodemask_t *nodes, unsigned long flags, 527 void *private) 528 { 529 pud_t *pud; 530 unsigned long next; 531 532 pud = pud_offset(pgd, addr); 533 do { 534 next = pud_addr_end(addr, end); 535 if (pud_none_or_clear_bad(pud)) 536 continue; 537 if (check_pmd_range(vma, pud, addr, next, nodes, 538 flags, private)) 539 return -EIO; 540 } while (pud++, addr = next, addr != end); 541 return 0; 542 } 543 544 static inline int check_pgd_range(struct vm_area_struct *vma, 545 unsigned long addr, unsigned long end, 546 const nodemask_t *nodes, unsigned long flags, 547 void *private) 548 { 549 pgd_t *pgd; 550 unsigned long next; 551 552 pgd = pgd_offset(vma->vm_mm, addr); 553 do { 554 next = pgd_addr_end(addr, end); 555 if (pgd_none_or_clear_bad(pgd)) 556 continue; 557 if (check_pud_range(vma, pgd, addr, next, nodes, 558 flags, private)) 559 return -EIO; 560 } while (pgd++, addr = next, addr != end); 561 return 0; 562 } 563 564 /* 565 * Check if all pages in a range are on a set of nodes. 566 * If pagelist != NULL then isolate pages from the LRU and 567 * put them on the pagelist. 568 */ 569 static struct vm_area_struct * 570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 571 const nodemask_t *nodes, unsigned long flags, void *private) 572 { 573 int err; 574 struct vm_area_struct *first, *vma, *prev; 575 576 577 first = find_vma(mm, start); 578 if (!first) 579 return ERR_PTR(-EFAULT); 580 prev = NULL; 581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 582 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 583 if (!vma->vm_next && vma->vm_end < end) 584 return ERR_PTR(-EFAULT); 585 if (prev && prev->vm_end < vma->vm_start) 586 return ERR_PTR(-EFAULT); 587 } 588 if (!is_vm_hugetlb_page(vma) && 589 ((flags & MPOL_MF_STRICT) || 590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 591 vma_migratable(vma)))) { 592 unsigned long endvma = vma->vm_end; 593 594 if (endvma > end) 595 endvma = end; 596 if (vma->vm_start > start) 597 start = vma->vm_start; 598 err = check_pgd_range(vma, start, endvma, nodes, 599 flags, private); 600 if (err) { 601 first = ERR_PTR(err); 602 break; 603 } 604 } 605 prev = vma; 606 } 607 return first; 608 } 609 610 /* 611 * Apply policy to a single VMA 612 * This must be called with the mmap_sem held for writing. 613 */ 614 static int vma_replace_policy(struct vm_area_struct *vma, 615 struct mempolicy *pol) 616 { 617 int err; 618 struct mempolicy *old; 619 struct mempolicy *new; 620 621 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 622 vma->vm_start, vma->vm_end, vma->vm_pgoff, 623 vma->vm_ops, vma->vm_file, 624 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 625 626 new = mpol_dup(pol); 627 if (IS_ERR(new)) 628 return PTR_ERR(new); 629 630 if (vma->vm_ops && vma->vm_ops->set_policy) { 631 err = vma->vm_ops->set_policy(vma, new); 632 if (err) 633 goto err_out; 634 } 635 636 old = vma->vm_policy; 637 vma->vm_policy = new; /* protected by mmap_sem */ 638 mpol_put(old); 639 640 return 0; 641 err_out: 642 mpol_put(new); 643 return err; 644 } 645 646 /* Step 2: apply policy to a range and do splits. */ 647 static int mbind_range(struct mm_struct *mm, unsigned long start, 648 unsigned long end, struct mempolicy *new_pol) 649 { 650 struct vm_area_struct *next; 651 struct vm_area_struct *prev; 652 struct vm_area_struct *vma; 653 int err = 0; 654 pgoff_t pgoff; 655 unsigned long vmstart; 656 unsigned long vmend; 657 658 vma = find_vma(mm, start); 659 if (!vma || vma->vm_start > start) 660 return -EFAULT; 661 662 prev = vma->vm_prev; 663 if (start > vma->vm_start) 664 prev = vma; 665 666 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 667 next = vma->vm_next; 668 vmstart = max(start, vma->vm_start); 669 vmend = min(end, vma->vm_end); 670 671 if (mpol_equal(vma_policy(vma), new_pol)) 672 continue; 673 674 pgoff = vma->vm_pgoff + 675 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 676 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 677 vma->anon_vma, vma->vm_file, pgoff, 678 new_pol); 679 if (prev) { 680 vma = prev; 681 next = vma->vm_next; 682 continue; 683 } 684 if (vma->vm_start != vmstart) { 685 err = split_vma(vma->vm_mm, vma, vmstart, 1); 686 if (err) 687 goto out; 688 } 689 if (vma->vm_end != vmend) { 690 err = split_vma(vma->vm_mm, vma, vmend, 0); 691 if (err) 692 goto out; 693 } 694 err = vma_replace_policy(vma, new_pol); 695 if (err) 696 goto out; 697 } 698 699 out: 700 return err; 701 } 702 703 /* 704 * Update task->flags PF_MEMPOLICY bit: set iff non-default 705 * mempolicy. Allows more rapid checking of this (combined perhaps 706 * with other PF_* flag bits) on memory allocation hot code paths. 707 * 708 * If called from outside this file, the task 'p' should -only- be 709 * a newly forked child not yet visible on the task list, because 710 * manipulating the task flags of a visible task is not safe. 711 * 712 * The above limitation is why this routine has the funny name 713 * mpol_fix_fork_child_flag(). 714 * 715 * It is also safe to call this with a task pointer of current, 716 * which the static wrapper mpol_set_task_struct_flag() does, 717 * for use within this file. 718 */ 719 720 void mpol_fix_fork_child_flag(struct task_struct *p) 721 { 722 if (p->mempolicy) 723 p->flags |= PF_MEMPOLICY; 724 else 725 p->flags &= ~PF_MEMPOLICY; 726 } 727 728 static void mpol_set_task_struct_flag(void) 729 { 730 mpol_fix_fork_child_flag(current); 731 } 732 733 /* Set the process memory policy */ 734 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 735 nodemask_t *nodes) 736 { 737 struct mempolicy *new, *old; 738 struct mm_struct *mm = current->mm; 739 NODEMASK_SCRATCH(scratch); 740 int ret; 741 742 if (!scratch) 743 return -ENOMEM; 744 745 new = mpol_new(mode, flags, nodes); 746 if (IS_ERR(new)) { 747 ret = PTR_ERR(new); 748 goto out; 749 } 750 /* 751 * prevent changing our mempolicy while show_numa_maps() 752 * is using it. 753 * Note: do_set_mempolicy() can be called at init time 754 * with no 'mm'. 755 */ 756 if (mm) 757 down_write(&mm->mmap_sem); 758 task_lock(current); 759 ret = mpol_set_nodemask(new, nodes, scratch); 760 if (ret) { 761 task_unlock(current); 762 if (mm) 763 up_write(&mm->mmap_sem); 764 mpol_put(new); 765 goto out; 766 } 767 old = current->mempolicy; 768 current->mempolicy = new; 769 mpol_set_task_struct_flag(); 770 if (new && new->mode == MPOL_INTERLEAVE && 771 nodes_weight(new->v.nodes)) 772 current->il_next = first_node(new->v.nodes); 773 task_unlock(current); 774 if (mm) 775 up_write(&mm->mmap_sem); 776 777 mpol_put(old); 778 ret = 0; 779 out: 780 NODEMASK_SCRATCH_FREE(scratch); 781 return ret; 782 } 783 784 /* 785 * Return nodemask for policy for get_mempolicy() query 786 * 787 * Called with task's alloc_lock held 788 */ 789 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 790 { 791 nodes_clear(*nodes); 792 if (p == &default_policy) 793 return; 794 795 switch (p->mode) { 796 case MPOL_BIND: 797 /* Fall through */ 798 case MPOL_INTERLEAVE: 799 *nodes = p->v.nodes; 800 break; 801 case MPOL_PREFERRED: 802 if (!(p->flags & MPOL_F_LOCAL)) 803 node_set(p->v.preferred_node, *nodes); 804 /* else return empty node mask for local allocation */ 805 break; 806 default: 807 BUG(); 808 } 809 } 810 811 static int lookup_node(struct mm_struct *mm, unsigned long addr) 812 { 813 struct page *p; 814 int err; 815 816 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 817 if (err >= 0) { 818 err = page_to_nid(p); 819 put_page(p); 820 } 821 return err; 822 } 823 824 /* Retrieve NUMA policy */ 825 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 826 unsigned long addr, unsigned long flags) 827 { 828 int err; 829 struct mm_struct *mm = current->mm; 830 struct vm_area_struct *vma = NULL; 831 struct mempolicy *pol = current->mempolicy; 832 833 if (flags & 834 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 835 return -EINVAL; 836 837 if (flags & MPOL_F_MEMS_ALLOWED) { 838 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 839 return -EINVAL; 840 *policy = 0; /* just so it's initialized */ 841 task_lock(current); 842 *nmask = cpuset_current_mems_allowed; 843 task_unlock(current); 844 return 0; 845 } 846 847 if (flags & MPOL_F_ADDR) { 848 /* 849 * Do NOT fall back to task policy if the 850 * vma/shared policy at addr is NULL. We 851 * want to return MPOL_DEFAULT in this case. 852 */ 853 down_read(&mm->mmap_sem); 854 vma = find_vma_intersection(mm, addr, addr+1); 855 if (!vma) { 856 up_read(&mm->mmap_sem); 857 return -EFAULT; 858 } 859 if (vma->vm_ops && vma->vm_ops->get_policy) 860 pol = vma->vm_ops->get_policy(vma, addr); 861 else 862 pol = vma->vm_policy; 863 } else if (addr) 864 return -EINVAL; 865 866 if (!pol) 867 pol = &default_policy; /* indicates default behavior */ 868 869 if (flags & MPOL_F_NODE) { 870 if (flags & MPOL_F_ADDR) { 871 err = lookup_node(mm, addr); 872 if (err < 0) 873 goto out; 874 *policy = err; 875 } else if (pol == current->mempolicy && 876 pol->mode == MPOL_INTERLEAVE) { 877 *policy = current->il_next; 878 } else { 879 err = -EINVAL; 880 goto out; 881 } 882 } else { 883 *policy = pol == &default_policy ? MPOL_DEFAULT : 884 pol->mode; 885 /* 886 * Internal mempolicy flags must be masked off before exposing 887 * the policy to userspace. 888 */ 889 *policy |= (pol->flags & MPOL_MODE_FLAGS); 890 } 891 892 if (vma) { 893 up_read(¤t->mm->mmap_sem); 894 vma = NULL; 895 } 896 897 err = 0; 898 if (nmask) { 899 if (mpol_store_user_nodemask(pol)) { 900 *nmask = pol->w.user_nodemask; 901 } else { 902 task_lock(current); 903 get_policy_nodemask(pol, nmask); 904 task_unlock(current); 905 } 906 } 907 908 out: 909 mpol_cond_put(pol); 910 if (vma) 911 up_read(¤t->mm->mmap_sem); 912 return err; 913 } 914 915 #ifdef CONFIG_MIGRATION 916 /* 917 * page migration 918 */ 919 static void migrate_page_add(struct page *page, struct list_head *pagelist, 920 unsigned long flags) 921 { 922 /* 923 * Avoid migrating a page that is shared with others. 924 */ 925 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 926 if (!isolate_lru_page(page)) { 927 list_add_tail(&page->lru, pagelist); 928 inc_zone_page_state(page, NR_ISOLATED_ANON + 929 page_is_file_cache(page)); 930 } 931 } 932 } 933 934 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 935 { 936 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 937 } 938 939 /* 940 * Migrate pages from one node to a target node. 941 * Returns error or the number of pages not migrated. 942 */ 943 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 944 int flags) 945 { 946 nodemask_t nmask; 947 LIST_HEAD(pagelist); 948 int err = 0; 949 950 nodes_clear(nmask); 951 node_set(source, nmask); 952 953 /* 954 * This does not "check" the range but isolates all pages that 955 * need migration. Between passing in the full user address 956 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 957 */ 958 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 959 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 960 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 961 962 if (!list_empty(&pagelist)) { 963 err = migrate_pages(&pagelist, new_node_page, dest, 964 false, MIGRATE_SYNC); 965 if (err) 966 putback_lru_pages(&pagelist); 967 } 968 969 return err; 970 } 971 972 /* 973 * Move pages between the two nodesets so as to preserve the physical 974 * layout as much as possible. 975 * 976 * Returns the number of page that could not be moved. 977 */ 978 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 979 const nodemask_t *to, int flags) 980 { 981 int busy = 0; 982 int err; 983 nodemask_t tmp; 984 985 err = migrate_prep(); 986 if (err) 987 return err; 988 989 down_read(&mm->mmap_sem); 990 991 err = migrate_vmas(mm, from, to, flags); 992 if (err) 993 goto out; 994 995 /* 996 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 997 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 998 * bit in 'tmp', and return that <source, dest> pair for migration. 999 * The pair of nodemasks 'to' and 'from' define the map. 1000 * 1001 * If no pair of bits is found that way, fallback to picking some 1002 * pair of 'source' and 'dest' bits that are not the same. If the 1003 * 'source' and 'dest' bits are the same, this represents a node 1004 * that will be migrating to itself, so no pages need move. 1005 * 1006 * If no bits are left in 'tmp', or if all remaining bits left 1007 * in 'tmp' correspond to the same bit in 'to', return false 1008 * (nothing left to migrate). 1009 * 1010 * This lets us pick a pair of nodes to migrate between, such that 1011 * if possible the dest node is not already occupied by some other 1012 * source node, minimizing the risk of overloading the memory on a 1013 * node that would happen if we migrated incoming memory to a node 1014 * before migrating outgoing memory source that same node. 1015 * 1016 * A single scan of tmp is sufficient. As we go, we remember the 1017 * most recent <s, d> pair that moved (s != d). If we find a pair 1018 * that not only moved, but what's better, moved to an empty slot 1019 * (d is not set in tmp), then we break out then, with that pair. 1020 * Otherwise when we finish scanning from_tmp, we at least have the 1021 * most recent <s, d> pair that moved. If we get all the way through 1022 * the scan of tmp without finding any node that moved, much less 1023 * moved to an empty node, then there is nothing left worth migrating. 1024 */ 1025 1026 tmp = *from; 1027 while (!nodes_empty(tmp)) { 1028 int s,d; 1029 int source = -1; 1030 int dest = 0; 1031 1032 for_each_node_mask(s, tmp) { 1033 1034 /* 1035 * do_migrate_pages() tries to maintain the relative 1036 * node relationship of the pages established between 1037 * threads and memory areas. 1038 * 1039 * However if the number of source nodes is not equal to 1040 * the number of destination nodes we can not preserve 1041 * this node relative relationship. In that case, skip 1042 * copying memory from a node that is in the destination 1043 * mask. 1044 * 1045 * Example: [2,3,4] -> [3,4,5] moves everything. 1046 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1047 */ 1048 1049 if ((nodes_weight(*from) != nodes_weight(*to)) && 1050 (node_isset(s, *to))) 1051 continue; 1052 1053 d = node_remap(s, *from, *to); 1054 if (s == d) 1055 continue; 1056 1057 source = s; /* Node moved. Memorize */ 1058 dest = d; 1059 1060 /* dest not in remaining from nodes? */ 1061 if (!node_isset(dest, tmp)) 1062 break; 1063 } 1064 if (source == -1) 1065 break; 1066 1067 node_clear(source, tmp); 1068 err = migrate_to_node(mm, source, dest, flags); 1069 if (err > 0) 1070 busy += err; 1071 if (err < 0) 1072 break; 1073 } 1074 out: 1075 up_read(&mm->mmap_sem); 1076 if (err < 0) 1077 return err; 1078 return busy; 1079 1080 } 1081 1082 /* 1083 * Allocate a new page for page migration based on vma policy. 1084 * Start assuming that page is mapped by vma pointed to by @private. 1085 * Search forward from there, if not. N.B., this assumes that the 1086 * list of pages handed to migrate_pages()--which is how we get here-- 1087 * is in virtual address order. 1088 */ 1089 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1090 { 1091 struct vm_area_struct *vma = (struct vm_area_struct *)private; 1092 unsigned long uninitialized_var(address); 1093 1094 while (vma) { 1095 address = page_address_in_vma(page, vma); 1096 if (address != -EFAULT) 1097 break; 1098 vma = vma->vm_next; 1099 } 1100 1101 /* 1102 * if !vma, alloc_page_vma() will use task or system default policy 1103 */ 1104 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1105 } 1106 #else 1107 1108 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1109 unsigned long flags) 1110 { 1111 } 1112 1113 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1114 const nodemask_t *to, int flags) 1115 { 1116 return -ENOSYS; 1117 } 1118 1119 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1120 { 1121 return NULL; 1122 } 1123 #endif 1124 1125 static long do_mbind(unsigned long start, unsigned long len, 1126 unsigned short mode, unsigned short mode_flags, 1127 nodemask_t *nmask, unsigned long flags) 1128 { 1129 struct vm_area_struct *vma; 1130 struct mm_struct *mm = current->mm; 1131 struct mempolicy *new; 1132 unsigned long end; 1133 int err; 1134 LIST_HEAD(pagelist); 1135 1136 if (flags & ~(unsigned long)(MPOL_MF_STRICT | 1137 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1138 return -EINVAL; 1139 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1140 return -EPERM; 1141 1142 if (start & ~PAGE_MASK) 1143 return -EINVAL; 1144 1145 if (mode == MPOL_DEFAULT) 1146 flags &= ~MPOL_MF_STRICT; 1147 1148 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1149 end = start + len; 1150 1151 if (end < start) 1152 return -EINVAL; 1153 if (end == start) 1154 return 0; 1155 1156 new = mpol_new(mode, mode_flags, nmask); 1157 if (IS_ERR(new)) 1158 return PTR_ERR(new); 1159 1160 /* 1161 * If we are using the default policy then operation 1162 * on discontinuous address spaces is okay after all 1163 */ 1164 if (!new) 1165 flags |= MPOL_MF_DISCONTIG_OK; 1166 1167 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1168 start, start + len, mode, mode_flags, 1169 nmask ? nodes_addr(*nmask)[0] : -1); 1170 1171 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1172 1173 err = migrate_prep(); 1174 if (err) 1175 goto mpol_out; 1176 } 1177 { 1178 NODEMASK_SCRATCH(scratch); 1179 if (scratch) { 1180 down_write(&mm->mmap_sem); 1181 task_lock(current); 1182 err = mpol_set_nodemask(new, nmask, scratch); 1183 task_unlock(current); 1184 if (err) 1185 up_write(&mm->mmap_sem); 1186 } else 1187 err = -ENOMEM; 1188 NODEMASK_SCRATCH_FREE(scratch); 1189 } 1190 if (err) 1191 goto mpol_out; 1192 1193 vma = check_range(mm, start, end, nmask, 1194 flags | MPOL_MF_INVERT, &pagelist); 1195 1196 err = PTR_ERR(vma); 1197 if (!IS_ERR(vma)) { 1198 int nr_failed = 0; 1199 1200 err = mbind_range(mm, start, end, new); 1201 1202 if (!list_empty(&pagelist)) { 1203 nr_failed = migrate_pages(&pagelist, new_vma_page, 1204 (unsigned long)vma, 1205 false, MIGRATE_SYNC); 1206 if (nr_failed) 1207 putback_lru_pages(&pagelist); 1208 } 1209 1210 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 1211 err = -EIO; 1212 } else 1213 putback_lru_pages(&pagelist); 1214 1215 up_write(&mm->mmap_sem); 1216 mpol_out: 1217 mpol_put(new); 1218 return err; 1219 } 1220 1221 /* 1222 * User space interface with variable sized bitmaps for nodelists. 1223 */ 1224 1225 /* Copy a node mask from user space. */ 1226 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1227 unsigned long maxnode) 1228 { 1229 unsigned long k; 1230 unsigned long nlongs; 1231 unsigned long endmask; 1232 1233 --maxnode; 1234 nodes_clear(*nodes); 1235 if (maxnode == 0 || !nmask) 1236 return 0; 1237 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1238 return -EINVAL; 1239 1240 nlongs = BITS_TO_LONGS(maxnode); 1241 if ((maxnode % BITS_PER_LONG) == 0) 1242 endmask = ~0UL; 1243 else 1244 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1245 1246 /* When the user specified more nodes than supported just check 1247 if the non supported part is all zero. */ 1248 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1249 if (nlongs > PAGE_SIZE/sizeof(long)) 1250 return -EINVAL; 1251 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1252 unsigned long t; 1253 if (get_user(t, nmask + k)) 1254 return -EFAULT; 1255 if (k == nlongs - 1) { 1256 if (t & endmask) 1257 return -EINVAL; 1258 } else if (t) 1259 return -EINVAL; 1260 } 1261 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1262 endmask = ~0UL; 1263 } 1264 1265 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1266 return -EFAULT; 1267 nodes_addr(*nodes)[nlongs-1] &= endmask; 1268 return 0; 1269 } 1270 1271 /* Copy a kernel node mask to user space */ 1272 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1273 nodemask_t *nodes) 1274 { 1275 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1276 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1277 1278 if (copy > nbytes) { 1279 if (copy > PAGE_SIZE) 1280 return -EINVAL; 1281 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1282 return -EFAULT; 1283 copy = nbytes; 1284 } 1285 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1286 } 1287 1288 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1289 unsigned long, mode, unsigned long __user *, nmask, 1290 unsigned long, maxnode, unsigned, flags) 1291 { 1292 nodemask_t nodes; 1293 int err; 1294 unsigned short mode_flags; 1295 1296 mode_flags = mode & MPOL_MODE_FLAGS; 1297 mode &= ~MPOL_MODE_FLAGS; 1298 if (mode >= MPOL_MAX) 1299 return -EINVAL; 1300 if ((mode_flags & MPOL_F_STATIC_NODES) && 1301 (mode_flags & MPOL_F_RELATIVE_NODES)) 1302 return -EINVAL; 1303 err = get_nodes(&nodes, nmask, maxnode); 1304 if (err) 1305 return err; 1306 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1307 } 1308 1309 /* Set the process memory policy */ 1310 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1311 unsigned long, maxnode) 1312 { 1313 int err; 1314 nodemask_t nodes; 1315 unsigned short flags; 1316 1317 flags = mode & MPOL_MODE_FLAGS; 1318 mode &= ~MPOL_MODE_FLAGS; 1319 if ((unsigned int)mode >= MPOL_MAX) 1320 return -EINVAL; 1321 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1322 return -EINVAL; 1323 err = get_nodes(&nodes, nmask, maxnode); 1324 if (err) 1325 return err; 1326 return do_set_mempolicy(mode, flags, &nodes); 1327 } 1328 1329 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1330 const unsigned long __user *, old_nodes, 1331 const unsigned long __user *, new_nodes) 1332 { 1333 const struct cred *cred = current_cred(), *tcred; 1334 struct mm_struct *mm = NULL; 1335 struct task_struct *task; 1336 nodemask_t task_nodes; 1337 int err; 1338 nodemask_t *old; 1339 nodemask_t *new; 1340 NODEMASK_SCRATCH(scratch); 1341 1342 if (!scratch) 1343 return -ENOMEM; 1344 1345 old = &scratch->mask1; 1346 new = &scratch->mask2; 1347 1348 err = get_nodes(old, old_nodes, maxnode); 1349 if (err) 1350 goto out; 1351 1352 err = get_nodes(new, new_nodes, maxnode); 1353 if (err) 1354 goto out; 1355 1356 /* Find the mm_struct */ 1357 rcu_read_lock(); 1358 task = pid ? find_task_by_vpid(pid) : current; 1359 if (!task) { 1360 rcu_read_unlock(); 1361 err = -ESRCH; 1362 goto out; 1363 } 1364 get_task_struct(task); 1365 1366 err = -EINVAL; 1367 1368 /* 1369 * Check if this process has the right to modify the specified 1370 * process. The right exists if the process has administrative 1371 * capabilities, superuser privileges or the same 1372 * userid as the target process. 1373 */ 1374 tcred = __task_cred(task); 1375 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1376 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1377 !capable(CAP_SYS_NICE)) { 1378 rcu_read_unlock(); 1379 err = -EPERM; 1380 goto out_put; 1381 } 1382 rcu_read_unlock(); 1383 1384 task_nodes = cpuset_mems_allowed(task); 1385 /* Is the user allowed to access the target nodes? */ 1386 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1387 err = -EPERM; 1388 goto out_put; 1389 } 1390 1391 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) { 1392 err = -EINVAL; 1393 goto out_put; 1394 } 1395 1396 err = security_task_movememory(task); 1397 if (err) 1398 goto out_put; 1399 1400 mm = get_task_mm(task); 1401 put_task_struct(task); 1402 1403 if (!mm) { 1404 err = -EINVAL; 1405 goto out; 1406 } 1407 1408 err = do_migrate_pages(mm, old, new, 1409 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1410 1411 mmput(mm); 1412 out: 1413 NODEMASK_SCRATCH_FREE(scratch); 1414 1415 return err; 1416 1417 out_put: 1418 put_task_struct(task); 1419 goto out; 1420 1421 } 1422 1423 1424 /* Retrieve NUMA policy */ 1425 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1426 unsigned long __user *, nmask, unsigned long, maxnode, 1427 unsigned long, addr, unsigned long, flags) 1428 { 1429 int err; 1430 int uninitialized_var(pval); 1431 nodemask_t nodes; 1432 1433 if (nmask != NULL && maxnode < MAX_NUMNODES) 1434 return -EINVAL; 1435 1436 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1437 1438 if (err) 1439 return err; 1440 1441 if (policy && put_user(pval, policy)) 1442 return -EFAULT; 1443 1444 if (nmask) 1445 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1446 1447 return err; 1448 } 1449 1450 #ifdef CONFIG_COMPAT 1451 1452 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1453 compat_ulong_t __user *nmask, 1454 compat_ulong_t maxnode, 1455 compat_ulong_t addr, compat_ulong_t flags) 1456 { 1457 long err; 1458 unsigned long __user *nm = NULL; 1459 unsigned long nr_bits, alloc_size; 1460 DECLARE_BITMAP(bm, MAX_NUMNODES); 1461 1462 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1463 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1464 1465 if (nmask) 1466 nm = compat_alloc_user_space(alloc_size); 1467 1468 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1469 1470 if (!err && nmask) { 1471 unsigned long copy_size; 1472 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1473 err = copy_from_user(bm, nm, copy_size); 1474 /* ensure entire bitmap is zeroed */ 1475 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1476 err |= compat_put_bitmap(nmask, bm, nr_bits); 1477 } 1478 1479 return err; 1480 } 1481 1482 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1483 compat_ulong_t maxnode) 1484 { 1485 long err = 0; 1486 unsigned long __user *nm = NULL; 1487 unsigned long nr_bits, alloc_size; 1488 DECLARE_BITMAP(bm, MAX_NUMNODES); 1489 1490 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1491 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1492 1493 if (nmask) { 1494 err = compat_get_bitmap(bm, nmask, nr_bits); 1495 nm = compat_alloc_user_space(alloc_size); 1496 err |= copy_to_user(nm, bm, alloc_size); 1497 } 1498 1499 if (err) 1500 return -EFAULT; 1501 1502 return sys_set_mempolicy(mode, nm, nr_bits+1); 1503 } 1504 1505 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1506 compat_ulong_t mode, compat_ulong_t __user *nmask, 1507 compat_ulong_t maxnode, compat_ulong_t flags) 1508 { 1509 long err = 0; 1510 unsigned long __user *nm = NULL; 1511 unsigned long nr_bits, alloc_size; 1512 nodemask_t bm; 1513 1514 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1515 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1516 1517 if (nmask) { 1518 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1519 nm = compat_alloc_user_space(alloc_size); 1520 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1521 } 1522 1523 if (err) 1524 return -EFAULT; 1525 1526 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1527 } 1528 1529 #endif 1530 1531 /* 1532 * get_vma_policy(@task, @vma, @addr) 1533 * @task - task for fallback if vma policy == default 1534 * @vma - virtual memory area whose policy is sought 1535 * @addr - address in @vma for shared policy lookup 1536 * 1537 * Returns effective policy for a VMA at specified address. 1538 * Falls back to @task or system default policy, as necessary. 1539 * Current or other task's task mempolicy and non-shared vma policies 1540 * are protected by the task's mmap_sem, which must be held for read by 1541 * the caller. 1542 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1543 * count--added by the get_policy() vm_op, as appropriate--to protect against 1544 * freeing by another task. It is the caller's responsibility to free the 1545 * extra reference for shared policies. 1546 */ 1547 struct mempolicy *get_vma_policy(struct task_struct *task, 1548 struct vm_area_struct *vma, unsigned long addr) 1549 { 1550 struct mempolicy *pol = task->mempolicy; 1551 1552 if (vma) { 1553 if (vma->vm_ops && vma->vm_ops->get_policy) { 1554 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1555 addr); 1556 if (vpol) 1557 pol = vpol; 1558 } else if (vma->vm_policy) { 1559 pol = vma->vm_policy; 1560 1561 /* 1562 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1563 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1564 * count on these policies which will be dropped by 1565 * mpol_cond_put() later 1566 */ 1567 if (mpol_needs_cond_ref(pol)) 1568 mpol_get(pol); 1569 } 1570 } 1571 if (!pol) 1572 pol = &default_policy; 1573 return pol; 1574 } 1575 1576 /* 1577 * Return a nodemask representing a mempolicy for filtering nodes for 1578 * page allocation 1579 */ 1580 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1581 { 1582 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1583 if (unlikely(policy->mode == MPOL_BIND) && 1584 gfp_zone(gfp) >= policy_zone && 1585 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1586 return &policy->v.nodes; 1587 1588 return NULL; 1589 } 1590 1591 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1592 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, 1593 int nd) 1594 { 1595 switch (policy->mode) { 1596 case MPOL_PREFERRED: 1597 if (!(policy->flags & MPOL_F_LOCAL)) 1598 nd = policy->v.preferred_node; 1599 break; 1600 case MPOL_BIND: 1601 /* 1602 * Normally, MPOL_BIND allocations are node-local within the 1603 * allowed nodemask. However, if __GFP_THISNODE is set and the 1604 * current node isn't part of the mask, we use the zonelist for 1605 * the first node in the mask instead. 1606 */ 1607 if (unlikely(gfp & __GFP_THISNODE) && 1608 unlikely(!node_isset(nd, policy->v.nodes))) 1609 nd = first_node(policy->v.nodes); 1610 break; 1611 default: 1612 BUG(); 1613 } 1614 return node_zonelist(nd, gfp); 1615 } 1616 1617 /* Do dynamic interleaving for a process */ 1618 static unsigned interleave_nodes(struct mempolicy *policy) 1619 { 1620 unsigned nid, next; 1621 struct task_struct *me = current; 1622 1623 nid = me->il_next; 1624 next = next_node(nid, policy->v.nodes); 1625 if (next >= MAX_NUMNODES) 1626 next = first_node(policy->v.nodes); 1627 if (next < MAX_NUMNODES) 1628 me->il_next = next; 1629 return nid; 1630 } 1631 1632 /* 1633 * Depending on the memory policy provide a node from which to allocate the 1634 * next slab entry. 1635 * @policy must be protected by freeing by the caller. If @policy is 1636 * the current task's mempolicy, this protection is implicit, as only the 1637 * task can change it's policy. The system default policy requires no 1638 * such protection. 1639 */ 1640 unsigned slab_node(void) 1641 { 1642 struct mempolicy *policy; 1643 1644 if (in_interrupt()) 1645 return numa_node_id(); 1646 1647 policy = current->mempolicy; 1648 if (!policy || policy->flags & MPOL_F_LOCAL) 1649 return numa_node_id(); 1650 1651 switch (policy->mode) { 1652 case MPOL_PREFERRED: 1653 /* 1654 * handled MPOL_F_LOCAL above 1655 */ 1656 return policy->v.preferred_node; 1657 1658 case MPOL_INTERLEAVE: 1659 return interleave_nodes(policy); 1660 1661 case MPOL_BIND: { 1662 /* 1663 * Follow bind policy behavior and start allocation at the 1664 * first node. 1665 */ 1666 struct zonelist *zonelist; 1667 struct zone *zone; 1668 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1669 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1670 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1671 &policy->v.nodes, 1672 &zone); 1673 return zone ? zone->node : numa_node_id(); 1674 } 1675 1676 default: 1677 BUG(); 1678 } 1679 } 1680 1681 /* Do static interleaving for a VMA with known offset. */ 1682 static unsigned offset_il_node(struct mempolicy *pol, 1683 struct vm_area_struct *vma, unsigned long off) 1684 { 1685 unsigned nnodes = nodes_weight(pol->v.nodes); 1686 unsigned target; 1687 int c; 1688 int nid = -1; 1689 1690 if (!nnodes) 1691 return numa_node_id(); 1692 target = (unsigned int)off % nnodes; 1693 c = 0; 1694 do { 1695 nid = next_node(nid, pol->v.nodes); 1696 c++; 1697 } while (c <= target); 1698 return nid; 1699 } 1700 1701 /* Determine a node number for interleave */ 1702 static inline unsigned interleave_nid(struct mempolicy *pol, 1703 struct vm_area_struct *vma, unsigned long addr, int shift) 1704 { 1705 if (vma) { 1706 unsigned long off; 1707 1708 /* 1709 * for small pages, there is no difference between 1710 * shift and PAGE_SHIFT, so the bit-shift is safe. 1711 * for huge pages, since vm_pgoff is in units of small 1712 * pages, we need to shift off the always 0 bits to get 1713 * a useful offset. 1714 */ 1715 BUG_ON(shift < PAGE_SHIFT); 1716 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1717 off += (addr - vma->vm_start) >> shift; 1718 return offset_il_node(pol, vma, off); 1719 } else 1720 return interleave_nodes(pol); 1721 } 1722 1723 /* 1724 * Return the bit number of a random bit set in the nodemask. 1725 * (returns -1 if nodemask is empty) 1726 */ 1727 int node_random(const nodemask_t *maskp) 1728 { 1729 int w, bit = -1; 1730 1731 w = nodes_weight(*maskp); 1732 if (w) 1733 bit = bitmap_ord_to_pos(maskp->bits, 1734 get_random_int() % w, MAX_NUMNODES); 1735 return bit; 1736 } 1737 1738 #ifdef CONFIG_HUGETLBFS 1739 /* 1740 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1741 * @vma = virtual memory area whose policy is sought 1742 * @addr = address in @vma for shared policy lookup and interleave policy 1743 * @gfp_flags = for requested zone 1744 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1745 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1746 * 1747 * Returns a zonelist suitable for a huge page allocation and a pointer 1748 * to the struct mempolicy for conditional unref after allocation. 1749 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1750 * @nodemask for filtering the zonelist. 1751 * 1752 * Must be protected by get_mems_allowed() 1753 */ 1754 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1755 gfp_t gfp_flags, struct mempolicy **mpol, 1756 nodemask_t **nodemask) 1757 { 1758 struct zonelist *zl; 1759 1760 *mpol = get_vma_policy(current, vma, addr); 1761 *nodemask = NULL; /* assume !MPOL_BIND */ 1762 1763 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1764 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1765 huge_page_shift(hstate_vma(vma))), gfp_flags); 1766 } else { 1767 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); 1768 if ((*mpol)->mode == MPOL_BIND) 1769 *nodemask = &(*mpol)->v.nodes; 1770 } 1771 return zl; 1772 } 1773 1774 /* 1775 * init_nodemask_of_mempolicy 1776 * 1777 * If the current task's mempolicy is "default" [NULL], return 'false' 1778 * to indicate default policy. Otherwise, extract the policy nodemask 1779 * for 'bind' or 'interleave' policy into the argument nodemask, or 1780 * initialize the argument nodemask to contain the single node for 1781 * 'preferred' or 'local' policy and return 'true' to indicate presence 1782 * of non-default mempolicy. 1783 * 1784 * We don't bother with reference counting the mempolicy [mpol_get/put] 1785 * because the current task is examining it's own mempolicy and a task's 1786 * mempolicy is only ever changed by the task itself. 1787 * 1788 * N.B., it is the caller's responsibility to free a returned nodemask. 1789 */ 1790 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1791 { 1792 struct mempolicy *mempolicy; 1793 int nid; 1794 1795 if (!(mask && current->mempolicy)) 1796 return false; 1797 1798 task_lock(current); 1799 mempolicy = current->mempolicy; 1800 switch (mempolicy->mode) { 1801 case MPOL_PREFERRED: 1802 if (mempolicy->flags & MPOL_F_LOCAL) 1803 nid = numa_node_id(); 1804 else 1805 nid = mempolicy->v.preferred_node; 1806 init_nodemask_of_node(mask, nid); 1807 break; 1808 1809 case MPOL_BIND: 1810 /* Fall through */ 1811 case MPOL_INTERLEAVE: 1812 *mask = mempolicy->v.nodes; 1813 break; 1814 1815 default: 1816 BUG(); 1817 } 1818 task_unlock(current); 1819 1820 return true; 1821 } 1822 #endif 1823 1824 /* 1825 * mempolicy_nodemask_intersects 1826 * 1827 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 1828 * policy. Otherwise, check for intersection between mask and the policy 1829 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 1830 * policy, always return true since it may allocate elsewhere on fallback. 1831 * 1832 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 1833 */ 1834 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 1835 const nodemask_t *mask) 1836 { 1837 struct mempolicy *mempolicy; 1838 bool ret = true; 1839 1840 if (!mask) 1841 return ret; 1842 task_lock(tsk); 1843 mempolicy = tsk->mempolicy; 1844 if (!mempolicy) 1845 goto out; 1846 1847 switch (mempolicy->mode) { 1848 case MPOL_PREFERRED: 1849 /* 1850 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 1851 * allocate from, they may fallback to other nodes when oom. 1852 * Thus, it's possible for tsk to have allocated memory from 1853 * nodes in mask. 1854 */ 1855 break; 1856 case MPOL_BIND: 1857 case MPOL_INTERLEAVE: 1858 ret = nodes_intersects(mempolicy->v.nodes, *mask); 1859 break; 1860 default: 1861 BUG(); 1862 } 1863 out: 1864 task_unlock(tsk); 1865 return ret; 1866 } 1867 1868 /* Allocate a page in interleaved policy. 1869 Own path because it needs to do special accounting. */ 1870 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1871 unsigned nid) 1872 { 1873 struct zonelist *zl; 1874 struct page *page; 1875 1876 zl = node_zonelist(nid, gfp); 1877 page = __alloc_pages(gfp, order, zl); 1878 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1879 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1880 return page; 1881 } 1882 1883 /** 1884 * alloc_pages_vma - Allocate a page for a VMA. 1885 * 1886 * @gfp: 1887 * %GFP_USER user allocation. 1888 * %GFP_KERNEL kernel allocations, 1889 * %GFP_HIGHMEM highmem/user allocations, 1890 * %GFP_FS allocation should not call back into a file system. 1891 * %GFP_ATOMIC don't sleep. 1892 * 1893 * @order:Order of the GFP allocation. 1894 * @vma: Pointer to VMA or NULL if not available. 1895 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1896 * 1897 * This function allocates a page from the kernel page pool and applies 1898 * a NUMA policy associated with the VMA or the current process. 1899 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1900 * mm_struct of the VMA to prevent it from going away. Should be used for 1901 * all allocations for pages that will be mapped into 1902 * user space. Returns NULL when no page can be allocated. 1903 * 1904 * Should be called with the mm_sem of the vma hold. 1905 */ 1906 struct page * 1907 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 1908 unsigned long addr, int node) 1909 { 1910 struct mempolicy *pol; 1911 struct zonelist *zl; 1912 struct page *page; 1913 unsigned int cpuset_mems_cookie; 1914 1915 retry_cpuset: 1916 pol = get_vma_policy(current, vma, addr); 1917 cpuset_mems_cookie = get_mems_allowed(); 1918 1919 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 1920 unsigned nid; 1921 1922 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 1923 mpol_cond_put(pol); 1924 page = alloc_page_interleave(gfp, order, nid); 1925 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1926 goto retry_cpuset; 1927 1928 return page; 1929 } 1930 zl = policy_zonelist(gfp, pol, node); 1931 if (unlikely(mpol_needs_cond_ref(pol))) { 1932 /* 1933 * slow path: ref counted shared policy 1934 */ 1935 struct page *page = __alloc_pages_nodemask(gfp, order, 1936 zl, policy_nodemask(gfp, pol)); 1937 __mpol_put(pol); 1938 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1939 goto retry_cpuset; 1940 return page; 1941 } 1942 /* 1943 * fast path: default or task policy 1944 */ 1945 page = __alloc_pages_nodemask(gfp, order, zl, 1946 policy_nodemask(gfp, pol)); 1947 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1948 goto retry_cpuset; 1949 return page; 1950 } 1951 1952 /** 1953 * alloc_pages_current - Allocate pages. 1954 * 1955 * @gfp: 1956 * %GFP_USER user allocation, 1957 * %GFP_KERNEL kernel allocation, 1958 * %GFP_HIGHMEM highmem allocation, 1959 * %GFP_FS don't call back into a file system. 1960 * %GFP_ATOMIC don't sleep. 1961 * @order: Power of two of allocation size in pages. 0 is a single page. 1962 * 1963 * Allocate a page from the kernel page pool. When not in 1964 * interrupt context and apply the current process NUMA policy. 1965 * Returns NULL when no page can be allocated. 1966 * 1967 * Don't call cpuset_update_task_memory_state() unless 1968 * 1) it's ok to take cpuset_sem (can WAIT), and 1969 * 2) allocating for current task (not interrupt). 1970 */ 1971 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1972 { 1973 struct mempolicy *pol = current->mempolicy; 1974 struct page *page; 1975 unsigned int cpuset_mems_cookie; 1976 1977 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1978 pol = &default_policy; 1979 1980 retry_cpuset: 1981 cpuset_mems_cookie = get_mems_allowed(); 1982 1983 /* 1984 * No reference counting needed for current->mempolicy 1985 * nor system default_policy 1986 */ 1987 if (pol->mode == MPOL_INTERLEAVE) 1988 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1989 else 1990 page = __alloc_pages_nodemask(gfp, order, 1991 policy_zonelist(gfp, pol, numa_node_id()), 1992 policy_nodemask(gfp, pol)); 1993 1994 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 1995 goto retry_cpuset; 1996 1997 return page; 1998 } 1999 EXPORT_SYMBOL(alloc_pages_current); 2000 2001 /* 2002 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2003 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2004 * with the mems_allowed returned by cpuset_mems_allowed(). This 2005 * keeps mempolicies cpuset relative after its cpuset moves. See 2006 * further kernel/cpuset.c update_nodemask(). 2007 * 2008 * current's mempolicy may be rebinded by the other task(the task that changes 2009 * cpuset's mems), so we needn't do rebind work for current task. 2010 */ 2011 2012 /* Slow path of a mempolicy duplicate */ 2013 struct mempolicy *__mpol_dup(struct mempolicy *old) 2014 { 2015 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2016 2017 if (!new) 2018 return ERR_PTR(-ENOMEM); 2019 2020 /* task's mempolicy is protected by alloc_lock */ 2021 if (old == current->mempolicy) { 2022 task_lock(current); 2023 *new = *old; 2024 task_unlock(current); 2025 } else 2026 *new = *old; 2027 2028 rcu_read_lock(); 2029 if (current_cpuset_is_being_rebound()) { 2030 nodemask_t mems = cpuset_mems_allowed(current); 2031 if (new->flags & MPOL_F_REBINDING) 2032 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 2033 else 2034 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 2035 } 2036 rcu_read_unlock(); 2037 atomic_set(&new->refcnt, 1); 2038 return new; 2039 } 2040 2041 /* 2042 * If *frompol needs [has] an extra ref, copy *frompol to *tompol , 2043 * eliminate the * MPOL_F_* flags that require conditional ref and 2044 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly 2045 * after return. Use the returned value. 2046 * 2047 * Allows use of a mempolicy for, e.g., multiple allocations with a single 2048 * policy lookup, even if the policy needs/has extra ref on lookup. 2049 * shmem_readahead needs this. 2050 */ 2051 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, 2052 struct mempolicy *frompol) 2053 { 2054 if (!mpol_needs_cond_ref(frompol)) 2055 return frompol; 2056 2057 *tompol = *frompol; 2058 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ 2059 __mpol_put(frompol); 2060 return tompol; 2061 } 2062 2063 /* Slow path of a mempolicy comparison */ 2064 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2065 { 2066 if (!a || !b) 2067 return false; 2068 if (a->mode != b->mode) 2069 return false; 2070 if (a->flags != b->flags) 2071 return false; 2072 if (mpol_store_user_nodemask(a)) 2073 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2074 return false; 2075 2076 switch (a->mode) { 2077 case MPOL_BIND: 2078 /* Fall through */ 2079 case MPOL_INTERLEAVE: 2080 return !!nodes_equal(a->v.nodes, b->v.nodes); 2081 case MPOL_PREFERRED: 2082 return a->v.preferred_node == b->v.preferred_node; 2083 default: 2084 BUG(); 2085 return false; 2086 } 2087 } 2088 2089 /* 2090 * Shared memory backing store policy support. 2091 * 2092 * Remember policies even when nobody has shared memory mapped. 2093 * The policies are kept in Red-Black tree linked from the inode. 2094 * They are protected by the sp->lock spinlock, which should be held 2095 * for any accesses to the tree. 2096 */ 2097 2098 /* lookup first element intersecting start-end */ 2099 /* Caller holds sp->mutex */ 2100 static struct sp_node * 2101 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2102 { 2103 struct rb_node *n = sp->root.rb_node; 2104 2105 while (n) { 2106 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2107 2108 if (start >= p->end) 2109 n = n->rb_right; 2110 else if (end <= p->start) 2111 n = n->rb_left; 2112 else 2113 break; 2114 } 2115 if (!n) 2116 return NULL; 2117 for (;;) { 2118 struct sp_node *w = NULL; 2119 struct rb_node *prev = rb_prev(n); 2120 if (!prev) 2121 break; 2122 w = rb_entry(prev, struct sp_node, nd); 2123 if (w->end <= start) 2124 break; 2125 n = prev; 2126 } 2127 return rb_entry(n, struct sp_node, nd); 2128 } 2129 2130 /* Insert a new shared policy into the list. */ 2131 /* Caller holds sp->lock */ 2132 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2133 { 2134 struct rb_node **p = &sp->root.rb_node; 2135 struct rb_node *parent = NULL; 2136 struct sp_node *nd; 2137 2138 while (*p) { 2139 parent = *p; 2140 nd = rb_entry(parent, struct sp_node, nd); 2141 if (new->start < nd->start) 2142 p = &(*p)->rb_left; 2143 else if (new->end > nd->end) 2144 p = &(*p)->rb_right; 2145 else 2146 BUG(); 2147 } 2148 rb_link_node(&new->nd, parent, p); 2149 rb_insert_color(&new->nd, &sp->root); 2150 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2151 new->policy ? new->policy->mode : 0); 2152 } 2153 2154 /* Find shared policy intersecting idx */ 2155 struct mempolicy * 2156 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2157 { 2158 struct mempolicy *pol = NULL; 2159 struct sp_node *sn; 2160 2161 if (!sp->root.rb_node) 2162 return NULL; 2163 mutex_lock(&sp->mutex); 2164 sn = sp_lookup(sp, idx, idx+1); 2165 if (sn) { 2166 mpol_get(sn->policy); 2167 pol = sn->policy; 2168 } 2169 mutex_unlock(&sp->mutex); 2170 return pol; 2171 } 2172 2173 static void sp_free(struct sp_node *n) 2174 { 2175 mpol_put(n->policy); 2176 kmem_cache_free(sn_cache, n); 2177 } 2178 2179 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2180 { 2181 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2182 rb_erase(&n->nd, &sp->root); 2183 sp_free(n); 2184 } 2185 2186 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2187 struct mempolicy *pol) 2188 { 2189 struct sp_node *n; 2190 struct mempolicy *newpol; 2191 2192 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2193 if (!n) 2194 return NULL; 2195 2196 newpol = mpol_dup(pol); 2197 if (IS_ERR(newpol)) { 2198 kmem_cache_free(sn_cache, n); 2199 return NULL; 2200 } 2201 newpol->flags |= MPOL_F_SHARED; 2202 2203 n->start = start; 2204 n->end = end; 2205 n->policy = newpol; 2206 2207 return n; 2208 } 2209 2210 /* Replace a policy range. */ 2211 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2212 unsigned long end, struct sp_node *new) 2213 { 2214 struct sp_node *n; 2215 int ret = 0; 2216 2217 mutex_lock(&sp->mutex); 2218 n = sp_lookup(sp, start, end); 2219 /* Take care of old policies in the same range. */ 2220 while (n && n->start < end) { 2221 struct rb_node *next = rb_next(&n->nd); 2222 if (n->start >= start) { 2223 if (n->end <= end) 2224 sp_delete(sp, n); 2225 else 2226 n->start = end; 2227 } else { 2228 /* Old policy spanning whole new range. */ 2229 if (n->end > end) { 2230 struct sp_node *new2; 2231 new2 = sp_alloc(end, n->end, n->policy); 2232 if (!new2) { 2233 ret = -ENOMEM; 2234 goto out; 2235 } 2236 n->end = start; 2237 sp_insert(sp, new2); 2238 break; 2239 } else 2240 n->end = start; 2241 } 2242 if (!next) 2243 break; 2244 n = rb_entry(next, struct sp_node, nd); 2245 } 2246 if (new) 2247 sp_insert(sp, new); 2248 out: 2249 mutex_unlock(&sp->mutex); 2250 return ret; 2251 } 2252 2253 /** 2254 * mpol_shared_policy_init - initialize shared policy for inode 2255 * @sp: pointer to inode shared policy 2256 * @mpol: struct mempolicy to install 2257 * 2258 * Install non-NULL @mpol in inode's shared policy rb-tree. 2259 * On entry, the current task has a reference on a non-NULL @mpol. 2260 * This must be released on exit. 2261 * This is called at get_inode() calls and we can use GFP_KERNEL. 2262 */ 2263 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2264 { 2265 int ret; 2266 2267 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2268 mutex_init(&sp->mutex); 2269 2270 if (mpol) { 2271 struct vm_area_struct pvma; 2272 struct mempolicy *new; 2273 NODEMASK_SCRATCH(scratch); 2274 2275 if (!scratch) 2276 goto put_mpol; 2277 /* contextualize the tmpfs mount point mempolicy */ 2278 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2279 if (IS_ERR(new)) 2280 goto free_scratch; /* no valid nodemask intersection */ 2281 2282 task_lock(current); 2283 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2284 task_unlock(current); 2285 if (ret) 2286 goto put_new; 2287 2288 /* Create pseudo-vma that contains just the policy */ 2289 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2290 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2291 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2292 2293 put_new: 2294 mpol_put(new); /* drop initial ref */ 2295 free_scratch: 2296 NODEMASK_SCRATCH_FREE(scratch); 2297 put_mpol: 2298 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2299 } 2300 } 2301 2302 int mpol_set_shared_policy(struct shared_policy *info, 2303 struct vm_area_struct *vma, struct mempolicy *npol) 2304 { 2305 int err; 2306 struct sp_node *new = NULL; 2307 unsigned long sz = vma_pages(vma); 2308 2309 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2310 vma->vm_pgoff, 2311 sz, npol ? npol->mode : -1, 2312 npol ? npol->flags : -1, 2313 npol ? nodes_addr(npol->v.nodes)[0] : -1); 2314 2315 if (npol) { 2316 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2317 if (!new) 2318 return -ENOMEM; 2319 } 2320 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2321 if (err && new) 2322 sp_free(new); 2323 return err; 2324 } 2325 2326 /* Free a backing policy store on inode delete. */ 2327 void mpol_free_shared_policy(struct shared_policy *p) 2328 { 2329 struct sp_node *n; 2330 struct rb_node *next; 2331 2332 if (!p->root.rb_node) 2333 return; 2334 mutex_lock(&p->mutex); 2335 next = rb_first(&p->root); 2336 while (next) { 2337 n = rb_entry(next, struct sp_node, nd); 2338 next = rb_next(&n->nd); 2339 sp_delete(p, n); 2340 } 2341 mutex_unlock(&p->mutex); 2342 } 2343 2344 /* assumes fs == KERNEL_DS */ 2345 void __init numa_policy_init(void) 2346 { 2347 nodemask_t interleave_nodes; 2348 unsigned long largest = 0; 2349 int nid, prefer = 0; 2350 2351 policy_cache = kmem_cache_create("numa_policy", 2352 sizeof(struct mempolicy), 2353 0, SLAB_PANIC, NULL); 2354 2355 sn_cache = kmem_cache_create("shared_policy_node", 2356 sizeof(struct sp_node), 2357 0, SLAB_PANIC, NULL); 2358 2359 /* 2360 * Set interleaving policy for system init. Interleaving is only 2361 * enabled across suitably sized nodes (default is >= 16MB), or 2362 * fall back to the largest node if they're all smaller. 2363 */ 2364 nodes_clear(interleave_nodes); 2365 for_each_node_state(nid, N_HIGH_MEMORY) { 2366 unsigned long total_pages = node_present_pages(nid); 2367 2368 /* Preserve the largest node */ 2369 if (largest < total_pages) { 2370 largest = total_pages; 2371 prefer = nid; 2372 } 2373 2374 /* Interleave this node? */ 2375 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2376 node_set(nid, interleave_nodes); 2377 } 2378 2379 /* All too small, use the largest */ 2380 if (unlikely(nodes_empty(interleave_nodes))) 2381 node_set(prefer, interleave_nodes); 2382 2383 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2384 printk("numa_policy_init: interleaving failed\n"); 2385 } 2386 2387 /* Reset policy of current process to default */ 2388 void numa_default_policy(void) 2389 { 2390 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2391 } 2392 2393 /* 2394 * Parse and format mempolicy from/to strings 2395 */ 2396 2397 /* 2398 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag 2399 * Used only for mpol_parse_str() and mpol_to_str() 2400 */ 2401 #define MPOL_LOCAL MPOL_MAX 2402 static const char * const policy_modes[] = 2403 { 2404 [MPOL_DEFAULT] = "default", 2405 [MPOL_PREFERRED] = "prefer", 2406 [MPOL_BIND] = "bind", 2407 [MPOL_INTERLEAVE] = "interleave", 2408 [MPOL_LOCAL] = "local" 2409 }; 2410 2411 2412 #ifdef CONFIG_TMPFS 2413 /** 2414 * mpol_parse_str - parse string to mempolicy 2415 * @str: string containing mempolicy to parse 2416 * @mpol: pointer to struct mempolicy pointer, returned on success. 2417 * @no_context: flag whether to "contextualize" the mempolicy 2418 * 2419 * Format of input: 2420 * <mode>[=<flags>][:<nodelist>] 2421 * 2422 * if @no_context is true, save the input nodemask in w.user_nodemask in 2423 * the returned mempolicy. This will be used to "clone" the mempolicy in 2424 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol 2425 * mount option. Note that if 'static' or 'relative' mode flags were 2426 * specified, the input nodemask will already have been saved. Saving 2427 * it again is redundant, but safe. 2428 * 2429 * On success, returns 0, else 1 2430 */ 2431 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) 2432 { 2433 struct mempolicy *new = NULL; 2434 unsigned short mode; 2435 unsigned short uninitialized_var(mode_flags); 2436 nodemask_t nodes; 2437 char *nodelist = strchr(str, ':'); 2438 char *flags = strchr(str, '='); 2439 int err = 1; 2440 2441 if (nodelist) { 2442 /* NUL-terminate mode or flags string */ 2443 *nodelist++ = '\0'; 2444 if (nodelist_parse(nodelist, nodes)) 2445 goto out; 2446 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) 2447 goto out; 2448 } else 2449 nodes_clear(nodes); 2450 2451 if (flags) 2452 *flags++ = '\0'; /* terminate mode string */ 2453 2454 for (mode = 0; mode <= MPOL_LOCAL; mode++) { 2455 if (!strcmp(str, policy_modes[mode])) { 2456 break; 2457 } 2458 } 2459 if (mode > MPOL_LOCAL) 2460 goto out; 2461 2462 switch (mode) { 2463 case MPOL_PREFERRED: 2464 /* 2465 * Insist on a nodelist of one node only 2466 */ 2467 if (nodelist) { 2468 char *rest = nodelist; 2469 while (isdigit(*rest)) 2470 rest++; 2471 if (*rest) 2472 goto out; 2473 } 2474 break; 2475 case MPOL_INTERLEAVE: 2476 /* 2477 * Default to online nodes with memory if no nodelist 2478 */ 2479 if (!nodelist) 2480 nodes = node_states[N_HIGH_MEMORY]; 2481 break; 2482 case MPOL_LOCAL: 2483 /* 2484 * Don't allow a nodelist; mpol_new() checks flags 2485 */ 2486 if (nodelist) 2487 goto out; 2488 mode = MPOL_PREFERRED; 2489 break; 2490 case MPOL_DEFAULT: 2491 /* 2492 * Insist on a empty nodelist 2493 */ 2494 if (!nodelist) 2495 err = 0; 2496 goto out; 2497 case MPOL_BIND: 2498 /* 2499 * Insist on a nodelist 2500 */ 2501 if (!nodelist) 2502 goto out; 2503 } 2504 2505 mode_flags = 0; 2506 if (flags) { 2507 /* 2508 * Currently, we only support two mutually exclusive 2509 * mode flags. 2510 */ 2511 if (!strcmp(flags, "static")) 2512 mode_flags |= MPOL_F_STATIC_NODES; 2513 else if (!strcmp(flags, "relative")) 2514 mode_flags |= MPOL_F_RELATIVE_NODES; 2515 else 2516 goto out; 2517 } 2518 2519 new = mpol_new(mode, mode_flags, &nodes); 2520 if (IS_ERR(new)) 2521 goto out; 2522 2523 if (no_context) { 2524 /* save for contextualization */ 2525 new->w.user_nodemask = nodes; 2526 } else { 2527 int ret; 2528 NODEMASK_SCRATCH(scratch); 2529 if (scratch) { 2530 task_lock(current); 2531 ret = mpol_set_nodemask(new, &nodes, scratch); 2532 task_unlock(current); 2533 } else 2534 ret = -ENOMEM; 2535 NODEMASK_SCRATCH_FREE(scratch); 2536 if (ret) { 2537 mpol_put(new); 2538 goto out; 2539 } 2540 } 2541 err = 0; 2542 2543 out: 2544 /* Restore string for error message */ 2545 if (nodelist) 2546 *--nodelist = ':'; 2547 if (flags) 2548 *--flags = '='; 2549 if (!err) 2550 *mpol = new; 2551 return err; 2552 } 2553 #endif /* CONFIG_TMPFS */ 2554 2555 /** 2556 * mpol_to_str - format a mempolicy structure for printing 2557 * @buffer: to contain formatted mempolicy string 2558 * @maxlen: length of @buffer 2559 * @pol: pointer to mempolicy to be formatted 2560 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask 2561 * 2562 * Convert a mempolicy into a string. 2563 * Returns the number of characters in buffer (if positive) 2564 * or an error (negative) 2565 */ 2566 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) 2567 { 2568 char *p = buffer; 2569 int l; 2570 nodemask_t nodes; 2571 unsigned short mode; 2572 unsigned short flags = pol ? pol->flags : 0; 2573 2574 /* 2575 * Sanity check: room for longest mode, flag and some nodes 2576 */ 2577 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); 2578 2579 if (!pol || pol == &default_policy) 2580 mode = MPOL_DEFAULT; 2581 else 2582 mode = pol->mode; 2583 2584 switch (mode) { 2585 case MPOL_DEFAULT: 2586 nodes_clear(nodes); 2587 break; 2588 2589 case MPOL_PREFERRED: 2590 nodes_clear(nodes); 2591 if (flags & MPOL_F_LOCAL) 2592 mode = MPOL_LOCAL; /* pseudo-policy */ 2593 else 2594 node_set(pol->v.preferred_node, nodes); 2595 break; 2596 2597 case MPOL_BIND: 2598 /* Fall through */ 2599 case MPOL_INTERLEAVE: 2600 if (no_context) 2601 nodes = pol->w.user_nodemask; 2602 else 2603 nodes = pol->v.nodes; 2604 break; 2605 2606 default: 2607 return -EINVAL; 2608 } 2609 2610 l = strlen(policy_modes[mode]); 2611 if (buffer + maxlen < p + l + 1) 2612 return -ENOSPC; 2613 2614 strcpy(p, policy_modes[mode]); 2615 p += l; 2616 2617 if (flags & MPOL_MODE_FLAGS) { 2618 if (buffer + maxlen < p + 2) 2619 return -ENOSPC; 2620 *p++ = '='; 2621 2622 /* 2623 * Currently, the only defined flags are mutually exclusive 2624 */ 2625 if (flags & MPOL_F_STATIC_NODES) 2626 p += snprintf(p, buffer + maxlen - p, "static"); 2627 else if (flags & MPOL_F_RELATIVE_NODES) 2628 p += snprintf(p, buffer + maxlen - p, "relative"); 2629 } 2630 2631 if (!nodes_empty(nodes)) { 2632 if (buffer + maxlen < p + 2) 2633 return -ENOSPC; 2634 *p++ = ':'; 2635 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2636 } 2637 return p - buffer; 2638 } 2639