xref: /linux/mm/mempolicy.c (revision 6ca80638b90cec66547011ee1ef79e534589989a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 	VMA_ITERATOR(vmi, mm, 0);
385 
386 	mmap_write_lock(mm);
387 	for_each_vma(vmi, vma) {
388 		vma_start_write(vma);
389 		mpol_rebind_policy(vma->vm_policy, new);
390 	}
391 	mmap_write_unlock(mm);
392 }
393 
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
395 	[MPOL_DEFAULT] = {
396 		.rebind = mpol_rebind_default,
397 	},
398 	[MPOL_INTERLEAVE] = {
399 		.create = mpol_new_nodemask,
400 		.rebind = mpol_rebind_nodemask,
401 	},
402 	[MPOL_PREFERRED] = {
403 		.create = mpol_new_preferred,
404 		.rebind = mpol_rebind_preferred,
405 	},
406 	[MPOL_BIND] = {
407 		.create = mpol_new_nodemask,
408 		.rebind = mpol_rebind_nodemask,
409 	},
410 	[MPOL_LOCAL] = {
411 		.rebind = mpol_rebind_default,
412 	},
413 	[MPOL_PREFERRED_MANY] = {
414 		.create = mpol_new_nodemask,
415 		.rebind = mpol_rebind_preferred,
416 	},
417 };
418 
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 				unsigned long flags);
421 
422 struct queue_pages {
423 	struct list_head *pagelist;
424 	unsigned long flags;
425 	nodemask_t *nmask;
426 	unsigned long start;
427 	unsigned long end;
428 	struct vm_area_struct *first;
429 	bool has_unmovable;
430 };
431 
432 /*
433  * Check if the folio's nid is in qp->nmask.
434  *
435  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
436  * in the invert of qp->nmask.
437  */
438 static inline bool queue_folio_required(struct folio *folio,
439 					struct queue_pages *qp)
440 {
441 	int nid = folio_nid(folio);
442 	unsigned long flags = qp->flags;
443 
444 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 }
446 
447 /*
448  * queue_folios_pmd() has three possible return values:
449  * 0 - folios are placed on the right node or queued successfully, or
450  *     special page is met, i.e. zero page, or unmovable page is found
451  *     but continue walking (indicated by queue_pages.has_unmovable).
452  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453  *        existing folio was already on a node that does not follow the
454  *        policy.
455  */
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 				unsigned long end, struct mm_walk *walk)
458 	__releases(ptl)
459 {
460 	int ret = 0;
461 	struct folio *folio;
462 	struct queue_pages *qp = walk->private;
463 	unsigned long flags;
464 
465 	if (unlikely(is_pmd_migration_entry(*pmd))) {
466 		ret = -EIO;
467 		goto unlock;
468 	}
469 	folio = pfn_folio(pmd_pfn(*pmd));
470 	if (is_huge_zero_page(&folio->page)) {
471 		walk->action = ACTION_CONTINUE;
472 		goto unlock;
473 	}
474 	if (!queue_folio_required(folio, qp))
475 		goto unlock;
476 
477 	flags = qp->flags;
478 	/* go to folio migration */
479 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 		if (!vma_migratable(walk->vma) ||
481 		    migrate_folio_add(folio, qp->pagelist, flags)) {
482 			qp->has_unmovable = true;
483 			goto unlock;
484 		}
485 	} else
486 		ret = -EIO;
487 unlock:
488 	spin_unlock(ptl);
489 	return ret;
490 }
491 
492 /*
493  * Scan through pages checking if pages follow certain conditions,
494  * and move them to the pagelist if they do.
495  *
496  * queue_folios_pte_range() has three possible return values:
497  * 0 - folios are placed on the right node or queued successfully, or
498  *     special page is met, i.e. zero page, or unmovable page is found
499  *     but continue walking (indicated by queue_pages.has_unmovable).
500  * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
501  *        on a node that does not follow the policy.
502  */
503 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
504 			unsigned long end, struct mm_walk *walk)
505 {
506 	struct vm_area_struct *vma = walk->vma;
507 	struct folio *folio;
508 	struct queue_pages *qp = walk->private;
509 	unsigned long flags = qp->flags;
510 	pte_t *pte, *mapped_pte;
511 	pte_t ptent;
512 	spinlock_t *ptl;
513 
514 	ptl = pmd_trans_huge_lock(pmd, vma);
515 	if (ptl)
516 		return queue_folios_pmd(pmd, ptl, addr, end, walk);
517 
518 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 	if (!pte) {
520 		walk->action = ACTION_AGAIN;
521 		return 0;
522 	}
523 	for (; addr != end; pte++, addr += PAGE_SIZE) {
524 		ptent = ptep_get(pte);
525 		if (!pte_present(ptent))
526 			continue;
527 		folio = vm_normal_folio(vma, addr, ptent);
528 		if (!folio || folio_is_zone_device(folio))
529 			continue;
530 		/*
531 		 * vm_normal_folio() filters out zero pages, but there might
532 		 * still be reserved folios to skip, perhaps in a VDSO.
533 		 */
534 		if (folio_test_reserved(folio))
535 			continue;
536 		if (!queue_folio_required(folio, qp))
537 			continue;
538 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 			/*
540 			 * MPOL_MF_STRICT must be specified if we get here.
541 			 * Continue walking vmas due to MPOL_MF_MOVE* flags.
542 			 */
543 			if (!vma_migratable(vma))
544 				qp->has_unmovable = true;
545 
546 			/*
547 			 * Do not abort immediately since there may be
548 			 * temporary off LRU pages in the range.  Still
549 			 * need migrate other LRU pages.
550 			 */
551 			if (migrate_folio_add(folio, qp->pagelist, flags))
552 				qp->has_unmovable = true;
553 		} else
554 			break;
555 	}
556 	pte_unmap_unlock(mapped_pte, ptl);
557 	cond_resched();
558 
559 	return addr != end ? -EIO : 0;
560 }
561 
562 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
563 			       unsigned long addr, unsigned long end,
564 			       struct mm_walk *walk)
565 {
566 	int ret = 0;
567 #ifdef CONFIG_HUGETLB_PAGE
568 	struct queue_pages *qp = walk->private;
569 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
570 	struct folio *folio;
571 	spinlock_t *ptl;
572 	pte_t entry;
573 
574 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 	entry = huge_ptep_get(pte);
576 	if (!pte_present(entry))
577 		goto unlock;
578 	folio = pfn_folio(pte_pfn(entry));
579 	if (!queue_folio_required(folio, qp))
580 		goto unlock;
581 
582 	if (flags == MPOL_MF_STRICT) {
583 		/*
584 		 * STRICT alone means only detecting misplaced folio and no
585 		 * need to further check other vma.
586 		 */
587 		ret = -EIO;
588 		goto unlock;
589 	}
590 
591 	if (!vma_migratable(walk->vma)) {
592 		/*
593 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
594 		 * stopped walking current vma.
595 		 * Detecting misplaced folio but allow migrating folios which
596 		 * have been queued.
597 		 */
598 		qp->has_unmovable = true;
599 		goto unlock;
600 	}
601 
602 	/*
603 	 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
604 	 * is shared it is likely not worth migrating.
605 	 *
606 	 * To check if the folio is shared, ideally we want to make sure
607 	 * every page is mapped to the same process. Doing that is very
608 	 * expensive, so check the estimated mapcount of the folio instead.
609 	 */
610 	if (flags & (MPOL_MF_MOVE_ALL) ||
611 	    (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
612 	     !hugetlb_pmd_shared(pte))) {
613 		if (!isolate_hugetlb(folio, qp->pagelist) &&
614 			(flags & MPOL_MF_STRICT))
615 			/*
616 			 * Failed to isolate folio but allow migrating pages
617 			 * which have been queued.
618 			 */
619 			qp->has_unmovable = true;
620 	}
621 unlock:
622 	spin_unlock(ptl);
623 #else
624 	BUG();
625 #endif
626 	return ret;
627 }
628 
629 #ifdef CONFIG_NUMA_BALANCING
630 /*
631  * This is used to mark a range of virtual addresses to be inaccessible.
632  * These are later cleared by a NUMA hinting fault. Depending on these
633  * faults, pages may be migrated for better NUMA placement.
634  *
635  * This is assuming that NUMA faults are handled using PROT_NONE. If
636  * an architecture makes a different choice, it will need further
637  * changes to the core.
638  */
639 unsigned long change_prot_numa(struct vm_area_struct *vma,
640 			unsigned long addr, unsigned long end)
641 {
642 	struct mmu_gather tlb;
643 	long nr_updated;
644 
645 	tlb_gather_mmu(&tlb, vma->vm_mm);
646 
647 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
648 	if (nr_updated > 0)
649 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
650 
651 	tlb_finish_mmu(&tlb);
652 
653 	return nr_updated;
654 }
655 #else
656 static unsigned long change_prot_numa(struct vm_area_struct *vma,
657 			unsigned long addr, unsigned long end)
658 {
659 	return 0;
660 }
661 #endif /* CONFIG_NUMA_BALANCING */
662 
663 static int queue_pages_test_walk(unsigned long start, unsigned long end,
664 				struct mm_walk *walk)
665 {
666 	struct vm_area_struct *next, *vma = walk->vma;
667 	struct queue_pages *qp = walk->private;
668 	unsigned long endvma = vma->vm_end;
669 	unsigned long flags = qp->flags;
670 
671 	/* range check first */
672 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
673 
674 	if (!qp->first) {
675 		qp->first = vma;
676 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
677 			(qp->start < vma->vm_start))
678 			/* hole at head side of range */
679 			return -EFAULT;
680 	}
681 	next = find_vma(vma->vm_mm, vma->vm_end);
682 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
683 		((vma->vm_end < qp->end) &&
684 		(!next || vma->vm_end < next->vm_start)))
685 		/* hole at middle or tail of range */
686 		return -EFAULT;
687 
688 	/*
689 	 * Need check MPOL_MF_STRICT to return -EIO if possible
690 	 * regardless of vma_migratable
691 	 */
692 	if (!vma_migratable(vma) &&
693 	    !(flags & MPOL_MF_STRICT))
694 		return 1;
695 
696 	if (endvma > end)
697 		endvma = end;
698 
699 	if (flags & MPOL_MF_LAZY) {
700 		/* Similar to task_numa_work, skip inaccessible VMAs */
701 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
702 			!(vma->vm_flags & VM_MIXEDMAP))
703 			change_prot_numa(vma, start, endvma);
704 		return 1;
705 	}
706 
707 	/* queue pages from current vma */
708 	if (flags & MPOL_MF_VALID)
709 		return 0;
710 	return 1;
711 }
712 
713 static const struct mm_walk_ops queue_pages_walk_ops = {
714 	.hugetlb_entry		= queue_folios_hugetlb,
715 	.pmd_entry		= queue_folios_pte_range,
716 	.test_walk		= queue_pages_test_walk,
717 	.walk_lock		= PGWALK_RDLOCK,
718 };
719 
720 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
721 	.hugetlb_entry		= queue_folios_hugetlb,
722 	.pmd_entry		= queue_folios_pte_range,
723 	.test_walk		= queue_pages_test_walk,
724 	.walk_lock		= PGWALK_WRLOCK,
725 };
726 
727 /*
728  * Walk through page tables and collect pages to be migrated.
729  *
730  * If pages found in a given range are on a set of nodes (determined by
731  * @nodes and @flags,) it's isolated and queued to the pagelist which is
732  * passed via @private.
733  *
734  * queue_pages_range() has three possible return values:
735  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
736  *     specified.
737  * 0 - queue pages successfully or no misplaced page.
738  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
739  *         memory range specified by nodemask and maxnode points outside
740  *         your accessible address space (-EFAULT)
741  */
742 static int
743 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
744 		nodemask_t *nodes, unsigned long flags,
745 		struct list_head *pagelist, bool lock_vma)
746 {
747 	int err;
748 	struct queue_pages qp = {
749 		.pagelist = pagelist,
750 		.flags = flags,
751 		.nmask = nodes,
752 		.start = start,
753 		.end = end,
754 		.first = NULL,
755 		.has_unmovable = false,
756 	};
757 	const struct mm_walk_ops *ops = lock_vma ?
758 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
759 
760 	err = walk_page_range(mm, start, end, ops, &qp);
761 
762 	if (qp.has_unmovable)
763 		err = 1;
764 	if (!qp.first)
765 		/* whole range in hole */
766 		err = -EFAULT;
767 
768 	return err;
769 }
770 
771 /*
772  * Apply policy to a single VMA
773  * This must be called with the mmap_lock held for writing.
774  */
775 static int vma_replace_policy(struct vm_area_struct *vma,
776 						struct mempolicy *pol)
777 {
778 	int err;
779 	struct mempolicy *old;
780 	struct mempolicy *new;
781 
782 	vma_assert_write_locked(vma);
783 
784 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
785 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
786 		 vma->vm_ops, vma->vm_file,
787 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
788 
789 	new = mpol_dup(pol);
790 	if (IS_ERR(new))
791 		return PTR_ERR(new);
792 
793 	if (vma->vm_ops && vma->vm_ops->set_policy) {
794 		err = vma->vm_ops->set_policy(vma, new);
795 		if (err)
796 			goto err_out;
797 	}
798 
799 	old = vma->vm_policy;
800 	vma->vm_policy = new; /* protected by mmap_lock */
801 	mpol_put(old);
802 
803 	return 0;
804  err_out:
805 	mpol_put(new);
806 	return err;
807 }
808 
809 /* Split or merge the VMA (if required) and apply the new policy */
810 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
811 		struct vm_area_struct **prev, unsigned long start,
812 		unsigned long end, struct mempolicy *new_pol)
813 {
814 	struct vm_area_struct *merged;
815 	unsigned long vmstart, vmend;
816 	pgoff_t pgoff;
817 	int err;
818 
819 	vmend = min(end, vma->vm_end);
820 	if (start > vma->vm_start) {
821 		*prev = vma;
822 		vmstart = start;
823 	} else {
824 		vmstart = vma->vm_start;
825 	}
826 
827 	if (mpol_equal(vma_policy(vma), new_pol)) {
828 		*prev = vma;
829 		return 0;
830 	}
831 
832 	pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
833 	merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
834 			 vma->anon_vma, vma->vm_file, pgoff, new_pol,
835 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
836 	if (merged) {
837 		*prev = merged;
838 		return vma_replace_policy(merged, new_pol);
839 	}
840 
841 	if (vma->vm_start != vmstart) {
842 		err = split_vma(vmi, vma, vmstart, 1);
843 		if (err)
844 			return err;
845 	}
846 
847 	if (vma->vm_end != vmend) {
848 		err = split_vma(vmi, vma, vmend, 0);
849 		if (err)
850 			return err;
851 	}
852 
853 	*prev = vma;
854 	return vma_replace_policy(vma, new_pol);
855 }
856 
857 /* Set the process memory policy */
858 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
859 			     nodemask_t *nodes)
860 {
861 	struct mempolicy *new, *old;
862 	NODEMASK_SCRATCH(scratch);
863 	int ret;
864 
865 	if (!scratch)
866 		return -ENOMEM;
867 
868 	new = mpol_new(mode, flags, nodes);
869 	if (IS_ERR(new)) {
870 		ret = PTR_ERR(new);
871 		goto out;
872 	}
873 
874 	task_lock(current);
875 	ret = mpol_set_nodemask(new, nodes, scratch);
876 	if (ret) {
877 		task_unlock(current);
878 		mpol_put(new);
879 		goto out;
880 	}
881 
882 	old = current->mempolicy;
883 	current->mempolicy = new;
884 	if (new && new->mode == MPOL_INTERLEAVE)
885 		current->il_prev = MAX_NUMNODES-1;
886 	task_unlock(current);
887 	mpol_put(old);
888 	ret = 0;
889 out:
890 	NODEMASK_SCRATCH_FREE(scratch);
891 	return ret;
892 }
893 
894 /*
895  * Return nodemask for policy for get_mempolicy() query
896  *
897  * Called with task's alloc_lock held
898  */
899 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
900 {
901 	nodes_clear(*nodes);
902 	if (p == &default_policy)
903 		return;
904 
905 	switch (p->mode) {
906 	case MPOL_BIND:
907 	case MPOL_INTERLEAVE:
908 	case MPOL_PREFERRED:
909 	case MPOL_PREFERRED_MANY:
910 		*nodes = p->nodes;
911 		break;
912 	case MPOL_LOCAL:
913 		/* return empty node mask for local allocation */
914 		break;
915 	default:
916 		BUG();
917 	}
918 }
919 
920 static int lookup_node(struct mm_struct *mm, unsigned long addr)
921 {
922 	struct page *p = NULL;
923 	int ret;
924 
925 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
926 	if (ret > 0) {
927 		ret = page_to_nid(p);
928 		put_page(p);
929 	}
930 	return ret;
931 }
932 
933 /* Retrieve NUMA policy */
934 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
935 			     unsigned long addr, unsigned long flags)
936 {
937 	int err;
938 	struct mm_struct *mm = current->mm;
939 	struct vm_area_struct *vma = NULL;
940 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
941 
942 	if (flags &
943 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
944 		return -EINVAL;
945 
946 	if (flags & MPOL_F_MEMS_ALLOWED) {
947 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
948 			return -EINVAL;
949 		*policy = 0;	/* just so it's initialized */
950 		task_lock(current);
951 		*nmask  = cpuset_current_mems_allowed;
952 		task_unlock(current);
953 		return 0;
954 	}
955 
956 	if (flags & MPOL_F_ADDR) {
957 		/*
958 		 * Do NOT fall back to task policy if the
959 		 * vma/shared policy at addr is NULL.  We
960 		 * want to return MPOL_DEFAULT in this case.
961 		 */
962 		mmap_read_lock(mm);
963 		vma = vma_lookup(mm, addr);
964 		if (!vma) {
965 			mmap_read_unlock(mm);
966 			return -EFAULT;
967 		}
968 		if (vma->vm_ops && vma->vm_ops->get_policy)
969 			pol = vma->vm_ops->get_policy(vma, addr);
970 		else
971 			pol = vma->vm_policy;
972 	} else if (addr)
973 		return -EINVAL;
974 
975 	if (!pol)
976 		pol = &default_policy;	/* indicates default behavior */
977 
978 	if (flags & MPOL_F_NODE) {
979 		if (flags & MPOL_F_ADDR) {
980 			/*
981 			 * Take a refcount on the mpol, because we are about to
982 			 * drop the mmap_lock, after which only "pol" remains
983 			 * valid, "vma" is stale.
984 			 */
985 			pol_refcount = pol;
986 			vma = NULL;
987 			mpol_get(pol);
988 			mmap_read_unlock(mm);
989 			err = lookup_node(mm, addr);
990 			if (err < 0)
991 				goto out;
992 			*policy = err;
993 		} else if (pol == current->mempolicy &&
994 				pol->mode == MPOL_INTERLEAVE) {
995 			*policy = next_node_in(current->il_prev, pol->nodes);
996 		} else {
997 			err = -EINVAL;
998 			goto out;
999 		}
1000 	} else {
1001 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1002 						pol->mode;
1003 		/*
1004 		 * Internal mempolicy flags must be masked off before exposing
1005 		 * the policy to userspace.
1006 		 */
1007 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1008 	}
1009 
1010 	err = 0;
1011 	if (nmask) {
1012 		if (mpol_store_user_nodemask(pol)) {
1013 			*nmask = pol->w.user_nodemask;
1014 		} else {
1015 			task_lock(current);
1016 			get_policy_nodemask(pol, nmask);
1017 			task_unlock(current);
1018 		}
1019 	}
1020 
1021  out:
1022 	mpol_cond_put(pol);
1023 	if (vma)
1024 		mmap_read_unlock(mm);
1025 	if (pol_refcount)
1026 		mpol_put(pol_refcount);
1027 	return err;
1028 }
1029 
1030 #ifdef CONFIG_MIGRATION
1031 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1032 				unsigned long flags)
1033 {
1034 	/*
1035 	 * We try to migrate only unshared folios. If it is shared it
1036 	 * is likely not worth migrating.
1037 	 *
1038 	 * To check if the folio is shared, ideally we want to make sure
1039 	 * every page is mapped to the same process. Doing that is very
1040 	 * expensive, so check the estimated mapcount of the folio instead.
1041 	 */
1042 	if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1043 		if (folio_isolate_lru(folio)) {
1044 			list_add_tail(&folio->lru, foliolist);
1045 			node_stat_mod_folio(folio,
1046 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1047 				folio_nr_pages(folio));
1048 		} else if (flags & MPOL_MF_STRICT) {
1049 			/*
1050 			 * Non-movable folio may reach here.  And, there may be
1051 			 * temporary off LRU folios or non-LRU movable folios.
1052 			 * Treat them as unmovable folios since they can't be
1053 			 * isolated, so they can't be moved at the moment.  It
1054 			 * should return -EIO for this case too.
1055 			 */
1056 			return -EIO;
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Migrate pages from one node to a target node.
1065  * Returns error or the number of pages not migrated.
1066  */
1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1068 			   int flags)
1069 {
1070 	nodemask_t nmask;
1071 	struct vm_area_struct *vma;
1072 	LIST_HEAD(pagelist);
1073 	int err = 0;
1074 	struct migration_target_control mtc = {
1075 		.nid = dest,
1076 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1077 	};
1078 
1079 	nodes_clear(nmask);
1080 	node_set(source, nmask);
1081 
1082 	/*
1083 	 * This does not "check" the range but isolates all pages that
1084 	 * need migration.  Between passing in the full user address
1085 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1086 	 */
1087 	vma = find_vma(mm, 0);
1088 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1089 	queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1090 			flags | MPOL_MF_DISCONTIG_OK, &pagelist, false);
1091 
1092 	if (!list_empty(&pagelist)) {
1093 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1094 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1095 		if (err)
1096 			putback_movable_pages(&pagelist);
1097 	}
1098 
1099 	return err;
1100 }
1101 
1102 /*
1103  * Move pages between the two nodesets so as to preserve the physical
1104  * layout as much as possible.
1105  *
1106  * Returns the number of page that could not be moved.
1107  */
1108 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1109 		     const nodemask_t *to, int flags)
1110 {
1111 	int busy = 0;
1112 	int err = 0;
1113 	nodemask_t tmp;
1114 
1115 	lru_cache_disable();
1116 
1117 	mmap_read_lock(mm);
1118 
1119 	/*
1120 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1122 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 	 * The pair of nodemasks 'to' and 'from' define the map.
1124 	 *
1125 	 * If no pair of bits is found that way, fallback to picking some
1126 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1127 	 * 'source' and 'dest' bits are the same, this represents a node
1128 	 * that will be migrating to itself, so no pages need move.
1129 	 *
1130 	 * If no bits are left in 'tmp', or if all remaining bits left
1131 	 * in 'tmp' correspond to the same bit in 'to', return false
1132 	 * (nothing left to migrate).
1133 	 *
1134 	 * This lets us pick a pair of nodes to migrate between, such that
1135 	 * if possible the dest node is not already occupied by some other
1136 	 * source node, minimizing the risk of overloading the memory on a
1137 	 * node that would happen if we migrated incoming memory to a node
1138 	 * before migrating outgoing memory source that same node.
1139 	 *
1140 	 * A single scan of tmp is sufficient.  As we go, we remember the
1141 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1142 	 * that not only moved, but what's better, moved to an empty slot
1143 	 * (d is not set in tmp), then we break out then, with that pair.
1144 	 * Otherwise when we finish scanning from_tmp, we at least have the
1145 	 * most recent <s, d> pair that moved.  If we get all the way through
1146 	 * the scan of tmp without finding any node that moved, much less
1147 	 * moved to an empty node, then there is nothing left worth migrating.
1148 	 */
1149 
1150 	tmp = *from;
1151 	while (!nodes_empty(tmp)) {
1152 		int s, d;
1153 		int source = NUMA_NO_NODE;
1154 		int dest = 0;
1155 
1156 		for_each_node_mask(s, tmp) {
1157 
1158 			/*
1159 			 * do_migrate_pages() tries to maintain the relative
1160 			 * node relationship of the pages established between
1161 			 * threads and memory areas.
1162                          *
1163 			 * However if the number of source nodes is not equal to
1164 			 * the number of destination nodes we can not preserve
1165 			 * this node relative relationship.  In that case, skip
1166 			 * copying memory from a node that is in the destination
1167 			 * mask.
1168 			 *
1169 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1171 			 */
1172 
1173 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 						(node_isset(s, *to)))
1175 				continue;
1176 
1177 			d = node_remap(s, *from, *to);
1178 			if (s == d)
1179 				continue;
1180 
1181 			source = s;	/* Node moved. Memorize */
1182 			dest = d;
1183 
1184 			/* dest not in remaining from nodes? */
1185 			if (!node_isset(dest, tmp))
1186 				break;
1187 		}
1188 		if (source == NUMA_NO_NODE)
1189 			break;
1190 
1191 		node_clear(source, tmp);
1192 		err = migrate_to_node(mm, source, dest, flags);
1193 		if (err > 0)
1194 			busy += err;
1195 		if (err < 0)
1196 			break;
1197 	}
1198 	mmap_read_unlock(mm);
1199 
1200 	lru_cache_enable();
1201 	if (err < 0)
1202 		return err;
1203 	return busy;
1204 
1205 }
1206 
1207 /*
1208  * Allocate a new page for page migration based on vma policy.
1209  * Start by assuming the page is mapped by the same vma as contains @start.
1210  * Search forward from there, if not.  N.B., this assumes that the
1211  * list of pages handed to migrate_pages()--which is how we get here--
1212  * is in virtual address order.
1213  */
1214 static struct folio *new_folio(struct folio *src, unsigned long start)
1215 {
1216 	struct vm_area_struct *vma;
1217 	unsigned long address;
1218 	VMA_ITERATOR(vmi, current->mm, start);
1219 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1220 
1221 	for_each_vma(vmi, vma) {
1222 		address = page_address_in_vma(&src->page, vma);
1223 		if (address != -EFAULT)
1224 			break;
1225 	}
1226 
1227 	if (folio_test_hugetlb(src)) {
1228 		return alloc_hugetlb_folio_vma(folio_hstate(src),
1229 				vma, address);
1230 	}
1231 
1232 	if (folio_test_large(src))
1233 		gfp = GFP_TRANSHUGE;
1234 
1235 	/*
1236 	 * if !vma, vma_alloc_folio() will use task or system default policy
1237 	 */
1238 	return vma_alloc_folio(gfp, folio_order(src), vma, address,
1239 			folio_test_large(src));
1240 }
1241 #else
1242 
1243 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 				unsigned long flags)
1245 {
1246 	return -EIO;
1247 }
1248 
1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 		     const nodemask_t *to, int flags)
1251 {
1252 	return -ENOSYS;
1253 }
1254 
1255 static struct folio *new_folio(struct folio *src, unsigned long start)
1256 {
1257 	return NULL;
1258 }
1259 #endif
1260 
1261 static long do_mbind(unsigned long start, unsigned long len,
1262 		     unsigned short mode, unsigned short mode_flags,
1263 		     nodemask_t *nmask, unsigned long flags)
1264 {
1265 	struct mm_struct *mm = current->mm;
1266 	struct vm_area_struct *vma, *prev;
1267 	struct vma_iterator vmi;
1268 	struct mempolicy *new;
1269 	unsigned long end;
1270 	int err;
1271 	int ret;
1272 	LIST_HEAD(pagelist);
1273 
1274 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1275 		return -EINVAL;
1276 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1277 		return -EPERM;
1278 
1279 	if (start & ~PAGE_MASK)
1280 		return -EINVAL;
1281 
1282 	if (mode == MPOL_DEFAULT)
1283 		flags &= ~MPOL_MF_STRICT;
1284 
1285 	len = PAGE_ALIGN(len);
1286 	end = start + len;
1287 
1288 	if (end < start)
1289 		return -EINVAL;
1290 	if (end == start)
1291 		return 0;
1292 
1293 	new = mpol_new(mode, mode_flags, nmask);
1294 	if (IS_ERR(new))
1295 		return PTR_ERR(new);
1296 
1297 	if (flags & MPOL_MF_LAZY)
1298 		new->flags |= MPOL_F_MOF;
1299 
1300 	/*
1301 	 * If we are using the default policy then operation
1302 	 * on discontinuous address spaces is okay after all
1303 	 */
1304 	if (!new)
1305 		flags |= MPOL_MF_DISCONTIG_OK;
1306 
1307 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1308 		 start, start + len, mode, mode_flags,
1309 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1310 
1311 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1312 
1313 		lru_cache_disable();
1314 	}
1315 	{
1316 		NODEMASK_SCRATCH(scratch);
1317 		if (scratch) {
1318 			mmap_write_lock(mm);
1319 			err = mpol_set_nodemask(new, nmask, scratch);
1320 			if (err)
1321 				mmap_write_unlock(mm);
1322 		} else
1323 			err = -ENOMEM;
1324 		NODEMASK_SCRATCH_FREE(scratch);
1325 	}
1326 	if (err)
1327 		goto mpol_out;
1328 
1329 	/*
1330 	 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1331 	 * miss a concurrently inserted page.
1332 	 */
1333 	ret = queue_pages_range(mm, start, end, nmask,
1334 			  flags | MPOL_MF_INVERT, &pagelist, true);
1335 
1336 	if (ret < 0) {
1337 		err = ret;
1338 		goto up_out;
1339 	}
1340 
1341 	vma_iter_init(&vmi, mm, start);
1342 	prev = vma_prev(&vmi);
1343 	for_each_vma_range(vmi, vma, end) {
1344 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1345 		if (err)
1346 			break;
1347 	}
1348 
1349 	if (!err) {
1350 		int nr_failed = 0;
1351 
1352 		if (!list_empty(&pagelist)) {
1353 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1354 			nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1355 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1356 			if (nr_failed)
1357 				putback_movable_pages(&pagelist);
1358 		}
1359 
1360 		if (((ret > 0) || nr_failed) && (flags & MPOL_MF_STRICT))
1361 			err = -EIO;
1362 	} else {
1363 up_out:
1364 		if (!list_empty(&pagelist))
1365 			putback_movable_pages(&pagelist);
1366 	}
1367 
1368 	mmap_write_unlock(mm);
1369 mpol_out:
1370 	mpol_put(new);
1371 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1372 		lru_cache_enable();
1373 	return err;
1374 }
1375 
1376 /*
1377  * User space interface with variable sized bitmaps for nodelists.
1378  */
1379 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1380 		      unsigned long maxnode)
1381 {
1382 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1383 	int ret;
1384 
1385 	if (in_compat_syscall())
1386 		ret = compat_get_bitmap(mask,
1387 					(const compat_ulong_t __user *)nmask,
1388 					maxnode);
1389 	else
1390 		ret = copy_from_user(mask, nmask,
1391 				     nlongs * sizeof(unsigned long));
1392 
1393 	if (ret)
1394 		return -EFAULT;
1395 
1396 	if (maxnode % BITS_PER_LONG)
1397 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1398 
1399 	return 0;
1400 }
1401 
1402 /* Copy a node mask from user space. */
1403 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1404 		     unsigned long maxnode)
1405 {
1406 	--maxnode;
1407 	nodes_clear(*nodes);
1408 	if (maxnode == 0 || !nmask)
1409 		return 0;
1410 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1411 		return -EINVAL;
1412 
1413 	/*
1414 	 * When the user specified more nodes than supported just check
1415 	 * if the non supported part is all zero, one word at a time,
1416 	 * starting at the end.
1417 	 */
1418 	while (maxnode > MAX_NUMNODES) {
1419 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1420 		unsigned long t;
1421 
1422 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1423 			return -EFAULT;
1424 
1425 		if (maxnode - bits >= MAX_NUMNODES) {
1426 			maxnode -= bits;
1427 		} else {
1428 			maxnode = MAX_NUMNODES;
1429 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1430 		}
1431 		if (t)
1432 			return -EINVAL;
1433 	}
1434 
1435 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1436 }
1437 
1438 /* Copy a kernel node mask to user space */
1439 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1440 			      nodemask_t *nodes)
1441 {
1442 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1443 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1444 	bool compat = in_compat_syscall();
1445 
1446 	if (compat)
1447 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1448 
1449 	if (copy > nbytes) {
1450 		if (copy > PAGE_SIZE)
1451 			return -EINVAL;
1452 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1453 			return -EFAULT;
1454 		copy = nbytes;
1455 		maxnode = nr_node_ids;
1456 	}
1457 
1458 	if (compat)
1459 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1460 					 nodes_addr(*nodes), maxnode);
1461 
1462 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1463 }
1464 
1465 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1466 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1467 {
1468 	*flags = *mode & MPOL_MODE_FLAGS;
1469 	*mode &= ~MPOL_MODE_FLAGS;
1470 
1471 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1472 		return -EINVAL;
1473 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1474 		return -EINVAL;
1475 	if (*flags & MPOL_F_NUMA_BALANCING) {
1476 		if (*mode != MPOL_BIND)
1477 			return -EINVAL;
1478 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1479 	}
1480 	return 0;
1481 }
1482 
1483 static long kernel_mbind(unsigned long start, unsigned long len,
1484 			 unsigned long mode, const unsigned long __user *nmask,
1485 			 unsigned long maxnode, unsigned int flags)
1486 {
1487 	unsigned short mode_flags;
1488 	nodemask_t nodes;
1489 	int lmode = mode;
1490 	int err;
1491 
1492 	start = untagged_addr(start);
1493 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1494 	if (err)
1495 		return err;
1496 
1497 	err = get_nodes(&nodes, nmask, maxnode);
1498 	if (err)
1499 		return err;
1500 
1501 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1502 }
1503 
1504 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1505 		unsigned long, home_node, unsigned long, flags)
1506 {
1507 	struct mm_struct *mm = current->mm;
1508 	struct vm_area_struct *vma, *prev;
1509 	struct mempolicy *new, *old;
1510 	unsigned long end;
1511 	int err = -ENOENT;
1512 	VMA_ITERATOR(vmi, mm, start);
1513 
1514 	start = untagged_addr(start);
1515 	if (start & ~PAGE_MASK)
1516 		return -EINVAL;
1517 	/*
1518 	 * flags is used for future extension if any.
1519 	 */
1520 	if (flags != 0)
1521 		return -EINVAL;
1522 
1523 	/*
1524 	 * Check home_node is online to avoid accessing uninitialized
1525 	 * NODE_DATA.
1526 	 */
1527 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1528 		return -EINVAL;
1529 
1530 	len = PAGE_ALIGN(len);
1531 	end = start + len;
1532 
1533 	if (end < start)
1534 		return -EINVAL;
1535 	if (end == start)
1536 		return 0;
1537 	mmap_write_lock(mm);
1538 	prev = vma_prev(&vmi);
1539 	for_each_vma_range(vmi, vma, end) {
1540 		/*
1541 		 * If any vma in the range got policy other than MPOL_BIND
1542 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1543 		 * the home node for vmas we already updated before.
1544 		 */
1545 		old = vma_policy(vma);
1546 		if (!old)
1547 			continue;
1548 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1549 			err = -EOPNOTSUPP;
1550 			break;
1551 		}
1552 		new = mpol_dup(old);
1553 		if (IS_ERR(new)) {
1554 			err = PTR_ERR(new);
1555 			break;
1556 		}
1557 
1558 		vma_start_write(vma);
1559 		new->home_node = home_node;
1560 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1561 		mpol_put(new);
1562 		if (err)
1563 			break;
1564 	}
1565 	mmap_write_unlock(mm);
1566 	return err;
1567 }
1568 
1569 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1570 		unsigned long, mode, const unsigned long __user *, nmask,
1571 		unsigned long, maxnode, unsigned int, flags)
1572 {
1573 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1574 }
1575 
1576 /* Set the process memory policy */
1577 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1578 				 unsigned long maxnode)
1579 {
1580 	unsigned short mode_flags;
1581 	nodemask_t nodes;
1582 	int lmode = mode;
1583 	int err;
1584 
1585 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1586 	if (err)
1587 		return err;
1588 
1589 	err = get_nodes(&nodes, nmask, maxnode);
1590 	if (err)
1591 		return err;
1592 
1593 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1594 }
1595 
1596 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1597 		unsigned long, maxnode)
1598 {
1599 	return kernel_set_mempolicy(mode, nmask, maxnode);
1600 }
1601 
1602 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1603 				const unsigned long __user *old_nodes,
1604 				const unsigned long __user *new_nodes)
1605 {
1606 	struct mm_struct *mm = NULL;
1607 	struct task_struct *task;
1608 	nodemask_t task_nodes;
1609 	int err;
1610 	nodemask_t *old;
1611 	nodemask_t *new;
1612 	NODEMASK_SCRATCH(scratch);
1613 
1614 	if (!scratch)
1615 		return -ENOMEM;
1616 
1617 	old = &scratch->mask1;
1618 	new = &scratch->mask2;
1619 
1620 	err = get_nodes(old, old_nodes, maxnode);
1621 	if (err)
1622 		goto out;
1623 
1624 	err = get_nodes(new, new_nodes, maxnode);
1625 	if (err)
1626 		goto out;
1627 
1628 	/* Find the mm_struct */
1629 	rcu_read_lock();
1630 	task = pid ? find_task_by_vpid(pid) : current;
1631 	if (!task) {
1632 		rcu_read_unlock();
1633 		err = -ESRCH;
1634 		goto out;
1635 	}
1636 	get_task_struct(task);
1637 
1638 	err = -EINVAL;
1639 
1640 	/*
1641 	 * Check if this process has the right to modify the specified process.
1642 	 * Use the regular "ptrace_may_access()" checks.
1643 	 */
1644 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1645 		rcu_read_unlock();
1646 		err = -EPERM;
1647 		goto out_put;
1648 	}
1649 	rcu_read_unlock();
1650 
1651 	task_nodes = cpuset_mems_allowed(task);
1652 	/* Is the user allowed to access the target nodes? */
1653 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1654 		err = -EPERM;
1655 		goto out_put;
1656 	}
1657 
1658 	task_nodes = cpuset_mems_allowed(current);
1659 	nodes_and(*new, *new, task_nodes);
1660 	if (nodes_empty(*new))
1661 		goto out_put;
1662 
1663 	err = security_task_movememory(task);
1664 	if (err)
1665 		goto out_put;
1666 
1667 	mm = get_task_mm(task);
1668 	put_task_struct(task);
1669 
1670 	if (!mm) {
1671 		err = -EINVAL;
1672 		goto out;
1673 	}
1674 
1675 	err = do_migrate_pages(mm, old, new,
1676 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1677 
1678 	mmput(mm);
1679 out:
1680 	NODEMASK_SCRATCH_FREE(scratch);
1681 
1682 	return err;
1683 
1684 out_put:
1685 	put_task_struct(task);
1686 	goto out;
1687 
1688 }
1689 
1690 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1691 		const unsigned long __user *, old_nodes,
1692 		const unsigned long __user *, new_nodes)
1693 {
1694 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1695 }
1696 
1697 
1698 /* Retrieve NUMA policy */
1699 static int kernel_get_mempolicy(int __user *policy,
1700 				unsigned long __user *nmask,
1701 				unsigned long maxnode,
1702 				unsigned long addr,
1703 				unsigned long flags)
1704 {
1705 	int err;
1706 	int pval;
1707 	nodemask_t nodes;
1708 
1709 	if (nmask != NULL && maxnode < nr_node_ids)
1710 		return -EINVAL;
1711 
1712 	addr = untagged_addr(addr);
1713 
1714 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1715 
1716 	if (err)
1717 		return err;
1718 
1719 	if (policy && put_user(pval, policy))
1720 		return -EFAULT;
1721 
1722 	if (nmask)
1723 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1724 
1725 	return err;
1726 }
1727 
1728 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1729 		unsigned long __user *, nmask, unsigned long, maxnode,
1730 		unsigned long, addr, unsigned long, flags)
1731 {
1732 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1733 }
1734 
1735 bool vma_migratable(struct vm_area_struct *vma)
1736 {
1737 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1738 		return false;
1739 
1740 	/*
1741 	 * DAX device mappings require predictable access latency, so avoid
1742 	 * incurring periodic faults.
1743 	 */
1744 	if (vma_is_dax(vma))
1745 		return false;
1746 
1747 	if (is_vm_hugetlb_page(vma) &&
1748 		!hugepage_migration_supported(hstate_vma(vma)))
1749 		return false;
1750 
1751 	/*
1752 	 * Migration allocates pages in the highest zone. If we cannot
1753 	 * do so then migration (at least from node to node) is not
1754 	 * possible.
1755 	 */
1756 	if (vma->vm_file &&
1757 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1758 			< policy_zone)
1759 		return false;
1760 	return true;
1761 }
1762 
1763 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1764 						unsigned long addr)
1765 {
1766 	struct mempolicy *pol = NULL;
1767 
1768 	if (vma) {
1769 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1770 			pol = vma->vm_ops->get_policy(vma, addr);
1771 		} else if (vma->vm_policy) {
1772 			pol = vma->vm_policy;
1773 
1774 			/*
1775 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1776 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1777 			 * count on these policies which will be dropped by
1778 			 * mpol_cond_put() later
1779 			 */
1780 			if (mpol_needs_cond_ref(pol))
1781 				mpol_get(pol);
1782 		}
1783 	}
1784 
1785 	return pol;
1786 }
1787 
1788 /*
1789  * get_vma_policy(@vma, @addr)
1790  * @vma: virtual memory area whose policy is sought
1791  * @addr: address in @vma for shared policy lookup
1792  *
1793  * Returns effective policy for a VMA at specified address.
1794  * Falls back to current->mempolicy or system default policy, as necessary.
1795  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1796  * count--added by the get_policy() vm_op, as appropriate--to protect against
1797  * freeing by another task.  It is the caller's responsibility to free the
1798  * extra reference for shared policies.
1799  */
1800 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1801 						unsigned long addr)
1802 {
1803 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1804 
1805 	if (!pol)
1806 		pol = get_task_policy(current);
1807 
1808 	return pol;
1809 }
1810 
1811 bool vma_policy_mof(struct vm_area_struct *vma)
1812 {
1813 	struct mempolicy *pol;
1814 
1815 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1816 		bool ret = false;
1817 
1818 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1819 		if (pol && (pol->flags & MPOL_F_MOF))
1820 			ret = true;
1821 		mpol_cond_put(pol);
1822 
1823 		return ret;
1824 	}
1825 
1826 	pol = vma->vm_policy;
1827 	if (!pol)
1828 		pol = get_task_policy(current);
1829 
1830 	return pol->flags & MPOL_F_MOF;
1831 }
1832 
1833 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1834 {
1835 	enum zone_type dynamic_policy_zone = policy_zone;
1836 
1837 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1838 
1839 	/*
1840 	 * if policy->nodes has movable memory only,
1841 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1842 	 *
1843 	 * policy->nodes is intersect with node_states[N_MEMORY].
1844 	 * so if the following test fails, it implies
1845 	 * policy->nodes has movable memory only.
1846 	 */
1847 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1848 		dynamic_policy_zone = ZONE_MOVABLE;
1849 
1850 	return zone >= dynamic_policy_zone;
1851 }
1852 
1853 /*
1854  * Return a nodemask representing a mempolicy for filtering nodes for
1855  * page allocation
1856  */
1857 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1858 {
1859 	int mode = policy->mode;
1860 
1861 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1862 	if (unlikely(mode == MPOL_BIND) &&
1863 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1864 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1865 		return &policy->nodes;
1866 
1867 	if (mode == MPOL_PREFERRED_MANY)
1868 		return &policy->nodes;
1869 
1870 	return NULL;
1871 }
1872 
1873 /*
1874  * Return the  preferred node id for 'prefer' mempolicy, and return
1875  * the given id for all other policies.
1876  *
1877  * policy_node() is always coupled with policy_nodemask(), which
1878  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1879  */
1880 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1881 {
1882 	if (policy->mode == MPOL_PREFERRED) {
1883 		nd = first_node(policy->nodes);
1884 	} else {
1885 		/*
1886 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1887 		 * because we might easily break the expectation to stay on the
1888 		 * requested node and not break the policy.
1889 		 */
1890 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1891 	}
1892 
1893 	if ((policy->mode == MPOL_BIND ||
1894 	     policy->mode == MPOL_PREFERRED_MANY) &&
1895 	    policy->home_node != NUMA_NO_NODE)
1896 		return policy->home_node;
1897 
1898 	return nd;
1899 }
1900 
1901 /* Do dynamic interleaving for a process */
1902 static unsigned interleave_nodes(struct mempolicy *policy)
1903 {
1904 	unsigned next;
1905 	struct task_struct *me = current;
1906 
1907 	next = next_node_in(me->il_prev, policy->nodes);
1908 	if (next < MAX_NUMNODES)
1909 		me->il_prev = next;
1910 	return next;
1911 }
1912 
1913 /*
1914  * Depending on the memory policy provide a node from which to allocate the
1915  * next slab entry.
1916  */
1917 unsigned int mempolicy_slab_node(void)
1918 {
1919 	struct mempolicy *policy;
1920 	int node = numa_mem_id();
1921 
1922 	if (!in_task())
1923 		return node;
1924 
1925 	policy = current->mempolicy;
1926 	if (!policy)
1927 		return node;
1928 
1929 	switch (policy->mode) {
1930 	case MPOL_PREFERRED:
1931 		return first_node(policy->nodes);
1932 
1933 	case MPOL_INTERLEAVE:
1934 		return interleave_nodes(policy);
1935 
1936 	case MPOL_BIND:
1937 	case MPOL_PREFERRED_MANY:
1938 	{
1939 		struct zoneref *z;
1940 
1941 		/*
1942 		 * Follow bind policy behavior and start allocation at the
1943 		 * first node.
1944 		 */
1945 		struct zonelist *zonelist;
1946 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1947 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1948 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1949 							&policy->nodes);
1950 		return z->zone ? zone_to_nid(z->zone) : node;
1951 	}
1952 	case MPOL_LOCAL:
1953 		return node;
1954 
1955 	default:
1956 		BUG();
1957 	}
1958 }
1959 
1960 /*
1961  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1962  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1963  * number of present nodes.
1964  */
1965 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1966 {
1967 	nodemask_t nodemask = pol->nodes;
1968 	unsigned int target, nnodes;
1969 	int i;
1970 	int nid;
1971 	/*
1972 	 * The barrier will stabilize the nodemask in a register or on
1973 	 * the stack so that it will stop changing under the code.
1974 	 *
1975 	 * Between first_node() and next_node(), pol->nodes could be changed
1976 	 * by other threads. So we put pol->nodes in a local stack.
1977 	 */
1978 	barrier();
1979 
1980 	nnodes = nodes_weight(nodemask);
1981 	if (!nnodes)
1982 		return numa_node_id();
1983 	target = (unsigned int)n % nnodes;
1984 	nid = first_node(nodemask);
1985 	for (i = 0; i < target; i++)
1986 		nid = next_node(nid, nodemask);
1987 	return nid;
1988 }
1989 
1990 /* Determine a node number for interleave */
1991 static inline unsigned interleave_nid(struct mempolicy *pol,
1992 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1993 {
1994 	if (vma) {
1995 		unsigned long off;
1996 
1997 		/*
1998 		 * for small pages, there is no difference between
1999 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2000 		 * for huge pages, since vm_pgoff is in units of small
2001 		 * pages, we need to shift off the always 0 bits to get
2002 		 * a useful offset.
2003 		 */
2004 		BUG_ON(shift < PAGE_SHIFT);
2005 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2006 		off += (addr - vma->vm_start) >> shift;
2007 		return offset_il_node(pol, off);
2008 	} else
2009 		return interleave_nodes(pol);
2010 }
2011 
2012 #ifdef CONFIG_HUGETLBFS
2013 /*
2014  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2015  * @vma: virtual memory area whose policy is sought
2016  * @addr: address in @vma for shared policy lookup and interleave policy
2017  * @gfp_flags: for requested zone
2018  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2019  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2020  *
2021  * Returns a nid suitable for a huge page allocation and a pointer
2022  * to the struct mempolicy for conditional unref after allocation.
2023  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2024  * to the mempolicy's @nodemask for filtering the zonelist.
2025  *
2026  * Must be protected by read_mems_allowed_begin()
2027  */
2028 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2029 				struct mempolicy **mpol, nodemask_t **nodemask)
2030 {
2031 	int nid;
2032 	int mode;
2033 
2034 	*mpol = get_vma_policy(vma, addr);
2035 	*nodemask = NULL;
2036 	mode = (*mpol)->mode;
2037 
2038 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2039 		nid = interleave_nid(*mpol, vma, addr,
2040 					huge_page_shift(hstate_vma(vma)));
2041 	} else {
2042 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2043 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2044 			*nodemask = &(*mpol)->nodes;
2045 	}
2046 	return nid;
2047 }
2048 
2049 /*
2050  * init_nodemask_of_mempolicy
2051  *
2052  * If the current task's mempolicy is "default" [NULL], return 'false'
2053  * to indicate default policy.  Otherwise, extract the policy nodemask
2054  * for 'bind' or 'interleave' policy into the argument nodemask, or
2055  * initialize the argument nodemask to contain the single node for
2056  * 'preferred' or 'local' policy and return 'true' to indicate presence
2057  * of non-default mempolicy.
2058  *
2059  * We don't bother with reference counting the mempolicy [mpol_get/put]
2060  * because the current task is examining it's own mempolicy and a task's
2061  * mempolicy is only ever changed by the task itself.
2062  *
2063  * N.B., it is the caller's responsibility to free a returned nodemask.
2064  */
2065 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2066 {
2067 	struct mempolicy *mempolicy;
2068 
2069 	if (!(mask && current->mempolicy))
2070 		return false;
2071 
2072 	task_lock(current);
2073 	mempolicy = current->mempolicy;
2074 	switch (mempolicy->mode) {
2075 	case MPOL_PREFERRED:
2076 	case MPOL_PREFERRED_MANY:
2077 	case MPOL_BIND:
2078 	case MPOL_INTERLEAVE:
2079 		*mask = mempolicy->nodes;
2080 		break;
2081 
2082 	case MPOL_LOCAL:
2083 		init_nodemask_of_node(mask, numa_node_id());
2084 		break;
2085 
2086 	default:
2087 		BUG();
2088 	}
2089 	task_unlock(current);
2090 
2091 	return true;
2092 }
2093 #endif
2094 
2095 /*
2096  * mempolicy_in_oom_domain
2097  *
2098  * If tsk's mempolicy is "bind", check for intersection between mask and
2099  * the policy nodemask. Otherwise, return true for all other policies
2100  * including "interleave", as a tsk with "interleave" policy may have
2101  * memory allocated from all nodes in system.
2102  *
2103  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2104  */
2105 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2106 					const nodemask_t *mask)
2107 {
2108 	struct mempolicy *mempolicy;
2109 	bool ret = true;
2110 
2111 	if (!mask)
2112 		return ret;
2113 
2114 	task_lock(tsk);
2115 	mempolicy = tsk->mempolicy;
2116 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2117 		ret = nodes_intersects(mempolicy->nodes, *mask);
2118 	task_unlock(tsk);
2119 
2120 	return ret;
2121 }
2122 
2123 /* Allocate a page in interleaved policy.
2124    Own path because it needs to do special accounting. */
2125 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2126 					unsigned nid)
2127 {
2128 	struct page *page;
2129 
2130 	page = __alloc_pages(gfp, order, nid, NULL);
2131 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2132 	if (!static_branch_likely(&vm_numa_stat_key))
2133 		return page;
2134 	if (page && page_to_nid(page) == nid) {
2135 		preempt_disable();
2136 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2137 		preempt_enable();
2138 	}
2139 	return page;
2140 }
2141 
2142 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2143 						int nid, struct mempolicy *pol)
2144 {
2145 	struct page *page;
2146 	gfp_t preferred_gfp;
2147 
2148 	/*
2149 	 * This is a two pass approach. The first pass will only try the
2150 	 * preferred nodes but skip the direct reclaim and allow the
2151 	 * allocation to fail, while the second pass will try all the
2152 	 * nodes in system.
2153 	 */
2154 	preferred_gfp = gfp | __GFP_NOWARN;
2155 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2156 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2157 	if (!page)
2158 		page = __alloc_pages(gfp, order, nid, NULL);
2159 
2160 	return page;
2161 }
2162 
2163 /**
2164  * vma_alloc_folio - Allocate a folio for a VMA.
2165  * @gfp: GFP flags.
2166  * @order: Order of the folio.
2167  * @vma: Pointer to VMA or NULL if not available.
2168  * @addr: Virtual address of the allocation.  Must be inside @vma.
2169  * @hugepage: For hugepages try only the preferred node if possible.
2170  *
2171  * Allocate a folio for a specific address in @vma, using the appropriate
2172  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2173  * of the mm_struct of the VMA to prevent it from going away.  Should be
2174  * used for all allocations for folios that will be mapped into user space.
2175  *
2176  * Return: The folio on success or NULL if allocation fails.
2177  */
2178 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2179 		unsigned long addr, bool hugepage)
2180 {
2181 	struct mempolicy *pol;
2182 	int node = numa_node_id();
2183 	struct folio *folio;
2184 	int preferred_nid;
2185 	nodemask_t *nmask;
2186 
2187 	pol = get_vma_policy(vma, addr);
2188 
2189 	if (pol->mode == MPOL_INTERLEAVE) {
2190 		struct page *page;
2191 		unsigned nid;
2192 
2193 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2194 		mpol_cond_put(pol);
2195 		gfp |= __GFP_COMP;
2196 		page = alloc_page_interleave(gfp, order, nid);
2197 		folio = (struct folio *)page;
2198 		if (folio && order > 1)
2199 			folio_prep_large_rmappable(folio);
2200 		goto out;
2201 	}
2202 
2203 	if (pol->mode == MPOL_PREFERRED_MANY) {
2204 		struct page *page;
2205 
2206 		node = policy_node(gfp, pol, node);
2207 		gfp |= __GFP_COMP;
2208 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2209 		mpol_cond_put(pol);
2210 		folio = (struct folio *)page;
2211 		if (folio && order > 1)
2212 			folio_prep_large_rmappable(folio);
2213 		goto out;
2214 	}
2215 
2216 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2217 		int hpage_node = node;
2218 
2219 		/*
2220 		 * For hugepage allocation and non-interleave policy which
2221 		 * allows the current node (or other explicitly preferred
2222 		 * node) we only try to allocate from the current/preferred
2223 		 * node and don't fall back to other nodes, as the cost of
2224 		 * remote accesses would likely offset THP benefits.
2225 		 *
2226 		 * If the policy is interleave or does not allow the current
2227 		 * node in its nodemask, we allocate the standard way.
2228 		 */
2229 		if (pol->mode == MPOL_PREFERRED)
2230 			hpage_node = first_node(pol->nodes);
2231 
2232 		nmask = policy_nodemask(gfp, pol);
2233 		if (!nmask || node_isset(hpage_node, *nmask)) {
2234 			mpol_cond_put(pol);
2235 			/*
2236 			 * First, try to allocate THP only on local node, but
2237 			 * don't reclaim unnecessarily, just compact.
2238 			 */
2239 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2240 					__GFP_NORETRY, order, hpage_node);
2241 
2242 			/*
2243 			 * If hugepage allocations are configured to always
2244 			 * synchronous compact or the vma has been madvised
2245 			 * to prefer hugepage backing, retry allowing remote
2246 			 * memory with both reclaim and compact as well.
2247 			 */
2248 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2249 				folio = __folio_alloc(gfp, order, hpage_node,
2250 						      nmask);
2251 
2252 			goto out;
2253 		}
2254 	}
2255 
2256 	nmask = policy_nodemask(gfp, pol);
2257 	preferred_nid = policy_node(gfp, pol, node);
2258 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2259 	mpol_cond_put(pol);
2260 out:
2261 	return folio;
2262 }
2263 EXPORT_SYMBOL(vma_alloc_folio);
2264 
2265 /**
2266  * alloc_pages - Allocate pages.
2267  * @gfp: GFP flags.
2268  * @order: Power of two of number of pages to allocate.
2269  *
2270  * Allocate 1 << @order contiguous pages.  The physical address of the
2271  * first page is naturally aligned (eg an order-3 allocation will be aligned
2272  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2273  * process is honoured when in process context.
2274  *
2275  * Context: Can be called from any context, providing the appropriate GFP
2276  * flags are used.
2277  * Return: The page on success or NULL if allocation fails.
2278  */
2279 struct page *alloc_pages(gfp_t gfp, unsigned order)
2280 {
2281 	struct mempolicy *pol = &default_policy;
2282 	struct page *page;
2283 
2284 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2285 		pol = get_task_policy(current);
2286 
2287 	/*
2288 	 * No reference counting needed for current->mempolicy
2289 	 * nor system default_policy
2290 	 */
2291 	if (pol->mode == MPOL_INTERLEAVE)
2292 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2293 	else if (pol->mode == MPOL_PREFERRED_MANY)
2294 		page = alloc_pages_preferred_many(gfp, order,
2295 				  policy_node(gfp, pol, numa_node_id()), pol);
2296 	else
2297 		page = __alloc_pages(gfp, order,
2298 				policy_node(gfp, pol, numa_node_id()),
2299 				policy_nodemask(gfp, pol));
2300 
2301 	return page;
2302 }
2303 EXPORT_SYMBOL(alloc_pages);
2304 
2305 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2306 {
2307 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2308 	struct folio *folio = (struct folio *)page;
2309 
2310 	if (folio && order > 1)
2311 		folio_prep_large_rmappable(folio);
2312 	return folio;
2313 }
2314 EXPORT_SYMBOL(folio_alloc);
2315 
2316 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2317 		struct mempolicy *pol, unsigned long nr_pages,
2318 		struct page **page_array)
2319 {
2320 	int nodes;
2321 	unsigned long nr_pages_per_node;
2322 	int delta;
2323 	int i;
2324 	unsigned long nr_allocated;
2325 	unsigned long total_allocated = 0;
2326 
2327 	nodes = nodes_weight(pol->nodes);
2328 	nr_pages_per_node = nr_pages / nodes;
2329 	delta = nr_pages - nodes * nr_pages_per_node;
2330 
2331 	for (i = 0; i < nodes; i++) {
2332 		if (delta) {
2333 			nr_allocated = __alloc_pages_bulk(gfp,
2334 					interleave_nodes(pol), NULL,
2335 					nr_pages_per_node + 1, NULL,
2336 					page_array);
2337 			delta--;
2338 		} else {
2339 			nr_allocated = __alloc_pages_bulk(gfp,
2340 					interleave_nodes(pol), NULL,
2341 					nr_pages_per_node, NULL, page_array);
2342 		}
2343 
2344 		page_array += nr_allocated;
2345 		total_allocated += nr_allocated;
2346 	}
2347 
2348 	return total_allocated;
2349 }
2350 
2351 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2352 		struct mempolicy *pol, unsigned long nr_pages,
2353 		struct page **page_array)
2354 {
2355 	gfp_t preferred_gfp;
2356 	unsigned long nr_allocated = 0;
2357 
2358 	preferred_gfp = gfp | __GFP_NOWARN;
2359 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2360 
2361 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2362 					   nr_pages, NULL, page_array);
2363 
2364 	if (nr_allocated < nr_pages)
2365 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2366 				nr_pages - nr_allocated, NULL,
2367 				page_array + nr_allocated);
2368 	return nr_allocated;
2369 }
2370 
2371 /* alloc pages bulk and mempolicy should be considered at the
2372  * same time in some situation such as vmalloc.
2373  *
2374  * It can accelerate memory allocation especially interleaving
2375  * allocate memory.
2376  */
2377 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2378 		unsigned long nr_pages, struct page **page_array)
2379 {
2380 	struct mempolicy *pol = &default_policy;
2381 
2382 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2383 		pol = get_task_policy(current);
2384 
2385 	if (pol->mode == MPOL_INTERLEAVE)
2386 		return alloc_pages_bulk_array_interleave(gfp, pol,
2387 							 nr_pages, page_array);
2388 
2389 	if (pol->mode == MPOL_PREFERRED_MANY)
2390 		return alloc_pages_bulk_array_preferred_many(gfp,
2391 				numa_node_id(), pol, nr_pages, page_array);
2392 
2393 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2394 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2395 				  page_array);
2396 }
2397 
2398 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2399 {
2400 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2401 
2402 	if (IS_ERR(pol))
2403 		return PTR_ERR(pol);
2404 	dst->vm_policy = pol;
2405 	return 0;
2406 }
2407 
2408 /*
2409  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2410  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2411  * with the mems_allowed returned by cpuset_mems_allowed().  This
2412  * keeps mempolicies cpuset relative after its cpuset moves.  See
2413  * further kernel/cpuset.c update_nodemask().
2414  *
2415  * current's mempolicy may be rebinded by the other task(the task that changes
2416  * cpuset's mems), so we needn't do rebind work for current task.
2417  */
2418 
2419 /* Slow path of a mempolicy duplicate */
2420 struct mempolicy *__mpol_dup(struct mempolicy *old)
2421 {
2422 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2423 
2424 	if (!new)
2425 		return ERR_PTR(-ENOMEM);
2426 
2427 	/* task's mempolicy is protected by alloc_lock */
2428 	if (old == current->mempolicy) {
2429 		task_lock(current);
2430 		*new = *old;
2431 		task_unlock(current);
2432 	} else
2433 		*new = *old;
2434 
2435 	if (current_cpuset_is_being_rebound()) {
2436 		nodemask_t mems = cpuset_mems_allowed(current);
2437 		mpol_rebind_policy(new, &mems);
2438 	}
2439 	atomic_set(&new->refcnt, 1);
2440 	return new;
2441 }
2442 
2443 /* Slow path of a mempolicy comparison */
2444 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2445 {
2446 	if (!a || !b)
2447 		return false;
2448 	if (a->mode != b->mode)
2449 		return false;
2450 	if (a->flags != b->flags)
2451 		return false;
2452 	if (a->home_node != b->home_node)
2453 		return false;
2454 	if (mpol_store_user_nodemask(a))
2455 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2456 			return false;
2457 
2458 	switch (a->mode) {
2459 	case MPOL_BIND:
2460 	case MPOL_INTERLEAVE:
2461 	case MPOL_PREFERRED:
2462 	case MPOL_PREFERRED_MANY:
2463 		return !!nodes_equal(a->nodes, b->nodes);
2464 	case MPOL_LOCAL:
2465 		return true;
2466 	default:
2467 		BUG();
2468 		return false;
2469 	}
2470 }
2471 
2472 /*
2473  * Shared memory backing store policy support.
2474  *
2475  * Remember policies even when nobody has shared memory mapped.
2476  * The policies are kept in Red-Black tree linked from the inode.
2477  * They are protected by the sp->lock rwlock, which should be held
2478  * for any accesses to the tree.
2479  */
2480 
2481 /*
2482  * lookup first element intersecting start-end.  Caller holds sp->lock for
2483  * reading or for writing
2484  */
2485 static struct sp_node *
2486 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2487 {
2488 	struct rb_node *n = sp->root.rb_node;
2489 
2490 	while (n) {
2491 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2492 
2493 		if (start >= p->end)
2494 			n = n->rb_right;
2495 		else if (end <= p->start)
2496 			n = n->rb_left;
2497 		else
2498 			break;
2499 	}
2500 	if (!n)
2501 		return NULL;
2502 	for (;;) {
2503 		struct sp_node *w = NULL;
2504 		struct rb_node *prev = rb_prev(n);
2505 		if (!prev)
2506 			break;
2507 		w = rb_entry(prev, struct sp_node, nd);
2508 		if (w->end <= start)
2509 			break;
2510 		n = prev;
2511 	}
2512 	return rb_entry(n, struct sp_node, nd);
2513 }
2514 
2515 /*
2516  * Insert a new shared policy into the list.  Caller holds sp->lock for
2517  * writing.
2518  */
2519 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2520 {
2521 	struct rb_node **p = &sp->root.rb_node;
2522 	struct rb_node *parent = NULL;
2523 	struct sp_node *nd;
2524 
2525 	while (*p) {
2526 		parent = *p;
2527 		nd = rb_entry(parent, struct sp_node, nd);
2528 		if (new->start < nd->start)
2529 			p = &(*p)->rb_left;
2530 		else if (new->end > nd->end)
2531 			p = &(*p)->rb_right;
2532 		else
2533 			BUG();
2534 	}
2535 	rb_link_node(&new->nd, parent, p);
2536 	rb_insert_color(&new->nd, &sp->root);
2537 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2538 		 new->policy ? new->policy->mode : 0);
2539 }
2540 
2541 /* Find shared policy intersecting idx */
2542 struct mempolicy *
2543 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2544 {
2545 	struct mempolicy *pol = NULL;
2546 	struct sp_node *sn;
2547 
2548 	if (!sp->root.rb_node)
2549 		return NULL;
2550 	read_lock(&sp->lock);
2551 	sn = sp_lookup(sp, idx, idx+1);
2552 	if (sn) {
2553 		mpol_get(sn->policy);
2554 		pol = sn->policy;
2555 	}
2556 	read_unlock(&sp->lock);
2557 	return pol;
2558 }
2559 
2560 static void sp_free(struct sp_node *n)
2561 {
2562 	mpol_put(n->policy);
2563 	kmem_cache_free(sn_cache, n);
2564 }
2565 
2566 /**
2567  * mpol_misplaced - check whether current page node is valid in policy
2568  *
2569  * @page: page to be checked
2570  * @vma: vm area where page mapped
2571  * @addr: virtual address where page mapped
2572  *
2573  * Lookup current policy node id for vma,addr and "compare to" page's
2574  * node id.  Policy determination "mimics" alloc_page_vma().
2575  * Called from fault path where we know the vma and faulting address.
2576  *
2577  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2578  * policy, or a suitable node ID to allocate a replacement page from.
2579  */
2580 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2581 {
2582 	struct mempolicy *pol;
2583 	struct zoneref *z;
2584 	int curnid = page_to_nid(page);
2585 	unsigned long pgoff;
2586 	int thiscpu = raw_smp_processor_id();
2587 	int thisnid = cpu_to_node(thiscpu);
2588 	int polnid = NUMA_NO_NODE;
2589 	int ret = NUMA_NO_NODE;
2590 
2591 	pol = get_vma_policy(vma, addr);
2592 	if (!(pol->flags & MPOL_F_MOF))
2593 		goto out;
2594 
2595 	switch (pol->mode) {
2596 	case MPOL_INTERLEAVE:
2597 		pgoff = vma->vm_pgoff;
2598 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2599 		polnid = offset_il_node(pol, pgoff);
2600 		break;
2601 
2602 	case MPOL_PREFERRED:
2603 		if (node_isset(curnid, pol->nodes))
2604 			goto out;
2605 		polnid = first_node(pol->nodes);
2606 		break;
2607 
2608 	case MPOL_LOCAL:
2609 		polnid = numa_node_id();
2610 		break;
2611 
2612 	case MPOL_BIND:
2613 		/* Optimize placement among multiple nodes via NUMA balancing */
2614 		if (pol->flags & MPOL_F_MORON) {
2615 			if (node_isset(thisnid, pol->nodes))
2616 				break;
2617 			goto out;
2618 		}
2619 		fallthrough;
2620 
2621 	case MPOL_PREFERRED_MANY:
2622 		/*
2623 		 * use current page if in policy nodemask,
2624 		 * else select nearest allowed node, if any.
2625 		 * If no allowed nodes, use current [!misplaced].
2626 		 */
2627 		if (node_isset(curnid, pol->nodes))
2628 			goto out;
2629 		z = first_zones_zonelist(
2630 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2631 				gfp_zone(GFP_HIGHUSER),
2632 				&pol->nodes);
2633 		polnid = zone_to_nid(z->zone);
2634 		break;
2635 
2636 	default:
2637 		BUG();
2638 	}
2639 
2640 	/* Migrate the page towards the node whose CPU is referencing it */
2641 	if (pol->flags & MPOL_F_MORON) {
2642 		polnid = thisnid;
2643 
2644 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2645 			goto out;
2646 	}
2647 
2648 	if (curnid != polnid)
2649 		ret = polnid;
2650 out:
2651 	mpol_cond_put(pol);
2652 
2653 	return ret;
2654 }
2655 
2656 /*
2657  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2658  * dropped after task->mempolicy is set to NULL so that any allocation done as
2659  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2660  * policy.
2661  */
2662 void mpol_put_task_policy(struct task_struct *task)
2663 {
2664 	struct mempolicy *pol;
2665 
2666 	task_lock(task);
2667 	pol = task->mempolicy;
2668 	task->mempolicy = NULL;
2669 	task_unlock(task);
2670 	mpol_put(pol);
2671 }
2672 
2673 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2674 {
2675 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2676 	rb_erase(&n->nd, &sp->root);
2677 	sp_free(n);
2678 }
2679 
2680 static void sp_node_init(struct sp_node *node, unsigned long start,
2681 			unsigned long end, struct mempolicy *pol)
2682 {
2683 	node->start = start;
2684 	node->end = end;
2685 	node->policy = pol;
2686 }
2687 
2688 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2689 				struct mempolicy *pol)
2690 {
2691 	struct sp_node *n;
2692 	struct mempolicy *newpol;
2693 
2694 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2695 	if (!n)
2696 		return NULL;
2697 
2698 	newpol = mpol_dup(pol);
2699 	if (IS_ERR(newpol)) {
2700 		kmem_cache_free(sn_cache, n);
2701 		return NULL;
2702 	}
2703 	newpol->flags |= MPOL_F_SHARED;
2704 	sp_node_init(n, start, end, newpol);
2705 
2706 	return n;
2707 }
2708 
2709 /* Replace a policy range. */
2710 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2711 				 unsigned long end, struct sp_node *new)
2712 {
2713 	struct sp_node *n;
2714 	struct sp_node *n_new = NULL;
2715 	struct mempolicy *mpol_new = NULL;
2716 	int ret = 0;
2717 
2718 restart:
2719 	write_lock(&sp->lock);
2720 	n = sp_lookup(sp, start, end);
2721 	/* Take care of old policies in the same range. */
2722 	while (n && n->start < end) {
2723 		struct rb_node *next = rb_next(&n->nd);
2724 		if (n->start >= start) {
2725 			if (n->end <= end)
2726 				sp_delete(sp, n);
2727 			else
2728 				n->start = end;
2729 		} else {
2730 			/* Old policy spanning whole new range. */
2731 			if (n->end > end) {
2732 				if (!n_new)
2733 					goto alloc_new;
2734 
2735 				*mpol_new = *n->policy;
2736 				atomic_set(&mpol_new->refcnt, 1);
2737 				sp_node_init(n_new, end, n->end, mpol_new);
2738 				n->end = start;
2739 				sp_insert(sp, n_new);
2740 				n_new = NULL;
2741 				mpol_new = NULL;
2742 				break;
2743 			} else
2744 				n->end = start;
2745 		}
2746 		if (!next)
2747 			break;
2748 		n = rb_entry(next, struct sp_node, nd);
2749 	}
2750 	if (new)
2751 		sp_insert(sp, new);
2752 	write_unlock(&sp->lock);
2753 	ret = 0;
2754 
2755 err_out:
2756 	if (mpol_new)
2757 		mpol_put(mpol_new);
2758 	if (n_new)
2759 		kmem_cache_free(sn_cache, n_new);
2760 
2761 	return ret;
2762 
2763 alloc_new:
2764 	write_unlock(&sp->lock);
2765 	ret = -ENOMEM;
2766 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2767 	if (!n_new)
2768 		goto err_out;
2769 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2770 	if (!mpol_new)
2771 		goto err_out;
2772 	atomic_set(&mpol_new->refcnt, 1);
2773 	goto restart;
2774 }
2775 
2776 /**
2777  * mpol_shared_policy_init - initialize shared policy for inode
2778  * @sp: pointer to inode shared policy
2779  * @mpol:  struct mempolicy to install
2780  *
2781  * Install non-NULL @mpol in inode's shared policy rb-tree.
2782  * On entry, the current task has a reference on a non-NULL @mpol.
2783  * This must be released on exit.
2784  * This is called at get_inode() calls and we can use GFP_KERNEL.
2785  */
2786 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2787 {
2788 	int ret;
2789 
2790 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2791 	rwlock_init(&sp->lock);
2792 
2793 	if (mpol) {
2794 		struct vm_area_struct pvma;
2795 		struct mempolicy *new;
2796 		NODEMASK_SCRATCH(scratch);
2797 
2798 		if (!scratch)
2799 			goto put_mpol;
2800 		/* contextualize the tmpfs mount point mempolicy */
2801 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2802 		if (IS_ERR(new))
2803 			goto free_scratch; /* no valid nodemask intersection */
2804 
2805 		task_lock(current);
2806 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2807 		task_unlock(current);
2808 		if (ret)
2809 			goto put_new;
2810 
2811 		/* Create pseudo-vma that contains just the policy */
2812 		vma_init(&pvma, NULL);
2813 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2814 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2815 
2816 put_new:
2817 		mpol_put(new);			/* drop initial ref */
2818 free_scratch:
2819 		NODEMASK_SCRATCH_FREE(scratch);
2820 put_mpol:
2821 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2822 	}
2823 }
2824 
2825 int mpol_set_shared_policy(struct shared_policy *info,
2826 			struct vm_area_struct *vma, struct mempolicy *npol)
2827 {
2828 	int err;
2829 	struct sp_node *new = NULL;
2830 	unsigned long sz = vma_pages(vma);
2831 
2832 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2833 		 vma->vm_pgoff,
2834 		 sz, npol ? npol->mode : -1,
2835 		 npol ? npol->flags : -1,
2836 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2837 
2838 	if (npol) {
2839 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2840 		if (!new)
2841 			return -ENOMEM;
2842 	}
2843 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2844 	if (err && new)
2845 		sp_free(new);
2846 	return err;
2847 }
2848 
2849 /* Free a backing policy store on inode delete. */
2850 void mpol_free_shared_policy(struct shared_policy *p)
2851 {
2852 	struct sp_node *n;
2853 	struct rb_node *next;
2854 
2855 	if (!p->root.rb_node)
2856 		return;
2857 	write_lock(&p->lock);
2858 	next = rb_first(&p->root);
2859 	while (next) {
2860 		n = rb_entry(next, struct sp_node, nd);
2861 		next = rb_next(&n->nd);
2862 		sp_delete(p, n);
2863 	}
2864 	write_unlock(&p->lock);
2865 }
2866 
2867 #ifdef CONFIG_NUMA_BALANCING
2868 static int __initdata numabalancing_override;
2869 
2870 static void __init check_numabalancing_enable(void)
2871 {
2872 	bool numabalancing_default = false;
2873 
2874 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2875 		numabalancing_default = true;
2876 
2877 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2878 	if (numabalancing_override)
2879 		set_numabalancing_state(numabalancing_override == 1);
2880 
2881 	if (num_online_nodes() > 1 && !numabalancing_override) {
2882 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2883 			numabalancing_default ? "Enabling" : "Disabling");
2884 		set_numabalancing_state(numabalancing_default);
2885 	}
2886 }
2887 
2888 static int __init setup_numabalancing(char *str)
2889 {
2890 	int ret = 0;
2891 	if (!str)
2892 		goto out;
2893 
2894 	if (!strcmp(str, "enable")) {
2895 		numabalancing_override = 1;
2896 		ret = 1;
2897 	} else if (!strcmp(str, "disable")) {
2898 		numabalancing_override = -1;
2899 		ret = 1;
2900 	}
2901 out:
2902 	if (!ret)
2903 		pr_warn("Unable to parse numa_balancing=\n");
2904 
2905 	return ret;
2906 }
2907 __setup("numa_balancing=", setup_numabalancing);
2908 #else
2909 static inline void __init check_numabalancing_enable(void)
2910 {
2911 }
2912 #endif /* CONFIG_NUMA_BALANCING */
2913 
2914 /* assumes fs == KERNEL_DS */
2915 void __init numa_policy_init(void)
2916 {
2917 	nodemask_t interleave_nodes;
2918 	unsigned long largest = 0;
2919 	int nid, prefer = 0;
2920 
2921 	policy_cache = kmem_cache_create("numa_policy",
2922 					 sizeof(struct mempolicy),
2923 					 0, SLAB_PANIC, NULL);
2924 
2925 	sn_cache = kmem_cache_create("shared_policy_node",
2926 				     sizeof(struct sp_node),
2927 				     0, SLAB_PANIC, NULL);
2928 
2929 	for_each_node(nid) {
2930 		preferred_node_policy[nid] = (struct mempolicy) {
2931 			.refcnt = ATOMIC_INIT(1),
2932 			.mode = MPOL_PREFERRED,
2933 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2934 			.nodes = nodemask_of_node(nid),
2935 		};
2936 	}
2937 
2938 	/*
2939 	 * Set interleaving policy for system init. Interleaving is only
2940 	 * enabled across suitably sized nodes (default is >= 16MB), or
2941 	 * fall back to the largest node if they're all smaller.
2942 	 */
2943 	nodes_clear(interleave_nodes);
2944 	for_each_node_state(nid, N_MEMORY) {
2945 		unsigned long total_pages = node_present_pages(nid);
2946 
2947 		/* Preserve the largest node */
2948 		if (largest < total_pages) {
2949 			largest = total_pages;
2950 			prefer = nid;
2951 		}
2952 
2953 		/* Interleave this node? */
2954 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2955 			node_set(nid, interleave_nodes);
2956 	}
2957 
2958 	/* All too small, use the largest */
2959 	if (unlikely(nodes_empty(interleave_nodes)))
2960 		node_set(prefer, interleave_nodes);
2961 
2962 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2963 		pr_err("%s: interleaving failed\n", __func__);
2964 
2965 	check_numabalancing_enable();
2966 }
2967 
2968 /* Reset policy of current process to default */
2969 void numa_default_policy(void)
2970 {
2971 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2972 }
2973 
2974 /*
2975  * Parse and format mempolicy from/to strings
2976  */
2977 
2978 static const char * const policy_modes[] =
2979 {
2980 	[MPOL_DEFAULT]    = "default",
2981 	[MPOL_PREFERRED]  = "prefer",
2982 	[MPOL_BIND]       = "bind",
2983 	[MPOL_INTERLEAVE] = "interleave",
2984 	[MPOL_LOCAL]      = "local",
2985 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2986 };
2987 
2988 
2989 #ifdef CONFIG_TMPFS
2990 /**
2991  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2992  * @str:  string containing mempolicy to parse
2993  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2994  *
2995  * Format of input:
2996  *	<mode>[=<flags>][:<nodelist>]
2997  *
2998  * Return: %0 on success, else %1
2999  */
3000 int mpol_parse_str(char *str, struct mempolicy **mpol)
3001 {
3002 	struct mempolicy *new = NULL;
3003 	unsigned short mode_flags;
3004 	nodemask_t nodes;
3005 	char *nodelist = strchr(str, ':');
3006 	char *flags = strchr(str, '=');
3007 	int err = 1, mode;
3008 
3009 	if (flags)
3010 		*flags++ = '\0';	/* terminate mode string */
3011 
3012 	if (nodelist) {
3013 		/* NUL-terminate mode or flags string */
3014 		*nodelist++ = '\0';
3015 		if (nodelist_parse(nodelist, nodes))
3016 			goto out;
3017 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3018 			goto out;
3019 	} else
3020 		nodes_clear(nodes);
3021 
3022 	mode = match_string(policy_modes, MPOL_MAX, str);
3023 	if (mode < 0)
3024 		goto out;
3025 
3026 	switch (mode) {
3027 	case MPOL_PREFERRED:
3028 		/*
3029 		 * Insist on a nodelist of one node only, although later
3030 		 * we use first_node(nodes) to grab a single node, so here
3031 		 * nodelist (or nodes) cannot be empty.
3032 		 */
3033 		if (nodelist) {
3034 			char *rest = nodelist;
3035 			while (isdigit(*rest))
3036 				rest++;
3037 			if (*rest)
3038 				goto out;
3039 			if (nodes_empty(nodes))
3040 				goto out;
3041 		}
3042 		break;
3043 	case MPOL_INTERLEAVE:
3044 		/*
3045 		 * Default to online nodes with memory if no nodelist
3046 		 */
3047 		if (!nodelist)
3048 			nodes = node_states[N_MEMORY];
3049 		break;
3050 	case MPOL_LOCAL:
3051 		/*
3052 		 * Don't allow a nodelist;  mpol_new() checks flags
3053 		 */
3054 		if (nodelist)
3055 			goto out;
3056 		break;
3057 	case MPOL_DEFAULT:
3058 		/*
3059 		 * Insist on a empty nodelist
3060 		 */
3061 		if (!nodelist)
3062 			err = 0;
3063 		goto out;
3064 	case MPOL_PREFERRED_MANY:
3065 	case MPOL_BIND:
3066 		/*
3067 		 * Insist on a nodelist
3068 		 */
3069 		if (!nodelist)
3070 			goto out;
3071 	}
3072 
3073 	mode_flags = 0;
3074 	if (flags) {
3075 		/*
3076 		 * Currently, we only support two mutually exclusive
3077 		 * mode flags.
3078 		 */
3079 		if (!strcmp(flags, "static"))
3080 			mode_flags |= MPOL_F_STATIC_NODES;
3081 		else if (!strcmp(flags, "relative"))
3082 			mode_flags |= MPOL_F_RELATIVE_NODES;
3083 		else
3084 			goto out;
3085 	}
3086 
3087 	new = mpol_new(mode, mode_flags, &nodes);
3088 	if (IS_ERR(new))
3089 		goto out;
3090 
3091 	/*
3092 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3093 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3094 	 */
3095 	if (mode != MPOL_PREFERRED) {
3096 		new->nodes = nodes;
3097 	} else if (nodelist) {
3098 		nodes_clear(new->nodes);
3099 		node_set(first_node(nodes), new->nodes);
3100 	} else {
3101 		new->mode = MPOL_LOCAL;
3102 	}
3103 
3104 	/*
3105 	 * Save nodes for contextualization: this will be used to "clone"
3106 	 * the mempolicy in a specific context [cpuset] at a later time.
3107 	 */
3108 	new->w.user_nodemask = nodes;
3109 
3110 	err = 0;
3111 
3112 out:
3113 	/* Restore string for error message */
3114 	if (nodelist)
3115 		*--nodelist = ':';
3116 	if (flags)
3117 		*--flags = '=';
3118 	if (!err)
3119 		*mpol = new;
3120 	return err;
3121 }
3122 #endif /* CONFIG_TMPFS */
3123 
3124 /**
3125  * mpol_to_str - format a mempolicy structure for printing
3126  * @buffer:  to contain formatted mempolicy string
3127  * @maxlen:  length of @buffer
3128  * @pol:  pointer to mempolicy to be formatted
3129  *
3130  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3131  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3132  * longest flag, "relative", and to display at least a few node ids.
3133  */
3134 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3135 {
3136 	char *p = buffer;
3137 	nodemask_t nodes = NODE_MASK_NONE;
3138 	unsigned short mode = MPOL_DEFAULT;
3139 	unsigned short flags = 0;
3140 
3141 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3142 		mode = pol->mode;
3143 		flags = pol->flags;
3144 	}
3145 
3146 	switch (mode) {
3147 	case MPOL_DEFAULT:
3148 	case MPOL_LOCAL:
3149 		break;
3150 	case MPOL_PREFERRED:
3151 	case MPOL_PREFERRED_MANY:
3152 	case MPOL_BIND:
3153 	case MPOL_INTERLEAVE:
3154 		nodes = pol->nodes;
3155 		break;
3156 	default:
3157 		WARN_ON_ONCE(1);
3158 		snprintf(p, maxlen, "unknown");
3159 		return;
3160 	}
3161 
3162 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3163 
3164 	if (flags & MPOL_MODE_FLAGS) {
3165 		p += snprintf(p, buffer + maxlen - p, "=");
3166 
3167 		/*
3168 		 * Currently, the only defined flags are mutually exclusive
3169 		 */
3170 		if (flags & MPOL_F_STATIC_NODES)
3171 			p += snprintf(p, buffer + maxlen - p, "static");
3172 		else if (flags & MPOL_F_RELATIVE_NODES)
3173 			p += snprintf(p, buffer + maxlen - p, "relative");
3174 	}
3175 
3176 	if (!nodes_empty(nodes))
3177 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3178 			       nodemask_pr_args(&nodes));
3179 }
3180