xref: /linux/mm/mempolicy.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66    could replace all the switch()es with a mempolicy_ops structure.
67 */
68 
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/nodemask.h>
76 #include <linux/cpuset.h>
77 #include <linux/gfp.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/module.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 
92 #include <asm/tlbflush.h>
93 #include <asm/uaccess.h>
94 
95 /* Internal flags */
96 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
97 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
98 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
99 
100 static struct kmem_cache *policy_cache;
101 static struct kmem_cache *sn_cache;
102 
103 /* Highest zone. An specific allocation for a zone below that is not
104    policied. */
105 enum zone_type policy_zone = 0;
106 
107 struct mempolicy default_policy = {
108 	.refcnt = ATOMIC_INIT(1), /* never free it */
109 	.policy = MPOL_DEFAULT,
110 };
111 
112 static void mpol_rebind_policy(struct mempolicy *pol,
113                                const nodemask_t *newmask);
114 
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
117 {
118 	int empty = nodes_empty(*nodes);
119 
120 	switch (mode) {
121 	case MPOL_DEFAULT:
122 		if (!empty)
123 			return -EINVAL;
124 		break;
125 	case MPOL_BIND:
126 	case MPOL_INTERLEAVE:
127 		/* Preferred will only use the first bit, but allow
128 		   more for now. */
129 		if (empty)
130 			return -EINVAL;
131 		break;
132 	}
133  	return nodes_subset(*nodes, node_states[N_HIGH_MEMORY]) ? 0 : -EINVAL;
134 }
135 
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
138 {
139 	struct zonelist *zl;
140 	int num, max, nd;
141 	enum zone_type k;
142 
143 	max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 	max++;			/* space for zlcache_ptr (see mmzone.h) */
145 	zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
146 	if (!zl)
147 		return ERR_PTR(-ENOMEM);
148 	zl->zlcache_ptr = NULL;
149 	num = 0;
150 	/* First put in the highest zones from all nodes, then all the next
151 	   lower zones etc. Avoid empty zones because the memory allocator
152 	   doesn't like them. If you implement node hot removal you
153 	   have to fix that. */
154 	k = MAX_NR_ZONES - 1;
155 	while (1) {
156 		for_each_node_mask(nd, *nodes) {
157 			struct zone *z = &NODE_DATA(nd)->node_zones[k];
158 			if (z->present_pages > 0)
159 				zl->zones[num++] = z;
160 		}
161 		if (k == 0)
162 			break;
163 		k--;
164 	}
165 	if (num == 0) {
166 		kfree(zl);
167 		return ERR_PTR(-EINVAL);
168 	}
169 	zl->zones[num] = NULL;
170 	return zl;
171 }
172 
173 /* Create a new policy */
174 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
175 {
176 	struct mempolicy *policy;
177 
178 	pr_debug("setting mode %d nodes[0] %lx\n",
179 		 mode, nodes ? nodes_addr(*nodes)[0] : -1);
180 
181 	if (mode == MPOL_DEFAULT)
182 		return NULL;
183 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
184 	if (!policy)
185 		return ERR_PTR(-ENOMEM);
186 	atomic_set(&policy->refcnt, 1);
187 	switch (mode) {
188 	case MPOL_INTERLEAVE:
189 		policy->v.nodes = *nodes;
190 		nodes_and(policy->v.nodes, policy->v.nodes,
191 					node_states[N_HIGH_MEMORY]);
192 		if (nodes_weight(policy->v.nodes) == 0) {
193 			kmem_cache_free(policy_cache, policy);
194 			return ERR_PTR(-EINVAL);
195 		}
196 		break;
197 	case MPOL_PREFERRED:
198 		policy->v.preferred_node = first_node(*nodes);
199 		if (policy->v.preferred_node >= MAX_NUMNODES)
200 			policy->v.preferred_node = -1;
201 		break;
202 	case MPOL_BIND:
203 		policy->v.zonelist = bind_zonelist(nodes);
204 		if (IS_ERR(policy->v.zonelist)) {
205 			void *error_code = policy->v.zonelist;
206 			kmem_cache_free(policy_cache, policy);
207 			return error_code;
208 		}
209 		break;
210 	}
211 	policy->policy = mode;
212 	policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
213 	return policy;
214 }
215 
216 static void gather_stats(struct page *, void *, int pte_dirty);
217 static void migrate_page_add(struct page *page, struct list_head *pagelist,
218 				unsigned long flags);
219 
220 /* Scan through pages checking if pages follow certain conditions. */
221 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
222 		unsigned long addr, unsigned long end,
223 		const nodemask_t *nodes, unsigned long flags,
224 		void *private)
225 {
226 	pte_t *orig_pte;
227 	pte_t *pte;
228 	spinlock_t *ptl;
229 
230 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
231 	do {
232 		struct page *page;
233 		int nid;
234 
235 		if (!pte_present(*pte))
236 			continue;
237 		page = vm_normal_page(vma, addr, *pte);
238 		if (!page)
239 			continue;
240 		/*
241 		 * The check for PageReserved here is important to avoid
242 		 * handling zero pages and other pages that may have been
243 		 * marked special by the system.
244 		 *
245 		 * If the PageReserved would not be checked here then f.e.
246 		 * the location of the zero page could have an influence
247 		 * on MPOL_MF_STRICT, zero pages would be counted for
248 		 * the per node stats, and there would be useless attempts
249 		 * to put zero pages on the migration list.
250 		 */
251 		if (PageReserved(page))
252 			continue;
253 		nid = page_to_nid(page);
254 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
255 			continue;
256 
257 		if (flags & MPOL_MF_STATS)
258 			gather_stats(page, private, pte_dirty(*pte));
259 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
260 			migrate_page_add(page, private, flags);
261 		else
262 			break;
263 	} while (pte++, addr += PAGE_SIZE, addr != end);
264 	pte_unmap_unlock(orig_pte, ptl);
265 	return addr != end;
266 }
267 
268 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
269 		unsigned long addr, unsigned long end,
270 		const nodemask_t *nodes, unsigned long flags,
271 		void *private)
272 {
273 	pmd_t *pmd;
274 	unsigned long next;
275 
276 	pmd = pmd_offset(pud, addr);
277 	do {
278 		next = pmd_addr_end(addr, end);
279 		if (pmd_none_or_clear_bad(pmd))
280 			continue;
281 		if (check_pte_range(vma, pmd, addr, next, nodes,
282 				    flags, private))
283 			return -EIO;
284 	} while (pmd++, addr = next, addr != end);
285 	return 0;
286 }
287 
288 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
289 		unsigned long addr, unsigned long end,
290 		const nodemask_t *nodes, unsigned long flags,
291 		void *private)
292 {
293 	pud_t *pud;
294 	unsigned long next;
295 
296 	pud = pud_offset(pgd, addr);
297 	do {
298 		next = pud_addr_end(addr, end);
299 		if (pud_none_or_clear_bad(pud))
300 			continue;
301 		if (check_pmd_range(vma, pud, addr, next, nodes,
302 				    flags, private))
303 			return -EIO;
304 	} while (pud++, addr = next, addr != end);
305 	return 0;
306 }
307 
308 static inline int check_pgd_range(struct vm_area_struct *vma,
309 		unsigned long addr, unsigned long end,
310 		const nodemask_t *nodes, unsigned long flags,
311 		void *private)
312 {
313 	pgd_t *pgd;
314 	unsigned long next;
315 
316 	pgd = pgd_offset(vma->vm_mm, addr);
317 	do {
318 		next = pgd_addr_end(addr, end);
319 		if (pgd_none_or_clear_bad(pgd))
320 			continue;
321 		if (check_pud_range(vma, pgd, addr, next, nodes,
322 				    flags, private))
323 			return -EIO;
324 	} while (pgd++, addr = next, addr != end);
325 	return 0;
326 }
327 
328 /*
329  * Check if all pages in a range are on a set of nodes.
330  * If pagelist != NULL then isolate pages from the LRU and
331  * put them on the pagelist.
332  */
333 static struct vm_area_struct *
334 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
335 		const nodemask_t *nodes, unsigned long flags, void *private)
336 {
337 	int err;
338 	struct vm_area_struct *first, *vma, *prev;
339 
340 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
341 
342 		err = migrate_prep();
343 		if (err)
344 			return ERR_PTR(err);
345 	}
346 
347 	first = find_vma(mm, start);
348 	if (!first)
349 		return ERR_PTR(-EFAULT);
350 	prev = NULL;
351 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
352 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
353 			if (!vma->vm_next && vma->vm_end < end)
354 				return ERR_PTR(-EFAULT);
355 			if (prev && prev->vm_end < vma->vm_start)
356 				return ERR_PTR(-EFAULT);
357 		}
358 		if (!is_vm_hugetlb_page(vma) &&
359 		    ((flags & MPOL_MF_STRICT) ||
360 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
361 				vma_migratable(vma)))) {
362 			unsigned long endvma = vma->vm_end;
363 
364 			if (endvma > end)
365 				endvma = end;
366 			if (vma->vm_start > start)
367 				start = vma->vm_start;
368 			err = check_pgd_range(vma, start, endvma, nodes,
369 						flags, private);
370 			if (err) {
371 				first = ERR_PTR(err);
372 				break;
373 			}
374 		}
375 		prev = vma;
376 	}
377 	return first;
378 }
379 
380 /* Apply policy to a single VMA */
381 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
382 {
383 	int err = 0;
384 	struct mempolicy *old = vma->vm_policy;
385 
386 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
387 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
388 		 vma->vm_ops, vma->vm_file,
389 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
390 
391 	if (vma->vm_ops && vma->vm_ops->set_policy)
392 		err = vma->vm_ops->set_policy(vma, new);
393 	if (!err) {
394 		mpol_get(new);
395 		vma->vm_policy = new;
396 		mpol_free(old);
397 	}
398 	return err;
399 }
400 
401 /* Step 2: apply policy to a range and do splits. */
402 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
403 		       unsigned long end, struct mempolicy *new)
404 {
405 	struct vm_area_struct *next;
406 	int err;
407 
408 	err = 0;
409 	for (; vma && vma->vm_start < end; vma = next) {
410 		next = vma->vm_next;
411 		if (vma->vm_start < start)
412 			err = split_vma(vma->vm_mm, vma, start, 1);
413 		if (!err && vma->vm_end > end)
414 			err = split_vma(vma->vm_mm, vma, end, 0);
415 		if (!err)
416 			err = policy_vma(vma, new);
417 		if (err)
418 			break;
419 	}
420 	return err;
421 }
422 
423 static int contextualize_policy(int mode, nodemask_t *nodes)
424 {
425 	if (!nodes)
426 		return 0;
427 
428 	cpuset_update_task_memory_state();
429 	if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
430 		return -EINVAL;
431 	return mpol_check_policy(mode, nodes);
432 }
433 
434 
435 /*
436  * Update task->flags PF_MEMPOLICY bit: set iff non-default
437  * mempolicy.  Allows more rapid checking of this (combined perhaps
438  * with other PF_* flag bits) on memory allocation hot code paths.
439  *
440  * If called from outside this file, the task 'p' should -only- be
441  * a newly forked child not yet visible on the task list, because
442  * manipulating the task flags of a visible task is not safe.
443  *
444  * The above limitation is why this routine has the funny name
445  * mpol_fix_fork_child_flag().
446  *
447  * It is also safe to call this with a task pointer of current,
448  * which the static wrapper mpol_set_task_struct_flag() does,
449  * for use within this file.
450  */
451 
452 void mpol_fix_fork_child_flag(struct task_struct *p)
453 {
454 	if (p->mempolicy)
455 		p->flags |= PF_MEMPOLICY;
456 	else
457 		p->flags &= ~PF_MEMPOLICY;
458 }
459 
460 static void mpol_set_task_struct_flag(void)
461 {
462 	mpol_fix_fork_child_flag(current);
463 }
464 
465 /* Set the process memory policy */
466 static long do_set_mempolicy(int mode, nodemask_t *nodes)
467 {
468 	struct mempolicy *new;
469 
470 	if (contextualize_policy(mode, nodes))
471 		return -EINVAL;
472 	new = mpol_new(mode, nodes);
473 	if (IS_ERR(new))
474 		return PTR_ERR(new);
475 	mpol_free(current->mempolicy);
476 	current->mempolicy = new;
477 	mpol_set_task_struct_flag();
478 	if (new && new->policy == MPOL_INTERLEAVE)
479 		current->il_next = first_node(new->v.nodes);
480 	return 0;
481 }
482 
483 /* Fill a zone bitmap for a policy */
484 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
485 {
486 	int i;
487 
488 	nodes_clear(*nodes);
489 	switch (p->policy) {
490 	case MPOL_BIND:
491 		for (i = 0; p->v.zonelist->zones[i]; i++)
492 			node_set(zone_to_nid(p->v.zonelist->zones[i]),
493 				*nodes);
494 		break;
495 	case MPOL_DEFAULT:
496 		break;
497 	case MPOL_INTERLEAVE:
498 		*nodes = p->v.nodes;
499 		break;
500 	case MPOL_PREFERRED:
501 		/* or use current node instead of memory_map? */
502 		if (p->v.preferred_node < 0)
503 			*nodes = node_states[N_HIGH_MEMORY];
504 		else
505 			node_set(p->v.preferred_node, *nodes);
506 		break;
507 	default:
508 		BUG();
509 	}
510 }
511 
512 static int lookup_node(struct mm_struct *mm, unsigned long addr)
513 {
514 	struct page *p;
515 	int err;
516 
517 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
518 	if (err >= 0) {
519 		err = page_to_nid(p);
520 		put_page(p);
521 	}
522 	return err;
523 }
524 
525 /* Retrieve NUMA policy */
526 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
527 			     unsigned long addr, unsigned long flags)
528 {
529 	int err;
530 	struct mm_struct *mm = current->mm;
531 	struct vm_area_struct *vma = NULL;
532 	struct mempolicy *pol = current->mempolicy;
533 
534 	cpuset_update_task_memory_state();
535 	if (flags &
536 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
537 		return -EINVAL;
538 
539 	if (flags & MPOL_F_MEMS_ALLOWED) {
540 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
541 			return -EINVAL;
542 		*policy = 0;	/* just so it's initialized */
543 		*nmask  = cpuset_current_mems_allowed;
544 		return 0;
545 	}
546 
547 	if (flags & MPOL_F_ADDR) {
548 		down_read(&mm->mmap_sem);
549 		vma = find_vma_intersection(mm, addr, addr+1);
550 		if (!vma) {
551 			up_read(&mm->mmap_sem);
552 			return -EFAULT;
553 		}
554 		if (vma->vm_ops && vma->vm_ops->get_policy)
555 			pol = vma->vm_ops->get_policy(vma, addr);
556 		else
557 			pol = vma->vm_policy;
558 	} else if (addr)
559 		return -EINVAL;
560 
561 	if (!pol)
562 		pol = &default_policy;
563 
564 	if (flags & MPOL_F_NODE) {
565 		if (flags & MPOL_F_ADDR) {
566 			err = lookup_node(mm, addr);
567 			if (err < 0)
568 				goto out;
569 			*policy = err;
570 		} else if (pol == current->mempolicy &&
571 				pol->policy == MPOL_INTERLEAVE) {
572 			*policy = current->il_next;
573 		} else {
574 			err = -EINVAL;
575 			goto out;
576 		}
577 	} else
578 		*policy = pol->policy;
579 
580 	if (vma) {
581 		up_read(&current->mm->mmap_sem);
582 		vma = NULL;
583 	}
584 
585 	err = 0;
586 	if (nmask)
587 		get_zonemask(pol, nmask);
588 
589  out:
590 	if (vma)
591 		up_read(&current->mm->mmap_sem);
592 	return err;
593 }
594 
595 #ifdef CONFIG_MIGRATION
596 /*
597  * page migration
598  */
599 static void migrate_page_add(struct page *page, struct list_head *pagelist,
600 				unsigned long flags)
601 {
602 	/*
603 	 * Avoid migrating a page that is shared with others.
604 	 */
605 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
606 		isolate_lru_page(page, pagelist);
607 }
608 
609 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
610 {
611 	return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
612 }
613 
614 /*
615  * Migrate pages from one node to a target node.
616  * Returns error or the number of pages not migrated.
617  */
618 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
619 			   int flags)
620 {
621 	nodemask_t nmask;
622 	LIST_HEAD(pagelist);
623 	int err = 0;
624 
625 	nodes_clear(nmask);
626 	node_set(source, nmask);
627 
628 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
629 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
630 
631 	if (!list_empty(&pagelist))
632 		err = migrate_pages(&pagelist, new_node_page, dest);
633 
634 	return err;
635 }
636 
637 /*
638  * Move pages between the two nodesets so as to preserve the physical
639  * layout as much as possible.
640  *
641  * Returns the number of page that could not be moved.
642  */
643 int do_migrate_pages(struct mm_struct *mm,
644 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
645 {
646 	LIST_HEAD(pagelist);
647 	int busy = 0;
648 	int err = 0;
649 	nodemask_t tmp;
650 
651   	down_read(&mm->mmap_sem);
652 
653 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
654 	if (err)
655 		goto out;
656 
657 /*
658  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
659  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
660  * bit in 'tmp', and return that <source, dest> pair for migration.
661  * The pair of nodemasks 'to' and 'from' define the map.
662  *
663  * If no pair of bits is found that way, fallback to picking some
664  * pair of 'source' and 'dest' bits that are not the same.  If the
665  * 'source' and 'dest' bits are the same, this represents a node
666  * that will be migrating to itself, so no pages need move.
667  *
668  * If no bits are left in 'tmp', or if all remaining bits left
669  * in 'tmp' correspond to the same bit in 'to', return false
670  * (nothing left to migrate).
671  *
672  * This lets us pick a pair of nodes to migrate between, such that
673  * if possible the dest node is not already occupied by some other
674  * source node, minimizing the risk of overloading the memory on a
675  * node that would happen if we migrated incoming memory to a node
676  * before migrating outgoing memory source that same node.
677  *
678  * A single scan of tmp is sufficient.  As we go, we remember the
679  * most recent <s, d> pair that moved (s != d).  If we find a pair
680  * that not only moved, but what's better, moved to an empty slot
681  * (d is not set in tmp), then we break out then, with that pair.
682  * Otherwise when we finish scannng from_tmp, we at least have the
683  * most recent <s, d> pair that moved.  If we get all the way through
684  * the scan of tmp without finding any node that moved, much less
685  * moved to an empty node, then there is nothing left worth migrating.
686  */
687 
688 	tmp = *from_nodes;
689 	while (!nodes_empty(tmp)) {
690 		int s,d;
691 		int source = -1;
692 		int dest = 0;
693 
694 		for_each_node_mask(s, tmp) {
695 			d = node_remap(s, *from_nodes, *to_nodes);
696 			if (s == d)
697 				continue;
698 
699 			source = s;	/* Node moved. Memorize */
700 			dest = d;
701 
702 			/* dest not in remaining from nodes? */
703 			if (!node_isset(dest, tmp))
704 				break;
705 		}
706 		if (source == -1)
707 			break;
708 
709 		node_clear(source, tmp);
710 		err = migrate_to_node(mm, source, dest, flags);
711 		if (err > 0)
712 			busy += err;
713 		if (err < 0)
714 			break;
715 	}
716 out:
717 	up_read(&mm->mmap_sem);
718 	if (err < 0)
719 		return err;
720 	return busy;
721 
722 }
723 
724 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
725 {
726 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
727 
728 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
729 					page_address_in_vma(page, vma));
730 }
731 #else
732 
733 static void migrate_page_add(struct page *page, struct list_head *pagelist,
734 				unsigned long flags)
735 {
736 }
737 
738 int do_migrate_pages(struct mm_struct *mm,
739 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
740 {
741 	return -ENOSYS;
742 }
743 
744 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
745 {
746 	return NULL;
747 }
748 #endif
749 
750 static long do_mbind(unsigned long start, unsigned long len,
751 		     unsigned long mode, nodemask_t *nmask,
752 		     unsigned long flags)
753 {
754 	struct vm_area_struct *vma;
755 	struct mm_struct *mm = current->mm;
756 	struct mempolicy *new;
757 	unsigned long end;
758 	int err;
759 	LIST_HEAD(pagelist);
760 
761 	if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
762 				      MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
763 	    || mode > MPOL_MAX)
764 		return -EINVAL;
765 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
766 		return -EPERM;
767 
768 	if (start & ~PAGE_MASK)
769 		return -EINVAL;
770 
771 	if (mode == MPOL_DEFAULT)
772 		flags &= ~MPOL_MF_STRICT;
773 
774 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
775 	end = start + len;
776 
777 	if (end < start)
778 		return -EINVAL;
779 	if (end == start)
780 		return 0;
781 
782 	if (mpol_check_policy(mode, nmask))
783 		return -EINVAL;
784 
785 	new = mpol_new(mode, nmask);
786 	if (IS_ERR(new))
787 		return PTR_ERR(new);
788 
789 	/*
790 	 * If we are using the default policy then operation
791 	 * on discontinuous address spaces is okay after all
792 	 */
793 	if (!new)
794 		flags |= MPOL_MF_DISCONTIG_OK;
795 
796 	pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
797 		 mode, nmask ? nodes_addr(*nmask)[0] : -1);
798 
799 	down_write(&mm->mmap_sem);
800 	vma = check_range(mm, start, end, nmask,
801 			  flags | MPOL_MF_INVERT, &pagelist);
802 
803 	err = PTR_ERR(vma);
804 	if (!IS_ERR(vma)) {
805 		int nr_failed = 0;
806 
807 		err = mbind_range(vma, start, end, new);
808 
809 		if (!list_empty(&pagelist))
810 			nr_failed = migrate_pages(&pagelist, new_vma_page,
811 						(unsigned long)vma);
812 
813 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
814 			err = -EIO;
815 	}
816 
817 	up_write(&mm->mmap_sem);
818 	mpol_free(new);
819 	return err;
820 }
821 
822 /*
823  * User space interface with variable sized bitmaps for nodelists.
824  */
825 
826 /* Copy a node mask from user space. */
827 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
828 		     unsigned long maxnode)
829 {
830 	unsigned long k;
831 	unsigned long nlongs;
832 	unsigned long endmask;
833 
834 	--maxnode;
835 	nodes_clear(*nodes);
836 	if (maxnode == 0 || !nmask)
837 		return 0;
838 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
839 		return -EINVAL;
840 
841 	nlongs = BITS_TO_LONGS(maxnode);
842 	if ((maxnode % BITS_PER_LONG) == 0)
843 		endmask = ~0UL;
844 	else
845 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
846 
847 	/* When the user specified more nodes than supported just check
848 	   if the non supported part is all zero. */
849 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
850 		if (nlongs > PAGE_SIZE/sizeof(long))
851 			return -EINVAL;
852 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
853 			unsigned long t;
854 			if (get_user(t, nmask + k))
855 				return -EFAULT;
856 			if (k == nlongs - 1) {
857 				if (t & endmask)
858 					return -EINVAL;
859 			} else if (t)
860 				return -EINVAL;
861 		}
862 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
863 		endmask = ~0UL;
864 	}
865 
866 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
867 		return -EFAULT;
868 	nodes_addr(*nodes)[nlongs-1] &= endmask;
869 	return 0;
870 }
871 
872 /* Copy a kernel node mask to user space */
873 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
874 			      nodemask_t *nodes)
875 {
876 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
877 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
878 
879 	if (copy > nbytes) {
880 		if (copy > PAGE_SIZE)
881 			return -EINVAL;
882 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
883 			return -EFAULT;
884 		copy = nbytes;
885 	}
886 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
887 }
888 
889 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
890 			unsigned long mode,
891 			unsigned long __user *nmask, unsigned long maxnode,
892 			unsigned flags)
893 {
894 	nodemask_t nodes;
895 	int err;
896 
897 	err = get_nodes(&nodes, nmask, maxnode);
898 	if (err)
899 		return err;
900 #ifdef CONFIG_CPUSETS
901 	/* Restrict the nodes to the allowed nodes in the cpuset */
902 	nodes_and(nodes, nodes, current->mems_allowed);
903 #endif
904 	return do_mbind(start, len, mode, &nodes, flags);
905 }
906 
907 /* Set the process memory policy */
908 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
909 		unsigned long maxnode)
910 {
911 	int err;
912 	nodemask_t nodes;
913 
914 	if (mode < 0 || mode > MPOL_MAX)
915 		return -EINVAL;
916 	err = get_nodes(&nodes, nmask, maxnode);
917 	if (err)
918 		return err;
919 	return do_set_mempolicy(mode, &nodes);
920 }
921 
922 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
923 		const unsigned long __user *old_nodes,
924 		const unsigned long __user *new_nodes)
925 {
926 	struct mm_struct *mm;
927 	struct task_struct *task;
928 	nodemask_t old;
929 	nodemask_t new;
930 	nodemask_t task_nodes;
931 	int err;
932 
933 	err = get_nodes(&old, old_nodes, maxnode);
934 	if (err)
935 		return err;
936 
937 	err = get_nodes(&new, new_nodes, maxnode);
938 	if (err)
939 		return err;
940 
941 	/* Find the mm_struct */
942 	read_lock(&tasklist_lock);
943 	task = pid ? find_task_by_pid(pid) : current;
944 	if (!task) {
945 		read_unlock(&tasklist_lock);
946 		return -ESRCH;
947 	}
948 	mm = get_task_mm(task);
949 	read_unlock(&tasklist_lock);
950 
951 	if (!mm)
952 		return -EINVAL;
953 
954 	/*
955 	 * Check if this process has the right to modify the specified
956 	 * process. The right exists if the process has administrative
957 	 * capabilities, superuser privileges or the same
958 	 * userid as the target process.
959 	 */
960 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
961 	    (current->uid != task->suid) && (current->uid != task->uid) &&
962 	    !capable(CAP_SYS_NICE)) {
963 		err = -EPERM;
964 		goto out;
965 	}
966 
967 	task_nodes = cpuset_mems_allowed(task);
968 	/* Is the user allowed to access the target nodes? */
969 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
970 		err = -EPERM;
971 		goto out;
972 	}
973 
974 	if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
975 		err = -EINVAL;
976 		goto out;
977 	}
978 
979 	err = security_task_movememory(task);
980 	if (err)
981 		goto out;
982 
983 	err = do_migrate_pages(mm, &old, &new,
984 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
985 out:
986 	mmput(mm);
987 	return err;
988 }
989 
990 
991 /* Retrieve NUMA policy */
992 asmlinkage long sys_get_mempolicy(int __user *policy,
993 				unsigned long __user *nmask,
994 				unsigned long maxnode,
995 				unsigned long addr, unsigned long flags)
996 {
997 	int err;
998 	int uninitialized_var(pval);
999 	nodemask_t nodes;
1000 
1001 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1002 		return -EINVAL;
1003 
1004 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1005 
1006 	if (err)
1007 		return err;
1008 
1009 	if (policy && put_user(pval, policy))
1010 		return -EFAULT;
1011 
1012 	if (nmask)
1013 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1014 
1015 	return err;
1016 }
1017 
1018 #ifdef CONFIG_COMPAT
1019 
1020 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1021 				     compat_ulong_t __user *nmask,
1022 				     compat_ulong_t maxnode,
1023 				     compat_ulong_t addr, compat_ulong_t flags)
1024 {
1025 	long err;
1026 	unsigned long __user *nm = NULL;
1027 	unsigned long nr_bits, alloc_size;
1028 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1029 
1030 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1031 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1032 
1033 	if (nmask)
1034 		nm = compat_alloc_user_space(alloc_size);
1035 
1036 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1037 
1038 	if (!err && nmask) {
1039 		err = copy_from_user(bm, nm, alloc_size);
1040 		/* ensure entire bitmap is zeroed */
1041 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1042 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1049 				     compat_ulong_t maxnode)
1050 {
1051 	long err = 0;
1052 	unsigned long __user *nm = NULL;
1053 	unsigned long nr_bits, alloc_size;
1054 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1055 
1056 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1057 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1058 
1059 	if (nmask) {
1060 		err = compat_get_bitmap(bm, nmask, nr_bits);
1061 		nm = compat_alloc_user_space(alloc_size);
1062 		err |= copy_to_user(nm, bm, alloc_size);
1063 	}
1064 
1065 	if (err)
1066 		return -EFAULT;
1067 
1068 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1069 }
1070 
1071 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1072 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1073 			     compat_ulong_t maxnode, compat_ulong_t flags)
1074 {
1075 	long err = 0;
1076 	unsigned long __user *nm = NULL;
1077 	unsigned long nr_bits, alloc_size;
1078 	nodemask_t bm;
1079 
1080 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1081 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1082 
1083 	if (nmask) {
1084 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1085 		nm = compat_alloc_user_space(alloc_size);
1086 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1087 	}
1088 
1089 	if (err)
1090 		return -EFAULT;
1091 
1092 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1093 }
1094 
1095 #endif
1096 
1097 /*
1098  * get_vma_policy(@task, @vma, @addr)
1099  * @task - task for fallback if vma policy == default
1100  * @vma   - virtual memory area whose policy is sought
1101  * @addr  - address in @vma for shared policy lookup
1102  *
1103  * Returns effective policy for a VMA at specified address.
1104  * Falls back to @task or system default policy, as necessary.
1105  * Returned policy has extra reference count if shared, vma,
1106  * or some other task's policy [show_numa_maps() can pass
1107  * @task != current].  It is the caller's responsibility to
1108  * free the reference in these cases.
1109  */
1110 static struct mempolicy * get_vma_policy(struct task_struct *task,
1111 		struct vm_area_struct *vma, unsigned long addr)
1112 {
1113 	struct mempolicy *pol = task->mempolicy;
1114 	int shared_pol = 0;
1115 
1116 	if (vma) {
1117 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1118 			pol = vma->vm_ops->get_policy(vma, addr);
1119 			shared_pol = 1;	/* if pol non-NULL, add ref below */
1120 		} else if (vma->vm_policy &&
1121 				vma->vm_policy->policy != MPOL_DEFAULT)
1122 			pol = vma->vm_policy;
1123 	}
1124 	if (!pol)
1125 		pol = &default_policy;
1126 	else if (!shared_pol && pol != current->mempolicy)
1127 		mpol_get(pol);	/* vma or other task's policy */
1128 	return pol;
1129 }
1130 
1131 /* Return a zonelist representing a mempolicy */
1132 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1133 {
1134 	int nd;
1135 
1136 	switch (policy->policy) {
1137 	case MPOL_PREFERRED:
1138 		nd = policy->v.preferred_node;
1139 		if (nd < 0)
1140 			nd = numa_node_id();
1141 		break;
1142 	case MPOL_BIND:
1143 		/* Lower zones don't get a policy applied */
1144 		/* Careful: current->mems_allowed might have moved */
1145 		if (gfp_zone(gfp) >= policy_zone)
1146 			if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1147 				return policy->v.zonelist;
1148 		/*FALL THROUGH*/
1149 	case MPOL_INTERLEAVE: /* should not happen */
1150 	case MPOL_DEFAULT:
1151 		nd = numa_node_id();
1152 		break;
1153 	default:
1154 		nd = 0;
1155 		BUG();
1156 	}
1157 	return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1158 }
1159 
1160 /* Do dynamic interleaving for a process */
1161 static unsigned interleave_nodes(struct mempolicy *policy)
1162 {
1163 	unsigned nid, next;
1164 	struct task_struct *me = current;
1165 
1166 	nid = me->il_next;
1167 	next = next_node(nid, policy->v.nodes);
1168 	if (next >= MAX_NUMNODES)
1169 		next = first_node(policy->v.nodes);
1170 	me->il_next = next;
1171 	return nid;
1172 }
1173 
1174 /*
1175  * Depending on the memory policy provide a node from which to allocate the
1176  * next slab entry.
1177  */
1178 unsigned slab_node(struct mempolicy *policy)
1179 {
1180 	int pol = policy ? policy->policy : MPOL_DEFAULT;
1181 
1182 	switch (pol) {
1183 	case MPOL_INTERLEAVE:
1184 		return interleave_nodes(policy);
1185 
1186 	case MPOL_BIND:
1187 		/*
1188 		 * Follow bind policy behavior and start allocation at the
1189 		 * first node.
1190 		 */
1191 		return zone_to_nid(policy->v.zonelist->zones[0]);
1192 
1193 	case MPOL_PREFERRED:
1194 		if (policy->v.preferred_node >= 0)
1195 			return policy->v.preferred_node;
1196 		/* Fall through */
1197 
1198 	default:
1199 		return numa_node_id();
1200 	}
1201 }
1202 
1203 /* Do static interleaving for a VMA with known offset. */
1204 static unsigned offset_il_node(struct mempolicy *pol,
1205 		struct vm_area_struct *vma, unsigned long off)
1206 {
1207 	unsigned nnodes = nodes_weight(pol->v.nodes);
1208 	unsigned target = (unsigned)off % nnodes;
1209 	int c;
1210 	int nid = -1;
1211 
1212 	c = 0;
1213 	do {
1214 		nid = next_node(nid, pol->v.nodes);
1215 		c++;
1216 	} while (c <= target);
1217 	return nid;
1218 }
1219 
1220 /* Determine a node number for interleave */
1221 static inline unsigned interleave_nid(struct mempolicy *pol,
1222 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1223 {
1224 	if (vma) {
1225 		unsigned long off;
1226 
1227 		/*
1228 		 * for small pages, there is no difference between
1229 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1230 		 * for huge pages, since vm_pgoff is in units of small
1231 		 * pages, we need to shift off the always 0 bits to get
1232 		 * a useful offset.
1233 		 */
1234 		BUG_ON(shift < PAGE_SHIFT);
1235 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1236 		off += (addr - vma->vm_start) >> shift;
1237 		return offset_il_node(pol, vma, off);
1238 	} else
1239 		return interleave_nodes(pol);
1240 }
1241 
1242 #ifdef CONFIG_HUGETLBFS
1243 /*
1244  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1245  * @vma = virtual memory area whose policy is sought
1246  * @addr = address in @vma for shared policy lookup and interleave policy
1247  * @gfp_flags = for requested zone
1248  * @mpol = pointer to mempolicy pointer for reference counted 'BIND policy
1249  *
1250  * Returns a zonelist suitable for a huge page allocation.
1251  * If the effective policy is 'BIND, returns pointer to policy's zonelist.
1252  * If it is also a policy for which get_vma_policy() returns an extra
1253  * reference, we must hold that reference until after allocation.
1254  * In that case, return policy via @mpol so hugetlb allocation can drop
1255  * the reference.  For non-'BIND referenced policies, we can/do drop the
1256  * reference here, so the caller doesn't need to know about the special case
1257  * for default and current task policy.
1258  */
1259 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1260 				gfp_t gfp_flags, struct mempolicy **mpol)
1261 {
1262 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1263 	struct zonelist *zl;
1264 
1265 	*mpol = NULL;		/* probably no unref needed */
1266 	if (pol->policy == MPOL_INTERLEAVE) {
1267 		unsigned nid;
1268 
1269 		nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1270 		__mpol_free(pol);		/* finished with pol */
1271 		return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags);
1272 	}
1273 
1274 	zl = zonelist_policy(GFP_HIGHUSER, pol);
1275 	if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1276 		if (pol->policy != MPOL_BIND)
1277 			__mpol_free(pol);	/* finished with pol */
1278 		else
1279 			*mpol = pol;	/* unref needed after allocation */
1280 	}
1281 	return zl;
1282 }
1283 #endif
1284 
1285 /* Allocate a page in interleaved policy.
1286    Own path because it needs to do special accounting. */
1287 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1288 					unsigned nid)
1289 {
1290 	struct zonelist *zl;
1291 	struct page *page;
1292 
1293 	zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1294 	page = __alloc_pages(gfp, order, zl);
1295 	if (page && page_zone(page) == zl->zones[0])
1296 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1297 	return page;
1298 }
1299 
1300 /**
1301  * 	alloc_page_vma	- Allocate a page for a VMA.
1302  *
1303  * 	@gfp:
1304  *      %GFP_USER    user allocation.
1305  *      %GFP_KERNEL  kernel allocations,
1306  *      %GFP_HIGHMEM highmem/user allocations,
1307  *      %GFP_FS      allocation should not call back into a file system.
1308  *      %GFP_ATOMIC  don't sleep.
1309  *
1310  * 	@vma:  Pointer to VMA or NULL if not available.
1311  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1312  *
1313  * 	This function allocates a page from the kernel page pool and applies
1314  *	a NUMA policy associated with the VMA or the current process.
1315  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1316  *	mm_struct of the VMA to prevent it from going away. Should be used for
1317  *	all allocations for pages that will be mapped into
1318  * 	user space. Returns NULL when no page can be allocated.
1319  *
1320  *	Should be called with the mm_sem of the vma hold.
1321  */
1322 struct page *
1323 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1324 {
1325 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
1326 	struct zonelist *zl;
1327 
1328 	cpuset_update_task_memory_state();
1329 
1330 	if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1331 		unsigned nid;
1332 
1333 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1334 		return alloc_page_interleave(gfp, 0, nid);
1335 	}
1336 	zl = zonelist_policy(gfp, pol);
1337 	if (pol != &default_policy && pol != current->mempolicy) {
1338 		/*
1339 		 * slow path: ref counted policy -- shared or vma
1340 		 */
1341 		struct page *page =  __alloc_pages(gfp, 0, zl);
1342 		__mpol_free(pol);
1343 		return page;
1344 	}
1345 	/*
1346 	 * fast path:  default or task policy
1347 	 */
1348 	return __alloc_pages(gfp, 0, zl);
1349 }
1350 
1351 /**
1352  * 	alloc_pages_current - Allocate pages.
1353  *
1354  *	@gfp:
1355  *		%GFP_USER   user allocation,
1356  *      	%GFP_KERNEL kernel allocation,
1357  *      	%GFP_HIGHMEM highmem allocation,
1358  *      	%GFP_FS     don't call back into a file system.
1359  *      	%GFP_ATOMIC don't sleep.
1360  *	@order: Power of two of allocation size in pages. 0 is a single page.
1361  *
1362  *	Allocate a page from the kernel page pool.  When not in
1363  *	interrupt context and apply the current process NUMA policy.
1364  *	Returns NULL when no page can be allocated.
1365  *
1366  *	Don't call cpuset_update_task_memory_state() unless
1367  *	1) it's ok to take cpuset_sem (can WAIT), and
1368  *	2) allocating for current task (not interrupt).
1369  */
1370 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1371 {
1372 	struct mempolicy *pol = current->mempolicy;
1373 
1374 	if ((gfp & __GFP_WAIT) && !in_interrupt())
1375 		cpuset_update_task_memory_state();
1376 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1377 		pol = &default_policy;
1378 	if (pol->policy == MPOL_INTERLEAVE)
1379 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1380 	return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1381 }
1382 EXPORT_SYMBOL(alloc_pages_current);
1383 
1384 /*
1385  * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1386  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1387  * with the mems_allowed returned by cpuset_mems_allowed().  This
1388  * keeps mempolicies cpuset relative after its cpuset moves.  See
1389  * further kernel/cpuset.c update_nodemask().
1390  */
1391 void *cpuset_being_rebound;
1392 
1393 /* Slow path of a mempolicy copy */
1394 struct mempolicy *__mpol_copy(struct mempolicy *old)
1395 {
1396 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1397 
1398 	if (!new)
1399 		return ERR_PTR(-ENOMEM);
1400 	if (current_cpuset_is_being_rebound()) {
1401 		nodemask_t mems = cpuset_mems_allowed(current);
1402 		mpol_rebind_policy(old, &mems);
1403 	}
1404 	*new = *old;
1405 	atomic_set(&new->refcnt, 1);
1406 	if (new->policy == MPOL_BIND) {
1407 		int sz = ksize(old->v.zonelist);
1408 		new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
1409 		if (!new->v.zonelist) {
1410 			kmem_cache_free(policy_cache, new);
1411 			return ERR_PTR(-ENOMEM);
1412 		}
1413 	}
1414 	return new;
1415 }
1416 
1417 /* Slow path of a mempolicy comparison */
1418 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1419 {
1420 	if (!a || !b)
1421 		return 0;
1422 	if (a->policy != b->policy)
1423 		return 0;
1424 	switch (a->policy) {
1425 	case MPOL_DEFAULT:
1426 		return 1;
1427 	case MPOL_INTERLEAVE:
1428 		return nodes_equal(a->v.nodes, b->v.nodes);
1429 	case MPOL_PREFERRED:
1430 		return a->v.preferred_node == b->v.preferred_node;
1431 	case MPOL_BIND: {
1432 		int i;
1433 		for (i = 0; a->v.zonelist->zones[i]; i++)
1434 			if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1435 				return 0;
1436 		return b->v.zonelist->zones[i] == NULL;
1437 	}
1438 	default:
1439 		BUG();
1440 		return 0;
1441 	}
1442 }
1443 
1444 /* Slow path of a mpol destructor. */
1445 void __mpol_free(struct mempolicy *p)
1446 {
1447 	if (!atomic_dec_and_test(&p->refcnt))
1448 		return;
1449 	if (p->policy == MPOL_BIND)
1450 		kfree(p->v.zonelist);
1451 	p->policy = MPOL_DEFAULT;
1452 	kmem_cache_free(policy_cache, p);
1453 }
1454 
1455 /*
1456  * Shared memory backing store policy support.
1457  *
1458  * Remember policies even when nobody has shared memory mapped.
1459  * The policies are kept in Red-Black tree linked from the inode.
1460  * They are protected by the sp->lock spinlock, which should be held
1461  * for any accesses to the tree.
1462  */
1463 
1464 /* lookup first element intersecting start-end */
1465 /* Caller holds sp->lock */
1466 static struct sp_node *
1467 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1468 {
1469 	struct rb_node *n = sp->root.rb_node;
1470 
1471 	while (n) {
1472 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
1473 
1474 		if (start >= p->end)
1475 			n = n->rb_right;
1476 		else if (end <= p->start)
1477 			n = n->rb_left;
1478 		else
1479 			break;
1480 	}
1481 	if (!n)
1482 		return NULL;
1483 	for (;;) {
1484 		struct sp_node *w = NULL;
1485 		struct rb_node *prev = rb_prev(n);
1486 		if (!prev)
1487 			break;
1488 		w = rb_entry(prev, struct sp_node, nd);
1489 		if (w->end <= start)
1490 			break;
1491 		n = prev;
1492 	}
1493 	return rb_entry(n, struct sp_node, nd);
1494 }
1495 
1496 /* Insert a new shared policy into the list. */
1497 /* Caller holds sp->lock */
1498 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1499 {
1500 	struct rb_node **p = &sp->root.rb_node;
1501 	struct rb_node *parent = NULL;
1502 	struct sp_node *nd;
1503 
1504 	while (*p) {
1505 		parent = *p;
1506 		nd = rb_entry(parent, struct sp_node, nd);
1507 		if (new->start < nd->start)
1508 			p = &(*p)->rb_left;
1509 		else if (new->end > nd->end)
1510 			p = &(*p)->rb_right;
1511 		else
1512 			BUG();
1513 	}
1514 	rb_link_node(&new->nd, parent, p);
1515 	rb_insert_color(&new->nd, &sp->root);
1516 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1517 		 new->policy ? new->policy->policy : 0);
1518 }
1519 
1520 /* Find shared policy intersecting idx */
1521 struct mempolicy *
1522 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1523 {
1524 	struct mempolicy *pol = NULL;
1525 	struct sp_node *sn;
1526 
1527 	if (!sp->root.rb_node)
1528 		return NULL;
1529 	spin_lock(&sp->lock);
1530 	sn = sp_lookup(sp, idx, idx+1);
1531 	if (sn) {
1532 		mpol_get(sn->policy);
1533 		pol = sn->policy;
1534 	}
1535 	spin_unlock(&sp->lock);
1536 	return pol;
1537 }
1538 
1539 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1540 {
1541 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1542 	rb_erase(&n->nd, &sp->root);
1543 	mpol_free(n->policy);
1544 	kmem_cache_free(sn_cache, n);
1545 }
1546 
1547 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1548 				struct mempolicy *pol)
1549 {
1550 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1551 
1552 	if (!n)
1553 		return NULL;
1554 	n->start = start;
1555 	n->end = end;
1556 	mpol_get(pol);
1557 	n->policy = pol;
1558 	return n;
1559 }
1560 
1561 /* Replace a policy range. */
1562 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1563 				 unsigned long end, struct sp_node *new)
1564 {
1565 	struct sp_node *n, *new2 = NULL;
1566 
1567 restart:
1568 	spin_lock(&sp->lock);
1569 	n = sp_lookup(sp, start, end);
1570 	/* Take care of old policies in the same range. */
1571 	while (n && n->start < end) {
1572 		struct rb_node *next = rb_next(&n->nd);
1573 		if (n->start >= start) {
1574 			if (n->end <= end)
1575 				sp_delete(sp, n);
1576 			else
1577 				n->start = end;
1578 		} else {
1579 			/* Old policy spanning whole new range. */
1580 			if (n->end > end) {
1581 				if (!new2) {
1582 					spin_unlock(&sp->lock);
1583 					new2 = sp_alloc(end, n->end, n->policy);
1584 					if (!new2)
1585 						return -ENOMEM;
1586 					goto restart;
1587 				}
1588 				n->end = start;
1589 				sp_insert(sp, new2);
1590 				new2 = NULL;
1591 				break;
1592 			} else
1593 				n->end = start;
1594 		}
1595 		if (!next)
1596 			break;
1597 		n = rb_entry(next, struct sp_node, nd);
1598 	}
1599 	if (new)
1600 		sp_insert(sp, new);
1601 	spin_unlock(&sp->lock);
1602 	if (new2) {
1603 		mpol_free(new2->policy);
1604 		kmem_cache_free(sn_cache, new2);
1605 	}
1606 	return 0;
1607 }
1608 
1609 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1610 				nodemask_t *policy_nodes)
1611 {
1612 	info->root = RB_ROOT;
1613 	spin_lock_init(&info->lock);
1614 
1615 	if (policy != MPOL_DEFAULT) {
1616 		struct mempolicy *newpol;
1617 
1618 		/* Falls back to MPOL_DEFAULT on any error */
1619 		newpol = mpol_new(policy, policy_nodes);
1620 		if (!IS_ERR(newpol)) {
1621 			/* Create pseudo-vma that contains just the policy */
1622 			struct vm_area_struct pvma;
1623 
1624 			memset(&pvma, 0, sizeof(struct vm_area_struct));
1625 			/* Policy covers entire file */
1626 			pvma.vm_end = TASK_SIZE;
1627 			mpol_set_shared_policy(info, &pvma, newpol);
1628 			mpol_free(newpol);
1629 		}
1630 	}
1631 }
1632 
1633 int mpol_set_shared_policy(struct shared_policy *info,
1634 			struct vm_area_struct *vma, struct mempolicy *npol)
1635 {
1636 	int err;
1637 	struct sp_node *new = NULL;
1638 	unsigned long sz = vma_pages(vma);
1639 
1640 	pr_debug("set_shared_policy %lx sz %lu %d %lx\n",
1641 		 vma->vm_pgoff,
1642 		 sz, npol? npol->policy : -1,
1643 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1644 
1645 	if (npol) {
1646 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1647 		if (!new)
1648 			return -ENOMEM;
1649 	}
1650 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1651 	if (err && new)
1652 		kmem_cache_free(sn_cache, new);
1653 	return err;
1654 }
1655 
1656 /* Free a backing policy store on inode delete. */
1657 void mpol_free_shared_policy(struct shared_policy *p)
1658 {
1659 	struct sp_node *n;
1660 	struct rb_node *next;
1661 
1662 	if (!p->root.rb_node)
1663 		return;
1664 	spin_lock(&p->lock);
1665 	next = rb_first(&p->root);
1666 	while (next) {
1667 		n = rb_entry(next, struct sp_node, nd);
1668 		next = rb_next(&n->nd);
1669 		rb_erase(&n->nd, &p->root);
1670 		mpol_free(n->policy);
1671 		kmem_cache_free(sn_cache, n);
1672 	}
1673 	spin_unlock(&p->lock);
1674 }
1675 
1676 /* assumes fs == KERNEL_DS */
1677 void __init numa_policy_init(void)
1678 {
1679 	nodemask_t interleave_nodes;
1680 	unsigned long largest = 0;
1681 	int nid, prefer = 0;
1682 
1683 	policy_cache = kmem_cache_create("numa_policy",
1684 					 sizeof(struct mempolicy),
1685 					 0, SLAB_PANIC, NULL);
1686 
1687 	sn_cache = kmem_cache_create("shared_policy_node",
1688 				     sizeof(struct sp_node),
1689 				     0, SLAB_PANIC, NULL);
1690 
1691 	/*
1692 	 * Set interleaving policy for system init. Interleaving is only
1693 	 * enabled across suitably sized nodes (default is >= 16MB), or
1694 	 * fall back to the largest node if they're all smaller.
1695 	 */
1696 	nodes_clear(interleave_nodes);
1697 	for_each_node_state(nid, N_HIGH_MEMORY) {
1698 		unsigned long total_pages = node_present_pages(nid);
1699 
1700 		/* Preserve the largest node */
1701 		if (largest < total_pages) {
1702 			largest = total_pages;
1703 			prefer = nid;
1704 		}
1705 
1706 		/* Interleave this node? */
1707 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1708 			node_set(nid, interleave_nodes);
1709 	}
1710 
1711 	/* All too small, use the largest */
1712 	if (unlikely(nodes_empty(interleave_nodes)))
1713 		node_set(prefer, interleave_nodes);
1714 
1715 	if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes))
1716 		printk("numa_policy_init: interleaving failed\n");
1717 }
1718 
1719 /* Reset policy of current process to default */
1720 void numa_default_policy(void)
1721 {
1722 	do_set_mempolicy(MPOL_DEFAULT, NULL);
1723 }
1724 
1725 /* Migrate a policy to a different set of nodes */
1726 static void mpol_rebind_policy(struct mempolicy *pol,
1727 			       const nodemask_t *newmask)
1728 {
1729 	nodemask_t *mpolmask;
1730 	nodemask_t tmp;
1731 
1732 	if (!pol)
1733 		return;
1734 	mpolmask = &pol->cpuset_mems_allowed;
1735 	if (nodes_equal(*mpolmask, *newmask))
1736 		return;
1737 
1738 	switch (pol->policy) {
1739 	case MPOL_DEFAULT:
1740 		break;
1741 	case MPOL_INTERLEAVE:
1742 		nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1743 		pol->v.nodes = tmp;
1744 		*mpolmask = *newmask;
1745 		current->il_next = node_remap(current->il_next,
1746 						*mpolmask, *newmask);
1747 		break;
1748 	case MPOL_PREFERRED:
1749 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
1750 						*mpolmask, *newmask);
1751 		*mpolmask = *newmask;
1752 		break;
1753 	case MPOL_BIND: {
1754 		nodemask_t nodes;
1755 		struct zone **z;
1756 		struct zonelist *zonelist;
1757 
1758 		nodes_clear(nodes);
1759 		for (z = pol->v.zonelist->zones; *z; z++)
1760 			node_set(zone_to_nid(*z), nodes);
1761 		nodes_remap(tmp, nodes, *mpolmask, *newmask);
1762 		nodes = tmp;
1763 
1764 		zonelist = bind_zonelist(&nodes);
1765 
1766 		/* If no mem, then zonelist is NULL and we keep old zonelist.
1767 		 * If that old zonelist has no remaining mems_allowed nodes,
1768 		 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1769 		 */
1770 
1771 		if (!IS_ERR(zonelist)) {
1772 			/* Good - got mem - substitute new zonelist */
1773 			kfree(pol->v.zonelist);
1774 			pol->v.zonelist = zonelist;
1775 		}
1776 		*mpolmask = *newmask;
1777 		break;
1778 	}
1779 	default:
1780 		BUG();
1781 		break;
1782 	}
1783 }
1784 
1785 /*
1786  * Wrapper for mpol_rebind_policy() that just requires task
1787  * pointer, and updates task mempolicy.
1788  */
1789 
1790 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1791 {
1792 	mpol_rebind_policy(tsk->mempolicy, new);
1793 }
1794 
1795 /*
1796  * Rebind each vma in mm to new nodemask.
1797  *
1798  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
1799  */
1800 
1801 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1802 {
1803 	struct vm_area_struct *vma;
1804 
1805 	down_write(&mm->mmap_sem);
1806 	for (vma = mm->mmap; vma; vma = vma->vm_next)
1807 		mpol_rebind_policy(vma->vm_policy, new);
1808 	up_write(&mm->mmap_sem);
1809 }
1810 
1811 /*
1812  * Display pages allocated per node and memory policy via /proc.
1813  */
1814 
1815 static const char * const policy_types[] =
1816 	{ "default", "prefer", "bind", "interleave" };
1817 
1818 /*
1819  * Convert a mempolicy into a string.
1820  * Returns the number of characters in buffer (if positive)
1821  * or an error (negative)
1822  */
1823 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1824 {
1825 	char *p = buffer;
1826 	int l;
1827 	nodemask_t nodes;
1828 	int mode = pol ? pol->policy : MPOL_DEFAULT;
1829 
1830 	switch (mode) {
1831 	case MPOL_DEFAULT:
1832 		nodes_clear(nodes);
1833 		break;
1834 
1835 	case MPOL_PREFERRED:
1836 		nodes_clear(nodes);
1837 		node_set(pol->v.preferred_node, nodes);
1838 		break;
1839 
1840 	case MPOL_BIND:
1841 		get_zonemask(pol, &nodes);
1842 		break;
1843 
1844 	case MPOL_INTERLEAVE:
1845 		nodes = pol->v.nodes;
1846 		break;
1847 
1848 	default:
1849 		BUG();
1850 		return -EFAULT;
1851 	}
1852 
1853 	l = strlen(policy_types[mode]);
1854  	if (buffer + maxlen < p + l + 1)
1855  		return -ENOSPC;
1856 
1857 	strcpy(p, policy_types[mode]);
1858 	p += l;
1859 
1860 	if (!nodes_empty(nodes)) {
1861 		if (buffer + maxlen < p + 2)
1862 			return -ENOSPC;
1863 		*p++ = '=';
1864 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1865 	}
1866 	return p - buffer;
1867 }
1868 
1869 struct numa_maps {
1870 	unsigned long pages;
1871 	unsigned long anon;
1872 	unsigned long active;
1873 	unsigned long writeback;
1874 	unsigned long mapcount_max;
1875 	unsigned long dirty;
1876 	unsigned long swapcache;
1877 	unsigned long node[MAX_NUMNODES];
1878 };
1879 
1880 static void gather_stats(struct page *page, void *private, int pte_dirty)
1881 {
1882 	struct numa_maps *md = private;
1883 	int count = page_mapcount(page);
1884 
1885 	md->pages++;
1886 	if (pte_dirty || PageDirty(page))
1887 		md->dirty++;
1888 
1889 	if (PageSwapCache(page))
1890 		md->swapcache++;
1891 
1892 	if (PageActive(page))
1893 		md->active++;
1894 
1895 	if (PageWriteback(page))
1896 		md->writeback++;
1897 
1898 	if (PageAnon(page))
1899 		md->anon++;
1900 
1901 	if (count > md->mapcount_max)
1902 		md->mapcount_max = count;
1903 
1904 	md->node[page_to_nid(page)]++;
1905 }
1906 
1907 #ifdef CONFIG_HUGETLB_PAGE
1908 static void check_huge_range(struct vm_area_struct *vma,
1909 		unsigned long start, unsigned long end,
1910 		struct numa_maps *md)
1911 {
1912 	unsigned long addr;
1913 	struct page *page;
1914 
1915 	for (addr = start; addr < end; addr += HPAGE_SIZE) {
1916 		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1917 		pte_t pte;
1918 
1919 		if (!ptep)
1920 			continue;
1921 
1922 		pte = *ptep;
1923 		if (pte_none(pte))
1924 			continue;
1925 
1926 		page = pte_page(pte);
1927 		if (!page)
1928 			continue;
1929 
1930 		gather_stats(page, md, pte_dirty(*ptep));
1931 	}
1932 }
1933 #else
1934 static inline void check_huge_range(struct vm_area_struct *vma,
1935 		unsigned long start, unsigned long end,
1936 		struct numa_maps *md)
1937 {
1938 }
1939 #endif
1940 
1941 int show_numa_map(struct seq_file *m, void *v)
1942 {
1943 	struct proc_maps_private *priv = m->private;
1944 	struct vm_area_struct *vma = v;
1945 	struct numa_maps *md;
1946 	struct file *file = vma->vm_file;
1947 	struct mm_struct *mm = vma->vm_mm;
1948 	struct mempolicy *pol;
1949 	int n;
1950 	char buffer[50];
1951 
1952 	if (!mm)
1953 		return 0;
1954 
1955 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1956 	if (!md)
1957 		return 0;
1958 
1959 	pol = get_vma_policy(priv->task, vma, vma->vm_start);
1960 	mpol_to_str(buffer, sizeof(buffer), pol);
1961 	/*
1962 	 * unref shared or other task's mempolicy
1963 	 */
1964 	if (pol != &default_policy && pol != current->mempolicy)
1965 		__mpol_free(pol);
1966 
1967 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1968 
1969 	if (file) {
1970 		seq_printf(m, " file=");
1971 		seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= ");
1972 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1973 		seq_printf(m, " heap");
1974 	} else if (vma->vm_start <= mm->start_stack &&
1975 			vma->vm_end >= mm->start_stack) {
1976 		seq_printf(m, " stack");
1977 	}
1978 
1979 	if (is_vm_hugetlb_page(vma)) {
1980 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1981 		seq_printf(m, " huge");
1982 	} else {
1983 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
1984 			&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
1985 	}
1986 
1987 	if (!md->pages)
1988 		goto out;
1989 
1990 	if (md->anon)
1991 		seq_printf(m," anon=%lu",md->anon);
1992 
1993 	if (md->dirty)
1994 		seq_printf(m," dirty=%lu",md->dirty);
1995 
1996 	if (md->pages != md->anon && md->pages != md->dirty)
1997 		seq_printf(m, " mapped=%lu", md->pages);
1998 
1999 	if (md->mapcount_max > 1)
2000 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2001 
2002 	if (md->swapcache)
2003 		seq_printf(m," swapcache=%lu", md->swapcache);
2004 
2005 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2006 		seq_printf(m," active=%lu", md->active);
2007 
2008 	if (md->writeback)
2009 		seq_printf(m," writeback=%lu", md->writeback);
2010 
2011 	for_each_node_state(n, N_HIGH_MEMORY)
2012 		if (md->node[n])
2013 			seq_printf(m, " N%d=%lu", n, md->node[n]);
2014 out:
2015 	seq_putc(m, '\n');
2016 	kfree(md);
2017 
2018 	if (m->count < m->size)
2019 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2020 	return 0;
2021 }
2022 
2023