1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 /** 131 * numa_map_to_online_node - Find closest online node 132 * @nid: Node id to start the search 133 * 134 * Lookup the next closest node by distance if @nid is not online. 135 */ 136 int numa_map_to_online_node(int node) 137 { 138 int min_dist = INT_MAX, dist, n, min_node; 139 140 if (node == NUMA_NO_NODE || node_online(node)) 141 return node; 142 143 min_node = node; 144 for_each_online_node(n) { 145 dist = node_distance(node, n); 146 if (dist < min_dist) { 147 min_dist = dist; 148 min_node = n; 149 } 150 } 151 152 return min_node; 153 } 154 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 155 156 struct mempolicy *get_task_policy(struct task_struct *p) 157 { 158 struct mempolicy *pol = p->mempolicy; 159 int node; 160 161 if (pol) 162 return pol; 163 164 node = numa_node_id(); 165 if (node != NUMA_NO_NODE) { 166 pol = &preferred_node_policy[node]; 167 /* preferred_node_policy is not initialised early in boot */ 168 if (pol->mode) 169 return pol; 170 } 171 172 return &default_policy; 173 } 174 175 static const struct mempolicy_operations { 176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 178 } mpol_ops[MPOL_MAX]; 179 180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 181 { 182 return pol->flags & MPOL_MODE_FLAGS; 183 } 184 185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 186 const nodemask_t *rel) 187 { 188 nodemask_t tmp; 189 nodes_fold(tmp, *orig, nodes_weight(*rel)); 190 nodes_onto(*ret, tmp, *rel); 191 } 192 193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 194 { 195 if (nodes_empty(*nodes)) 196 return -EINVAL; 197 pol->v.nodes = *nodes; 198 return 0; 199 } 200 201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 202 { 203 if (!nodes) 204 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 205 else if (nodes_empty(*nodes)) 206 return -EINVAL; /* no allowed nodes */ 207 else 208 pol->v.preferred_node = first_node(*nodes); 209 return 0; 210 } 211 212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 213 { 214 if (nodes_empty(*nodes)) 215 return -EINVAL; 216 pol->v.nodes = *nodes; 217 return 0; 218 } 219 220 /* 221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 222 * any, for the new policy. mpol_new() has already validated the nodes 223 * parameter with respect to the policy mode and flags. But, we need to 224 * handle an empty nodemask with MPOL_PREFERRED here. 225 * 226 * Must be called holding task's alloc_lock to protect task's mems_allowed 227 * and mempolicy. May also be called holding the mmap_semaphore for write. 228 */ 229 static int mpol_set_nodemask(struct mempolicy *pol, 230 const nodemask_t *nodes, struct nodemask_scratch *nsc) 231 { 232 int ret; 233 234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 235 if (pol == NULL) 236 return 0; 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 243 nodes = NULL; /* explicit local allocation */ 244 else { 245 if (pol->flags & MPOL_F_RELATIVE_NODES) 246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 247 else 248 nodes_and(nsc->mask2, *nodes, nsc->mask1); 249 250 if (mpol_store_user_nodemask(pol)) 251 pol->w.user_nodemask = *nodes; 252 else 253 pol->w.cpuset_mems_allowed = 254 cpuset_current_mems_allowed; 255 } 256 257 if (nodes) 258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 259 else 260 ret = mpol_ops[pol->mode].create(pol, NULL); 261 return ret; 262 } 263 264 /* 265 * This function just creates a new policy, does some check and simple 266 * initialization. You must invoke mpol_set_nodemask() to set nodes. 267 */ 268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 269 nodemask_t *nodes) 270 { 271 struct mempolicy *policy; 272 273 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 275 276 if (mode == MPOL_DEFAULT) { 277 if (nodes && !nodes_empty(*nodes)) 278 return ERR_PTR(-EINVAL); 279 return NULL; 280 } 281 VM_BUG_ON(!nodes); 282 283 /* 284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 286 * All other modes require a valid pointer to a non-empty nodemask. 287 */ 288 if (mode == MPOL_PREFERRED) { 289 if (nodes_empty(*nodes)) { 290 if (((flags & MPOL_F_STATIC_NODES) || 291 (flags & MPOL_F_RELATIVE_NODES))) 292 return ERR_PTR(-EINVAL); 293 } 294 } else if (mode == MPOL_LOCAL) { 295 if (!nodes_empty(*nodes) || 296 (flags & MPOL_F_STATIC_NODES) || 297 (flags & MPOL_F_RELATIVE_NODES)) 298 return ERR_PTR(-EINVAL); 299 mode = MPOL_PREFERRED; 300 } else if (nodes_empty(*nodes)) 301 return ERR_PTR(-EINVAL); 302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 303 if (!policy) 304 return ERR_PTR(-ENOMEM); 305 atomic_set(&policy->refcnt, 1); 306 policy->mode = mode; 307 policy->flags = flags; 308 309 return policy; 310 } 311 312 /* Slow path of a mpol destructor. */ 313 void __mpol_put(struct mempolicy *p) 314 { 315 if (!atomic_dec_and_test(&p->refcnt)) 316 return; 317 kmem_cache_free(policy_cache, p); 318 } 319 320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 321 { 322 } 323 324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 325 { 326 nodemask_t tmp; 327 328 if (pol->flags & MPOL_F_STATIC_NODES) 329 nodes_and(tmp, pol->w.user_nodemask, *nodes); 330 else if (pol->flags & MPOL_F_RELATIVE_NODES) 331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 332 else { 333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 334 *nodes); 335 pol->w.cpuset_mems_allowed = *nodes; 336 } 337 338 if (nodes_empty(tmp)) 339 tmp = *nodes; 340 341 pol->v.nodes = tmp; 342 } 343 344 static void mpol_rebind_preferred(struct mempolicy *pol, 345 const nodemask_t *nodes) 346 { 347 nodemask_t tmp; 348 349 if (pol->flags & MPOL_F_STATIC_NODES) { 350 int node = first_node(pol->w.user_nodemask); 351 352 if (node_isset(node, *nodes)) { 353 pol->v.preferred_node = node; 354 pol->flags &= ~MPOL_F_LOCAL; 355 } else 356 pol->flags |= MPOL_F_LOCAL; 357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 359 pol->v.preferred_node = first_node(tmp); 360 } else if (!(pol->flags & MPOL_F_LOCAL)) { 361 pol->v.preferred_node = node_remap(pol->v.preferred_node, 362 pol->w.cpuset_mems_allowed, 363 *nodes); 364 pol->w.cpuset_mems_allowed = *nodes; 365 } 366 } 367 368 /* 369 * mpol_rebind_policy - Migrate a policy to a different set of nodes 370 * 371 * Per-vma policies are protected by mmap_sem. Allocations using per-task 372 * policies are protected by task->mems_allowed_seq to prevent a premature 373 * OOM/allocation failure due to parallel nodemask modification. 374 */ 375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 376 { 377 if (!pol) 378 return; 379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 381 return; 382 383 mpol_ops[pol->mode].rebind(pol, newmask); 384 } 385 386 /* 387 * Wrapper for mpol_rebind_policy() that just requires task 388 * pointer, and updates task mempolicy. 389 * 390 * Called with task's alloc_lock held. 391 */ 392 393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 394 { 395 mpol_rebind_policy(tsk->mempolicy, new); 396 } 397 398 /* 399 * Rebind each vma in mm to new nodemask. 400 * 401 * Call holding a reference to mm. Takes mm->mmap_sem during call. 402 */ 403 404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 405 { 406 struct vm_area_struct *vma; 407 408 down_write(&mm->mmap_sem); 409 for (vma = mm->mmap; vma; vma = vma->vm_next) 410 mpol_rebind_policy(vma->vm_policy, new); 411 up_write(&mm->mmap_sem); 412 } 413 414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 415 [MPOL_DEFAULT] = { 416 .rebind = mpol_rebind_default, 417 }, 418 [MPOL_INTERLEAVE] = { 419 .create = mpol_new_interleave, 420 .rebind = mpol_rebind_nodemask, 421 }, 422 [MPOL_PREFERRED] = { 423 .create = mpol_new_preferred, 424 .rebind = mpol_rebind_preferred, 425 }, 426 [MPOL_BIND] = { 427 .create = mpol_new_bind, 428 .rebind = mpol_rebind_nodemask, 429 }, 430 }; 431 432 static int migrate_page_add(struct page *page, struct list_head *pagelist, 433 unsigned long flags); 434 435 struct queue_pages { 436 struct list_head *pagelist; 437 unsigned long flags; 438 nodemask_t *nmask; 439 unsigned long start; 440 unsigned long end; 441 struct vm_area_struct *first; 442 }; 443 444 /* 445 * Check if the page's nid is in qp->nmask. 446 * 447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 448 * in the invert of qp->nmask. 449 */ 450 static inline bool queue_pages_required(struct page *page, 451 struct queue_pages *qp) 452 { 453 int nid = page_to_nid(page); 454 unsigned long flags = qp->flags; 455 456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 457 } 458 459 /* 460 * queue_pages_pmd() has four possible return values: 461 * 0 - pages are placed on the right node or queued successfully. 462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 463 * specified. 464 * 2 - THP was split. 465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 466 * existing page was already on a node that does not follow the 467 * policy. 468 */ 469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 470 unsigned long end, struct mm_walk *walk) 471 __releases(ptl) 472 { 473 int ret = 0; 474 struct page *page; 475 struct queue_pages *qp = walk->private; 476 unsigned long flags; 477 478 if (unlikely(is_pmd_migration_entry(*pmd))) { 479 ret = -EIO; 480 goto unlock; 481 } 482 page = pmd_page(*pmd); 483 if (is_huge_zero_page(page)) { 484 spin_unlock(ptl); 485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 486 ret = 2; 487 goto out; 488 } 489 if (!queue_pages_required(page, qp)) 490 goto unlock; 491 492 flags = qp->flags; 493 /* go to thp migration */ 494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 495 if (!vma_migratable(walk->vma) || 496 migrate_page_add(page, qp->pagelist, flags)) { 497 ret = 1; 498 goto unlock; 499 } 500 } else 501 ret = -EIO; 502 unlock: 503 spin_unlock(ptl); 504 out: 505 return ret; 506 } 507 508 /* 509 * Scan through pages checking if pages follow certain conditions, 510 * and move them to the pagelist if they do. 511 * 512 * queue_pages_pte_range() has three possible return values: 513 * 0 - pages are placed on the right node or queued successfully. 514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 515 * specified. 516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 517 * on a node that does not follow the policy. 518 */ 519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 520 unsigned long end, struct mm_walk *walk) 521 { 522 struct vm_area_struct *vma = walk->vma; 523 struct page *page; 524 struct queue_pages *qp = walk->private; 525 unsigned long flags = qp->flags; 526 int ret; 527 bool has_unmovable = false; 528 pte_t *pte; 529 spinlock_t *ptl; 530 531 ptl = pmd_trans_huge_lock(pmd, vma); 532 if (ptl) { 533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 534 if (ret != 2) 535 return ret; 536 } 537 /* THP was split, fall through to pte walk */ 538 539 if (pmd_trans_unstable(pmd)) 540 return 0; 541 542 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 543 for (; addr != end; pte++, addr += PAGE_SIZE) { 544 if (!pte_present(*pte)) 545 continue; 546 page = vm_normal_page(vma, addr, *pte); 547 if (!page) 548 continue; 549 /* 550 * vm_normal_page() filters out zero pages, but there might 551 * still be PageReserved pages to skip, perhaps in a VDSO. 552 */ 553 if (PageReserved(page)) 554 continue; 555 if (!queue_pages_required(page, qp)) 556 continue; 557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 558 /* MPOL_MF_STRICT must be specified if we get here */ 559 if (!vma_migratable(vma)) { 560 has_unmovable = true; 561 break; 562 } 563 564 /* 565 * Do not abort immediately since there may be 566 * temporary off LRU pages in the range. Still 567 * need migrate other LRU pages. 568 */ 569 if (migrate_page_add(page, qp->pagelist, flags)) 570 has_unmovable = true; 571 } else 572 break; 573 } 574 pte_unmap_unlock(pte - 1, ptl); 575 cond_resched(); 576 577 if (has_unmovable) 578 return 1; 579 580 return addr != end ? -EIO : 0; 581 } 582 583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 584 unsigned long addr, unsigned long end, 585 struct mm_walk *walk) 586 { 587 int ret = 0; 588 #ifdef CONFIG_HUGETLB_PAGE 589 struct queue_pages *qp = walk->private; 590 unsigned long flags = (qp->flags & MPOL_MF_VALID); 591 struct page *page; 592 spinlock_t *ptl; 593 pte_t entry; 594 595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 596 entry = huge_ptep_get(pte); 597 if (!pte_present(entry)) 598 goto unlock; 599 page = pte_page(entry); 600 if (!queue_pages_required(page, qp)) 601 goto unlock; 602 603 if (flags == MPOL_MF_STRICT) { 604 /* 605 * STRICT alone means only detecting misplaced page and no 606 * need to further check other vma. 607 */ 608 ret = -EIO; 609 goto unlock; 610 } 611 612 if (!vma_migratable(walk->vma)) { 613 /* 614 * Must be STRICT with MOVE*, otherwise .test_walk() have 615 * stopped walking current vma. 616 * Detecting misplaced page but allow migrating pages which 617 * have been queued. 618 */ 619 ret = 1; 620 goto unlock; 621 } 622 623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 624 if (flags & (MPOL_MF_MOVE_ALL) || 625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 626 if (!isolate_huge_page(page, qp->pagelist) && 627 (flags & MPOL_MF_STRICT)) 628 /* 629 * Failed to isolate page but allow migrating pages 630 * which have been queued. 631 */ 632 ret = 1; 633 } 634 unlock: 635 spin_unlock(ptl); 636 #else 637 BUG(); 638 #endif 639 return ret; 640 } 641 642 #ifdef CONFIG_NUMA_BALANCING 643 /* 644 * This is used to mark a range of virtual addresses to be inaccessible. 645 * These are later cleared by a NUMA hinting fault. Depending on these 646 * faults, pages may be migrated for better NUMA placement. 647 * 648 * This is assuming that NUMA faults are handled using PROT_NONE. If 649 * an architecture makes a different choice, it will need further 650 * changes to the core. 651 */ 652 unsigned long change_prot_numa(struct vm_area_struct *vma, 653 unsigned long addr, unsigned long end) 654 { 655 int nr_updated; 656 657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 658 if (nr_updated) 659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 660 661 return nr_updated; 662 } 663 #else 664 static unsigned long change_prot_numa(struct vm_area_struct *vma, 665 unsigned long addr, unsigned long end) 666 { 667 return 0; 668 } 669 #endif /* CONFIG_NUMA_BALANCING */ 670 671 static int queue_pages_test_walk(unsigned long start, unsigned long end, 672 struct mm_walk *walk) 673 { 674 struct vm_area_struct *vma = walk->vma; 675 struct queue_pages *qp = walk->private; 676 unsigned long endvma = vma->vm_end; 677 unsigned long flags = qp->flags; 678 679 /* range check first */ 680 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); 681 682 if (!qp->first) { 683 qp->first = vma; 684 if (!(flags & MPOL_MF_DISCONTIG_OK) && 685 (qp->start < vma->vm_start)) 686 /* hole at head side of range */ 687 return -EFAULT; 688 } 689 if (!(flags & MPOL_MF_DISCONTIG_OK) && 690 ((vma->vm_end < qp->end) && 691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 692 /* hole at middle or tail of range */ 693 return -EFAULT; 694 695 /* 696 * Need check MPOL_MF_STRICT to return -EIO if possible 697 * regardless of vma_migratable 698 */ 699 if (!vma_migratable(vma) && 700 !(flags & MPOL_MF_STRICT)) 701 return 1; 702 703 if (endvma > end) 704 endvma = end; 705 706 if (flags & MPOL_MF_LAZY) { 707 /* Similar to task_numa_work, skip inaccessible VMAs */ 708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 709 !(vma->vm_flags & VM_MIXEDMAP)) 710 change_prot_numa(vma, start, endvma); 711 return 1; 712 } 713 714 /* queue pages from current vma */ 715 if (flags & MPOL_MF_VALID) 716 return 0; 717 return 1; 718 } 719 720 static const struct mm_walk_ops queue_pages_walk_ops = { 721 .hugetlb_entry = queue_pages_hugetlb, 722 .pmd_entry = queue_pages_pte_range, 723 .test_walk = queue_pages_test_walk, 724 }; 725 726 /* 727 * Walk through page tables and collect pages to be migrated. 728 * 729 * If pages found in a given range are on a set of nodes (determined by 730 * @nodes and @flags,) it's isolated and queued to the pagelist which is 731 * passed via @private. 732 * 733 * queue_pages_range() has three possible return values: 734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 735 * specified. 736 * 0 - queue pages successfully or no misplaced page. 737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 738 * memory range specified by nodemask and maxnode points outside 739 * your accessible address space (-EFAULT) 740 */ 741 static int 742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 743 nodemask_t *nodes, unsigned long flags, 744 struct list_head *pagelist) 745 { 746 int err; 747 struct queue_pages qp = { 748 .pagelist = pagelist, 749 .flags = flags, 750 .nmask = nodes, 751 .start = start, 752 .end = end, 753 .first = NULL, 754 }; 755 756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 757 758 if (!qp.first) 759 /* whole range in hole */ 760 err = -EFAULT; 761 762 return err; 763 } 764 765 /* 766 * Apply policy to a single VMA 767 * This must be called with the mmap_sem held for writing. 768 */ 769 static int vma_replace_policy(struct vm_area_struct *vma, 770 struct mempolicy *pol) 771 { 772 int err; 773 struct mempolicy *old; 774 struct mempolicy *new; 775 776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 777 vma->vm_start, vma->vm_end, vma->vm_pgoff, 778 vma->vm_ops, vma->vm_file, 779 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 780 781 new = mpol_dup(pol); 782 if (IS_ERR(new)) 783 return PTR_ERR(new); 784 785 if (vma->vm_ops && vma->vm_ops->set_policy) { 786 err = vma->vm_ops->set_policy(vma, new); 787 if (err) 788 goto err_out; 789 } 790 791 old = vma->vm_policy; 792 vma->vm_policy = new; /* protected by mmap_sem */ 793 mpol_put(old); 794 795 return 0; 796 err_out: 797 mpol_put(new); 798 return err; 799 } 800 801 /* Step 2: apply policy to a range and do splits. */ 802 static int mbind_range(struct mm_struct *mm, unsigned long start, 803 unsigned long end, struct mempolicy *new_pol) 804 { 805 struct vm_area_struct *next; 806 struct vm_area_struct *prev; 807 struct vm_area_struct *vma; 808 int err = 0; 809 pgoff_t pgoff; 810 unsigned long vmstart; 811 unsigned long vmend; 812 813 vma = find_vma(mm, start); 814 VM_BUG_ON(!vma); 815 816 prev = vma->vm_prev; 817 if (start > vma->vm_start) 818 prev = vma; 819 820 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 821 next = vma->vm_next; 822 vmstart = max(start, vma->vm_start); 823 vmend = min(end, vma->vm_end); 824 825 if (mpol_equal(vma_policy(vma), new_pol)) 826 continue; 827 828 pgoff = vma->vm_pgoff + 829 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 831 vma->anon_vma, vma->vm_file, pgoff, 832 new_pol, vma->vm_userfaultfd_ctx); 833 if (prev) { 834 vma = prev; 835 next = vma->vm_next; 836 if (mpol_equal(vma_policy(vma), new_pol)) 837 continue; 838 /* vma_merge() joined vma && vma->next, case 8 */ 839 goto replace; 840 } 841 if (vma->vm_start != vmstart) { 842 err = split_vma(vma->vm_mm, vma, vmstart, 1); 843 if (err) 844 goto out; 845 } 846 if (vma->vm_end != vmend) { 847 err = split_vma(vma->vm_mm, vma, vmend, 0); 848 if (err) 849 goto out; 850 } 851 replace: 852 err = vma_replace_policy(vma, new_pol); 853 if (err) 854 goto out; 855 } 856 857 out: 858 return err; 859 } 860 861 /* Set the process memory policy */ 862 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 863 nodemask_t *nodes) 864 { 865 struct mempolicy *new, *old; 866 NODEMASK_SCRATCH(scratch); 867 int ret; 868 869 if (!scratch) 870 return -ENOMEM; 871 872 new = mpol_new(mode, flags, nodes); 873 if (IS_ERR(new)) { 874 ret = PTR_ERR(new); 875 goto out; 876 } 877 878 task_lock(current); 879 ret = mpol_set_nodemask(new, nodes, scratch); 880 if (ret) { 881 task_unlock(current); 882 mpol_put(new); 883 goto out; 884 } 885 old = current->mempolicy; 886 current->mempolicy = new; 887 if (new && new->mode == MPOL_INTERLEAVE) 888 current->il_prev = MAX_NUMNODES-1; 889 task_unlock(current); 890 mpol_put(old); 891 ret = 0; 892 out: 893 NODEMASK_SCRATCH_FREE(scratch); 894 return ret; 895 } 896 897 /* 898 * Return nodemask for policy for get_mempolicy() query 899 * 900 * Called with task's alloc_lock held 901 */ 902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 903 { 904 nodes_clear(*nodes); 905 if (p == &default_policy) 906 return; 907 908 switch (p->mode) { 909 case MPOL_BIND: 910 case MPOL_INTERLEAVE: 911 *nodes = p->v.nodes; 912 break; 913 case MPOL_PREFERRED: 914 if (!(p->flags & MPOL_F_LOCAL)) 915 node_set(p->v.preferred_node, *nodes); 916 /* else return empty node mask for local allocation */ 917 break; 918 default: 919 BUG(); 920 } 921 } 922 923 static int lookup_node(struct mm_struct *mm, unsigned long addr) 924 { 925 struct page *p = NULL; 926 int err; 927 928 int locked = 1; 929 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 930 if (err == 0) { 931 /* E.g. GUP interrupted by fatal signal */ 932 err = -EFAULT; 933 } else if (err > 0) { 934 err = page_to_nid(p); 935 put_page(p); 936 } 937 if (locked) 938 up_read(&mm->mmap_sem); 939 return err; 940 } 941 942 /* Retrieve NUMA policy */ 943 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 944 unsigned long addr, unsigned long flags) 945 { 946 int err; 947 struct mm_struct *mm = current->mm; 948 struct vm_area_struct *vma = NULL; 949 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 950 951 if (flags & 952 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 953 return -EINVAL; 954 955 if (flags & MPOL_F_MEMS_ALLOWED) { 956 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 957 return -EINVAL; 958 *policy = 0; /* just so it's initialized */ 959 task_lock(current); 960 *nmask = cpuset_current_mems_allowed; 961 task_unlock(current); 962 return 0; 963 } 964 965 if (flags & MPOL_F_ADDR) { 966 /* 967 * Do NOT fall back to task policy if the 968 * vma/shared policy at addr is NULL. We 969 * want to return MPOL_DEFAULT in this case. 970 */ 971 down_read(&mm->mmap_sem); 972 vma = find_vma_intersection(mm, addr, addr+1); 973 if (!vma) { 974 up_read(&mm->mmap_sem); 975 return -EFAULT; 976 } 977 if (vma->vm_ops && vma->vm_ops->get_policy) 978 pol = vma->vm_ops->get_policy(vma, addr); 979 else 980 pol = vma->vm_policy; 981 } else if (addr) 982 return -EINVAL; 983 984 if (!pol) 985 pol = &default_policy; /* indicates default behavior */ 986 987 if (flags & MPOL_F_NODE) { 988 if (flags & MPOL_F_ADDR) { 989 /* 990 * Take a refcount on the mpol, lookup_node() 991 * wil drop the mmap_sem, so after calling 992 * lookup_node() only "pol" remains valid, "vma" 993 * is stale. 994 */ 995 pol_refcount = pol; 996 vma = NULL; 997 mpol_get(pol); 998 err = lookup_node(mm, addr); 999 if (err < 0) 1000 goto out; 1001 *policy = err; 1002 } else if (pol == current->mempolicy && 1003 pol->mode == MPOL_INTERLEAVE) { 1004 *policy = next_node_in(current->il_prev, pol->v.nodes); 1005 } else { 1006 err = -EINVAL; 1007 goto out; 1008 } 1009 } else { 1010 *policy = pol == &default_policy ? MPOL_DEFAULT : 1011 pol->mode; 1012 /* 1013 * Internal mempolicy flags must be masked off before exposing 1014 * the policy to userspace. 1015 */ 1016 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1017 } 1018 1019 err = 0; 1020 if (nmask) { 1021 if (mpol_store_user_nodemask(pol)) { 1022 *nmask = pol->w.user_nodemask; 1023 } else { 1024 task_lock(current); 1025 get_policy_nodemask(pol, nmask); 1026 task_unlock(current); 1027 } 1028 } 1029 1030 out: 1031 mpol_cond_put(pol); 1032 if (vma) 1033 up_read(&mm->mmap_sem); 1034 if (pol_refcount) 1035 mpol_put(pol_refcount); 1036 return err; 1037 } 1038 1039 #ifdef CONFIG_MIGRATION 1040 /* 1041 * page migration, thp tail pages can be passed. 1042 */ 1043 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1044 unsigned long flags) 1045 { 1046 struct page *head = compound_head(page); 1047 /* 1048 * Avoid migrating a page that is shared with others. 1049 */ 1050 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1051 if (!isolate_lru_page(head)) { 1052 list_add_tail(&head->lru, pagelist); 1053 mod_node_page_state(page_pgdat(head), 1054 NR_ISOLATED_ANON + page_is_file_lru(head), 1055 hpage_nr_pages(head)); 1056 } else if (flags & MPOL_MF_STRICT) { 1057 /* 1058 * Non-movable page may reach here. And, there may be 1059 * temporary off LRU pages or non-LRU movable pages. 1060 * Treat them as unmovable pages since they can't be 1061 * isolated, so they can't be moved at the moment. It 1062 * should return -EIO for this case too. 1063 */ 1064 return -EIO; 1065 } 1066 } 1067 1068 return 0; 1069 } 1070 1071 /* page allocation callback for NUMA node migration */ 1072 struct page *alloc_new_node_page(struct page *page, unsigned long node) 1073 { 1074 if (PageHuge(page)) 1075 return alloc_huge_page_node(page_hstate(compound_head(page)), 1076 node); 1077 else if (PageTransHuge(page)) { 1078 struct page *thp; 1079 1080 thp = alloc_pages_node(node, 1081 (GFP_TRANSHUGE | __GFP_THISNODE), 1082 HPAGE_PMD_ORDER); 1083 if (!thp) 1084 return NULL; 1085 prep_transhuge_page(thp); 1086 return thp; 1087 } else 1088 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 1089 __GFP_THISNODE, 0); 1090 } 1091 1092 /* 1093 * Migrate pages from one node to a target node. 1094 * Returns error or the number of pages not migrated. 1095 */ 1096 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1097 int flags) 1098 { 1099 nodemask_t nmask; 1100 LIST_HEAD(pagelist); 1101 int err = 0; 1102 1103 nodes_clear(nmask); 1104 node_set(source, nmask); 1105 1106 /* 1107 * This does not "check" the range but isolates all pages that 1108 * need migration. Between passing in the full user address 1109 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1110 */ 1111 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1112 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1113 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1114 1115 if (!list_empty(&pagelist)) { 1116 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 1117 MIGRATE_SYNC, MR_SYSCALL); 1118 if (err) 1119 putback_movable_pages(&pagelist); 1120 } 1121 1122 return err; 1123 } 1124 1125 /* 1126 * Move pages between the two nodesets so as to preserve the physical 1127 * layout as much as possible. 1128 * 1129 * Returns the number of page that could not be moved. 1130 */ 1131 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1132 const nodemask_t *to, int flags) 1133 { 1134 int busy = 0; 1135 int err; 1136 nodemask_t tmp; 1137 1138 err = migrate_prep(); 1139 if (err) 1140 return err; 1141 1142 down_read(&mm->mmap_sem); 1143 1144 /* 1145 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1146 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1147 * bit in 'tmp', and return that <source, dest> pair for migration. 1148 * The pair of nodemasks 'to' and 'from' define the map. 1149 * 1150 * If no pair of bits is found that way, fallback to picking some 1151 * pair of 'source' and 'dest' bits that are not the same. If the 1152 * 'source' and 'dest' bits are the same, this represents a node 1153 * that will be migrating to itself, so no pages need move. 1154 * 1155 * If no bits are left in 'tmp', or if all remaining bits left 1156 * in 'tmp' correspond to the same bit in 'to', return false 1157 * (nothing left to migrate). 1158 * 1159 * This lets us pick a pair of nodes to migrate between, such that 1160 * if possible the dest node is not already occupied by some other 1161 * source node, minimizing the risk of overloading the memory on a 1162 * node that would happen if we migrated incoming memory to a node 1163 * before migrating outgoing memory source that same node. 1164 * 1165 * A single scan of tmp is sufficient. As we go, we remember the 1166 * most recent <s, d> pair that moved (s != d). If we find a pair 1167 * that not only moved, but what's better, moved to an empty slot 1168 * (d is not set in tmp), then we break out then, with that pair. 1169 * Otherwise when we finish scanning from_tmp, we at least have the 1170 * most recent <s, d> pair that moved. If we get all the way through 1171 * the scan of tmp without finding any node that moved, much less 1172 * moved to an empty node, then there is nothing left worth migrating. 1173 */ 1174 1175 tmp = *from; 1176 while (!nodes_empty(tmp)) { 1177 int s,d; 1178 int source = NUMA_NO_NODE; 1179 int dest = 0; 1180 1181 for_each_node_mask(s, tmp) { 1182 1183 /* 1184 * do_migrate_pages() tries to maintain the relative 1185 * node relationship of the pages established between 1186 * threads and memory areas. 1187 * 1188 * However if the number of source nodes is not equal to 1189 * the number of destination nodes we can not preserve 1190 * this node relative relationship. In that case, skip 1191 * copying memory from a node that is in the destination 1192 * mask. 1193 * 1194 * Example: [2,3,4] -> [3,4,5] moves everything. 1195 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1196 */ 1197 1198 if ((nodes_weight(*from) != nodes_weight(*to)) && 1199 (node_isset(s, *to))) 1200 continue; 1201 1202 d = node_remap(s, *from, *to); 1203 if (s == d) 1204 continue; 1205 1206 source = s; /* Node moved. Memorize */ 1207 dest = d; 1208 1209 /* dest not in remaining from nodes? */ 1210 if (!node_isset(dest, tmp)) 1211 break; 1212 } 1213 if (source == NUMA_NO_NODE) 1214 break; 1215 1216 node_clear(source, tmp); 1217 err = migrate_to_node(mm, source, dest, flags); 1218 if (err > 0) 1219 busy += err; 1220 if (err < 0) 1221 break; 1222 } 1223 up_read(&mm->mmap_sem); 1224 if (err < 0) 1225 return err; 1226 return busy; 1227 1228 } 1229 1230 /* 1231 * Allocate a new page for page migration based on vma policy. 1232 * Start by assuming the page is mapped by the same vma as contains @start. 1233 * Search forward from there, if not. N.B., this assumes that the 1234 * list of pages handed to migrate_pages()--which is how we get here-- 1235 * is in virtual address order. 1236 */ 1237 static struct page *new_page(struct page *page, unsigned long start) 1238 { 1239 struct vm_area_struct *vma; 1240 unsigned long uninitialized_var(address); 1241 1242 vma = find_vma(current->mm, start); 1243 while (vma) { 1244 address = page_address_in_vma(page, vma); 1245 if (address != -EFAULT) 1246 break; 1247 vma = vma->vm_next; 1248 } 1249 1250 if (PageHuge(page)) { 1251 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1252 vma, address); 1253 } else if (PageTransHuge(page)) { 1254 struct page *thp; 1255 1256 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1257 HPAGE_PMD_ORDER); 1258 if (!thp) 1259 return NULL; 1260 prep_transhuge_page(thp); 1261 return thp; 1262 } 1263 /* 1264 * if !vma, alloc_page_vma() will use task or system default policy 1265 */ 1266 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1267 vma, address); 1268 } 1269 #else 1270 1271 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1272 unsigned long flags) 1273 { 1274 return -EIO; 1275 } 1276 1277 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1278 const nodemask_t *to, int flags) 1279 { 1280 return -ENOSYS; 1281 } 1282 1283 static struct page *new_page(struct page *page, unsigned long start) 1284 { 1285 return NULL; 1286 } 1287 #endif 1288 1289 static long do_mbind(unsigned long start, unsigned long len, 1290 unsigned short mode, unsigned short mode_flags, 1291 nodemask_t *nmask, unsigned long flags) 1292 { 1293 struct mm_struct *mm = current->mm; 1294 struct mempolicy *new; 1295 unsigned long end; 1296 int err; 1297 int ret; 1298 LIST_HEAD(pagelist); 1299 1300 if (flags & ~(unsigned long)MPOL_MF_VALID) 1301 return -EINVAL; 1302 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1303 return -EPERM; 1304 1305 if (start & ~PAGE_MASK) 1306 return -EINVAL; 1307 1308 if (mode == MPOL_DEFAULT) 1309 flags &= ~MPOL_MF_STRICT; 1310 1311 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1312 end = start + len; 1313 1314 if (end < start) 1315 return -EINVAL; 1316 if (end == start) 1317 return 0; 1318 1319 new = mpol_new(mode, mode_flags, nmask); 1320 if (IS_ERR(new)) 1321 return PTR_ERR(new); 1322 1323 if (flags & MPOL_MF_LAZY) 1324 new->flags |= MPOL_F_MOF; 1325 1326 /* 1327 * If we are using the default policy then operation 1328 * on discontinuous address spaces is okay after all 1329 */ 1330 if (!new) 1331 flags |= MPOL_MF_DISCONTIG_OK; 1332 1333 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1334 start, start + len, mode, mode_flags, 1335 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1336 1337 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1338 1339 err = migrate_prep(); 1340 if (err) 1341 goto mpol_out; 1342 } 1343 { 1344 NODEMASK_SCRATCH(scratch); 1345 if (scratch) { 1346 down_write(&mm->mmap_sem); 1347 task_lock(current); 1348 err = mpol_set_nodemask(new, nmask, scratch); 1349 task_unlock(current); 1350 if (err) 1351 up_write(&mm->mmap_sem); 1352 } else 1353 err = -ENOMEM; 1354 NODEMASK_SCRATCH_FREE(scratch); 1355 } 1356 if (err) 1357 goto mpol_out; 1358 1359 ret = queue_pages_range(mm, start, end, nmask, 1360 flags | MPOL_MF_INVERT, &pagelist); 1361 1362 if (ret < 0) { 1363 err = ret; 1364 goto up_out; 1365 } 1366 1367 err = mbind_range(mm, start, end, new); 1368 1369 if (!err) { 1370 int nr_failed = 0; 1371 1372 if (!list_empty(&pagelist)) { 1373 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1374 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1375 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1376 if (nr_failed) 1377 putback_movable_pages(&pagelist); 1378 } 1379 1380 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1381 err = -EIO; 1382 } else { 1383 up_out: 1384 if (!list_empty(&pagelist)) 1385 putback_movable_pages(&pagelist); 1386 } 1387 1388 up_write(&mm->mmap_sem); 1389 mpol_out: 1390 mpol_put(new); 1391 return err; 1392 } 1393 1394 /* 1395 * User space interface with variable sized bitmaps for nodelists. 1396 */ 1397 1398 /* Copy a node mask from user space. */ 1399 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1400 unsigned long maxnode) 1401 { 1402 unsigned long k; 1403 unsigned long t; 1404 unsigned long nlongs; 1405 unsigned long endmask; 1406 1407 --maxnode; 1408 nodes_clear(*nodes); 1409 if (maxnode == 0 || !nmask) 1410 return 0; 1411 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1412 return -EINVAL; 1413 1414 nlongs = BITS_TO_LONGS(maxnode); 1415 if ((maxnode % BITS_PER_LONG) == 0) 1416 endmask = ~0UL; 1417 else 1418 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1419 1420 /* 1421 * When the user specified more nodes than supported just check 1422 * if the non supported part is all zero. 1423 * 1424 * If maxnode have more longs than MAX_NUMNODES, check 1425 * the bits in that area first. And then go through to 1426 * check the rest bits which equal or bigger than MAX_NUMNODES. 1427 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1428 */ 1429 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1430 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1431 if (get_user(t, nmask + k)) 1432 return -EFAULT; 1433 if (k == nlongs - 1) { 1434 if (t & endmask) 1435 return -EINVAL; 1436 } else if (t) 1437 return -EINVAL; 1438 } 1439 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1440 endmask = ~0UL; 1441 } 1442 1443 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1444 unsigned long valid_mask = endmask; 1445 1446 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1447 if (get_user(t, nmask + nlongs - 1)) 1448 return -EFAULT; 1449 if (t & valid_mask) 1450 return -EINVAL; 1451 } 1452 1453 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1454 return -EFAULT; 1455 nodes_addr(*nodes)[nlongs-1] &= endmask; 1456 return 0; 1457 } 1458 1459 /* Copy a kernel node mask to user space */ 1460 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1461 nodemask_t *nodes) 1462 { 1463 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1464 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1465 1466 if (copy > nbytes) { 1467 if (copy > PAGE_SIZE) 1468 return -EINVAL; 1469 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1470 return -EFAULT; 1471 copy = nbytes; 1472 } 1473 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1474 } 1475 1476 static long kernel_mbind(unsigned long start, unsigned long len, 1477 unsigned long mode, const unsigned long __user *nmask, 1478 unsigned long maxnode, unsigned int flags) 1479 { 1480 nodemask_t nodes; 1481 int err; 1482 unsigned short mode_flags; 1483 1484 start = untagged_addr(start); 1485 mode_flags = mode & MPOL_MODE_FLAGS; 1486 mode &= ~MPOL_MODE_FLAGS; 1487 if (mode >= MPOL_MAX) 1488 return -EINVAL; 1489 if ((mode_flags & MPOL_F_STATIC_NODES) && 1490 (mode_flags & MPOL_F_RELATIVE_NODES)) 1491 return -EINVAL; 1492 err = get_nodes(&nodes, nmask, maxnode); 1493 if (err) 1494 return err; 1495 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1496 } 1497 1498 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1499 unsigned long, mode, const unsigned long __user *, nmask, 1500 unsigned long, maxnode, unsigned int, flags) 1501 { 1502 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1503 } 1504 1505 /* Set the process memory policy */ 1506 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1507 unsigned long maxnode) 1508 { 1509 int err; 1510 nodemask_t nodes; 1511 unsigned short flags; 1512 1513 flags = mode & MPOL_MODE_FLAGS; 1514 mode &= ~MPOL_MODE_FLAGS; 1515 if ((unsigned int)mode >= MPOL_MAX) 1516 return -EINVAL; 1517 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1518 return -EINVAL; 1519 err = get_nodes(&nodes, nmask, maxnode); 1520 if (err) 1521 return err; 1522 return do_set_mempolicy(mode, flags, &nodes); 1523 } 1524 1525 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1526 unsigned long, maxnode) 1527 { 1528 return kernel_set_mempolicy(mode, nmask, maxnode); 1529 } 1530 1531 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1532 const unsigned long __user *old_nodes, 1533 const unsigned long __user *new_nodes) 1534 { 1535 struct mm_struct *mm = NULL; 1536 struct task_struct *task; 1537 nodemask_t task_nodes; 1538 int err; 1539 nodemask_t *old; 1540 nodemask_t *new; 1541 NODEMASK_SCRATCH(scratch); 1542 1543 if (!scratch) 1544 return -ENOMEM; 1545 1546 old = &scratch->mask1; 1547 new = &scratch->mask2; 1548 1549 err = get_nodes(old, old_nodes, maxnode); 1550 if (err) 1551 goto out; 1552 1553 err = get_nodes(new, new_nodes, maxnode); 1554 if (err) 1555 goto out; 1556 1557 /* Find the mm_struct */ 1558 rcu_read_lock(); 1559 task = pid ? find_task_by_vpid(pid) : current; 1560 if (!task) { 1561 rcu_read_unlock(); 1562 err = -ESRCH; 1563 goto out; 1564 } 1565 get_task_struct(task); 1566 1567 err = -EINVAL; 1568 1569 /* 1570 * Check if this process has the right to modify the specified process. 1571 * Use the regular "ptrace_may_access()" checks. 1572 */ 1573 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1574 rcu_read_unlock(); 1575 err = -EPERM; 1576 goto out_put; 1577 } 1578 rcu_read_unlock(); 1579 1580 task_nodes = cpuset_mems_allowed(task); 1581 /* Is the user allowed to access the target nodes? */ 1582 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1583 err = -EPERM; 1584 goto out_put; 1585 } 1586 1587 task_nodes = cpuset_mems_allowed(current); 1588 nodes_and(*new, *new, task_nodes); 1589 if (nodes_empty(*new)) 1590 goto out_put; 1591 1592 err = security_task_movememory(task); 1593 if (err) 1594 goto out_put; 1595 1596 mm = get_task_mm(task); 1597 put_task_struct(task); 1598 1599 if (!mm) { 1600 err = -EINVAL; 1601 goto out; 1602 } 1603 1604 err = do_migrate_pages(mm, old, new, 1605 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1606 1607 mmput(mm); 1608 out: 1609 NODEMASK_SCRATCH_FREE(scratch); 1610 1611 return err; 1612 1613 out_put: 1614 put_task_struct(task); 1615 goto out; 1616 1617 } 1618 1619 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1620 const unsigned long __user *, old_nodes, 1621 const unsigned long __user *, new_nodes) 1622 { 1623 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1624 } 1625 1626 1627 /* Retrieve NUMA policy */ 1628 static int kernel_get_mempolicy(int __user *policy, 1629 unsigned long __user *nmask, 1630 unsigned long maxnode, 1631 unsigned long addr, 1632 unsigned long flags) 1633 { 1634 int err; 1635 int uninitialized_var(pval); 1636 nodemask_t nodes; 1637 1638 addr = untagged_addr(addr); 1639 1640 if (nmask != NULL && maxnode < nr_node_ids) 1641 return -EINVAL; 1642 1643 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1644 1645 if (err) 1646 return err; 1647 1648 if (policy && put_user(pval, policy)) 1649 return -EFAULT; 1650 1651 if (nmask) 1652 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1653 1654 return err; 1655 } 1656 1657 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1658 unsigned long __user *, nmask, unsigned long, maxnode, 1659 unsigned long, addr, unsigned long, flags) 1660 { 1661 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1662 } 1663 1664 #ifdef CONFIG_COMPAT 1665 1666 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1667 compat_ulong_t __user *, nmask, 1668 compat_ulong_t, maxnode, 1669 compat_ulong_t, addr, compat_ulong_t, flags) 1670 { 1671 long err; 1672 unsigned long __user *nm = NULL; 1673 unsigned long nr_bits, alloc_size; 1674 DECLARE_BITMAP(bm, MAX_NUMNODES); 1675 1676 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1677 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1678 1679 if (nmask) 1680 nm = compat_alloc_user_space(alloc_size); 1681 1682 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1683 1684 if (!err && nmask) { 1685 unsigned long copy_size; 1686 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1687 err = copy_from_user(bm, nm, copy_size); 1688 /* ensure entire bitmap is zeroed */ 1689 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1690 err |= compat_put_bitmap(nmask, bm, nr_bits); 1691 } 1692 1693 return err; 1694 } 1695 1696 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1697 compat_ulong_t, maxnode) 1698 { 1699 unsigned long __user *nm = NULL; 1700 unsigned long nr_bits, alloc_size; 1701 DECLARE_BITMAP(bm, MAX_NUMNODES); 1702 1703 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1704 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1705 1706 if (nmask) { 1707 if (compat_get_bitmap(bm, nmask, nr_bits)) 1708 return -EFAULT; 1709 nm = compat_alloc_user_space(alloc_size); 1710 if (copy_to_user(nm, bm, alloc_size)) 1711 return -EFAULT; 1712 } 1713 1714 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1715 } 1716 1717 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1718 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1719 compat_ulong_t, maxnode, compat_ulong_t, flags) 1720 { 1721 unsigned long __user *nm = NULL; 1722 unsigned long nr_bits, alloc_size; 1723 nodemask_t bm; 1724 1725 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1726 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1727 1728 if (nmask) { 1729 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1730 return -EFAULT; 1731 nm = compat_alloc_user_space(alloc_size); 1732 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1733 return -EFAULT; 1734 } 1735 1736 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1737 } 1738 1739 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1740 compat_ulong_t, maxnode, 1741 const compat_ulong_t __user *, old_nodes, 1742 const compat_ulong_t __user *, new_nodes) 1743 { 1744 unsigned long __user *old = NULL; 1745 unsigned long __user *new = NULL; 1746 nodemask_t tmp_mask; 1747 unsigned long nr_bits; 1748 unsigned long size; 1749 1750 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1751 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1752 if (old_nodes) { 1753 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1754 return -EFAULT; 1755 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1756 if (new_nodes) 1757 new = old + size / sizeof(unsigned long); 1758 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1759 return -EFAULT; 1760 } 1761 if (new_nodes) { 1762 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1763 return -EFAULT; 1764 if (new == NULL) 1765 new = compat_alloc_user_space(size); 1766 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1767 return -EFAULT; 1768 } 1769 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1770 } 1771 1772 #endif /* CONFIG_COMPAT */ 1773 1774 bool vma_migratable(struct vm_area_struct *vma) 1775 { 1776 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1777 return false; 1778 1779 /* 1780 * DAX device mappings require predictable access latency, so avoid 1781 * incurring periodic faults. 1782 */ 1783 if (vma_is_dax(vma)) 1784 return false; 1785 1786 if (is_vm_hugetlb_page(vma) && 1787 !hugepage_migration_supported(hstate_vma(vma))) 1788 return false; 1789 1790 /* 1791 * Migration allocates pages in the highest zone. If we cannot 1792 * do so then migration (at least from node to node) is not 1793 * possible. 1794 */ 1795 if (vma->vm_file && 1796 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1797 < policy_zone) 1798 return false; 1799 return true; 1800 } 1801 1802 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1803 unsigned long addr) 1804 { 1805 struct mempolicy *pol = NULL; 1806 1807 if (vma) { 1808 if (vma->vm_ops && vma->vm_ops->get_policy) { 1809 pol = vma->vm_ops->get_policy(vma, addr); 1810 } else if (vma->vm_policy) { 1811 pol = vma->vm_policy; 1812 1813 /* 1814 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1815 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1816 * count on these policies which will be dropped by 1817 * mpol_cond_put() later 1818 */ 1819 if (mpol_needs_cond_ref(pol)) 1820 mpol_get(pol); 1821 } 1822 } 1823 1824 return pol; 1825 } 1826 1827 /* 1828 * get_vma_policy(@vma, @addr) 1829 * @vma: virtual memory area whose policy is sought 1830 * @addr: address in @vma for shared policy lookup 1831 * 1832 * Returns effective policy for a VMA at specified address. 1833 * Falls back to current->mempolicy or system default policy, as necessary. 1834 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1835 * count--added by the get_policy() vm_op, as appropriate--to protect against 1836 * freeing by another task. It is the caller's responsibility to free the 1837 * extra reference for shared policies. 1838 */ 1839 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1840 unsigned long addr) 1841 { 1842 struct mempolicy *pol = __get_vma_policy(vma, addr); 1843 1844 if (!pol) 1845 pol = get_task_policy(current); 1846 1847 return pol; 1848 } 1849 1850 bool vma_policy_mof(struct vm_area_struct *vma) 1851 { 1852 struct mempolicy *pol; 1853 1854 if (vma->vm_ops && vma->vm_ops->get_policy) { 1855 bool ret = false; 1856 1857 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1858 if (pol && (pol->flags & MPOL_F_MOF)) 1859 ret = true; 1860 mpol_cond_put(pol); 1861 1862 return ret; 1863 } 1864 1865 pol = vma->vm_policy; 1866 if (!pol) 1867 pol = get_task_policy(current); 1868 1869 return pol->flags & MPOL_F_MOF; 1870 } 1871 1872 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1873 { 1874 enum zone_type dynamic_policy_zone = policy_zone; 1875 1876 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1877 1878 /* 1879 * if policy->v.nodes has movable memory only, 1880 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1881 * 1882 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1883 * so if the following test faile, it implies 1884 * policy->v.nodes has movable memory only. 1885 */ 1886 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1887 dynamic_policy_zone = ZONE_MOVABLE; 1888 1889 return zone >= dynamic_policy_zone; 1890 } 1891 1892 /* 1893 * Return a nodemask representing a mempolicy for filtering nodes for 1894 * page allocation 1895 */ 1896 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1897 { 1898 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1899 if (unlikely(policy->mode == MPOL_BIND) && 1900 apply_policy_zone(policy, gfp_zone(gfp)) && 1901 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1902 return &policy->v.nodes; 1903 1904 return NULL; 1905 } 1906 1907 /* Return the node id preferred by the given mempolicy, or the given id */ 1908 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1909 int nd) 1910 { 1911 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1912 nd = policy->v.preferred_node; 1913 else { 1914 /* 1915 * __GFP_THISNODE shouldn't even be used with the bind policy 1916 * because we might easily break the expectation to stay on the 1917 * requested node and not break the policy. 1918 */ 1919 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1920 } 1921 1922 return nd; 1923 } 1924 1925 /* Do dynamic interleaving for a process */ 1926 static unsigned interleave_nodes(struct mempolicy *policy) 1927 { 1928 unsigned next; 1929 struct task_struct *me = current; 1930 1931 next = next_node_in(me->il_prev, policy->v.nodes); 1932 if (next < MAX_NUMNODES) 1933 me->il_prev = next; 1934 return next; 1935 } 1936 1937 /* 1938 * Depending on the memory policy provide a node from which to allocate the 1939 * next slab entry. 1940 */ 1941 unsigned int mempolicy_slab_node(void) 1942 { 1943 struct mempolicy *policy; 1944 int node = numa_mem_id(); 1945 1946 if (in_interrupt()) 1947 return node; 1948 1949 policy = current->mempolicy; 1950 if (!policy || policy->flags & MPOL_F_LOCAL) 1951 return node; 1952 1953 switch (policy->mode) { 1954 case MPOL_PREFERRED: 1955 /* 1956 * handled MPOL_F_LOCAL above 1957 */ 1958 return policy->v.preferred_node; 1959 1960 case MPOL_INTERLEAVE: 1961 return interleave_nodes(policy); 1962 1963 case MPOL_BIND: { 1964 struct zoneref *z; 1965 1966 /* 1967 * Follow bind policy behavior and start allocation at the 1968 * first node. 1969 */ 1970 struct zonelist *zonelist; 1971 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1972 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1973 z = first_zones_zonelist(zonelist, highest_zoneidx, 1974 &policy->v.nodes); 1975 return z->zone ? zone_to_nid(z->zone) : node; 1976 } 1977 1978 default: 1979 BUG(); 1980 } 1981 } 1982 1983 /* 1984 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1985 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1986 * number of present nodes. 1987 */ 1988 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1989 { 1990 unsigned nnodes = nodes_weight(pol->v.nodes); 1991 unsigned target; 1992 int i; 1993 int nid; 1994 1995 if (!nnodes) 1996 return numa_node_id(); 1997 target = (unsigned int)n % nnodes; 1998 nid = first_node(pol->v.nodes); 1999 for (i = 0; i < target; i++) 2000 nid = next_node(nid, pol->v.nodes); 2001 return nid; 2002 } 2003 2004 /* Determine a node number for interleave */ 2005 static inline unsigned interleave_nid(struct mempolicy *pol, 2006 struct vm_area_struct *vma, unsigned long addr, int shift) 2007 { 2008 if (vma) { 2009 unsigned long off; 2010 2011 /* 2012 * for small pages, there is no difference between 2013 * shift and PAGE_SHIFT, so the bit-shift is safe. 2014 * for huge pages, since vm_pgoff is in units of small 2015 * pages, we need to shift off the always 0 bits to get 2016 * a useful offset. 2017 */ 2018 BUG_ON(shift < PAGE_SHIFT); 2019 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 2020 off += (addr - vma->vm_start) >> shift; 2021 return offset_il_node(pol, off); 2022 } else 2023 return interleave_nodes(pol); 2024 } 2025 2026 #ifdef CONFIG_HUGETLBFS 2027 /* 2028 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2029 * @vma: virtual memory area whose policy is sought 2030 * @addr: address in @vma for shared policy lookup and interleave policy 2031 * @gfp_flags: for requested zone 2032 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2033 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 2034 * 2035 * Returns a nid suitable for a huge page allocation and a pointer 2036 * to the struct mempolicy for conditional unref after allocation. 2037 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 2038 * @nodemask for filtering the zonelist. 2039 * 2040 * Must be protected by read_mems_allowed_begin() 2041 */ 2042 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2043 struct mempolicy **mpol, nodemask_t **nodemask) 2044 { 2045 int nid; 2046 2047 *mpol = get_vma_policy(vma, addr); 2048 *nodemask = NULL; /* assume !MPOL_BIND */ 2049 2050 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 2051 nid = interleave_nid(*mpol, vma, addr, 2052 huge_page_shift(hstate_vma(vma))); 2053 } else { 2054 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2055 if ((*mpol)->mode == MPOL_BIND) 2056 *nodemask = &(*mpol)->v.nodes; 2057 } 2058 return nid; 2059 } 2060 2061 /* 2062 * init_nodemask_of_mempolicy 2063 * 2064 * If the current task's mempolicy is "default" [NULL], return 'false' 2065 * to indicate default policy. Otherwise, extract the policy nodemask 2066 * for 'bind' or 'interleave' policy into the argument nodemask, or 2067 * initialize the argument nodemask to contain the single node for 2068 * 'preferred' or 'local' policy and return 'true' to indicate presence 2069 * of non-default mempolicy. 2070 * 2071 * We don't bother with reference counting the mempolicy [mpol_get/put] 2072 * because the current task is examining it's own mempolicy and a task's 2073 * mempolicy is only ever changed by the task itself. 2074 * 2075 * N.B., it is the caller's responsibility to free a returned nodemask. 2076 */ 2077 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2078 { 2079 struct mempolicy *mempolicy; 2080 int nid; 2081 2082 if (!(mask && current->mempolicy)) 2083 return false; 2084 2085 task_lock(current); 2086 mempolicy = current->mempolicy; 2087 switch (mempolicy->mode) { 2088 case MPOL_PREFERRED: 2089 if (mempolicy->flags & MPOL_F_LOCAL) 2090 nid = numa_node_id(); 2091 else 2092 nid = mempolicy->v.preferred_node; 2093 init_nodemask_of_node(mask, nid); 2094 break; 2095 2096 case MPOL_BIND: 2097 case MPOL_INTERLEAVE: 2098 *mask = mempolicy->v.nodes; 2099 break; 2100 2101 default: 2102 BUG(); 2103 } 2104 task_unlock(current); 2105 2106 return true; 2107 } 2108 #endif 2109 2110 /* 2111 * mempolicy_nodemask_intersects 2112 * 2113 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2114 * policy. Otherwise, check for intersection between mask and the policy 2115 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2116 * policy, always return true since it may allocate elsewhere on fallback. 2117 * 2118 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2119 */ 2120 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2121 const nodemask_t *mask) 2122 { 2123 struct mempolicy *mempolicy; 2124 bool ret = true; 2125 2126 if (!mask) 2127 return ret; 2128 task_lock(tsk); 2129 mempolicy = tsk->mempolicy; 2130 if (!mempolicy) 2131 goto out; 2132 2133 switch (mempolicy->mode) { 2134 case MPOL_PREFERRED: 2135 /* 2136 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2137 * allocate from, they may fallback to other nodes when oom. 2138 * Thus, it's possible for tsk to have allocated memory from 2139 * nodes in mask. 2140 */ 2141 break; 2142 case MPOL_BIND: 2143 case MPOL_INTERLEAVE: 2144 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2145 break; 2146 default: 2147 BUG(); 2148 } 2149 out: 2150 task_unlock(tsk); 2151 return ret; 2152 } 2153 2154 /* Allocate a page in interleaved policy. 2155 Own path because it needs to do special accounting. */ 2156 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2157 unsigned nid) 2158 { 2159 struct page *page; 2160 2161 page = __alloc_pages(gfp, order, nid); 2162 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2163 if (!static_branch_likely(&vm_numa_stat_key)) 2164 return page; 2165 if (page && page_to_nid(page) == nid) { 2166 preempt_disable(); 2167 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2168 preempt_enable(); 2169 } 2170 return page; 2171 } 2172 2173 /** 2174 * alloc_pages_vma - Allocate a page for a VMA. 2175 * 2176 * @gfp: 2177 * %GFP_USER user allocation. 2178 * %GFP_KERNEL kernel allocations, 2179 * %GFP_HIGHMEM highmem/user allocations, 2180 * %GFP_FS allocation should not call back into a file system. 2181 * %GFP_ATOMIC don't sleep. 2182 * 2183 * @order:Order of the GFP allocation. 2184 * @vma: Pointer to VMA or NULL if not available. 2185 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2186 * @node: Which node to prefer for allocation (modulo policy). 2187 * @hugepage: for hugepages try only the preferred node if possible 2188 * 2189 * This function allocates a page from the kernel page pool and applies 2190 * a NUMA policy associated with the VMA or the current process. 2191 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2192 * mm_struct of the VMA to prevent it from going away. Should be used for 2193 * all allocations for pages that will be mapped into user space. Returns 2194 * NULL when no page can be allocated. 2195 */ 2196 struct page * 2197 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2198 unsigned long addr, int node, bool hugepage) 2199 { 2200 struct mempolicy *pol; 2201 struct page *page; 2202 int preferred_nid; 2203 nodemask_t *nmask; 2204 2205 pol = get_vma_policy(vma, addr); 2206 2207 if (pol->mode == MPOL_INTERLEAVE) { 2208 unsigned nid; 2209 2210 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2211 mpol_cond_put(pol); 2212 page = alloc_page_interleave(gfp, order, nid); 2213 goto out; 2214 } 2215 2216 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2217 int hpage_node = node; 2218 2219 /* 2220 * For hugepage allocation and non-interleave policy which 2221 * allows the current node (or other explicitly preferred 2222 * node) we only try to allocate from the current/preferred 2223 * node and don't fall back to other nodes, as the cost of 2224 * remote accesses would likely offset THP benefits. 2225 * 2226 * If the policy is interleave, or does not allow the current 2227 * node in its nodemask, we allocate the standard way. 2228 */ 2229 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2230 hpage_node = pol->v.preferred_node; 2231 2232 nmask = policy_nodemask(gfp, pol); 2233 if (!nmask || node_isset(hpage_node, *nmask)) { 2234 mpol_cond_put(pol); 2235 /* 2236 * First, try to allocate THP only on local node, but 2237 * don't reclaim unnecessarily, just compact. 2238 */ 2239 page = __alloc_pages_node(hpage_node, 2240 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2241 2242 /* 2243 * If hugepage allocations are configured to always 2244 * synchronous compact or the vma has been madvised 2245 * to prefer hugepage backing, retry allowing remote 2246 * memory with both reclaim and compact as well. 2247 */ 2248 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2249 page = __alloc_pages_node(hpage_node, 2250 gfp, order); 2251 2252 goto out; 2253 } 2254 } 2255 2256 nmask = policy_nodemask(gfp, pol); 2257 preferred_nid = policy_node(gfp, pol, node); 2258 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2259 mpol_cond_put(pol); 2260 out: 2261 return page; 2262 } 2263 EXPORT_SYMBOL(alloc_pages_vma); 2264 2265 /** 2266 * alloc_pages_current - Allocate pages. 2267 * 2268 * @gfp: 2269 * %GFP_USER user allocation, 2270 * %GFP_KERNEL kernel allocation, 2271 * %GFP_HIGHMEM highmem allocation, 2272 * %GFP_FS don't call back into a file system. 2273 * %GFP_ATOMIC don't sleep. 2274 * @order: Power of two of allocation size in pages. 0 is a single page. 2275 * 2276 * Allocate a page from the kernel page pool. When not in 2277 * interrupt context and apply the current process NUMA policy. 2278 * Returns NULL when no page can be allocated. 2279 */ 2280 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2281 { 2282 struct mempolicy *pol = &default_policy; 2283 struct page *page; 2284 2285 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2286 pol = get_task_policy(current); 2287 2288 /* 2289 * No reference counting needed for current->mempolicy 2290 * nor system default_policy 2291 */ 2292 if (pol->mode == MPOL_INTERLEAVE) 2293 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2294 else 2295 page = __alloc_pages_nodemask(gfp, order, 2296 policy_node(gfp, pol, numa_node_id()), 2297 policy_nodemask(gfp, pol)); 2298 2299 return page; 2300 } 2301 EXPORT_SYMBOL(alloc_pages_current); 2302 2303 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2304 { 2305 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2306 2307 if (IS_ERR(pol)) 2308 return PTR_ERR(pol); 2309 dst->vm_policy = pol; 2310 return 0; 2311 } 2312 2313 /* 2314 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2315 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2316 * with the mems_allowed returned by cpuset_mems_allowed(). This 2317 * keeps mempolicies cpuset relative after its cpuset moves. See 2318 * further kernel/cpuset.c update_nodemask(). 2319 * 2320 * current's mempolicy may be rebinded by the other task(the task that changes 2321 * cpuset's mems), so we needn't do rebind work for current task. 2322 */ 2323 2324 /* Slow path of a mempolicy duplicate */ 2325 struct mempolicy *__mpol_dup(struct mempolicy *old) 2326 { 2327 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2328 2329 if (!new) 2330 return ERR_PTR(-ENOMEM); 2331 2332 /* task's mempolicy is protected by alloc_lock */ 2333 if (old == current->mempolicy) { 2334 task_lock(current); 2335 *new = *old; 2336 task_unlock(current); 2337 } else 2338 *new = *old; 2339 2340 if (current_cpuset_is_being_rebound()) { 2341 nodemask_t mems = cpuset_mems_allowed(current); 2342 mpol_rebind_policy(new, &mems); 2343 } 2344 atomic_set(&new->refcnt, 1); 2345 return new; 2346 } 2347 2348 /* Slow path of a mempolicy comparison */ 2349 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2350 { 2351 if (!a || !b) 2352 return false; 2353 if (a->mode != b->mode) 2354 return false; 2355 if (a->flags != b->flags) 2356 return false; 2357 if (mpol_store_user_nodemask(a)) 2358 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2359 return false; 2360 2361 switch (a->mode) { 2362 case MPOL_BIND: 2363 case MPOL_INTERLEAVE: 2364 return !!nodes_equal(a->v.nodes, b->v.nodes); 2365 case MPOL_PREFERRED: 2366 /* a's ->flags is the same as b's */ 2367 if (a->flags & MPOL_F_LOCAL) 2368 return true; 2369 return a->v.preferred_node == b->v.preferred_node; 2370 default: 2371 BUG(); 2372 return false; 2373 } 2374 } 2375 2376 /* 2377 * Shared memory backing store policy support. 2378 * 2379 * Remember policies even when nobody has shared memory mapped. 2380 * The policies are kept in Red-Black tree linked from the inode. 2381 * They are protected by the sp->lock rwlock, which should be held 2382 * for any accesses to the tree. 2383 */ 2384 2385 /* 2386 * lookup first element intersecting start-end. Caller holds sp->lock for 2387 * reading or for writing 2388 */ 2389 static struct sp_node * 2390 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2391 { 2392 struct rb_node *n = sp->root.rb_node; 2393 2394 while (n) { 2395 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2396 2397 if (start >= p->end) 2398 n = n->rb_right; 2399 else if (end <= p->start) 2400 n = n->rb_left; 2401 else 2402 break; 2403 } 2404 if (!n) 2405 return NULL; 2406 for (;;) { 2407 struct sp_node *w = NULL; 2408 struct rb_node *prev = rb_prev(n); 2409 if (!prev) 2410 break; 2411 w = rb_entry(prev, struct sp_node, nd); 2412 if (w->end <= start) 2413 break; 2414 n = prev; 2415 } 2416 return rb_entry(n, struct sp_node, nd); 2417 } 2418 2419 /* 2420 * Insert a new shared policy into the list. Caller holds sp->lock for 2421 * writing. 2422 */ 2423 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2424 { 2425 struct rb_node **p = &sp->root.rb_node; 2426 struct rb_node *parent = NULL; 2427 struct sp_node *nd; 2428 2429 while (*p) { 2430 parent = *p; 2431 nd = rb_entry(parent, struct sp_node, nd); 2432 if (new->start < nd->start) 2433 p = &(*p)->rb_left; 2434 else if (new->end > nd->end) 2435 p = &(*p)->rb_right; 2436 else 2437 BUG(); 2438 } 2439 rb_link_node(&new->nd, parent, p); 2440 rb_insert_color(&new->nd, &sp->root); 2441 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2442 new->policy ? new->policy->mode : 0); 2443 } 2444 2445 /* Find shared policy intersecting idx */ 2446 struct mempolicy * 2447 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2448 { 2449 struct mempolicy *pol = NULL; 2450 struct sp_node *sn; 2451 2452 if (!sp->root.rb_node) 2453 return NULL; 2454 read_lock(&sp->lock); 2455 sn = sp_lookup(sp, idx, idx+1); 2456 if (sn) { 2457 mpol_get(sn->policy); 2458 pol = sn->policy; 2459 } 2460 read_unlock(&sp->lock); 2461 return pol; 2462 } 2463 2464 static void sp_free(struct sp_node *n) 2465 { 2466 mpol_put(n->policy); 2467 kmem_cache_free(sn_cache, n); 2468 } 2469 2470 /** 2471 * mpol_misplaced - check whether current page node is valid in policy 2472 * 2473 * @page: page to be checked 2474 * @vma: vm area where page mapped 2475 * @addr: virtual address where page mapped 2476 * 2477 * Lookup current policy node id for vma,addr and "compare to" page's 2478 * node id. 2479 * 2480 * Returns: 2481 * -1 - not misplaced, page is in the right node 2482 * node - node id where the page should be 2483 * 2484 * Policy determination "mimics" alloc_page_vma(). 2485 * Called from fault path where we know the vma and faulting address. 2486 */ 2487 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2488 { 2489 struct mempolicy *pol; 2490 struct zoneref *z; 2491 int curnid = page_to_nid(page); 2492 unsigned long pgoff; 2493 int thiscpu = raw_smp_processor_id(); 2494 int thisnid = cpu_to_node(thiscpu); 2495 int polnid = NUMA_NO_NODE; 2496 int ret = -1; 2497 2498 pol = get_vma_policy(vma, addr); 2499 if (!(pol->flags & MPOL_F_MOF)) 2500 goto out; 2501 2502 switch (pol->mode) { 2503 case MPOL_INTERLEAVE: 2504 pgoff = vma->vm_pgoff; 2505 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2506 polnid = offset_il_node(pol, pgoff); 2507 break; 2508 2509 case MPOL_PREFERRED: 2510 if (pol->flags & MPOL_F_LOCAL) 2511 polnid = numa_node_id(); 2512 else 2513 polnid = pol->v.preferred_node; 2514 break; 2515 2516 case MPOL_BIND: 2517 2518 /* 2519 * allows binding to multiple nodes. 2520 * use current page if in policy nodemask, 2521 * else select nearest allowed node, if any. 2522 * If no allowed nodes, use current [!misplaced]. 2523 */ 2524 if (node_isset(curnid, pol->v.nodes)) 2525 goto out; 2526 z = first_zones_zonelist( 2527 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2528 gfp_zone(GFP_HIGHUSER), 2529 &pol->v.nodes); 2530 polnid = zone_to_nid(z->zone); 2531 break; 2532 2533 default: 2534 BUG(); 2535 } 2536 2537 /* Migrate the page towards the node whose CPU is referencing it */ 2538 if (pol->flags & MPOL_F_MORON) { 2539 polnid = thisnid; 2540 2541 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2542 goto out; 2543 } 2544 2545 if (curnid != polnid) 2546 ret = polnid; 2547 out: 2548 mpol_cond_put(pol); 2549 2550 return ret; 2551 } 2552 2553 /* 2554 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2555 * dropped after task->mempolicy is set to NULL so that any allocation done as 2556 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2557 * policy. 2558 */ 2559 void mpol_put_task_policy(struct task_struct *task) 2560 { 2561 struct mempolicy *pol; 2562 2563 task_lock(task); 2564 pol = task->mempolicy; 2565 task->mempolicy = NULL; 2566 task_unlock(task); 2567 mpol_put(pol); 2568 } 2569 2570 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2571 { 2572 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2573 rb_erase(&n->nd, &sp->root); 2574 sp_free(n); 2575 } 2576 2577 static void sp_node_init(struct sp_node *node, unsigned long start, 2578 unsigned long end, struct mempolicy *pol) 2579 { 2580 node->start = start; 2581 node->end = end; 2582 node->policy = pol; 2583 } 2584 2585 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2586 struct mempolicy *pol) 2587 { 2588 struct sp_node *n; 2589 struct mempolicy *newpol; 2590 2591 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2592 if (!n) 2593 return NULL; 2594 2595 newpol = mpol_dup(pol); 2596 if (IS_ERR(newpol)) { 2597 kmem_cache_free(sn_cache, n); 2598 return NULL; 2599 } 2600 newpol->flags |= MPOL_F_SHARED; 2601 sp_node_init(n, start, end, newpol); 2602 2603 return n; 2604 } 2605 2606 /* Replace a policy range. */ 2607 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2608 unsigned long end, struct sp_node *new) 2609 { 2610 struct sp_node *n; 2611 struct sp_node *n_new = NULL; 2612 struct mempolicy *mpol_new = NULL; 2613 int ret = 0; 2614 2615 restart: 2616 write_lock(&sp->lock); 2617 n = sp_lookup(sp, start, end); 2618 /* Take care of old policies in the same range. */ 2619 while (n && n->start < end) { 2620 struct rb_node *next = rb_next(&n->nd); 2621 if (n->start >= start) { 2622 if (n->end <= end) 2623 sp_delete(sp, n); 2624 else 2625 n->start = end; 2626 } else { 2627 /* Old policy spanning whole new range. */ 2628 if (n->end > end) { 2629 if (!n_new) 2630 goto alloc_new; 2631 2632 *mpol_new = *n->policy; 2633 atomic_set(&mpol_new->refcnt, 1); 2634 sp_node_init(n_new, end, n->end, mpol_new); 2635 n->end = start; 2636 sp_insert(sp, n_new); 2637 n_new = NULL; 2638 mpol_new = NULL; 2639 break; 2640 } else 2641 n->end = start; 2642 } 2643 if (!next) 2644 break; 2645 n = rb_entry(next, struct sp_node, nd); 2646 } 2647 if (new) 2648 sp_insert(sp, new); 2649 write_unlock(&sp->lock); 2650 ret = 0; 2651 2652 err_out: 2653 if (mpol_new) 2654 mpol_put(mpol_new); 2655 if (n_new) 2656 kmem_cache_free(sn_cache, n_new); 2657 2658 return ret; 2659 2660 alloc_new: 2661 write_unlock(&sp->lock); 2662 ret = -ENOMEM; 2663 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2664 if (!n_new) 2665 goto err_out; 2666 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2667 if (!mpol_new) 2668 goto err_out; 2669 goto restart; 2670 } 2671 2672 /** 2673 * mpol_shared_policy_init - initialize shared policy for inode 2674 * @sp: pointer to inode shared policy 2675 * @mpol: struct mempolicy to install 2676 * 2677 * Install non-NULL @mpol in inode's shared policy rb-tree. 2678 * On entry, the current task has a reference on a non-NULL @mpol. 2679 * This must be released on exit. 2680 * This is called at get_inode() calls and we can use GFP_KERNEL. 2681 */ 2682 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2683 { 2684 int ret; 2685 2686 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2687 rwlock_init(&sp->lock); 2688 2689 if (mpol) { 2690 struct vm_area_struct pvma; 2691 struct mempolicy *new; 2692 NODEMASK_SCRATCH(scratch); 2693 2694 if (!scratch) 2695 goto put_mpol; 2696 /* contextualize the tmpfs mount point mempolicy */ 2697 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2698 if (IS_ERR(new)) 2699 goto free_scratch; /* no valid nodemask intersection */ 2700 2701 task_lock(current); 2702 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2703 task_unlock(current); 2704 if (ret) 2705 goto put_new; 2706 2707 /* Create pseudo-vma that contains just the policy */ 2708 vma_init(&pvma, NULL); 2709 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2710 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2711 2712 put_new: 2713 mpol_put(new); /* drop initial ref */ 2714 free_scratch: 2715 NODEMASK_SCRATCH_FREE(scratch); 2716 put_mpol: 2717 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2718 } 2719 } 2720 2721 int mpol_set_shared_policy(struct shared_policy *info, 2722 struct vm_area_struct *vma, struct mempolicy *npol) 2723 { 2724 int err; 2725 struct sp_node *new = NULL; 2726 unsigned long sz = vma_pages(vma); 2727 2728 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2729 vma->vm_pgoff, 2730 sz, npol ? npol->mode : -1, 2731 npol ? npol->flags : -1, 2732 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2733 2734 if (npol) { 2735 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2736 if (!new) 2737 return -ENOMEM; 2738 } 2739 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2740 if (err && new) 2741 sp_free(new); 2742 return err; 2743 } 2744 2745 /* Free a backing policy store on inode delete. */ 2746 void mpol_free_shared_policy(struct shared_policy *p) 2747 { 2748 struct sp_node *n; 2749 struct rb_node *next; 2750 2751 if (!p->root.rb_node) 2752 return; 2753 write_lock(&p->lock); 2754 next = rb_first(&p->root); 2755 while (next) { 2756 n = rb_entry(next, struct sp_node, nd); 2757 next = rb_next(&n->nd); 2758 sp_delete(p, n); 2759 } 2760 write_unlock(&p->lock); 2761 } 2762 2763 #ifdef CONFIG_NUMA_BALANCING 2764 static int __initdata numabalancing_override; 2765 2766 static void __init check_numabalancing_enable(void) 2767 { 2768 bool numabalancing_default = false; 2769 2770 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2771 numabalancing_default = true; 2772 2773 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2774 if (numabalancing_override) 2775 set_numabalancing_state(numabalancing_override == 1); 2776 2777 if (num_online_nodes() > 1 && !numabalancing_override) { 2778 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2779 numabalancing_default ? "Enabling" : "Disabling"); 2780 set_numabalancing_state(numabalancing_default); 2781 } 2782 } 2783 2784 static int __init setup_numabalancing(char *str) 2785 { 2786 int ret = 0; 2787 if (!str) 2788 goto out; 2789 2790 if (!strcmp(str, "enable")) { 2791 numabalancing_override = 1; 2792 ret = 1; 2793 } else if (!strcmp(str, "disable")) { 2794 numabalancing_override = -1; 2795 ret = 1; 2796 } 2797 out: 2798 if (!ret) 2799 pr_warn("Unable to parse numa_balancing=\n"); 2800 2801 return ret; 2802 } 2803 __setup("numa_balancing=", setup_numabalancing); 2804 #else 2805 static inline void __init check_numabalancing_enable(void) 2806 { 2807 } 2808 #endif /* CONFIG_NUMA_BALANCING */ 2809 2810 /* assumes fs == KERNEL_DS */ 2811 void __init numa_policy_init(void) 2812 { 2813 nodemask_t interleave_nodes; 2814 unsigned long largest = 0; 2815 int nid, prefer = 0; 2816 2817 policy_cache = kmem_cache_create("numa_policy", 2818 sizeof(struct mempolicy), 2819 0, SLAB_PANIC, NULL); 2820 2821 sn_cache = kmem_cache_create("shared_policy_node", 2822 sizeof(struct sp_node), 2823 0, SLAB_PANIC, NULL); 2824 2825 for_each_node(nid) { 2826 preferred_node_policy[nid] = (struct mempolicy) { 2827 .refcnt = ATOMIC_INIT(1), 2828 .mode = MPOL_PREFERRED, 2829 .flags = MPOL_F_MOF | MPOL_F_MORON, 2830 .v = { .preferred_node = nid, }, 2831 }; 2832 } 2833 2834 /* 2835 * Set interleaving policy for system init. Interleaving is only 2836 * enabled across suitably sized nodes (default is >= 16MB), or 2837 * fall back to the largest node if they're all smaller. 2838 */ 2839 nodes_clear(interleave_nodes); 2840 for_each_node_state(nid, N_MEMORY) { 2841 unsigned long total_pages = node_present_pages(nid); 2842 2843 /* Preserve the largest node */ 2844 if (largest < total_pages) { 2845 largest = total_pages; 2846 prefer = nid; 2847 } 2848 2849 /* Interleave this node? */ 2850 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2851 node_set(nid, interleave_nodes); 2852 } 2853 2854 /* All too small, use the largest */ 2855 if (unlikely(nodes_empty(interleave_nodes))) 2856 node_set(prefer, interleave_nodes); 2857 2858 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2859 pr_err("%s: interleaving failed\n", __func__); 2860 2861 check_numabalancing_enable(); 2862 } 2863 2864 /* Reset policy of current process to default */ 2865 void numa_default_policy(void) 2866 { 2867 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2868 } 2869 2870 /* 2871 * Parse and format mempolicy from/to strings 2872 */ 2873 2874 /* 2875 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2876 */ 2877 static const char * const policy_modes[] = 2878 { 2879 [MPOL_DEFAULT] = "default", 2880 [MPOL_PREFERRED] = "prefer", 2881 [MPOL_BIND] = "bind", 2882 [MPOL_INTERLEAVE] = "interleave", 2883 [MPOL_LOCAL] = "local", 2884 }; 2885 2886 2887 #ifdef CONFIG_TMPFS 2888 /** 2889 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2890 * @str: string containing mempolicy to parse 2891 * @mpol: pointer to struct mempolicy pointer, returned on success. 2892 * 2893 * Format of input: 2894 * <mode>[=<flags>][:<nodelist>] 2895 * 2896 * On success, returns 0, else 1 2897 */ 2898 int mpol_parse_str(char *str, struct mempolicy **mpol) 2899 { 2900 struct mempolicy *new = NULL; 2901 unsigned short mode_flags; 2902 nodemask_t nodes; 2903 char *nodelist = strchr(str, ':'); 2904 char *flags = strchr(str, '='); 2905 int err = 1, mode; 2906 2907 if (flags) 2908 *flags++ = '\0'; /* terminate mode string */ 2909 2910 if (nodelist) { 2911 /* NUL-terminate mode or flags string */ 2912 *nodelist++ = '\0'; 2913 if (nodelist_parse(nodelist, nodes)) 2914 goto out; 2915 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2916 goto out; 2917 } else 2918 nodes_clear(nodes); 2919 2920 mode = match_string(policy_modes, MPOL_MAX, str); 2921 if (mode < 0) 2922 goto out; 2923 2924 switch (mode) { 2925 case MPOL_PREFERRED: 2926 /* 2927 * Insist on a nodelist of one node only, although later 2928 * we use first_node(nodes) to grab a single node, so here 2929 * nodelist (or nodes) cannot be empty. 2930 */ 2931 if (nodelist) { 2932 char *rest = nodelist; 2933 while (isdigit(*rest)) 2934 rest++; 2935 if (*rest) 2936 goto out; 2937 if (nodes_empty(nodes)) 2938 goto out; 2939 } 2940 break; 2941 case MPOL_INTERLEAVE: 2942 /* 2943 * Default to online nodes with memory if no nodelist 2944 */ 2945 if (!nodelist) 2946 nodes = node_states[N_MEMORY]; 2947 break; 2948 case MPOL_LOCAL: 2949 /* 2950 * Don't allow a nodelist; mpol_new() checks flags 2951 */ 2952 if (nodelist) 2953 goto out; 2954 mode = MPOL_PREFERRED; 2955 break; 2956 case MPOL_DEFAULT: 2957 /* 2958 * Insist on a empty nodelist 2959 */ 2960 if (!nodelist) 2961 err = 0; 2962 goto out; 2963 case MPOL_BIND: 2964 /* 2965 * Insist on a nodelist 2966 */ 2967 if (!nodelist) 2968 goto out; 2969 } 2970 2971 mode_flags = 0; 2972 if (flags) { 2973 /* 2974 * Currently, we only support two mutually exclusive 2975 * mode flags. 2976 */ 2977 if (!strcmp(flags, "static")) 2978 mode_flags |= MPOL_F_STATIC_NODES; 2979 else if (!strcmp(flags, "relative")) 2980 mode_flags |= MPOL_F_RELATIVE_NODES; 2981 else 2982 goto out; 2983 } 2984 2985 new = mpol_new(mode, mode_flags, &nodes); 2986 if (IS_ERR(new)) 2987 goto out; 2988 2989 /* 2990 * Save nodes for mpol_to_str() to show the tmpfs mount options 2991 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2992 */ 2993 if (mode != MPOL_PREFERRED) 2994 new->v.nodes = nodes; 2995 else if (nodelist) 2996 new->v.preferred_node = first_node(nodes); 2997 else 2998 new->flags |= MPOL_F_LOCAL; 2999 3000 /* 3001 * Save nodes for contextualization: this will be used to "clone" 3002 * the mempolicy in a specific context [cpuset] at a later time. 3003 */ 3004 new->w.user_nodemask = nodes; 3005 3006 err = 0; 3007 3008 out: 3009 /* Restore string for error message */ 3010 if (nodelist) 3011 *--nodelist = ':'; 3012 if (flags) 3013 *--flags = '='; 3014 if (!err) 3015 *mpol = new; 3016 return err; 3017 } 3018 #endif /* CONFIG_TMPFS */ 3019 3020 /** 3021 * mpol_to_str - format a mempolicy structure for printing 3022 * @buffer: to contain formatted mempolicy string 3023 * @maxlen: length of @buffer 3024 * @pol: pointer to mempolicy to be formatted 3025 * 3026 * Convert @pol into a string. If @buffer is too short, truncate the string. 3027 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3028 * longest flag, "relative", and to display at least a few node ids. 3029 */ 3030 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3031 { 3032 char *p = buffer; 3033 nodemask_t nodes = NODE_MASK_NONE; 3034 unsigned short mode = MPOL_DEFAULT; 3035 unsigned short flags = 0; 3036 3037 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3038 mode = pol->mode; 3039 flags = pol->flags; 3040 } 3041 3042 switch (mode) { 3043 case MPOL_DEFAULT: 3044 break; 3045 case MPOL_PREFERRED: 3046 if (flags & MPOL_F_LOCAL) 3047 mode = MPOL_LOCAL; 3048 else 3049 node_set(pol->v.preferred_node, nodes); 3050 break; 3051 case MPOL_BIND: 3052 case MPOL_INTERLEAVE: 3053 nodes = pol->v.nodes; 3054 break; 3055 default: 3056 WARN_ON_ONCE(1); 3057 snprintf(p, maxlen, "unknown"); 3058 return; 3059 } 3060 3061 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3062 3063 if (flags & MPOL_MODE_FLAGS) { 3064 p += snprintf(p, buffer + maxlen - p, "="); 3065 3066 /* 3067 * Currently, the only defined flags are mutually exclusive 3068 */ 3069 if (flags & MPOL_F_STATIC_NODES) 3070 p += snprintf(p, buffer + maxlen - p, "static"); 3071 else if (flags & MPOL_F_RELATIVE_NODES) 3072 p += snprintf(p, buffer + maxlen - p, "relative"); 3073 } 3074 3075 if (!nodes_empty(nodes)) 3076 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3077 nodemask_pr_args(&nodes)); 3078 } 3079