1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 could replace all the switch()es with a mempolicy_ops structure. 67 */ 68 69 #include <linux/mempolicy.h> 70 #include <linux/mm.h> 71 #include <linux/highmem.h> 72 #include <linux/hugetlb.h> 73 #include <linux/kernel.h> 74 #include <linux/sched.h> 75 #include <linux/mm.h> 76 #include <linux/nodemask.h> 77 #include <linux/cpuset.h> 78 #include <linux/gfp.h> 79 #include <linux/slab.h> 80 #include <linux/string.h> 81 #include <linux/module.h> 82 #include <linux/interrupt.h> 83 #include <linux/init.h> 84 #include <linux/compat.h> 85 #include <linux/mempolicy.h> 86 #include <linux/swap.h> 87 #include <linux/seq_file.h> 88 #include <linux/proc_fs.h> 89 #include <linux/migrate.h> 90 #include <linux/rmap.h> 91 #include <linux/security.h> 92 93 #include <asm/tlbflush.h> 94 #include <asm/uaccess.h> 95 96 /* Internal flags */ 97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ 100 101 static struct kmem_cache *policy_cache; 102 static struct kmem_cache *sn_cache; 103 104 /* Highest zone. An specific allocation for a zone below that is not 105 policied. */ 106 enum zone_type policy_zone = 0; 107 108 struct mempolicy default_policy = { 109 .refcnt = ATOMIC_INIT(1), /* never free it */ 110 .policy = MPOL_DEFAULT, 111 }; 112 113 /* Do sanity checking on a policy */ 114 static int mpol_check_policy(int mode, nodemask_t *nodes) 115 { 116 int empty = nodes_empty(*nodes); 117 118 switch (mode) { 119 case MPOL_DEFAULT: 120 if (!empty) 121 return -EINVAL; 122 break; 123 case MPOL_BIND: 124 case MPOL_INTERLEAVE: 125 /* Preferred will only use the first bit, but allow 126 more for now. */ 127 if (empty) 128 return -EINVAL; 129 break; 130 } 131 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL; 132 } 133 134 /* Generate a custom zonelist for the BIND policy. */ 135 static struct zonelist *bind_zonelist(nodemask_t *nodes) 136 { 137 struct zonelist *zl; 138 int num, max, nd; 139 enum zone_type k; 140 141 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes); 142 max++; /* space for zlcache_ptr (see mmzone.h) */ 143 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL); 144 if (!zl) 145 return ERR_PTR(-ENOMEM); 146 zl->zlcache_ptr = NULL; 147 num = 0; 148 /* First put in the highest zones from all nodes, then all the next 149 lower zones etc. Avoid empty zones because the memory allocator 150 doesn't like them. If you implement node hot removal you 151 have to fix that. */ 152 k = MAX_NR_ZONES - 1; 153 while (1) { 154 for_each_node_mask(nd, *nodes) { 155 struct zone *z = &NODE_DATA(nd)->node_zones[k]; 156 if (z->present_pages > 0) 157 zl->zones[num++] = z; 158 } 159 if (k == 0) 160 break; 161 k--; 162 } 163 if (num == 0) { 164 kfree(zl); 165 return ERR_PTR(-EINVAL); 166 } 167 zl->zones[num] = NULL; 168 return zl; 169 } 170 171 /* Create a new policy */ 172 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes) 173 { 174 struct mempolicy *policy; 175 176 pr_debug("setting mode %d nodes[0] %lx\n", 177 mode, nodes ? nodes_addr(*nodes)[0] : -1); 178 179 if (mode == MPOL_DEFAULT) 180 return NULL; 181 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 182 if (!policy) 183 return ERR_PTR(-ENOMEM); 184 atomic_set(&policy->refcnt, 1); 185 switch (mode) { 186 case MPOL_INTERLEAVE: 187 policy->v.nodes = *nodes; 188 if (nodes_weight(*nodes) == 0) { 189 kmem_cache_free(policy_cache, policy); 190 return ERR_PTR(-EINVAL); 191 } 192 break; 193 case MPOL_PREFERRED: 194 policy->v.preferred_node = first_node(*nodes); 195 if (policy->v.preferred_node >= MAX_NUMNODES) 196 policy->v.preferred_node = -1; 197 break; 198 case MPOL_BIND: 199 policy->v.zonelist = bind_zonelist(nodes); 200 if (IS_ERR(policy->v.zonelist)) { 201 void *error_code = policy->v.zonelist; 202 kmem_cache_free(policy_cache, policy); 203 return error_code; 204 } 205 break; 206 } 207 policy->policy = mode; 208 policy->cpuset_mems_allowed = cpuset_mems_allowed(current); 209 return policy; 210 } 211 212 static void gather_stats(struct page *, void *, int pte_dirty); 213 static void migrate_page_add(struct page *page, struct list_head *pagelist, 214 unsigned long flags); 215 216 /* Scan through pages checking if pages follow certain conditions. */ 217 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 218 unsigned long addr, unsigned long end, 219 const nodemask_t *nodes, unsigned long flags, 220 void *private) 221 { 222 pte_t *orig_pte; 223 pte_t *pte; 224 spinlock_t *ptl; 225 226 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 227 do { 228 struct page *page; 229 int nid; 230 231 if (!pte_present(*pte)) 232 continue; 233 page = vm_normal_page(vma, addr, *pte); 234 if (!page) 235 continue; 236 /* 237 * The check for PageReserved here is important to avoid 238 * handling zero pages and other pages that may have been 239 * marked special by the system. 240 * 241 * If the PageReserved would not be checked here then f.e. 242 * the location of the zero page could have an influence 243 * on MPOL_MF_STRICT, zero pages would be counted for 244 * the per node stats, and there would be useless attempts 245 * to put zero pages on the migration list. 246 */ 247 if (PageReserved(page)) 248 continue; 249 nid = page_to_nid(page); 250 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 251 continue; 252 253 if (flags & MPOL_MF_STATS) 254 gather_stats(page, private, pte_dirty(*pte)); 255 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 256 migrate_page_add(page, private, flags); 257 else 258 break; 259 } while (pte++, addr += PAGE_SIZE, addr != end); 260 pte_unmap_unlock(orig_pte, ptl); 261 return addr != end; 262 } 263 264 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 265 unsigned long addr, unsigned long end, 266 const nodemask_t *nodes, unsigned long flags, 267 void *private) 268 { 269 pmd_t *pmd; 270 unsigned long next; 271 272 pmd = pmd_offset(pud, addr); 273 do { 274 next = pmd_addr_end(addr, end); 275 if (pmd_none_or_clear_bad(pmd)) 276 continue; 277 if (check_pte_range(vma, pmd, addr, next, nodes, 278 flags, private)) 279 return -EIO; 280 } while (pmd++, addr = next, addr != end); 281 return 0; 282 } 283 284 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 285 unsigned long addr, unsigned long end, 286 const nodemask_t *nodes, unsigned long flags, 287 void *private) 288 { 289 pud_t *pud; 290 unsigned long next; 291 292 pud = pud_offset(pgd, addr); 293 do { 294 next = pud_addr_end(addr, end); 295 if (pud_none_or_clear_bad(pud)) 296 continue; 297 if (check_pmd_range(vma, pud, addr, next, nodes, 298 flags, private)) 299 return -EIO; 300 } while (pud++, addr = next, addr != end); 301 return 0; 302 } 303 304 static inline int check_pgd_range(struct vm_area_struct *vma, 305 unsigned long addr, unsigned long end, 306 const nodemask_t *nodes, unsigned long flags, 307 void *private) 308 { 309 pgd_t *pgd; 310 unsigned long next; 311 312 pgd = pgd_offset(vma->vm_mm, addr); 313 do { 314 next = pgd_addr_end(addr, end); 315 if (pgd_none_or_clear_bad(pgd)) 316 continue; 317 if (check_pud_range(vma, pgd, addr, next, nodes, 318 flags, private)) 319 return -EIO; 320 } while (pgd++, addr = next, addr != end); 321 return 0; 322 } 323 324 /* 325 * Check if all pages in a range are on a set of nodes. 326 * If pagelist != NULL then isolate pages from the LRU and 327 * put them on the pagelist. 328 */ 329 static struct vm_area_struct * 330 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 331 const nodemask_t *nodes, unsigned long flags, void *private) 332 { 333 int err; 334 struct vm_area_struct *first, *vma, *prev; 335 336 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 337 338 err = migrate_prep(); 339 if (err) 340 return ERR_PTR(err); 341 } 342 343 first = find_vma(mm, start); 344 if (!first) 345 return ERR_PTR(-EFAULT); 346 prev = NULL; 347 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 348 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 349 if (!vma->vm_next && vma->vm_end < end) 350 return ERR_PTR(-EFAULT); 351 if (prev && prev->vm_end < vma->vm_start) 352 return ERR_PTR(-EFAULT); 353 } 354 if (!is_vm_hugetlb_page(vma) && 355 ((flags & MPOL_MF_STRICT) || 356 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 357 vma_migratable(vma)))) { 358 unsigned long endvma = vma->vm_end; 359 360 if (endvma > end) 361 endvma = end; 362 if (vma->vm_start > start) 363 start = vma->vm_start; 364 err = check_pgd_range(vma, start, endvma, nodes, 365 flags, private); 366 if (err) { 367 first = ERR_PTR(err); 368 break; 369 } 370 } 371 prev = vma; 372 } 373 return first; 374 } 375 376 /* Apply policy to a single VMA */ 377 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) 378 { 379 int err = 0; 380 struct mempolicy *old = vma->vm_policy; 381 382 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 383 vma->vm_start, vma->vm_end, vma->vm_pgoff, 384 vma->vm_ops, vma->vm_file, 385 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 386 387 if (vma->vm_ops && vma->vm_ops->set_policy) 388 err = vma->vm_ops->set_policy(vma, new); 389 if (!err) { 390 mpol_get(new); 391 vma->vm_policy = new; 392 mpol_free(old); 393 } 394 return err; 395 } 396 397 /* Step 2: apply policy to a range and do splits. */ 398 static int mbind_range(struct vm_area_struct *vma, unsigned long start, 399 unsigned long end, struct mempolicy *new) 400 { 401 struct vm_area_struct *next; 402 int err; 403 404 err = 0; 405 for (; vma && vma->vm_start < end; vma = next) { 406 next = vma->vm_next; 407 if (vma->vm_start < start) 408 err = split_vma(vma->vm_mm, vma, start, 1); 409 if (!err && vma->vm_end > end) 410 err = split_vma(vma->vm_mm, vma, end, 0); 411 if (!err) 412 err = policy_vma(vma, new); 413 if (err) 414 break; 415 } 416 return err; 417 } 418 419 static int contextualize_policy(int mode, nodemask_t *nodes) 420 { 421 if (!nodes) 422 return 0; 423 424 cpuset_update_task_memory_state(); 425 if (!cpuset_nodes_subset_current_mems_allowed(*nodes)) 426 return -EINVAL; 427 return mpol_check_policy(mode, nodes); 428 } 429 430 431 /* 432 * Update task->flags PF_MEMPOLICY bit: set iff non-default 433 * mempolicy. Allows more rapid checking of this (combined perhaps 434 * with other PF_* flag bits) on memory allocation hot code paths. 435 * 436 * If called from outside this file, the task 'p' should -only- be 437 * a newly forked child not yet visible on the task list, because 438 * manipulating the task flags of a visible task is not safe. 439 * 440 * The above limitation is why this routine has the funny name 441 * mpol_fix_fork_child_flag(). 442 * 443 * It is also safe to call this with a task pointer of current, 444 * which the static wrapper mpol_set_task_struct_flag() does, 445 * for use within this file. 446 */ 447 448 void mpol_fix_fork_child_flag(struct task_struct *p) 449 { 450 if (p->mempolicy) 451 p->flags |= PF_MEMPOLICY; 452 else 453 p->flags &= ~PF_MEMPOLICY; 454 } 455 456 static void mpol_set_task_struct_flag(void) 457 { 458 mpol_fix_fork_child_flag(current); 459 } 460 461 /* Set the process memory policy */ 462 long do_set_mempolicy(int mode, nodemask_t *nodes) 463 { 464 struct mempolicy *new; 465 466 if (contextualize_policy(mode, nodes)) 467 return -EINVAL; 468 new = mpol_new(mode, nodes); 469 if (IS_ERR(new)) 470 return PTR_ERR(new); 471 mpol_free(current->mempolicy); 472 current->mempolicy = new; 473 mpol_set_task_struct_flag(); 474 if (new && new->policy == MPOL_INTERLEAVE) 475 current->il_next = first_node(new->v.nodes); 476 return 0; 477 } 478 479 /* Fill a zone bitmap for a policy */ 480 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes) 481 { 482 int i; 483 484 nodes_clear(*nodes); 485 switch (p->policy) { 486 case MPOL_BIND: 487 for (i = 0; p->v.zonelist->zones[i]; i++) 488 node_set(zone_to_nid(p->v.zonelist->zones[i]), 489 *nodes); 490 break; 491 case MPOL_DEFAULT: 492 break; 493 case MPOL_INTERLEAVE: 494 *nodes = p->v.nodes; 495 break; 496 case MPOL_PREFERRED: 497 /* or use current node instead of online map? */ 498 if (p->v.preferred_node < 0) 499 *nodes = node_online_map; 500 else 501 node_set(p->v.preferred_node, *nodes); 502 break; 503 default: 504 BUG(); 505 } 506 } 507 508 static int lookup_node(struct mm_struct *mm, unsigned long addr) 509 { 510 struct page *p; 511 int err; 512 513 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 514 if (err >= 0) { 515 err = page_to_nid(p); 516 put_page(p); 517 } 518 return err; 519 } 520 521 /* Retrieve NUMA policy */ 522 long do_get_mempolicy(int *policy, nodemask_t *nmask, 523 unsigned long addr, unsigned long flags) 524 { 525 int err; 526 struct mm_struct *mm = current->mm; 527 struct vm_area_struct *vma = NULL; 528 struct mempolicy *pol = current->mempolicy; 529 530 cpuset_update_task_memory_state(); 531 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR)) 532 return -EINVAL; 533 if (flags & MPOL_F_ADDR) { 534 down_read(&mm->mmap_sem); 535 vma = find_vma_intersection(mm, addr, addr+1); 536 if (!vma) { 537 up_read(&mm->mmap_sem); 538 return -EFAULT; 539 } 540 if (vma->vm_ops && vma->vm_ops->get_policy) 541 pol = vma->vm_ops->get_policy(vma, addr); 542 else 543 pol = vma->vm_policy; 544 } else if (addr) 545 return -EINVAL; 546 547 if (!pol) 548 pol = &default_policy; 549 550 if (flags & MPOL_F_NODE) { 551 if (flags & MPOL_F_ADDR) { 552 err = lookup_node(mm, addr); 553 if (err < 0) 554 goto out; 555 *policy = err; 556 } else if (pol == current->mempolicy && 557 pol->policy == MPOL_INTERLEAVE) { 558 *policy = current->il_next; 559 } else { 560 err = -EINVAL; 561 goto out; 562 } 563 } else 564 *policy = pol->policy; 565 566 if (vma) { 567 up_read(¤t->mm->mmap_sem); 568 vma = NULL; 569 } 570 571 err = 0; 572 if (nmask) 573 get_zonemask(pol, nmask); 574 575 out: 576 if (vma) 577 up_read(¤t->mm->mmap_sem); 578 return err; 579 } 580 581 #ifdef CONFIG_MIGRATION 582 /* 583 * page migration 584 */ 585 static void migrate_page_add(struct page *page, struct list_head *pagelist, 586 unsigned long flags) 587 { 588 /* 589 * Avoid migrating a page that is shared with others. 590 */ 591 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) 592 isolate_lru_page(page, pagelist); 593 } 594 595 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 596 { 597 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0); 598 } 599 600 /* 601 * Migrate pages from one node to a target node. 602 * Returns error or the number of pages not migrated. 603 */ 604 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) 605 { 606 nodemask_t nmask; 607 LIST_HEAD(pagelist); 608 int err = 0; 609 610 nodes_clear(nmask); 611 node_set(source, nmask); 612 613 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask, 614 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 615 616 if (!list_empty(&pagelist)) 617 err = migrate_pages(&pagelist, new_node_page, dest); 618 619 return err; 620 } 621 622 /* 623 * Move pages between the two nodesets so as to preserve the physical 624 * layout as much as possible. 625 * 626 * Returns the number of page that could not be moved. 627 */ 628 int do_migrate_pages(struct mm_struct *mm, 629 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 630 { 631 LIST_HEAD(pagelist); 632 int busy = 0; 633 int err = 0; 634 nodemask_t tmp; 635 636 down_read(&mm->mmap_sem); 637 638 err = migrate_vmas(mm, from_nodes, to_nodes, flags); 639 if (err) 640 goto out; 641 642 /* 643 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 644 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 645 * bit in 'tmp', and return that <source, dest> pair for migration. 646 * The pair of nodemasks 'to' and 'from' define the map. 647 * 648 * If no pair of bits is found that way, fallback to picking some 649 * pair of 'source' and 'dest' bits that are not the same. If the 650 * 'source' and 'dest' bits are the same, this represents a node 651 * that will be migrating to itself, so no pages need move. 652 * 653 * If no bits are left in 'tmp', or if all remaining bits left 654 * in 'tmp' correspond to the same bit in 'to', return false 655 * (nothing left to migrate). 656 * 657 * This lets us pick a pair of nodes to migrate between, such that 658 * if possible the dest node is not already occupied by some other 659 * source node, minimizing the risk of overloading the memory on a 660 * node that would happen if we migrated incoming memory to a node 661 * before migrating outgoing memory source that same node. 662 * 663 * A single scan of tmp is sufficient. As we go, we remember the 664 * most recent <s, d> pair that moved (s != d). If we find a pair 665 * that not only moved, but what's better, moved to an empty slot 666 * (d is not set in tmp), then we break out then, with that pair. 667 * Otherwise when we finish scannng from_tmp, we at least have the 668 * most recent <s, d> pair that moved. If we get all the way through 669 * the scan of tmp without finding any node that moved, much less 670 * moved to an empty node, then there is nothing left worth migrating. 671 */ 672 673 tmp = *from_nodes; 674 while (!nodes_empty(tmp)) { 675 int s,d; 676 int source = -1; 677 int dest = 0; 678 679 for_each_node_mask(s, tmp) { 680 d = node_remap(s, *from_nodes, *to_nodes); 681 if (s == d) 682 continue; 683 684 source = s; /* Node moved. Memorize */ 685 dest = d; 686 687 /* dest not in remaining from nodes? */ 688 if (!node_isset(dest, tmp)) 689 break; 690 } 691 if (source == -1) 692 break; 693 694 node_clear(source, tmp); 695 err = migrate_to_node(mm, source, dest, flags); 696 if (err > 0) 697 busy += err; 698 if (err < 0) 699 break; 700 } 701 out: 702 up_read(&mm->mmap_sem); 703 if (err < 0) 704 return err; 705 return busy; 706 707 } 708 709 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 710 { 711 struct vm_area_struct *vma = (struct vm_area_struct *)private; 712 713 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 714 page_address_in_vma(page, vma)); 715 } 716 #else 717 718 static void migrate_page_add(struct page *page, struct list_head *pagelist, 719 unsigned long flags) 720 { 721 } 722 723 int do_migrate_pages(struct mm_struct *mm, 724 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 725 { 726 return -ENOSYS; 727 } 728 729 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 730 { 731 return NULL; 732 } 733 #endif 734 735 long do_mbind(unsigned long start, unsigned long len, 736 unsigned long mode, nodemask_t *nmask, unsigned long flags) 737 { 738 struct vm_area_struct *vma; 739 struct mm_struct *mm = current->mm; 740 struct mempolicy *new; 741 unsigned long end; 742 int err; 743 LIST_HEAD(pagelist); 744 745 if ((flags & ~(unsigned long)(MPOL_MF_STRICT | 746 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 747 || mode > MPOL_MAX) 748 return -EINVAL; 749 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 750 return -EPERM; 751 752 if (start & ~PAGE_MASK) 753 return -EINVAL; 754 755 if (mode == MPOL_DEFAULT) 756 flags &= ~MPOL_MF_STRICT; 757 758 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 759 end = start + len; 760 761 if (end < start) 762 return -EINVAL; 763 if (end == start) 764 return 0; 765 766 if (mpol_check_policy(mode, nmask)) 767 return -EINVAL; 768 769 new = mpol_new(mode, nmask); 770 if (IS_ERR(new)) 771 return PTR_ERR(new); 772 773 /* 774 * If we are using the default policy then operation 775 * on discontinuous address spaces is okay after all 776 */ 777 if (!new) 778 flags |= MPOL_MF_DISCONTIG_OK; 779 780 pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len, 781 mode, nmask ? nodes_addr(*nmask)[0] : -1); 782 783 down_write(&mm->mmap_sem); 784 vma = check_range(mm, start, end, nmask, 785 flags | MPOL_MF_INVERT, &pagelist); 786 787 err = PTR_ERR(vma); 788 if (!IS_ERR(vma)) { 789 int nr_failed = 0; 790 791 err = mbind_range(vma, start, end, new); 792 793 if (!list_empty(&pagelist)) 794 nr_failed = migrate_pages(&pagelist, new_vma_page, 795 (unsigned long)vma); 796 797 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 798 err = -EIO; 799 } 800 801 up_write(&mm->mmap_sem); 802 mpol_free(new); 803 return err; 804 } 805 806 /* 807 * User space interface with variable sized bitmaps for nodelists. 808 */ 809 810 /* Copy a node mask from user space. */ 811 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 812 unsigned long maxnode) 813 { 814 unsigned long k; 815 unsigned long nlongs; 816 unsigned long endmask; 817 818 --maxnode; 819 nodes_clear(*nodes); 820 if (maxnode == 0 || !nmask) 821 return 0; 822 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 823 return -EINVAL; 824 825 nlongs = BITS_TO_LONGS(maxnode); 826 if ((maxnode % BITS_PER_LONG) == 0) 827 endmask = ~0UL; 828 else 829 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 830 831 /* When the user specified more nodes than supported just check 832 if the non supported part is all zero. */ 833 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 834 if (nlongs > PAGE_SIZE/sizeof(long)) 835 return -EINVAL; 836 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 837 unsigned long t; 838 if (get_user(t, nmask + k)) 839 return -EFAULT; 840 if (k == nlongs - 1) { 841 if (t & endmask) 842 return -EINVAL; 843 } else if (t) 844 return -EINVAL; 845 } 846 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 847 endmask = ~0UL; 848 } 849 850 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 851 return -EFAULT; 852 nodes_addr(*nodes)[nlongs-1] &= endmask; 853 return 0; 854 } 855 856 /* Copy a kernel node mask to user space */ 857 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 858 nodemask_t *nodes) 859 { 860 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 861 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 862 863 if (copy > nbytes) { 864 if (copy > PAGE_SIZE) 865 return -EINVAL; 866 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 867 return -EFAULT; 868 copy = nbytes; 869 } 870 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 871 } 872 873 asmlinkage long sys_mbind(unsigned long start, unsigned long len, 874 unsigned long mode, 875 unsigned long __user *nmask, unsigned long maxnode, 876 unsigned flags) 877 { 878 nodemask_t nodes; 879 int err; 880 881 err = get_nodes(&nodes, nmask, maxnode); 882 if (err) 883 return err; 884 #ifdef CONFIG_CPUSETS 885 /* Restrict the nodes to the allowed nodes in the cpuset */ 886 nodes_and(nodes, nodes, current->mems_allowed); 887 #endif 888 return do_mbind(start, len, mode, &nodes, flags); 889 } 890 891 /* Set the process memory policy */ 892 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask, 893 unsigned long maxnode) 894 { 895 int err; 896 nodemask_t nodes; 897 898 if (mode < 0 || mode > MPOL_MAX) 899 return -EINVAL; 900 err = get_nodes(&nodes, nmask, maxnode); 901 if (err) 902 return err; 903 return do_set_mempolicy(mode, &nodes); 904 } 905 906 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode, 907 const unsigned long __user *old_nodes, 908 const unsigned long __user *new_nodes) 909 { 910 struct mm_struct *mm; 911 struct task_struct *task; 912 nodemask_t old; 913 nodemask_t new; 914 nodemask_t task_nodes; 915 int err; 916 917 err = get_nodes(&old, old_nodes, maxnode); 918 if (err) 919 return err; 920 921 err = get_nodes(&new, new_nodes, maxnode); 922 if (err) 923 return err; 924 925 /* Find the mm_struct */ 926 read_lock(&tasklist_lock); 927 task = pid ? find_task_by_pid(pid) : current; 928 if (!task) { 929 read_unlock(&tasklist_lock); 930 return -ESRCH; 931 } 932 mm = get_task_mm(task); 933 read_unlock(&tasklist_lock); 934 935 if (!mm) 936 return -EINVAL; 937 938 /* 939 * Check if this process has the right to modify the specified 940 * process. The right exists if the process has administrative 941 * capabilities, superuser privileges or the same 942 * userid as the target process. 943 */ 944 if ((current->euid != task->suid) && (current->euid != task->uid) && 945 (current->uid != task->suid) && (current->uid != task->uid) && 946 !capable(CAP_SYS_NICE)) { 947 err = -EPERM; 948 goto out; 949 } 950 951 task_nodes = cpuset_mems_allowed(task); 952 /* Is the user allowed to access the target nodes? */ 953 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { 954 err = -EPERM; 955 goto out; 956 } 957 958 if (!nodes_subset(new, node_online_map)) { 959 err = -EINVAL; 960 goto out; 961 } 962 963 err = security_task_movememory(task); 964 if (err) 965 goto out; 966 967 err = do_migrate_pages(mm, &old, &new, 968 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 969 out: 970 mmput(mm); 971 return err; 972 } 973 974 975 /* Retrieve NUMA policy */ 976 asmlinkage long sys_get_mempolicy(int __user *policy, 977 unsigned long __user *nmask, 978 unsigned long maxnode, 979 unsigned long addr, unsigned long flags) 980 { 981 int err, pval; 982 nodemask_t nodes; 983 984 if (nmask != NULL && maxnode < MAX_NUMNODES) 985 return -EINVAL; 986 987 err = do_get_mempolicy(&pval, &nodes, addr, flags); 988 989 if (err) 990 return err; 991 992 if (policy && put_user(pval, policy)) 993 return -EFAULT; 994 995 if (nmask) 996 err = copy_nodes_to_user(nmask, maxnode, &nodes); 997 998 return err; 999 } 1000 1001 #ifdef CONFIG_COMPAT 1002 1003 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1004 compat_ulong_t __user *nmask, 1005 compat_ulong_t maxnode, 1006 compat_ulong_t addr, compat_ulong_t flags) 1007 { 1008 long err; 1009 unsigned long __user *nm = NULL; 1010 unsigned long nr_bits, alloc_size; 1011 DECLARE_BITMAP(bm, MAX_NUMNODES); 1012 1013 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1014 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1015 1016 if (nmask) 1017 nm = compat_alloc_user_space(alloc_size); 1018 1019 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1020 1021 if (!err && nmask) { 1022 err = copy_from_user(bm, nm, alloc_size); 1023 /* ensure entire bitmap is zeroed */ 1024 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1025 err |= compat_put_bitmap(nmask, bm, nr_bits); 1026 } 1027 1028 return err; 1029 } 1030 1031 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1032 compat_ulong_t maxnode) 1033 { 1034 long err = 0; 1035 unsigned long __user *nm = NULL; 1036 unsigned long nr_bits, alloc_size; 1037 DECLARE_BITMAP(bm, MAX_NUMNODES); 1038 1039 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1040 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1041 1042 if (nmask) { 1043 err = compat_get_bitmap(bm, nmask, nr_bits); 1044 nm = compat_alloc_user_space(alloc_size); 1045 err |= copy_to_user(nm, bm, alloc_size); 1046 } 1047 1048 if (err) 1049 return -EFAULT; 1050 1051 return sys_set_mempolicy(mode, nm, nr_bits+1); 1052 } 1053 1054 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1055 compat_ulong_t mode, compat_ulong_t __user *nmask, 1056 compat_ulong_t maxnode, compat_ulong_t flags) 1057 { 1058 long err = 0; 1059 unsigned long __user *nm = NULL; 1060 unsigned long nr_bits, alloc_size; 1061 nodemask_t bm; 1062 1063 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1064 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1065 1066 if (nmask) { 1067 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1068 nm = compat_alloc_user_space(alloc_size); 1069 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1070 } 1071 1072 if (err) 1073 return -EFAULT; 1074 1075 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1076 } 1077 1078 #endif 1079 1080 /* 1081 * get_vma_policy(@task, @vma, @addr) 1082 * @task - task for fallback if vma policy == default 1083 * @vma - virtual memory area whose policy is sought 1084 * @addr - address in @vma for shared policy lookup 1085 * 1086 * Returns effective policy for a VMA at specified address. 1087 * Falls back to @task or system default policy, as necessary. 1088 * Returned policy has extra reference count if shared, vma, 1089 * or some other task's policy [show_numa_maps() can pass 1090 * @task != current]. It is the caller's responsibility to 1091 * free the reference in these cases. 1092 */ 1093 static struct mempolicy * get_vma_policy(struct task_struct *task, 1094 struct vm_area_struct *vma, unsigned long addr) 1095 { 1096 struct mempolicy *pol = task->mempolicy; 1097 int shared_pol = 0; 1098 1099 if (vma) { 1100 if (vma->vm_ops && vma->vm_ops->get_policy) { 1101 pol = vma->vm_ops->get_policy(vma, addr); 1102 shared_pol = 1; /* if pol non-NULL, add ref below */ 1103 } else if (vma->vm_policy && 1104 vma->vm_policy->policy != MPOL_DEFAULT) 1105 pol = vma->vm_policy; 1106 } 1107 if (!pol) 1108 pol = &default_policy; 1109 else if (!shared_pol && pol != current->mempolicy) 1110 mpol_get(pol); /* vma or other task's policy */ 1111 return pol; 1112 } 1113 1114 /* Return a zonelist representing a mempolicy */ 1115 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy) 1116 { 1117 int nd; 1118 1119 switch (policy->policy) { 1120 case MPOL_PREFERRED: 1121 nd = policy->v.preferred_node; 1122 if (nd < 0) 1123 nd = numa_node_id(); 1124 break; 1125 case MPOL_BIND: 1126 /* Lower zones don't get a policy applied */ 1127 /* Careful: current->mems_allowed might have moved */ 1128 if (gfp_zone(gfp) >= policy_zone) 1129 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist)) 1130 return policy->v.zonelist; 1131 /*FALL THROUGH*/ 1132 case MPOL_INTERLEAVE: /* should not happen */ 1133 case MPOL_DEFAULT: 1134 nd = numa_node_id(); 1135 break; 1136 default: 1137 nd = 0; 1138 BUG(); 1139 } 1140 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp); 1141 } 1142 1143 /* Do dynamic interleaving for a process */ 1144 static unsigned interleave_nodes(struct mempolicy *policy) 1145 { 1146 unsigned nid, next; 1147 struct task_struct *me = current; 1148 1149 nid = me->il_next; 1150 next = next_node(nid, policy->v.nodes); 1151 if (next >= MAX_NUMNODES) 1152 next = first_node(policy->v.nodes); 1153 me->il_next = next; 1154 return nid; 1155 } 1156 1157 /* 1158 * Depending on the memory policy provide a node from which to allocate the 1159 * next slab entry. 1160 */ 1161 unsigned slab_node(struct mempolicy *policy) 1162 { 1163 int pol = policy ? policy->policy : MPOL_DEFAULT; 1164 1165 switch (pol) { 1166 case MPOL_INTERLEAVE: 1167 return interleave_nodes(policy); 1168 1169 case MPOL_BIND: 1170 /* 1171 * Follow bind policy behavior and start allocation at the 1172 * first node. 1173 */ 1174 return zone_to_nid(policy->v.zonelist->zones[0]); 1175 1176 case MPOL_PREFERRED: 1177 if (policy->v.preferred_node >= 0) 1178 return policy->v.preferred_node; 1179 /* Fall through */ 1180 1181 default: 1182 return numa_node_id(); 1183 } 1184 } 1185 1186 /* Do static interleaving for a VMA with known offset. */ 1187 static unsigned offset_il_node(struct mempolicy *pol, 1188 struct vm_area_struct *vma, unsigned long off) 1189 { 1190 unsigned nnodes = nodes_weight(pol->v.nodes); 1191 unsigned target = (unsigned)off % nnodes; 1192 int c; 1193 int nid = -1; 1194 1195 c = 0; 1196 do { 1197 nid = next_node(nid, pol->v.nodes); 1198 c++; 1199 } while (c <= target); 1200 return nid; 1201 } 1202 1203 /* Determine a node number for interleave */ 1204 static inline unsigned interleave_nid(struct mempolicy *pol, 1205 struct vm_area_struct *vma, unsigned long addr, int shift) 1206 { 1207 if (vma) { 1208 unsigned long off; 1209 1210 /* 1211 * for small pages, there is no difference between 1212 * shift and PAGE_SHIFT, so the bit-shift is safe. 1213 * for huge pages, since vm_pgoff is in units of small 1214 * pages, we need to shift off the always 0 bits to get 1215 * a useful offset. 1216 */ 1217 BUG_ON(shift < PAGE_SHIFT); 1218 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1219 off += (addr - vma->vm_start) >> shift; 1220 return offset_il_node(pol, vma, off); 1221 } else 1222 return interleave_nodes(pol); 1223 } 1224 1225 #ifdef CONFIG_HUGETLBFS 1226 /* 1227 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1228 * @vma = virtual memory area whose policy is sought 1229 * @addr = address in @vma for shared policy lookup and interleave policy 1230 * @gfp_flags = for requested zone 1231 * @mpol = pointer to mempolicy pointer for reference counted 'BIND policy 1232 * 1233 * Returns a zonelist suitable for a huge page allocation. 1234 * If the effective policy is 'BIND, returns pointer to policy's zonelist. 1235 * If it is also a policy for which get_vma_policy() returns an extra 1236 * reference, we must hold that reference until after allocation. 1237 * In that case, return policy via @mpol so hugetlb allocation can drop 1238 * the reference. For non-'BIND referenced policies, we can/do drop the 1239 * reference here, so the caller doesn't need to know about the special case 1240 * for default and current task policy. 1241 */ 1242 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1243 gfp_t gfp_flags, struct mempolicy **mpol) 1244 { 1245 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1246 struct zonelist *zl; 1247 1248 *mpol = NULL; /* probably no unref needed */ 1249 if (pol->policy == MPOL_INTERLEAVE) { 1250 unsigned nid; 1251 1252 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT); 1253 __mpol_free(pol); /* finished with pol */ 1254 return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags); 1255 } 1256 1257 zl = zonelist_policy(GFP_HIGHUSER, pol); 1258 if (unlikely(pol != &default_policy && pol != current->mempolicy)) { 1259 if (pol->policy != MPOL_BIND) 1260 __mpol_free(pol); /* finished with pol */ 1261 else 1262 *mpol = pol; /* unref needed after allocation */ 1263 } 1264 return zl; 1265 } 1266 #endif 1267 1268 /* Allocate a page in interleaved policy. 1269 Own path because it needs to do special accounting. */ 1270 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1271 unsigned nid) 1272 { 1273 struct zonelist *zl; 1274 struct page *page; 1275 1276 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp); 1277 page = __alloc_pages(gfp, order, zl); 1278 if (page && page_zone(page) == zl->zones[0]) 1279 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1280 return page; 1281 } 1282 1283 /** 1284 * alloc_page_vma - Allocate a page for a VMA. 1285 * 1286 * @gfp: 1287 * %GFP_USER user allocation. 1288 * %GFP_KERNEL kernel allocations, 1289 * %GFP_HIGHMEM highmem/user allocations, 1290 * %GFP_FS allocation should not call back into a file system. 1291 * %GFP_ATOMIC don't sleep. 1292 * 1293 * @vma: Pointer to VMA or NULL if not available. 1294 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1295 * 1296 * This function allocates a page from the kernel page pool and applies 1297 * a NUMA policy associated with the VMA or the current process. 1298 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1299 * mm_struct of the VMA to prevent it from going away. Should be used for 1300 * all allocations for pages that will be mapped into 1301 * user space. Returns NULL when no page can be allocated. 1302 * 1303 * Should be called with the mm_sem of the vma hold. 1304 */ 1305 struct page * 1306 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) 1307 { 1308 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1309 struct zonelist *zl; 1310 1311 cpuset_update_task_memory_state(); 1312 1313 if (unlikely(pol->policy == MPOL_INTERLEAVE)) { 1314 unsigned nid; 1315 1316 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); 1317 return alloc_page_interleave(gfp, 0, nid); 1318 } 1319 zl = zonelist_policy(gfp, pol); 1320 if (pol != &default_policy && pol != current->mempolicy) { 1321 /* 1322 * slow path: ref counted policy -- shared or vma 1323 */ 1324 struct page *page = __alloc_pages(gfp, 0, zl); 1325 __mpol_free(pol); 1326 return page; 1327 } 1328 /* 1329 * fast path: default or task policy 1330 */ 1331 return __alloc_pages(gfp, 0, zl); 1332 } 1333 1334 /** 1335 * alloc_pages_current - Allocate pages. 1336 * 1337 * @gfp: 1338 * %GFP_USER user allocation, 1339 * %GFP_KERNEL kernel allocation, 1340 * %GFP_HIGHMEM highmem allocation, 1341 * %GFP_FS don't call back into a file system. 1342 * %GFP_ATOMIC don't sleep. 1343 * @order: Power of two of allocation size in pages. 0 is a single page. 1344 * 1345 * Allocate a page from the kernel page pool. When not in 1346 * interrupt context and apply the current process NUMA policy. 1347 * Returns NULL when no page can be allocated. 1348 * 1349 * Don't call cpuset_update_task_memory_state() unless 1350 * 1) it's ok to take cpuset_sem (can WAIT), and 1351 * 2) allocating for current task (not interrupt). 1352 */ 1353 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1354 { 1355 struct mempolicy *pol = current->mempolicy; 1356 1357 if ((gfp & __GFP_WAIT) && !in_interrupt()) 1358 cpuset_update_task_memory_state(); 1359 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1360 pol = &default_policy; 1361 if (pol->policy == MPOL_INTERLEAVE) 1362 return alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1363 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol)); 1364 } 1365 EXPORT_SYMBOL(alloc_pages_current); 1366 1367 /* 1368 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it 1369 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1370 * with the mems_allowed returned by cpuset_mems_allowed(). This 1371 * keeps mempolicies cpuset relative after its cpuset moves. See 1372 * further kernel/cpuset.c update_nodemask(). 1373 */ 1374 void *cpuset_being_rebound; 1375 1376 /* Slow path of a mempolicy copy */ 1377 struct mempolicy *__mpol_copy(struct mempolicy *old) 1378 { 1379 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1380 1381 if (!new) 1382 return ERR_PTR(-ENOMEM); 1383 if (current_cpuset_is_being_rebound()) { 1384 nodemask_t mems = cpuset_mems_allowed(current); 1385 mpol_rebind_policy(old, &mems); 1386 } 1387 *new = *old; 1388 atomic_set(&new->refcnt, 1); 1389 if (new->policy == MPOL_BIND) { 1390 int sz = ksize(old->v.zonelist); 1391 new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL); 1392 if (!new->v.zonelist) { 1393 kmem_cache_free(policy_cache, new); 1394 return ERR_PTR(-ENOMEM); 1395 } 1396 } 1397 return new; 1398 } 1399 1400 /* Slow path of a mempolicy comparison */ 1401 int __mpol_equal(struct mempolicy *a, struct mempolicy *b) 1402 { 1403 if (!a || !b) 1404 return 0; 1405 if (a->policy != b->policy) 1406 return 0; 1407 switch (a->policy) { 1408 case MPOL_DEFAULT: 1409 return 1; 1410 case MPOL_INTERLEAVE: 1411 return nodes_equal(a->v.nodes, b->v.nodes); 1412 case MPOL_PREFERRED: 1413 return a->v.preferred_node == b->v.preferred_node; 1414 case MPOL_BIND: { 1415 int i; 1416 for (i = 0; a->v.zonelist->zones[i]; i++) 1417 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i]) 1418 return 0; 1419 return b->v.zonelist->zones[i] == NULL; 1420 } 1421 default: 1422 BUG(); 1423 return 0; 1424 } 1425 } 1426 1427 /* Slow path of a mpol destructor. */ 1428 void __mpol_free(struct mempolicy *p) 1429 { 1430 if (!atomic_dec_and_test(&p->refcnt)) 1431 return; 1432 if (p->policy == MPOL_BIND) 1433 kfree(p->v.zonelist); 1434 p->policy = MPOL_DEFAULT; 1435 kmem_cache_free(policy_cache, p); 1436 } 1437 1438 /* 1439 * Shared memory backing store policy support. 1440 * 1441 * Remember policies even when nobody has shared memory mapped. 1442 * The policies are kept in Red-Black tree linked from the inode. 1443 * They are protected by the sp->lock spinlock, which should be held 1444 * for any accesses to the tree. 1445 */ 1446 1447 /* lookup first element intersecting start-end */ 1448 /* Caller holds sp->lock */ 1449 static struct sp_node * 1450 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 1451 { 1452 struct rb_node *n = sp->root.rb_node; 1453 1454 while (n) { 1455 struct sp_node *p = rb_entry(n, struct sp_node, nd); 1456 1457 if (start >= p->end) 1458 n = n->rb_right; 1459 else if (end <= p->start) 1460 n = n->rb_left; 1461 else 1462 break; 1463 } 1464 if (!n) 1465 return NULL; 1466 for (;;) { 1467 struct sp_node *w = NULL; 1468 struct rb_node *prev = rb_prev(n); 1469 if (!prev) 1470 break; 1471 w = rb_entry(prev, struct sp_node, nd); 1472 if (w->end <= start) 1473 break; 1474 n = prev; 1475 } 1476 return rb_entry(n, struct sp_node, nd); 1477 } 1478 1479 /* Insert a new shared policy into the list. */ 1480 /* Caller holds sp->lock */ 1481 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 1482 { 1483 struct rb_node **p = &sp->root.rb_node; 1484 struct rb_node *parent = NULL; 1485 struct sp_node *nd; 1486 1487 while (*p) { 1488 parent = *p; 1489 nd = rb_entry(parent, struct sp_node, nd); 1490 if (new->start < nd->start) 1491 p = &(*p)->rb_left; 1492 else if (new->end > nd->end) 1493 p = &(*p)->rb_right; 1494 else 1495 BUG(); 1496 } 1497 rb_link_node(&new->nd, parent, p); 1498 rb_insert_color(&new->nd, &sp->root); 1499 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 1500 new->policy ? new->policy->policy : 0); 1501 } 1502 1503 /* Find shared policy intersecting idx */ 1504 struct mempolicy * 1505 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 1506 { 1507 struct mempolicy *pol = NULL; 1508 struct sp_node *sn; 1509 1510 if (!sp->root.rb_node) 1511 return NULL; 1512 spin_lock(&sp->lock); 1513 sn = sp_lookup(sp, idx, idx+1); 1514 if (sn) { 1515 mpol_get(sn->policy); 1516 pol = sn->policy; 1517 } 1518 spin_unlock(&sp->lock); 1519 return pol; 1520 } 1521 1522 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 1523 { 1524 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 1525 rb_erase(&n->nd, &sp->root); 1526 mpol_free(n->policy); 1527 kmem_cache_free(sn_cache, n); 1528 } 1529 1530 struct sp_node * 1531 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol) 1532 { 1533 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 1534 1535 if (!n) 1536 return NULL; 1537 n->start = start; 1538 n->end = end; 1539 mpol_get(pol); 1540 n->policy = pol; 1541 return n; 1542 } 1543 1544 /* Replace a policy range. */ 1545 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 1546 unsigned long end, struct sp_node *new) 1547 { 1548 struct sp_node *n, *new2 = NULL; 1549 1550 restart: 1551 spin_lock(&sp->lock); 1552 n = sp_lookup(sp, start, end); 1553 /* Take care of old policies in the same range. */ 1554 while (n && n->start < end) { 1555 struct rb_node *next = rb_next(&n->nd); 1556 if (n->start >= start) { 1557 if (n->end <= end) 1558 sp_delete(sp, n); 1559 else 1560 n->start = end; 1561 } else { 1562 /* Old policy spanning whole new range. */ 1563 if (n->end > end) { 1564 if (!new2) { 1565 spin_unlock(&sp->lock); 1566 new2 = sp_alloc(end, n->end, n->policy); 1567 if (!new2) 1568 return -ENOMEM; 1569 goto restart; 1570 } 1571 n->end = start; 1572 sp_insert(sp, new2); 1573 new2 = NULL; 1574 break; 1575 } else 1576 n->end = start; 1577 } 1578 if (!next) 1579 break; 1580 n = rb_entry(next, struct sp_node, nd); 1581 } 1582 if (new) 1583 sp_insert(sp, new); 1584 spin_unlock(&sp->lock); 1585 if (new2) { 1586 mpol_free(new2->policy); 1587 kmem_cache_free(sn_cache, new2); 1588 } 1589 return 0; 1590 } 1591 1592 void mpol_shared_policy_init(struct shared_policy *info, int policy, 1593 nodemask_t *policy_nodes) 1594 { 1595 info->root = RB_ROOT; 1596 spin_lock_init(&info->lock); 1597 1598 if (policy != MPOL_DEFAULT) { 1599 struct mempolicy *newpol; 1600 1601 /* Falls back to MPOL_DEFAULT on any error */ 1602 newpol = mpol_new(policy, policy_nodes); 1603 if (!IS_ERR(newpol)) { 1604 /* Create pseudo-vma that contains just the policy */ 1605 struct vm_area_struct pvma; 1606 1607 memset(&pvma, 0, sizeof(struct vm_area_struct)); 1608 /* Policy covers entire file */ 1609 pvma.vm_end = TASK_SIZE; 1610 mpol_set_shared_policy(info, &pvma, newpol); 1611 mpol_free(newpol); 1612 } 1613 } 1614 } 1615 1616 int mpol_set_shared_policy(struct shared_policy *info, 1617 struct vm_area_struct *vma, struct mempolicy *npol) 1618 { 1619 int err; 1620 struct sp_node *new = NULL; 1621 unsigned long sz = vma_pages(vma); 1622 1623 pr_debug("set_shared_policy %lx sz %lu %d %lx\n", 1624 vma->vm_pgoff, 1625 sz, npol? npol->policy : -1, 1626 npol ? nodes_addr(npol->v.nodes)[0] : -1); 1627 1628 if (npol) { 1629 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 1630 if (!new) 1631 return -ENOMEM; 1632 } 1633 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 1634 if (err && new) 1635 kmem_cache_free(sn_cache, new); 1636 return err; 1637 } 1638 1639 /* Free a backing policy store on inode delete. */ 1640 void mpol_free_shared_policy(struct shared_policy *p) 1641 { 1642 struct sp_node *n; 1643 struct rb_node *next; 1644 1645 if (!p->root.rb_node) 1646 return; 1647 spin_lock(&p->lock); 1648 next = rb_first(&p->root); 1649 while (next) { 1650 n = rb_entry(next, struct sp_node, nd); 1651 next = rb_next(&n->nd); 1652 rb_erase(&n->nd, &p->root); 1653 mpol_free(n->policy); 1654 kmem_cache_free(sn_cache, n); 1655 } 1656 spin_unlock(&p->lock); 1657 } 1658 1659 /* assumes fs == KERNEL_DS */ 1660 void __init numa_policy_init(void) 1661 { 1662 nodemask_t interleave_nodes; 1663 unsigned long largest = 0; 1664 int nid, prefer = 0; 1665 1666 policy_cache = kmem_cache_create("numa_policy", 1667 sizeof(struct mempolicy), 1668 0, SLAB_PANIC, NULL); 1669 1670 sn_cache = kmem_cache_create("shared_policy_node", 1671 sizeof(struct sp_node), 1672 0, SLAB_PANIC, NULL); 1673 1674 /* 1675 * Set interleaving policy for system init. Interleaving is only 1676 * enabled across suitably sized nodes (default is >= 16MB), or 1677 * fall back to the largest node if they're all smaller. 1678 */ 1679 nodes_clear(interleave_nodes); 1680 for_each_online_node(nid) { 1681 unsigned long total_pages = node_present_pages(nid); 1682 1683 /* Preserve the largest node */ 1684 if (largest < total_pages) { 1685 largest = total_pages; 1686 prefer = nid; 1687 } 1688 1689 /* Interleave this node? */ 1690 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 1691 node_set(nid, interleave_nodes); 1692 } 1693 1694 /* All too small, use the largest */ 1695 if (unlikely(nodes_empty(interleave_nodes))) 1696 node_set(prefer, interleave_nodes); 1697 1698 if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes)) 1699 printk("numa_policy_init: interleaving failed\n"); 1700 } 1701 1702 /* Reset policy of current process to default */ 1703 void numa_default_policy(void) 1704 { 1705 do_set_mempolicy(MPOL_DEFAULT, NULL); 1706 } 1707 1708 /* Migrate a policy to a different set of nodes */ 1709 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 1710 { 1711 nodemask_t *mpolmask; 1712 nodemask_t tmp; 1713 1714 if (!pol) 1715 return; 1716 mpolmask = &pol->cpuset_mems_allowed; 1717 if (nodes_equal(*mpolmask, *newmask)) 1718 return; 1719 1720 switch (pol->policy) { 1721 case MPOL_DEFAULT: 1722 break; 1723 case MPOL_INTERLEAVE: 1724 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask); 1725 pol->v.nodes = tmp; 1726 *mpolmask = *newmask; 1727 current->il_next = node_remap(current->il_next, 1728 *mpolmask, *newmask); 1729 break; 1730 case MPOL_PREFERRED: 1731 pol->v.preferred_node = node_remap(pol->v.preferred_node, 1732 *mpolmask, *newmask); 1733 *mpolmask = *newmask; 1734 break; 1735 case MPOL_BIND: { 1736 nodemask_t nodes; 1737 struct zone **z; 1738 struct zonelist *zonelist; 1739 1740 nodes_clear(nodes); 1741 for (z = pol->v.zonelist->zones; *z; z++) 1742 node_set(zone_to_nid(*z), nodes); 1743 nodes_remap(tmp, nodes, *mpolmask, *newmask); 1744 nodes = tmp; 1745 1746 zonelist = bind_zonelist(&nodes); 1747 1748 /* If no mem, then zonelist is NULL and we keep old zonelist. 1749 * If that old zonelist has no remaining mems_allowed nodes, 1750 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT. 1751 */ 1752 1753 if (!IS_ERR(zonelist)) { 1754 /* Good - got mem - substitute new zonelist */ 1755 kfree(pol->v.zonelist); 1756 pol->v.zonelist = zonelist; 1757 } 1758 *mpolmask = *newmask; 1759 break; 1760 } 1761 default: 1762 BUG(); 1763 break; 1764 } 1765 } 1766 1767 /* 1768 * Wrapper for mpol_rebind_policy() that just requires task 1769 * pointer, and updates task mempolicy. 1770 */ 1771 1772 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 1773 { 1774 mpol_rebind_policy(tsk->mempolicy, new); 1775 } 1776 1777 /* 1778 * Rebind each vma in mm to new nodemask. 1779 * 1780 * Call holding a reference to mm. Takes mm->mmap_sem during call. 1781 */ 1782 1783 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 1784 { 1785 struct vm_area_struct *vma; 1786 1787 down_write(&mm->mmap_sem); 1788 for (vma = mm->mmap; vma; vma = vma->vm_next) 1789 mpol_rebind_policy(vma->vm_policy, new); 1790 up_write(&mm->mmap_sem); 1791 } 1792 1793 /* 1794 * Display pages allocated per node and memory policy via /proc. 1795 */ 1796 1797 static const char * const policy_types[] = 1798 { "default", "prefer", "bind", "interleave" }; 1799 1800 /* 1801 * Convert a mempolicy into a string. 1802 * Returns the number of characters in buffer (if positive) 1803 * or an error (negative) 1804 */ 1805 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 1806 { 1807 char *p = buffer; 1808 int l; 1809 nodemask_t nodes; 1810 int mode = pol ? pol->policy : MPOL_DEFAULT; 1811 1812 switch (mode) { 1813 case MPOL_DEFAULT: 1814 nodes_clear(nodes); 1815 break; 1816 1817 case MPOL_PREFERRED: 1818 nodes_clear(nodes); 1819 node_set(pol->v.preferred_node, nodes); 1820 break; 1821 1822 case MPOL_BIND: 1823 get_zonemask(pol, &nodes); 1824 break; 1825 1826 case MPOL_INTERLEAVE: 1827 nodes = pol->v.nodes; 1828 break; 1829 1830 default: 1831 BUG(); 1832 return -EFAULT; 1833 } 1834 1835 l = strlen(policy_types[mode]); 1836 if (buffer + maxlen < p + l + 1) 1837 return -ENOSPC; 1838 1839 strcpy(p, policy_types[mode]); 1840 p += l; 1841 1842 if (!nodes_empty(nodes)) { 1843 if (buffer + maxlen < p + 2) 1844 return -ENOSPC; 1845 *p++ = '='; 1846 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 1847 } 1848 return p - buffer; 1849 } 1850 1851 struct numa_maps { 1852 unsigned long pages; 1853 unsigned long anon; 1854 unsigned long active; 1855 unsigned long writeback; 1856 unsigned long mapcount_max; 1857 unsigned long dirty; 1858 unsigned long swapcache; 1859 unsigned long node[MAX_NUMNODES]; 1860 }; 1861 1862 static void gather_stats(struct page *page, void *private, int pte_dirty) 1863 { 1864 struct numa_maps *md = private; 1865 int count = page_mapcount(page); 1866 1867 md->pages++; 1868 if (pte_dirty || PageDirty(page)) 1869 md->dirty++; 1870 1871 if (PageSwapCache(page)) 1872 md->swapcache++; 1873 1874 if (PageActive(page)) 1875 md->active++; 1876 1877 if (PageWriteback(page)) 1878 md->writeback++; 1879 1880 if (PageAnon(page)) 1881 md->anon++; 1882 1883 if (count > md->mapcount_max) 1884 md->mapcount_max = count; 1885 1886 md->node[page_to_nid(page)]++; 1887 } 1888 1889 #ifdef CONFIG_HUGETLB_PAGE 1890 static void check_huge_range(struct vm_area_struct *vma, 1891 unsigned long start, unsigned long end, 1892 struct numa_maps *md) 1893 { 1894 unsigned long addr; 1895 struct page *page; 1896 1897 for (addr = start; addr < end; addr += HPAGE_SIZE) { 1898 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK); 1899 pte_t pte; 1900 1901 if (!ptep) 1902 continue; 1903 1904 pte = *ptep; 1905 if (pte_none(pte)) 1906 continue; 1907 1908 page = pte_page(pte); 1909 if (!page) 1910 continue; 1911 1912 gather_stats(page, md, pte_dirty(*ptep)); 1913 } 1914 } 1915 #else 1916 static inline void check_huge_range(struct vm_area_struct *vma, 1917 unsigned long start, unsigned long end, 1918 struct numa_maps *md) 1919 { 1920 } 1921 #endif 1922 1923 int show_numa_map(struct seq_file *m, void *v) 1924 { 1925 struct proc_maps_private *priv = m->private; 1926 struct vm_area_struct *vma = v; 1927 struct numa_maps *md; 1928 struct file *file = vma->vm_file; 1929 struct mm_struct *mm = vma->vm_mm; 1930 struct mempolicy *pol; 1931 int n; 1932 char buffer[50]; 1933 1934 if (!mm) 1935 return 0; 1936 1937 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); 1938 if (!md) 1939 return 0; 1940 1941 pol = get_vma_policy(priv->task, vma, vma->vm_start); 1942 mpol_to_str(buffer, sizeof(buffer), pol); 1943 /* 1944 * unref shared or other task's mempolicy 1945 */ 1946 if (pol != &default_policy && pol != current->mempolicy) 1947 __mpol_free(pol); 1948 1949 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1950 1951 if (file) { 1952 seq_printf(m, " file="); 1953 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= "); 1954 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1955 seq_printf(m, " heap"); 1956 } else if (vma->vm_start <= mm->start_stack && 1957 vma->vm_end >= mm->start_stack) { 1958 seq_printf(m, " stack"); 1959 } 1960 1961 if (is_vm_hugetlb_page(vma)) { 1962 check_huge_range(vma, vma->vm_start, vma->vm_end, md); 1963 seq_printf(m, " huge"); 1964 } else { 1965 check_pgd_range(vma, vma->vm_start, vma->vm_end, 1966 &node_online_map, MPOL_MF_STATS, md); 1967 } 1968 1969 if (!md->pages) 1970 goto out; 1971 1972 if (md->anon) 1973 seq_printf(m," anon=%lu",md->anon); 1974 1975 if (md->dirty) 1976 seq_printf(m," dirty=%lu",md->dirty); 1977 1978 if (md->pages != md->anon && md->pages != md->dirty) 1979 seq_printf(m, " mapped=%lu", md->pages); 1980 1981 if (md->mapcount_max > 1) 1982 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1983 1984 if (md->swapcache) 1985 seq_printf(m," swapcache=%lu", md->swapcache); 1986 1987 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1988 seq_printf(m," active=%lu", md->active); 1989 1990 if (md->writeback) 1991 seq_printf(m," writeback=%lu", md->writeback); 1992 1993 for_each_online_node(n) 1994 if (md->node[n]) 1995 seq_printf(m, " N%d=%lu", n, md->node[n]); 1996 out: 1997 seq_putc(m, '\n'); 1998 kfree(md); 1999 2000 if (m->count < m->size) 2001 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; 2002 return 0; 2003 } 2004 2005