xref: /linux/mm/mempolicy.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case node -1 here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108    policied. */
109 enum zone_type policy_zone = 0;
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115 	.refcnt = ATOMIC_INIT(1), /* never free it */
116 	.mode = MPOL_PREFERRED,
117 	.flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 	/*
123 	 * If read-side task has no lock to protect task->mempolicy, write-side
124 	 * task will rebind the task->mempolicy by two step. The first step is
125 	 * setting all the newly nodes, and the second step is cleaning all the
126 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 	 * page.
128 	 * If we have a lock to protect task->mempolicy in read-side, we do
129 	 * rebind directly.
130 	 *
131 	 * step:
132 	 * 	MPOL_REBIND_ONCE - do rebind work at once
133 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
134 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 	 */
136 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 			enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 	int nd, k;
144 
145 	for_each_node_mask(nd, *nodemask) {
146 		struct zone *z;
147 
148 		for (k = 0; k <= policy_zone; k++) {
149 			z = &NODE_DATA(nd)->node_zones[k];
150 			if (z->present_pages > 0)
151 				return 1;
152 		}
153 	}
154 
155 	return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 	return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 				   const nodemask_t *rel)
165 {
166 	nodemask_t tmp;
167 	nodes_fold(tmp, *orig, nodes_weight(*rel));
168 	nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 	if (nodes_empty(*nodes))
174 		return -EINVAL;
175 	pol->v.nodes = *nodes;
176 	return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 	if (!nodes)
182 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
183 	else if (nodes_empty(*nodes))
184 		return -EINVAL;			/*  no allowed nodes */
185 	else
186 		pol->v.preferred_node = first_node(*nodes);
187 	return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 	if (!is_valid_nodemask(nodes))
193 		return -EINVAL;
194 	pol->v.nodes = *nodes;
195 	return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy.  mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags.  But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy.  May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 	int ret;
211 
212 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 	if (pol == NULL)
214 		return 0;
215 	/* Check N_HIGH_MEMORY */
216 	nodes_and(nsc->mask1,
217 		  cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218 
219 	VM_BUG_ON(!nodes);
220 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 		nodes = NULL;	/* explicit local allocation */
222 	else {
223 		if (pol->flags & MPOL_F_RELATIVE_NODES)
224 			mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 		else
226 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228 		if (mpol_store_user_nodemask(pol))
229 			pol->w.user_nodemask = *nodes;
230 		else
231 			pol->w.cpuset_mems_allowed =
232 						cpuset_current_mems_allowed;
233 	}
234 
235 	if (nodes)
236 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 	else
238 		ret = mpol_ops[pol->mode].create(pol, NULL);
239 	return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 				  nodemask_t *nodes)
248 {
249 	struct mempolicy *policy;
250 
251 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254 	if (mode == MPOL_DEFAULT) {
255 		if (nodes && !nodes_empty(*nodes))
256 			return ERR_PTR(-EINVAL);
257 		return NULL;	/* simply delete any existing policy */
258 	}
259 	VM_BUG_ON(!nodes);
260 
261 	/*
262 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 	 * All other modes require a valid pointer to a non-empty nodemask.
265 	 */
266 	if (mode == MPOL_PREFERRED) {
267 		if (nodes_empty(*nodes)) {
268 			if (((flags & MPOL_F_STATIC_NODES) ||
269 			     (flags & MPOL_F_RELATIVE_NODES)))
270 				return ERR_PTR(-EINVAL);
271 		}
272 	} else if (nodes_empty(*nodes))
273 		return ERR_PTR(-EINVAL);
274 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 	if (!policy)
276 		return ERR_PTR(-ENOMEM);
277 	atomic_set(&policy->refcnt, 1);
278 	policy->mode = mode;
279 	policy->flags = flags;
280 
281 	return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 	if (!atomic_dec_and_test(&p->refcnt))
288 		return;
289 	kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 				enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * 	MPOL_REBIND_ONCE  - do rebind work at once
300  * 	MPOL_REBIND_STEP1 - set all the newly nodes
301  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 				 enum mpol_rebind_step step)
305 {
306 	nodemask_t tmp;
307 
308 	if (pol->flags & MPOL_F_STATIC_NODES)
309 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 	else {
313 		/*
314 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 		 * result
316 		 */
317 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 			nodes_remap(tmp, pol->v.nodes,
319 					pol->w.cpuset_mems_allowed, *nodes);
320 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 		} else if (step == MPOL_REBIND_STEP2) {
322 			tmp = pol->w.cpuset_mems_allowed;
323 			pol->w.cpuset_mems_allowed = *nodes;
324 		} else
325 			BUG();
326 	}
327 
328 	if (nodes_empty(tmp))
329 		tmp = *nodes;
330 
331 	if (step == MPOL_REBIND_STEP1)
332 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 		pol->v.nodes = tmp;
335 	else
336 		BUG();
337 
338 	if (!node_isset(current->il_next, tmp)) {
339 		current->il_next = next_node(current->il_next, tmp);
340 		if (current->il_next >= MAX_NUMNODES)
341 			current->il_next = first_node(tmp);
342 		if (current->il_next >= MAX_NUMNODES)
343 			current->il_next = numa_node_id();
344 	}
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 				  const nodemask_t *nodes,
349 				  enum mpol_rebind_step step)
350 {
351 	nodemask_t tmp;
352 
353 	if (pol->flags & MPOL_F_STATIC_NODES) {
354 		int node = first_node(pol->w.user_nodemask);
355 
356 		if (node_isset(node, *nodes)) {
357 			pol->v.preferred_node = node;
358 			pol->flags &= ~MPOL_F_LOCAL;
359 		} else
360 			pol->flags |= MPOL_F_LOCAL;
361 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 		pol->v.preferred_node = first_node(tmp);
364 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
365 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 						   pol->w.cpuset_mems_allowed,
367 						   *nodes);
368 		pol->w.cpuset_mems_allowed = *nodes;
369 	}
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * 	MPOL_REBIND_ONCE  - do rebind work at once
385  * 	MPOL_REBIND_STEP1 - set all the newly nodes
386  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 				enum mpol_rebind_step step)
390 {
391 	if (!pol)
392 		return;
393 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 		return;
396 
397 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 		return;
399 
400 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 		BUG();
402 
403 	if (step == MPOL_REBIND_STEP1)
404 		pol->flags |= MPOL_F_REBINDING;
405 	else if (step == MPOL_REBIND_STEP2)
406 		pol->flags &= ~MPOL_F_REBINDING;
407 	else if (step >= MPOL_REBIND_NSTEP)
408 		BUG();
409 
410 	mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 			enum mpol_rebind_step step)
422 {
423 	mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 	struct vm_area_struct *vma;
435 
436 	down_write(&mm->mmap_sem);
437 	for (vma = mm->mmap; vma; vma = vma->vm_next)
438 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 	up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 	[MPOL_DEFAULT] = {
444 		.rebind = mpol_rebind_default,
445 	},
446 	[MPOL_INTERLEAVE] = {
447 		.create = mpol_new_interleave,
448 		.rebind = mpol_rebind_nodemask,
449 	},
450 	[MPOL_PREFERRED] = {
451 		.create = mpol_new_preferred,
452 		.rebind = mpol_rebind_preferred,
453 	},
454 	[MPOL_BIND] = {
455 		.create = mpol_new_bind,
456 		.rebind = mpol_rebind_nodemask,
457 	},
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 				unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 		unsigned long addr, unsigned long end,
466 		const nodemask_t *nodes, unsigned long flags,
467 		void *private)
468 {
469 	pte_t *orig_pte;
470 	pte_t *pte;
471 	spinlock_t *ptl;
472 
473 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 	do {
475 		struct page *page;
476 		int nid;
477 
478 		if (!pte_present(*pte))
479 			continue;
480 		page = vm_normal_page(vma, addr, *pte);
481 		if (!page)
482 			continue;
483 		/*
484 		 * vm_normal_page() filters out zero pages, but there might
485 		 * still be PageReserved pages to skip, perhaps in a VDSO.
486 		 * And we cannot move PageKsm pages sensibly or safely yet.
487 		 */
488 		if (PageReserved(page) || PageKsm(page))
489 			continue;
490 		nid = page_to_nid(page);
491 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 			continue;
493 
494 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 			migrate_page_add(page, private, flags);
496 		else
497 			break;
498 	} while (pte++, addr += PAGE_SIZE, addr != end);
499 	pte_unmap_unlock(orig_pte, ptl);
500 	return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 		unsigned long addr, unsigned long end,
505 		const nodemask_t *nodes, unsigned long flags,
506 		void *private)
507 {
508 	pmd_t *pmd;
509 	unsigned long next;
510 
511 	pmd = pmd_offset(pud, addr);
512 	do {
513 		next = pmd_addr_end(addr, end);
514 		split_huge_page_pmd(vma->vm_mm, pmd);
515 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 			continue;
517 		if (check_pte_range(vma, pmd, addr, next, nodes,
518 				    flags, private))
519 			return -EIO;
520 	} while (pmd++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 		unsigned long addr, unsigned long end,
526 		const nodemask_t *nodes, unsigned long flags,
527 		void *private)
528 {
529 	pud_t *pud;
530 	unsigned long next;
531 
532 	pud = pud_offset(pgd, addr);
533 	do {
534 		next = pud_addr_end(addr, end);
535 		if (pud_none_or_clear_bad(pud))
536 			continue;
537 		if (check_pmd_range(vma, pud, addr, next, nodes,
538 				    flags, private))
539 			return -EIO;
540 	} while (pud++, addr = next, addr != end);
541 	return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 		unsigned long addr, unsigned long end,
546 		const nodemask_t *nodes, unsigned long flags,
547 		void *private)
548 {
549 	pgd_t *pgd;
550 	unsigned long next;
551 
552 	pgd = pgd_offset(vma->vm_mm, addr);
553 	do {
554 		next = pgd_addr_end(addr, end);
555 		if (pgd_none_or_clear_bad(pgd))
556 			continue;
557 		if (check_pud_range(vma, pgd, addr, next, nodes,
558 				    flags, private))
559 			return -EIO;
560 	} while (pgd++, addr = next, addr != end);
561 	return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 		const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 	int err;
574 	struct vm_area_struct *first, *vma, *prev;
575 
576 
577 	first = find_vma(mm, start);
578 	if (!first)
579 		return ERR_PTR(-EFAULT);
580 	prev = NULL;
581 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 			if (!vma->vm_next && vma->vm_end < end)
584 				return ERR_PTR(-EFAULT);
585 			if (prev && prev->vm_end < vma->vm_start)
586 				return ERR_PTR(-EFAULT);
587 		}
588 		if (!is_vm_hugetlb_page(vma) &&
589 		    ((flags & MPOL_MF_STRICT) ||
590 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 				vma_migratable(vma)))) {
592 			unsigned long endvma = vma->vm_end;
593 
594 			if (endvma > end)
595 				endvma = end;
596 			if (vma->vm_start > start)
597 				start = vma->vm_start;
598 			err = check_pgd_range(vma, start, endvma, nodes,
599 						flags, private);
600 			if (err) {
601 				first = ERR_PTR(err);
602 				break;
603 			}
604 		}
605 		prev = vma;
606 	}
607 	return first;
608 }
609 
610 /* Step 2: apply policy to a range and do splits. */
611 static int mbind_range(struct mm_struct *mm, unsigned long start,
612 		       unsigned long end, struct mempolicy *new_pol)
613 {
614 	struct vm_area_struct *next;
615 	struct vm_area_struct *prev;
616 	struct vm_area_struct *vma;
617 	int err = 0;
618 	pgoff_t pgoff;
619 	unsigned long vmstart;
620 	unsigned long vmend;
621 
622 	vma = find_vma(mm, start);
623 	if (!vma || vma->vm_start > start)
624 		return -EFAULT;
625 
626 	prev = vma->vm_prev;
627 	if (start > vma->vm_start)
628 		prev = vma;
629 
630 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
631 		next = vma->vm_next;
632 		vmstart = max(start, vma->vm_start);
633 		vmend   = min(end, vma->vm_end);
634 
635 		if (mpol_equal(vma_policy(vma), new_pol))
636 			continue;
637 
638 		pgoff = vma->vm_pgoff +
639 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
640 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
641 				  vma->anon_vma, vma->vm_file, pgoff,
642 				  new_pol);
643 		if (prev) {
644 			vma = prev;
645 			next = vma->vm_next;
646 			continue;
647 		}
648 		if (vma->vm_start != vmstart) {
649 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
650 			if (err)
651 				goto out;
652 		}
653 		if (vma->vm_end != vmend) {
654 			err = split_vma(vma->vm_mm, vma, vmend, 0);
655 			if (err)
656 				goto out;
657 		}
658 
659 		/*
660 		 * Apply policy to a single VMA. The reference counting of
661 		 * policy for vma_policy linkages has already been handled by
662 		 * vma_merge and split_vma as necessary. If this is a shared
663 		 * policy then ->set_policy will increment the reference count
664 		 * for an sp node.
665 		 */
666 		pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 			vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 			vma->vm_ops, vma->vm_file,
669 			vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670 		if (vma->vm_ops && vma->vm_ops->set_policy) {
671 			err = vma->vm_ops->set_policy(vma, new_pol);
672 			if (err)
673 				goto out;
674 		}
675 	}
676 
677  out:
678 	return err;
679 }
680 
681 /*
682  * Update task->flags PF_MEMPOLICY bit: set iff non-default
683  * mempolicy.  Allows more rapid checking of this (combined perhaps
684  * with other PF_* flag bits) on memory allocation hot code paths.
685  *
686  * If called from outside this file, the task 'p' should -only- be
687  * a newly forked child not yet visible on the task list, because
688  * manipulating the task flags of a visible task is not safe.
689  *
690  * The above limitation is why this routine has the funny name
691  * mpol_fix_fork_child_flag().
692  *
693  * It is also safe to call this with a task pointer of current,
694  * which the static wrapper mpol_set_task_struct_flag() does,
695  * for use within this file.
696  */
697 
698 void mpol_fix_fork_child_flag(struct task_struct *p)
699 {
700 	if (p->mempolicy)
701 		p->flags |= PF_MEMPOLICY;
702 	else
703 		p->flags &= ~PF_MEMPOLICY;
704 }
705 
706 static void mpol_set_task_struct_flag(void)
707 {
708 	mpol_fix_fork_child_flag(current);
709 }
710 
711 /* Set the process memory policy */
712 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 			     nodemask_t *nodes)
714 {
715 	struct mempolicy *new, *old;
716 	struct mm_struct *mm = current->mm;
717 	NODEMASK_SCRATCH(scratch);
718 	int ret;
719 
720 	if (!scratch)
721 		return -ENOMEM;
722 
723 	new = mpol_new(mode, flags, nodes);
724 	if (IS_ERR(new)) {
725 		ret = PTR_ERR(new);
726 		goto out;
727 	}
728 	/*
729 	 * prevent changing our mempolicy while show_numa_maps()
730 	 * is using it.
731 	 * Note:  do_set_mempolicy() can be called at init time
732 	 * with no 'mm'.
733 	 */
734 	if (mm)
735 		down_write(&mm->mmap_sem);
736 	task_lock(current);
737 	ret = mpol_set_nodemask(new, nodes, scratch);
738 	if (ret) {
739 		task_unlock(current);
740 		if (mm)
741 			up_write(&mm->mmap_sem);
742 		mpol_put(new);
743 		goto out;
744 	}
745 	old = current->mempolicy;
746 	current->mempolicy = new;
747 	mpol_set_task_struct_flag();
748 	if (new && new->mode == MPOL_INTERLEAVE &&
749 	    nodes_weight(new->v.nodes))
750 		current->il_next = first_node(new->v.nodes);
751 	task_unlock(current);
752 	if (mm)
753 		up_write(&mm->mmap_sem);
754 
755 	mpol_put(old);
756 	ret = 0;
757 out:
758 	NODEMASK_SCRATCH_FREE(scratch);
759 	return ret;
760 }
761 
762 /*
763  * Return nodemask for policy for get_mempolicy() query
764  *
765  * Called with task's alloc_lock held
766  */
767 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768 {
769 	nodes_clear(*nodes);
770 	if (p == &default_policy)
771 		return;
772 
773 	switch (p->mode) {
774 	case MPOL_BIND:
775 		/* Fall through */
776 	case MPOL_INTERLEAVE:
777 		*nodes = p->v.nodes;
778 		break;
779 	case MPOL_PREFERRED:
780 		if (!(p->flags & MPOL_F_LOCAL))
781 			node_set(p->v.preferred_node, *nodes);
782 		/* else return empty node mask for local allocation */
783 		break;
784 	default:
785 		BUG();
786 	}
787 }
788 
789 static int lookup_node(struct mm_struct *mm, unsigned long addr)
790 {
791 	struct page *p;
792 	int err;
793 
794 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795 	if (err >= 0) {
796 		err = page_to_nid(p);
797 		put_page(p);
798 	}
799 	return err;
800 }
801 
802 /* Retrieve NUMA policy */
803 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 			     unsigned long addr, unsigned long flags)
805 {
806 	int err;
807 	struct mm_struct *mm = current->mm;
808 	struct vm_area_struct *vma = NULL;
809 	struct mempolicy *pol = current->mempolicy;
810 
811 	if (flags &
812 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 		return -EINVAL;
814 
815 	if (flags & MPOL_F_MEMS_ALLOWED) {
816 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817 			return -EINVAL;
818 		*policy = 0;	/* just so it's initialized */
819 		task_lock(current);
820 		*nmask  = cpuset_current_mems_allowed;
821 		task_unlock(current);
822 		return 0;
823 	}
824 
825 	if (flags & MPOL_F_ADDR) {
826 		/*
827 		 * Do NOT fall back to task policy if the
828 		 * vma/shared policy at addr is NULL.  We
829 		 * want to return MPOL_DEFAULT in this case.
830 		 */
831 		down_read(&mm->mmap_sem);
832 		vma = find_vma_intersection(mm, addr, addr+1);
833 		if (!vma) {
834 			up_read(&mm->mmap_sem);
835 			return -EFAULT;
836 		}
837 		if (vma->vm_ops && vma->vm_ops->get_policy)
838 			pol = vma->vm_ops->get_policy(vma, addr);
839 		else
840 			pol = vma->vm_policy;
841 	} else if (addr)
842 		return -EINVAL;
843 
844 	if (!pol)
845 		pol = &default_policy;	/* indicates default behavior */
846 
847 	if (flags & MPOL_F_NODE) {
848 		if (flags & MPOL_F_ADDR) {
849 			err = lookup_node(mm, addr);
850 			if (err < 0)
851 				goto out;
852 			*policy = err;
853 		} else if (pol == current->mempolicy &&
854 				pol->mode == MPOL_INTERLEAVE) {
855 			*policy = current->il_next;
856 		} else {
857 			err = -EINVAL;
858 			goto out;
859 		}
860 	} else {
861 		*policy = pol == &default_policy ? MPOL_DEFAULT :
862 						pol->mode;
863 		/*
864 		 * Internal mempolicy flags must be masked off before exposing
865 		 * the policy to userspace.
866 		 */
867 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
868 	}
869 
870 	if (vma) {
871 		up_read(&current->mm->mmap_sem);
872 		vma = NULL;
873 	}
874 
875 	err = 0;
876 	if (nmask) {
877 		if (mpol_store_user_nodemask(pol)) {
878 			*nmask = pol->w.user_nodemask;
879 		} else {
880 			task_lock(current);
881 			get_policy_nodemask(pol, nmask);
882 			task_unlock(current);
883 		}
884 	}
885 
886  out:
887 	mpol_cond_put(pol);
888 	if (vma)
889 		up_read(&current->mm->mmap_sem);
890 	return err;
891 }
892 
893 #ifdef CONFIG_MIGRATION
894 /*
895  * page migration
896  */
897 static void migrate_page_add(struct page *page, struct list_head *pagelist,
898 				unsigned long flags)
899 {
900 	/*
901 	 * Avoid migrating a page that is shared with others.
902 	 */
903 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 		if (!isolate_lru_page(page)) {
905 			list_add_tail(&page->lru, pagelist);
906 			inc_zone_page_state(page, NR_ISOLATED_ANON +
907 					    page_is_file_cache(page));
908 		}
909 	}
910 }
911 
912 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913 {
914 	return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915 }
916 
917 /*
918  * Migrate pages from one node to a target node.
919  * Returns error or the number of pages not migrated.
920  */
921 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922 			   int flags)
923 {
924 	nodemask_t nmask;
925 	LIST_HEAD(pagelist);
926 	int err = 0;
927 	struct vm_area_struct *vma;
928 
929 	nodes_clear(nmask);
930 	node_set(source, nmask);
931 
932 	vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
934 	if (IS_ERR(vma))
935 		return PTR_ERR(vma);
936 
937 	if (!list_empty(&pagelist)) {
938 		err = migrate_pages(&pagelist, new_node_page, dest,
939 							false, MIGRATE_SYNC);
940 		if (err)
941 			putback_lru_pages(&pagelist);
942 	}
943 
944 	return err;
945 }
946 
947 /*
948  * Move pages between the two nodesets so as to preserve the physical
949  * layout as much as possible.
950  *
951  * Returns the number of page that could not be moved.
952  */
953 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
954 		     const nodemask_t *to, int flags)
955 {
956 	int busy = 0;
957 	int err;
958 	nodemask_t tmp;
959 
960 	err = migrate_prep();
961 	if (err)
962 		return err;
963 
964 	down_read(&mm->mmap_sem);
965 
966 	err = migrate_vmas(mm, from, to, flags);
967 	if (err)
968 		goto out;
969 
970 	/*
971 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
972 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
973 	 * bit in 'tmp', and return that <source, dest> pair for migration.
974 	 * The pair of nodemasks 'to' and 'from' define the map.
975 	 *
976 	 * If no pair of bits is found that way, fallback to picking some
977 	 * pair of 'source' and 'dest' bits that are not the same.  If the
978 	 * 'source' and 'dest' bits are the same, this represents a node
979 	 * that will be migrating to itself, so no pages need move.
980 	 *
981 	 * If no bits are left in 'tmp', or if all remaining bits left
982 	 * in 'tmp' correspond to the same bit in 'to', return false
983 	 * (nothing left to migrate).
984 	 *
985 	 * This lets us pick a pair of nodes to migrate between, such that
986 	 * if possible the dest node is not already occupied by some other
987 	 * source node, minimizing the risk of overloading the memory on a
988 	 * node that would happen if we migrated incoming memory to a node
989 	 * before migrating outgoing memory source that same node.
990 	 *
991 	 * A single scan of tmp is sufficient.  As we go, we remember the
992 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
993 	 * that not only moved, but what's better, moved to an empty slot
994 	 * (d is not set in tmp), then we break out then, with that pair.
995 	 * Otherwise when we finish scanning from_tmp, we at least have the
996 	 * most recent <s, d> pair that moved.  If we get all the way through
997 	 * the scan of tmp without finding any node that moved, much less
998 	 * moved to an empty node, then there is nothing left worth migrating.
999 	 */
1000 
1001 	tmp = *from;
1002 	while (!nodes_empty(tmp)) {
1003 		int s,d;
1004 		int source = -1;
1005 		int dest = 0;
1006 
1007 		for_each_node_mask(s, tmp) {
1008 
1009 			/*
1010 			 * do_migrate_pages() tries to maintain the relative
1011 			 * node relationship of the pages established between
1012 			 * threads and memory areas.
1013                          *
1014 			 * However if the number of source nodes is not equal to
1015 			 * the number of destination nodes we can not preserve
1016 			 * this node relative relationship.  In that case, skip
1017 			 * copying memory from a node that is in the destination
1018 			 * mask.
1019 			 *
1020 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1021 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1022 			 */
1023 
1024 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1025 						(node_isset(s, *to)))
1026 				continue;
1027 
1028 			d = node_remap(s, *from, *to);
1029 			if (s == d)
1030 				continue;
1031 
1032 			source = s;	/* Node moved. Memorize */
1033 			dest = d;
1034 
1035 			/* dest not in remaining from nodes? */
1036 			if (!node_isset(dest, tmp))
1037 				break;
1038 		}
1039 		if (source == -1)
1040 			break;
1041 
1042 		node_clear(source, tmp);
1043 		err = migrate_to_node(mm, source, dest, flags);
1044 		if (err > 0)
1045 			busy += err;
1046 		if (err < 0)
1047 			break;
1048 	}
1049 out:
1050 	up_read(&mm->mmap_sem);
1051 	if (err < 0)
1052 		return err;
1053 	return busy;
1054 
1055 }
1056 
1057 /*
1058  * Allocate a new page for page migration based on vma policy.
1059  * Start assuming that page is mapped by vma pointed to by @private.
1060  * Search forward from there, if not.  N.B., this assumes that the
1061  * list of pages handed to migrate_pages()--which is how we get here--
1062  * is in virtual address order.
1063  */
1064 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1065 {
1066 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
1067 	unsigned long uninitialized_var(address);
1068 
1069 	while (vma) {
1070 		address = page_address_in_vma(page, vma);
1071 		if (address != -EFAULT)
1072 			break;
1073 		vma = vma->vm_next;
1074 	}
1075 
1076 	/*
1077 	 * if !vma, alloc_page_vma() will use task or system default policy
1078 	 */
1079 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1080 }
1081 #else
1082 
1083 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1084 				unsigned long flags)
1085 {
1086 }
1087 
1088 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1089 		     const nodemask_t *to, int flags)
1090 {
1091 	return -ENOSYS;
1092 }
1093 
1094 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1095 {
1096 	return NULL;
1097 }
1098 #endif
1099 
1100 static long do_mbind(unsigned long start, unsigned long len,
1101 		     unsigned short mode, unsigned short mode_flags,
1102 		     nodemask_t *nmask, unsigned long flags)
1103 {
1104 	struct vm_area_struct *vma;
1105 	struct mm_struct *mm = current->mm;
1106 	struct mempolicy *new;
1107 	unsigned long end;
1108 	int err;
1109 	LIST_HEAD(pagelist);
1110 
1111 	if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1112 				     MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1113 		return -EINVAL;
1114 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1115 		return -EPERM;
1116 
1117 	if (start & ~PAGE_MASK)
1118 		return -EINVAL;
1119 
1120 	if (mode == MPOL_DEFAULT)
1121 		flags &= ~MPOL_MF_STRICT;
1122 
1123 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1124 	end = start + len;
1125 
1126 	if (end < start)
1127 		return -EINVAL;
1128 	if (end == start)
1129 		return 0;
1130 
1131 	new = mpol_new(mode, mode_flags, nmask);
1132 	if (IS_ERR(new))
1133 		return PTR_ERR(new);
1134 
1135 	/*
1136 	 * If we are using the default policy then operation
1137 	 * on discontinuous address spaces is okay after all
1138 	 */
1139 	if (!new)
1140 		flags |= MPOL_MF_DISCONTIG_OK;
1141 
1142 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1143 		 start, start + len, mode, mode_flags,
1144 		 nmask ? nodes_addr(*nmask)[0] : -1);
1145 
1146 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1147 
1148 		err = migrate_prep();
1149 		if (err)
1150 			goto mpol_out;
1151 	}
1152 	{
1153 		NODEMASK_SCRATCH(scratch);
1154 		if (scratch) {
1155 			down_write(&mm->mmap_sem);
1156 			task_lock(current);
1157 			err = mpol_set_nodemask(new, nmask, scratch);
1158 			task_unlock(current);
1159 			if (err)
1160 				up_write(&mm->mmap_sem);
1161 		} else
1162 			err = -ENOMEM;
1163 		NODEMASK_SCRATCH_FREE(scratch);
1164 	}
1165 	if (err)
1166 		goto mpol_out;
1167 
1168 	vma = check_range(mm, start, end, nmask,
1169 			  flags | MPOL_MF_INVERT, &pagelist);
1170 
1171 	err = PTR_ERR(vma);
1172 	if (!IS_ERR(vma)) {
1173 		int nr_failed = 0;
1174 
1175 		err = mbind_range(mm, start, end, new);
1176 
1177 		if (!list_empty(&pagelist)) {
1178 			nr_failed = migrate_pages(&pagelist, new_vma_page,
1179 						(unsigned long)vma,
1180 						false, MIGRATE_SYNC);
1181 			if (nr_failed)
1182 				putback_lru_pages(&pagelist);
1183 		}
1184 
1185 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1186 			err = -EIO;
1187 	} else
1188 		putback_lru_pages(&pagelist);
1189 
1190 	up_write(&mm->mmap_sem);
1191  mpol_out:
1192 	mpol_put(new);
1193 	return err;
1194 }
1195 
1196 /*
1197  * User space interface with variable sized bitmaps for nodelists.
1198  */
1199 
1200 /* Copy a node mask from user space. */
1201 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1202 		     unsigned long maxnode)
1203 {
1204 	unsigned long k;
1205 	unsigned long nlongs;
1206 	unsigned long endmask;
1207 
1208 	--maxnode;
1209 	nodes_clear(*nodes);
1210 	if (maxnode == 0 || !nmask)
1211 		return 0;
1212 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1213 		return -EINVAL;
1214 
1215 	nlongs = BITS_TO_LONGS(maxnode);
1216 	if ((maxnode % BITS_PER_LONG) == 0)
1217 		endmask = ~0UL;
1218 	else
1219 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1220 
1221 	/* When the user specified more nodes than supported just check
1222 	   if the non supported part is all zero. */
1223 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1224 		if (nlongs > PAGE_SIZE/sizeof(long))
1225 			return -EINVAL;
1226 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1227 			unsigned long t;
1228 			if (get_user(t, nmask + k))
1229 				return -EFAULT;
1230 			if (k == nlongs - 1) {
1231 				if (t & endmask)
1232 					return -EINVAL;
1233 			} else if (t)
1234 				return -EINVAL;
1235 		}
1236 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1237 		endmask = ~0UL;
1238 	}
1239 
1240 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1241 		return -EFAULT;
1242 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1243 	return 0;
1244 }
1245 
1246 /* Copy a kernel node mask to user space */
1247 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1248 			      nodemask_t *nodes)
1249 {
1250 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1251 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1252 
1253 	if (copy > nbytes) {
1254 		if (copy > PAGE_SIZE)
1255 			return -EINVAL;
1256 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1257 			return -EFAULT;
1258 		copy = nbytes;
1259 	}
1260 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1261 }
1262 
1263 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1264 		unsigned long, mode, unsigned long __user *, nmask,
1265 		unsigned long, maxnode, unsigned, flags)
1266 {
1267 	nodemask_t nodes;
1268 	int err;
1269 	unsigned short mode_flags;
1270 
1271 	mode_flags = mode & MPOL_MODE_FLAGS;
1272 	mode &= ~MPOL_MODE_FLAGS;
1273 	if (mode >= MPOL_MAX)
1274 		return -EINVAL;
1275 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1276 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1277 		return -EINVAL;
1278 	err = get_nodes(&nodes, nmask, maxnode);
1279 	if (err)
1280 		return err;
1281 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1282 }
1283 
1284 /* Set the process memory policy */
1285 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1286 		unsigned long, maxnode)
1287 {
1288 	int err;
1289 	nodemask_t nodes;
1290 	unsigned short flags;
1291 
1292 	flags = mode & MPOL_MODE_FLAGS;
1293 	mode &= ~MPOL_MODE_FLAGS;
1294 	if ((unsigned int)mode >= MPOL_MAX)
1295 		return -EINVAL;
1296 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1297 		return -EINVAL;
1298 	err = get_nodes(&nodes, nmask, maxnode);
1299 	if (err)
1300 		return err;
1301 	return do_set_mempolicy(mode, flags, &nodes);
1302 }
1303 
1304 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1305 		const unsigned long __user *, old_nodes,
1306 		const unsigned long __user *, new_nodes)
1307 {
1308 	const struct cred *cred = current_cred(), *tcred;
1309 	struct mm_struct *mm = NULL;
1310 	struct task_struct *task;
1311 	nodemask_t task_nodes;
1312 	int err;
1313 	nodemask_t *old;
1314 	nodemask_t *new;
1315 	NODEMASK_SCRATCH(scratch);
1316 
1317 	if (!scratch)
1318 		return -ENOMEM;
1319 
1320 	old = &scratch->mask1;
1321 	new = &scratch->mask2;
1322 
1323 	err = get_nodes(old, old_nodes, maxnode);
1324 	if (err)
1325 		goto out;
1326 
1327 	err = get_nodes(new, new_nodes, maxnode);
1328 	if (err)
1329 		goto out;
1330 
1331 	/* Find the mm_struct */
1332 	rcu_read_lock();
1333 	task = pid ? find_task_by_vpid(pid) : current;
1334 	if (!task) {
1335 		rcu_read_unlock();
1336 		err = -ESRCH;
1337 		goto out;
1338 	}
1339 	get_task_struct(task);
1340 
1341 	err = -EINVAL;
1342 
1343 	/*
1344 	 * Check if this process has the right to modify the specified
1345 	 * process. The right exists if the process has administrative
1346 	 * capabilities, superuser privileges or the same
1347 	 * userid as the target process.
1348 	 */
1349 	tcred = __task_cred(task);
1350 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1351 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1352 	    !capable(CAP_SYS_NICE)) {
1353 		rcu_read_unlock();
1354 		err = -EPERM;
1355 		goto out_put;
1356 	}
1357 	rcu_read_unlock();
1358 
1359 	task_nodes = cpuset_mems_allowed(task);
1360 	/* Is the user allowed to access the target nodes? */
1361 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1362 		err = -EPERM;
1363 		goto out_put;
1364 	}
1365 
1366 	if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1367 		err = -EINVAL;
1368 		goto out_put;
1369 	}
1370 
1371 	err = security_task_movememory(task);
1372 	if (err)
1373 		goto out_put;
1374 
1375 	mm = get_task_mm(task);
1376 	put_task_struct(task);
1377 
1378 	if (!mm) {
1379 		err = -EINVAL;
1380 		goto out;
1381 	}
1382 
1383 	err = do_migrate_pages(mm, old, new,
1384 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1385 
1386 	mmput(mm);
1387 out:
1388 	NODEMASK_SCRATCH_FREE(scratch);
1389 
1390 	return err;
1391 
1392 out_put:
1393 	put_task_struct(task);
1394 	goto out;
1395 
1396 }
1397 
1398 
1399 /* Retrieve NUMA policy */
1400 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1401 		unsigned long __user *, nmask, unsigned long, maxnode,
1402 		unsigned long, addr, unsigned long, flags)
1403 {
1404 	int err;
1405 	int uninitialized_var(pval);
1406 	nodemask_t nodes;
1407 
1408 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1409 		return -EINVAL;
1410 
1411 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1412 
1413 	if (err)
1414 		return err;
1415 
1416 	if (policy && put_user(pval, policy))
1417 		return -EFAULT;
1418 
1419 	if (nmask)
1420 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1421 
1422 	return err;
1423 }
1424 
1425 #ifdef CONFIG_COMPAT
1426 
1427 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1428 				     compat_ulong_t __user *nmask,
1429 				     compat_ulong_t maxnode,
1430 				     compat_ulong_t addr, compat_ulong_t flags)
1431 {
1432 	long err;
1433 	unsigned long __user *nm = NULL;
1434 	unsigned long nr_bits, alloc_size;
1435 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1436 
1437 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1438 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1439 
1440 	if (nmask)
1441 		nm = compat_alloc_user_space(alloc_size);
1442 
1443 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1444 
1445 	if (!err && nmask) {
1446 		unsigned long copy_size;
1447 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1448 		err = copy_from_user(bm, nm, copy_size);
1449 		/* ensure entire bitmap is zeroed */
1450 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1451 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1452 	}
1453 
1454 	return err;
1455 }
1456 
1457 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1458 				     compat_ulong_t maxnode)
1459 {
1460 	long err = 0;
1461 	unsigned long __user *nm = NULL;
1462 	unsigned long nr_bits, alloc_size;
1463 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1464 
1465 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1466 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1467 
1468 	if (nmask) {
1469 		err = compat_get_bitmap(bm, nmask, nr_bits);
1470 		nm = compat_alloc_user_space(alloc_size);
1471 		err |= copy_to_user(nm, bm, alloc_size);
1472 	}
1473 
1474 	if (err)
1475 		return -EFAULT;
1476 
1477 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1478 }
1479 
1480 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1481 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
1482 			     compat_ulong_t maxnode, compat_ulong_t flags)
1483 {
1484 	long err = 0;
1485 	unsigned long __user *nm = NULL;
1486 	unsigned long nr_bits, alloc_size;
1487 	nodemask_t bm;
1488 
1489 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1490 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1491 
1492 	if (nmask) {
1493 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1494 		nm = compat_alloc_user_space(alloc_size);
1495 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1496 	}
1497 
1498 	if (err)
1499 		return -EFAULT;
1500 
1501 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1502 }
1503 
1504 #endif
1505 
1506 /*
1507  * get_vma_policy(@task, @vma, @addr)
1508  * @task - task for fallback if vma policy == default
1509  * @vma   - virtual memory area whose policy is sought
1510  * @addr  - address in @vma for shared policy lookup
1511  *
1512  * Returns effective policy for a VMA at specified address.
1513  * Falls back to @task or system default policy, as necessary.
1514  * Current or other task's task mempolicy and non-shared vma policies
1515  * are protected by the task's mmap_sem, which must be held for read by
1516  * the caller.
1517  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1518  * count--added by the get_policy() vm_op, as appropriate--to protect against
1519  * freeing by another task.  It is the caller's responsibility to free the
1520  * extra reference for shared policies.
1521  */
1522 struct mempolicy *get_vma_policy(struct task_struct *task,
1523 		struct vm_area_struct *vma, unsigned long addr)
1524 {
1525 	struct mempolicy *pol = task->mempolicy;
1526 
1527 	if (vma) {
1528 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1529 			struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1530 									addr);
1531 			if (vpol)
1532 				pol = vpol;
1533 		} else if (vma->vm_policy)
1534 			pol = vma->vm_policy;
1535 	}
1536 	if (!pol)
1537 		pol = &default_policy;
1538 	return pol;
1539 }
1540 
1541 /*
1542  * Return a nodemask representing a mempolicy for filtering nodes for
1543  * page allocation
1544  */
1545 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1546 {
1547 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1548 	if (unlikely(policy->mode == MPOL_BIND) &&
1549 			gfp_zone(gfp) >= policy_zone &&
1550 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1551 		return &policy->v.nodes;
1552 
1553 	return NULL;
1554 }
1555 
1556 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1557 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1558 	int nd)
1559 {
1560 	switch (policy->mode) {
1561 	case MPOL_PREFERRED:
1562 		if (!(policy->flags & MPOL_F_LOCAL))
1563 			nd = policy->v.preferred_node;
1564 		break;
1565 	case MPOL_BIND:
1566 		/*
1567 		 * Normally, MPOL_BIND allocations are node-local within the
1568 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1569 		 * current node isn't part of the mask, we use the zonelist for
1570 		 * the first node in the mask instead.
1571 		 */
1572 		if (unlikely(gfp & __GFP_THISNODE) &&
1573 				unlikely(!node_isset(nd, policy->v.nodes)))
1574 			nd = first_node(policy->v.nodes);
1575 		break;
1576 	default:
1577 		BUG();
1578 	}
1579 	return node_zonelist(nd, gfp);
1580 }
1581 
1582 /* Do dynamic interleaving for a process */
1583 static unsigned interleave_nodes(struct mempolicy *policy)
1584 {
1585 	unsigned nid, next;
1586 	struct task_struct *me = current;
1587 
1588 	nid = me->il_next;
1589 	next = next_node(nid, policy->v.nodes);
1590 	if (next >= MAX_NUMNODES)
1591 		next = first_node(policy->v.nodes);
1592 	if (next < MAX_NUMNODES)
1593 		me->il_next = next;
1594 	return nid;
1595 }
1596 
1597 /*
1598  * Depending on the memory policy provide a node from which to allocate the
1599  * next slab entry.
1600  * @policy must be protected by freeing by the caller.  If @policy is
1601  * the current task's mempolicy, this protection is implicit, as only the
1602  * task can change it's policy.  The system default policy requires no
1603  * such protection.
1604  */
1605 unsigned slab_node(struct mempolicy *policy)
1606 {
1607 	if (!policy || policy->flags & MPOL_F_LOCAL)
1608 		return numa_node_id();
1609 
1610 	switch (policy->mode) {
1611 	case MPOL_PREFERRED:
1612 		/*
1613 		 * handled MPOL_F_LOCAL above
1614 		 */
1615 		return policy->v.preferred_node;
1616 
1617 	case MPOL_INTERLEAVE:
1618 		return interleave_nodes(policy);
1619 
1620 	case MPOL_BIND: {
1621 		/*
1622 		 * Follow bind policy behavior and start allocation at the
1623 		 * first node.
1624 		 */
1625 		struct zonelist *zonelist;
1626 		struct zone *zone;
1627 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1628 		zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1629 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1630 							&policy->v.nodes,
1631 							&zone);
1632 		return zone ? zone->node : numa_node_id();
1633 	}
1634 
1635 	default:
1636 		BUG();
1637 	}
1638 }
1639 
1640 /* Do static interleaving for a VMA with known offset. */
1641 static unsigned offset_il_node(struct mempolicy *pol,
1642 		struct vm_area_struct *vma, unsigned long off)
1643 {
1644 	unsigned nnodes = nodes_weight(pol->v.nodes);
1645 	unsigned target;
1646 	int c;
1647 	int nid = -1;
1648 
1649 	if (!nnodes)
1650 		return numa_node_id();
1651 	target = (unsigned int)off % nnodes;
1652 	c = 0;
1653 	do {
1654 		nid = next_node(nid, pol->v.nodes);
1655 		c++;
1656 	} while (c <= target);
1657 	return nid;
1658 }
1659 
1660 /* Determine a node number for interleave */
1661 static inline unsigned interleave_nid(struct mempolicy *pol,
1662 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1663 {
1664 	if (vma) {
1665 		unsigned long off;
1666 
1667 		/*
1668 		 * for small pages, there is no difference between
1669 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1670 		 * for huge pages, since vm_pgoff is in units of small
1671 		 * pages, we need to shift off the always 0 bits to get
1672 		 * a useful offset.
1673 		 */
1674 		BUG_ON(shift < PAGE_SHIFT);
1675 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1676 		off += (addr - vma->vm_start) >> shift;
1677 		return offset_il_node(pol, vma, off);
1678 	} else
1679 		return interleave_nodes(pol);
1680 }
1681 
1682 /*
1683  * Return the bit number of a random bit set in the nodemask.
1684  * (returns -1 if nodemask is empty)
1685  */
1686 int node_random(const nodemask_t *maskp)
1687 {
1688 	int w, bit = -1;
1689 
1690 	w = nodes_weight(*maskp);
1691 	if (w)
1692 		bit = bitmap_ord_to_pos(maskp->bits,
1693 			get_random_int() % w, MAX_NUMNODES);
1694 	return bit;
1695 }
1696 
1697 #ifdef CONFIG_HUGETLBFS
1698 /*
1699  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1700  * @vma = virtual memory area whose policy is sought
1701  * @addr = address in @vma for shared policy lookup and interleave policy
1702  * @gfp_flags = for requested zone
1703  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1704  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1705  *
1706  * Returns a zonelist suitable for a huge page allocation and a pointer
1707  * to the struct mempolicy for conditional unref after allocation.
1708  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1709  * @nodemask for filtering the zonelist.
1710  *
1711  * Must be protected by get_mems_allowed()
1712  */
1713 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1714 				gfp_t gfp_flags, struct mempolicy **mpol,
1715 				nodemask_t **nodemask)
1716 {
1717 	struct zonelist *zl;
1718 
1719 	*mpol = get_vma_policy(current, vma, addr);
1720 	*nodemask = NULL;	/* assume !MPOL_BIND */
1721 
1722 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1723 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1724 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1725 	} else {
1726 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1727 		if ((*mpol)->mode == MPOL_BIND)
1728 			*nodemask = &(*mpol)->v.nodes;
1729 	}
1730 	return zl;
1731 }
1732 
1733 /*
1734  * init_nodemask_of_mempolicy
1735  *
1736  * If the current task's mempolicy is "default" [NULL], return 'false'
1737  * to indicate default policy.  Otherwise, extract the policy nodemask
1738  * for 'bind' or 'interleave' policy into the argument nodemask, or
1739  * initialize the argument nodemask to contain the single node for
1740  * 'preferred' or 'local' policy and return 'true' to indicate presence
1741  * of non-default mempolicy.
1742  *
1743  * We don't bother with reference counting the mempolicy [mpol_get/put]
1744  * because the current task is examining it's own mempolicy and a task's
1745  * mempolicy is only ever changed by the task itself.
1746  *
1747  * N.B., it is the caller's responsibility to free a returned nodemask.
1748  */
1749 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1750 {
1751 	struct mempolicy *mempolicy;
1752 	int nid;
1753 
1754 	if (!(mask && current->mempolicy))
1755 		return false;
1756 
1757 	task_lock(current);
1758 	mempolicy = current->mempolicy;
1759 	switch (mempolicy->mode) {
1760 	case MPOL_PREFERRED:
1761 		if (mempolicy->flags & MPOL_F_LOCAL)
1762 			nid = numa_node_id();
1763 		else
1764 			nid = mempolicy->v.preferred_node;
1765 		init_nodemask_of_node(mask, nid);
1766 		break;
1767 
1768 	case MPOL_BIND:
1769 		/* Fall through */
1770 	case MPOL_INTERLEAVE:
1771 		*mask =  mempolicy->v.nodes;
1772 		break;
1773 
1774 	default:
1775 		BUG();
1776 	}
1777 	task_unlock(current);
1778 
1779 	return true;
1780 }
1781 #endif
1782 
1783 /*
1784  * mempolicy_nodemask_intersects
1785  *
1786  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1787  * policy.  Otherwise, check for intersection between mask and the policy
1788  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1789  * policy, always return true since it may allocate elsewhere on fallback.
1790  *
1791  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1792  */
1793 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1794 					const nodemask_t *mask)
1795 {
1796 	struct mempolicy *mempolicy;
1797 	bool ret = true;
1798 
1799 	if (!mask)
1800 		return ret;
1801 	task_lock(tsk);
1802 	mempolicy = tsk->mempolicy;
1803 	if (!mempolicy)
1804 		goto out;
1805 
1806 	switch (mempolicy->mode) {
1807 	case MPOL_PREFERRED:
1808 		/*
1809 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1810 		 * allocate from, they may fallback to other nodes when oom.
1811 		 * Thus, it's possible for tsk to have allocated memory from
1812 		 * nodes in mask.
1813 		 */
1814 		break;
1815 	case MPOL_BIND:
1816 	case MPOL_INTERLEAVE:
1817 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1818 		break;
1819 	default:
1820 		BUG();
1821 	}
1822 out:
1823 	task_unlock(tsk);
1824 	return ret;
1825 }
1826 
1827 /* Allocate a page in interleaved policy.
1828    Own path because it needs to do special accounting. */
1829 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1830 					unsigned nid)
1831 {
1832 	struct zonelist *zl;
1833 	struct page *page;
1834 
1835 	zl = node_zonelist(nid, gfp);
1836 	page = __alloc_pages(gfp, order, zl);
1837 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1838 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1839 	return page;
1840 }
1841 
1842 /**
1843  * 	alloc_pages_vma	- Allocate a page for a VMA.
1844  *
1845  * 	@gfp:
1846  *      %GFP_USER    user allocation.
1847  *      %GFP_KERNEL  kernel allocations,
1848  *      %GFP_HIGHMEM highmem/user allocations,
1849  *      %GFP_FS      allocation should not call back into a file system.
1850  *      %GFP_ATOMIC  don't sleep.
1851  *
1852  *	@order:Order of the GFP allocation.
1853  * 	@vma:  Pointer to VMA or NULL if not available.
1854  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1855  *
1856  * 	This function allocates a page from the kernel page pool and applies
1857  *	a NUMA policy associated with the VMA or the current process.
1858  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1859  *	mm_struct of the VMA to prevent it from going away. Should be used for
1860  *	all allocations for pages that will be mapped into
1861  * 	user space. Returns NULL when no page can be allocated.
1862  *
1863  *	Should be called with the mm_sem of the vma hold.
1864  */
1865 struct page *
1866 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1867 		unsigned long addr, int node)
1868 {
1869 	struct mempolicy *pol;
1870 	struct zonelist *zl;
1871 	struct page *page;
1872 	unsigned int cpuset_mems_cookie;
1873 
1874 retry_cpuset:
1875 	pol = get_vma_policy(current, vma, addr);
1876 	cpuset_mems_cookie = get_mems_allowed();
1877 
1878 	if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1879 		unsigned nid;
1880 
1881 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1882 		mpol_cond_put(pol);
1883 		page = alloc_page_interleave(gfp, order, nid);
1884 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1885 			goto retry_cpuset;
1886 
1887 		return page;
1888 	}
1889 	zl = policy_zonelist(gfp, pol, node);
1890 	if (unlikely(mpol_needs_cond_ref(pol))) {
1891 		/*
1892 		 * slow path: ref counted shared policy
1893 		 */
1894 		struct page *page =  __alloc_pages_nodemask(gfp, order,
1895 						zl, policy_nodemask(gfp, pol));
1896 		__mpol_put(pol);
1897 		if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1898 			goto retry_cpuset;
1899 		return page;
1900 	}
1901 	/*
1902 	 * fast path:  default or task policy
1903 	 */
1904 	page = __alloc_pages_nodemask(gfp, order, zl,
1905 				      policy_nodemask(gfp, pol));
1906 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1907 		goto retry_cpuset;
1908 	return page;
1909 }
1910 
1911 /**
1912  * 	alloc_pages_current - Allocate pages.
1913  *
1914  *	@gfp:
1915  *		%GFP_USER   user allocation,
1916  *      	%GFP_KERNEL kernel allocation,
1917  *      	%GFP_HIGHMEM highmem allocation,
1918  *      	%GFP_FS     don't call back into a file system.
1919  *      	%GFP_ATOMIC don't sleep.
1920  *	@order: Power of two of allocation size in pages. 0 is a single page.
1921  *
1922  *	Allocate a page from the kernel page pool.  When not in
1923  *	interrupt context and apply the current process NUMA policy.
1924  *	Returns NULL when no page can be allocated.
1925  *
1926  *	Don't call cpuset_update_task_memory_state() unless
1927  *	1) it's ok to take cpuset_sem (can WAIT), and
1928  *	2) allocating for current task (not interrupt).
1929  */
1930 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1931 {
1932 	struct mempolicy *pol = current->mempolicy;
1933 	struct page *page;
1934 	unsigned int cpuset_mems_cookie;
1935 
1936 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1937 		pol = &default_policy;
1938 
1939 retry_cpuset:
1940 	cpuset_mems_cookie = get_mems_allowed();
1941 
1942 	/*
1943 	 * No reference counting needed for current->mempolicy
1944 	 * nor system default_policy
1945 	 */
1946 	if (pol->mode == MPOL_INTERLEAVE)
1947 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1948 	else
1949 		page = __alloc_pages_nodemask(gfp, order,
1950 				policy_zonelist(gfp, pol, numa_node_id()),
1951 				policy_nodemask(gfp, pol));
1952 
1953 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1954 		goto retry_cpuset;
1955 
1956 	return page;
1957 }
1958 EXPORT_SYMBOL(alloc_pages_current);
1959 
1960 /*
1961  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1962  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1963  * with the mems_allowed returned by cpuset_mems_allowed().  This
1964  * keeps mempolicies cpuset relative after its cpuset moves.  See
1965  * further kernel/cpuset.c update_nodemask().
1966  *
1967  * current's mempolicy may be rebinded by the other task(the task that changes
1968  * cpuset's mems), so we needn't do rebind work for current task.
1969  */
1970 
1971 /* Slow path of a mempolicy duplicate */
1972 struct mempolicy *__mpol_dup(struct mempolicy *old)
1973 {
1974 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1975 
1976 	if (!new)
1977 		return ERR_PTR(-ENOMEM);
1978 
1979 	/* task's mempolicy is protected by alloc_lock */
1980 	if (old == current->mempolicy) {
1981 		task_lock(current);
1982 		*new = *old;
1983 		task_unlock(current);
1984 	} else
1985 		*new = *old;
1986 
1987 	rcu_read_lock();
1988 	if (current_cpuset_is_being_rebound()) {
1989 		nodemask_t mems = cpuset_mems_allowed(current);
1990 		if (new->flags & MPOL_F_REBINDING)
1991 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1992 		else
1993 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1994 	}
1995 	rcu_read_unlock();
1996 	atomic_set(&new->refcnt, 1);
1997 	return new;
1998 }
1999 
2000 /*
2001  * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2002  * eliminate the * MPOL_F_* flags that require conditional ref and
2003  * [NOTE!!!] drop the extra ref.  Not safe to reference *frompol directly
2004  * after return.  Use the returned value.
2005  *
2006  * Allows use of a mempolicy for, e.g., multiple allocations with a single
2007  * policy lookup, even if the policy needs/has extra ref on lookup.
2008  * shmem_readahead needs this.
2009  */
2010 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2011 						struct mempolicy *frompol)
2012 {
2013 	if (!mpol_needs_cond_ref(frompol))
2014 		return frompol;
2015 
2016 	*tompol = *frompol;
2017 	tompol->flags &= ~MPOL_F_SHARED;	/* copy doesn't need unref */
2018 	__mpol_put(frompol);
2019 	return tompol;
2020 }
2021 
2022 /* Slow path of a mempolicy comparison */
2023 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2024 {
2025 	if (!a || !b)
2026 		return false;
2027 	if (a->mode != b->mode)
2028 		return false;
2029 	if (a->flags != b->flags)
2030 		return false;
2031 	if (mpol_store_user_nodemask(a))
2032 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2033 			return false;
2034 
2035 	switch (a->mode) {
2036 	case MPOL_BIND:
2037 		/* Fall through */
2038 	case MPOL_INTERLEAVE:
2039 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2040 	case MPOL_PREFERRED:
2041 		return a->v.preferred_node == b->v.preferred_node;
2042 	default:
2043 		BUG();
2044 		return false;
2045 	}
2046 }
2047 
2048 /*
2049  * Shared memory backing store policy support.
2050  *
2051  * Remember policies even when nobody has shared memory mapped.
2052  * The policies are kept in Red-Black tree linked from the inode.
2053  * They are protected by the sp->lock spinlock, which should be held
2054  * for any accesses to the tree.
2055  */
2056 
2057 /* lookup first element intersecting start-end */
2058 /* Caller holds sp->lock */
2059 static struct sp_node *
2060 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2061 {
2062 	struct rb_node *n = sp->root.rb_node;
2063 
2064 	while (n) {
2065 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2066 
2067 		if (start >= p->end)
2068 			n = n->rb_right;
2069 		else if (end <= p->start)
2070 			n = n->rb_left;
2071 		else
2072 			break;
2073 	}
2074 	if (!n)
2075 		return NULL;
2076 	for (;;) {
2077 		struct sp_node *w = NULL;
2078 		struct rb_node *prev = rb_prev(n);
2079 		if (!prev)
2080 			break;
2081 		w = rb_entry(prev, struct sp_node, nd);
2082 		if (w->end <= start)
2083 			break;
2084 		n = prev;
2085 	}
2086 	return rb_entry(n, struct sp_node, nd);
2087 }
2088 
2089 /* Insert a new shared policy into the list. */
2090 /* Caller holds sp->lock */
2091 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2092 {
2093 	struct rb_node **p = &sp->root.rb_node;
2094 	struct rb_node *parent = NULL;
2095 	struct sp_node *nd;
2096 
2097 	while (*p) {
2098 		parent = *p;
2099 		nd = rb_entry(parent, struct sp_node, nd);
2100 		if (new->start < nd->start)
2101 			p = &(*p)->rb_left;
2102 		else if (new->end > nd->end)
2103 			p = &(*p)->rb_right;
2104 		else
2105 			BUG();
2106 	}
2107 	rb_link_node(&new->nd, parent, p);
2108 	rb_insert_color(&new->nd, &sp->root);
2109 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2110 		 new->policy ? new->policy->mode : 0);
2111 }
2112 
2113 /* Find shared policy intersecting idx */
2114 struct mempolicy *
2115 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2116 {
2117 	struct mempolicy *pol = NULL;
2118 	struct sp_node *sn;
2119 
2120 	if (!sp->root.rb_node)
2121 		return NULL;
2122 	spin_lock(&sp->lock);
2123 	sn = sp_lookup(sp, idx, idx+1);
2124 	if (sn) {
2125 		mpol_get(sn->policy);
2126 		pol = sn->policy;
2127 	}
2128 	spin_unlock(&sp->lock);
2129 	return pol;
2130 }
2131 
2132 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2133 {
2134 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2135 	rb_erase(&n->nd, &sp->root);
2136 	mpol_put(n->policy);
2137 	kmem_cache_free(sn_cache, n);
2138 }
2139 
2140 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2141 				struct mempolicy *pol)
2142 {
2143 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2144 
2145 	if (!n)
2146 		return NULL;
2147 	n->start = start;
2148 	n->end = end;
2149 	mpol_get(pol);
2150 	pol->flags |= MPOL_F_SHARED;	/* for unref */
2151 	n->policy = pol;
2152 	return n;
2153 }
2154 
2155 /* Replace a policy range. */
2156 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2157 				 unsigned long end, struct sp_node *new)
2158 {
2159 	struct sp_node *n, *new2 = NULL;
2160 
2161 restart:
2162 	spin_lock(&sp->lock);
2163 	n = sp_lookup(sp, start, end);
2164 	/* Take care of old policies in the same range. */
2165 	while (n && n->start < end) {
2166 		struct rb_node *next = rb_next(&n->nd);
2167 		if (n->start >= start) {
2168 			if (n->end <= end)
2169 				sp_delete(sp, n);
2170 			else
2171 				n->start = end;
2172 		} else {
2173 			/* Old policy spanning whole new range. */
2174 			if (n->end > end) {
2175 				if (!new2) {
2176 					spin_unlock(&sp->lock);
2177 					new2 = sp_alloc(end, n->end, n->policy);
2178 					if (!new2)
2179 						return -ENOMEM;
2180 					goto restart;
2181 				}
2182 				n->end = start;
2183 				sp_insert(sp, new2);
2184 				new2 = NULL;
2185 				break;
2186 			} else
2187 				n->end = start;
2188 		}
2189 		if (!next)
2190 			break;
2191 		n = rb_entry(next, struct sp_node, nd);
2192 	}
2193 	if (new)
2194 		sp_insert(sp, new);
2195 	spin_unlock(&sp->lock);
2196 	if (new2) {
2197 		mpol_put(new2->policy);
2198 		kmem_cache_free(sn_cache, new2);
2199 	}
2200 	return 0;
2201 }
2202 
2203 /**
2204  * mpol_shared_policy_init - initialize shared policy for inode
2205  * @sp: pointer to inode shared policy
2206  * @mpol:  struct mempolicy to install
2207  *
2208  * Install non-NULL @mpol in inode's shared policy rb-tree.
2209  * On entry, the current task has a reference on a non-NULL @mpol.
2210  * This must be released on exit.
2211  * This is called at get_inode() calls and we can use GFP_KERNEL.
2212  */
2213 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2214 {
2215 	int ret;
2216 
2217 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2218 	spin_lock_init(&sp->lock);
2219 
2220 	if (mpol) {
2221 		struct vm_area_struct pvma;
2222 		struct mempolicy *new;
2223 		NODEMASK_SCRATCH(scratch);
2224 
2225 		if (!scratch)
2226 			goto put_mpol;
2227 		/* contextualize the tmpfs mount point mempolicy */
2228 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2229 		if (IS_ERR(new))
2230 			goto free_scratch; /* no valid nodemask intersection */
2231 
2232 		task_lock(current);
2233 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2234 		task_unlock(current);
2235 		if (ret)
2236 			goto put_new;
2237 
2238 		/* Create pseudo-vma that contains just the policy */
2239 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2240 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2241 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2242 
2243 put_new:
2244 		mpol_put(new);			/* drop initial ref */
2245 free_scratch:
2246 		NODEMASK_SCRATCH_FREE(scratch);
2247 put_mpol:
2248 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2249 	}
2250 }
2251 
2252 int mpol_set_shared_policy(struct shared_policy *info,
2253 			struct vm_area_struct *vma, struct mempolicy *npol)
2254 {
2255 	int err;
2256 	struct sp_node *new = NULL;
2257 	unsigned long sz = vma_pages(vma);
2258 
2259 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2260 		 vma->vm_pgoff,
2261 		 sz, npol ? npol->mode : -1,
2262 		 npol ? npol->flags : -1,
2263 		 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2264 
2265 	if (npol) {
2266 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2267 		if (!new)
2268 			return -ENOMEM;
2269 	}
2270 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2271 	if (err && new)
2272 		kmem_cache_free(sn_cache, new);
2273 	return err;
2274 }
2275 
2276 /* Free a backing policy store on inode delete. */
2277 void mpol_free_shared_policy(struct shared_policy *p)
2278 {
2279 	struct sp_node *n;
2280 	struct rb_node *next;
2281 
2282 	if (!p->root.rb_node)
2283 		return;
2284 	spin_lock(&p->lock);
2285 	next = rb_first(&p->root);
2286 	while (next) {
2287 		n = rb_entry(next, struct sp_node, nd);
2288 		next = rb_next(&n->nd);
2289 		rb_erase(&n->nd, &p->root);
2290 		mpol_put(n->policy);
2291 		kmem_cache_free(sn_cache, n);
2292 	}
2293 	spin_unlock(&p->lock);
2294 }
2295 
2296 /* assumes fs == KERNEL_DS */
2297 void __init numa_policy_init(void)
2298 {
2299 	nodemask_t interleave_nodes;
2300 	unsigned long largest = 0;
2301 	int nid, prefer = 0;
2302 
2303 	policy_cache = kmem_cache_create("numa_policy",
2304 					 sizeof(struct mempolicy),
2305 					 0, SLAB_PANIC, NULL);
2306 
2307 	sn_cache = kmem_cache_create("shared_policy_node",
2308 				     sizeof(struct sp_node),
2309 				     0, SLAB_PANIC, NULL);
2310 
2311 	/*
2312 	 * Set interleaving policy for system init. Interleaving is only
2313 	 * enabled across suitably sized nodes (default is >= 16MB), or
2314 	 * fall back to the largest node if they're all smaller.
2315 	 */
2316 	nodes_clear(interleave_nodes);
2317 	for_each_node_state(nid, N_HIGH_MEMORY) {
2318 		unsigned long total_pages = node_present_pages(nid);
2319 
2320 		/* Preserve the largest node */
2321 		if (largest < total_pages) {
2322 			largest = total_pages;
2323 			prefer = nid;
2324 		}
2325 
2326 		/* Interleave this node? */
2327 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2328 			node_set(nid, interleave_nodes);
2329 	}
2330 
2331 	/* All too small, use the largest */
2332 	if (unlikely(nodes_empty(interleave_nodes)))
2333 		node_set(prefer, interleave_nodes);
2334 
2335 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2336 		printk("numa_policy_init: interleaving failed\n");
2337 }
2338 
2339 /* Reset policy of current process to default */
2340 void numa_default_policy(void)
2341 {
2342 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2343 }
2344 
2345 /*
2346  * Parse and format mempolicy from/to strings
2347  */
2348 
2349 /*
2350  * "local" is pseudo-policy:  MPOL_PREFERRED with MPOL_F_LOCAL flag
2351  * Used only for mpol_parse_str() and mpol_to_str()
2352  */
2353 #define MPOL_LOCAL MPOL_MAX
2354 static const char * const policy_modes[] =
2355 {
2356 	[MPOL_DEFAULT]    = "default",
2357 	[MPOL_PREFERRED]  = "prefer",
2358 	[MPOL_BIND]       = "bind",
2359 	[MPOL_INTERLEAVE] = "interleave",
2360 	[MPOL_LOCAL]      = "local"
2361 };
2362 
2363 
2364 #ifdef CONFIG_TMPFS
2365 /**
2366  * mpol_parse_str - parse string to mempolicy
2367  * @str:  string containing mempolicy to parse
2368  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2369  * @no_context:  flag whether to "contextualize" the mempolicy
2370  *
2371  * Format of input:
2372  *	<mode>[=<flags>][:<nodelist>]
2373  *
2374  * if @no_context is true, save the input nodemask in w.user_nodemask in
2375  * the returned mempolicy.  This will be used to "clone" the mempolicy in
2376  * a specific context [cpuset] at a later time.  Used to parse tmpfs mpol
2377  * mount option.  Note that if 'static' or 'relative' mode flags were
2378  * specified, the input nodemask will already have been saved.  Saving
2379  * it again is redundant, but safe.
2380  *
2381  * On success, returns 0, else 1
2382  */
2383 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2384 {
2385 	struct mempolicy *new = NULL;
2386 	unsigned short mode;
2387 	unsigned short uninitialized_var(mode_flags);
2388 	nodemask_t nodes;
2389 	char *nodelist = strchr(str, ':');
2390 	char *flags = strchr(str, '=');
2391 	int err = 1;
2392 
2393 	if (nodelist) {
2394 		/* NUL-terminate mode or flags string */
2395 		*nodelist++ = '\0';
2396 		if (nodelist_parse(nodelist, nodes))
2397 			goto out;
2398 		if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2399 			goto out;
2400 	} else
2401 		nodes_clear(nodes);
2402 
2403 	if (flags)
2404 		*flags++ = '\0';	/* terminate mode string */
2405 
2406 	for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2407 		if (!strcmp(str, policy_modes[mode])) {
2408 			break;
2409 		}
2410 	}
2411 	if (mode > MPOL_LOCAL)
2412 		goto out;
2413 
2414 	switch (mode) {
2415 	case MPOL_PREFERRED:
2416 		/*
2417 		 * Insist on a nodelist of one node only
2418 		 */
2419 		if (nodelist) {
2420 			char *rest = nodelist;
2421 			while (isdigit(*rest))
2422 				rest++;
2423 			if (*rest)
2424 				goto out;
2425 		}
2426 		break;
2427 	case MPOL_INTERLEAVE:
2428 		/*
2429 		 * Default to online nodes with memory if no nodelist
2430 		 */
2431 		if (!nodelist)
2432 			nodes = node_states[N_HIGH_MEMORY];
2433 		break;
2434 	case MPOL_LOCAL:
2435 		/*
2436 		 * Don't allow a nodelist;  mpol_new() checks flags
2437 		 */
2438 		if (nodelist)
2439 			goto out;
2440 		mode = MPOL_PREFERRED;
2441 		break;
2442 	case MPOL_DEFAULT:
2443 		/*
2444 		 * Insist on a empty nodelist
2445 		 */
2446 		if (!nodelist)
2447 			err = 0;
2448 		goto out;
2449 	case MPOL_BIND:
2450 		/*
2451 		 * Insist on a nodelist
2452 		 */
2453 		if (!nodelist)
2454 			goto out;
2455 	}
2456 
2457 	mode_flags = 0;
2458 	if (flags) {
2459 		/*
2460 		 * Currently, we only support two mutually exclusive
2461 		 * mode flags.
2462 		 */
2463 		if (!strcmp(flags, "static"))
2464 			mode_flags |= MPOL_F_STATIC_NODES;
2465 		else if (!strcmp(flags, "relative"))
2466 			mode_flags |= MPOL_F_RELATIVE_NODES;
2467 		else
2468 			goto out;
2469 	}
2470 
2471 	new = mpol_new(mode, mode_flags, &nodes);
2472 	if (IS_ERR(new))
2473 		goto out;
2474 
2475 	if (no_context) {
2476 		/* save for contextualization */
2477 		new->w.user_nodemask = nodes;
2478 	} else {
2479 		int ret;
2480 		NODEMASK_SCRATCH(scratch);
2481 		if (scratch) {
2482 			task_lock(current);
2483 			ret = mpol_set_nodemask(new, &nodes, scratch);
2484 			task_unlock(current);
2485 		} else
2486 			ret = -ENOMEM;
2487 		NODEMASK_SCRATCH_FREE(scratch);
2488 		if (ret) {
2489 			mpol_put(new);
2490 			goto out;
2491 		}
2492 	}
2493 	err = 0;
2494 
2495 out:
2496 	/* Restore string for error message */
2497 	if (nodelist)
2498 		*--nodelist = ':';
2499 	if (flags)
2500 		*--flags = '=';
2501 	if (!err)
2502 		*mpol = new;
2503 	return err;
2504 }
2505 #endif /* CONFIG_TMPFS */
2506 
2507 /**
2508  * mpol_to_str - format a mempolicy structure for printing
2509  * @buffer:  to contain formatted mempolicy string
2510  * @maxlen:  length of @buffer
2511  * @pol:  pointer to mempolicy to be formatted
2512  * @no_context:  "context free" mempolicy - use nodemask in w.user_nodemask
2513  *
2514  * Convert a mempolicy into a string.
2515  * Returns the number of characters in buffer (if positive)
2516  * or an error (negative)
2517  */
2518 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2519 {
2520 	char *p = buffer;
2521 	int l;
2522 	nodemask_t nodes;
2523 	unsigned short mode;
2524 	unsigned short flags = pol ? pol->flags : 0;
2525 
2526 	/*
2527 	 * Sanity check:  room for longest mode, flag and some nodes
2528 	 */
2529 	VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2530 
2531 	if (!pol || pol == &default_policy)
2532 		mode = MPOL_DEFAULT;
2533 	else
2534 		mode = pol->mode;
2535 
2536 	switch (mode) {
2537 	case MPOL_DEFAULT:
2538 		nodes_clear(nodes);
2539 		break;
2540 
2541 	case MPOL_PREFERRED:
2542 		nodes_clear(nodes);
2543 		if (flags & MPOL_F_LOCAL)
2544 			mode = MPOL_LOCAL;	/* pseudo-policy */
2545 		else
2546 			node_set(pol->v.preferred_node, nodes);
2547 		break;
2548 
2549 	case MPOL_BIND:
2550 		/* Fall through */
2551 	case MPOL_INTERLEAVE:
2552 		if (no_context)
2553 			nodes = pol->w.user_nodemask;
2554 		else
2555 			nodes = pol->v.nodes;
2556 		break;
2557 
2558 	default:
2559 		BUG();
2560 	}
2561 
2562 	l = strlen(policy_modes[mode]);
2563 	if (buffer + maxlen < p + l + 1)
2564 		return -ENOSPC;
2565 
2566 	strcpy(p, policy_modes[mode]);
2567 	p += l;
2568 
2569 	if (flags & MPOL_MODE_FLAGS) {
2570 		if (buffer + maxlen < p + 2)
2571 			return -ENOSPC;
2572 		*p++ = '=';
2573 
2574 		/*
2575 		 * Currently, the only defined flags are mutually exclusive
2576 		 */
2577 		if (flags & MPOL_F_STATIC_NODES)
2578 			p += snprintf(p, buffer + maxlen - p, "static");
2579 		else if (flags & MPOL_F_RELATIVE_NODES)
2580 			p += snprintf(p, buffer + maxlen - p, "relative");
2581 	}
2582 
2583 	if (!nodes_empty(nodes)) {
2584 		if (buffer + maxlen < p + 2)
2585 			return -ENOSPC;
2586 		*p++ = ':';
2587 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2588 	}
2589 	return p - buffer;
2590 }
2591