xref: /linux/mm/mempolicy.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109 
110 #include "internal.h"
111 
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
115 
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118 
119 /* Highest zone. An specific allocation for a zone below that is not
120    policied. */
121 enum zone_type policy_zone = 0;
122 
123 /*
124  * run-time system-wide default policy => local allocation
125  */
126 static struct mempolicy default_policy = {
127 	.refcnt = ATOMIC_INIT(1), /* never free it */
128 	.mode = MPOL_LOCAL,
129 };
130 
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132 
133 /**
134  * numa_map_to_online_node - Find closest online node
135  * @node: Node id to start the search
136  *
137  * Lookup the next closest node by distance if @nid is not online.
138  *
139  * Return: this @node if it is online, otherwise the closest node by distance
140  */
141 int numa_map_to_online_node(int node)
142 {
143 	int min_dist = INT_MAX, dist, n, min_node;
144 
145 	if (node == NUMA_NO_NODE || node_online(node))
146 		return node;
147 
148 	min_node = node;
149 	for_each_online_node(n) {
150 		dist = node_distance(node, n);
151 		if (dist < min_dist) {
152 			min_dist = dist;
153 			min_node = n;
154 		}
155 	}
156 
157 	return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160 
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 	struct mempolicy *pol = p->mempolicy;
164 	int node;
165 
166 	if (pol)
167 		return pol;
168 
169 	node = numa_node_id();
170 	if (node != NUMA_NO_NODE) {
171 		pol = &preferred_node_policy[node];
172 		/* preferred_node_policy is not initialised early in boot */
173 		if (pol->mode)
174 			return pol;
175 	}
176 
177 	return &default_policy;
178 }
179 
180 static const struct mempolicy_operations {
181 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184 
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 	return pol->flags & MPOL_MODE_FLAGS;
188 }
189 
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 				   const nodemask_t *rel)
192 {
193 	nodemask_t tmp;
194 	nodes_fold(tmp, *orig, nodes_weight(*rel));
195 	nodes_onto(*ret, tmp, *rel);
196 }
197 
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 	if (nodes_empty(*nodes))
201 		return -EINVAL;
202 	pol->nodes = *nodes;
203 	return 0;
204 }
205 
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 	if (nodes_empty(*nodes))
209 		return -EINVAL;
210 
211 	nodes_clear(pol->nodes);
212 	node_set(first_node(*nodes), pol->nodes);
213 	return 0;
214 }
215 
216 /*
217  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218  * any, for the new policy.  mpol_new() has already validated the nodes
219  * parameter with respect to the policy mode and flags.
220  *
221  * Must be called holding task's alloc_lock to protect task's mems_allowed
222  * and mempolicy.  May also be called holding the mmap_lock for write.
223  */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 	int ret;
228 
229 	/*
230 	 * Default (pol==NULL) resp. local memory policies are not a
231 	 * subject of any remapping. They also do not need any special
232 	 * constructor.
233 	 */
234 	if (!pol || pol->mode == MPOL_LOCAL)
235 		return 0;
236 
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 
243 	if (pol->flags & MPOL_F_RELATIVE_NODES)
244 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 	else
246 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
247 
248 	if (mpol_store_user_nodemask(pol))
249 		pol->w.user_nodemask = *nodes;
250 	else
251 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252 
253 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 	return ret;
255 }
256 
257 /*
258  * This function just creates a new policy, does some check and simple
259  * initialization. You must invoke mpol_set_nodemask() to set nodes.
260  */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 				  nodemask_t *nodes)
263 {
264 	struct mempolicy *policy;
265 
266 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268 
269 	if (mode == MPOL_DEFAULT) {
270 		if (nodes && !nodes_empty(*nodes))
271 			return ERR_PTR(-EINVAL);
272 		return NULL;
273 	}
274 	VM_BUG_ON(!nodes);
275 
276 	/*
277 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 	 * All other modes require a valid pointer to a non-empty nodemask.
280 	 */
281 	if (mode == MPOL_PREFERRED) {
282 		if (nodes_empty(*nodes)) {
283 			if (((flags & MPOL_F_STATIC_NODES) ||
284 			     (flags & MPOL_F_RELATIVE_NODES)))
285 				return ERR_PTR(-EINVAL);
286 
287 			mode = MPOL_LOCAL;
288 		}
289 	} else if (mode == MPOL_LOCAL) {
290 		if (!nodes_empty(*nodes) ||
291 		    (flags & MPOL_F_STATIC_NODES) ||
292 		    (flags & MPOL_F_RELATIVE_NODES))
293 			return ERR_PTR(-EINVAL);
294 	} else if (nodes_empty(*nodes))
295 		return ERR_PTR(-EINVAL);
296 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 	if (!policy)
298 		return ERR_PTR(-ENOMEM);
299 	atomic_set(&policy->refcnt, 1);
300 	policy->mode = mode;
301 	policy->flags = flags;
302 	policy->home_node = NUMA_NO_NODE;
303 
304 	return policy;
305 }
306 
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 	if (!atomic_dec_and_test(&p->refcnt))
311 		return;
312 	kmem_cache_free(policy_cache, p);
313 }
314 
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318 
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES)
324 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 	else {
328 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 								*nodes);
330 		pol->w.cpuset_mems_allowed = *nodes;
331 	}
332 
333 	if (nodes_empty(tmp))
334 		tmp = *nodes;
335 
336 	pol->nodes = tmp;
337 }
338 
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 						const nodemask_t *nodes)
341 {
342 	pol->w.cpuset_mems_allowed = *nodes;
343 }
344 
345 /*
346  * mpol_rebind_policy - Migrate a policy to a different set of nodes
347  *
348  * Per-vma policies are protected by mmap_lock. Allocations using per-task
349  * policies are protected by task->mems_allowed_seq to prevent a premature
350  * OOM/allocation failure due to parallel nodemask modification.
351  */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 	if (!pol || pol->mode == MPOL_LOCAL)
355 		return;
356 	if (!mpol_store_user_nodemask(pol) &&
357 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 		return;
359 
360 	mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362 
363 /*
364  * Wrapper for mpol_rebind_policy() that just requires task
365  * pointer, and updates task mempolicy.
366  *
367  * Called with task's alloc_lock held.
368  */
369 
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 	mpol_rebind_policy(tsk->mempolicy, new);
373 }
374 
375 /*
376  * Rebind each vma in mm to new nodemask.
377  *
378  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
379  */
380 
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 	struct vm_area_struct *vma;
384 
385 	mmap_write_lock(mm);
386 	for (vma = mm->mmap; vma; vma = vma->vm_next)
387 		mpol_rebind_policy(vma->vm_policy, new);
388 	mmap_write_unlock(mm);
389 }
390 
391 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
392 	[MPOL_DEFAULT] = {
393 		.rebind = mpol_rebind_default,
394 	},
395 	[MPOL_INTERLEAVE] = {
396 		.create = mpol_new_nodemask,
397 		.rebind = mpol_rebind_nodemask,
398 	},
399 	[MPOL_PREFERRED] = {
400 		.create = mpol_new_preferred,
401 		.rebind = mpol_rebind_preferred,
402 	},
403 	[MPOL_BIND] = {
404 		.create = mpol_new_nodemask,
405 		.rebind = mpol_rebind_nodemask,
406 	},
407 	[MPOL_LOCAL] = {
408 		.rebind = mpol_rebind_default,
409 	},
410 	[MPOL_PREFERRED_MANY] = {
411 		.create = mpol_new_nodemask,
412 		.rebind = mpol_rebind_preferred,
413 	},
414 };
415 
416 static int migrate_page_add(struct page *page, struct list_head *pagelist,
417 				unsigned long flags);
418 
419 struct queue_pages {
420 	struct list_head *pagelist;
421 	unsigned long flags;
422 	nodemask_t *nmask;
423 	unsigned long start;
424 	unsigned long end;
425 	struct vm_area_struct *first;
426 };
427 
428 /*
429  * Check if the page's nid is in qp->nmask.
430  *
431  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
432  * in the invert of qp->nmask.
433  */
434 static inline bool queue_pages_required(struct page *page,
435 					struct queue_pages *qp)
436 {
437 	int nid = page_to_nid(page);
438 	unsigned long flags = qp->flags;
439 
440 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
441 }
442 
443 /*
444  * queue_pages_pmd() has three possible return values:
445  * 0 - pages are placed on the right node or queued successfully, or
446  *     special page is met, i.e. huge zero page.
447  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
448  *     specified.
449  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
450  *        existing page was already on a node that does not follow the
451  *        policy.
452  */
453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
454 				unsigned long end, struct mm_walk *walk)
455 	__releases(ptl)
456 {
457 	int ret = 0;
458 	struct page *page;
459 	struct queue_pages *qp = walk->private;
460 	unsigned long flags;
461 
462 	if (unlikely(is_pmd_migration_entry(*pmd))) {
463 		ret = -EIO;
464 		goto unlock;
465 	}
466 	page = pmd_page(*pmd);
467 	if (is_huge_zero_page(page)) {
468 		spin_unlock(ptl);
469 		walk->action = ACTION_CONTINUE;
470 		goto out;
471 	}
472 	if (!queue_pages_required(page, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to thp migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 out:
488 	return ret;
489 }
490 
491 /*
492  * Scan through pages checking if pages follow certain conditions,
493  * and move them to the pagelist if they do.
494  *
495  * queue_pages_pte_range() has three possible return values:
496  * 0 - pages are placed on the right node or queued successfully, or
497  *     special page is met, i.e. zero page.
498  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499  *     specified.
500  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
501  *        on a node that does not follow the policy.
502  */
503 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
504 			unsigned long end, struct mm_walk *walk)
505 {
506 	struct vm_area_struct *vma = walk->vma;
507 	struct page *page;
508 	struct queue_pages *qp = walk->private;
509 	unsigned long flags = qp->flags;
510 	bool has_unmovable = false;
511 	pte_t *pte, *mapped_pte;
512 	spinlock_t *ptl;
513 
514 	ptl = pmd_trans_huge_lock(pmd, vma);
515 	if (ptl)
516 		return queue_pages_pmd(pmd, ptl, addr, end, walk);
517 
518 	if (pmd_trans_unstable(pmd))
519 		return 0;
520 
521 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
522 	for (; addr != end; pte++, addr += PAGE_SIZE) {
523 		if (!pte_present(*pte))
524 			continue;
525 		page = vm_normal_page(vma, addr, *pte);
526 		if (!page)
527 			continue;
528 		/*
529 		 * vm_normal_page() filters out zero pages, but there might
530 		 * still be PageReserved pages to skip, perhaps in a VDSO.
531 		 */
532 		if (PageReserved(page))
533 			continue;
534 		if (!queue_pages_required(page, qp))
535 			continue;
536 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
537 			/* MPOL_MF_STRICT must be specified if we get here */
538 			if (!vma_migratable(vma)) {
539 				has_unmovable = true;
540 				break;
541 			}
542 
543 			/*
544 			 * Do not abort immediately since there may be
545 			 * temporary off LRU pages in the range.  Still
546 			 * need migrate other LRU pages.
547 			 */
548 			if (migrate_page_add(page, qp->pagelist, flags))
549 				has_unmovable = true;
550 		} else
551 			break;
552 	}
553 	pte_unmap_unlock(mapped_pte, ptl);
554 	cond_resched();
555 
556 	if (has_unmovable)
557 		return 1;
558 
559 	return addr != end ? -EIO : 0;
560 }
561 
562 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
563 			       unsigned long addr, unsigned long end,
564 			       struct mm_walk *walk)
565 {
566 	int ret = 0;
567 #ifdef CONFIG_HUGETLB_PAGE
568 	struct queue_pages *qp = walk->private;
569 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
570 	struct page *page;
571 	spinlock_t *ptl;
572 	pte_t entry;
573 
574 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 	entry = huge_ptep_get(pte);
576 	if (!pte_present(entry))
577 		goto unlock;
578 	page = pte_page(entry);
579 	if (!queue_pages_required(page, qp))
580 		goto unlock;
581 
582 	if (flags == MPOL_MF_STRICT) {
583 		/*
584 		 * STRICT alone means only detecting misplaced page and no
585 		 * need to further check other vma.
586 		 */
587 		ret = -EIO;
588 		goto unlock;
589 	}
590 
591 	if (!vma_migratable(walk->vma)) {
592 		/*
593 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
594 		 * stopped walking current vma.
595 		 * Detecting misplaced page but allow migrating pages which
596 		 * have been queued.
597 		 */
598 		ret = 1;
599 		goto unlock;
600 	}
601 
602 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
603 	if (flags & (MPOL_MF_MOVE_ALL) ||
604 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
605 		if (!isolate_huge_page(page, qp->pagelist) &&
606 			(flags & MPOL_MF_STRICT))
607 			/*
608 			 * Failed to isolate page but allow migrating pages
609 			 * which have been queued.
610 			 */
611 			ret = 1;
612 	}
613 unlock:
614 	spin_unlock(ptl);
615 #else
616 	BUG();
617 #endif
618 	return ret;
619 }
620 
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623  * This is used to mark a range of virtual addresses to be inaccessible.
624  * These are later cleared by a NUMA hinting fault. Depending on these
625  * faults, pages may be migrated for better NUMA placement.
626  *
627  * This is assuming that NUMA faults are handled using PROT_NONE. If
628  * an architecture makes a different choice, it will need further
629  * changes to the core.
630  */
631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 			unsigned long addr, unsigned long end)
633 {
634 	struct mmu_gather tlb;
635 	int nr_updated;
636 
637 	tlb_gather_mmu(&tlb, vma->vm_mm);
638 
639 	nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
640 				       MM_CP_PROT_NUMA);
641 	if (nr_updated)
642 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
643 
644 	tlb_finish_mmu(&tlb);
645 
646 	return nr_updated;
647 }
648 #else
649 static unsigned long change_prot_numa(struct vm_area_struct *vma,
650 			unsigned long addr, unsigned long end)
651 {
652 	return 0;
653 }
654 #endif /* CONFIG_NUMA_BALANCING */
655 
656 static int queue_pages_test_walk(unsigned long start, unsigned long end,
657 				struct mm_walk *walk)
658 {
659 	struct vm_area_struct *vma = walk->vma;
660 	struct queue_pages *qp = walk->private;
661 	unsigned long endvma = vma->vm_end;
662 	unsigned long flags = qp->flags;
663 
664 	/* range check first */
665 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
666 
667 	if (!qp->first) {
668 		qp->first = vma;
669 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
670 			(qp->start < vma->vm_start))
671 			/* hole at head side of range */
672 			return -EFAULT;
673 	}
674 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 		((vma->vm_end < qp->end) &&
676 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
677 		/* hole at middle or tail of range */
678 		return -EFAULT;
679 
680 	/*
681 	 * Need check MPOL_MF_STRICT to return -EIO if possible
682 	 * regardless of vma_migratable
683 	 */
684 	if (!vma_migratable(vma) &&
685 	    !(flags & MPOL_MF_STRICT))
686 		return 1;
687 
688 	if (endvma > end)
689 		endvma = end;
690 
691 	if (flags & MPOL_MF_LAZY) {
692 		/* Similar to task_numa_work, skip inaccessible VMAs */
693 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 			!(vma->vm_flags & VM_MIXEDMAP))
695 			change_prot_numa(vma, start, endvma);
696 		return 1;
697 	}
698 
699 	/* queue pages from current vma */
700 	if (flags & MPOL_MF_VALID)
701 		return 0;
702 	return 1;
703 }
704 
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 	.hugetlb_entry		= queue_pages_hugetlb,
707 	.pmd_entry		= queue_pages_pte_range,
708 	.test_walk		= queue_pages_test_walk,
709 };
710 
711 /*
712  * Walk through page tables and collect pages to be migrated.
713  *
714  * If pages found in a given range are on a set of nodes (determined by
715  * @nodes and @flags,) it's isolated and queued to the pagelist which is
716  * passed via @private.
717  *
718  * queue_pages_range() has three possible return values:
719  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
720  *     specified.
721  * 0 - queue pages successfully or no misplaced page.
722  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723  *         memory range specified by nodemask and maxnode points outside
724  *         your accessible address space (-EFAULT)
725  */
726 static int
727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 		nodemask_t *nodes, unsigned long flags,
729 		struct list_head *pagelist)
730 {
731 	int err;
732 	struct queue_pages qp = {
733 		.pagelist = pagelist,
734 		.flags = flags,
735 		.nmask = nodes,
736 		.start = start,
737 		.end = end,
738 		.first = NULL,
739 	};
740 
741 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
742 
743 	if (!qp.first)
744 		/* whole range in hole */
745 		err = -EFAULT;
746 
747 	return err;
748 }
749 
750 /*
751  * Apply policy to a single VMA
752  * This must be called with the mmap_lock held for writing.
753  */
754 static int vma_replace_policy(struct vm_area_struct *vma,
755 						struct mempolicy *pol)
756 {
757 	int err;
758 	struct mempolicy *old;
759 	struct mempolicy *new;
760 
761 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 		 vma->vm_ops, vma->vm_file,
764 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
765 
766 	new = mpol_dup(pol);
767 	if (IS_ERR(new))
768 		return PTR_ERR(new);
769 
770 	if (vma->vm_ops && vma->vm_ops->set_policy) {
771 		err = vma->vm_ops->set_policy(vma, new);
772 		if (err)
773 			goto err_out;
774 	}
775 
776 	old = vma->vm_policy;
777 	vma->vm_policy = new; /* protected by mmap_lock */
778 	mpol_put(old);
779 
780 	return 0;
781  err_out:
782 	mpol_put(new);
783 	return err;
784 }
785 
786 /* Step 2: apply policy to a range and do splits. */
787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 		       unsigned long end, struct mempolicy *new_pol)
789 {
790 	struct vm_area_struct *prev;
791 	struct vm_area_struct *vma;
792 	int err = 0;
793 	pgoff_t pgoff;
794 	unsigned long vmstart;
795 	unsigned long vmend;
796 
797 	vma = find_vma(mm, start);
798 	VM_BUG_ON(!vma);
799 
800 	prev = vma->vm_prev;
801 	if (start > vma->vm_start)
802 		prev = vma;
803 
804 	for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
805 		vmstart = max(start, vma->vm_start);
806 		vmend   = min(end, vma->vm_end);
807 
808 		if (mpol_equal(vma_policy(vma), new_pol))
809 			continue;
810 
811 		pgoff = vma->vm_pgoff +
812 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
813 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
814 				 vma->anon_vma, vma->vm_file, pgoff,
815 				 new_pol, vma->vm_userfaultfd_ctx,
816 				 anon_vma_name(vma));
817 		if (prev) {
818 			vma = prev;
819 			goto replace;
820 		}
821 		if (vma->vm_start != vmstart) {
822 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
823 			if (err)
824 				goto out;
825 		}
826 		if (vma->vm_end != vmend) {
827 			err = split_vma(vma->vm_mm, vma, vmend, 0);
828 			if (err)
829 				goto out;
830 		}
831  replace:
832 		err = vma_replace_policy(vma, new_pol);
833 		if (err)
834 			goto out;
835 	}
836 
837  out:
838 	return err;
839 }
840 
841 /* Set the process memory policy */
842 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
843 			     nodemask_t *nodes)
844 {
845 	struct mempolicy *new, *old;
846 	NODEMASK_SCRATCH(scratch);
847 	int ret;
848 
849 	if (!scratch)
850 		return -ENOMEM;
851 
852 	new = mpol_new(mode, flags, nodes);
853 	if (IS_ERR(new)) {
854 		ret = PTR_ERR(new);
855 		goto out;
856 	}
857 
858 	ret = mpol_set_nodemask(new, nodes, scratch);
859 	if (ret) {
860 		mpol_put(new);
861 		goto out;
862 	}
863 	task_lock(current);
864 	old = current->mempolicy;
865 	current->mempolicy = new;
866 	if (new && new->mode == MPOL_INTERLEAVE)
867 		current->il_prev = MAX_NUMNODES-1;
868 	task_unlock(current);
869 	mpol_put(old);
870 	ret = 0;
871 out:
872 	NODEMASK_SCRATCH_FREE(scratch);
873 	return ret;
874 }
875 
876 /*
877  * Return nodemask for policy for get_mempolicy() query
878  *
879  * Called with task's alloc_lock held
880  */
881 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
882 {
883 	nodes_clear(*nodes);
884 	if (p == &default_policy)
885 		return;
886 
887 	switch (p->mode) {
888 	case MPOL_BIND:
889 	case MPOL_INTERLEAVE:
890 	case MPOL_PREFERRED:
891 	case MPOL_PREFERRED_MANY:
892 		*nodes = p->nodes;
893 		break;
894 	case MPOL_LOCAL:
895 		/* return empty node mask for local allocation */
896 		break;
897 	default:
898 		BUG();
899 	}
900 }
901 
902 static int lookup_node(struct mm_struct *mm, unsigned long addr)
903 {
904 	struct page *p = NULL;
905 	int ret;
906 
907 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
908 	if (ret > 0) {
909 		ret = page_to_nid(p);
910 		put_page(p);
911 	}
912 	return ret;
913 }
914 
915 /* Retrieve NUMA policy */
916 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
917 			     unsigned long addr, unsigned long flags)
918 {
919 	int err;
920 	struct mm_struct *mm = current->mm;
921 	struct vm_area_struct *vma = NULL;
922 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
923 
924 	if (flags &
925 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
926 		return -EINVAL;
927 
928 	if (flags & MPOL_F_MEMS_ALLOWED) {
929 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
930 			return -EINVAL;
931 		*policy = 0;	/* just so it's initialized */
932 		task_lock(current);
933 		*nmask  = cpuset_current_mems_allowed;
934 		task_unlock(current);
935 		return 0;
936 	}
937 
938 	if (flags & MPOL_F_ADDR) {
939 		/*
940 		 * Do NOT fall back to task policy if the
941 		 * vma/shared policy at addr is NULL.  We
942 		 * want to return MPOL_DEFAULT in this case.
943 		 */
944 		mmap_read_lock(mm);
945 		vma = vma_lookup(mm, addr);
946 		if (!vma) {
947 			mmap_read_unlock(mm);
948 			return -EFAULT;
949 		}
950 		if (vma->vm_ops && vma->vm_ops->get_policy)
951 			pol = vma->vm_ops->get_policy(vma, addr);
952 		else
953 			pol = vma->vm_policy;
954 	} else if (addr)
955 		return -EINVAL;
956 
957 	if (!pol)
958 		pol = &default_policy;	/* indicates default behavior */
959 
960 	if (flags & MPOL_F_NODE) {
961 		if (flags & MPOL_F_ADDR) {
962 			/*
963 			 * Take a refcount on the mpol, because we are about to
964 			 * drop the mmap_lock, after which only "pol" remains
965 			 * valid, "vma" is stale.
966 			 */
967 			pol_refcount = pol;
968 			vma = NULL;
969 			mpol_get(pol);
970 			mmap_read_unlock(mm);
971 			err = lookup_node(mm, addr);
972 			if (err < 0)
973 				goto out;
974 			*policy = err;
975 		} else if (pol == current->mempolicy &&
976 				pol->mode == MPOL_INTERLEAVE) {
977 			*policy = next_node_in(current->il_prev, pol->nodes);
978 		} else {
979 			err = -EINVAL;
980 			goto out;
981 		}
982 	} else {
983 		*policy = pol == &default_policy ? MPOL_DEFAULT :
984 						pol->mode;
985 		/*
986 		 * Internal mempolicy flags must be masked off before exposing
987 		 * the policy to userspace.
988 		 */
989 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
990 	}
991 
992 	err = 0;
993 	if (nmask) {
994 		if (mpol_store_user_nodemask(pol)) {
995 			*nmask = pol->w.user_nodemask;
996 		} else {
997 			task_lock(current);
998 			get_policy_nodemask(pol, nmask);
999 			task_unlock(current);
1000 		}
1001 	}
1002 
1003  out:
1004 	mpol_cond_put(pol);
1005 	if (vma)
1006 		mmap_read_unlock(mm);
1007 	if (pol_refcount)
1008 		mpol_put(pol_refcount);
1009 	return err;
1010 }
1011 
1012 #ifdef CONFIG_MIGRATION
1013 /*
1014  * page migration, thp tail pages can be passed.
1015  */
1016 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1017 				unsigned long flags)
1018 {
1019 	struct page *head = compound_head(page);
1020 	/*
1021 	 * Avoid migrating a page that is shared with others.
1022 	 */
1023 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1024 		if (!isolate_lru_page(head)) {
1025 			list_add_tail(&head->lru, pagelist);
1026 			mod_node_page_state(page_pgdat(head),
1027 				NR_ISOLATED_ANON + page_is_file_lru(head),
1028 				thp_nr_pages(head));
1029 		} else if (flags & MPOL_MF_STRICT) {
1030 			/*
1031 			 * Non-movable page may reach here.  And, there may be
1032 			 * temporary off LRU pages or non-LRU movable pages.
1033 			 * Treat them as unmovable pages since they can't be
1034 			 * isolated, so they can't be moved at the moment.  It
1035 			 * should return -EIO for this case too.
1036 			 */
1037 			return -EIO;
1038 		}
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 /*
1045  * Migrate pages from one node to a target node.
1046  * Returns error or the number of pages not migrated.
1047  */
1048 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1049 			   int flags)
1050 {
1051 	nodemask_t nmask;
1052 	LIST_HEAD(pagelist);
1053 	int err = 0;
1054 	struct migration_target_control mtc = {
1055 		.nid = dest,
1056 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1057 	};
1058 
1059 	nodes_clear(nmask);
1060 	node_set(source, nmask);
1061 
1062 	/*
1063 	 * This does not "check" the range but isolates all pages that
1064 	 * need migration.  Between passing in the full user address
1065 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1066 	 */
1067 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1068 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1069 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1070 
1071 	if (!list_empty(&pagelist)) {
1072 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1073 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1074 		if (err)
1075 			putback_movable_pages(&pagelist);
1076 	}
1077 
1078 	return err;
1079 }
1080 
1081 /*
1082  * Move pages between the two nodesets so as to preserve the physical
1083  * layout as much as possible.
1084  *
1085  * Returns the number of page that could not be moved.
1086  */
1087 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1088 		     const nodemask_t *to, int flags)
1089 {
1090 	int busy = 0;
1091 	int err = 0;
1092 	nodemask_t tmp;
1093 
1094 	lru_cache_disable();
1095 
1096 	mmap_read_lock(mm);
1097 
1098 	/*
1099 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1100 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1101 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1102 	 * The pair of nodemasks 'to' and 'from' define the map.
1103 	 *
1104 	 * If no pair of bits is found that way, fallback to picking some
1105 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1106 	 * 'source' and 'dest' bits are the same, this represents a node
1107 	 * that will be migrating to itself, so no pages need move.
1108 	 *
1109 	 * If no bits are left in 'tmp', or if all remaining bits left
1110 	 * in 'tmp' correspond to the same bit in 'to', return false
1111 	 * (nothing left to migrate).
1112 	 *
1113 	 * This lets us pick a pair of nodes to migrate between, such that
1114 	 * if possible the dest node is not already occupied by some other
1115 	 * source node, minimizing the risk of overloading the memory on a
1116 	 * node that would happen if we migrated incoming memory to a node
1117 	 * before migrating outgoing memory source that same node.
1118 	 *
1119 	 * A single scan of tmp is sufficient.  As we go, we remember the
1120 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1121 	 * that not only moved, but what's better, moved to an empty slot
1122 	 * (d is not set in tmp), then we break out then, with that pair.
1123 	 * Otherwise when we finish scanning from_tmp, we at least have the
1124 	 * most recent <s, d> pair that moved.  If we get all the way through
1125 	 * the scan of tmp without finding any node that moved, much less
1126 	 * moved to an empty node, then there is nothing left worth migrating.
1127 	 */
1128 
1129 	tmp = *from;
1130 	while (!nodes_empty(tmp)) {
1131 		int s, d;
1132 		int source = NUMA_NO_NODE;
1133 		int dest = 0;
1134 
1135 		for_each_node_mask(s, tmp) {
1136 
1137 			/*
1138 			 * do_migrate_pages() tries to maintain the relative
1139 			 * node relationship of the pages established between
1140 			 * threads and memory areas.
1141                          *
1142 			 * However if the number of source nodes is not equal to
1143 			 * the number of destination nodes we can not preserve
1144 			 * this node relative relationship.  In that case, skip
1145 			 * copying memory from a node that is in the destination
1146 			 * mask.
1147 			 *
1148 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1149 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1150 			 */
1151 
1152 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1153 						(node_isset(s, *to)))
1154 				continue;
1155 
1156 			d = node_remap(s, *from, *to);
1157 			if (s == d)
1158 				continue;
1159 
1160 			source = s;	/* Node moved. Memorize */
1161 			dest = d;
1162 
1163 			/* dest not in remaining from nodes? */
1164 			if (!node_isset(dest, tmp))
1165 				break;
1166 		}
1167 		if (source == NUMA_NO_NODE)
1168 			break;
1169 
1170 		node_clear(source, tmp);
1171 		err = migrate_to_node(mm, source, dest, flags);
1172 		if (err > 0)
1173 			busy += err;
1174 		if (err < 0)
1175 			break;
1176 	}
1177 	mmap_read_unlock(mm);
1178 
1179 	lru_cache_enable();
1180 	if (err < 0)
1181 		return err;
1182 	return busy;
1183 
1184 }
1185 
1186 /*
1187  * Allocate a new page for page migration based on vma policy.
1188  * Start by assuming the page is mapped by the same vma as contains @start.
1189  * Search forward from there, if not.  N.B., this assumes that the
1190  * list of pages handed to migrate_pages()--which is how we get here--
1191  * is in virtual address order.
1192  */
1193 static struct page *new_page(struct page *page, unsigned long start)
1194 {
1195 	struct folio *dst, *src = page_folio(page);
1196 	struct vm_area_struct *vma;
1197 	unsigned long address;
1198 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1199 
1200 	vma = find_vma(current->mm, start);
1201 	while (vma) {
1202 		address = page_address_in_vma(page, vma);
1203 		if (address != -EFAULT)
1204 			break;
1205 		vma = vma->vm_next;
1206 	}
1207 
1208 	if (folio_test_hugetlb(src))
1209 		return alloc_huge_page_vma(page_hstate(&src->page),
1210 				vma, address);
1211 
1212 	if (folio_test_large(src))
1213 		gfp = GFP_TRANSHUGE;
1214 
1215 	/*
1216 	 * if !vma, vma_alloc_folio() will use task or system default policy
1217 	 */
1218 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1219 			folio_test_large(src));
1220 	return &dst->page;
1221 }
1222 #else
1223 
1224 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1225 				unsigned long flags)
1226 {
1227 	return -EIO;
1228 }
1229 
1230 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1231 		     const nodemask_t *to, int flags)
1232 {
1233 	return -ENOSYS;
1234 }
1235 
1236 static struct page *new_page(struct page *page, unsigned long start)
1237 {
1238 	return NULL;
1239 }
1240 #endif
1241 
1242 static long do_mbind(unsigned long start, unsigned long len,
1243 		     unsigned short mode, unsigned short mode_flags,
1244 		     nodemask_t *nmask, unsigned long flags)
1245 {
1246 	struct mm_struct *mm = current->mm;
1247 	struct mempolicy *new;
1248 	unsigned long end;
1249 	int err;
1250 	int ret;
1251 	LIST_HEAD(pagelist);
1252 
1253 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1254 		return -EINVAL;
1255 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1256 		return -EPERM;
1257 
1258 	if (start & ~PAGE_MASK)
1259 		return -EINVAL;
1260 
1261 	if (mode == MPOL_DEFAULT)
1262 		flags &= ~MPOL_MF_STRICT;
1263 
1264 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1265 	end = start + len;
1266 
1267 	if (end < start)
1268 		return -EINVAL;
1269 	if (end == start)
1270 		return 0;
1271 
1272 	new = mpol_new(mode, mode_flags, nmask);
1273 	if (IS_ERR(new))
1274 		return PTR_ERR(new);
1275 
1276 	if (flags & MPOL_MF_LAZY)
1277 		new->flags |= MPOL_F_MOF;
1278 
1279 	/*
1280 	 * If we are using the default policy then operation
1281 	 * on discontinuous address spaces is okay after all
1282 	 */
1283 	if (!new)
1284 		flags |= MPOL_MF_DISCONTIG_OK;
1285 
1286 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1287 		 start, start + len, mode, mode_flags,
1288 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1289 
1290 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1291 
1292 		lru_cache_disable();
1293 	}
1294 	{
1295 		NODEMASK_SCRATCH(scratch);
1296 		if (scratch) {
1297 			mmap_write_lock(mm);
1298 			err = mpol_set_nodemask(new, nmask, scratch);
1299 			if (err)
1300 				mmap_write_unlock(mm);
1301 		} else
1302 			err = -ENOMEM;
1303 		NODEMASK_SCRATCH_FREE(scratch);
1304 	}
1305 	if (err)
1306 		goto mpol_out;
1307 
1308 	ret = queue_pages_range(mm, start, end, nmask,
1309 			  flags | MPOL_MF_INVERT, &pagelist);
1310 
1311 	if (ret < 0) {
1312 		err = ret;
1313 		goto up_out;
1314 	}
1315 
1316 	err = mbind_range(mm, start, end, new);
1317 
1318 	if (!err) {
1319 		int nr_failed = 0;
1320 
1321 		if (!list_empty(&pagelist)) {
1322 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1323 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1324 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1325 			if (nr_failed)
1326 				putback_movable_pages(&pagelist);
1327 		}
1328 
1329 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1330 			err = -EIO;
1331 	} else {
1332 up_out:
1333 		if (!list_empty(&pagelist))
1334 			putback_movable_pages(&pagelist);
1335 	}
1336 
1337 	mmap_write_unlock(mm);
1338 mpol_out:
1339 	mpol_put(new);
1340 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1341 		lru_cache_enable();
1342 	return err;
1343 }
1344 
1345 /*
1346  * User space interface with variable sized bitmaps for nodelists.
1347  */
1348 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1349 		      unsigned long maxnode)
1350 {
1351 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1352 	int ret;
1353 
1354 	if (in_compat_syscall())
1355 		ret = compat_get_bitmap(mask,
1356 					(const compat_ulong_t __user *)nmask,
1357 					maxnode);
1358 	else
1359 		ret = copy_from_user(mask, nmask,
1360 				     nlongs * sizeof(unsigned long));
1361 
1362 	if (ret)
1363 		return -EFAULT;
1364 
1365 	if (maxnode % BITS_PER_LONG)
1366 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1367 
1368 	return 0;
1369 }
1370 
1371 /* Copy a node mask from user space. */
1372 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1373 		     unsigned long maxnode)
1374 {
1375 	--maxnode;
1376 	nodes_clear(*nodes);
1377 	if (maxnode == 0 || !nmask)
1378 		return 0;
1379 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1380 		return -EINVAL;
1381 
1382 	/*
1383 	 * When the user specified more nodes than supported just check
1384 	 * if the non supported part is all zero, one word at a time,
1385 	 * starting at the end.
1386 	 */
1387 	while (maxnode > MAX_NUMNODES) {
1388 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1389 		unsigned long t;
1390 
1391 		if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1392 			return -EFAULT;
1393 
1394 		if (maxnode - bits >= MAX_NUMNODES) {
1395 			maxnode -= bits;
1396 		} else {
1397 			maxnode = MAX_NUMNODES;
1398 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1399 		}
1400 		if (t)
1401 			return -EINVAL;
1402 	}
1403 
1404 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1405 }
1406 
1407 /* Copy a kernel node mask to user space */
1408 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1409 			      nodemask_t *nodes)
1410 {
1411 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1412 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1413 	bool compat = in_compat_syscall();
1414 
1415 	if (compat)
1416 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1417 
1418 	if (copy > nbytes) {
1419 		if (copy > PAGE_SIZE)
1420 			return -EINVAL;
1421 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1422 			return -EFAULT;
1423 		copy = nbytes;
1424 		maxnode = nr_node_ids;
1425 	}
1426 
1427 	if (compat)
1428 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1429 					 nodes_addr(*nodes), maxnode);
1430 
1431 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1432 }
1433 
1434 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1435 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1436 {
1437 	*flags = *mode & MPOL_MODE_FLAGS;
1438 	*mode &= ~MPOL_MODE_FLAGS;
1439 
1440 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1441 		return -EINVAL;
1442 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1443 		return -EINVAL;
1444 	if (*flags & MPOL_F_NUMA_BALANCING) {
1445 		if (*mode != MPOL_BIND)
1446 			return -EINVAL;
1447 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1448 	}
1449 	return 0;
1450 }
1451 
1452 static long kernel_mbind(unsigned long start, unsigned long len,
1453 			 unsigned long mode, const unsigned long __user *nmask,
1454 			 unsigned long maxnode, unsigned int flags)
1455 {
1456 	unsigned short mode_flags;
1457 	nodemask_t nodes;
1458 	int lmode = mode;
1459 	int err;
1460 
1461 	start = untagged_addr(start);
1462 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1463 	if (err)
1464 		return err;
1465 
1466 	err = get_nodes(&nodes, nmask, maxnode);
1467 	if (err)
1468 		return err;
1469 
1470 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1471 }
1472 
1473 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1474 		unsigned long, home_node, unsigned long, flags)
1475 {
1476 	struct mm_struct *mm = current->mm;
1477 	struct vm_area_struct *vma;
1478 	struct mempolicy *new;
1479 	unsigned long vmstart;
1480 	unsigned long vmend;
1481 	unsigned long end;
1482 	int err = -ENOENT;
1483 
1484 	start = untagged_addr(start);
1485 	if (start & ~PAGE_MASK)
1486 		return -EINVAL;
1487 	/*
1488 	 * flags is used for future extension if any.
1489 	 */
1490 	if (flags != 0)
1491 		return -EINVAL;
1492 
1493 	/*
1494 	 * Check home_node is online to avoid accessing uninitialized
1495 	 * NODE_DATA.
1496 	 */
1497 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1498 		return -EINVAL;
1499 
1500 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1501 	end = start + len;
1502 
1503 	if (end < start)
1504 		return -EINVAL;
1505 	if (end == start)
1506 		return 0;
1507 	mmap_write_lock(mm);
1508 	vma = find_vma(mm, start);
1509 	for (; vma && vma->vm_start < end;  vma = vma->vm_next) {
1510 
1511 		vmstart = max(start, vma->vm_start);
1512 		vmend   = min(end, vma->vm_end);
1513 		new = mpol_dup(vma_policy(vma));
1514 		if (IS_ERR(new)) {
1515 			err = PTR_ERR(new);
1516 			break;
1517 		}
1518 		/*
1519 		 * Only update home node if there is an existing vma policy
1520 		 */
1521 		if (!new)
1522 			continue;
1523 
1524 		/*
1525 		 * If any vma in the range got policy other than MPOL_BIND
1526 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1527 		 * the home node for vmas we already updated before.
1528 		 */
1529 		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1530 			err = -EOPNOTSUPP;
1531 			break;
1532 		}
1533 
1534 		new->home_node = home_node;
1535 		err = mbind_range(mm, vmstart, vmend, new);
1536 		mpol_put(new);
1537 		if (err)
1538 			break;
1539 	}
1540 	mmap_write_unlock(mm);
1541 	return err;
1542 }
1543 
1544 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1545 		unsigned long, mode, const unsigned long __user *, nmask,
1546 		unsigned long, maxnode, unsigned int, flags)
1547 {
1548 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1549 }
1550 
1551 /* Set the process memory policy */
1552 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1553 				 unsigned long maxnode)
1554 {
1555 	unsigned short mode_flags;
1556 	nodemask_t nodes;
1557 	int lmode = mode;
1558 	int err;
1559 
1560 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1561 	if (err)
1562 		return err;
1563 
1564 	err = get_nodes(&nodes, nmask, maxnode);
1565 	if (err)
1566 		return err;
1567 
1568 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1569 }
1570 
1571 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1572 		unsigned long, maxnode)
1573 {
1574 	return kernel_set_mempolicy(mode, nmask, maxnode);
1575 }
1576 
1577 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1578 				const unsigned long __user *old_nodes,
1579 				const unsigned long __user *new_nodes)
1580 {
1581 	struct mm_struct *mm = NULL;
1582 	struct task_struct *task;
1583 	nodemask_t task_nodes;
1584 	int err;
1585 	nodemask_t *old;
1586 	nodemask_t *new;
1587 	NODEMASK_SCRATCH(scratch);
1588 
1589 	if (!scratch)
1590 		return -ENOMEM;
1591 
1592 	old = &scratch->mask1;
1593 	new = &scratch->mask2;
1594 
1595 	err = get_nodes(old, old_nodes, maxnode);
1596 	if (err)
1597 		goto out;
1598 
1599 	err = get_nodes(new, new_nodes, maxnode);
1600 	if (err)
1601 		goto out;
1602 
1603 	/* Find the mm_struct */
1604 	rcu_read_lock();
1605 	task = pid ? find_task_by_vpid(pid) : current;
1606 	if (!task) {
1607 		rcu_read_unlock();
1608 		err = -ESRCH;
1609 		goto out;
1610 	}
1611 	get_task_struct(task);
1612 
1613 	err = -EINVAL;
1614 
1615 	/*
1616 	 * Check if this process has the right to modify the specified process.
1617 	 * Use the regular "ptrace_may_access()" checks.
1618 	 */
1619 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1620 		rcu_read_unlock();
1621 		err = -EPERM;
1622 		goto out_put;
1623 	}
1624 	rcu_read_unlock();
1625 
1626 	task_nodes = cpuset_mems_allowed(task);
1627 	/* Is the user allowed to access the target nodes? */
1628 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1629 		err = -EPERM;
1630 		goto out_put;
1631 	}
1632 
1633 	task_nodes = cpuset_mems_allowed(current);
1634 	nodes_and(*new, *new, task_nodes);
1635 	if (nodes_empty(*new))
1636 		goto out_put;
1637 
1638 	err = security_task_movememory(task);
1639 	if (err)
1640 		goto out_put;
1641 
1642 	mm = get_task_mm(task);
1643 	put_task_struct(task);
1644 
1645 	if (!mm) {
1646 		err = -EINVAL;
1647 		goto out;
1648 	}
1649 
1650 	err = do_migrate_pages(mm, old, new,
1651 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1652 
1653 	mmput(mm);
1654 out:
1655 	NODEMASK_SCRATCH_FREE(scratch);
1656 
1657 	return err;
1658 
1659 out_put:
1660 	put_task_struct(task);
1661 	goto out;
1662 
1663 }
1664 
1665 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1666 		const unsigned long __user *, old_nodes,
1667 		const unsigned long __user *, new_nodes)
1668 {
1669 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1670 }
1671 
1672 
1673 /* Retrieve NUMA policy */
1674 static int kernel_get_mempolicy(int __user *policy,
1675 				unsigned long __user *nmask,
1676 				unsigned long maxnode,
1677 				unsigned long addr,
1678 				unsigned long flags)
1679 {
1680 	int err;
1681 	int pval;
1682 	nodemask_t nodes;
1683 
1684 	if (nmask != NULL && maxnode < nr_node_ids)
1685 		return -EINVAL;
1686 
1687 	addr = untagged_addr(addr);
1688 
1689 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1690 
1691 	if (err)
1692 		return err;
1693 
1694 	if (policy && put_user(pval, policy))
1695 		return -EFAULT;
1696 
1697 	if (nmask)
1698 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1699 
1700 	return err;
1701 }
1702 
1703 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1704 		unsigned long __user *, nmask, unsigned long, maxnode,
1705 		unsigned long, addr, unsigned long, flags)
1706 {
1707 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1708 }
1709 
1710 bool vma_migratable(struct vm_area_struct *vma)
1711 {
1712 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1713 		return false;
1714 
1715 	/*
1716 	 * DAX device mappings require predictable access latency, so avoid
1717 	 * incurring periodic faults.
1718 	 */
1719 	if (vma_is_dax(vma))
1720 		return false;
1721 
1722 	if (is_vm_hugetlb_page(vma) &&
1723 		!hugepage_migration_supported(hstate_vma(vma)))
1724 		return false;
1725 
1726 	/*
1727 	 * Migration allocates pages in the highest zone. If we cannot
1728 	 * do so then migration (at least from node to node) is not
1729 	 * possible.
1730 	 */
1731 	if (vma->vm_file &&
1732 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1733 			< policy_zone)
1734 		return false;
1735 	return true;
1736 }
1737 
1738 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1739 						unsigned long addr)
1740 {
1741 	struct mempolicy *pol = NULL;
1742 
1743 	if (vma) {
1744 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1745 			pol = vma->vm_ops->get_policy(vma, addr);
1746 		} else if (vma->vm_policy) {
1747 			pol = vma->vm_policy;
1748 
1749 			/*
1750 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1751 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1752 			 * count on these policies which will be dropped by
1753 			 * mpol_cond_put() later
1754 			 */
1755 			if (mpol_needs_cond_ref(pol))
1756 				mpol_get(pol);
1757 		}
1758 	}
1759 
1760 	return pol;
1761 }
1762 
1763 /*
1764  * get_vma_policy(@vma, @addr)
1765  * @vma: virtual memory area whose policy is sought
1766  * @addr: address in @vma for shared policy lookup
1767  *
1768  * Returns effective policy for a VMA at specified address.
1769  * Falls back to current->mempolicy or system default policy, as necessary.
1770  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1771  * count--added by the get_policy() vm_op, as appropriate--to protect against
1772  * freeing by another task.  It is the caller's responsibility to free the
1773  * extra reference for shared policies.
1774  */
1775 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1776 						unsigned long addr)
1777 {
1778 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1779 
1780 	if (!pol)
1781 		pol = get_task_policy(current);
1782 
1783 	return pol;
1784 }
1785 
1786 bool vma_policy_mof(struct vm_area_struct *vma)
1787 {
1788 	struct mempolicy *pol;
1789 
1790 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1791 		bool ret = false;
1792 
1793 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1794 		if (pol && (pol->flags & MPOL_F_MOF))
1795 			ret = true;
1796 		mpol_cond_put(pol);
1797 
1798 		return ret;
1799 	}
1800 
1801 	pol = vma->vm_policy;
1802 	if (!pol)
1803 		pol = get_task_policy(current);
1804 
1805 	return pol->flags & MPOL_F_MOF;
1806 }
1807 
1808 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1809 {
1810 	enum zone_type dynamic_policy_zone = policy_zone;
1811 
1812 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1813 
1814 	/*
1815 	 * if policy->nodes has movable memory only,
1816 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1817 	 *
1818 	 * policy->nodes is intersect with node_states[N_MEMORY].
1819 	 * so if the following test fails, it implies
1820 	 * policy->nodes has movable memory only.
1821 	 */
1822 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1823 		dynamic_policy_zone = ZONE_MOVABLE;
1824 
1825 	return zone >= dynamic_policy_zone;
1826 }
1827 
1828 /*
1829  * Return a nodemask representing a mempolicy for filtering nodes for
1830  * page allocation
1831  */
1832 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1833 {
1834 	int mode = policy->mode;
1835 
1836 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1837 	if (unlikely(mode == MPOL_BIND) &&
1838 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1839 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1840 		return &policy->nodes;
1841 
1842 	if (mode == MPOL_PREFERRED_MANY)
1843 		return &policy->nodes;
1844 
1845 	return NULL;
1846 }
1847 
1848 /*
1849  * Return the  preferred node id for 'prefer' mempolicy, and return
1850  * the given id for all other policies.
1851  *
1852  * policy_node() is always coupled with policy_nodemask(), which
1853  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1854  */
1855 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1856 {
1857 	if (policy->mode == MPOL_PREFERRED) {
1858 		nd = first_node(policy->nodes);
1859 	} else {
1860 		/*
1861 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1862 		 * because we might easily break the expectation to stay on the
1863 		 * requested node and not break the policy.
1864 		 */
1865 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1866 	}
1867 
1868 	if ((policy->mode == MPOL_BIND ||
1869 	     policy->mode == MPOL_PREFERRED_MANY) &&
1870 	    policy->home_node != NUMA_NO_NODE)
1871 		return policy->home_node;
1872 
1873 	return nd;
1874 }
1875 
1876 /* Do dynamic interleaving for a process */
1877 static unsigned interleave_nodes(struct mempolicy *policy)
1878 {
1879 	unsigned next;
1880 	struct task_struct *me = current;
1881 
1882 	next = next_node_in(me->il_prev, policy->nodes);
1883 	if (next < MAX_NUMNODES)
1884 		me->il_prev = next;
1885 	return next;
1886 }
1887 
1888 /*
1889  * Depending on the memory policy provide a node from which to allocate the
1890  * next slab entry.
1891  */
1892 unsigned int mempolicy_slab_node(void)
1893 {
1894 	struct mempolicy *policy;
1895 	int node = numa_mem_id();
1896 
1897 	if (!in_task())
1898 		return node;
1899 
1900 	policy = current->mempolicy;
1901 	if (!policy)
1902 		return node;
1903 
1904 	switch (policy->mode) {
1905 	case MPOL_PREFERRED:
1906 		return first_node(policy->nodes);
1907 
1908 	case MPOL_INTERLEAVE:
1909 		return interleave_nodes(policy);
1910 
1911 	case MPOL_BIND:
1912 	case MPOL_PREFERRED_MANY:
1913 	{
1914 		struct zoneref *z;
1915 
1916 		/*
1917 		 * Follow bind policy behavior and start allocation at the
1918 		 * first node.
1919 		 */
1920 		struct zonelist *zonelist;
1921 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1922 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1923 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1924 							&policy->nodes);
1925 		return z->zone ? zone_to_nid(z->zone) : node;
1926 	}
1927 	case MPOL_LOCAL:
1928 		return node;
1929 
1930 	default:
1931 		BUG();
1932 	}
1933 }
1934 
1935 /*
1936  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1937  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1938  * number of present nodes.
1939  */
1940 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1941 {
1942 	nodemask_t nodemask = pol->nodes;
1943 	unsigned int target, nnodes;
1944 	int i;
1945 	int nid;
1946 	/*
1947 	 * The barrier will stabilize the nodemask in a register or on
1948 	 * the stack so that it will stop changing under the code.
1949 	 *
1950 	 * Between first_node() and next_node(), pol->nodes could be changed
1951 	 * by other threads. So we put pol->nodes in a local stack.
1952 	 */
1953 	barrier();
1954 
1955 	nnodes = nodes_weight(nodemask);
1956 	if (!nnodes)
1957 		return numa_node_id();
1958 	target = (unsigned int)n % nnodes;
1959 	nid = first_node(nodemask);
1960 	for (i = 0; i < target; i++)
1961 		nid = next_node(nid, nodemask);
1962 	return nid;
1963 }
1964 
1965 /* Determine a node number for interleave */
1966 static inline unsigned interleave_nid(struct mempolicy *pol,
1967 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1968 {
1969 	if (vma) {
1970 		unsigned long off;
1971 
1972 		/*
1973 		 * for small pages, there is no difference between
1974 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1975 		 * for huge pages, since vm_pgoff is in units of small
1976 		 * pages, we need to shift off the always 0 bits to get
1977 		 * a useful offset.
1978 		 */
1979 		BUG_ON(shift < PAGE_SHIFT);
1980 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1981 		off += (addr - vma->vm_start) >> shift;
1982 		return offset_il_node(pol, off);
1983 	} else
1984 		return interleave_nodes(pol);
1985 }
1986 
1987 #ifdef CONFIG_HUGETLBFS
1988 /*
1989  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1990  * @vma: virtual memory area whose policy is sought
1991  * @addr: address in @vma for shared policy lookup and interleave policy
1992  * @gfp_flags: for requested zone
1993  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1994  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1995  *
1996  * Returns a nid suitable for a huge page allocation and a pointer
1997  * to the struct mempolicy for conditional unref after allocation.
1998  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1999  * to the mempolicy's @nodemask for filtering the zonelist.
2000  *
2001  * Must be protected by read_mems_allowed_begin()
2002  */
2003 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2004 				struct mempolicy **mpol, nodemask_t **nodemask)
2005 {
2006 	int nid;
2007 	int mode;
2008 
2009 	*mpol = get_vma_policy(vma, addr);
2010 	*nodemask = NULL;
2011 	mode = (*mpol)->mode;
2012 
2013 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2014 		nid = interleave_nid(*mpol, vma, addr,
2015 					huge_page_shift(hstate_vma(vma)));
2016 	} else {
2017 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2018 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2019 			*nodemask = &(*mpol)->nodes;
2020 	}
2021 	return nid;
2022 }
2023 
2024 /*
2025  * init_nodemask_of_mempolicy
2026  *
2027  * If the current task's mempolicy is "default" [NULL], return 'false'
2028  * to indicate default policy.  Otherwise, extract the policy nodemask
2029  * for 'bind' or 'interleave' policy into the argument nodemask, or
2030  * initialize the argument nodemask to contain the single node for
2031  * 'preferred' or 'local' policy and return 'true' to indicate presence
2032  * of non-default mempolicy.
2033  *
2034  * We don't bother with reference counting the mempolicy [mpol_get/put]
2035  * because the current task is examining it's own mempolicy and a task's
2036  * mempolicy is only ever changed by the task itself.
2037  *
2038  * N.B., it is the caller's responsibility to free a returned nodemask.
2039  */
2040 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2041 {
2042 	struct mempolicy *mempolicy;
2043 
2044 	if (!(mask && current->mempolicy))
2045 		return false;
2046 
2047 	task_lock(current);
2048 	mempolicy = current->mempolicy;
2049 	switch (mempolicy->mode) {
2050 	case MPOL_PREFERRED:
2051 	case MPOL_PREFERRED_MANY:
2052 	case MPOL_BIND:
2053 	case MPOL_INTERLEAVE:
2054 		*mask = mempolicy->nodes;
2055 		break;
2056 
2057 	case MPOL_LOCAL:
2058 		init_nodemask_of_node(mask, numa_node_id());
2059 		break;
2060 
2061 	default:
2062 		BUG();
2063 	}
2064 	task_unlock(current);
2065 
2066 	return true;
2067 }
2068 #endif
2069 
2070 /*
2071  * mempolicy_in_oom_domain
2072  *
2073  * If tsk's mempolicy is "bind", check for intersection between mask and
2074  * the policy nodemask. Otherwise, return true for all other policies
2075  * including "interleave", as a tsk with "interleave" policy may have
2076  * memory allocated from all nodes in system.
2077  *
2078  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2079  */
2080 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2081 					const nodemask_t *mask)
2082 {
2083 	struct mempolicy *mempolicy;
2084 	bool ret = true;
2085 
2086 	if (!mask)
2087 		return ret;
2088 
2089 	task_lock(tsk);
2090 	mempolicy = tsk->mempolicy;
2091 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2092 		ret = nodes_intersects(mempolicy->nodes, *mask);
2093 	task_unlock(tsk);
2094 
2095 	return ret;
2096 }
2097 
2098 /* Allocate a page in interleaved policy.
2099    Own path because it needs to do special accounting. */
2100 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2101 					unsigned nid)
2102 {
2103 	struct page *page;
2104 
2105 	page = __alloc_pages(gfp, order, nid, NULL);
2106 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2107 	if (!static_branch_likely(&vm_numa_stat_key))
2108 		return page;
2109 	if (page && page_to_nid(page) == nid) {
2110 		preempt_disable();
2111 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2112 		preempt_enable();
2113 	}
2114 	return page;
2115 }
2116 
2117 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2118 						int nid, struct mempolicy *pol)
2119 {
2120 	struct page *page;
2121 	gfp_t preferred_gfp;
2122 
2123 	/*
2124 	 * This is a two pass approach. The first pass will only try the
2125 	 * preferred nodes but skip the direct reclaim and allow the
2126 	 * allocation to fail, while the second pass will try all the
2127 	 * nodes in system.
2128 	 */
2129 	preferred_gfp = gfp | __GFP_NOWARN;
2130 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2131 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2132 	if (!page)
2133 		page = __alloc_pages(gfp, order, nid, NULL);
2134 
2135 	return page;
2136 }
2137 
2138 /**
2139  * vma_alloc_folio - Allocate a folio for a VMA.
2140  * @gfp: GFP flags.
2141  * @order: Order of the folio.
2142  * @vma: Pointer to VMA or NULL if not available.
2143  * @addr: Virtual address of the allocation.  Must be inside @vma.
2144  * @hugepage: For hugepages try only the preferred node if possible.
2145  *
2146  * Allocate a folio for a specific address in @vma, using the appropriate
2147  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2148  * of the mm_struct of the VMA to prevent it from going away.  Should be
2149  * used for all allocations for folios that will be mapped into user space.
2150  *
2151  * Return: The folio on success or NULL if allocation fails.
2152  */
2153 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2154 		unsigned long addr, bool hugepage)
2155 {
2156 	struct mempolicy *pol;
2157 	int node = numa_node_id();
2158 	struct folio *folio;
2159 	int preferred_nid;
2160 	nodemask_t *nmask;
2161 
2162 	pol = get_vma_policy(vma, addr);
2163 
2164 	if (pol->mode == MPOL_INTERLEAVE) {
2165 		struct page *page;
2166 		unsigned nid;
2167 
2168 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2169 		mpol_cond_put(pol);
2170 		gfp |= __GFP_COMP;
2171 		page = alloc_page_interleave(gfp, order, nid);
2172 		if (page && order > 1)
2173 			prep_transhuge_page(page);
2174 		folio = (struct folio *)page;
2175 		goto out;
2176 	}
2177 
2178 	if (pol->mode == MPOL_PREFERRED_MANY) {
2179 		struct page *page;
2180 
2181 		node = policy_node(gfp, pol, node);
2182 		gfp |= __GFP_COMP;
2183 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2184 		mpol_cond_put(pol);
2185 		if (page && order > 1)
2186 			prep_transhuge_page(page);
2187 		folio = (struct folio *)page;
2188 		goto out;
2189 	}
2190 
2191 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2192 		int hpage_node = node;
2193 
2194 		/*
2195 		 * For hugepage allocation and non-interleave policy which
2196 		 * allows the current node (or other explicitly preferred
2197 		 * node) we only try to allocate from the current/preferred
2198 		 * node and don't fall back to other nodes, as the cost of
2199 		 * remote accesses would likely offset THP benefits.
2200 		 *
2201 		 * If the policy is interleave or does not allow the current
2202 		 * node in its nodemask, we allocate the standard way.
2203 		 */
2204 		if (pol->mode == MPOL_PREFERRED)
2205 			hpage_node = first_node(pol->nodes);
2206 
2207 		nmask = policy_nodemask(gfp, pol);
2208 		if (!nmask || node_isset(hpage_node, *nmask)) {
2209 			mpol_cond_put(pol);
2210 			/*
2211 			 * First, try to allocate THP only on local node, but
2212 			 * don't reclaim unnecessarily, just compact.
2213 			 */
2214 			folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2215 					__GFP_NORETRY, order, hpage_node);
2216 
2217 			/*
2218 			 * If hugepage allocations are configured to always
2219 			 * synchronous compact or the vma has been madvised
2220 			 * to prefer hugepage backing, retry allowing remote
2221 			 * memory with both reclaim and compact as well.
2222 			 */
2223 			if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2224 				folio = __folio_alloc(gfp, order, hpage_node,
2225 						      nmask);
2226 
2227 			goto out;
2228 		}
2229 	}
2230 
2231 	nmask = policy_nodemask(gfp, pol);
2232 	preferred_nid = policy_node(gfp, pol, node);
2233 	folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2234 	mpol_cond_put(pol);
2235 out:
2236 	return folio;
2237 }
2238 EXPORT_SYMBOL(vma_alloc_folio);
2239 
2240 /**
2241  * alloc_pages - Allocate pages.
2242  * @gfp: GFP flags.
2243  * @order: Power of two of number of pages to allocate.
2244  *
2245  * Allocate 1 << @order contiguous pages.  The physical address of the
2246  * first page is naturally aligned (eg an order-3 allocation will be aligned
2247  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2248  * process is honoured when in process context.
2249  *
2250  * Context: Can be called from any context, providing the appropriate GFP
2251  * flags are used.
2252  * Return: The page on success or NULL if allocation fails.
2253  */
2254 struct page *alloc_pages(gfp_t gfp, unsigned order)
2255 {
2256 	struct mempolicy *pol = &default_policy;
2257 	struct page *page;
2258 
2259 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2260 		pol = get_task_policy(current);
2261 
2262 	/*
2263 	 * No reference counting needed for current->mempolicy
2264 	 * nor system default_policy
2265 	 */
2266 	if (pol->mode == MPOL_INTERLEAVE)
2267 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2268 	else if (pol->mode == MPOL_PREFERRED_MANY)
2269 		page = alloc_pages_preferred_many(gfp, order,
2270 				  policy_node(gfp, pol, numa_node_id()), pol);
2271 	else
2272 		page = __alloc_pages(gfp, order,
2273 				policy_node(gfp, pol, numa_node_id()),
2274 				policy_nodemask(gfp, pol));
2275 
2276 	return page;
2277 }
2278 EXPORT_SYMBOL(alloc_pages);
2279 
2280 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2281 {
2282 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2283 
2284 	if (page && order > 1)
2285 		prep_transhuge_page(page);
2286 	return (struct folio *)page;
2287 }
2288 EXPORT_SYMBOL(folio_alloc);
2289 
2290 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2291 		struct mempolicy *pol, unsigned long nr_pages,
2292 		struct page **page_array)
2293 {
2294 	int nodes;
2295 	unsigned long nr_pages_per_node;
2296 	int delta;
2297 	int i;
2298 	unsigned long nr_allocated;
2299 	unsigned long total_allocated = 0;
2300 
2301 	nodes = nodes_weight(pol->nodes);
2302 	nr_pages_per_node = nr_pages / nodes;
2303 	delta = nr_pages - nodes * nr_pages_per_node;
2304 
2305 	for (i = 0; i < nodes; i++) {
2306 		if (delta) {
2307 			nr_allocated = __alloc_pages_bulk(gfp,
2308 					interleave_nodes(pol), NULL,
2309 					nr_pages_per_node + 1, NULL,
2310 					page_array);
2311 			delta--;
2312 		} else {
2313 			nr_allocated = __alloc_pages_bulk(gfp,
2314 					interleave_nodes(pol), NULL,
2315 					nr_pages_per_node, NULL, page_array);
2316 		}
2317 
2318 		page_array += nr_allocated;
2319 		total_allocated += nr_allocated;
2320 	}
2321 
2322 	return total_allocated;
2323 }
2324 
2325 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2326 		struct mempolicy *pol, unsigned long nr_pages,
2327 		struct page **page_array)
2328 {
2329 	gfp_t preferred_gfp;
2330 	unsigned long nr_allocated = 0;
2331 
2332 	preferred_gfp = gfp | __GFP_NOWARN;
2333 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2334 
2335 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2336 					   nr_pages, NULL, page_array);
2337 
2338 	if (nr_allocated < nr_pages)
2339 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2340 				nr_pages - nr_allocated, NULL,
2341 				page_array + nr_allocated);
2342 	return nr_allocated;
2343 }
2344 
2345 /* alloc pages bulk and mempolicy should be considered at the
2346  * same time in some situation such as vmalloc.
2347  *
2348  * It can accelerate memory allocation especially interleaving
2349  * allocate memory.
2350  */
2351 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2352 		unsigned long nr_pages, struct page **page_array)
2353 {
2354 	struct mempolicy *pol = &default_policy;
2355 
2356 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2357 		pol = get_task_policy(current);
2358 
2359 	if (pol->mode == MPOL_INTERLEAVE)
2360 		return alloc_pages_bulk_array_interleave(gfp, pol,
2361 							 nr_pages, page_array);
2362 
2363 	if (pol->mode == MPOL_PREFERRED_MANY)
2364 		return alloc_pages_bulk_array_preferred_many(gfp,
2365 				numa_node_id(), pol, nr_pages, page_array);
2366 
2367 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2368 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2369 				  page_array);
2370 }
2371 
2372 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2373 {
2374 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2375 
2376 	if (IS_ERR(pol))
2377 		return PTR_ERR(pol);
2378 	dst->vm_policy = pol;
2379 	return 0;
2380 }
2381 
2382 /*
2383  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2384  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2385  * with the mems_allowed returned by cpuset_mems_allowed().  This
2386  * keeps mempolicies cpuset relative after its cpuset moves.  See
2387  * further kernel/cpuset.c update_nodemask().
2388  *
2389  * current's mempolicy may be rebinded by the other task(the task that changes
2390  * cpuset's mems), so we needn't do rebind work for current task.
2391  */
2392 
2393 /* Slow path of a mempolicy duplicate */
2394 struct mempolicy *__mpol_dup(struct mempolicy *old)
2395 {
2396 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2397 
2398 	if (!new)
2399 		return ERR_PTR(-ENOMEM);
2400 
2401 	/* task's mempolicy is protected by alloc_lock */
2402 	if (old == current->mempolicy) {
2403 		task_lock(current);
2404 		*new = *old;
2405 		task_unlock(current);
2406 	} else
2407 		*new = *old;
2408 
2409 	if (current_cpuset_is_being_rebound()) {
2410 		nodemask_t mems = cpuset_mems_allowed(current);
2411 		mpol_rebind_policy(new, &mems);
2412 	}
2413 	atomic_set(&new->refcnt, 1);
2414 	return new;
2415 }
2416 
2417 /* Slow path of a mempolicy comparison */
2418 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2419 {
2420 	if (!a || !b)
2421 		return false;
2422 	if (a->mode != b->mode)
2423 		return false;
2424 	if (a->flags != b->flags)
2425 		return false;
2426 	if (a->home_node != b->home_node)
2427 		return false;
2428 	if (mpol_store_user_nodemask(a))
2429 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2430 			return false;
2431 
2432 	switch (a->mode) {
2433 	case MPOL_BIND:
2434 	case MPOL_INTERLEAVE:
2435 	case MPOL_PREFERRED:
2436 	case MPOL_PREFERRED_MANY:
2437 		return !!nodes_equal(a->nodes, b->nodes);
2438 	case MPOL_LOCAL:
2439 		return true;
2440 	default:
2441 		BUG();
2442 		return false;
2443 	}
2444 }
2445 
2446 /*
2447  * Shared memory backing store policy support.
2448  *
2449  * Remember policies even when nobody has shared memory mapped.
2450  * The policies are kept in Red-Black tree linked from the inode.
2451  * They are protected by the sp->lock rwlock, which should be held
2452  * for any accesses to the tree.
2453  */
2454 
2455 /*
2456  * lookup first element intersecting start-end.  Caller holds sp->lock for
2457  * reading or for writing
2458  */
2459 static struct sp_node *
2460 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2461 {
2462 	struct rb_node *n = sp->root.rb_node;
2463 
2464 	while (n) {
2465 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2466 
2467 		if (start >= p->end)
2468 			n = n->rb_right;
2469 		else if (end <= p->start)
2470 			n = n->rb_left;
2471 		else
2472 			break;
2473 	}
2474 	if (!n)
2475 		return NULL;
2476 	for (;;) {
2477 		struct sp_node *w = NULL;
2478 		struct rb_node *prev = rb_prev(n);
2479 		if (!prev)
2480 			break;
2481 		w = rb_entry(prev, struct sp_node, nd);
2482 		if (w->end <= start)
2483 			break;
2484 		n = prev;
2485 	}
2486 	return rb_entry(n, struct sp_node, nd);
2487 }
2488 
2489 /*
2490  * Insert a new shared policy into the list.  Caller holds sp->lock for
2491  * writing.
2492  */
2493 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2494 {
2495 	struct rb_node **p = &sp->root.rb_node;
2496 	struct rb_node *parent = NULL;
2497 	struct sp_node *nd;
2498 
2499 	while (*p) {
2500 		parent = *p;
2501 		nd = rb_entry(parent, struct sp_node, nd);
2502 		if (new->start < nd->start)
2503 			p = &(*p)->rb_left;
2504 		else if (new->end > nd->end)
2505 			p = &(*p)->rb_right;
2506 		else
2507 			BUG();
2508 	}
2509 	rb_link_node(&new->nd, parent, p);
2510 	rb_insert_color(&new->nd, &sp->root);
2511 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2512 		 new->policy ? new->policy->mode : 0);
2513 }
2514 
2515 /* Find shared policy intersecting idx */
2516 struct mempolicy *
2517 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2518 {
2519 	struct mempolicy *pol = NULL;
2520 	struct sp_node *sn;
2521 
2522 	if (!sp->root.rb_node)
2523 		return NULL;
2524 	read_lock(&sp->lock);
2525 	sn = sp_lookup(sp, idx, idx+1);
2526 	if (sn) {
2527 		mpol_get(sn->policy);
2528 		pol = sn->policy;
2529 	}
2530 	read_unlock(&sp->lock);
2531 	return pol;
2532 }
2533 
2534 static void sp_free(struct sp_node *n)
2535 {
2536 	mpol_put(n->policy);
2537 	kmem_cache_free(sn_cache, n);
2538 }
2539 
2540 /**
2541  * mpol_misplaced - check whether current page node is valid in policy
2542  *
2543  * @page: page to be checked
2544  * @vma: vm area where page mapped
2545  * @addr: virtual address where page mapped
2546  *
2547  * Lookup current policy node id for vma,addr and "compare to" page's
2548  * node id.  Policy determination "mimics" alloc_page_vma().
2549  * Called from fault path where we know the vma and faulting address.
2550  *
2551  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2552  * policy, or a suitable node ID to allocate a replacement page from.
2553  */
2554 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2555 {
2556 	struct mempolicy *pol;
2557 	struct zoneref *z;
2558 	int curnid = page_to_nid(page);
2559 	unsigned long pgoff;
2560 	int thiscpu = raw_smp_processor_id();
2561 	int thisnid = cpu_to_node(thiscpu);
2562 	int polnid = NUMA_NO_NODE;
2563 	int ret = NUMA_NO_NODE;
2564 
2565 	pol = get_vma_policy(vma, addr);
2566 	if (!(pol->flags & MPOL_F_MOF))
2567 		goto out;
2568 
2569 	switch (pol->mode) {
2570 	case MPOL_INTERLEAVE:
2571 		pgoff = vma->vm_pgoff;
2572 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2573 		polnid = offset_il_node(pol, pgoff);
2574 		break;
2575 
2576 	case MPOL_PREFERRED:
2577 		if (node_isset(curnid, pol->nodes))
2578 			goto out;
2579 		polnid = first_node(pol->nodes);
2580 		break;
2581 
2582 	case MPOL_LOCAL:
2583 		polnid = numa_node_id();
2584 		break;
2585 
2586 	case MPOL_BIND:
2587 		/* Optimize placement among multiple nodes via NUMA balancing */
2588 		if (pol->flags & MPOL_F_MORON) {
2589 			if (node_isset(thisnid, pol->nodes))
2590 				break;
2591 			goto out;
2592 		}
2593 		fallthrough;
2594 
2595 	case MPOL_PREFERRED_MANY:
2596 		/*
2597 		 * use current page if in policy nodemask,
2598 		 * else select nearest allowed node, if any.
2599 		 * If no allowed nodes, use current [!misplaced].
2600 		 */
2601 		if (node_isset(curnid, pol->nodes))
2602 			goto out;
2603 		z = first_zones_zonelist(
2604 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2605 				gfp_zone(GFP_HIGHUSER),
2606 				&pol->nodes);
2607 		polnid = zone_to_nid(z->zone);
2608 		break;
2609 
2610 	default:
2611 		BUG();
2612 	}
2613 
2614 	/* Migrate the page towards the node whose CPU is referencing it */
2615 	if (pol->flags & MPOL_F_MORON) {
2616 		polnid = thisnid;
2617 
2618 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2619 			goto out;
2620 	}
2621 
2622 	if (curnid != polnid)
2623 		ret = polnid;
2624 out:
2625 	mpol_cond_put(pol);
2626 
2627 	return ret;
2628 }
2629 
2630 /*
2631  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2632  * dropped after task->mempolicy is set to NULL so that any allocation done as
2633  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2634  * policy.
2635  */
2636 void mpol_put_task_policy(struct task_struct *task)
2637 {
2638 	struct mempolicy *pol;
2639 
2640 	task_lock(task);
2641 	pol = task->mempolicy;
2642 	task->mempolicy = NULL;
2643 	task_unlock(task);
2644 	mpol_put(pol);
2645 }
2646 
2647 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2648 {
2649 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2650 	rb_erase(&n->nd, &sp->root);
2651 	sp_free(n);
2652 }
2653 
2654 static void sp_node_init(struct sp_node *node, unsigned long start,
2655 			unsigned long end, struct mempolicy *pol)
2656 {
2657 	node->start = start;
2658 	node->end = end;
2659 	node->policy = pol;
2660 }
2661 
2662 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2663 				struct mempolicy *pol)
2664 {
2665 	struct sp_node *n;
2666 	struct mempolicy *newpol;
2667 
2668 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2669 	if (!n)
2670 		return NULL;
2671 
2672 	newpol = mpol_dup(pol);
2673 	if (IS_ERR(newpol)) {
2674 		kmem_cache_free(sn_cache, n);
2675 		return NULL;
2676 	}
2677 	newpol->flags |= MPOL_F_SHARED;
2678 	sp_node_init(n, start, end, newpol);
2679 
2680 	return n;
2681 }
2682 
2683 /* Replace a policy range. */
2684 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2685 				 unsigned long end, struct sp_node *new)
2686 {
2687 	struct sp_node *n;
2688 	struct sp_node *n_new = NULL;
2689 	struct mempolicy *mpol_new = NULL;
2690 	int ret = 0;
2691 
2692 restart:
2693 	write_lock(&sp->lock);
2694 	n = sp_lookup(sp, start, end);
2695 	/* Take care of old policies in the same range. */
2696 	while (n && n->start < end) {
2697 		struct rb_node *next = rb_next(&n->nd);
2698 		if (n->start >= start) {
2699 			if (n->end <= end)
2700 				sp_delete(sp, n);
2701 			else
2702 				n->start = end;
2703 		} else {
2704 			/* Old policy spanning whole new range. */
2705 			if (n->end > end) {
2706 				if (!n_new)
2707 					goto alloc_new;
2708 
2709 				*mpol_new = *n->policy;
2710 				atomic_set(&mpol_new->refcnt, 1);
2711 				sp_node_init(n_new, end, n->end, mpol_new);
2712 				n->end = start;
2713 				sp_insert(sp, n_new);
2714 				n_new = NULL;
2715 				mpol_new = NULL;
2716 				break;
2717 			} else
2718 				n->end = start;
2719 		}
2720 		if (!next)
2721 			break;
2722 		n = rb_entry(next, struct sp_node, nd);
2723 	}
2724 	if (new)
2725 		sp_insert(sp, new);
2726 	write_unlock(&sp->lock);
2727 	ret = 0;
2728 
2729 err_out:
2730 	if (mpol_new)
2731 		mpol_put(mpol_new);
2732 	if (n_new)
2733 		kmem_cache_free(sn_cache, n_new);
2734 
2735 	return ret;
2736 
2737 alloc_new:
2738 	write_unlock(&sp->lock);
2739 	ret = -ENOMEM;
2740 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2741 	if (!n_new)
2742 		goto err_out;
2743 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2744 	if (!mpol_new)
2745 		goto err_out;
2746 	atomic_set(&mpol_new->refcnt, 1);
2747 	goto restart;
2748 }
2749 
2750 /**
2751  * mpol_shared_policy_init - initialize shared policy for inode
2752  * @sp: pointer to inode shared policy
2753  * @mpol:  struct mempolicy to install
2754  *
2755  * Install non-NULL @mpol in inode's shared policy rb-tree.
2756  * On entry, the current task has a reference on a non-NULL @mpol.
2757  * This must be released on exit.
2758  * This is called at get_inode() calls and we can use GFP_KERNEL.
2759  */
2760 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2761 {
2762 	int ret;
2763 
2764 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2765 	rwlock_init(&sp->lock);
2766 
2767 	if (mpol) {
2768 		struct vm_area_struct pvma;
2769 		struct mempolicy *new;
2770 		NODEMASK_SCRATCH(scratch);
2771 
2772 		if (!scratch)
2773 			goto put_mpol;
2774 		/* contextualize the tmpfs mount point mempolicy */
2775 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2776 		if (IS_ERR(new))
2777 			goto free_scratch; /* no valid nodemask intersection */
2778 
2779 		task_lock(current);
2780 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2781 		task_unlock(current);
2782 		if (ret)
2783 			goto put_new;
2784 
2785 		/* Create pseudo-vma that contains just the policy */
2786 		vma_init(&pvma, NULL);
2787 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2788 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2789 
2790 put_new:
2791 		mpol_put(new);			/* drop initial ref */
2792 free_scratch:
2793 		NODEMASK_SCRATCH_FREE(scratch);
2794 put_mpol:
2795 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2796 	}
2797 }
2798 
2799 int mpol_set_shared_policy(struct shared_policy *info,
2800 			struct vm_area_struct *vma, struct mempolicy *npol)
2801 {
2802 	int err;
2803 	struct sp_node *new = NULL;
2804 	unsigned long sz = vma_pages(vma);
2805 
2806 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2807 		 vma->vm_pgoff,
2808 		 sz, npol ? npol->mode : -1,
2809 		 npol ? npol->flags : -1,
2810 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2811 
2812 	if (npol) {
2813 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2814 		if (!new)
2815 			return -ENOMEM;
2816 	}
2817 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2818 	if (err && new)
2819 		sp_free(new);
2820 	return err;
2821 }
2822 
2823 /* Free a backing policy store on inode delete. */
2824 void mpol_free_shared_policy(struct shared_policy *p)
2825 {
2826 	struct sp_node *n;
2827 	struct rb_node *next;
2828 
2829 	if (!p->root.rb_node)
2830 		return;
2831 	write_lock(&p->lock);
2832 	next = rb_first(&p->root);
2833 	while (next) {
2834 		n = rb_entry(next, struct sp_node, nd);
2835 		next = rb_next(&n->nd);
2836 		sp_delete(p, n);
2837 	}
2838 	write_unlock(&p->lock);
2839 }
2840 
2841 #ifdef CONFIG_NUMA_BALANCING
2842 static int __initdata numabalancing_override;
2843 
2844 static void __init check_numabalancing_enable(void)
2845 {
2846 	bool numabalancing_default = false;
2847 
2848 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2849 		numabalancing_default = true;
2850 
2851 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2852 	if (numabalancing_override)
2853 		set_numabalancing_state(numabalancing_override == 1);
2854 
2855 	if (num_online_nodes() > 1 && !numabalancing_override) {
2856 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2857 			numabalancing_default ? "Enabling" : "Disabling");
2858 		set_numabalancing_state(numabalancing_default);
2859 	}
2860 }
2861 
2862 static int __init setup_numabalancing(char *str)
2863 {
2864 	int ret = 0;
2865 	if (!str)
2866 		goto out;
2867 
2868 	if (!strcmp(str, "enable")) {
2869 		numabalancing_override = 1;
2870 		ret = 1;
2871 	} else if (!strcmp(str, "disable")) {
2872 		numabalancing_override = -1;
2873 		ret = 1;
2874 	}
2875 out:
2876 	if (!ret)
2877 		pr_warn("Unable to parse numa_balancing=\n");
2878 
2879 	return ret;
2880 }
2881 __setup("numa_balancing=", setup_numabalancing);
2882 #else
2883 static inline void __init check_numabalancing_enable(void)
2884 {
2885 }
2886 #endif /* CONFIG_NUMA_BALANCING */
2887 
2888 /* assumes fs == KERNEL_DS */
2889 void __init numa_policy_init(void)
2890 {
2891 	nodemask_t interleave_nodes;
2892 	unsigned long largest = 0;
2893 	int nid, prefer = 0;
2894 
2895 	policy_cache = kmem_cache_create("numa_policy",
2896 					 sizeof(struct mempolicy),
2897 					 0, SLAB_PANIC, NULL);
2898 
2899 	sn_cache = kmem_cache_create("shared_policy_node",
2900 				     sizeof(struct sp_node),
2901 				     0, SLAB_PANIC, NULL);
2902 
2903 	for_each_node(nid) {
2904 		preferred_node_policy[nid] = (struct mempolicy) {
2905 			.refcnt = ATOMIC_INIT(1),
2906 			.mode = MPOL_PREFERRED,
2907 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2908 			.nodes = nodemask_of_node(nid),
2909 		};
2910 	}
2911 
2912 	/*
2913 	 * Set interleaving policy for system init. Interleaving is only
2914 	 * enabled across suitably sized nodes (default is >= 16MB), or
2915 	 * fall back to the largest node if they're all smaller.
2916 	 */
2917 	nodes_clear(interleave_nodes);
2918 	for_each_node_state(nid, N_MEMORY) {
2919 		unsigned long total_pages = node_present_pages(nid);
2920 
2921 		/* Preserve the largest node */
2922 		if (largest < total_pages) {
2923 			largest = total_pages;
2924 			prefer = nid;
2925 		}
2926 
2927 		/* Interleave this node? */
2928 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2929 			node_set(nid, interleave_nodes);
2930 	}
2931 
2932 	/* All too small, use the largest */
2933 	if (unlikely(nodes_empty(interleave_nodes)))
2934 		node_set(prefer, interleave_nodes);
2935 
2936 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2937 		pr_err("%s: interleaving failed\n", __func__);
2938 
2939 	check_numabalancing_enable();
2940 }
2941 
2942 /* Reset policy of current process to default */
2943 void numa_default_policy(void)
2944 {
2945 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2946 }
2947 
2948 /*
2949  * Parse and format mempolicy from/to strings
2950  */
2951 
2952 static const char * const policy_modes[] =
2953 {
2954 	[MPOL_DEFAULT]    = "default",
2955 	[MPOL_PREFERRED]  = "prefer",
2956 	[MPOL_BIND]       = "bind",
2957 	[MPOL_INTERLEAVE] = "interleave",
2958 	[MPOL_LOCAL]      = "local",
2959 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2960 };
2961 
2962 
2963 #ifdef CONFIG_TMPFS
2964 /**
2965  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2966  * @str:  string containing mempolicy to parse
2967  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2968  *
2969  * Format of input:
2970  *	<mode>[=<flags>][:<nodelist>]
2971  *
2972  * Return: %0 on success, else %1
2973  */
2974 int mpol_parse_str(char *str, struct mempolicy **mpol)
2975 {
2976 	struct mempolicy *new = NULL;
2977 	unsigned short mode_flags;
2978 	nodemask_t nodes;
2979 	char *nodelist = strchr(str, ':');
2980 	char *flags = strchr(str, '=');
2981 	int err = 1, mode;
2982 
2983 	if (flags)
2984 		*flags++ = '\0';	/* terminate mode string */
2985 
2986 	if (nodelist) {
2987 		/* NUL-terminate mode or flags string */
2988 		*nodelist++ = '\0';
2989 		if (nodelist_parse(nodelist, nodes))
2990 			goto out;
2991 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2992 			goto out;
2993 	} else
2994 		nodes_clear(nodes);
2995 
2996 	mode = match_string(policy_modes, MPOL_MAX, str);
2997 	if (mode < 0)
2998 		goto out;
2999 
3000 	switch (mode) {
3001 	case MPOL_PREFERRED:
3002 		/*
3003 		 * Insist on a nodelist of one node only, although later
3004 		 * we use first_node(nodes) to grab a single node, so here
3005 		 * nodelist (or nodes) cannot be empty.
3006 		 */
3007 		if (nodelist) {
3008 			char *rest = nodelist;
3009 			while (isdigit(*rest))
3010 				rest++;
3011 			if (*rest)
3012 				goto out;
3013 			if (nodes_empty(nodes))
3014 				goto out;
3015 		}
3016 		break;
3017 	case MPOL_INTERLEAVE:
3018 		/*
3019 		 * Default to online nodes with memory if no nodelist
3020 		 */
3021 		if (!nodelist)
3022 			nodes = node_states[N_MEMORY];
3023 		break;
3024 	case MPOL_LOCAL:
3025 		/*
3026 		 * Don't allow a nodelist;  mpol_new() checks flags
3027 		 */
3028 		if (nodelist)
3029 			goto out;
3030 		break;
3031 	case MPOL_DEFAULT:
3032 		/*
3033 		 * Insist on a empty nodelist
3034 		 */
3035 		if (!nodelist)
3036 			err = 0;
3037 		goto out;
3038 	case MPOL_PREFERRED_MANY:
3039 	case MPOL_BIND:
3040 		/*
3041 		 * Insist on a nodelist
3042 		 */
3043 		if (!nodelist)
3044 			goto out;
3045 	}
3046 
3047 	mode_flags = 0;
3048 	if (flags) {
3049 		/*
3050 		 * Currently, we only support two mutually exclusive
3051 		 * mode flags.
3052 		 */
3053 		if (!strcmp(flags, "static"))
3054 			mode_flags |= MPOL_F_STATIC_NODES;
3055 		else if (!strcmp(flags, "relative"))
3056 			mode_flags |= MPOL_F_RELATIVE_NODES;
3057 		else
3058 			goto out;
3059 	}
3060 
3061 	new = mpol_new(mode, mode_flags, &nodes);
3062 	if (IS_ERR(new))
3063 		goto out;
3064 
3065 	/*
3066 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3067 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3068 	 */
3069 	if (mode != MPOL_PREFERRED) {
3070 		new->nodes = nodes;
3071 	} else if (nodelist) {
3072 		nodes_clear(new->nodes);
3073 		node_set(first_node(nodes), new->nodes);
3074 	} else {
3075 		new->mode = MPOL_LOCAL;
3076 	}
3077 
3078 	/*
3079 	 * Save nodes for contextualization: this will be used to "clone"
3080 	 * the mempolicy in a specific context [cpuset] at a later time.
3081 	 */
3082 	new->w.user_nodemask = nodes;
3083 
3084 	err = 0;
3085 
3086 out:
3087 	/* Restore string for error message */
3088 	if (nodelist)
3089 		*--nodelist = ':';
3090 	if (flags)
3091 		*--flags = '=';
3092 	if (!err)
3093 		*mpol = new;
3094 	return err;
3095 }
3096 #endif /* CONFIG_TMPFS */
3097 
3098 /**
3099  * mpol_to_str - format a mempolicy structure for printing
3100  * @buffer:  to contain formatted mempolicy string
3101  * @maxlen:  length of @buffer
3102  * @pol:  pointer to mempolicy to be formatted
3103  *
3104  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3105  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3106  * longest flag, "relative", and to display at least a few node ids.
3107  */
3108 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3109 {
3110 	char *p = buffer;
3111 	nodemask_t nodes = NODE_MASK_NONE;
3112 	unsigned short mode = MPOL_DEFAULT;
3113 	unsigned short flags = 0;
3114 
3115 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3116 		mode = pol->mode;
3117 		flags = pol->flags;
3118 	}
3119 
3120 	switch (mode) {
3121 	case MPOL_DEFAULT:
3122 	case MPOL_LOCAL:
3123 		break;
3124 	case MPOL_PREFERRED:
3125 	case MPOL_PREFERRED_MANY:
3126 	case MPOL_BIND:
3127 	case MPOL_INTERLEAVE:
3128 		nodes = pol->nodes;
3129 		break;
3130 	default:
3131 		WARN_ON_ONCE(1);
3132 		snprintf(p, maxlen, "unknown");
3133 		return;
3134 	}
3135 
3136 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3137 
3138 	if (flags & MPOL_MODE_FLAGS) {
3139 		p += snprintf(p, buffer + maxlen - p, "=");
3140 
3141 		/*
3142 		 * Currently, the only defined flags are mutually exclusive
3143 		 */
3144 		if (flags & MPOL_F_STATIC_NODES)
3145 			p += snprintf(p, buffer + maxlen - p, "static");
3146 		else if (flags & MPOL_F_RELATIVE_NODES)
3147 			p += snprintf(p, buffer + maxlen - p, "relative");
3148 	}
3149 
3150 	if (!nodes_empty(nodes))
3151 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3152 			       nodemask_pr_args(&nodes));
3153 }
3154