1 /* 2 * Simple NUMA memory policy for the Linux kernel. 3 * 4 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 6 * Subject to the GNU Public License, version 2. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case node -1 here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #include <linux/mempolicy.h> 69 #include <linux/mm.h> 70 #include <linux/highmem.h> 71 #include <linux/hugetlb.h> 72 #include <linux/kernel.h> 73 #include <linux/sched.h> 74 #include <linux/nodemask.h> 75 #include <linux/cpuset.h> 76 #include <linux/slab.h> 77 #include <linux/string.h> 78 #include <linux/module.h> 79 #include <linux/nsproxy.h> 80 #include <linux/interrupt.h> 81 #include <linux/init.h> 82 #include <linux/compat.h> 83 #include <linux/swap.h> 84 #include <linux/seq_file.h> 85 #include <linux/proc_fs.h> 86 #include <linux/migrate.h> 87 #include <linux/ksm.h> 88 #include <linux/rmap.h> 89 #include <linux/security.h> 90 #include <linux/syscalls.h> 91 #include <linux/ctype.h> 92 #include <linux/mm_inline.h> 93 94 #include <asm/tlbflush.h> 95 #include <asm/uaccess.h> 96 97 #include "internal.h" 98 99 /* Internal flags */ 100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 102 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ 103 104 static struct kmem_cache *policy_cache; 105 static struct kmem_cache *sn_cache; 106 107 /* Highest zone. An specific allocation for a zone below that is not 108 policied. */ 109 enum zone_type policy_zone = 0; 110 111 /* 112 * run-time system-wide default policy => local allocation 113 */ 114 struct mempolicy default_policy = { 115 .refcnt = ATOMIC_INIT(1), /* never free it */ 116 .mode = MPOL_PREFERRED, 117 .flags = MPOL_F_LOCAL, 118 }; 119 120 static const struct mempolicy_operations { 121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 122 /* 123 * If read-side task has no lock to protect task->mempolicy, write-side 124 * task will rebind the task->mempolicy by two step. The first step is 125 * setting all the newly nodes, and the second step is cleaning all the 126 * disallowed nodes. In this way, we can avoid finding no node to alloc 127 * page. 128 * If we have a lock to protect task->mempolicy in read-side, we do 129 * rebind directly. 130 * 131 * step: 132 * MPOL_REBIND_ONCE - do rebind work at once 133 * MPOL_REBIND_STEP1 - set all the newly nodes 134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 135 */ 136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, 137 enum mpol_rebind_step step); 138 } mpol_ops[MPOL_MAX]; 139 140 /* Check that the nodemask contains at least one populated zone */ 141 static int is_valid_nodemask(const nodemask_t *nodemask) 142 { 143 int nd, k; 144 145 for_each_node_mask(nd, *nodemask) { 146 struct zone *z; 147 148 for (k = 0; k <= policy_zone; k++) { 149 z = &NODE_DATA(nd)->node_zones[k]; 150 if (z->present_pages > 0) 151 return 1; 152 } 153 } 154 155 return 0; 156 } 157 158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 159 { 160 return pol->flags & MPOL_MODE_FLAGS; 161 } 162 163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 164 const nodemask_t *rel) 165 { 166 nodemask_t tmp; 167 nodes_fold(tmp, *orig, nodes_weight(*rel)); 168 nodes_onto(*ret, tmp, *rel); 169 } 170 171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 172 { 173 if (nodes_empty(*nodes)) 174 return -EINVAL; 175 pol->v.nodes = *nodes; 176 return 0; 177 } 178 179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 180 { 181 if (!nodes) 182 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 183 else if (nodes_empty(*nodes)) 184 return -EINVAL; /* no allowed nodes */ 185 else 186 pol->v.preferred_node = first_node(*nodes); 187 return 0; 188 } 189 190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 191 { 192 if (!is_valid_nodemask(nodes)) 193 return -EINVAL; 194 pol->v.nodes = *nodes; 195 return 0; 196 } 197 198 /* 199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 200 * any, for the new policy. mpol_new() has already validated the nodes 201 * parameter with respect to the policy mode and flags. But, we need to 202 * handle an empty nodemask with MPOL_PREFERRED here. 203 * 204 * Must be called holding task's alloc_lock to protect task's mems_allowed 205 * and mempolicy. May also be called holding the mmap_semaphore for write. 206 */ 207 static int mpol_set_nodemask(struct mempolicy *pol, 208 const nodemask_t *nodes, struct nodemask_scratch *nsc) 209 { 210 int ret; 211 212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 213 if (pol == NULL) 214 return 0; 215 /* Check N_HIGH_MEMORY */ 216 nodes_and(nsc->mask1, 217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]); 218 219 VM_BUG_ON(!nodes); 220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 221 nodes = NULL; /* explicit local allocation */ 222 else { 223 if (pol->flags & MPOL_F_RELATIVE_NODES) 224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); 225 else 226 nodes_and(nsc->mask2, *nodes, nsc->mask1); 227 228 if (mpol_store_user_nodemask(pol)) 229 pol->w.user_nodemask = *nodes; 230 else 231 pol->w.cpuset_mems_allowed = 232 cpuset_current_mems_allowed; 233 } 234 235 if (nodes) 236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 237 else 238 ret = mpol_ops[pol->mode].create(pol, NULL); 239 return ret; 240 } 241 242 /* 243 * This function just creates a new policy, does some check and simple 244 * initialization. You must invoke mpol_set_nodemask() to set nodes. 245 */ 246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 247 nodemask_t *nodes) 248 { 249 struct mempolicy *policy; 250 251 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1); 253 254 if (mode == MPOL_DEFAULT) { 255 if (nodes && !nodes_empty(*nodes)) 256 return ERR_PTR(-EINVAL); 257 return NULL; /* simply delete any existing policy */ 258 } 259 VM_BUG_ON(!nodes); 260 261 /* 262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 264 * All other modes require a valid pointer to a non-empty nodemask. 265 */ 266 if (mode == MPOL_PREFERRED) { 267 if (nodes_empty(*nodes)) { 268 if (((flags & MPOL_F_STATIC_NODES) || 269 (flags & MPOL_F_RELATIVE_NODES))) 270 return ERR_PTR(-EINVAL); 271 } 272 } else if (nodes_empty(*nodes)) 273 return ERR_PTR(-EINVAL); 274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 275 if (!policy) 276 return ERR_PTR(-ENOMEM); 277 atomic_set(&policy->refcnt, 1); 278 policy->mode = mode; 279 policy->flags = flags; 280 281 return policy; 282 } 283 284 /* Slow path of a mpol destructor. */ 285 void __mpol_put(struct mempolicy *p) 286 { 287 if (!atomic_dec_and_test(&p->refcnt)) 288 return; 289 kmem_cache_free(policy_cache, p); 290 } 291 292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, 293 enum mpol_rebind_step step) 294 { 295 } 296 297 /* 298 * step: 299 * MPOL_REBIND_ONCE - do rebind work at once 300 * MPOL_REBIND_STEP1 - set all the newly nodes 301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 302 */ 303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, 304 enum mpol_rebind_step step) 305 { 306 nodemask_t tmp; 307 308 if (pol->flags & MPOL_F_STATIC_NODES) 309 nodes_and(tmp, pol->w.user_nodemask, *nodes); 310 else if (pol->flags & MPOL_F_RELATIVE_NODES) 311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 312 else { 313 /* 314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the 315 * result 316 */ 317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { 318 nodes_remap(tmp, pol->v.nodes, 319 pol->w.cpuset_mems_allowed, *nodes); 320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes; 321 } else if (step == MPOL_REBIND_STEP2) { 322 tmp = pol->w.cpuset_mems_allowed; 323 pol->w.cpuset_mems_allowed = *nodes; 324 } else 325 BUG(); 326 } 327 328 if (nodes_empty(tmp)) 329 tmp = *nodes; 330 331 if (step == MPOL_REBIND_STEP1) 332 nodes_or(pol->v.nodes, pol->v.nodes, tmp); 333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) 334 pol->v.nodes = tmp; 335 else 336 BUG(); 337 338 if (!node_isset(current->il_next, tmp)) { 339 current->il_next = next_node(current->il_next, tmp); 340 if (current->il_next >= MAX_NUMNODES) 341 current->il_next = first_node(tmp); 342 if (current->il_next >= MAX_NUMNODES) 343 current->il_next = numa_node_id(); 344 } 345 } 346 347 static void mpol_rebind_preferred(struct mempolicy *pol, 348 const nodemask_t *nodes, 349 enum mpol_rebind_step step) 350 { 351 nodemask_t tmp; 352 353 if (pol->flags & MPOL_F_STATIC_NODES) { 354 int node = first_node(pol->w.user_nodemask); 355 356 if (node_isset(node, *nodes)) { 357 pol->v.preferred_node = node; 358 pol->flags &= ~MPOL_F_LOCAL; 359 } else 360 pol->flags |= MPOL_F_LOCAL; 361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 363 pol->v.preferred_node = first_node(tmp); 364 } else if (!(pol->flags & MPOL_F_LOCAL)) { 365 pol->v.preferred_node = node_remap(pol->v.preferred_node, 366 pol->w.cpuset_mems_allowed, 367 *nodes); 368 pol->w.cpuset_mems_allowed = *nodes; 369 } 370 } 371 372 /* 373 * mpol_rebind_policy - Migrate a policy to a different set of nodes 374 * 375 * If read-side task has no lock to protect task->mempolicy, write-side 376 * task will rebind the task->mempolicy by two step. The first step is 377 * setting all the newly nodes, and the second step is cleaning all the 378 * disallowed nodes. In this way, we can avoid finding no node to alloc 379 * page. 380 * If we have a lock to protect task->mempolicy in read-side, we do 381 * rebind directly. 382 * 383 * step: 384 * MPOL_REBIND_ONCE - do rebind work at once 385 * MPOL_REBIND_STEP1 - set all the newly nodes 386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes 387 */ 388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, 389 enum mpol_rebind_step step) 390 { 391 if (!pol) 392 return; 393 if (!mpol_store_user_nodemask(pol) && step == 0 && 394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 395 return; 396 397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) 398 return; 399 400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) 401 BUG(); 402 403 if (step == MPOL_REBIND_STEP1) 404 pol->flags |= MPOL_F_REBINDING; 405 else if (step == MPOL_REBIND_STEP2) 406 pol->flags &= ~MPOL_F_REBINDING; 407 else if (step >= MPOL_REBIND_NSTEP) 408 BUG(); 409 410 mpol_ops[pol->mode].rebind(pol, newmask, step); 411 } 412 413 /* 414 * Wrapper for mpol_rebind_policy() that just requires task 415 * pointer, and updates task mempolicy. 416 * 417 * Called with task's alloc_lock held. 418 */ 419 420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, 421 enum mpol_rebind_step step) 422 { 423 mpol_rebind_policy(tsk->mempolicy, new, step); 424 } 425 426 /* 427 * Rebind each vma in mm to new nodemask. 428 * 429 * Call holding a reference to mm. Takes mm->mmap_sem during call. 430 */ 431 432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 433 { 434 struct vm_area_struct *vma; 435 436 down_write(&mm->mmap_sem); 437 for (vma = mm->mmap; vma; vma = vma->vm_next) 438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); 439 up_write(&mm->mmap_sem); 440 } 441 442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 443 [MPOL_DEFAULT] = { 444 .rebind = mpol_rebind_default, 445 }, 446 [MPOL_INTERLEAVE] = { 447 .create = mpol_new_interleave, 448 .rebind = mpol_rebind_nodemask, 449 }, 450 [MPOL_PREFERRED] = { 451 .create = mpol_new_preferred, 452 .rebind = mpol_rebind_preferred, 453 }, 454 [MPOL_BIND] = { 455 .create = mpol_new_bind, 456 .rebind = mpol_rebind_nodemask, 457 }, 458 }; 459 460 static void gather_stats(struct page *, void *, int pte_dirty); 461 static void migrate_page_add(struct page *page, struct list_head *pagelist, 462 unsigned long flags); 463 464 /* Scan through pages checking if pages follow certain conditions. */ 465 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 466 unsigned long addr, unsigned long end, 467 const nodemask_t *nodes, unsigned long flags, 468 void *private) 469 { 470 pte_t *orig_pte; 471 pte_t *pte; 472 spinlock_t *ptl; 473 474 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 475 do { 476 struct page *page; 477 int nid; 478 479 if (!pte_present(*pte)) 480 continue; 481 page = vm_normal_page(vma, addr, *pte); 482 if (!page) 483 continue; 484 /* 485 * vm_normal_page() filters out zero pages, but there might 486 * still be PageReserved pages to skip, perhaps in a VDSO. 487 * And we cannot move PageKsm pages sensibly or safely yet. 488 */ 489 if (PageReserved(page) || PageKsm(page)) 490 continue; 491 nid = page_to_nid(page); 492 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) 493 continue; 494 495 if (flags & MPOL_MF_STATS) 496 gather_stats(page, private, pte_dirty(*pte)); 497 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 498 migrate_page_add(page, private, flags); 499 else 500 break; 501 } while (pte++, addr += PAGE_SIZE, addr != end); 502 pte_unmap_unlock(orig_pte, ptl); 503 return addr != end; 504 } 505 506 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, 507 unsigned long addr, unsigned long end, 508 const nodemask_t *nodes, unsigned long flags, 509 void *private) 510 { 511 pmd_t *pmd; 512 unsigned long next; 513 514 pmd = pmd_offset(pud, addr); 515 do { 516 next = pmd_addr_end(addr, end); 517 if (pmd_none_or_clear_bad(pmd)) 518 continue; 519 if (check_pte_range(vma, pmd, addr, next, nodes, 520 flags, private)) 521 return -EIO; 522 } while (pmd++, addr = next, addr != end); 523 return 0; 524 } 525 526 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 527 unsigned long addr, unsigned long end, 528 const nodemask_t *nodes, unsigned long flags, 529 void *private) 530 { 531 pud_t *pud; 532 unsigned long next; 533 534 pud = pud_offset(pgd, addr); 535 do { 536 next = pud_addr_end(addr, end); 537 if (pud_none_or_clear_bad(pud)) 538 continue; 539 if (check_pmd_range(vma, pud, addr, next, nodes, 540 flags, private)) 541 return -EIO; 542 } while (pud++, addr = next, addr != end); 543 return 0; 544 } 545 546 static inline int check_pgd_range(struct vm_area_struct *vma, 547 unsigned long addr, unsigned long end, 548 const nodemask_t *nodes, unsigned long flags, 549 void *private) 550 { 551 pgd_t *pgd; 552 unsigned long next; 553 554 pgd = pgd_offset(vma->vm_mm, addr); 555 do { 556 next = pgd_addr_end(addr, end); 557 if (pgd_none_or_clear_bad(pgd)) 558 continue; 559 if (check_pud_range(vma, pgd, addr, next, nodes, 560 flags, private)) 561 return -EIO; 562 } while (pgd++, addr = next, addr != end); 563 return 0; 564 } 565 566 /* 567 * Check if all pages in a range are on a set of nodes. 568 * If pagelist != NULL then isolate pages from the LRU and 569 * put them on the pagelist. 570 */ 571 static struct vm_area_struct * 572 check_range(struct mm_struct *mm, unsigned long start, unsigned long end, 573 const nodemask_t *nodes, unsigned long flags, void *private) 574 { 575 int err; 576 struct vm_area_struct *first, *vma, *prev; 577 578 579 first = find_vma(mm, start); 580 if (!first) 581 return ERR_PTR(-EFAULT); 582 prev = NULL; 583 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { 584 if (!(flags & MPOL_MF_DISCONTIG_OK)) { 585 if (!vma->vm_next && vma->vm_end < end) 586 return ERR_PTR(-EFAULT); 587 if (prev && prev->vm_end < vma->vm_start) 588 return ERR_PTR(-EFAULT); 589 } 590 if (!is_vm_hugetlb_page(vma) && 591 ((flags & MPOL_MF_STRICT) || 592 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && 593 vma_migratable(vma)))) { 594 unsigned long endvma = vma->vm_end; 595 596 if (endvma > end) 597 endvma = end; 598 if (vma->vm_start > start) 599 start = vma->vm_start; 600 err = check_pgd_range(vma, start, endvma, nodes, 601 flags, private); 602 if (err) { 603 first = ERR_PTR(err); 604 break; 605 } 606 } 607 prev = vma; 608 } 609 return first; 610 } 611 612 /* Apply policy to a single VMA */ 613 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) 614 { 615 int err = 0; 616 struct mempolicy *old = vma->vm_policy; 617 618 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 619 vma->vm_start, vma->vm_end, vma->vm_pgoff, 620 vma->vm_ops, vma->vm_file, 621 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 622 623 if (vma->vm_ops && vma->vm_ops->set_policy) 624 err = vma->vm_ops->set_policy(vma, new); 625 if (!err) { 626 mpol_get(new); 627 vma->vm_policy = new; 628 mpol_put(old); 629 } 630 return err; 631 } 632 633 /* Step 2: apply policy to a range and do splits. */ 634 static int mbind_range(struct mm_struct *mm, unsigned long start, 635 unsigned long end, struct mempolicy *new_pol) 636 { 637 struct vm_area_struct *next; 638 struct vm_area_struct *prev; 639 struct vm_area_struct *vma; 640 int err = 0; 641 pgoff_t pgoff; 642 unsigned long vmstart; 643 unsigned long vmend; 644 645 vma = find_vma_prev(mm, start, &prev); 646 if (!vma || vma->vm_start > start) 647 return -EFAULT; 648 649 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 650 next = vma->vm_next; 651 vmstart = max(start, vma->vm_start); 652 vmend = min(end, vma->vm_end); 653 654 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 655 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 656 vma->anon_vma, vma->vm_file, pgoff, new_pol); 657 if (prev) { 658 vma = prev; 659 next = vma->vm_next; 660 continue; 661 } 662 if (vma->vm_start != vmstart) { 663 err = split_vma(vma->vm_mm, vma, vmstart, 1); 664 if (err) 665 goto out; 666 } 667 if (vma->vm_end != vmend) { 668 err = split_vma(vma->vm_mm, vma, vmend, 0); 669 if (err) 670 goto out; 671 } 672 err = policy_vma(vma, new_pol); 673 if (err) 674 goto out; 675 } 676 677 out: 678 return err; 679 } 680 681 /* 682 * Update task->flags PF_MEMPOLICY bit: set iff non-default 683 * mempolicy. Allows more rapid checking of this (combined perhaps 684 * with other PF_* flag bits) on memory allocation hot code paths. 685 * 686 * If called from outside this file, the task 'p' should -only- be 687 * a newly forked child not yet visible on the task list, because 688 * manipulating the task flags of a visible task is not safe. 689 * 690 * The above limitation is why this routine has the funny name 691 * mpol_fix_fork_child_flag(). 692 * 693 * It is also safe to call this with a task pointer of current, 694 * which the static wrapper mpol_set_task_struct_flag() does, 695 * for use within this file. 696 */ 697 698 void mpol_fix_fork_child_flag(struct task_struct *p) 699 { 700 if (p->mempolicy) 701 p->flags |= PF_MEMPOLICY; 702 else 703 p->flags &= ~PF_MEMPOLICY; 704 } 705 706 static void mpol_set_task_struct_flag(void) 707 { 708 mpol_fix_fork_child_flag(current); 709 } 710 711 /* Set the process memory policy */ 712 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 713 nodemask_t *nodes) 714 { 715 struct mempolicy *new, *old; 716 struct mm_struct *mm = current->mm; 717 NODEMASK_SCRATCH(scratch); 718 int ret; 719 720 if (!scratch) 721 return -ENOMEM; 722 723 new = mpol_new(mode, flags, nodes); 724 if (IS_ERR(new)) { 725 ret = PTR_ERR(new); 726 goto out; 727 } 728 /* 729 * prevent changing our mempolicy while show_numa_maps() 730 * is using it. 731 * Note: do_set_mempolicy() can be called at init time 732 * with no 'mm'. 733 */ 734 if (mm) 735 down_write(&mm->mmap_sem); 736 task_lock(current); 737 ret = mpol_set_nodemask(new, nodes, scratch); 738 if (ret) { 739 task_unlock(current); 740 if (mm) 741 up_write(&mm->mmap_sem); 742 mpol_put(new); 743 goto out; 744 } 745 old = current->mempolicy; 746 current->mempolicy = new; 747 mpol_set_task_struct_flag(); 748 if (new && new->mode == MPOL_INTERLEAVE && 749 nodes_weight(new->v.nodes)) 750 current->il_next = first_node(new->v.nodes); 751 task_unlock(current); 752 if (mm) 753 up_write(&mm->mmap_sem); 754 755 mpol_put(old); 756 ret = 0; 757 out: 758 NODEMASK_SCRATCH_FREE(scratch); 759 return ret; 760 } 761 762 /* 763 * Return nodemask for policy for get_mempolicy() query 764 * 765 * Called with task's alloc_lock held 766 */ 767 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 768 { 769 nodes_clear(*nodes); 770 if (p == &default_policy) 771 return; 772 773 switch (p->mode) { 774 case MPOL_BIND: 775 /* Fall through */ 776 case MPOL_INTERLEAVE: 777 *nodes = p->v.nodes; 778 break; 779 case MPOL_PREFERRED: 780 if (!(p->flags & MPOL_F_LOCAL)) 781 node_set(p->v.preferred_node, *nodes); 782 /* else return empty node mask for local allocation */ 783 break; 784 default: 785 BUG(); 786 } 787 } 788 789 static int lookup_node(struct mm_struct *mm, unsigned long addr) 790 { 791 struct page *p; 792 int err; 793 794 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); 795 if (err >= 0) { 796 err = page_to_nid(p); 797 put_page(p); 798 } 799 return err; 800 } 801 802 /* Retrieve NUMA policy */ 803 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 804 unsigned long addr, unsigned long flags) 805 { 806 int err; 807 struct mm_struct *mm = current->mm; 808 struct vm_area_struct *vma = NULL; 809 struct mempolicy *pol = current->mempolicy; 810 811 if (flags & 812 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 813 return -EINVAL; 814 815 if (flags & MPOL_F_MEMS_ALLOWED) { 816 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 817 return -EINVAL; 818 *policy = 0; /* just so it's initialized */ 819 task_lock(current); 820 *nmask = cpuset_current_mems_allowed; 821 task_unlock(current); 822 return 0; 823 } 824 825 if (flags & MPOL_F_ADDR) { 826 /* 827 * Do NOT fall back to task policy if the 828 * vma/shared policy at addr is NULL. We 829 * want to return MPOL_DEFAULT in this case. 830 */ 831 down_read(&mm->mmap_sem); 832 vma = find_vma_intersection(mm, addr, addr+1); 833 if (!vma) { 834 up_read(&mm->mmap_sem); 835 return -EFAULT; 836 } 837 if (vma->vm_ops && vma->vm_ops->get_policy) 838 pol = vma->vm_ops->get_policy(vma, addr); 839 else 840 pol = vma->vm_policy; 841 } else if (addr) 842 return -EINVAL; 843 844 if (!pol) 845 pol = &default_policy; /* indicates default behavior */ 846 847 if (flags & MPOL_F_NODE) { 848 if (flags & MPOL_F_ADDR) { 849 err = lookup_node(mm, addr); 850 if (err < 0) 851 goto out; 852 *policy = err; 853 } else if (pol == current->mempolicy && 854 pol->mode == MPOL_INTERLEAVE) { 855 *policy = current->il_next; 856 } else { 857 err = -EINVAL; 858 goto out; 859 } 860 } else { 861 *policy = pol == &default_policy ? MPOL_DEFAULT : 862 pol->mode; 863 /* 864 * Internal mempolicy flags must be masked off before exposing 865 * the policy to userspace. 866 */ 867 *policy |= (pol->flags & MPOL_MODE_FLAGS); 868 } 869 870 if (vma) { 871 up_read(¤t->mm->mmap_sem); 872 vma = NULL; 873 } 874 875 err = 0; 876 if (nmask) { 877 if (mpol_store_user_nodemask(pol)) { 878 *nmask = pol->w.user_nodemask; 879 } else { 880 task_lock(current); 881 get_policy_nodemask(pol, nmask); 882 task_unlock(current); 883 } 884 } 885 886 out: 887 mpol_cond_put(pol); 888 if (vma) 889 up_read(¤t->mm->mmap_sem); 890 return err; 891 } 892 893 #ifdef CONFIG_MIGRATION 894 /* 895 * page migration 896 */ 897 static void migrate_page_add(struct page *page, struct list_head *pagelist, 898 unsigned long flags) 899 { 900 /* 901 * Avoid migrating a page that is shared with others. 902 */ 903 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { 904 if (!isolate_lru_page(page)) { 905 list_add_tail(&page->lru, pagelist); 906 inc_zone_page_state(page, NR_ISOLATED_ANON + 907 page_is_file_cache(page)); 908 } 909 } 910 } 911 912 static struct page *new_node_page(struct page *page, unsigned long node, int **x) 913 { 914 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); 915 } 916 917 /* 918 * Migrate pages from one node to a target node. 919 * Returns error or the number of pages not migrated. 920 */ 921 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 922 int flags) 923 { 924 nodemask_t nmask; 925 LIST_HEAD(pagelist); 926 int err = 0; 927 928 nodes_clear(nmask); 929 node_set(source, nmask); 930 931 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 932 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 933 934 if (!list_empty(&pagelist)) 935 err = migrate_pages(&pagelist, new_node_page, dest, 0); 936 937 return err; 938 } 939 940 /* 941 * Move pages between the two nodesets so as to preserve the physical 942 * layout as much as possible. 943 * 944 * Returns the number of page that could not be moved. 945 */ 946 int do_migrate_pages(struct mm_struct *mm, 947 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 948 { 949 int busy = 0; 950 int err; 951 nodemask_t tmp; 952 953 err = migrate_prep(); 954 if (err) 955 return err; 956 957 down_read(&mm->mmap_sem); 958 959 err = migrate_vmas(mm, from_nodes, to_nodes, flags); 960 if (err) 961 goto out; 962 963 /* 964 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 965 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 966 * bit in 'tmp', and return that <source, dest> pair for migration. 967 * The pair of nodemasks 'to' and 'from' define the map. 968 * 969 * If no pair of bits is found that way, fallback to picking some 970 * pair of 'source' and 'dest' bits that are not the same. If the 971 * 'source' and 'dest' bits are the same, this represents a node 972 * that will be migrating to itself, so no pages need move. 973 * 974 * If no bits are left in 'tmp', or if all remaining bits left 975 * in 'tmp' correspond to the same bit in 'to', return false 976 * (nothing left to migrate). 977 * 978 * This lets us pick a pair of nodes to migrate between, such that 979 * if possible the dest node is not already occupied by some other 980 * source node, minimizing the risk of overloading the memory on a 981 * node that would happen if we migrated incoming memory to a node 982 * before migrating outgoing memory source that same node. 983 * 984 * A single scan of tmp is sufficient. As we go, we remember the 985 * most recent <s, d> pair that moved (s != d). If we find a pair 986 * that not only moved, but what's better, moved to an empty slot 987 * (d is not set in tmp), then we break out then, with that pair. 988 * Otherwise when we finish scannng from_tmp, we at least have the 989 * most recent <s, d> pair that moved. If we get all the way through 990 * the scan of tmp without finding any node that moved, much less 991 * moved to an empty node, then there is nothing left worth migrating. 992 */ 993 994 tmp = *from_nodes; 995 while (!nodes_empty(tmp)) { 996 int s,d; 997 int source = -1; 998 int dest = 0; 999 1000 for_each_node_mask(s, tmp) { 1001 d = node_remap(s, *from_nodes, *to_nodes); 1002 if (s == d) 1003 continue; 1004 1005 source = s; /* Node moved. Memorize */ 1006 dest = d; 1007 1008 /* dest not in remaining from nodes? */ 1009 if (!node_isset(dest, tmp)) 1010 break; 1011 } 1012 if (source == -1) 1013 break; 1014 1015 node_clear(source, tmp); 1016 err = migrate_to_node(mm, source, dest, flags); 1017 if (err > 0) 1018 busy += err; 1019 if (err < 0) 1020 break; 1021 } 1022 out: 1023 up_read(&mm->mmap_sem); 1024 if (err < 0) 1025 return err; 1026 return busy; 1027 1028 } 1029 1030 /* 1031 * Allocate a new page for page migration based on vma policy. 1032 * Start assuming that page is mapped by vma pointed to by @private. 1033 * Search forward from there, if not. N.B., this assumes that the 1034 * list of pages handed to migrate_pages()--which is how we get here-- 1035 * is in virtual address order. 1036 */ 1037 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1038 { 1039 struct vm_area_struct *vma = (struct vm_area_struct *)private; 1040 unsigned long uninitialized_var(address); 1041 1042 while (vma) { 1043 address = page_address_in_vma(page, vma); 1044 if (address != -EFAULT) 1045 break; 1046 vma = vma->vm_next; 1047 } 1048 1049 /* 1050 * if !vma, alloc_page_vma() will use task or system default policy 1051 */ 1052 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1053 } 1054 #else 1055 1056 static void migrate_page_add(struct page *page, struct list_head *pagelist, 1057 unsigned long flags) 1058 { 1059 } 1060 1061 int do_migrate_pages(struct mm_struct *mm, 1062 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) 1063 { 1064 return -ENOSYS; 1065 } 1066 1067 static struct page *new_vma_page(struct page *page, unsigned long private, int **x) 1068 { 1069 return NULL; 1070 } 1071 #endif 1072 1073 static long do_mbind(unsigned long start, unsigned long len, 1074 unsigned short mode, unsigned short mode_flags, 1075 nodemask_t *nmask, unsigned long flags) 1076 { 1077 struct vm_area_struct *vma; 1078 struct mm_struct *mm = current->mm; 1079 struct mempolicy *new; 1080 unsigned long end; 1081 int err; 1082 LIST_HEAD(pagelist); 1083 1084 if (flags & ~(unsigned long)(MPOL_MF_STRICT | 1085 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1086 return -EINVAL; 1087 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1088 return -EPERM; 1089 1090 if (start & ~PAGE_MASK) 1091 return -EINVAL; 1092 1093 if (mode == MPOL_DEFAULT) 1094 flags &= ~MPOL_MF_STRICT; 1095 1096 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1097 end = start + len; 1098 1099 if (end < start) 1100 return -EINVAL; 1101 if (end == start) 1102 return 0; 1103 1104 new = mpol_new(mode, mode_flags, nmask); 1105 if (IS_ERR(new)) 1106 return PTR_ERR(new); 1107 1108 /* 1109 * If we are using the default policy then operation 1110 * on discontinuous address spaces is okay after all 1111 */ 1112 if (!new) 1113 flags |= MPOL_MF_DISCONTIG_OK; 1114 1115 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1116 start, start + len, mode, mode_flags, 1117 nmask ? nodes_addr(*nmask)[0] : -1); 1118 1119 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1120 1121 err = migrate_prep(); 1122 if (err) 1123 goto mpol_out; 1124 } 1125 { 1126 NODEMASK_SCRATCH(scratch); 1127 if (scratch) { 1128 down_write(&mm->mmap_sem); 1129 task_lock(current); 1130 err = mpol_set_nodemask(new, nmask, scratch); 1131 task_unlock(current); 1132 if (err) 1133 up_write(&mm->mmap_sem); 1134 } else 1135 err = -ENOMEM; 1136 NODEMASK_SCRATCH_FREE(scratch); 1137 } 1138 if (err) 1139 goto mpol_out; 1140 1141 vma = check_range(mm, start, end, nmask, 1142 flags | MPOL_MF_INVERT, &pagelist); 1143 1144 err = PTR_ERR(vma); 1145 if (!IS_ERR(vma)) { 1146 int nr_failed = 0; 1147 1148 err = mbind_range(mm, start, end, new); 1149 1150 if (!list_empty(&pagelist)) 1151 nr_failed = migrate_pages(&pagelist, new_vma_page, 1152 (unsigned long)vma, 0); 1153 1154 if (!err && nr_failed && (flags & MPOL_MF_STRICT)) 1155 err = -EIO; 1156 } else 1157 putback_lru_pages(&pagelist); 1158 1159 up_write(&mm->mmap_sem); 1160 mpol_out: 1161 mpol_put(new); 1162 return err; 1163 } 1164 1165 /* 1166 * User space interface with variable sized bitmaps for nodelists. 1167 */ 1168 1169 /* Copy a node mask from user space. */ 1170 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1171 unsigned long maxnode) 1172 { 1173 unsigned long k; 1174 unsigned long nlongs; 1175 unsigned long endmask; 1176 1177 --maxnode; 1178 nodes_clear(*nodes); 1179 if (maxnode == 0 || !nmask) 1180 return 0; 1181 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1182 return -EINVAL; 1183 1184 nlongs = BITS_TO_LONGS(maxnode); 1185 if ((maxnode % BITS_PER_LONG) == 0) 1186 endmask = ~0UL; 1187 else 1188 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1189 1190 /* When the user specified more nodes than supported just check 1191 if the non supported part is all zero. */ 1192 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1193 if (nlongs > PAGE_SIZE/sizeof(long)) 1194 return -EINVAL; 1195 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1196 unsigned long t; 1197 if (get_user(t, nmask + k)) 1198 return -EFAULT; 1199 if (k == nlongs - 1) { 1200 if (t & endmask) 1201 return -EINVAL; 1202 } else if (t) 1203 return -EINVAL; 1204 } 1205 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1206 endmask = ~0UL; 1207 } 1208 1209 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1210 return -EFAULT; 1211 nodes_addr(*nodes)[nlongs-1] &= endmask; 1212 return 0; 1213 } 1214 1215 /* Copy a kernel node mask to user space */ 1216 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1217 nodemask_t *nodes) 1218 { 1219 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1220 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); 1221 1222 if (copy > nbytes) { 1223 if (copy > PAGE_SIZE) 1224 return -EINVAL; 1225 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1226 return -EFAULT; 1227 copy = nbytes; 1228 } 1229 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1230 } 1231 1232 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1233 unsigned long, mode, unsigned long __user *, nmask, 1234 unsigned long, maxnode, unsigned, flags) 1235 { 1236 nodemask_t nodes; 1237 int err; 1238 unsigned short mode_flags; 1239 1240 mode_flags = mode & MPOL_MODE_FLAGS; 1241 mode &= ~MPOL_MODE_FLAGS; 1242 if (mode >= MPOL_MAX) 1243 return -EINVAL; 1244 if ((mode_flags & MPOL_F_STATIC_NODES) && 1245 (mode_flags & MPOL_F_RELATIVE_NODES)) 1246 return -EINVAL; 1247 err = get_nodes(&nodes, nmask, maxnode); 1248 if (err) 1249 return err; 1250 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1251 } 1252 1253 /* Set the process memory policy */ 1254 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, 1255 unsigned long, maxnode) 1256 { 1257 int err; 1258 nodemask_t nodes; 1259 unsigned short flags; 1260 1261 flags = mode & MPOL_MODE_FLAGS; 1262 mode &= ~MPOL_MODE_FLAGS; 1263 if ((unsigned int)mode >= MPOL_MAX) 1264 return -EINVAL; 1265 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1266 return -EINVAL; 1267 err = get_nodes(&nodes, nmask, maxnode); 1268 if (err) 1269 return err; 1270 return do_set_mempolicy(mode, flags, &nodes); 1271 } 1272 1273 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1274 const unsigned long __user *, old_nodes, 1275 const unsigned long __user *, new_nodes) 1276 { 1277 const struct cred *cred = current_cred(), *tcred; 1278 struct mm_struct *mm; 1279 struct task_struct *task; 1280 nodemask_t old; 1281 nodemask_t new; 1282 nodemask_t task_nodes; 1283 int err; 1284 1285 err = get_nodes(&old, old_nodes, maxnode); 1286 if (err) 1287 return err; 1288 1289 err = get_nodes(&new, new_nodes, maxnode); 1290 if (err) 1291 return err; 1292 1293 /* Find the mm_struct */ 1294 read_lock(&tasklist_lock); 1295 task = pid ? find_task_by_vpid(pid) : current; 1296 if (!task) { 1297 read_unlock(&tasklist_lock); 1298 return -ESRCH; 1299 } 1300 mm = get_task_mm(task); 1301 read_unlock(&tasklist_lock); 1302 1303 if (!mm) 1304 return -EINVAL; 1305 1306 /* 1307 * Check if this process has the right to modify the specified 1308 * process. The right exists if the process has administrative 1309 * capabilities, superuser privileges or the same 1310 * userid as the target process. 1311 */ 1312 rcu_read_lock(); 1313 tcred = __task_cred(task); 1314 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1315 cred->uid != tcred->suid && cred->uid != tcred->uid && 1316 !capable(CAP_SYS_NICE)) { 1317 rcu_read_unlock(); 1318 err = -EPERM; 1319 goto out; 1320 } 1321 rcu_read_unlock(); 1322 1323 task_nodes = cpuset_mems_allowed(task); 1324 /* Is the user allowed to access the target nodes? */ 1325 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { 1326 err = -EPERM; 1327 goto out; 1328 } 1329 1330 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { 1331 err = -EINVAL; 1332 goto out; 1333 } 1334 1335 err = security_task_movememory(task); 1336 if (err) 1337 goto out; 1338 1339 err = do_migrate_pages(mm, &old, &new, 1340 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1341 out: 1342 mmput(mm); 1343 return err; 1344 } 1345 1346 1347 /* Retrieve NUMA policy */ 1348 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1349 unsigned long __user *, nmask, unsigned long, maxnode, 1350 unsigned long, addr, unsigned long, flags) 1351 { 1352 int err; 1353 int uninitialized_var(pval); 1354 nodemask_t nodes; 1355 1356 if (nmask != NULL && maxnode < MAX_NUMNODES) 1357 return -EINVAL; 1358 1359 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1360 1361 if (err) 1362 return err; 1363 1364 if (policy && put_user(pval, policy)) 1365 return -EFAULT; 1366 1367 if (nmask) 1368 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1369 1370 return err; 1371 } 1372 1373 #ifdef CONFIG_COMPAT 1374 1375 asmlinkage long compat_sys_get_mempolicy(int __user *policy, 1376 compat_ulong_t __user *nmask, 1377 compat_ulong_t maxnode, 1378 compat_ulong_t addr, compat_ulong_t flags) 1379 { 1380 long err; 1381 unsigned long __user *nm = NULL; 1382 unsigned long nr_bits, alloc_size; 1383 DECLARE_BITMAP(bm, MAX_NUMNODES); 1384 1385 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1386 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1387 1388 if (nmask) 1389 nm = compat_alloc_user_space(alloc_size); 1390 1391 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1392 1393 if (!err && nmask) { 1394 err = copy_from_user(bm, nm, alloc_size); 1395 /* ensure entire bitmap is zeroed */ 1396 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1397 err |= compat_put_bitmap(nmask, bm, nr_bits); 1398 } 1399 1400 return err; 1401 } 1402 1403 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, 1404 compat_ulong_t maxnode) 1405 { 1406 long err = 0; 1407 unsigned long __user *nm = NULL; 1408 unsigned long nr_bits, alloc_size; 1409 DECLARE_BITMAP(bm, MAX_NUMNODES); 1410 1411 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1412 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1413 1414 if (nmask) { 1415 err = compat_get_bitmap(bm, nmask, nr_bits); 1416 nm = compat_alloc_user_space(alloc_size); 1417 err |= copy_to_user(nm, bm, alloc_size); 1418 } 1419 1420 if (err) 1421 return -EFAULT; 1422 1423 return sys_set_mempolicy(mode, nm, nr_bits+1); 1424 } 1425 1426 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, 1427 compat_ulong_t mode, compat_ulong_t __user *nmask, 1428 compat_ulong_t maxnode, compat_ulong_t flags) 1429 { 1430 long err = 0; 1431 unsigned long __user *nm = NULL; 1432 unsigned long nr_bits, alloc_size; 1433 nodemask_t bm; 1434 1435 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1436 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1437 1438 if (nmask) { 1439 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); 1440 nm = compat_alloc_user_space(alloc_size); 1441 err |= copy_to_user(nm, nodes_addr(bm), alloc_size); 1442 } 1443 1444 if (err) 1445 return -EFAULT; 1446 1447 return sys_mbind(start, len, mode, nm, nr_bits+1, flags); 1448 } 1449 1450 #endif 1451 1452 /* 1453 * get_vma_policy(@task, @vma, @addr) 1454 * @task - task for fallback if vma policy == default 1455 * @vma - virtual memory area whose policy is sought 1456 * @addr - address in @vma for shared policy lookup 1457 * 1458 * Returns effective policy for a VMA at specified address. 1459 * Falls back to @task or system default policy, as necessary. 1460 * Current or other task's task mempolicy and non-shared vma policies 1461 * are protected by the task's mmap_sem, which must be held for read by 1462 * the caller. 1463 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1464 * count--added by the get_policy() vm_op, as appropriate--to protect against 1465 * freeing by another task. It is the caller's responsibility to free the 1466 * extra reference for shared policies. 1467 */ 1468 static struct mempolicy *get_vma_policy(struct task_struct *task, 1469 struct vm_area_struct *vma, unsigned long addr) 1470 { 1471 struct mempolicy *pol = task->mempolicy; 1472 1473 if (vma) { 1474 if (vma->vm_ops && vma->vm_ops->get_policy) { 1475 struct mempolicy *vpol = vma->vm_ops->get_policy(vma, 1476 addr); 1477 if (vpol) 1478 pol = vpol; 1479 } else if (vma->vm_policy) 1480 pol = vma->vm_policy; 1481 } 1482 if (!pol) 1483 pol = &default_policy; 1484 return pol; 1485 } 1486 1487 /* 1488 * Return a nodemask representing a mempolicy for filtering nodes for 1489 * page allocation 1490 */ 1491 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1492 { 1493 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1494 if (unlikely(policy->mode == MPOL_BIND) && 1495 gfp_zone(gfp) >= policy_zone && 1496 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1497 return &policy->v.nodes; 1498 1499 return NULL; 1500 } 1501 1502 /* Return a zonelist indicated by gfp for node representing a mempolicy */ 1503 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy) 1504 { 1505 int nd = numa_node_id(); 1506 1507 switch (policy->mode) { 1508 case MPOL_PREFERRED: 1509 if (!(policy->flags & MPOL_F_LOCAL)) 1510 nd = policy->v.preferred_node; 1511 break; 1512 case MPOL_BIND: 1513 /* 1514 * Normally, MPOL_BIND allocations are node-local within the 1515 * allowed nodemask. However, if __GFP_THISNODE is set and the 1516 * current node isn't part of the mask, we use the zonelist for 1517 * the first node in the mask instead. 1518 */ 1519 if (unlikely(gfp & __GFP_THISNODE) && 1520 unlikely(!node_isset(nd, policy->v.nodes))) 1521 nd = first_node(policy->v.nodes); 1522 break; 1523 default: 1524 BUG(); 1525 } 1526 return node_zonelist(nd, gfp); 1527 } 1528 1529 /* Do dynamic interleaving for a process */ 1530 static unsigned interleave_nodes(struct mempolicy *policy) 1531 { 1532 unsigned nid, next; 1533 struct task_struct *me = current; 1534 1535 nid = me->il_next; 1536 next = next_node(nid, policy->v.nodes); 1537 if (next >= MAX_NUMNODES) 1538 next = first_node(policy->v.nodes); 1539 if (next < MAX_NUMNODES) 1540 me->il_next = next; 1541 return nid; 1542 } 1543 1544 /* 1545 * Depending on the memory policy provide a node from which to allocate the 1546 * next slab entry. 1547 * @policy must be protected by freeing by the caller. If @policy is 1548 * the current task's mempolicy, this protection is implicit, as only the 1549 * task can change it's policy. The system default policy requires no 1550 * such protection. 1551 */ 1552 unsigned slab_node(struct mempolicy *policy) 1553 { 1554 if (!policy || policy->flags & MPOL_F_LOCAL) 1555 return numa_node_id(); 1556 1557 switch (policy->mode) { 1558 case MPOL_PREFERRED: 1559 /* 1560 * handled MPOL_F_LOCAL above 1561 */ 1562 return policy->v.preferred_node; 1563 1564 case MPOL_INTERLEAVE: 1565 return interleave_nodes(policy); 1566 1567 case MPOL_BIND: { 1568 /* 1569 * Follow bind policy behavior and start allocation at the 1570 * first node. 1571 */ 1572 struct zonelist *zonelist; 1573 struct zone *zone; 1574 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1575 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; 1576 (void)first_zones_zonelist(zonelist, highest_zoneidx, 1577 &policy->v.nodes, 1578 &zone); 1579 return zone->node; 1580 } 1581 1582 default: 1583 BUG(); 1584 } 1585 } 1586 1587 /* Do static interleaving for a VMA with known offset. */ 1588 static unsigned offset_il_node(struct mempolicy *pol, 1589 struct vm_area_struct *vma, unsigned long off) 1590 { 1591 unsigned nnodes = nodes_weight(pol->v.nodes); 1592 unsigned target; 1593 int c; 1594 int nid = -1; 1595 1596 if (!nnodes) 1597 return numa_node_id(); 1598 target = (unsigned int)off % nnodes; 1599 c = 0; 1600 do { 1601 nid = next_node(nid, pol->v.nodes); 1602 c++; 1603 } while (c <= target); 1604 return nid; 1605 } 1606 1607 /* Determine a node number for interleave */ 1608 static inline unsigned interleave_nid(struct mempolicy *pol, 1609 struct vm_area_struct *vma, unsigned long addr, int shift) 1610 { 1611 if (vma) { 1612 unsigned long off; 1613 1614 /* 1615 * for small pages, there is no difference between 1616 * shift and PAGE_SHIFT, so the bit-shift is safe. 1617 * for huge pages, since vm_pgoff is in units of small 1618 * pages, we need to shift off the always 0 bits to get 1619 * a useful offset. 1620 */ 1621 BUG_ON(shift < PAGE_SHIFT); 1622 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1623 off += (addr - vma->vm_start) >> shift; 1624 return offset_il_node(pol, vma, off); 1625 } else 1626 return interleave_nodes(pol); 1627 } 1628 1629 #ifdef CONFIG_HUGETLBFS 1630 /* 1631 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) 1632 * @vma = virtual memory area whose policy is sought 1633 * @addr = address in @vma for shared policy lookup and interleave policy 1634 * @gfp_flags = for requested zone 1635 * @mpol = pointer to mempolicy pointer for reference counted mempolicy 1636 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask 1637 * 1638 * Returns a zonelist suitable for a huge page allocation and a pointer 1639 * to the struct mempolicy for conditional unref after allocation. 1640 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 1641 * @nodemask for filtering the zonelist. 1642 * 1643 * Must be protected by get_mems_allowed() 1644 */ 1645 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, 1646 gfp_t gfp_flags, struct mempolicy **mpol, 1647 nodemask_t **nodemask) 1648 { 1649 struct zonelist *zl; 1650 1651 *mpol = get_vma_policy(current, vma, addr); 1652 *nodemask = NULL; /* assume !MPOL_BIND */ 1653 1654 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 1655 zl = node_zonelist(interleave_nid(*mpol, vma, addr, 1656 huge_page_shift(hstate_vma(vma))), gfp_flags); 1657 } else { 1658 zl = policy_zonelist(gfp_flags, *mpol); 1659 if ((*mpol)->mode == MPOL_BIND) 1660 *nodemask = &(*mpol)->v.nodes; 1661 } 1662 return zl; 1663 } 1664 1665 /* 1666 * init_nodemask_of_mempolicy 1667 * 1668 * If the current task's mempolicy is "default" [NULL], return 'false' 1669 * to indicate default policy. Otherwise, extract the policy nodemask 1670 * for 'bind' or 'interleave' policy into the argument nodemask, or 1671 * initialize the argument nodemask to contain the single node for 1672 * 'preferred' or 'local' policy and return 'true' to indicate presence 1673 * of non-default mempolicy. 1674 * 1675 * We don't bother with reference counting the mempolicy [mpol_get/put] 1676 * because the current task is examining it's own mempolicy and a task's 1677 * mempolicy is only ever changed by the task itself. 1678 * 1679 * N.B., it is the caller's responsibility to free a returned nodemask. 1680 */ 1681 bool init_nodemask_of_mempolicy(nodemask_t *mask) 1682 { 1683 struct mempolicy *mempolicy; 1684 int nid; 1685 1686 if (!(mask && current->mempolicy)) 1687 return false; 1688 1689 task_lock(current); 1690 mempolicy = current->mempolicy; 1691 switch (mempolicy->mode) { 1692 case MPOL_PREFERRED: 1693 if (mempolicy->flags & MPOL_F_LOCAL) 1694 nid = numa_node_id(); 1695 else 1696 nid = mempolicy->v.preferred_node; 1697 init_nodemask_of_node(mask, nid); 1698 break; 1699 1700 case MPOL_BIND: 1701 /* Fall through */ 1702 case MPOL_INTERLEAVE: 1703 *mask = mempolicy->v.nodes; 1704 break; 1705 1706 default: 1707 BUG(); 1708 } 1709 task_unlock(current); 1710 1711 return true; 1712 } 1713 #endif 1714 1715 /* Allocate a page in interleaved policy. 1716 Own path because it needs to do special accounting. */ 1717 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 1718 unsigned nid) 1719 { 1720 struct zonelist *zl; 1721 struct page *page; 1722 1723 zl = node_zonelist(nid, gfp); 1724 page = __alloc_pages(gfp, order, zl); 1725 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) 1726 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); 1727 return page; 1728 } 1729 1730 /** 1731 * alloc_page_vma - Allocate a page for a VMA. 1732 * 1733 * @gfp: 1734 * %GFP_USER user allocation. 1735 * %GFP_KERNEL kernel allocations, 1736 * %GFP_HIGHMEM highmem/user allocations, 1737 * %GFP_FS allocation should not call back into a file system. 1738 * %GFP_ATOMIC don't sleep. 1739 * 1740 * @vma: Pointer to VMA or NULL if not available. 1741 * @addr: Virtual Address of the allocation. Must be inside the VMA. 1742 * 1743 * This function allocates a page from the kernel page pool and applies 1744 * a NUMA policy associated with the VMA or the current process. 1745 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 1746 * mm_struct of the VMA to prevent it from going away. Should be used for 1747 * all allocations for pages that will be mapped into 1748 * user space. Returns NULL when no page can be allocated. 1749 * 1750 * Should be called with the mm_sem of the vma hold. 1751 */ 1752 struct page * 1753 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) 1754 { 1755 struct mempolicy *pol = get_vma_policy(current, vma, addr); 1756 struct zonelist *zl; 1757 struct page *page; 1758 1759 get_mems_allowed(); 1760 if (unlikely(pol->mode == MPOL_INTERLEAVE)) { 1761 unsigned nid; 1762 1763 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT); 1764 mpol_cond_put(pol); 1765 page = alloc_page_interleave(gfp, 0, nid); 1766 put_mems_allowed(); 1767 return page; 1768 } 1769 zl = policy_zonelist(gfp, pol); 1770 if (unlikely(mpol_needs_cond_ref(pol))) { 1771 /* 1772 * slow path: ref counted shared policy 1773 */ 1774 struct page *page = __alloc_pages_nodemask(gfp, 0, 1775 zl, policy_nodemask(gfp, pol)); 1776 __mpol_put(pol); 1777 put_mems_allowed(); 1778 return page; 1779 } 1780 /* 1781 * fast path: default or task policy 1782 */ 1783 page = __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol)); 1784 put_mems_allowed(); 1785 return page; 1786 } 1787 1788 /** 1789 * alloc_pages_current - Allocate pages. 1790 * 1791 * @gfp: 1792 * %GFP_USER user allocation, 1793 * %GFP_KERNEL kernel allocation, 1794 * %GFP_HIGHMEM highmem allocation, 1795 * %GFP_FS don't call back into a file system. 1796 * %GFP_ATOMIC don't sleep. 1797 * @order: Power of two of allocation size in pages. 0 is a single page. 1798 * 1799 * Allocate a page from the kernel page pool. When not in 1800 * interrupt context and apply the current process NUMA policy. 1801 * Returns NULL when no page can be allocated. 1802 * 1803 * Don't call cpuset_update_task_memory_state() unless 1804 * 1) it's ok to take cpuset_sem (can WAIT), and 1805 * 2) allocating for current task (not interrupt). 1806 */ 1807 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 1808 { 1809 struct mempolicy *pol = current->mempolicy; 1810 struct page *page; 1811 1812 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) 1813 pol = &default_policy; 1814 1815 get_mems_allowed(); 1816 /* 1817 * No reference counting needed for current->mempolicy 1818 * nor system default_policy 1819 */ 1820 if (pol->mode == MPOL_INTERLEAVE) 1821 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 1822 else 1823 page = __alloc_pages_nodemask(gfp, order, 1824 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol)); 1825 put_mems_allowed(); 1826 return page; 1827 } 1828 EXPORT_SYMBOL(alloc_pages_current); 1829 1830 /* 1831 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 1832 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 1833 * with the mems_allowed returned by cpuset_mems_allowed(). This 1834 * keeps mempolicies cpuset relative after its cpuset moves. See 1835 * further kernel/cpuset.c update_nodemask(). 1836 * 1837 * current's mempolicy may be rebinded by the other task(the task that changes 1838 * cpuset's mems), so we needn't do rebind work for current task. 1839 */ 1840 1841 /* Slow path of a mempolicy duplicate */ 1842 struct mempolicy *__mpol_dup(struct mempolicy *old) 1843 { 1844 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 1845 1846 if (!new) 1847 return ERR_PTR(-ENOMEM); 1848 1849 /* task's mempolicy is protected by alloc_lock */ 1850 if (old == current->mempolicy) { 1851 task_lock(current); 1852 *new = *old; 1853 task_unlock(current); 1854 } else 1855 *new = *old; 1856 1857 rcu_read_lock(); 1858 if (current_cpuset_is_being_rebound()) { 1859 nodemask_t mems = cpuset_mems_allowed(current); 1860 if (new->flags & MPOL_F_REBINDING) 1861 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); 1862 else 1863 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); 1864 } 1865 rcu_read_unlock(); 1866 atomic_set(&new->refcnt, 1); 1867 return new; 1868 } 1869 1870 /* 1871 * If *frompol needs [has] an extra ref, copy *frompol to *tompol , 1872 * eliminate the * MPOL_F_* flags that require conditional ref and 1873 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly 1874 * after return. Use the returned value. 1875 * 1876 * Allows use of a mempolicy for, e.g., multiple allocations with a single 1877 * policy lookup, even if the policy needs/has extra ref on lookup. 1878 * shmem_readahead needs this. 1879 */ 1880 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol, 1881 struct mempolicy *frompol) 1882 { 1883 if (!mpol_needs_cond_ref(frompol)) 1884 return frompol; 1885 1886 *tompol = *frompol; 1887 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */ 1888 __mpol_put(frompol); 1889 return tompol; 1890 } 1891 1892 /* Slow path of a mempolicy comparison */ 1893 int __mpol_equal(struct mempolicy *a, struct mempolicy *b) 1894 { 1895 if (!a || !b) 1896 return 0; 1897 if (a->mode != b->mode) 1898 return 0; 1899 if (a->flags != b->flags) 1900 return 0; 1901 if (mpol_store_user_nodemask(a)) 1902 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 1903 return 0; 1904 1905 switch (a->mode) { 1906 case MPOL_BIND: 1907 /* Fall through */ 1908 case MPOL_INTERLEAVE: 1909 return nodes_equal(a->v.nodes, b->v.nodes); 1910 case MPOL_PREFERRED: 1911 return a->v.preferred_node == b->v.preferred_node && 1912 a->flags == b->flags; 1913 default: 1914 BUG(); 1915 return 0; 1916 } 1917 } 1918 1919 /* 1920 * Shared memory backing store policy support. 1921 * 1922 * Remember policies even when nobody has shared memory mapped. 1923 * The policies are kept in Red-Black tree linked from the inode. 1924 * They are protected by the sp->lock spinlock, which should be held 1925 * for any accesses to the tree. 1926 */ 1927 1928 /* lookup first element intersecting start-end */ 1929 /* Caller holds sp->lock */ 1930 static struct sp_node * 1931 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 1932 { 1933 struct rb_node *n = sp->root.rb_node; 1934 1935 while (n) { 1936 struct sp_node *p = rb_entry(n, struct sp_node, nd); 1937 1938 if (start >= p->end) 1939 n = n->rb_right; 1940 else if (end <= p->start) 1941 n = n->rb_left; 1942 else 1943 break; 1944 } 1945 if (!n) 1946 return NULL; 1947 for (;;) { 1948 struct sp_node *w = NULL; 1949 struct rb_node *prev = rb_prev(n); 1950 if (!prev) 1951 break; 1952 w = rb_entry(prev, struct sp_node, nd); 1953 if (w->end <= start) 1954 break; 1955 n = prev; 1956 } 1957 return rb_entry(n, struct sp_node, nd); 1958 } 1959 1960 /* Insert a new shared policy into the list. */ 1961 /* Caller holds sp->lock */ 1962 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 1963 { 1964 struct rb_node **p = &sp->root.rb_node; 1965 struct rb_node *parent = NULL; 1966 struct sp_node *nd; 1967 1968 while (*p) { 1969 parent = *p; 1970 nd = rb_entry(parent, struct sp_node, nd); 1971 if (new->start < nd->start) 1972 p = &(*p)->rb_left; 1973 else if (new->end > nd->end) 1974 p = &(*p)->rb_right; 1975 else 1976 BUG(); 1977 } 1978 rb_link_node(&new->nd, parent, p); 1979 rb_insert_color(&new->nd, &sp->root); 1980 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 1981 new->policy ? new->policy->mode : 0); 1982 } 1983 1984 /* Find shared policy intersecting idx */ 1985 struct mempolicy * 1986 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 1987 { 1988 struct mempolicy *pol = NULL; 1989 struct sp_node *sn; 1990 1991 if (!sp->root.rb_node) 1992 return NULL; 1993 spin_lock(&sp->lock); 1994 sn = sp_lookup(sp, idx, idx+1); 1995 if (sn) { 1996 mpol_get(sn->policy); 1997 pol = sn->policy; 1998 } 1999 spin_unlock(&sp->lock); 2000 return pol; 2001 } 2002 2003 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2004 { 2005 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2006 rb_erase(&n->nd, &sp->root); 2007 mpol_put(n->policy); 2008 kmem_cache_free(sn_cache, n); 2009 } 2010 2011 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2012 struct mempolicy *pol) 2013 { 2014 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2015 2016 if (!n) 2017 return NULL; 2018 n->start = start; 2019 n->end = end; 2020 mpol_get(pol); 2021 pol->flags |= MPOL_F_SHARED; /* for unref */ 2022 n->policy = pol; 2023 return n; 2024 } 2025 2026 /* Replace a policy range. */ 2027 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2028 unsigned long end, struct sp_node *new) 2029 { 2030 struct sp_node *n, *new2 = NULL; 2031 2032 restart: 2033 spin_lock(&sp->lock); 2034 n = sp_lookup(sp, start, end); 2035 /* Take care of old policies in the same range. */ 2036 while (n && n->start < end) { 2037 struct rb_node *next = rb_next(&n->nd); 2038 if (n->start >= start) { 2039 if (n->end <= end) 2040 sp_delete(sp, n); 2041 else 2042 n->start = end; 2043 } else { 2044 /* Old policy spanning whole new range. */ 2045 if (n->end > end) { 2046 if (!new2) { 2047 spin_unlock(&sp->lock); 2048 new2 = sp_alloc(end, n->end, n->policy); 2049 if (!new2) 2050 return -ENOMEM; 2051 goto restart; 2052 } 2053 n->end = start; 2054 sp_insert(sp, new2); 2055 new2 = NULL; 2056 break; 2057 } else 2058 n->end = start; 2059 } 2060 if (!next) 2061 break; 2062 n = rb_entry(next, struct sp_node, nd); 2063 } 2064 if (new) 2065 sp_insert(sp, new); 2066 spin_unlock(&sp->lock); 2067 if (new2) { 2068 mpol_put(new2->policy); 2069 kmem_cache_free(sn_cache, new2); 2070 } 2071 return 0; 2072 } 2073 2074 /** 2075 * mpol_shared_policy_init - initialize shared policy for inode 2076 * @sp: pointer to inode shared policy 2077 * @mpol: struct mempolicy to install 2078 * 2079 * Install non-NULL @mpol in inode's shared policy rb-tree. 2080 * On entry, the current task has a reference on a non-NULL @mpol. 2081 * This must be released on exit. 2082 * This is called at get_inode() calls and we can use GFP_KERNEL. 2083 */ 2084 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2085 { 2086 int ret; 2087 2088 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2089 spin_lock_init(&sp->lock); 2090 2091 if (mpol) { 2092 struct vm_area_struct pvma; 2093 struct mempolicy *new; 2094 NODEMASK_SCRATCH(scratch); 2095 2096 if (!scratch) 2097 goto put_mpol; 2098 /* contextualize the tmpfs mount point mempolicy */ 2099 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2100 if (IS_ERR(new)) 2101 goto free_scratch; /* no valid nodemask intersection */ 2102 2103 task_lock(current); 2104 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2105 task_unlock(current); 2106 if (ret) 2107 goto put_new; 2108 2109 /* Create pseudo-vma that contains just the policy */ 2110 memset(&pvma, 0, sizeof(struct vm_area_struct)); 2111 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2112 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2113 2114 put_new: 2115 mpol_put(new); /* drop initial ref */ 2116 free_scratch: 2117 NODEMASK_SCRATCH_FREE(scratch); 2118 put_mpol: 2119 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2120 } 2121 } 2122 2123 int mpol_set_shared_policy(struct shared_policy *info, 2124 struct vm_area_struct *vma, struct mempolicy *npol) 2125 { 2126 int err; 2127 struct sp_node *new = NULL; 2128 unsigned long sz = vma_pages(vma); 2129 2130 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2131 vma->vm_pgoff, 2132 sz, npol ? npol->mode : -1, 2133 npol ? npol->flags : -1, 2134 npol ? nodes_addr(npol->v.nodes)[0] : -1); 2135 2136 if (npol) { 2137 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2138 if (!new) 2139 return -ENOMEM; 2140 } 2141 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2142 if (err && new) 2143 kmem_cache_free(sn_cache, new); 2144 return err; 2145 } 2146 2147 /* Free a backing policy store on inode delete. */ 2148 void mpol_free_shared_policy(struct shared_policy *p) 2149 { 2150 struct sp_node *n; 2151 struct rb_node *next; 2152 2153 if (!p->root.rb_node) 2154 return; 2155 spin_lock(&p->lock); 2156 next = rb_first(&p->root); 2157 while (next) { 2158 n = rb_entry(next, struct sp_node, nd); 2159 next = rb_next(&n->nd); 2160 rb_erase(&n->nd, &p->root); 2161 mpol_put(n->policy); 2162 kmem_cache_free(sn_cache, n); 2163 } 2164 spin_unlock(&p->lock); 2165 } 2166 2167 /* assumes fs == KERNEL_DS */ 2168 void __init numa_policy_init(void) 2169 { 2170 nodemask_t interleave_nodes; 2171 unsigned long largest = 0; 2172 int nid, prefer = 0; 2173 2174 policy_cache = kmem_cache_create("numa_policy", 2175 sizeof(struct mempolicy), 2176 0, SLAB_PANIC, NULL); 2177 2178 sn_cache = kmem_cache_create("shared_policy_node", 2179 sizeof(struct sp_node), 2180 0, SLAB_PANIC, NULL); 2181 2182 /* 2183 * Set interleaving policy for system init. Interleaving is only 2184 * enabled across suitably sized nodes (default is >= 16MB), or 2185 * fall back to the largest node if they're all smaller. 2186 */ 2187 nodes_clear(interleave_nodes); 2188 for_each_node_state(nid, N_HIGH_MEMORY) { 2189 unsigned long total_pages = node_present_pages(nid); 2190 2191 /* Preserve the largest node */ 2192 if (largest < total_pages) { 2193 largest = total_pages; 2194 prefer = nid; 2195 } 2196 2197 /* Interleave this node? */ 2198 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2199 node_set(nid, interleave_nodes); 2200 } 2201 2202 /* All too small, use the largest */ 2203 if (unlikely(nodes_empty(interleave_nodes))) 2204 node_set(prefer, interleave_nodes); 2205 2206 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2207 printk("numa_policy_init: interleaving failed\n"); 2208 } 2209 2210 /* Reset policy of current process to default */ 2211 void numa_default_policy(void) 2212 { 2213 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2214 } 2215 2216 /* 2217 * Parse and format mempolicy from/to strings 2218 */ 2219 2220 /* 2221 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag 2222 * Used only for mpol_parse_str() and mpol_to_str() 2223 */ 2224 #define MPOL_LOCAL MPOL_MAX 2225 static const char * const policy_modes[] = 2226 { 2227 [MPOL_DEFAULT] = "default", 2228 [MPOL_PREFERRED] = "prefer", 2229 [MPOL_BIND] = "bind", 2230 [MPOL_INTERLEAVE] = "interleave", 2231 [MPOL_LOCAL] = "local" 2232 }; 2233 2234 2235 #ifdef CONFIG_TMPFS 2236 /** 2237 * mpol_parse_str - parse string to mempolicy 2238 * @str: string containing mempolicy to parse 2239 * @mpol: pointer to struct mempolicy pointer, returned on success. 2240 * @no_context: flag whether to "contextualize" the mempolicy 2241 * 2242 * Format of input: 2243 * <mode>[=<flags>][:<nodelist>] 2244 * 2245 * if @no_context is true, save the input nodemask in w.user_nodemask in 2246 * the returned mempolicy. This will be used to "clone" the mempolicy in 2247 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol 2248 * mount option. Note that if 'static' or 'relative' mode flags were 2249 * specified, the input nodemask will already have been saved. Saving 2250 * it again is redundant, but safe. 2251 * 2252 * On success, returns 0, else 1 2253 */ 2254 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context) 2255 { 2256 struct mempolicy *new = NULL; 2257 unsigned short mode; 2258 unsigned short uninitialized_var(mode_flags); 2259 nodemask_t nodes; 2260 char *nodelist = strchr(str, ':'); 2261 char *flags = strchr(str, '='); 2262 int err = 1; 2263 2264 if (nodelist) { 2265 /* NUL-terminate mode or flags string */ 2266 *nodelist++ = '\0'; 2267 if (nodelist_parse(nodelist, nodes)) 2268 goto out; 2269 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY])) 2270 goto out; 2271 } else 2272 nodes_clear(nodes); 2273 2274 if (flags) 2275 *flags++ = '\0'; /* terminate mode string */ 2276 2277 for (mode = 0; mode <= MPOL_LOCAL; mode++) { 2278 if (!strcmp(str, policy_modes[mode])) { 2279 break; 2280 } 2281 } 2282 if (mode > MPOL_LOCAL) 2283 goto out; 2284 2285 switch (mode) { 2286 case MPOL_PREFERRED: 2287 /* 2288 * Insist on a nodelist of one node only 2289 */ 2290 if (nodelist) { 2291 char *rest = nodelist; 2292 while (isdigit(*rest)) 2293 rest++; 2294 if (*rest) 2295 goto out; 2296 } 2297 break; 2298 case MPOL_INTERLEAVE: 2299 /* 2300 * Default to online nodes with memory if no nodelist 2301 */ 2302 if (!nodelist) 2303 nodes = node_states[N_HIGH_MEMORY]; 2304 break; 2305 case MPOL_LOCAL: 2306 /* 2307 * Don't allow a nodelist; mpol_new() checks flags 2308 */ 2309 if (nodelist) 2310 goto out; 2311 mode = MPOL_PREFERRED; 2312 break; 2313 case MPOL_DEFAULT: 2314 /* 2315 * Insist on a empty nodelist 2316 */ 2317 if (!nodelist) 2318 err = 0; 2319 goto out; 2320 case MPOL_BIND: 2321 /* 2322 * Insist on a nodelist 2323 */ 2324 if (!nodelist) 2325 goto out; 2326 } 2327 2328 mode_flags = 0; 2329 if (flags) { 2330 /* 2331 * Currently, we only support two mutually exclusive 2332 * mode flags. 2333 */ 2334 if (!strcmp(flags, "static")) 2335 mode_flags |= MPOL_F_STATIC_NODES; 2336 else if (!strcmp(flags, "relative")) 2337 mode_flags |= MPOL_F_RELATIVE_NODES; 2338 else 2339 goto out; 2340 } 2341 2342 new = mpol_new(mode, mode_flags, &nodes); 2343 if (IS_ERR(new)) 2344 goto out; 2345 2346 if (no_context) { 2347 /* save for contextualization */ 2348 new->w.user_nodemask = nodes; 2349 } else { 2350 int ret; 2351 NODEMASK_SCRATCH(scratch); 2352 if (scratch) { 2353 task_lock(current); 2354 ret = mpol_set_nodemask(new, &nodes, scratch); 2355 task_unlock(current); 2356 } else 2357 ret = -ENOMEM; 2358 NODEMASK_SCRATCH_FREE(scratch); 2359 if (ret) { 2360 mpol_put(new); 2361 goto out; 2362 } 2363 } 2364 err = 0; 2365 2366 out: 2367 /* Restore string for error message */ 2368 if (nodelist) 2369 *--nodelist = ':'; 2370 if (flags) 2371 *--flags = '='; 2372 if (!err) 2373 *mpol = new; 2374 return err; 2375 } 2376 #endif /* CONFIG_TMPFS */ 2377 2378 /** 2379 * mpol_to_str - format a mempolicy structure for printing 2380 * @buffer: to contain formatted mempolicy string 2381 * @maxlen: length of @buffer 2382 * @pol: pointer to mempolicy to be formatted 2383 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask 2384 * 2385 * Convert a mempolicy into a string. 2386 * Returns the number of characters in buffer (if positive) 2387 * or an error (negative) 2388 */ 2389 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) 2390 { 2391 char *p = buffer; 2392 int l; 2393 nodemask_t nodes; 2394 unsigned short mode; 2395 unsigned short flags = pol ? pol->flags : 0; 2396 2397 /* 2398 * Sanity check: room for longest mode, flag and some nodes 2399 */ 2400 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); 2401 2402 if (!pol || pol == &default_policy) 2403 mode = MPOL_DEFAULT; 2404 else 2405 mode = pol->mode; 2406 2407 switch (mode) { 2408 case MPOL_DEFAULT: 2409 nodes_clear(nodes); 2410 break; 2411 2412 case MPOL_PREFERRED: 2413 nodes_clear(nodes); 2414 if (flags & MPOL_F_LOCAL) 2415 mode = MPOL_LOCAL; /* pseudo-policy */ 2416 else 2417 node_set(pol->v.preferred_node, nodes); 2418 break; 2419 2420 case MPOL_BIND: 2421 /* Fall through */ 2422 case MPOL_INTERLEAVE: 2423 if (no_context) 2424 nodes = pol->w.user_nodemask; 2425 else 2426 nodes = pol->v.nodes; 2427 break; 2428 2429 default: 2430 BUG(); 2431 } 2432 2433 l = strlen(policy_modes[mode]); 2434 if (buffer + maxlen < p + l + 1) 2435 return -ENOSPC; 2436 2437 strcpy(p, policy_modes[mode]); 2438 p += l; 2439 2440 if (flags & MPOL_MODE_FLAGS) { 2441 if (buffer + maxlen < p + 2) 2442 return -ENOSPC; 2443 *p++ = '='; 2444 2445 /* 2446 * Currently, the only defined flags are mutually exclusive 2447 */ 2448 if (flags & MPOL_F_STATIC_NODES) 2449 p += snprintf(p, buffer + maxlen - p, "static"); 2450 else if (flags & MPOL_F_RELATIVE_NODES) 2451 p += snprintf(p, buffer + maxlen - p, "relative"); 2452 } 2453 2454 if (!nodes_empty(nodes)) { 2455 if (buffer + maxlen < p + 2) 2456 return -ENOSPC; 2457 *p++ = ':'; 2458 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); 2459 } 2460 return p - buffer; 2461 } 2462 2463 struct numa_maps { 2464 unsigned long pages; 2465 unsigned long anon; 2466 unsigned long active; 2467 unsigned long writeback; 2468 unsigned long mapcount_max; 2469 unsigned long dirty; 2470 unsigned long swapcache; 2471 unsigned long node[MAX_NUMNODES]; 2472 }; 2473 2474 static void gather_stats(struct page *page, void *private, int pte_dirty) 2475 { 2476 struct numa_maps *md = private; 2477 int count = page_mapcount(page); 2478 2479 md->pages++; 2480 if (pte_dirty || PageDirty(page)) 2481 md->dirty++; 2482 2483 if (PageSwapCache(page)) 2484 md->swapcache++; 2485 2486 if (PageActive(page) || PageUnevictable(page)) 2487 md->active++; 2488 2489 if (PageWriteback(page)) 2490 md->writeback++; 2491 2492 if (PageAnon(page)) 2493 md->anon++; 2494 2495 if (count > md->mapcount_max) 2496 md->mapcount_max = count; 2497 2498 md->node[page_to_nid(page)]++; 2499 } 2500 2501 #ifdef CONFIG_HUGETLB_PAGE 2502 static void check_huge_range(struct vm_area_struct *vma, 2503 unsigned long start, unsigned long end, 2504 struct numa_maps *md) 2505 { 2506 unsigned long addr; 2507 struct page *page; 2508 struct hstate *h = hstate_vma(vma); 2509 unsigned long sz = huge_page_size(h); 2510 2511 for (addr = start; addr < end; addr += sz) { 2512 pte_t *ptep = huge_pte_offset(vma->vm_mm, 2513 addr & huge_page_mask(h)); 2514 pte_t pte; 2515 2516 if (!ptep) 2517 continue; 2518 2519 pte = *ptep; 2520 if (pte_none(pte)) 2521 continue; 2522 2523 page = pte_page(pte); 2524 if (!page) 2525 continue; 2526 2527 gather_stats(page, md, pte_dirty(*ptep)); 2528 } 2529 } 2530 #else 2531 static inline void check_huge_range(struct vm_area_struct *vma, 2532 unsigned long start, unsigned long end, 2533 struct numa_maps *md) 2534 { 2535 } 2536 #endif 2537 2538 /* 2539 * Display pages allocated per node and memory policy via /proc. 2540 */ 2541 int show_numa_map(struct seq_file *m, void *v) 2542 { 2543 struct proc_maps_private *priv = m->private; 2544 struct vm_area_struct *vma = v; 2545 struct numa_maps *md; 2546 struct file *file = vma->vm_file; 2547 struct mm_struct *mm = vma->vm_mm; 2548 struct mempolicy *pol; 2549 int n; 2550 char buffer[50]; 2551 2552 if (!mm) 2553 return 0; 2554 2555 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); 2556 if (!md) 2557 return 0; 2558 2559 pol = get_vma_policy(priv->task, vma, vma->vm_start); 2560 mpol_to_str(buffer, sizeof(buffer), pol, 0); 2561 mpol_cond_put(pol); 2562 2563 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 2564 2565 if (file) { 2566 seq_printf(m, " file="); 2567 seq_path(m, &file->f_path, "\n\t= "); 2568 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 2569 seq_printf(m, " heap"); 2570 } else if (vma->vm_start <= mm->start_stack && 2571 vma->vm_end >= mm->start_stack) { 2572 seq_printf(m, " stack"); 2573 } 2574 2575 if (is_vm_hugetlb_page(vma)) { 2576 check_huge_range(vma, vma->vm_start, vma->vm_end, md); 2577 seq_printf(m, " huge"); 2578 } else { 2579 check_pgd_range(vma, vma->vm_start, vma->vm_end, 2580 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md); 2581 } 2582 2583 if (!md->pages) 2584 goto out; 2585 2586 if (md->anon) 2587 seq_printf(m," anon=%lu",md->anon); 2588 2589 if (md->dirty) 2590 seq_printf(m," dirty=%lu",md->dirty); 2591 2592 if (md->pages != md->anon && md->pages != md->dirty) 2593 seq_printf(m, " mapped=%lu", md->pages); 2594 2595 if (md->mapcount_max > 1) 2596 seq_printf(m, " mapmax=%lu", md->mapcount_max); 2597 2598 if (md->swapcache) 2599 seq_printf(m," swapcache=%lu", md->swapcache); 2600 2601 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 2602 seq_printf(m," active=%lu", md->active); 2603 2604 if (md->writeback) 2605 seq_printf(m," writeback=%lu", md->writeback); 2606 2607 for_each_node_state(n, N_HIGH_MEMORY) 2608 if (md->node[n]) 2609 seq_printf(m, " N%d=%lu", n, md->node[n]); 2610 out: 2611 seq_putc(m, '\n'); 2612 kfree(md); 2613 2614 if (m->count < m->size) 2615 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0; 2616 return 0; 2617 } 2618