xref: /linux/mm/mempolicy.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * preferred many Try a set of nodes first before normal fallback. This is
35  *                similar to preferred without the special case.
36  *
37  * default        Allocate on the local node first, or when on a VMA
38  *                use the process policy. This is what Linux always did
39  *		  in a NUMA aware kernel and still does by, ahem, default.
40  *
41  * The process policy is applied for most non interrupt memory allocations
42  * in that process' context. Interrupts ignore the policies and always
43  * try to allocate on the local CPU. The VMA policy is only applied for memory
44  * allocations for a VMA in the VM.
45  *
46  * Currently there are a few corner cases in swapping where the policy
47  * is not applied, but the majority should be handled. When process policy
48  * is used it is not remembered over swap outs/swap ins.
49  *
50  * Only the highest zone in the zone hierarchy gets policied. Allocations
51  * requesting a lower zone just use default policy. This implies that
52  * on systems with highmem kernel lowmem allocation don't get policied.
53  * Same with GFP_DMA allocations.
54  *
55  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56  * all users and remembered even when nobody has memory mapped.
57  */
58 
59 /* Notebook:
60    fix mmap readahead to honour policy and enable policy for any page cache
61    object
62    statistics for bigpages
63    global policy for page cache? currently it uses process policy. Requires
64    first item above.
65    handle mremap for shared memory (currently ignored for the policy)
66    grows down?
67    make bind policy root only? It can trigger oom much faster and the
68    kernel is not always grateful with that.
69 */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105 
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108 
109 #include "internal.h"
110 
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
114 
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117 
118 /* Highest zone. An specific allocation for a zone below that is not
119    policied. */
120 enum zone_type policy_zone = 0;
121 
122 /*
123  * run-time system-wide default policy => local allocation
124  */
125 static struct mempolicy default_policy = {
126 	.refcnt = ATOMIC_INIT(1), /* never free it */
127 	.mode = MPOL_LOCAL,
128 };
129 
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131 
132 /**
133  * numa_map_to_online_node - Find closest online node
134  * @node: Node id to start the search
135  *
136  * Lookup the next closest node by distance if @nid is not online.
137  *
138  * Return: this @node if it is online, otherwise the closest node by distance
139  */
140 int numa_map_to_online_node(int node)
141 {
142 	int min_dist = INT_MAX, dist, n, min_node;
143 
144 	if (node == NUMA_NO_NODE || node_online(node))
145 		return node;
146 
147 	min_node = node;
148 	for_each_online_node(n) {
149 		dist = node_distance(node, n);
150 		if (dist < min_dist) {
151 			min_dist = dist;
152 			min_node = n;
153 		}
154 	}
155 
156 	return min_node;
157 }
158 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
159 
160 struct mempolicy *get_task_policy(struct task_struct *p)
161 {
162 	struct mempolicy *pol = p->mempolicy;
163 	int node;
164 
165 	if (pol)
166 		return pol;
167 
168 	node = numa_node_id();
169 	if (node != NUMA_NO_NODE) {
170 		pol = &preferred_node_policy[node];
171 		/* preferred_node_policy is not initialised early in boot */
172 		if (pol->mode)
173 			return pol;
174 	}
175 
176 	return &default_policy;
177 }
178 
179 static const struct mempolicy_operations {
180 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
181 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
182 } mpol_ops[MPOL_MAX];
183 
184 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
185 {
186 	return pol->flags & MPOL_MODE_FLAGS;
187 }
188 
189 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
190 				   const nodemask_t *rel)
191 {
192 	nodemask_t tmp;
193 	nodes_fold(tmp, *orig, nodes_weight(*rel));
194 	nodes_onto(*ret, tmp, *rel);
195 }
196 
197 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->nodes = *nodes;
202 	return 0;
203 }
204 
205 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
206 {
207 	if (nodes_empty(*nodes))
208 		return -EINVAL;
209 
210 	nodes_clear(pol->nodes);
211 	node_set(first_node(*nodes), pol->nodes);
212 	return 0;
213 }
214 
215 /*
216  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
217  * any, for the new policy.  mpol_new() has already validated the nodes
218  * parameter with respect to the policy mode and flags.
219  *
220  * Must be called holding task's alloc_lock to protect task's mems_allowed
221  * and mempolicy.  May also be called holding the mmap_lock for write.
222  */
223 static int mpol_set_nodemask(struct mempolicy *pol,
224 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
225 {
226 	int ret;
227 
228 	/*
229 	 * Default (pol==NULL) resp. local memory policies are not a
230 	 * subject of any remapping. They also do not need any special
231 	 * constructor.
232 	 */
233 	if (!pol || pol->mode == MPOL_LOCAL)
234 		return 0;
235 
236 	/* Check N_MEMORY */
237 	nodes_and(nsc->mask1,
238 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
239 
240 	VM_BUG_ON(!nodes);
241 
242 	if (pol->flags & MPOL_F_RELATIVE_NODES)
243 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
244 	else
245 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
246 
247 	if (mpol_store_user_nodemask(pol))
248 		pol->w.user_nodemask = *nodes;
249 	else
250 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
251 
252 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
253 	return ret;
254 }
255 
256 /*
257  * This function just creates a new policy, does some check and simple
258  * initialization. You must invoke mpol_set_nodemask() to set nodes.
259  */
260 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
261 				  nodemask_t *nodes)
262 {
263 	struct mempolicy *policy;
264 
265 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
266 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
267 
268 	if (mode == MPOL_DEFAULT) {
269 		if (nodes && !nodes_empty(*nodes))
270 			return ERR_PTR(-EINVAL);
271 		return NULL;
272 	}
273 	VM_BUG_ON(!nodes);
274 
275 	/*
276 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
277 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
278 	 * All other modes require a valid pointer to a non-empty nodemask.
279 	 */
280 	if (mode == MPOL_PREFERRED) {
281 		if (nodes_empty(*nodes)) {
282 			if (((flags & MPOL_F_STATIC_NODES) ||
283 			     (flags & MPOL_F_RELATIVE_NODES)))
284 				return ERR_PTR(-EINVAL);
285 
286 			mode = MPOL_LOCAL;
287 		}
288 	} else if (mode == MPOL_LOCAL) {
289 		if (!nodes_empty(*nodes) ||
290 		    (flags & MPOL_F_STATIC_NODES) ||
291 		    (flags & MPOL_F_RELATIVE_NODES))
292 			return ERR_PTR(-EINVAL);
293 	} else if (nodes_empty(*nodes))
294 		return ERR_PTR(-EINVAL);
295 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
296 	if (!policy)
297 		return ERR_PTR(-ENOMEM);
298 	atomic_set(&policy->refcnt, 1);
299 	policy->mode = mode;
300 	policy->flags = flags;
301 	policy->home_node = NUMA_NO_NODE;
302 
303 	return policy;
304 }
305 
306 /* Slow path of a mpol destructor. */
307 void __mpol_put(struct mempolicy *p)
308 {
309 	if (!atomic_dec_and_test(&p->refcnt))
310 		return;
311 	kmem_cache_free(policy_cache, p);
312 }
313 
314 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
315 {
316 }
317 
318 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
319 {
320 	nodemask_t tmp;
321 
322 	if (pol->flags & MPOL_F_STATIC_NODES)
323 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
324 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
325 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
326 	else {
327 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
328 								*nodes);
329 		pol->w.cpuset_mems_allowed = *nodes;
330 	}
331 
332 	if (nodes_empty(tmp))
333 		tmp = *nodes;
334 
335 	pol->nodes = tmp;
336 }
337 
338 static void mpol_rebind_preferred(struct mempolicy *pol,
339 						const nodemask_t *nodes)
340 {
341 	pol->w.cpuset_mems_allowed = *nodes;
342 }
343 
344 /*
345  * mpol_rebind_policy - Migrate a policy to a different set of nodes
346  *
347  * Per-vma policies are protected by mmap_lock. Allocations using per-task
348  * policies are protected by task->mems_allowed_seq to prevent a premature
349  * OOM/allocation failure due to parallel nodemask modification.
350  */
351 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
352 {
353 	if (!pol)
354 		return;
355 	if (!mpol_store_user_nodemask(pol) &&
356 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
357 		return;
358 
359 	mpol_ops[pol->mode].rebind(pol, newmask);
360 }
361 
362 /*
363  * Wrapper for mpol_rebind_policy() that just requires task
364  * pointer, and updates task mempolicy.
365  *
366  * Called with task's alloc_lock held.
367  */
368 
369 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
370 {
371 	mpol_rebind_policy(tsk->mempolicy, new);
372 }
373 
374 /*
375  * Rebind each vma in mm to new nodemask.
376  *
377  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
378  */
379 
380 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
381 {
382 	struct vm_area_struct *vma;
383 
384 	mmap_write_lock(mm);
385 	for (vma = mm->mmap; vma; vma = vma->vm_next)
386 		mpol_rebind_policy(vma->vm_policy, new);
387 	mmap_write_unlock(mm);
388 }
389 
390 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
391 	[MPOL_DEFAULT] = {
392 		.rebind = mpol_rebind_default,
393 	},
394 	[MPOL_INTERLEAVE] = {
395 		.create = mpol_new_nodemask,
396 		.rebind = mpol_rebind_nodemask,
397 	},
398 	[MPOL_PREFERRED] = {
399 		.create = mpol_new_preferred,
400 		.rebind = mpol_rebind_preferred,
401 	},
402 	[MPOL_BIND] = {
403 		.create = mpol_new_nodemask,
404 		.rebind = mpol_rebind_nodemask,
405 	},
406 	[MPOL_LOCAL] = {
407 		.rebind = mpol_rebind_default,
408 	},
409 	[MPOL_PREFERRED_MANY] = {
410 		.create = mpol_new_nodemask,
411 		.rebind = mpol_rebind_preferred,
412 	},
413 };
414 
415 static int migrate_page_add(struct page *page, struct list_head *pagelist,
416 				unsigned long flags);
417 
418 struct queue_pages {
419 	struct list_head *pagelist;
420 	unsigned long flags;
421 	nodemask_t *nmask;
422 	unsigned long start;
423 	unsigned long end;
424 	struct vm_area_struct *first;
425 };
426 
427 /*
428  * Check if the page's nid is in qp->nmask.
429  *
430  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
431  * in the invert of qp->nmask.
432  */
433 static inline bool queue_pages_required(struct page *page,
434 					struct queue_pages *qp)
435 {
436 	int nid = page_to_nid(page);
437 	unsigned long flags = qp->flags;
438 
439 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
440 }
441 
442 /*
443  * queue_pages_pmd() has four possible return values:
444  * 0 - pages are placed on the right node or queued successfully, or
445  *     special page is met, i.e. huge zero page.
446  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
447  *     specified.
448  * 2 - THP was split.
449  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
450  *        existing page was already on a node that does not follow the
451  *        policy.
452  */
453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
454 				unsigned long end, struct mm_walk *walk)
455 	__releases(ptl)
456 {
457 	int ret = 0;
458 	struct page *page;
459 	struct queue_pages *qp = walk->private;
460 	unsigned long flags;
461 
462 	if (unlikely(is_pmd_migration_entry(*pmd))) {
463 		ret = -EIO;
464 		goto unlock;
465 	}
466 	page = pmd_page(*pmd);
467 	if (is_huge_zero_page(page)) {
468 		spin_unlock(ptl);
469 		walk->action = ACTION_CONTINUE;
470 		goto out;
471 	}
472 	if (!queue_pages_required(page, qp))
473 		goto unlock;
474 
475 	flags = qp->flags;
476 	/* go to thp migration */
477 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 		if (!vma_migratable(walk->vma) ||
479 		    migrate_page_add(page, qp->pagelist, flags)) {
480 			ret = 1;
481 			goto unlock;
482 		}
483 	} else
484 		ret = -EIO;
485 unlock:
486 	spin_unlock(ptl);
487 out:
488 	return ret;
489 }
490 
491 /*
492  * Scan through pages checking if pages follow certain conditions,
493  * and move them to the pagelist if they do.
494  *
495  * queue_pages_pte_range() has three possible return values:
496  * 0 - pages are placed on the right node or queued successfully, or
497  *     special page is met, i.e. zero page.
498  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499  *     specified.
500  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
501  *        on a node that does not follow the policy.
502  */
503 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
504 			unsigned long end, struct mm_walk *walk)
505 {
506 	struct vm_area_struct *vma = walk->vma;
507 	struct page *page;
508 	struct queue_pages *qp = walk->private;
509 	unsigned long flags = qp->flags;
510 	int ret;
511 	bool has_unmovable = false;
512 	pte_t *pte, *mapped_pte;
513 	spinlock_t *ptl;
514 
515 	ptl = pmd_trans_huge_lock(pmd, vma);
516 	if (ptl) {
517 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
518 		if (ret != 2)
519 			return ret;
520 	}
521 	/* THP was split, fall through to pte walk */
522 
523 	if (pmd_trans_unstable(pmd))
524 		return 0;
525 
526 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
527 	for (; addr != end; pte++, addr += PAGE_SIZE) {
528 		if (!pte_present(*pte))
529 			continue;
530 		page = vm_normal_page(vma, addr, *pte);
531 		if (!page)
532 			continue;
533 		/*
534 		 * vm_normal_page() filters out zero pages, but there might
535 		 * still be PageReserved pages to skip, perhaps in a VDSO.
536 		 */
537 		if (PageReserved(page))
538 			continue;
539 		if (!queue_pages_required(page, qp))
540 			continue;
541 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
542 			/* MPOL_MF_STRICT must be specified if we get here */
543 			if (!vma_migratable(vma)) {
544 				has_unmovable = true;
545 				break;
546 			}
547 
548 			/*
549 			 * Do not abort immediately since there may be
550 			 * temporary off LRU pages in the range.  Still
551 			 * need migrate other LRU pages.
552 			 */
553 			if (migrate_page_add(page, qp->pagelist, flags))
554 				has_unmovable = true;
555 		} else
556 			break;
557 	}
558 	pte_unmap_unlock(mapped_pte, ptl);
559 	cond_resched();
560 
561 	if (has_unmovable)
562 		return 1;
563 
564 	return addr != end ? -EIO : 0;
565 }
566 
567 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
568 			       unsigned long addr, unsigned long end,
569 			       struct mm_walk *walk)
570 {
571 	int ret = 0;
572 #ifdef CONFIG_HUGETLB_PAGE
573 	struct queue_pages *qp = walk->private;
574 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
575 	struct page *page;
576 	spinlock_t *ptl;
577 	pte_t entry;
578 
579 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
580 	entry = huge_ptep_get(pte);
581 	if (!pte_present(entry))
582 		goto unlock;
583 	page = pte_page(entry);
584 	if (!queue_pages_required(page, qp))
585 		goto unlock;
586 
587 	if (flags == MPOL_MF_STRICT) {
588 		/*
589 		 * STRICT alone means only detecting misplaced page and no
590 		 * need to further check other vma.
591 		 */
592 		ret = -EIO;
593 		goto unlock;
594 	}
595 
596 	if (!vma_migratable(walk->vma)) {
597 		/*
598 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
599 		 * stopped walking current vma.
600 		 * Detecting misplaced page but allow migrating pages which
601 		 * have been queued.
602 		 */
603 		ret = 1;
604 		goto unlock;
605 	}
606 
607 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
608 	if (flags & (MPOL_MF_MOVE_ALL) ||
609 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
610 		if (!isolate_huge_page(page, qp->pagelist) &&
611 			(flags & MPOL_MF_STRICT))
612 			/*
613 			 * Failed to isolate page but allow migrating pages
614 			 * which have been queued.
615 			 */
616 			ret = 1;
617 	}
618 unlock:
619 	spin_unlock(ptl);
620 #else
621 	BUG();
622 #endif
623 	return ret;
624 }
625 
626 #ifdef CONFIG_NUMA_BALANCING
627 /*
628  * This is used to mark a range of virtual addresses to be inaccessible.
629  * These are later cleared by a NUMA hinting fault. Depending on these
630  * faults, pages may be migrated for better NUMA placement.
631  *
632  * This is assuming that NUMA faults are handled using PROT_NONE. If
633  * an architecture makes a different choice, it will need further
634  * changes to the core.
635  */
636 unsigned long change_prot_numa(struct vm_area_struct *vma,
637 			unsigned long addr, unsigned long end)
638 {
639 	int nr_updated;
640 
641 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
642 	if (nr_updated)
643 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
644 
645 	return nr_updated;
646 }
647 #else
648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 			unsigned long addr, unsigned long end)
650 {
651 	return 0;
652 }
653 #endif /* CONFIG_NUMA_BALANCING */
654 
655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 				struct mm_walk *walk)
657 {
658 	struct vm_area_struct *vma = walk->vma;
659 	struct queue_pages *qp = walk->private;
660 	unsigned long endvma = vma->vm_end;
661 	unsigned long flags = qp->flags;
662 
663 	/* range check first */
664 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 
666 	if (!qp->first) {
667 		qp->first = vma;
668 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 			(qp->start < vma->vm_start))
670 			/* hole at head side of range */
671 			return -EFAULT;
672 	}
673 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
674 		((vma->vm_end < qp->end) &&
675 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
676 		/* hole at middle or tail of range */
677 		return -EFAULT;
678 
679 	/*
680 	 * Need check MPOL_MF_STRICT to return -EIO if possible
681 	 * regardless of vma_migratable
682 	 */
683 	if (!vma_migratable(vma) &&
684 	    !(flags & MPOL_MF_STRICT))
685 		return 1;
686 
687 	if (endvma > end)
688 		endvma = end;
689 
690 	if (flags & MPOL_MF_LAZY) {
691 		/* Similar to task_numa_work, skip inaccessible VMAs */
692 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
693 			!(vma->vm_flags & VM_MIXEDMAP))
694 			change_prot_numa(vma, start, endvma);
695 		return 1;
696 	}
697 
698 	/* queue pages from current vma */
699 	if (flags & MPOL_MF_VALID)
700 		return 0;
701 	return 1;
702 }
703 
704 static const struct mm_walk_ops queue_pages_walk_ops = {
705 	.hugetlb_entry		= queue_pages_hugetlb,
706 	.pmd_entry		= queue_pages_pte_range,
707 	.test_walk		= queue_pages_test_walk,
708 };
709 
710 /*
711  * Walk through page tables and collect pages to be migrated.
712  *
713  * If pages found in a given range are on a set of nodes (determined by
714  * @nodes and @flags,) it's isolated and queued to the pagelist which is
715  * passed via @private.
716  *
717  * queue_pages_range() has three possible return values:
718  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
719  *     specified.
720  * 0 - queue pages successfully or no misplaced page.
721  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
722  *         memory range specified by nodemask and maxnode points outside
723  *         your accessible address space (-EFAULT)
724  */
725 static int
726 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
727 		nodemask_t *nodes, unsigned long flags,
728 		struct list_head *pagelist)
729 {
730 	int err;
731 	struct queue_pages qp = {
732 		.pagelist = pagelist,
733 		.flags = flags,
734 		.nmask = nodes,
735 		.start = start,
736 		.end = end,
737 		.first = NULL,
738 	};
739 
740 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
741 
742 	if (!qp.first)
743 		/* whole range in hole */
744 		err = -EFAULT;
745 
746 	return err;
747 }
748 
749 /*
750  * Apply policy to a single VMA
751  * This must be called with the mmap_lock held for writing.
752  */
753 static int vma_replace_policy(struct vm_area_struct *vma,
754 						struct mempolicy *pol)
755 {
756 	int err;
757 	struct mempolicy *old;
758 	struct mempolicy *new;
759 
760 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
761 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
762 		 vma->vm_ops, vma->vm_file,
763 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
764 
765 	new = mpol_dup(pol);
766 	if (IS_ERR(new))
767 		return PTR_ERR(new);
768 
769 	if (vma->vm_ops && vma->vm_ops->set_policy) {
770 		err = vma->vm_ops->set_policy(vma, new);
771 		if (err)
772 			goto err_out;
773 	}
774 
775 	old = vma->vm_policy;
776 	vma->vm_policy = new; /* protected by mmap_lock */
777 	mpol_put(old);
778 
779 	return 0;
780  err_out:
781 	mpol_put(new);
782 	return err;
783 }
784 
785 /* Step 2: apply policy to a range and do splits. */
786 static int mbind_range(struct mm_struct *mm, unsigned long start,
787 		       unsigned long end, struct mempolicy *new_pol)
788 {
789 	struct vm_area_struct *prev;
790 	struct vm_area_struct *vma;
791 	int err = 0;
792 	pgoff_t pgoff;
793 	unsigned long vmstart;
794 	unsigned long vmend;
795 
796 	vma = find_vma(mm, start);
797 	VM_BUG_ON(!vma);
798 
799 	prev = vma->vm_prev;
800 	if (start > vma->vm_start)
801 		prev = vma;
802 
803 	for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
804 		vmstart = max(start, vma->vm_start);
805 		vmend   = min(end, vma->vm_end);
806 
807 		if (mpol_equal(vma_policy(vma), new_pol))
808 			continue;
809 
810 		pgoff = vma->vm_pgoff +
811 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
812 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
813 				 vma->anon_vma, vma->vm_file, pgoff,
814 				 new_pol, vma->vm_userfaultfd_ctx,
815 				 anon_vma_name(vma));
816 		if (prev) {
817 			vma = prev;
818 			goto replace;
819 		}
820 		if (vma->vm_start != vmstart) {
821 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
822 			if (err)
823 				goto out;
824 		}
825 		if (vma->vm_end != vmend) {
826 			err = split_vma(vma->vm_mm, vma, vmend, 0);
827 			if (err)
828 				goto out;
829 		}
830  replace:
831 		err = vma_replace_policy(vma, new_pol);
832 		if (err)
833 			goto out;
834 	}
835 
836  out:
837 	return err;
838 }
839 
840 /* Set the process memory policy */
841 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
842 			     nodemask_t *nodes)
843 {
844 	struct mempolicy *new, *old;
845 	NODEMASK_SCRATCH(scratch);
846 	int ret;
847 
848 	if (!scratch)
849 		return -ENOMEM;
850 
851 	new = mpol_new(mode, flags, nodes);
852 	if (IS_ERR(new)) {
853 		ret = PTR_ERR(new);
854 		goto out;
855 	}
856 
857 	ret = mpol_set_nodemask(new, nodes, scratch);
858 	if (ret) {
859 		mpol_put(new);
860 		goto out;
861 	}
862 	task_lock(current);
863 	old = current->mempolicy;
864 	current->mempolicy = new;
865 	if (new && new->mode == MPOL_INTERLEAVE)
866 		current->il_prev = MAX_NUMNODES-1;
867 	task_unlock(current);
868 	mpol_put(old);
869 	ret = 0;
870 out:
871 	NODEMASK_SCRATCH_FREE(scratch);
872 	return ret;
873 }
874 
875 /*
876  * Return nodemask for policy for get_mempolicy() query
877  *
878  * Called with task's alloc_lock held
879  */
880 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
881 {
882 	nodes_clear(*nodes);
883 	if (p == &default_policy)
884 		return;
885 
886 	switch (p->mode) {
887 	case MPOL_BIND:
888 	case MPOL_INTERLEAVE:
889 	case MPOL_PREFERRED:
890 	case MPOL_PREFERRED_MANY:
891 		*nodes = p->nodes;
892 		break;
893 	case MPOL_LOCAL:
894 		/* return empty node mask for local allocation */
895 		break;
896 	default:
897 		BUG();
898 	}
899 }
900 
901 static int lookup_node(struct mm_struct *mm, unsigned long addr)
902 {
903 	struct page *p = NULL;
904 	int ret;
905 
906 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
907 	if (ret > 0) {
908 		ret = page_to_nid(p);
909 		put_page(p);
910 	}
911 	return ret;
912 }
913 
914 /* Retrieve NUMA policy */
915 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
916 			     unsigned long addr, unsigned long flags)
917 {
918 	int err;
919 	struct mm_struct *mm = current->mm;
920 	struct vm_area_struct *vma = NULL;
921 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
922 
923 	if (flags &
924 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
925 		return -EINVAL;
926 
927 	if (flags & MPOL_F_MEMS_ALLOWED) {
928 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
929 			return -EINVAL;
930 		*policy = 0;	/* just so it's initialized */
931 		task_lock(current);
932 		*nmask  = cpuset_current_mems_allowed;
933 		task_unlock(current);
934 		return 0;
935 	}
936 
937 	if (flags & MPOL_F_ADDR) {
938 		/*
939 		 * Do NOT fall back to task policy if the
940 		 * vma/shared policy at addr is NULL.  We
941 		 * want to return MPOL_DEFAULT in this case.
942 		 */
943 		mmap_read_lock(mm);
944 		vma = vma_lookup(mm, addr);
945 		if (!vma) {
946 			mmap_read_unlock(mm);
947 			return -EFAULT;
948 		}
949 		if (vma->vm_ops && vma->vm_ops->get_policy)
950 			pol = vma->vm_ops->get_policy(vma, addr);
951 		else
952 			pol = vma->vm_policy;
953 	} else if (addr)
954 		return -EINVAL;
955 
956 	if (!pol)
957 		pol = &default_policy;	/* indicates default behavior */
958 
959 	if (flags & MPOL_F_NODE) {
960 		if (flags & MPOL_F_ADDR) {
961 			/*
962 			 * Take a refcount on the mpol, because we are about to
963 			 * drop the mmap_lock, after which only "pol" remains
964 			 * valid, "vma" is stale.
965 			 */
966 			pol_refcount = pol;
967 			vma = NULL;
968 			mpol_get(pol);
969 			mmap_read_unlock(mm);
970 			err = lookup_node(mm, addr);
971 			if (err < 0)
972 				goto out;
973 			*policy = err;
974 		} else if (pol == current->mempolicy &&
975 				pol->mode == MPOL_INTERLEAVE) {
976 			*policy = next_node_in(current->il_prev, pol->nodes);
977 		} else {
978 			err = -EINVAL;
979 			goto out;
980 		}
981 	} else {
982 		*policy = pol == &default_policy ? MPOL_DEFAULT :
983 						pol->mode;
984 		/*
985 		 * Internal mempolicy flags must be masked off before exposing
986 		 * the policy to userspace.
987 		 */
988 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
989 	}
990 
991 	err = 0;
992 	if (nmask) {
993 		if (mpol_store_user_nodemask(pol)) {
994 			*nmask = pol->w.user_nodemask;
995 		} else {
996 			task_lock(current);
997 			get_policy_nodemask(pol, nmask);
998 			task_unlock(current);
999 		}
1000 	}
1001 
1002  out:
1003 	mpol_cond_put(pol);
1004 	if (vma)
1005 		mmap_read_unlock(mm);
1006 	if (pol_refcount)
1007 		mpol_put(pol_refcount);
1008 	return err;
1009 }
1010 
1011 #ifdef CONFIG_MIGRATION
1012 /*
1013  * page migration, thp tail pages can be passed.
1014  */
1015 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1016 				unsigned long flags)
1017 {
1018 	struct page *head = compound_head(page);
1019 	/*
1020 	 * Avoid migrating a page that is shared with others.
1021 	 */
1022 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1023 		if (!isolate_lru_page(head)) {
1024 			list_add_tail(&head->lru, pagelist);
1025 			mod_node_page_state(page_pgdat(head),
1026 				NR_ISOLATED_ANON + page_is_file_lru(head),
1027 				thp_nr_pages(head));
1028 		} else if (flags & MPOL_MF_STRICT) {
1029 			/*
1030 			 * Non-movable page may reach here.  And, there may be
1031 			 * temporary off LRU pages or non-LRU movable pages.
1032 			 * Treat them as unmovable pages since they can't be
1033 			 * isolated, so they can't be moved at the moment.  It
1034 			 * should return -EIO for this case too.
1035 			 */
1036 			return -EIO;
1037 		}
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /*
1044  * Migrate pages from one node to a target node.
1045  * Returns error or the number of pages not migrated.
1046  */
1047 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1048 			   int flags)
1049 {
1050 	nodemask_t nmask;
1051 	LIST_HEAD(pagelist);
1052 	int err = 0;
1053 	struct migration_target_control mtc = {
1054 		.nid = dest,
1055 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1056 	};
1057 
1058 	nodes_clear(nmask);
1059 	node_set(source, nmask);
1060 
1061 	/*
1062 	 * This does not "check" the range but isolates all pages that
1063 	 * need migration.  Between passing in the full user address
1064 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1065 	 */
1066 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1067 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1068 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1069 
1070 	if (!list_empty(&pagelist)) {
1071 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1072 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1073 		if (err)
1074 			putback_movable_pages(&pagelist);
1075 	}
1076 
1077 	return err;
1078 }
1079 
1080 /*
1081  * Move pages between the two nodesets so as to preserve the physical
1082  * layout as much as possible.
1083  *
1084  * Returns the number of page that could not be moved.
1085  */
1086 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1087 		     const nodemask_t *to, int flags)
1088 {
1089 	int busy = 0;
1090 	int err = 0;
1091 	nodemask_t tmp;
1092 
1093 	lru_cache_disable();
1094 
1095 	mmap_read_lock(mm);
1096 
1097 	/*
1098 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1099 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1100 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1101 	 * The pair of nodemasks 'to' and 'from' define the map.
1102 	 *
1103 	 * If no pair of bits is found that way, fallback to picking some
1104 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1105 	 * 'source' and 'dest' bits are the same, this represents a node
1106 	 * that will be migrating to itself, so no pages need move.
1107 	 *
1108 	 * If no bits are left in 'tmp', or if all remaining bits left
1109 	 * in 'tmp' correspond to the same bit in 'to', return false
1110 	 * (nothing left to migrate).
1111 	 *
1112 	 * This lets us pick a pair of nodes to migrate between, such that
1113 	 * if possible the dest node is not already occupied by some other
1114 	 * source node, minimizing the risk of overloading the memory on a
1115 	 * node that would happen if we migrated incoming memory to a node
1116 	 * before migrating outgoing memory source that same node.
1117 	 *
1118 	 * A single scan of tmp is sufficient.  As we go, we remember the
1119 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1120 	 * that not only moved, but what's better, moved to an empty slot
1121 	 * (d is not set in tmp), then we break out then, with that pair.
1122 	 * Otherwise when we finish scanning from_tmp, we at least have the
1123 	 * most recent <s, d> pair that moved.  If we get all the way through
1124 	 * the scan of tmp without finding any node that moved, much less
1125 	 * moved to an empty node, then there is nothing left worth migrating.
1126 	 */
1127 
1128 	tmp = *from;
1129 	while (!nodes_empty(tmp)) {
1130 		int s, d;
1131 		int source = NUMA_NO_NODE;
1132 		int dest = 0;
1133 
1134 		for_each_node_mask(s, tmp) {
1135 
1136 			/*
1137 			 * do_migrate_pages() tries to maintain the relative
1138 			 * node relationship of the pages established between
1139 			 * threads and memory areas.
1140                          *
1141 			 * However if the number of source nodes is not equal to
1142 			 * the number of destination nodes we can not preserve
1143 			 * this node relative relationship.  In that case, skip
1144 			 * copying memory from a node that is in the destination
1145 			 * mask.
1146 			 *
1147 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1148 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1149 			 */
1150 
1151 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1152 						(node_isset(s, *to)))
1153 				continue;
1154 
1155 			d = node_remap(s, *from, *to);
1156 			if (s == d)
1157 				continue;
1158 
1159 			source = s;	/* Node moved. Memorize */
1160 			dest = d;
1161 
1162 			/* dest not in remaining from nodes? */
1163 			if (!node_isset(dest, tmp))
1164 				break;
1165 		}
1166 		if (source == NUMA_NO_NODE)
1167 			break;
1168 
1169 		node_clear(source, tmp);
1170 		err = migrate_to_node(mm, source, dest, flags);
1171 		if (err > 0)
1172 			busy += err;
1173 		if (err < 0)
1174 			break;
1175 	}
1176 	mmap_read_unlock(mm);
1177 
1178 	lru_cache_enable();
1179 	if (err < 0)
1180 		return err;
1181 	return busy;
1182 
1183 }
1184 
1185 /*
1186  * Allocate a new page for page migration based on vma policy.
1187  * Start by assuming the page is mapped by the same vma as contains @start.
1188  * Search forward from there, if not.  N.B., this assumes that the
1189  * list of pages handed to migrate_pages()--which is how we get here--
1190  * is in virtual address order.
1191  */
1192 static struct page *new_page(struct page *page, unsigned long start)
1193 {
1194 	struct folio *dst, *src = page_folio(page);
1195 	struct vm_area_struct *vma;
1196 	unsigned long address;
1197 	gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1198 
1199 	vma = find_vma(current->mm, start);
1200 	while (vma) {
1201 		address = page_address_in_vma(page, vma);
1202 		if (address != -EFAULT)
1203 			break;
1204 		vma = vma->vm_next;
1205 	}
1206 
1207 	if (folio_test_hugetlb(src))
1208 		return alloc_huge_page_vma(page_hstate(&src->page),
1209 				vma, address);
1210 
1211 	if (folio_test_large(src))
1212 		gfp = GFP_TRANSHUGE;
1213 
1214 	/*
1215 	 * if !vma, vma_alloc_folio() will use task or system default policy
1216 	 */
1217 	dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1218 			folio_test_large(src));
1219 	return &dst->page;
1220 }
1221 #else
1222 
1223 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1224 				unsigned long flags)
1225 {
1226 	return -EIO;
1227 }
1228 
1229 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1230 		     const nodemask_t *to, int flags)
1231 {
1232 	return -ENOSYS;
1233 }
1234 
1235 static struct page *new_page(struct page *page, unsigned long start)
1236 {
1237 	return NULL;
1238 }
1239 #endif
1240 
1241 static long do_mbind(unsigned long start, unsigned long len,
1242 		     unsigned short mode, unsigned short mode_flags,
1243 		     nodemask_t *nmask, unsigned long flags)
1244 {
1245 	struct mm_struct *mm = current->mm;
1246 	struct mempolicy *new;
1247 	unsigned long end;
1248 	int err;
1249 	int ret;
1250 	LIST_HEAD(pagelist);
1251 
1252 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1253 		return -EINVAL;
1254 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1255 		return -EPERM;
1256 
1257 	if (start & ~PAGE_MASK)
1258 		return -EINVAL;
1259 
1260 	if (mode == MPOL_DEFAULT)
1261 		flags &= ~MPOL_MF_STRICT;
1262 
1263 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1264 	end = start + len;
1265 
1266 	if (end < start)
1267 		return -EINVAL;
1268 	if (end == start)
1269 		return 0;
1270 
1271 	new = mpol_new(mode, mode_flags, nmask);
1272 	if (IS_ERR(new))
1273 		return PTR_ERR(new);
1274 
1275 	if (flags & MPOL_MF_LAZY)
1276 		new->flags |= MPOL_F_MOF;
1277 
1278 	/*
1279 	 * If we are using the default policy then operation
1280 	 * on discontinuous address spaces is okay after all
1281 	 */
1282 	if (!new)
1283 		flags |= MPOL_MF_DISCONTIG_OK;
1284 
1285 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1286 		 start, start + len, mode, mode_flags,
1287 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1288 
1289 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1290 
1291 		lru_cache_disable();
1292 	}
1293 	{
1294 		NODEMASK_SCRATCH(scratch);
1295 		if (scratch) {
1296 			mmap_write_lock(mm);
1297 			err = mpol_set_nodemask(new, nmask, scratch);
1298 			if (err)
1299 				mmap_write_unlock(mm);
1300 		} else
1301 			err = -ENOMEM;
1302 		NODEMASK_SCRATCH_FREE(scratch);
1303 	}
1304 	if (err)
1305 		goto mpol_out;
1306 
1307 	ret = queue_pages_range(mm, start, end, nmask,
1308 			  flags | MPOL_MF_INVERT, &pagelist);
1309 
1310 	if (ret < 0) {
1311 		err = ret;
1312 		goto up_out;
1313 	}
1314 
1315 	err = mbind_range(mm, start, end, new);
1316 
1317 	if (!err) {
1318 		int nr_failed = 0;
1319 
1320 		if (!list_empty(&pagelist)) {
1321 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1322 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1323 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1324 			if (nr_failed)
1325 				putback_movable_pages(&pagelist);
1326 		}
1327 
1328 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1329 			err = -EIO;
1330 	} else {
1331 up_out:
1332 		if (!list_empty(&pagelist))
1333 			putback_movable_pages(&pagelist);
1334 	}
1335 
1336 	mmap_write_unlock(mm);
1337 mpol_out:
1338 	mpol_put(new);
1339 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1340 		lru_cache_enable();
1341 	return err;
1342 }
1343 
1344 /*
1345  * User space interface with variable sized bitmaps for nodelists.
1346  */
1347 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1348 		      unsigned long maxnode)
1349 {
1350 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1351 	int ret;
1352 
1353 	if (in_compat_syscall())
1354 		ret = compat_get_bitmap(mask,
1355 					(const compat_ulong_t __user *)nmask,
1356 					maxnode);
1357 	else
1358 		ret = copy_from_user(mask, nmask,
1359 				     nlongs * sizeof(unsigned long));
1360 
1361 	if (ret)
1362 		return -EFAULT;
1363 
1364 	if (maxnode % BITS_PER_LONG)
1365 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1366 
1367 	return 0;
1368 }
1369 
1370 /* Copy a node mask from user space. */
1371 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1372 		     unsigned long maxnode)
1373 {
1374 	--maxnode;
1375 	nodes_clear(*nodes);
1376 	if (maxnode == 0 || !nmask)
1377 		return 0;
1378 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1379 		return -EINVAL;
1380 
1381 	/*
1382 	 * When the user specified more nodes than supported just check
1383 	 * if the non supported part is all zero, one word at a time,
1384 	 * starting at the end.
1385 	 */
1386 	while (maxnode > MAX_NUMNODES) {
1387 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1388 		unsigned long t;
1389 
1390 		if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1391 			return -EFAULT;
1392 
1393 		if (maxnode - bits >= MAX_NUMNODES) {
1394 			maxnode -= bits;
1395 		} else {
1396 			maxnode = MAX_NUMNODES;
1397 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1398 		}
1399 		if (t)
1400 			return -EINVAL;
1401 	}
1402 
1403 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1404 }
1405 
1406 /* Copy a kernel node mask to user space */
1407 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1408 			      nodemask_t *nodes)
1409 {
1410 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1411 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1412 	bool compat = in_compat_syscall();
1413 
1414 	if (compat)
1415 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1416 
1417 	if (copy > nbytes) {
1418 		if (copy > PAGE_SIZE)
1419 			return -EINVAL;
1420 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1421 			return -EFAULT;
1422 		copy = nbytes;
1423 		maxnode = nr_node_ids;
1424 	}
1425 
1426 	if (compat)
1427 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1428 					 nodes_addr(*nodes), maxnode);
1429 
1430 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1431 }
1432 
1433 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1434 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1435 {
1436 	*flags = *mode & MPOL_MODE_FLAGS;
1437 	*mode &= ~MPOL_MODE_FLAGS;
1438 
1439 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1440 		return -EINVAL;
1441 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1442 		return -EINVAL;
1443 	if (*flags & MPOL_F_NUMA_BALANCING) {
1444 		if (*mode != MPOL_BIND)
1445 			return -EINVAL;
1446 		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1447 	}
1448 	return 0;
1449 }
1450 
1451 static long kernel_mbind(unsigned long start, unsigned long len,
1452 			 unsigned long mode, const unsigned long __user *nmask,
1453 			 unsigned long maxnode, unsigned int flags)
1454 {
1455 	unsigned short mode_flags;
1456 	nodemask_t nodes;
1457 	int lmode = mode;
1458 	int err;
1459 
1460 	start = untagged_addr(start);
1461 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1462 	if (err)
1463 		return err;
1464 
1465 	err = get_nodes(&nodes, nmask, maxnode);
1466 	if (err)
1467 		return err;
1468 
1469 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1470 }
1471 
1472 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1473 		unsigned long, home_node, unsigned long, flags)
1474 {
1475 	struct mm_struct *mm = current->mm;
1476 	struct vm_area_struct *vma;
1477 	struct mempolicy *new;
1478 	unsigned long vmstart;
1479 	unsigned long vmend;
1480 	unsigned long end;
1481 	int err = -ENOENT;
1482 
1483 	start = untagged_addr(start);
1484 	if (start & ~PAGE_MASK)
1485 		return -EINVAL;
1486 	/*
1487 	 * flags is used for future extension if any.
1488 	 */
1489 	if (flags != 0)
1490 		return -EINVAL;
1491 
1492 	/*
1493 	 * Check home_node is online to avoid accessing uninitialized
1494 	 * NODE_DATA.
1495 	 */
1496 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1497 		return -EINVAL;
1498 
1499 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1500 	end = start + len;
1501 
1502 	if (end < start)
1503 		return -EINVAL;
1504 	if (end == start)
1505 		return 0;
1506 	mmap_write_lock(mm);
1507 	vma = find_vma(mm, start);
1508 	for (; vma && vma->vm_start < end;  vma = vma->vm_next) {
1509 
1510 		vmstart = max(start, vma->vm_start);
1511 		vmend   = min(end, vma->vm_end);
1512 		new = mpol_dup(vma_policy(vma));
1513 		if (IS_ERR(new)) {
1514 			err = PTR_ERR(new);
1515 			break;
1516 		}
1517 		/*
1518 		 * Only update home node if there is an existing vma policy
1519 		 */
1520 		if (!new)
1521 			continue;
1522 
1523 		/*
1524 		 * If any vma in the range got policy other than MPOL_BIND
1525 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1526 		 * the home node for vmas we already updated before.
1527 		 */
1528 		if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1529 			err = -EOPNOTSUPP;
1530 			break;
1531 		}
1532 
1533 		new->home_node = home_node;
1534 		err = mbind_range(mm, vmstart, vmend, new);
1535 		mpol_put(new);
1536 		if (err)
1537 			break;
1538 	}
1539 	mmap_write_unlock(mm);
1540 	return err;
1541 }
1542 
1543 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1544 		unsigned long, mode, const unsigned long __user *, nmask,
1545 		unsigned long, maxnode, unsigned int, flags)
1546 {
1547 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1548 }
1549 
1550 /* Set the process memory policy */
1551 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1552 				 unsigned long maxnode)
1553 {
1554 	unsigned short mode_flags;
1555 	nodemask_t nodes;
1556 	int lmode = mode;
1557 	int err;
1558 
1559 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1560 	if (err)
1561 		return err;
1562 
1563 	err = get_nodes(&nodes, nmask, maxnode);
1564 	if (err)
1565 		return err;
1566 
1567 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1568 }
1569 
1570 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1571 		unsigned long, maxnode)
1572 {
1573 	return kernel_set_mempolicy(mode, nmask, maxnode);
1574 }
1575 
1576 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1577 				const unsigned long __user *old_nodes,
1578 				const unsigned long __user *new_nodes)
1579 {
1580 	struct mm_struct *mm = NULL;
1581 	struct task_struct *task;
1582 	nodemask_t task_nodes;
1583 	int err;
1584 	nodemask_t *old;
1585 	nodemask_t *new;
1586 	NODEMASK_SCRATCH(scratch);
1587 
1588 	if (!scratch)
1589 		return -ENOMEM;
1590 
1591 	old = &scratch->mask1;
1592 	new = &scratch->mask2;
1593 
1594 	err = get_nodes(old, old_nodes, maxnode);
1595 	if (err)
1596 		goto out;
1597 
1598 	err = get_nodes(new, new_nodes, maxnode);
1599 	if (err)
1600 		goto out;
1601 
1602 	/* Find the mm_struct */
1603 	rcu_read_lock();
1604 	task = pid ? find_task_by_vpid(pid) : current;
1605 	if (!task) {
1606 		rcu_read_unlock();
1607 		err = -ESRCH;
1608 		goto out;
1609 	}
1610 	get_task_struct(task);
1611 
1612 	err = -EINVAL;
1613 
1614 	/*
1615 	 * Check if this process has the right to modify the specified process.
1616 	 * Use the regular "ptrace_may_access()" checks.
1617 	 */
1618 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1619 		rcu_read_unlock();
1620 		err = -EPERM;
1621 		goto out_put;
1622 	}
1623 	rcu_read_unlock();
1624 
1625 	task_nodes = cpuset_mems_allowed(task);
1626 	/* Is the user allowed to access the target nodes? */
1627 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1628 		err = -EPERM;
1629 		goto out_put;
1630 	}
1631 
1632 	task_nodes = cpuset_mems_allowed(current);
1633 	nodes_and(*new, *new, task_nodes);
1634 	if (nodes_empty(*new))
1635 		goto out_put;
1636 
1637 	err = security_task_movememory(task);
1638 	if (err)
1639 		goto out_put;
1640 
1641 	mm = get_task_mm(task);
1642 	put_task_struct(task);
1643 
1644 	if (!mm) {
1645 		err = -EINVAL;
1646 		goto out;
1647 	}
1648 
1649 	err = do_migrate_pages(mm, old, new,
1650 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1651 
1652 	mmput(mm);
1653 out:
1654 	NODEMASK_SCRATCH_FREE(scratch);
1655 
1656 	return err;
1657 
1658 out_put:
1659 	put_task_struct(task);
1660 	goto out;
1661 
1662 }
1663 
1664 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1665 		const unsigned long __user *, old_nodes,
1666 		const unsigned long __user *, new_nodes)
1667 {
1668 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1669 }
1670 
1671 
1672 /* Retrieve NUMA policy */
1673 static int kernel_get_mempolicy(int __user *policy,
1674 				unsigned long __user *nmask,
1675 				unsigned long maxnode,
1676 				unsigned long addr,
1677 				unsigned long flags)
1678 {
1679 	int err;
1680 	int pval;
1681 	nodemask_t nodes;
1682 
1683 	if (nmask != NULL && maxnode < nr_node_ids)
1684 		return -EINVAL;
1685 
1686 	addr = untagged_addr(addr);
1687 
1688 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1689 
1690 	if (err)
1691 		return err;
1692 
1693 	if (policy && put_user(pval, policy))
1694 		return -EFAULT;
1695 
1696 	if (nmask)
1697 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1698 
1699 	return err;
1700 }
1701 
1702 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1703 		unsigned long __user *, nmask, unsigned long, maxnode,
1704 		unsigned long, addr, unsigned long, flags)
1705 {
1706 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1707 }
1708 
1709 bool vma_migratable(struct vm_area_struct *vma)
1710 {
1711 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1712 		return false;
1713 
1714 	/*
1715 	 * DAX device mappings require predictable access latency, so avoid
1716 	 * incurring periodic faults.
1717 	 */
1718 	if (vma_is_dax(vma))
1719 		return false;
1720 
1721 	if (is_vm_hugetlb_page(vma) &&
1722 		!hugepage_migration_supported(hstate_vma(vma)))
1723 		return false;
1724 
1725 	/*
1726 	 * Migration allocates pages in the highest zone. If we cannot
1727 	 * do so then migration (at least from node to node) is not
1728 	 * possible.
1729 	 */
1730 	if (vma->vm_file &&
1731 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1732 			< policy_zone)
1733 		return false;
1734 	return true;
1735 }
1736 
1737 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1738 						unsigned long addr)
1739 {
1740 	struct mempolicy *pol = NULL;
1741 
1742 	if (vma) {
1743 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1744 			pol = vma->vm_ops->get_policy(vma, addr);
1745 		} else if (vma->vm_policy) {
1746 			pol = vma->vm_policy;
1747 
1748 			/*
1749 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1750 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1751 			 * count on these policies which will be dropped by
1752 			 * mpol_cond_put() later
1753 			 */
1754 			if (mpol_needs_cond_ref(pol))
1755 				mpol_get(pol);
1756 		}
1757 	}
1758 
1759 	return pol;
1760 }
1761 
1762 /*
1763  * get_vma_policy(@vma, @addr)
1764  * @vma: virtual memory area whose policy is sought
1765  * @addr: address in @vma for shared policy lookup
1766  *
1767  * Returns effective policy for a VMA at specified address.
1768  * Falls back to current->mempolicy or system default policy, as necessary.
1769  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1770  * count--added by the get_policy() vm_op, as appropriate--to protect against
1771  * freeing by another task.  It is the caller's responsibility to free the
1772  * extra reference for shared policies.
1773  */
1774 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1775 						unsigned long addr)
1776 {
1777 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1778 
1779 	if (!pol)
1780 		pol = get_task_policy(current);
1781 
1782 	return pol;
1783 }
1784 
1785 bool vma_policy_mof(struct vm_area_struct *vma)
1786 {
1787 	struct mempolicy *pol;
1788 
1789 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1790 		bool ret = false;
1791 
1792 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1793 		if (pol && (pol->flags & MPOL_F_MOF))
1794 			ret = true;
1795 		mpol_cond_put(pol);
1796 
1797 		return ret;
1798 	}
1799 
1800 	pol = vma->vm_policy;
1801 	if (!pol)
1802 		pol = get_task_policy(current);
1803 
1804 	return pol->flags & MPOL_F_MOF;
1805 }
1806 
1807 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1808 {
1809 	enum zone_type dynamic_policy_zone = policy_zone;
1810 
1811 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1812 
1813 	/*
1814 	 * if policy->nodes has movable memory only,
1815 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1816 	 *
1817 	 * policy->nodes is intersect with node_states[N_MEMORY].
1818 	 * so if the following test fails, it implies
1819 	 * policy->nodes has movable memory only.
1820 	 */
1821 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1822 		dynamic_policy_zone = ZONE_MOVABLE;
1823 
1824 	return zone >= dynamic_policy_zone;
1825 }
1826 
1827 /*
1828  * Return a nodemask representing a mempolicy for filtering nodes for
1829  * page allocation
1830  */
1831 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1832 {
1833 	int mode = policy->mode;
1834 
1835 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1836 	if (unlikely(mode == MPOL_BIND) &&
1837 		apply_policy_zone(policy, gfp_zone(gfp)) &&
1838 		cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1839 		return &policy->nodes;
1840 
1841 	if (mode == MPOL_PREFERRED_MANY)
1842 		return &policy->nodes;
1843 
1844 	return NULL;
1845 }
1846 
1847 /*
1848  * Return the  preferred node id for 'prefer' mempolicy, and return
1849  * the given id for all other policies.
1850  *
1851  * policy_node() is always coupled with policy_nodemask(), which
1852  * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1853  */
1854 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1855 {
1856 	if (policy->mode == MPOL_PREFERRED) {
1857 		nd = first_node(policy->nodes);
1858 	} else {
1859 		/*
1860 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1861 		 * because we might easily break the expectation to stay on the
1862 		 * requested node and not break the policy.
1863 		 */
1864 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1865 	}
1866 
1867 	if ((policy->mode == MPOL_BIND ||
1868 	     policy->mode == MPOL_PREFERRED_MANY) &&
1869 	    policy->home_node != NUMA_NO_NODE)
1870 		return policy->home_node;
1871 
1872 	return nd;
1873 }
1874 
1875 /* Do dynamic interleaving for a process */
1876 static unsigned interleave_nodes(struct mempolicy *policy)
1877 {
1878 	unsigned next;
1879 	struct task_struct *me = current;
1880 
1881 	next = next_node_in(me->il_prev, policy->nodes);
1882 	if (next < MAX_NUMNODES)
1883 		me->il_prev = next;
1884 	return next;
1885 }
1886 
1887 /*
1888  * Depending on the memory policy provide a node from which to allocate the
1889  * next slab entry.
1890  */
1891 unsigned int mempolicy_slab_node(void)
1892 {
1893 	struct mempolicy *policy;
1894 	int node = numa_mem_id();
1895 
1896 	if (!in_task())
1897 		return node;
1898 
1899 	policy = current->mempolicy;
1900 	if (!policy)
1901 		return node;
1902 
1903 	switch (policy->mode) {
1904 	case MPOL_PREFERRED:
1905 		return first_node(policy->nodes);
1906 
1907 	case MPOL_INTERLEAVE:
1908 		return interleave_nodes(policy);
1909 
1910 	case MPOL_BIND:
1911 	case MPOL_PREFERRED_MANY:
1912 	{
1913 		struct zoneref *z;
1914 
1915 		/*
1916 		 * Follow bind policy behavior and start allocation at the
1917 		 * first node.
1918 		 */
1919 		struct zonelist *zonelist;
1920 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1921 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1922 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1923 							&policy->nodes);
1924 		return z->zone ? zone_to_nid(z->zone) : node;
1925 	}
1926 	case MPOL_LOCAL:
1927 		return node;
1928 
1929 	default:
1930 		BUG();
1931 	}
1932 }
1933 
1934 /*
1935  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1936  * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1937  * number of present nodes.
1938  */
1939 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1940 {
1941 	nodemask_t nodemask = pol->nodes;
1942 	unsigned int target, nnodes;
1943 	int i;
1944 	int nid;
1945 	/*
1946 	 * The barrier will stabilize the nodemask in a register or on
1947 	 * the stack so that it will stop changing under the code.
1948 	 *
1949 	 * Between first_node() and next_node(), pol->nodes could be changed
1950 	 * by other threads. So we put pol->nodes in a local stack.
1951 	 */
1952 	barrier();
1953 
1954 	nnodes = nodes_weight(nodemask);
1955 	if (!nnodes)
1956 		return numa_node_id();
1957 	target = (unsigned int)n % nnodes;
1958 	nid = first_node(nodemask);
1959 	for (i = 0; i < target; i++)
1960 		nid = next_node(nid, nodemask);
1961 	return nid;
1962 }
1963 
1964 /* Determine a node number for interleave */
1965 static inline unsigned interleave_nid(struct mempolicy *pol,
1966 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1967 {
1968 	if (vma) {
1969 		unsigned long off;
1970 
1971 		/*
1972 		 * for small pages, there is no difference between
1973 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1974 		 * for huge pages, since vm_pgoff is in units of small
1975 		 * pages, we need to shift off the always 0 bits to get
1976 		 * a useful offset.
1977 		 */
1978 		BUG_ON(shift < PAGE_SHIFT);
1979 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1980 		off += (addr - vma->vm_start) >> shift;
1981 		return offset_il_node(pol, off);
1982 	} else
1983 		return interleave_nodes(pol);
1984 }
1985 
1986 #ifdef CONFIG_HUGETLBFS
1987 /*
1988  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1989  * @vma: virtual memory area whose policy is sought
1990  * @addr: address in @vma for shared policy lookup and interleave policy
1991  * @gfp_flags: for requested zone
1992  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1993  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1994  *
1995  * Returns a nid suitable for a huge page allocation and a pointer
1996  * to the struct mempolicy for conditional unref after allocation.
1997  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1998  * to the mempolicy's @nodemask for filtering the zonelist.
1999  *
2000  * Must be protected by read_mems_allowed_begin()
2001  */
2002 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2003 				struct mempolicy **mpol, nodemask_t **nodemask)
2004 {
2005 	int nid;
2006 	int mode;
2007 
2008 	*mpol = get_vma_policy(vma, addr);
2009 	*nodemask = NULL;
2010 	mode = (*mpol)->mode;
2011 
2012 	if (unlikely(mode == MPOL_INTERLEAVE)) {
2013 		nid = interleave_nid(*mpol, vma, addr,
2014 					huge_page_shift(hstate_vma(vma)));
2015 	} else {
2016 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2017 		if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2018 			*nodemask = &(*mpol)->nodes;
2019 	}
2020 	return nid;
2021 }
2022 
2023 /*
2024  * init_nodemask_of_mempolicy
2025  *
2026  * If the current task's mempolicy is "default" [NULL], return 'false'
2027  * to indicate default policy.  Otherwise, extract the policy nodemask
2028  * for 'bind' or 'interleave' policy into the argument nodemask, or
2029  * initialize the argument nodemask to contain the single node for
2030  * 'preferred' or 'local' policy and return 'true' to indicate presence
2031  * of non-default mempolicy.
2032  *
2033  * We don't bother with reference counting the mempolicy [mpol_get/put]
2034  * because the current task is examining it's own mempolicy and a task's
2035  * mempolicy is only ever changed by the task itself.
2036  *
2037  * N.B., it is the caller's responsibility to free a returned nodemask.
2038  */
2039 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2040 {
2041 	struct mempolicy *mempolicy;
2042 
2043 	if (!(mask && current->mempolicy))
2044 		return false;
2045 
2046 	task_lock(current);
2047 	mempolicy = current->mempolicy;
2048 	switch (mempolicy->mode) {
2049 	case MPOL_PREFERRED:
2050 	case MPOL_PREFERRED_MANY:
2051 	case MPOL_BIND:
2052 	case MPOL_INTERLEAVE:
2053 		*mask = mempolicy->nodes;
2054 		break;
2055 
2056 	case MPOL_LOCAL:
2057 		init_nodemask_of_node(mask, numa_node_id());
2058 		break;
2059 
2060 	default:
2061 		BUG();
2062 	}
2063 	task_unlock(current);
2064 
2065 	return true;
2066 }
2067 #endif
2068 
2069 /*
2070  * mempolicy_in_oom_domain
2071  *
2072  * If tsk's mempolicy is "bind", check for intersection between mask and
2073  * the policy nodemask. Otherwise, return true for all other policies
2074  * including "interleave", as a tsk with "interleave" policy may have
2075  * memory allocated from all nodes in system.
2076  *
2077  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2078  */
2079 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2080 					const nodemask_t *mask)
2081 {
2082 	struct mempolicy *mempolicy;
2083 	bool ret = true;
2084 
2085 	if (!mask)
2086 		return ret;
2087 
2088 	task_lock(tsk);
2089 	mempolicy = tsk->mempolicy;
2090 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2091 		ret = nodes_intersects(mempolicy->nodes, *mask);
2092 	task_unlock(tsk);
2093 
2094 	return ret;
2095 }
2096 
2097 /* Allocate a page in interleaved policy.
2098    Own path because it needs to do special accounting. */
2099 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2100 					unsigned nid)
2101 {
2102 	struct page *page;
2103 
2104 	page = __alloc_pages(gfp, order, nid, NULL);
2105 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2106 	if (!static_branch_likely(&vm_numa_stat_key))
2107 		return page;
2108 	if (page && page_to_nid(page) == nid) {
2109 		preempt_disable();
2110 		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2111 		preempt_enable();
2112 	}
2113 	return page;
2114 }
2115 
2116 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2117 						int nid, struct mempolicy *pol)
2118 {
2119 	struct page *page;
2120 	gfp_t preferred_gfp;
2121 
2122 	/*
2123 	 * This is a two pass approach. The first pass will only try the
2124 	 * preferred nodes but skip the direct reclaim and allow the
2125 	 * allocation to fail, while the second pass will try all the
2126 	 * nodes in system.
2127 	 */
2128 	preferred_gfp = gfp | __GFP_NOWARN;
2129 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2130 	page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2131 	if (!page)
2132 		page = __alloc_pages(gfp, order, nid, NULL);
2133 
2134 	return page;
2135 }
2136 
2137 /**
2138  * alloc_pages_vma - Allocate a page for a VMA.
2139  * @gfp: GFP flags.
2140  * @order: Order of the GFP allocation.
2141  * @vma: Pointer to VMA or NULL if not available.
2142  * @addr: Virtual address of the allocation.  Must be inside @vma.
2143  * @hugepage: For hugepages try only the preferred node if possible.
2144  *
2145  * Allocate a page for a specific address in @vma, using the appropriate
2146  * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2147  * of the mm_struct of the VMA to prevent it from going away.  Should be
2148  * used for all allocations for pages that will be mapped into user space.
2149  *
2150  * Return: The page on success or NULL if allocation fails.
2151  */
2152 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2153 		unsigned long addr, bool hugepage)
2154 {
2155 	struct mempolicy *pol;
2156 	int node = numa_node_id();
2157 	struct page *page;
2158 	int preferred_nid;
2159 	nodemask_t *nmask;
2160 
2161 	pol = get_vma_policy(vma, addr);
2162 
2163 	if (pol->mode == MPOL_INTERLEAVE) {
2164 		unsigned nid;
2165 
2166 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2167 		mpol_cond_put(pol);
2168 		page = alloc_page_interleave(gfp, order, nid);
2169 		goto out;
2170 	}
2171 
2172 	if (pol->mode == MPOL_PREFERRED_MANY) {
2173 		node = policy_node(gfp, pol, node);
2174 		page = alloc_pages_preferred_many(gfp, order, node, pol);
2175 		mpol_cond_put(pol);
2176 		goto out;
2177 	}
2178 
2179 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2180 		int hpage_node = node;
2181 
2182 		/*
2183 		 * For hugepage allocation and non-interleave policy which
2184 		 * allows the current node (or other explicitly preferred
2185 		 * node) we only try to allocate from the current/preferred
2186 		 * node and don't fall back to other nodes, as the cost of
2187 		 * remote accesses would likely offset THP benefits.
2188 		 *
2189 		 * If the policy is interleave or does not allow the current
2190 		 * node in its nodemask, we allocate the standard way.
2191 		 */
2192 		if (pol->mode == MPOL_PREFERRED)
2193 			hpage_node = first_node(pol->nodes);
2194 
2195 		nmask = policy_nodemask(gfp, pol);
2196 		if (!nmask || node_isset(hpage_node, *nmask)) {
2197 			mpol_cond_put(pol);
2198 			/*
2199 			 * First, try to allocate THP only on local node, but
2200 			 * don't reclaim unnecessarily, just compact.
2201 			 */
2202 			page = __alloc_pages_node(hpage_node,
2203 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2204 
2205 			/*
2206 			 * If hugepage allocations are configured to always
2207 			 * synchronous compact or the vma has been madvised
2208 			 * to prefer hugepage backing, retry allowing remote
2209 			 * memory with both reclaim and compact as well.
2210 			 */
2211 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2212 				page = __alloc_pages(gfp, order, hpage_node, nmask);
2213 
2214 			goto out;
2215 		}
2216 	}
2217 
2218 	nmask = policy_nodemask(gfp, pol);
2219 	preferred_nid = policy_node(gfp, pol, node);
2220 	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2221 	mpol_cond_put(pol);
2222 out:
2223 	return page;
2224 }
2225 EXPORT_SYMBOL(alloc_pages_vma);
2226 
2227 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2228 		unsigned long addr, bool hugepage)
2229 {
2230 	struct folio *folio;
2231 
2232 	folio = (struct folio *)alloc_pages_vma(gfp, order, vma, addr,
2233 			hugepage);
2234 	if (folio && order > 1)
2235 		prep_transhuge_page(&folio->page);
2236 
2237 	return folio;
2238 }
2239 
2240 /**
2241  * alloc_pages - Allocate pages.
2242  * @gfp: GFP flags.
2243  * @order: Power of two of number of pages to allocate.
2244  *
2245  * Allocate 1 << @order contiguous pages.  The physical address of the
2246  * first page is naturally aligned (eg an order-3 allocation will be aligned
2247  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2248  * process is honoured when in process context.
2249  *
2250  * Context: Can be called from any context, providing the appropriate GFP
2251  * flags are used.
2252  * Return: The page on success or NULL if allocation fails.
2253  */
2254 struct page *alloc_pages(gfp_t gfp, unsigned order)
2255 {
2256 	struct mempolicy *pol = &default_policy;
2257 	struct page *page;
2258 
2259 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2260 		pol = get_task_policy(current);
2261 
2262 	/*
2263 	 * No reference counting needed for current->mempolicy
2264 	 * nor system default_policy
2265 	 */
2266 	if (pol->mode == MPOL_INTERLEAVE)
2267 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2268 	else if (pol->mode == MPOL_PREFERRED_MANY)
2269 		page = alloc_pages_preferred_many(gfp, order,
2270 				  policy_node(gfp, pol, numa_node_id()), pol);
2271 	else
2272 		page = __alloc_pages(gfp, order,
2273 				policy_node(gfp, pol, numa_node_id()),
2274 				policy_nodemask(gfp, pol));
2275 
2276 	return page;
2277 }
2278 EXPORT_SYMBOL(alloc_pages);
2279 
2280 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2281 {
2282 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2283 
2284 	if (page && order > 1)
2285 		prep_transhuge_page(page);
2286 	return (struct folio *)page;
2287 }
2288 EXPORT_SYMBOL(folio_alloc);
2289 
2290 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2291 		struct mempolicy *pol, unsigned long nr_pages,
2292 		struct page **page_array)
2293 {
2294 	int nodes;
2295 	unsigned long nr_pages_per_node;
2296 	int delta;
2297 	int i;
2298 	unsigned long nr_allocated;
2299 	unsigned long total_allocated = 0;
2300 
2301 	nodes = nodes_weight(pol->nodes);
2302 	nr_pages_per_node = nr_pages / nodes;
2303 	delta = nr_pages - nodes * nr_pages_per_node;
2304 
2305 	for (i = 0; i < nodes; i++) {
2306 		if (delta) {
2307 			nr_allocated = __alloc_pages_bulk(gfp,
2308 					interleave_nodes(pol), NULL,
2309 					nr_pages_per_node + 1, NULL,
2310 					page_array);
2311 			delta--;
2312 		} else {
2313 			nr_allocated = __alloc_pages_bulk(gfp,
2314 					interleave_nodes(pol), NULL,
2315 					nr_pages_per_node, NULL, page_array);
2316 		}
2317 
2318 		page_array += nr_allocated;
2319 		total_allocated += nr_allocated;
2320 	}
2321 
2322 	return total_allocated;
2323 }
2324 
2325 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2326 		struct mempolicy *pol, unsigned long nr_pages,
2327 		struct page **page_array)
2328 {
2329 	gfp_t preferred_gfp;
2330 	unsigned long nr_allocated = 0;
2331 
2332 	preferred_gfp = gfp | __GFP_NOWARN;
2333 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2334 
2335 	nr_allocated  = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2336 					   nr_pages, NULL, page_array);
2337 
2338 	if (nr_allocated < nr_pages)
2339 		nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2340 				nr_pages - nr_allocated, NULL,
2341 				page_array + nr_allocated);
2342 	return nr_allocated;
2343 }
2344 
2345 /* alloc pages bulk and mempolicy should be considered at the
2346  * same time in some situation such as vmalloc.
2347  *
2348  * It can accelerate memory allocation especially interleaving
2349  * allocate memory.
2350  */
2351 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2352 		unsigned long nr_pages, struct page **page_array)
2353 {
2354 	struct mempolicy *pol = &default_policy;
2355 
2356 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2357 		pol = get_task_policy(current);
2358 
2359 	if (pol->mode == MPOL_INTERLEAVE)
2360 		return alloc_pages_bulk_array_interleave(gfp, pol,
2361 							 nr_pages, page_array);
2362 
2363 	if (pol->mode == MPOL_PREFERRED_MANY)
2364 		return alloc_pages_bulk_array_preferred_many(gfp,
2365 				numa_node_id(), pol, nr_pages, page_array);
2366 
2367 	return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2368 				  policy_nodemask(gfp, pol), nr_pages, NULL,
2369 				  page_array);
2370 }
2371 
2372 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2373 {
2374 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2375 
2376 	if (IS_ERR(pol))
2377 		return PTR_ERR(pol);
2378 	dst->vm_policy = pol;
2379 	return 0;
2380 }
2381 
2382 /*
2383  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2384  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2385  * with the mems_allowed returned by cpuset_mems_allowed().  This
2386  * keeps mempolicies cpuset relative after its cpuset moves.  See
2387  * further kernel/cpuset.c update_nodemask().
2388  *
2389  * current's mempolicy may be rebinded by the other task(the task that changes
2390  * cpuset's mems), so we needn't do rebind work for current task.
2391  */
2392 
2393 /* Slow path of a mempolicy duplicate */
2394 struct mempolicy *__mpol_dup(struct mempolicy *old)
2395 {
2396 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2397 
2398 	if (!new)
2399 		return ERR_PTR(-ENOMEM);
2400 
2401 	/* task's mempolicy is protected by alloc_lock */
2402 	if (old == current->mempolicy) {
2403 		task_lock(current);
2404 		*new = *old;
2405 		task_unlock(current);
2406 	} else
2407 		*new = *old;
2408 
2409 	if (current_cpuset_is_being_rebound()) {
2410 		nodemask_t mems = cpuset_mems_allowed(current);
2411 		mpol_rebind_policy(new, &mems);
2412 	}
2413 	atomic_set(&new->refcnt, 1);
2414 	return new;
2415 }
2416 
2417 /* Slow path of a mempolicy comparison */
2418 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2419 {
2420 	if (!a || !b)
2421 		return false;
2422 	if (a->mode != b->mode)
2423 		return false;
2424 	if (a->flags != b->flags)
2425 		return false;
2426 	if (a->home_node != b->home_node)
2427 		return false;
2428 	if (mpol_store_user_nodemask(a))
2429 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2430 			return false;
2431 
2432 	switch (a->mode) {
2433 	case MPOL_BIND:
2434 	case MPOL_INTERLEAVE:
2435 	case MPOL_PREFERRED:
2436 	case MPOL_PREFERRED_MANY:
2437 		return !!nodes_equal(a->nodes, b->nodes);
2438 	case MPOL_LOCAL:
2439 		return true;
2440 	default:
2441 		BUG();
2442 		return false;
2443 	}
2444 }
2445 
2446 /*
2447  * Shared memory backing store policy support.
2448  *
2449  * Remember policies even when nobody has shared memory mapped.
2450  * The policies are kept in Red-Black tree linked from the inode.
2451  * They are protected by the sp->lock rwlock, which should be held
2452  * for any accesses to the tree.
2453  */
2454 
2455 /*
2456  * lookup first element intersecting start-end.  Caller holds sp->lock for
2457  * reading or for writing
2458  */
2459 static struct sp_node *
2460 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2461 {
2462 	struct rb_node *n = sp->root.rb_node;
2463 
2464 	while (n) {
2465 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2466 
2467 		if (start >= p->end)
2468 			n = n->rb_right;
2469 		else if (end <= p->start)
2470 			n = n->rb_left;
2471 		else
2472 			break;
2473 	}
2474 	if (!n)
2475 		return NULL;
2476 	for (;;) {
2477 		struct sp_node *w = NULL;
2478 		struct rb_node *prev = rb_prev(n);
2479 		if (!prev)
2480 			break;
2481 		w = rb_entry(prev, struct sp_node, nd);
2482 		if (w->end <= start)
2483 			break;
2484 		n = prev;
2485 	}
2486 	return rb_entry(n, struct sp_node, nd);
2487 }
2488 
2489 /*
2490  * Insert a new shared policy into the list.  Caller holds sp->lock for
2491  * writing.
2492  */
2493 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2494 {
2495 	struct rb_node **p = &sp->root.rb_node;
2496 	struct rb_node *parent = NULL;
2497 	struct sp_node *nd;
2498 
2499 	while (*p) {
2500 		parent = *p;
2501 		nd = rb_entry(parent, struct sp_node, nd);
2502 		if (new->start < nd->start)
2503 			p = &(*p)->rb_left;
2504 		else if (new->end > nd->end)
2505 			p = &(*p)->rb_right;
2506 		else
2507 			BUG();
2508 	}
2509 	rb_link_node(&new->nd, parent, p);
2510 	rb_insert_color(&new->nd, &sp->root);
2511 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2512 		 new->policy ? new->policy->mode : 0);
2513 }
2514 
2515 /* Find shared policy intersecting idx */
2516 struct mempolicy *
2517 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2518 {
2519 	struct mempolicy *pol = NULL;
2520 	struct sp_node *sn;
2521 
2522 	if (!sp->root.rb_node)
2523 		return NULL;
2524 	read_lock(&sp->lock);
2525 	sn = sp_lookup(sp, idx, idx+1);
2526 	if (sn) {
2527 		mpol_get(sn->policy);
2528 		pol = sn->policy;
2529 	}
2530 	read_unlock(&sp->lock);
2531 	return pol;
2532 }
2533 
2534 static void sp_free(struct sp_node *n)
2535 {
2536 	mpol_put(n->policy);
2537 	kmem_cache_free(sn_cache, n);
2538 }
2539 
2540 /**
2541  * mpol_misplaced - check whether current page node is valid in policy
2542  *
2543  * @page: page to be checked
2544  * @vma: vm area where page mapped
2545  * @addr: virtual address where page mapped
2546  *
2547  * Lookup current policy node id for vma,addr and "compare to" page's
2548  * node id.  Policy determination "mimics" alloc_page_vma().
2549  * Called from fault path where we know the vma and faulting address.
2550  *
2551  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2552  * policy, or a suitable node ID to allocate a replacement page from.
2553  */
2554 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2555 {
2556 	struct mempolicy *pol;
2557 	struct zoneref *z;
2558 	int curnid = page_to_nid(page);
2559 	unsigned long pgoff;
2560 	int thiscpu = raw_smp_processor_id();
2561 	int thisnid = cpu_to_node(thiscpu);
2562 	int polnid = NUMA_NO_NODE;
2563 	int ret = NUMA_NO_NODE;
2564 
2565 	pol = get_vma_policy(vma, addr);
2566 	if (!(pol->flags & MPOL_F_MOF))
2567 		goto out;
2568 
2569 	switch (pol->mode) {
2570 	case MPOL_INTERLEAVE:
2571 		pgoff = vma->vm_pgoff;
2572 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2573 		polnid = offset_il_node(pol, pgoff);
2574 		break;
2575 
2576 	case MPOL_PREFERRED:
2577 		if (node_isset(curnid, pol->nodes))
2578 			goto out;
2579 		polnid = first_node(pol->nodes);
2580 		break;
2581 
2582 	case MPOL_LOCAL:
2583 		polnid = numa_node_id();
2584 		break;
2585 
2586 	case MPOL_BIND:
2587 		/* Optimize placement among multiple nodes via NUMA balancing */
2588 		if (pol->flags & MPOL_F_MORON) {
2589 			if (node_isset(thisnid, pol->nodes))
2590 				break;
2591 			goto out;
2592 		}
2593 		fallthrough;
2594 
2595 	case MPOL_PREFERRED_MANY:
2596 		/*
2597 		 * use current page if in policy nodemask,
2598 		 * else select nearest allowed node, if any.
2599 		 * If no allowed nodes, use current [!misplaced].
2600 		 */
2601 		if (node_isset(curnid, pol->nodes))
2602 			goto out;
2603 		z = first_zones_zonelist(
2604 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2605 				gfp_zone(GFP_HIGHUSER),
2606 				&pol->nodes);
2607 		polnid = zone_to_nid(z->zone);
2608 		break;
2609 
2610 	default:
2611 		BUG();
2612 	}
2613 
2614 	/* Migrate the page towards the node whose CPU is referencing it */
2615 	if (pol->flags & MPOL_F_MORON) {
2616 		polnid = thisnid;
2617 
2618 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2619 			goto out;
2620 	}
2621 
2622 	if (curnid != polnid)
2623 		ret = polnid;
2624 out:
2625 	mpol_cond_put(pol);
2626 
2627 	return ret;
2628 }
2629 
2630 /*
2631  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2632  * dropped after task->mempolicy is set to NULL so that any allocation done as
2633  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2634  * policy.
2635  */
2636 void mpol_put_task_policy(struct task_struct *task)
2637 {
2638 	struct mempolicy *pol;
2639 
2640 	task_lock(task);
2641 	pol = task->mempolicy;
2642 	task->mempolicy = NULL;
2643 	task_unlock(task);
2644 	mpol_put(pol);
2645 }
2646 
2647 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2648 {
2649 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2650 	rb_erase(&n->nd, &sp->root);
2651 	sp_free(n);
2652 }
2653 
2654 static void sp_node_init(struct sp_node *node, unsigned long start,
2655 			unsigned long end, struct mempolicy *pol)
2656 {
2657 	node->start = start;
2658 	node->end = end;
2659 	node->policy = pol;
2660 }
2661 
2662 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2663 				struct mempolicy *pol)
2664 {
2665 	struct sp_node *n;
2666 	struct mempolicy *newpol;
2667 
2668 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2669 	if (!n)
2670 		return NULL;
2671 
2672 	newpol = mpol_dup(pol);
2673 	if (IS_ERR(newpol)) {
2674 		kmem_cache_free(sn_cache, n);
2675 		return NULL;
2676 	}
2677 	newpol->flags |= MPOL_F_SHARED;
2678 	sp_node_init(n, start, end, newpol);
2679 
2680 	return n;
2681 }
2682 
2683 /* Replace a policy range. */
2684 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2685 				 unsigned long end, struct sp_node *new)
2686 {
2687 	struct sp_node *n;
2688 	struct sp_node *n_new = NULL;
2689 	struct mempolicy *mpol_new = NULL;
2690 	int ret = 0;
2691 
2692 restart:
2693 	write_lock(&sp->lock);
2694 	n = sp_lookup(sp, start, end);
2695 	/* Take care of old policies in the same range. */
2696 	while (n && n->start < end) {
2697 		struct rb_node *next = rb_next(&n->nd);
2698 		if (n->start >= start) {
2699 			if (n->end <= end)
2700 				sp_delete(sp, n);
2701 			else
2702 				n->start = end;
2703 		} else {
2704 			/* Old policy spanning whole new range. */
2705 			if (n->end > end) {
2706 				if (!n_new)
2707 					goto alloc_new;
2708 
2709 				*mpol_new = *n->policy;
2710 				atomic_set(&mpol_new->refcnt, 1);
2711 				sp_node_init(n_new, end, n->end, mpol_new);
2712 				n->end = start;
2713 				sp_insert(sp, n_new);
2714 				n_new = NULL;
2715 				mpol_new = NULL;
2716 				break;
2717 			} else
2718 				n->end = start;
2719 		}
2720 		if (!next)
2721 			break;
2722 		n = rb_entry(next, struct sp_node, nd);
2723 	}
2724 	if (new)
2725 		sp_insert(sp, new);
2726 	write_unlock(&sp->lock);
2727 	ret = 0;
2728 
2729 err_out:
2730 	if (mpol_new)
2731 		mpol_put(mpol_new);
2732 	if (n_new)
2733 		kmem_cache_free(sn_cache, n_new);
2734 
2735 	return ret;
2736 
2737 alloc_new:
2738 	write_unlock(&sp->lock);
2739 	ret = -ENOMEM;
2740 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2741 	if (!n_new)
2742 		goto err_out;
2743 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2744 	if (!mpol_new)
2745 		goto err_out;
2746 	atomic_set(&mpol_new->refcnt, 1);
2747 	goto restart;
2748 }
2749 
2750 /**
2751  * mpol_shared_policy_init - initialize shared policy for inode
2752  * @sp: pointer to inode shared policy
2753  * @mpol:  struct mempolicy to install
2754  *
2755  * Install non-NULL @mpol in inode's shared policy rb-tree.
2756  * On entry, the current task has a reference on a non-NULL @mpol.
2757  * This must be released on exit.
2758  * This is called at get_inode() calls and we can use GFP_KERNEL.
2759  */
2760 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2761 {
2762 	int ret;
2763 
2764 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2765 	rwlock_init(&sp->lock);
2766 
2767 	if (mpol) {
2768 		struct vm_area_struct pvma;
2769 		struct mempolicy *new;
2770 		NODEMASK_SCRATCH(scratch);
2771 
2772 		if (!scratch)
2773 			goto put_mpol;
2774 		/* contextualize the tmpfs mount point mempolicy */
2775 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2776 		if (IS_ERR(new))
2777 			goto free_scratch; /* no valid nodemask intersection */
2778 
2779 		task_lock(current);
2780 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2781 		task_unlock(current);
2782 		if (ret)
2783 			goto put_new;
2784 
2785 		/* Create pseudo-vma that contains just the policy */
2786 		vma_init(&pvma, NULL);
2787 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2788 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2789 
2790 put_new:
2791 		mpol_put(new);			/* drop initial ref */
2792 free_scratch:
2793 		NODEMASK_SCRATCH_FREE(scratch);
2794 put_mpol:
2795 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2796 	}
2797 }
2798 
2799 int mpol_set_shared_policy(struct shared_policy *info,
2800 			struct vm_area_struct *vma, struct mempolicy *npol)
2801 {
2802 	int err;
2803 	struct sp_node *new = NULL;
2804 	unsigned long sz = vma_pages(vma);
2805 
2806 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2807 		 vma->vm_pgoff,
2808 		 sz, npol ? npol->mode : -1,
2809 		 npol ? npol->flags : -1,
2810 		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2811 
2812 	if (npol) {
2813 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2814 		if (!new)
2815 			return -ENOMEM;
2816 	}
2817 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2818 	if (err && new)
2819 		sp_free(new);
2820 	return err;
2821 }
2822 
2823 /* Free a backing policy store on inode delete. */
2824 void mpol_free_shared_policy(struct shared_policy *p)
2825 {
2826 	struct sp_node *n;
2827 	struct rb_node *next;
2828 
2829 	if (!p->root.rb_node)
2830 		return;
2831 	write_lock(&p->lock);
2832 	next = rb_first(&p->root);
2833 	while (next) {
2834 		n = rb_entry(next, struct sp_node, nd);
2835 		next = rb_next(&n->nd);
2836 		sp_delete(p, n);
2837 	}
2838 	write_unlock(&p->lock);
2839 }
2840 
2841 #ifdef CONFIG_NUMA_BALANCING
2842 static int __initdata numabalancing_override;
2843 
2844 static void __init check_numabalancing_enable(void)
2845 {
2846 	bool numabalancing_default = false;
2847 
2848 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2849 		numabalancing_default = true;
2850 
2851 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2852 	if (numabalancing_override)
2853 		set_numabalancing_state(numabalancing_override == 1);
2854 
2855 	if (num_online_nodes() > 1 && !numabalancing_override) {
2856 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2857 			numabalancing_default ? "Enabling" : "Disabling");
2858 		set_numabalancing_state(numabalancing_default);
2859 	}
2860 }
2861 
2862 static int __init setup_numabalancing(char *str)
2863 {
2864 	int ret = 0;
2865 	if (!str)
2866 		goto out;
2867 
2868 	if (!strcmp(str, "enable")) {
2869 		numabalancing_override = 1;
2870 		ret = 1;
2871 	} else if (!strcmp(str, "disable")) {
2872 		numabalancing_override = -1;
2873 		ret = 1;
2874 	}
2875 out:
2876 	if (!ret)
2877 		pr_warn("Unable to parse numa_balancing=\n");
2878 
2879 	return ret;
2880 }
2881 __setup("numa_balancing=", setup_numabalancing);
2882 #else
2883 static inline void __init check_numabalancing_enable(void)
2884 {
2885 }
2886 #endif /* CONFIG_NUMA_BALANCING */
2887 
2888 /* assumes fs == KERNEL_DS */
2889 void __init numa_policy_init(void)
2890 {
2891 	nodemask_t interleave_nodes;
2892 	unsigned long largest = 0;
2893 	int nid, prefer = 0;
2894 
2895 	policy_cache = kmem_cache_create("numa_policy",
2896 					 sizeof(struct mempolicy),
2897 					 0, SLAB_PANIC, NULL);
2898 
2899 	sn_cache = kmem_cache_create("shared_policy_node",
2900 				     sizeof(struct sp_node),
2901 				     0, SLAB_PANIC, NULL);
2902 
2903 	for_each_node(nid) {
2904 		preferred_node_policy[nid] = (struct mempolicy) {
2905 			.refcnt = ATOMIC_INIT(1),
2906 			.mode = MPOL_PREFERRED,
2907 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2908 			.nodes = nodemask_of_node(nid),
2909 		};
2910 	}
2911 
2912 	/*
2913 	 * Set interleaving policy for system init. Interleaving is only
2914 	 * enabled across suitably sized nodes (default is >= 16MB), or
2915 	 * fall back to the largest node if they're all smaller.
2916 	 */
2917 	nodes_clear(interleave_nodes);
2918 	for_each_node_state(nid, N_MEMORY) {
2919 		unsigned long total_pages = node_present_pages(nid);
2920 
2921 		/* Preserve the largest node */
2922 		if (largest < total_pages) {
2923 			largest = total_pages;
2924 			prefer = nid;
2925 		}
2926 
2927 		/* Interleave this node? */
2928 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2929 			node_set(nid, interleave_nodes);
2930 	}
2931 
2932 	/* All too small, use the largest */
2933 	if (unlikely(nodes_empty(interleave_nodes)))
2934 		node_set(prefer, interleave_nodes);
2935 
2936 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2937 		pr_err("%s: interleaving failed\n", __func__);
2938 
2939 	check_numabalancing_enable();
2940 }
2941 
2942 /* Reset policy of current process to default */
2943 void numa_default_policy(void)
2944 {
2945 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2946 }
2947 
2948 /*
2949  * Parse and format mempolicy from/to strings
2950  */
2951 
2952 static const char * const policy_modes[] =
2953 {
2954 	[MPOL_DEFAULT]    = "default",
2955 	[MPOL_PREFERRED]  = "prefer",
2956 	[MPOL_BIND]       = "bind",
2957 	[MPOL_INTERLEAVE] = "interleave",
2958 	[MPOL_LOCAL]      = "local",
2959 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
2960 };
2961 
2962 
2963 #ifdef CONFIG_TMPFS
2964 /**
2965  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2966  * @str:  string containing mempolicy to parse
2967  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2968  *
2969  * Format of input:
2970  *	<mode>[=<flags>][:<nodelist>]
2971  *
2972  * Return: %0 on success, else %1
2973  */
2974 int mpol_parse_str(char *str, struct mempolicy **mpol)
2975 {
2976 	struct mempolicy *new = NULL;
2977 	unsigned short mode_flags;
2978 	nodemask_t nodes;
2979 	char *nodelist = strchr(str, ':');
2980 	char *flags = strchr(str, '=');
2981 	int err = 1, mode;
2982 
2983 	if (flags)
2984 		*flags++ = '\0';	/* terminate mode string */
2985 
2986 	if (nodelist) {
2987 		/* NUL-terminate mode or flags string */
2988 		*nodelist++ = '\0';
2989 		if (nodelist_parse(nodelist, nodes))
2990 			goto out;
2991 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2992 			goto out;
2993 	} else
2994 		nodes_clear(nodes);
2995 
2996 	mode = match_string(policy_modes, MPOL_MAX, str);
2997 	if (mode < 0)
2998 		goto out;
2999 
3000 	switch (mode) {
3001 	case MPOL_PREFERRED:
3002 		/*
3003 		 * Insist on a nodelist of one node only, although later
3004 		 * we use first_node(nodes) to grab a single node, so here
3005 		 * nodelist (or nodes) cannot be empty.
3006 		 */
3007 		if (nodelist) {
3008 			char *rest = nodelist;
3009 			while (isdigit(*rest))
3010 				rest++;
3011 			if (*rest)
3012 				goto out;
3013 			if (nodes_empty(nodes))
3014 				goto out;
3015 		}
3016 		break;
3017 	case MPOL_INTERLEAVE:
3018 		/*
3019 		 * Default to online nodes with memory if no nodelist
3020 		 */
3021 		if (!nodelist)
3022 			nodes = node_states[N_MEMORY];
3023 		break;
3024 	case MPOL_LOCAL:
3025 		/*
3026 		 * Don't allow a nodelist;  mpol_new() checks flags
3027 		 */
3028 		if (nodelist)
3029 			goto out;
3030 		break;
3031 	case MPOL_DEFAULT:
3032 		/*
3033 		 * Insist on a empty nodelist
3034 		 */
3035 		if (!nodelist)
3036 			err = 0;
3037 		goto out;
3038 	case MPOL_PREFERRED_MANY:
3039 	case MPOL_BIND:
3040 		/*
3041 		 * Insist on a nodelist
3042 		 */
3043 		if (!nodelist)
3044 			goto out;
3045 	}
3046 
3047 	mode_flags = 0;
3048 	if (flags) {
3049 		/*
3050 		 * Currently, we only support two mutually exclusive
3051 		 * mode flags.
3052 		 */
3053 		if (!strcmp(flags, "static"))
3054 			mode_flags |= MPOL_F_STATIC_NODES;
3055 		else if (!strcmp(flags, "relative"))
3056 			mode_flags |= MPOL_F_RELATIVE_NODES;
3057 		else
3058 			goto out;
3059 	}
3060 
3061 	new = mpol_new(mode, mode_flags, &nodes);
3062 	if (IS_ERR(new))
3063 		goto out;
3064 
3065 	/*
3066 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3067 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3068 	 */
3069 	if (mode != MPOL_PREFERRED) {
3070 		new->nodes = nodes;
3071 	} else if (nodelist) {
3072 		nodes_clear(new->nodes);
3073 		node_set(first_node(nodes), new->nodes);
3074 	} else {
3075 		new->mode = MPOL_LOCAL;
3076 	}
3077 
3078 	/*
3079 	 * Save nodes for contextualization: this will be used to "clone"
3080 	 * the mempolicy in a specific context [cpuset] at a later time.
3081 	 */
3082 	new->w.user_nodemask = nodes;
3083 
3084 	err = 0;
3085 
3086 out:
3087 	/* Restore string for error message */
3088 	if (nodelist)
3089 		*--nodelist = ':';
3090 	if (flags)
3091 		*--flags = '=';
3092 	if (!err)
3093 		*mpol = new;
3094 	return err;
3095 }
3096 #endif /* CONFIG_TMPFS */
3097 
3098 /**
3099  * mpol_to_str - format a mempolicy structure for printing
3100  * @buffer:  to contain formatted mempolicy string
3101  * @maxlen:  length of @buffer
3102  * @pol:  pointer to mempolicy to be formatted
3103  *
3104  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3105  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3106  * longest flag, "relative", and to display at least a few node ids.
3107  */
3108 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3109 {
3110 	char *p = buffer;
3111 	nodemask_t nodes = NODE_MASK_NONE;
3112 	unsigned short mode = MPOL_DEFAULT;
3113 	unsigned short flags = 0;
3114 
3115 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3116 		mode = pol->mode;
3117 		flags = pol->flags;
3118 	}
3119 
3120 	switch (mode) {
3121 	case MPOL_DEFAULT:
3122 	case MPOL_LOCAL:
3123 		break;
3124 	case MPOL_PREFERRED:
3125 	case MPOL_PREFERRED_MANY:
3126 	case MPOL_BIND:
3127 	case MPOL_INTERLEAVE:
3128 		nodes = pol->nodes;
3129 		break;
3130 	default:
3131 		WARN_ON_ONCE(1);
3132 		snprintf(p, maxlen, "unknown");
3133 		return;
3134 	}
3135 
3136 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3137 
3138 	if (flags & MPOL_MODE_FLAGS) {
3139 		p += snprintf(p, buffer + maxlen - p, "=");
3140 
3141 		/*
3142 		 * Currently, the only defined flags are mutually exclusive
3143 		 */
3144 		if (flags & MPOL_F_STATIC_NODES)
3145 			p += snprintf(p, buffer + maxlen - p, "static");
3146 		else if (flags & MPOL_F_RELATIVE_NODES)
3147 			p += snprintf(p, buffer + maxlen - p, "relative");
3148 	}
3149 
3150 	if (!nodes_empty(nodes))
3151 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3152 			       nodemask_pr_args(&nodes));
3153 }
3154