1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * preferred many Try a set of nodes first before normal fallback. This is 35 * similar to preferred without the special case. 36 * 37 * default Allocate on the local node first, or when on a VMA 38 * use the process policy. This is what Linux always did 39 * in a NUMA aware kernel and still does by, ahem, default. 40 * 41 * The process policy is applied for most non interrupt memory allocations 42 * in that process' context. Interrupts ignore the policies and always 43 * try to allocate on the local CPU. The VMA policy is only applied for memory 44 * allocations for a VMA in the VM. 45 * 46 * Currently there are a few corner cases in swapping where the policy 47 * is not applied, but the majority should be handled. When process policy 48 * is used it is not remembered over swap outs/swap ins. 49 * 50 * Only the highest zone in the zone hierarchy gets policied. Allocations 51 * requesting a lower zone just use default policy. This implies that 52 * on systems with highmem kernel lowmem allocation don't get policied. 53 * Same with GFP_DMA allocations. 54 * 55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 56 * all users and remembered even when nobody has memory mapped. 57 */ 58 59 /* Notebook: 60 fix mmap readahead to honour policy and enable policy for any page cache 61 object 62 statistics for bigpages 63 global policy for page cache? currently it uses process policy. Requires 64 first item above. 65 handle mremap for shared memory (currently ignored for the policy) 66 grows down? 67 make bind policy root only? It can trigger oom much faster and the 68 kernel is not always grateful with that. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/mempolicy.h> 74 #include <linux/pagewalk.h> 75 #include <linux/highmem.h> 76 #include <linux/hugetlb.h> 77 #include <linux/kernel.h> 78 #include <linux/sched.h> 79 #include <linux/sched/mm.h> 80 #include <linux/sched/numa_balancing.h> 81 #include <linux/sched/task.h> 82 #include <linux/nodemask.h> 83 #include <linux/cpuset.h> 84 #include <linux/slab.h> 85 #include <linux/string.h> 86 #include <linux/export.h> 87 #include <linux/nsproxy.h> 88 #include <linux/interrupt.h> 89 #include <linux/init.h> 90 #include <linux/compat.h> 91 #include <linux/ptrace.h> 92 #include <linux/swap.h> 93 #include <linux/seq_file.h> 94 #include <linux/proc_fs.h> 95 #include <linux/migrate.h> 96 #include <linux/ksm.h> 97 #include <linux/rmap.h> 98 #include <linux/security.h> 99 #include <linux/syscalls.h> 100 #include <linux/ctype.h> 101 #include <linux/mm_inline.h> 102 #include <linux/mmu_notifier.h> 103 #include <linux/printk.h> 104 #include <linux/swapops.h> 105 106 #include <asm/tlbflush.h> 107 #include <asm/tlb.h> 108 #include <linux/uaccess.h> 109 110 #include "internal.h" 111 112 /* Internal flags */ 113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 115 116 static struct kmem_cache *policy_cache; 117 static struct kmem_cache *sn_cache; 118 119 /* Highest zone. An specific allocation for a zone below that is not 120 policied. */ 121 enum zone_type policy_zone = 0; 122 123 /* 124 * run-time system-wide default policy => local allocation 125 */ 126 static struct mempolicy default_policy = { 127 .refcnt = ATOMIC_INIT(1), /* never free it */ 128 .mode = MPOL_LOCAL, 129 }; 130 131 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 132 133 /** 134 * numa_map_to_online_node - Find closest online node 135 * @node: Node id to start the search 136 * 137 * Lookup the next closest node by distance if @nid is not online. 138 * 139 * Return: this @node if it is online, otherwise the closest node by distance 140 */ 141 int numa_map_to_online_node(int node) 142 { 143 int min_dist = INT_MAX, dist, n, min_node; 144 145 if (node == NUMA_NO_NODE || node_online(node)) 146 return node; 147 148 min_node = node; 149 for_each_online_node(n) { 150 dist = node_distance(node, n); 151 if (dist < min_dist) { 152 min_dist = dist; 153 min_node = n; 154 } 155 } 156 157 return min_node; 158 } 159 EXPORT_SYMBOL_GPL(numa_map_to_online_node); 160 161 struct mempolicy *get_task_policy(struct task_struct *p) 162 { 163 struct mempolicy *pol = p->mempolicy; 164 int node; 165 166 if (pol) 167 return pol; 168 169 node = numa_node_id(); 170 if (node != NUMA_NO_NODE) { 171 pol = &preferred_node_policy[node]; 172 /* preferred_node_policy is not initialised early in boot */ 173 if (pol->mode) 174 return pol; 175 } 176 177 return &default_policy; 178 } 179 180 static const struct mempolicy_operations { 181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 183 } mpol_ops[MPOL_MAX]; 184 185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 186 { 187 return pol->flags & MPOL_MODE_FLAGS; 188 } 189 190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 191 const nodemask_t *rel) 192 { 193 nodemask_t tmp; 194 nodes_fold(tmp, *orig, nodes_weight(*rel)); 195 nodes_onto(*ret, tmp, *rel); 196 } 197 198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 199 { 200 if (nodes_empty(*nodes)) 201 return -EINVAL; 202 pol->nodes = *nodes; 203 return 0; 204 } 205 206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 207 { 208 if (nodes_empty(*nodes)) 209 return -EINVAL; 210 211 nodes_clear(pol->nodes); 212 node_set(first_node(*nodes), pol->nodes); 213 return 0; 214 } 215 216 /* 217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 218 * any, for the new policy. mpol_new() has already validated the nodes 219 * parameter with respect to the policy mode and flags. 220 * 221 * Must be called holding task's alloc_lock to protect task's mems_allowed 222 * and mempolicy. May also be called holding the mmap_lock for write. 223 */ 224 static int mpol_set_nodemask(struct mempolicy *pol, 225 const nodemask_t *nodes, struct nodemask_scratch *nsc) 226 { 227 int ret; 228 229 /* 230 * Default (pol==NULL) resp. local memory policies are not a 231 * subject of any remapping. They also do not need any special 232 * constructor. 233 */ 234 if (!pol || pol->mode == MPOL_LOCAL) 235 return 0; 236 237 /* Check N_MEMORY */ 238 nodes_and(nsc->mask1, 239 cpuset_current_mems_allowed, node_states[N_MEMORY]); 240 241 VM_BUG_ON(!nodes); 242 243 if (pol->flags & MPOL_F_RELATIVE_NODES) 244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 245 else 246 nodes_and(nsc->mask2, *nodes, nsc->mask1); 247 248 if (mpol_store_user_nodemask(pol)) 249 pol->w.user_nodemask = *nodes; 250 else 251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; 252 253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 254 return ret; 255 } 256 257 /* 258 * This function just creates a new policy, does some check and simple 259 * initialization. You must invoke mpol_set_nodemask() to set nodes. 260 */ 261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 262 nodemask_t *nodes) 263 { 264 struct mempolicy *policy; 265 266 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 268 269 if (mode == MPOL_DEFAULT) { 270 if (nodes && !nodes_empty(*nodes)) 271 return ERR_PTR(-EINVAL); 272 return NULL; 273 } 274 VM_BUG_ON(!nodes); 275 276 /* 277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 279 * All other modes require a valid pointer to a non-empty nodemask. 280 */ 281 if (mode == MPOL_PREFERRED) { 282 if (nodes_empty(*nodes)) { 283 if (((flags & MPOL_F_STATIC_NODES) || 284 (flags & MPOL_F_RELATIVE_NODES))) 285 return ERR_PTR(-EINVAL); 286 287 mode = MPOL_LOCAL; 288 } 289 } else if (mode == MPOL_LOCAL) { 290 if (!nodes_empty(*nodes) || 291 (flags & MPOL_F_STATIC_NODES) || 292 (flags & MPOL_F_RELATIVE_NODES)) 293 return ERR_PTR(-EINVAL); 294 } else if (nodes_empty(*nodes)) 295 return ERR_PTR(-EINVAL); 296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 297 if (!policy) 298 return ERR_PTR(-ENOMEM); 299 atomic_set(&policy->refcnt, 1); 300 policy->mode = mode; 301 policy->flags = flags; 302 policy->home_node = NUMA_NO_NODE; 303 304 return policy; 305 } 306 307 /* Slow path of a mpol destructor. */ 308 void __mpol_put(struct mempolicy *p) 309 { 310 if (!atomic_dec_and_test(&p->refcnt)) 311 return; 312 kmem_cache_free(policy_cache, p); 313 } 314 315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 316 { 317 } 318 319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) 324 nodes_and(tmp, pol->w.user_nodemask, *nodes); 325 else if (pol->flags & MPOL_F_RELATIVE_NODES) 326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 327 else { 328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, 329 *nodes); 330 pol->w.cpuset_mems_allowed = *nodes; 331 } 332 333 if (nodes_empty(tmp)) 334 tmp = *nodes; 335 336 pol->nodes = tmp; 337 } 338 339 static void mpol_rebind_preferred(struct mempolicy *pol, 340 const nodemask_t *nodes) 341 { 342 pol->w.cpuset_mems_allowed = *nodes; 343 } 344 345 /* 346 * mpol_rebind_policy - Migrate a policy to a different set of nodes 347 * 348 * Per-vma policies are protected by mmap_lock. Allocations using per-task 349 * policies are protected by task->mems_allowed_seq to prevent a premature 350 * OOM/allocation failure due to parallel nodemask modification. 351 */ 352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 353 { 354 if (!pol || pol->mode == MPOL_LOCAL) 355 return; 356 if (!mpol_store_user_nodemask(pol) && 357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 358 return; 359 360 mpol_ops[pol->mode].rebind(pol, newmask); 361 } 362 363 /* 364 * Wrapper for mpol_rebind_policy() that just requires task 365 * pointer, and updates task mempolicy. 366 * 367 * Called with task's alloc_lock held. 368 */ 369 370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 371 { 372 mpol_rebind_policy(tsk->mempolicy, new); 373 } 374 375 /* 376 * Rebind each vma in mm to new nodemask. 377 * 378 * Call holding a reference to mm. Takes mm->mmap_lock during call. 379 */ 380 381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 382 { 383 struct vm_area_struct *vma; 384 VMA_ITERATOR(vmi, mm, 0); 385 386 mmap_write_lock(mm); 387 for_each_vma(vmi, vma) 388 mpol_rebind_policy(vma->vm_policy, new); 389 mmap_write_unlock(mm); 390 } 391 392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 393 [MPOL_DEFAULT] = { 394 .rebind = mpol_rebind_default, 395 }, 396 [MPOL_INTERLEAVE] = { 397 .create = mpol_new_nodemask, 398 .rebind = mpol_rebind_nodemask, 399 }, 400 [MPOL_PREFERRED] = { 401 .create = mpol_new_preferred, 402 .rebind = mpol_rebind_preferred, 403 }, 404 [MPOL_BIND] = { 405 .create = mpol_new_nodemask, 406 .rebind = mpol_rebind_nodemask, 407 }, 408 [MPOL_LOCAL] = { 409 .rebind = mpol_rebind_default, 410 }, 411 [MPOL_PREFERRED_MANY] = { 412 .create = mpol_new_nodemask, 413 .rebind = mpol_rebind_preferred, 414 }, 415 }; 416 417 static int migrate_page_add(struct page *page, struct list_head *pagelist, 418 unsigned long flags); 419 420 struct queue_pages { 421 struct list_head *pagelist; 422 unsigned long flags; 423 nodemask_t *nmask; 424 unsigned long start; 425 unsigned long end; 426 struct vm_area_struct *first; 427 }; 428 429 /* 430 * Check if the page's nid is in qp->nmask. 431 * 432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 433 * in the invert of qp->nmask. 434 */ 435 static inline bool queue_pages_required(struct page *page, 436 struct queue_pages *qp) 437 { 438 int nid = page_to_nid(page); 439 unsigned long flags = qp->flags; 440 441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 442 } 443 444 /* 445 * queue_pages_pmd() has three possible return values: 446 * 0 - pages are placed on the right node or queued successfully, or 447 * special page is met, i.e. huge zero page. 448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 449 * specified. 450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 451 * existing page was already on a node that does not follow the 452 * policy. 453 */ 454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 455 unsigned long end, struct mm_walk *walk) 456 __releases(ptl) 457 { 458 int ret = 0; 459 struct page *page; 460 struct queue_pages *qp = walk->private; 461 unsigned long flags; 462 463 if (unlikely(is_pmd_migration_entry(*pmd))) { 464 ret = -EIO; 465 goto unlock; 466 } 467 page = pmd_page(*pmd); 468 if (is_huge_zero_page(page)) { 469 walk->action = ACTION_CONTINUE; 470 goto unlock; 471 } 472 if (!queue_pages_required(page, qp)) 473 goto unlock; 474 475 flags = qp->flags; 476 /* go to thp migration */ 477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 478 if (!vma_migratable(walk->vma) || 479 migrate_page_add(page, qp->pagelist, flags)) { 480 ret = 1; 481 goto unlock; 482 } 483 } else 484 ret = -EIO; 485 unlock: 486 spin_unlock(ptl); 487 return ret; 488 } 489 490 /* 491 * Scan through pages checking if pages follow certain conditions, 492 * and move them to the pagelist if they do. 493 * 494 * queue_pages_pte_range() has three possible return values: 495 * 0 - pages are placed on the right node or queued successfully, or 496 * special page is met, i.e. zero page. 497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 498 * specified. 499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 500 * on a node that does not follow the policy. 501 */ 502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 503 unsigned long end, struct mm_walk *walk) 504 { 505 struct vm_area_struct *vma = walk->vma; 506 struct page *page; 507 struct queue_pages *qp = walk->private; 508 unsigned long flags = qp->flags; 509 bool has_unmovable = false; 510 pte_t *pte, *mapped_pte; 511 spinlock_t *ptl; 512 513 ptl = pmd_trans_huge_lock(pmd, vma); 514 if (ptl) 515 return queue_pages_pmd(pmd, ptl, addr, end, walk); 516 517 if (pmd_trans_unstable(pmd)) 518 return 0; 519 520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 521 for (; addr != end; pte++, addr += PAGE_SIZE) { 522 if (!pte_present(*pte)) 523 continue; 524 page = vm_normal_page(vma, addr, *pte); 525 if (!page || is_zone_device_page(page)) 526 continue; 527 /* 528 * vm_normal_page() filters out zero pages, but there might 529 * still be PageReserved pages to skip, perhaps in a VDSO. 530 */ 531 if (PageReserved(page)) 532 continue; 533 if (!queue_pages_required(page, qp)) 534 continue; 535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 536 /* MPOL_MF_STRICT must be specified if we get here */ 537 if (!vma_migratable(vma)) { 538 has_unmovable = true; 539 break; 540 } 541 542 /* 543 * Do not abort immediately since there may be 544 * temporary off LRU pages in the range. Still 545 * need migrate other LRU pages. 546 */ 547 if (migrate_page_add(page, qp->pagelist, flags)) 548 has_unmovable = true; 549 } else 550 break; 551 } 552 pte_unmap_unlock(mapped_pte, ptl); 553 cond_resched(); 554 555 if (has_unmovable) 556 return 1; 557 558 return addr != end ? -EIO : 0; 559 } 560 561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 562 unsigned long addr, unsigned long end, 563 struct mm_walk *walk) 564 { 565 int ret = 0; 566 #ifdef CONFIG_HUGETLB_PAGE 567 struct queue_pages *qp = walk->private; 568 unsigned long flags = (qp->flags & MPOL_MF_VALID); 569 struct page *page; 570 spinlock_t *ptl; 571 pte_t entry; 572 573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 574 entry = huge_ptep_get(pte); 575 if (!pte_present(entry)) 576 goto unlock; 577 page = pte_page(entry); 578 if (!queue_pages_required(page, qp)) 579 goto unlock; 580 581 if (flags == MPOL_MF_STRICT) { 582 /* 583 * STRICT alone means only detecting misplaced page and no 584 * need to further check other vma. 585 */ 586 ret = -EIO; 587 goto unlock; 588 } 589 590 if (!vma_migratable(walk->vma)) { 591 /* 592 * Must be STRICT with MOVE*, otherwise .test_walk() have 593 * stopped walking current vma. 594 * Detecting misplaced page but allow migrating pages which 595 * have been queued. 596 */ 597 ret = 1; 598 goto unlock; 599 } 600 601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 602 if (flags & (MPOL_MF_MOVE_ALL) || 603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 604 if (isolate_hugetlb(page, qp->pagelist) && 605 (flags & MPOL_MF_STRICT)) 606 /* 607 * Failed to isolate page but allow migrating pages 608 * which have been queued. 609 */ 610 ret = 1; 611 } 612 unlock: 613 spin_unlock(ptl); 614 #else 615 BUG(); 616 #endif 617 return ret; 618 } 619 620 #ifdef CONFIG_NUMA_BALANCING 621 /* 622 * This is used to mark a range of virtual addresses to be inaccessible. 623 * These are later cleared by a NUMA hinting fault. Depending on these 624 * faults, pages may be migrated for better NUMA placement. 625 * 626 * This is assuming that NUMA faults are handled using PROT_NONE. If 627 * an architecture makes a different choice, it will need further 628 * changes to the core. 629 */ 630 unsigned long change_prot_numa(struct vm_area_struct *vma, 631 unsigned long addr, unsigned long end) 632 { 633 struct mmu_gather tlb; 634 int nr_updated; 635 636 tlb_gather_mmu(&tlb, vma->vm_mm); 637 638 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE, 639 MM_CP_PROT_NUMA); 640 if (nr_updated) 641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 642 643 tlb_finish_mmu(&tlb); 644 645 return nr_updated; 646 } 647 #else 648 static unsigned long change_prot_numa(struct vm_area_struct *vma, 649 unsigned long addr, unsigned long end) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_NUMA_BALANCING */ 654 655 static int queue_pages_test_walk(unsigned long start, unsigned long end, 656 struct mm_walk *walk) 657 { 658 struct vm_area_struct *next, *vma = walk->vma; 659 struct queue_pages *qp = walk->private; 660 unsigned long endvma = vma->vm_end; 661 unsigned long flags = qp->flags; 662 663 /* range check first */ 664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); 665 666 if (!qp->first) { 667 qp->first = vma; 668 if (!(flags & MPOL_MF_DISCONTIG_OK) && 669 (qp->start < vma->vm_start)) 670 /* hole at head side of range */ 671 return -EFAULT; 672 } 673 next = find_vma(vma->vm_mm, vma->vm_end); 674 if (!(flags & MPOL_MF_DISCONTIG_OK) && 675 ((vma->vm_end < qp->end) && 676 (!next || vma->vm_end < next->vm_start))) 677 /* hole at middle or tail of range */ 678 return -EFAULT; 679 680 /* 681 * Need check MPOL_MF_STRICT to return -EIO if possible 682 * regardless of vma_migratable 683 */ 684 if (!vma_migratable(vma) && 685 !(flags & MPOL_MF_STRICT)) 686 return 1; 687 688 if (endvma > end) 689 endvma = end; 690 691 if (flags & MPOL_MF_LAZY) { 692 /* Similar to task_numa_work, skip inaccessible VMAs */ 693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 694 !(vma->vm_flags & VM_MIXEDMAP)) 695 change_prot_numa(vma, start, endvma); 696 return 1; 697 } 698 699 /* queue pages from current vma */ 700 if (flags & MPOL_MF_VALID) 701 return 0; 702 return 1; 703 } 704 705 static const struct mm_walk_ops queue_pages_walk_ops = { 706 .hugetlb_entry = queue_pages_hugetlb, 707 .pmd_entry = queue_pages_pte_range, 708 .test_walk = queue_pages_test_walk, 709 }; 710 711 /* 712 * Walk through page tables and collect pages to be migrated. 713 * 714 * If pages found in a given range are on a set of nodes (determined by 715 * @nodes and @flags,) it's isolated and queued to the pagelist which is 716 * passed via @private. 717 * 718 * queue_pages_range() has three possible return values: 719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 720 * specified. 721 * 0 - queue pages successfully or no misplaced page. 722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 723 * memory range specified by nodemask and maxnode points outside 724 * your accessible address space (-EFAULT) 725 */ 726 static int 727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 728 nodemask_t *nodes, unsigned long flags, 729 struct list_head *pagelist) 730 { 731 int err; 732 struct queue_pages qp = { 733 .pagelist = pagelist, 734 .flags = flags, 735 .nmask = nodes, 736 .start = start, 737 .end = end, 738 .first = NULL, 739 }; 740 741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 742 743 if (!qp.first) 744 /* whole range in hole */ 745 err = -EFAULT; 746 747 return err; 748 } 749 750 /* 751 * Apply policy to a single VMA 752 * This must be called with the mmap_lock held for writing. 753 */ 754 static int vma_replace_policy(struct vm_area_struct *vma, 755 struct mempolicy *pol) 756 { 757 int err; 758 struct mempolicy *old; 759 struct mempolicy *new; 760 761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 762 vma->vm_start, vma->vm_end, vma->vm_pgoff, 763 vma->vm_ops, vma->vm_file, 764 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 765 766 new = mpol_dup(pol); 767 if (IS_ERR(new)) 768 return PTR_ERR(new); 769 770 if (vma->vm_ops && vma->vm_ops->set_policy) { 771 err = vma->vm_ops->set_policy(vma, new); 772 if (err) 773 goto err_out; 774 } 775 776 old = vma->vm_policy; 777 vma->vm_policy = new; /* protected by mmap_lock */ 778 mpol_put(old); 779 780 return 0; 781 err_out: 782 mpol_put(new); 783 return err; 784 } 785 786 /* Step 2: apply policy to a range and do splits. */ 787 static int mbind_range(struct mm_struct *mm, unsigned long start, 788 unsigned long end, struct mempolicy *new_pol) 789 { 790 MA_STATE(mas, &mm->mm_mt, start, start); 791 struct vm_area_struct *prev; 792 struct vm_area_struct *vma; 793 int err = 0; 794 pgoff_t pgoff; 795 796 prev = mas_prev(&mas, 0); 797 if (unlikely(!prev)) 798 mas_set(&mas, start); 799 800 vma = mas_find(&mas, end - 1); 801 if (WARN_ON(!vma)) 802 return 0; 803 804 if (start > vma->vm_start) 805 prev = vma; 806 807 for (; vma; vma = mas_next(&mas, end - 1)) { 808 unsigned long vmstart = max(start, vma->vm_start); 809 unsigned long vmend = min(end, vma->vm_end); 810 811 if (mpol_equal(vma_policy(vma), new_pol)) 812 goto next; 813 814 pgoff = vma->vm_pgoff + 815 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 816 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 817 vma->anon_vma, vma->vm_file, pgoff, 818 new_pol, vma->vm_userfaultfd_ctx, 819 anon_vma_name(vma)); 820 if (prev) { 821 /* vma_merge() invalidated the mas */ 822 mas_pause(&mas); 823 vma = prev; 824 goto replace; 825 } 826 if (vma->vm_start != vmstart) { 827 err = split_vma(vma->vm_mm, vma, vmstart, 1); 828 if (err) 829 goto out; 830 /* split_vma() invalidated the mas */ 831 mas_pause(&mas); 832 } 833 if (vma->vm_end != vmend) { 834 err = split_vma(vma->vm_mm, vma, vmend, 0); 835 if (err) 836 goto out; 837 /* split_vma() invalidated the mas */ 838 mas_pause(&mas); 839 } 840 replace: 841 err = vma_replace_policy(vma, new_pol); 842 if (err) 843 goto out; 844 next: 845 prev = vma; 846 } 847 848 out: 849 return err; 850 } 851 852 /* Set the process memory policy */ 853 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 854 nodemask_t *nodes) 855 { 856 struct mempolicy *new, *old; 857 NODEMASK_SCRATCH(scratch); 858 int ret; 859 860 if (!scratch) 861 return -ENOMEM; 862 863 new = mpol_new(mode, flags, nodes); 864 if (IS_ERR(new)) { 865 ret = PTR_ERR(new); 866 goto out; 867 } 868 869 task_lock(current); 870 ret = mpol_set_nodemask(new, nodes, scratch); 871 if (ret) { 872 task_unlock(current); 873 mpol_put(new); 874 goto out; 875 } 876 877 old = current->mempolicy; 878 current->mempolicy = new; 879 if (new && new->mode == MPOL_INTERLEAVE) 880 current->il_prev = MAX_NUMNODES-1; 881 task_unlock(current); 882 mpol_put(old); 883 ret = 0; 884 out: 885 NODEMASK_SCRATCH_FREE(scratch); 886 return ret; 887 } 888 889 /* 890 * Return nodemask for policy for get_mempolicy() query 891 * 892 * Called with task's alloc_lock held 893 */ 894 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 895 { 896 nodes_clear(*nodes); 897 if (p == &default_policy) 898 return; 899 900 switch (p->mode) { 901 case MPOL_BIND: 902 case MPOL_INTERLEAVE: 903 case MPOL_PREFERRED: 904 case MPOL_PREFERRED_MANY: 905 *nodes = p->nodes; 906 break; 907 case MPOL_LOCAL: 908 /* return empty node mask for local allocation */ 909 break; 910 default: 911 BUG(); 912 } 913 } 914 915 static int lookup_node(struct mm_struct *mm, unsigned long addr) 916 { 917 struct page *p = NULL; 918 int ret; 919 920 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p); 921 if (ret > 0) { 922 ret = page_to_nid(p); 923 put_page(p); 924 } 925 return ret; 926 } 927 928 /* Retrieve NUMA policy */ 929 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 930 unsigned long addr, unsigned long flags) 931 { 932 int err; 933 struct mm_struct *mm = current->mm; 934 struct vm_area_struct *vma = NULL; 935 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 936 937 if (flags & 938 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 939 return -EINVAL; 940 941 if (flags & MPOL_F_MEMS_ALLOWED) { 942 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 943 return -EINVAL; 944 *policy = 0; /* just so it's initialized */ 945 task_lock(current); 946 *nmask = cpuset_current_mems_allowed; 947 task_unlock(current); 948 return 0; 949 } 950 951 if (flags & MPOL_F_ADDR) { 952 /* 953 * Do NOT fall back to task policy if the 954 * vma/shared policy at addr is NULL. We 955 * want to return MPOL_DEFAULT in this case. 956 */ 957 mmap_read_lock(mm); 958 vma = vma_lookup(mm, addr); 959 if (!vma) { 960 mmap_read_unlock(mm); 961 return -EFAULT; 962 } 963 if (vma->vm_ops && vma->vm_ops->get_policy) 964 pol = vma->vm_ops->get_policy(vma, addr); 965 else 966 pol = vma->vm_policy; 967 } else if (addr) 968 return -EINVAL; 969 970 if (!pol) 971 pol = &default_policy; /* indicates default behavior */ 972 973 if (flags & MPOL_F_NODE) { 974 if (flags & MPOL_F_ADDR) { 975 /* 976 * Take a refcount on the mpol, because we are about to 977 * drop the mmap_lock, after which only "pol" remains 978 * valid, "vma" is stale. 979 */ 980 pol_refcount = pol; 981 vma = NULL; 982 mpol_get(pol); 983 mmap_read_unlock(mm); 984 err = lookup_node(mm, addr); 985 if (err < 0) 986 goto out; 987 *policy = err; 988 } else if (pol == current->mempolicy && 989 pol->mode == MPOL_INTERLEAVE) { 990 *policy = next_node_in(current->il_prev, pol->nodes); 991 } else { 992 err = -EINVAL; 993 goto out; 994 } 995 } else { 996 *policy = pol == &default_policy ? MPOL_DEFAULT : 997 pol->mode; 998 /* 999 * Internal mempolicy flags must be masked off before exposing 1000 * the policy to userspace. 1001 */ 1002 *policy |= (pol->flags & MPOL_MODE_FLAGS); 1003 } 1004 1005 err = 0; 1006 if (nmask) { 1007 if (mpol_store_user_nodemask(pol)) { 1008 *nmask = pol->w.user_nodemask; 1009 } else { 1010 task_lock(current); 1011 get_policy_nodemask(pol, nmask); 1012 task_unlock(current); 1013 } 1014 } 1015 1016 out: 1017 mpol_cond_put(pol); 1018 if (vma) 1019 mmap_read_unlock(mm); 1020 if (pol_refcount) 1021 mpol_put(pol_refcount); 1022 return err; 1023 } 1024 1025 #ifdef CONFIG_MIGRATION 1026 /* 1027 * page migration, thp tail pages can be passed. 1028 */ 1029 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1030 unsigned long flags) 1031 { 1032 struct page *head = compound_head(page); 1033 /* 1034 * Avoid migrating a page that is shared with others. 1035 */ 1036 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1037 if (!isolate_lru_page(head)) { 1038 list_add_tail(&head->lru, pagelist); 1039 mod_node_page_state(page_pgdat(head), 1040 NR_ISOLATED_ANON + page_is_file_lru(head), 1041 thp_nr_pages(head)); 1042 } else if (flags & MPOL_MF_STRICT) { 1043 /* 1044 * Non-movable page may reach here. And, there may be 1045 * temporary off LRU pages or non-LRU movable pages. 1046 * Treat them as unmovable pages since they can't be 1047 * isolated, so they can't be moved at the moment. It 1048 * should return -EIO for this case too. 1049 */ 1050 return -EIO; 1051 } 1052 } 1053 1054 return 0; 1055 } 1056 1057 /* 1058 * Migrate pages from one node to a target node. 1059 * Returns error or the number of pages not migrated. 1060 */ 1061 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1062 int flags) 1063 { 1064 nodemask_t nmask; 1065 struct vm_area_struct *vma; 1066 LIST_HEAD(pagelist); 1067 int err = 0; 1068 struct migration_target_control mtc = { 1069 .nid = dest, 1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1071 }; 1072 1073 nodes_clear(nmask); 1074 node_set(source, nmask); 1075 1076 /* 1077 * This does not "check" the range but isolates all pages that 1078 * need migration. Between passing in the full user address 1079 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1080 */ 1081 vma = find_vma(mm, 0); 1082 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1083 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask, 1084 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1085 1086 if (!list_empty(&pagelist)) { 1087 err = migrate_pages(&pagelist, alloc_migration_target, NULL, 1088 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1089 if (err) 1090 putback_movable_pages(&pagelist); 1091 } 1092 1093 return err; 1094 } 1095 1096 /* 1097 * Move pages between the two nodesets so as to preserve the physical 1098 * layout as much as possible. 1099 * 1100 * Returns the number of page that could not be moved. 1101 */ 1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1103 const nodemask_t *to, int flags) 1104 { 1105 int busy = 0; 1106 int err = 0; 1107 nodemask_t tmp; 1108 1109 lru_cache_disable(); 1110 1111 mmap_read_lock(mm); 1112 1113 /* 1114 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1115 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1116 * bit in 'tmp', and return that <source, dest> pair for migration. 1117 * The pair of nodemasks 'to' and 'from' define the map. 1118 * 1119 * If no pair of bits is found that way, fallback to picking some 1120 * pair of 'source' and 'dest' bits that are not the same. If the 1121 * 'source' and 'dest' bits are the same, this represents a node 1122 * that will be migrating to itself, so no pages need move. 1123 * 1124 * If no bits are left in 'tmp', or if all remaining bits left 1125 * in 'tmp' correspond to the same bit in 'to', return false 1126 * (nothing left to migrate). 1127 * 1128 * This lets us pick a pair of nodes to migrate between, such that 1129 * if possible the dest node is not already occupied by some other 1130 * source node, minimizing the risk of overloading the memory on a 1131 * node that would happen if we migrated incoming memory to a node 1132 * before migrating outgoing memory source that same node. 1133 * 1134 * A single scan of tmp is sufficient. As we go, we remember the 1135 * most recent <s, d> pair that moved (s != d). If we find a pair 1136 * that not only moved, but what's better, moved to an empty slot 1137 * (d is not set in tmp), then we break out then, with that pair. 1138 * Otherwise when we finish scanning from_tmp, we at least have the 1139 * most recent <s, d> pair that moved. If we get all the way through 1140 * the scan of tmp without finding any node that moved, much less 1141 * moved to an empty node, then there is nothing left worth migrating. 1142 */ 1143 1144 tmp = *from; 1145 while (!nodes_empty(tmp)) { 1146 int s, d; 1147 int source = NUMA_NO_NODE; 1148 int dest = 0; 1149 1150 for_each_node_mask(s, tmp) { 1151 1152 /* 1153 * do_migrate_pages() tries to maintain the relative 1154 * node relationship of the pages established between 1155 * threads and memory areas. 1156 * 1157 * However if the number of source nodes is not equal to 1158 * the number of destination nodes we can not preserve 1159 * this node relative relationship. In that case, skip 1160 * copying memory from a node that is in the destination 1161 * mask. 1162 * 1163 * Example: [2,3,4] -> [3,4,5] moves everything. 1164 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1165 */ 1166 1167 if ((nodes_weight(*from) != nodes_weight(*to)) && 1168 (node_isset(s, *to))) 1169 continue; 1170 1171 d = node_remap(s, *from, *to); 1172 if (s == d) 1173 continue; 1174 1175 source = s; /* Node moved. Memorize */ 1176 dest = d; 1177 1178 /* dest not in remaining from nodes? */ 1179 if (!node_isset(dest, tmp)) 1180 break; 1181 } 1182 if (source == NUMA_NO_NODE) 1183 break; 1184 1185 node_clear(source, tmp); 1186 err = migrate_to_node(mm, source, dest, flags); 1187 if (err > 0) 1188 busy += err; 1189 if (err < 0) 1190 break; 1191 } 1192 mmap_read_unlock(mm); 1193 1194 lru_cache_enable(); 1195 if (err < 0) 1196 return err; 1197 return busy; 1198 1199 } 1200 1201 /* 1202 * Allocate a new page for page migration based on vma policy. 1203 * Start by assuming the page is mapped by the same vma as contains @start. 1204 * Search forward from there, if not. N.B., this assumes that the 1205 * list of pages handed to migrate_pages()--which is how we get here-- 1206 * is in virtual address order. 1207 */ 1208 static struct page *new_page(struct page *page, unsigned long start) 1209 { 1210 struct folio *dst, *src = page_folio(page); 1211 struct vm_area_struct *vma; 1212 unsigned long address; 1213 VMA_ITERATOR(vmi, current->mm, start); 1214 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL; 1215 1216 for_each_vma(vmi, vma) { 1217 address = page_address_in_vma(page, vma); 1218 if (address != -EFAULT) 1219 break; 1220 } 1221 1222 if (folio_test_hugetlb(src)) 1223 return alloc_huge_page_vma(page_hstate(&src->page), 1224 vma, address); 1225 1226 if (folio_test_large(src)) 1227 gfp = GFP_TRANSHUGE; 1228 1229 /* 1230 * if !vma, vma_alloc_folio() will use task or system default policy 1231 */ 1232 dst = vma_alloc_folio(gfp, folio_order(src), vma, address, 1233 folio_test_large(src)); 1234 return &dst->page; 1235 } 1236 #else 1237 1238 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1239 unsigned long flags) 1240 { 1241 return -EIO; 1242 } 1243 1244 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1245 const nodemask_t *to, int flags) 1246 { 1247 return -ENOSYS; 1248 } 1249 1250 static struct page *new_page(struct page *page, unsigned long start) 1251 { 1252 return NULL; 1253 } 1254 #endif 1255 1256 static long do_mbind(unsigned long start, unsigned long len, 1257 unsigned short mode, unsigned short mode_flags, 1258 nodemask_t *nmask, unsigned long flags) 1259 { 1260 struct mm_struct *mm = current->mm; 1261 struct mempolicy *new; 1262 unsigned long end; 1263 int err; 1264 int ret; 1265 LIST_HEAD(pagelist); 1266 1267 if (flags & ~(unsigned long)MPOL_MF_VALID) 1268 return -EINVAL; 1269 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1270 return -EPERM; 1271 1272 if (start & ~PAGE_MASK) 1273 return -EINVAL; 1274 1275 if (mode == MPOL_DEFAULT) 1276 flags &= ~MPOL_MF_STRICT; 1277 1278 len = PAGE_ALIGN(len); 1279 end = start + len; 1280 1281 if (end < start) 1282 return -EINVAL; 1283 if (end == start) 1284 return 0; 1285 1286 new = mpol_new(mode, mode_flags, nmask); 1287 if (IS_ERR(new)) 1288 return PTR_ERR(new); 1289 1290 if (flags & MPOL_MF_LAZY) 1291 new->flags |= MPOL_F_MOF; 1292 1293 /* 1294 * If we are using the default policy then operation 1295 * on discontinuous address spaces is okay after all 1296 */ 1297 if (!new) 1298 flags |= MPOL_MF_DISCONTIG_OK; 1299 1300 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1301 start, start + len, mode, mode_flags, 1302 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1303 1304 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1305 1306 lru_cache_disable(); 1307 } 1308 { 1309 NODEMASK_SCRATCH(scratch); 1310 if (scratch) { 1311 mmap_write_lock(mm); 1312 err = mpol_set_nodemask(new, nmask, scratch); 1313 if (err) 1314 mmap_write_unlock(mm); 1315 } else 1316 err = -ENOMEM; 1317 NODEMASK_SCRATCH_FREE(scratch); 1318 } 1319 if (err) 1320 goto mpol_out; 1321 1322 ret = queue_pages_range(mm, start, end, nmask, 1323 flags | MPOL_MF_INVERT, &pagelist); 1324 1325 if (ret < 0) { 1326 err = ret; 1327 goto up_out; 1328 } 1329 1330 err = mbind_range(mm, start, end, new); 1331 1332 if (!err) { 1333 int nr_failed = 0; 1334 1335 if (!list_empty(&pagelist)) { 1336 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1337 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1338 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); 1339 if (nr_failed) 1340 putback_movable_pages(&pagelist); 1341 } 1342 1343 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1344 err = -EIO; 1345 } else { 1346 up_out: 1347 if (!list_empty(&pagelist)) 1348 putback_movable_pages(&pagelist); 1349 } 1350 1351 mmap_write_unlock(mm); 1352 mpol_out: 1353 mpol_put(new); 1354 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) 1355 lru_cache_enable(); 1356 return err; 1357 } 1358 1359 /* 1360 * User space interface with variable sized bitmaps for nodelists. 1361 */ 1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, 1363 unsigned long maxnode) 1364 { 1365 unsigned long nlongs = BITS_TO_LONGS(maxnode); 1366 int ret; 1367 1368 if (in_compat_syscall()) 1369 ret = compat_get_bitmap(mask, 1370 (const compat_ulong_t __user *)nmask, 1371 maxnode); 1372 else 1373 ret = copy_from_user(mask, nmask, 1374 nlongs * sizeof(unsigned long)); 1375 1376 if (ret) 1377 return -EFAULT; 1378 1379 if (maxnode % BITS_PER_LONG) 1380 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; 1381 1382 return 0; 1383 } 1384 1385 /* Copy a node mask from user space. */ 1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1387 unsigned long maxnode) 1388 { 1389 --maxnode; 1390 nodes_clear(*nodes); 1391 if (maxnode == 0 || !nmask) 1392 return 0; 1393 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1394 return -EINVAL; 1395 1396 /* 1397 * When the user specified more nodes than supported just check 1398 * if the non supported part is all zero, one word at a time, 1399 * starting at the end. 1400 */ 1401 while (maxnode > MAX_NUMNODES) { 1402 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); 1403 unsigned long t; 1404 1405 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) 1406 return -EFAULT; 1407 1408 if (maxnode - bits >= MAX_NUMNODES) { 1409 maxnode -= bits; 1410 } else { 1411 maxnode = MAX_NUMNODES; 1412 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1413 } 1414 if (t) 1415 return -EINVAL; 1416 } 1417 1418 return get_bitmap(nodes_addr(*nodes), nmask, maxnode); 1419 } 1420 1421 /* Copy a kernel node mask to user space */ 1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1423 nodemask_t *nodes) 1424 { 1425 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1426 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1427 bool compat = in_compat_syscall(); 1428 1429 if (compat) 1430 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); 1431 1432 if (copy > nbytes) { 1433 if (copy > PAGE_SIZE) 1434 return -EINVAL; 1435 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1436 return -EFAULT; 1437 copy = nbytes; 1438 maxnode = nr_node_ids; 1439 } 1440 1441 if (compat) 1442 return compat_put_bitmap((compat_ulong_t __user *)mask, 1443 nodes_addr(*nodes), maxnode); 1444 1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1446 } 1447 1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ 1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) 1450 { 1451 *flags = *mode & MPOL_MODE_FLAGS; 1452 *mode &= ~MPOL_MODE_FLAGS; 1453 1454 if ((unsigned int)(*mode) >= MPOL_MAX) 1455 return -EINVAL; 1456 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) 1457 return -EINVAL; 1458 if (*flags & MPOL_F_NUMA_BALANCING) { 1459 if (*mode != MPOL_BIND) 1460 return -EINVAL; 1461 *flags |= (MPOL_F_MOF | MPOL_F_MORON); 1462 } 1463 return 0; 1464 } 1465 1466 static long kernel_mbind(unsigned long start, unsigned long len, 1467 unsigned long mode, const unsigned long __user *nmask, 1468 unsigned long maxnode, unsigned int flags) 1469 { 1470 unsigned short mode_flags; 1471 nodemask_t nodes; 1472 int lmode = mode; 1473 int err; 1474 1475 start = untagged_addr(start); 1476 err = sanitize_mpol_flags(&lmode, &mode_flags); 1477 if (err) 1478 return err; 1479 1480 err = get_nodes(&nodes, nmask, maxnode); 1481 if (err) 1482 return err; 1483 1484 return do_mbind(start, len, lmode, mode_flags, &nodes, flags); 1485 } 1486 1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len, 1488 unsigned long, home_node, unsigned long, flags) 1489 { 1490 struct mm_struct *mm = current->mm; 1491 struct vm_area_struct *vma; 1492 struct mempolicy *new; 1493 unsigned long vmstart; 1494 unsigned long vmend; 1495 unsigned long end; 1496 int err = -ENOENT; 1497 VMA_ITERATOR(vmi, mm, start); 1498 1499 start = untagged_addr(start); 1500 if (start & ~PAGE_MASK) 1501 return -EINVAL; 1502 /* 1503 * flags is used for future extension if any. 1504 */ 1505 if (flags != 0) 1506 return -EINVAL; 1507 1508 /* 1509 * Check home_node is online to avoid accessing uninitialized 1510 * NODE_DATA. 1511 */ 1512 if (home_node >= MAX_NUMNODES || !node_online(home_node)) 1513 return -EINVAL; 1514 1515 len = PAGE_ALIGN(len); 1516 end = start + len; 1517 1518 if (end < start) 1519 return -EINVAL; 1520 if (end == start) 1521 return 0; 1522 mmap_write_lock(mm); 1523 for_each_vma_range(vmi, vma, end) { 1524 vmstart = max(start, vma->vm_start); 1525 vmend = min(end, vma->vm_end); 1526 new = mpol_dup(vma_policy(vma)); 1527 if (IS_ERR(new)) { 1528 err = PTR_ERR(new); 1529 break; 1530 } 1531 /* 1532 * Only update home node if there is an existing vma policy 1533 */ 1534 if (!new) 1535 continue; 1536 1537 /* 1538 * If any vma in the range got policy other than MPOL_BIND 1539 * or MPOL_PREFERRED_MANY we return error. We don't reset 1540 * the home node for vmas we already updated before. 1541 */ 1542 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) { 1543 mpol_put(new); 1544 err = -EOPNOTSUPP; 1545 break; 1546 } 1547 1548 new->home_node = home_node; 1549 err = mbind_range(mm, vmstart, vmend, new); 1550 mpol_put(new); 1551 if (err) 1552 break; 1553 } 1554 mmap_write_unlock(mm); 1555 return err; 1556 } 1557 1558 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1559 unsigned long, mode, const unsigned long __user *, nmask, 1560 unsigned long, maxnode, unsigned int, flags) 1561 { 1562 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1563 } 1564 1565 /* Set the process memory policy */ 1566 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1567 unsigned long maxnode) 1568 { 1569 unsigned short mode_flags; 1570 nodemask_t nodes; 1571 int lmode = mode; 1572 int err; 1573 1574 err = sanitize_mpol_flags(&lmode, &mode_flags); 1575 if (err) 1576 return err; 1577 1578 err = get_nodes(&nodes, nmask, maxnode); 1579 if (err) 1580 return err; 1581 1582 return do_set_mempolicy(lmode, mode_flags, &nodes); 1583 } 1584 1585 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1586 unsigned long, maxnode) 1587 { 1588 return kernel_set_mempolicy(mode, nmask, maxnode); 1589 } 1590 1591 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1592 const unsigned long __user *old_nodes, 1593 const unsigned long __user *new_nodes) 1594 { 1595 struct mm_struct *mm = NULL; 1596 struct task_struct *task; 1597 nodemask_t task_nodes; 1598 int err; 1599 nodemask_t *old; 1600 nodemask_t *new; 1601 NODEMASK_SCRATCH(scratch); 1602 1603 if (!scratch) 1604 return -ENOMEM; 1605 1606 old = &scratch->mask1; 1607 new = &scratch->mask2; 1608 1609 err = get_nodes(old, old_nodes, maxnode); 1610 if (err) 1611 goto out; 1612 1613 err = get_nodes(new, new_nodes, maxnode); 1614 if (err) 1615 goto out; 1616 1617 /* Find the mm_struct */ 1618 rcu_read_lock(); 1619 task = pid ? find_task_by_vpid(pid) : current; 1620 if (!task) { 1621 rcu_read_unlock(); 1622 err = -ESRCH; 1623 goto out; 1624 } 1625 get_task_struct(task); 1626 1627 err = -EINVAL; 1628 1629 /* 1630 * Check if this process has the right to modify the specified process. 1631 * Use the regular "ptrace_may_access()" checks. 1632 */ 1633 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1634 rcu_read_unlock(); 1635 err = -EPERM; 1636 goto out_put; 1637 } 1638 rcu_read_unlock(); 1639 1640 task_nodes = cpuset_mems_allowed(task); 1641 /* Is the user allowed to access the target nodes? */ 1642 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1643 err = -EPERM; 1644 goto out_put; 1645 } 1646 1647 task_nodes = cpuset_mems_allowed(current); 1648 nodes_and(*new, *new, task_nodes); 1649 if (nodes_empty(*new)) 1650 goto out_put; 1651 1652 err = security_task_movememory(task); 1653 if (err) 1654 goto out_put; 1655 1656 mm = get_task_mm(task); 1657 put_task_struct(task); 1658 1659 if (!mm) { 1660 err = -EINVAL; 1661 goto out; 1662 } 1663 1664 err = do_migrate_pages(mm, old, new, 1665 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1666 1667 mmput(mm); 1668 out: 1669 NODEMASK_SCRATCH_FREE(scratch); 1670 1671 return err; 1672 1673 out_put: 1674 put_task_struct(task); 1675 goto out; 1676 1677 } 1678 1679 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1680 const unsigned long __user *, old_nodes, 1681 const unsigned long __user *, new_nodes) 1682 { 1683 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1684 } 1685 1686 1687 /* Retrieve NUMA policy */ 1688 static int kernel_get_mempolicy(int __user *policy, 1689 unsigned long __user *nmask, 1690 unsigned long maxnode, 1691 unsigned long addr, 1692 unsigned long flags) 1693 { 1694 int err; 1695 int pval; 1696 nodemask_t nodes; 1697 1698 if (nmask != NULL && maxnode < nr_node_ids) 1699 return -EINVAL; 1700 1701 addr = untagged_addr(addr); 1702 1703 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1704 1705 if (err) 1706 return err; 1707 1708 if (policy && put_user(pval, policy)) 1709 return -EFAULT; 1710 1711 if (nmask) 1712 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1713 1714 return err; 1715 } 1716 1717 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1718 unsigned long __user *, nmask, unsigned long, maxnode, 1719 unsigned long, addr, unsigned long, flags) 1720 { 1721 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1722 } 1723 1724 bool vma_migratable(struct vm_area_struct *vma) 1725 { 1726 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1727 return false; 1728 1729 /* 1730 * DAX device mappings require predictable access latency, so avoid 1731 * incurring periodic faults. 1732 */ 1733 if (vma_is_dax(vma)) 1734 return false; 1735 1736 if (is_vm_hugetlb_page(vma) && 1737 !hugepage_migration_supported(hstate_vma(vma))) 1738 return false; 1739 1740 /* 1741 * Migration allocates pages in the highest zone. If we cannot 1742 * do so then migration (at least from node to node) is not 1743 * possible. 1744 */ 1745 if (vma->vm_file && 1746 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1747 < policy_zone) 1748 return false; 1749 return true; 1750 } 1751 1752 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1753 unsigned long addr) 1754 { 1755 struct mempolicy *pol = NULL; 1756 1757 if (vma) { 1758 if (vma->vm_ops && vma->vm_ops->get_policy) { 1759 pol = vma->vm_ops->get_policy(vma, addr); 1760 } else if (vma->vm_policy) { 1761 pol = vma->vm_policy; 1762 1763 /* 1764 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1765 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1766 * count on these policies which will be dropped by 1767 * mpol_cond_put() later 1768 */ 1769 if (mpol_needs_cond_ref(pol)) 1770 mpol_get(pol); 1771 } 1772 } 1773 1774 return pol; 1775 } 1776 1777 /* 1778 * get_vma_policy(@vma, @addr) 1779 * @vma: virtual memory area whose policy is sought 1780 * @addr: address in @vma for shared policy lookup 1781 * 1782 * Returns effective policy for a VMA at specified address. 1783 * Falls back to current->mempolicy or system default policy, as necessary. 1784 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1785 * count--added by the get_policy() vm_op, as appropriate--to protect against 1786 * freeing by another task. It is the caller's responsibility to free the 1787 * extra reference for shared policies. 1788 */ 1789 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1790 unsigned long addr) 1791 { 1792 struct mempolicy *pol = __get_vma_policy(vma, addr); 1793 1794 if (!pol) 1795 pol = get_task_policy(current); 1796 1797 return pol; 1798 } 1799 1800 bool vma_policy_mof(struct vm_area_struct *vma) 1801 { 1802 struct mempolicy *pol; 1803 1804 if (vma->vm_ops && vma->vm_ops->get_policy) { 1805 bool ret = false; 1806 1807 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1808 if (pol && (pol->flags & MPOL_F_MOF)) 1809 ret = true; 1810 mpol_cond_put(pol); 1811 1812 return ret; 1813 } 1814 1815 pol = vma->vm_policy; 1816 if (!pol) 1817 pol = get_task_policy(current); 1818 1819 return pol->flags & MPOL_F_MOF; 1820 } 1821 1822 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1823 { 1824 enum zone_type dynamic_policy_zone = policy_zone; 1825 1826 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1827 1828 /* 1829 * if policy->nodes has movable memory only, 1830 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1831 * 1832 * policy->nodes is intersect with node_states[N_MEMORY]. 1833 * so if the following test fails, it implies 1834 * policy->nodes has movable memory only. 1835 */ 1836 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) 1837 dynamic_policy_zone = ZONE_MOVABLE; 1838 1839 return zone >= dynamic_policy_zone; 1840 } 1841 1842 /* 1843 * Return a nodemask representing a mempolicy for filtering nodes for 1844 * page allocation 1845 */ 1846 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1847 { 1848 int mode = policy->mode; 1849 1850 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1851 if (unlikely(mode == MPOL_BIND) && 1852 apply_policy_zone(policy, gfp_zone(gfp)) && 1853 cpuset_nodemask_valid_mems_allowed(&policy->nodes)) 1854 return &policy->nodes; 1855 1856 if (mode == MPOL_PREFERRED_MANY) 1857 return &policy->nodes; 1858 1859 return NULL; 1860 } 1861 1862 /* 1863 * Return the preferred node id for 'prefer' mempolicy, and return 1864 * the given id for all other policies. 1865 * 1866 * policy_node() is always coupled with policy_nodemask(), which 1867 * secures the nodemask limit for 'bind' and 'prefer-many' policy. 1868 */ 1869 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) 1870 { 1871 if (policy->mode == MPOL_PREFERRED) { 1872 nd = first_node(policy->nodes); 1873 } else { 1874 /* 1875 * __GFP_THISNODE shouldn't even be used with the bind policy 1876 * because we might easily break the expectation to stay on the 1877 * requested node and not break the policy. 1878 */ 1879 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1880 } 1881 1882 if ((policy->mode == MPOL_BIND || 1883 policy->mode == MPOL_PREFERRED_MANY) && 1884 policy->home_node != NUMA_NO_NODE) 1885 return policy->home_node; 1886 1887 return nd; 1888 } 1889 1890 /* Do dynamic interleaving for a process */ 1891 static unsigned interleave_nodes(struct mempolicy *policy) 1892 { 1893 unsigned next; 1894 struct task_struct *me = current; 1895 1896 next = next_node_in(me->il_prev, policy->nodes); 1897 if (next < MAX_NUMNODES) 1898 me->il_prev = next; 1899 return next; 1900 } 1901 1902 /* 1903 * Depending on the memory policy provide a node from which to allocate the 1904 * next slab entry. 1905 */ 1906 unsigned int mempolicy_slab_node(void) 1907 { 1908 struct mempolicy *policy; 1909 int node = numa_mem_id(); 1910 1911 if (!in_task()) 1912 return node; 1913 1914 policy = current->mempolicy; 1915 if (!policy) 1916 return node; 1917 1918 switch (policy->mode) { 1919 case MPOL_PREFERRED: 1920 return first_node(policy->nodes); 1921 1922 case MPOL_INTERLEAVE: 1923 return interleave_nodes(policy); 1924 1925 case MPOL_BIND: 1926 case MPOL_PREFERRED_MANY: 1927 { 1928 struct zoneref *z; 1929 1930 /* 1931 * Follow bind policy behavior and start allocation at the 1932 * first node. 1933 */ 1934 struct zonelist *zonelist; 1935 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1936 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1937 z = first_zones_zonelist(zonelist, highest_zoneidx, 1938 &policy->nodes); 1939 return z->zone ? zone_to_nid(z->zone) : node; 1940 } 1941 case MPOL_LOCAL: 1942 return node; 1943 1944 default: 1945 BUG(); 1946 } 1947 } 1948 1949 /* 1950 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1951 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the 1952 * number of present nodes. 1953 */ 1954 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1955 { 1956 nodemask_t nodemask = pol->nodes; 1957 unsigned int target, nnodes; 1958 int i; 1959 int nid; 1960 /* 1961 * The barrier will stabilize the nodemask in a register or on 1962 * the stack so that it will stop changing under the code. 1963 * 1964 * Between first_node() and next_node(), pol->nodes could be changed 1965 * by other threads. So we put pol->nodes in a local stack. 1966 */ 1967 barrier(); 1968 1969 nnodes = nodes_weight(nodemask); 1970 if (!nnodes) 1971 return numa_node_id(); 1972 target = (unsigned int)n % nnodes; 1973 nid = first_node(nodemask); 1974 for (i = 0; i < target; i++) 1975 nid = next_node(nid, nodemask); 1976 return nid; 1977 } 1978 1979 /* Determine a node number for interleave */ 1980 static inline unsigned interleave_nid(struct mempolicy *pol, 1981 struct vm_area_struct *vma, unsigned long addr, int shift) 1982 { 1983 if (vma) { 1984 unsigned long off; 1985 1986 /* 1987 * for small pages, there is no difference between 1988 * shift and PAGE_SHIFT, so the bit-shift is safe. 1989 * for huge pages, since vm_pgoff is in units of small 1990 * pages, we need to shift off the always 0 bits to get 1991 * a useful offset. 1992 */ 1993 BUG_ON(shift < PAGE_SHIFT); 1994 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1995 off += (addr - vma->vm_start) >> shift; 1996 return offset_il_node(pol, off); 1997 } else 1998 return interleave_nodes(pol); 1999 } 2000 2001 #ifdef CONFIG_HUGETLBFS 2002 /* 2003 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2004 * @vma: virtual memory area whose policy is sought 2005 * @addr: address in @vma for shared policy lookup and interleave policy 2006 * @gfp_flags: for requested zone 2007 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2008 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy 2009 * 2010 * Returns a nid suitable for a huge page allocation and a pointer 2011 * to the struct mempolicy for conditional unref after allocation. 2012 * If the effective policy is 'bind' or 'prefer-many', returns a pointer 2013 * to the mempolicy's @nodemask for filtering the zonelist. 2014 * 2015 * Must be protected by read_mems_allowed_begin() 2016 */ 2017 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2018 struct mempolicy **mpol, nodemask_t **nodemask) 2019 { 2020 int nid; 2021 int mode; 2022 2023 *mpol = get_vma_policy(vma, addr); 2024 *nodemask = NULL; 2025 mode = (*mpol)->mode; 2026 2027 if (unlikely(mode == MPOL_INTERLEAVE)) { 2028 nid = interleave_nid(*mpol, vma, addr, 2029 huge_page_shift(hstate_vma(vma))); 2030 } else { 2031 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2032 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) 2033 *nodemask = &(*mpol)->nodes; 2034 } 2035 return nid; 2036 } 2037 2038 /* 2039 * init_nodemask_of_mempolicy 2040 * 2041 * If the current task's mempolicy is "default" [NULL], return 'false' 2042 * to indicate default policy. Otherwise, extract the policy nodemask 2043 * for 'bind' or 'interleave' policy into the argument nodemask, or 2044 * initialize the argument nodemask to contain the single node for 2045 * 'preferred' or 'local' policy and return 'true' to indicate presence 2046 * of non-default mempolicy. 2047 * 2048 * We don't bother with reference counting the mempolicy [mpol_get/put] 2049 * because the current task is examining it's own mempolicy and a task's 2050 * mempolicy is only ever changed by the task itself. 2051 * 2052 * N.B., it is the caller's responsibility to free a returned nodemask. 2053 */ 2054 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2055 { 2056 struct mempolicy *mempolicy; 2057 2058 if (!(mask && current->mempolicy)) 2059 return false; 2060 2061 task_lock(current); 2062 mempolicy = current->mempolicy; 2063 switch (mempolicy->mode) { 2064 case MPOL_PREFERRED: 2065 case MPOL_PREFERRED_MANY: 2066 case MPOL_BIND: 2067 case MPOL_INTERLEAVE: 2068 *mask = mempolicy->nodes; 2069 break; 2070 2071 case MPOL_LOCAL: 2072 init_nodemask_of_node(mask, numa_node_id()); 2073 break; 2074 2075 default: 2076 BUG(); 2077 } 2078 task_unlock(current); 2079 2080 return true; 2081 } 2082 #endif 2083 2084 /* 2085 * mempolicy_in_oom_domain 2086 * 2087 * If tsk's mempolicy is "bind", check for intersection between mask and 2088 * the policy nodemask. Otherwise, return true for all other policies 2089 * including "interleave", as a tsk with "interleave" policy may have 2090 * memory allocated from all nodes in system. 2091 * 2092 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2093 */ 2094 bool mempolicy_in_oom_domain(struct task_struct *tsk, 2095 const nodemask_t *mask) 2096 { 2097 struct mempolicy *mempolicy; 2098 bool ret = true; 2099 2100 if (!mask) 2101 return ret; 2102 2103 task_lock(tsk); 2104 mempolicy = tsk->mempolicy; 2105 if (mempolicy && mempolicy->mode == MPOL_BIND) 2106 ret = nodes_intersects(mempolicy->nodes, *mask); 2107 task_unlock(tsk); 2108 2109 return ret; 2110 } 2111 2112 /* Allocate a page in interleaved policy. 2113 Own path because it needs to do special accounting. */ 2114 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2115 unsigned nid) 2116 { 2117 struct page *page; 2118 2119 page = __alloc_pages(gfp, order, nid, NULL); 2120 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2121 if (!static_branch_likely(&vm_numa_stat_key)) 2122 return page; 2123 if (page && page_to_nid(page) == nid) { 2124 preempt_disable(); 2125 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); 2126 preempt_enable(); 2127 } 2128 return page; 2129 } 2130 2131 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, 2132 int nid, struct mempolicy *pol) 2133 { 2134 struct page *page; 2135 gfp_t preferred_gfp; 2136 2137 /* 2138 * This is a two pass approach. The first pass will only try the 2139 * preferred nodes but skip the direct reclaim and allow the 2140 * allocation to fail, while the second pass will try all the 2141 * nodes in system. 2142 */ 2143 preferred_gfp = gfp | __GFP_NOWARN; 2144 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2145 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); 2146 if (!page) 2147 page = __alloc_pages(gfp, order, nid, NULL); 2148 2149 return page; 2150 } 2151 2152 /** 2153 * vma_alloc_folio - Allocate a folio for a VMA. 2154 * @gfp: GFP flags. 2155 * @order: Order of the folio. 2156 * @vma: Pointer to VMA or NULL if not available. 2157 * @addr: Virtual address of the allocation. Must be inside @vma. 2158 * @hugepage: For hugepages try only the preferred node if possible. 2159 * 2160 * Allocate a folio for a specific address in @vma, using the appropriate 2161 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock 2162 * of the mm_struct of the VMA to prevent it from going away. Should be 2163 * used for all allocations for folios that will be mapped into user space. 2164 * 2165 * Return: The folio on success or NULL if allocation fails. 2166 */ 2167 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma, 2168 unsigned long addr, bool hugepage) 2169 { 2170 struct mempolicy *pol; 2171 int node = numa_node_id(); 2172 struct folio *folio; 2173 int preferred_nid; 2174 nodemask_t *nmask; 2175 2176 pol = get_vma_policy(vma, addr); 2177 2178 if (pol->mode == MPOL_INTERLEAVE) { 2179 struct page *page; 2180 unsigned nid; 2181 2182 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2183 mpol_cond_put(pol); 2184 gfp |= __GFP_COMP; 2185 page = alloc_page_interleave(gfp, order, nid); 2186 if (page && order > 1) 2187 prep_transhuge_page(page); 2188 folio = (struct folio *)page; 2189 goto out; 2190 } 2191 2192 if (pol->mode == MPOL_PREFERRED_MANY) { 2193 struct page *page; 2194 2195 node = policy_node(gfp, pol, node); 2196 gfp |= __GFP_COMP; 2197 page = alloc_pages_preferred_many(gfp, order, node, pol); 2198 mpol_cond_put(pol); 2199 if (page && order > 1) 2200 prep_transhuge_page(page); 2201 folio = (struct folio *)page; 2202 goto out; 2203 } 2204 2205 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2206 int hpage_node = node; 2207 2208 /* 2209 * For hugepage allocation and non-interleave policy which 2210 * allows the current node (or other explicitly preferred 2211 * node) we only try to allocate from the current/preferred 2212 * node and don't fall back to other nodes, as the cost of 2213 * remote accesses would likely offset THP benefits. 2214 * 2215 * If the policy is interleave or does not allow the current 2216 * node in its nodemask, we allocate the standard way. 2217 */ 2218 if (pol->mode == MPOL_PREFERRED) 2219 hpage_node = first_node(pol->nodes); 2220 2221 nmask = policy_nodemask(gfp, pol); 2222 if (!nmask || node_isset(hpage_node, *nmask)) { 2223 mpol_cond_put(pol); 2224 /* 2225 * First, try to allocate THP only on local node, but 2226 * don't reclaim unnecessarily, just compact. 2227 */ 2228 folio = __folio_alloc_node(gfp | __GFP_THISNODE | 2229 __GFP_NORETRY, order, hpage_node); 2230 2231 /* 2232 * If hugepage allocations are configured to always 2233 * synchronous compact or the vma has been madvised 2234 * to prefer hugepage backing, retry allowing remote 2235 * memory with both reclaim and compact as well. 2236 */ 2237 if (!folio && (gfp & __GFP_DIRECT_RECLAIM)) 2238 folio = __folio_alloc(gfp, order, hpage_node, 2239 nmask); 2240 2241 goto out; 2242 } 2243 } 2244 2245 nmask = policy_nodemask(gfp, pol); 2246 preferred_nid = policy_node(gfp, pol, node); 2247 folio = __folio_alloc(gfp, order, preferred_nid, nmask); 2248 mpol_cond_put(pol); 2249 out: 2250 return folio; 2251 } 2252 EXPORT_SYMBOL(vma_alloc_folio); 2253 2254 /** 2255 * alloc_pages - Allocate pages. 2256 * @gfp: GFP flags. 2257 * @order: Power of two of number of pages to allocate. 2258 * 2259 * Allocate 1 << @order contiguous pages. The physical address of the 2260 * first page is naturally aligned (eg an order-3 allocation will be aligned 2261 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current 2262 * process is honoured when in process context. 2263 * 2264 * Context: Can be called from any context, providing the appropriate GFP 2265 * flags are used. 2266 * Return: The page on success or NULL if allocation fails. 2267 */ 2268 struct page *alloc_pages(gfp_t gfp, unsigned order) 2269 { 2270 struct mempolicy *pol = &default_policy; 2271 struct page *page; 2272 2273 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2274 pol = get_task_policy(current); 2275 2276 /* 2277 * No reference counting needed for current->mempolicy 2278 * nor system default_policy 2279 */ 2280 if (pol->mode == MPOL_INTERLEAVE) 2281 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2282 else if (pol->mode == MPOL_PREFERRED_MANY) 2283 page = alloc_pages_preferred_many(gfp, order, 2284 policy_node(gfp, pol, numa_node_id()), pol); 2285 else 2286 page = __alloc_pages(gfp, order, 2287 policy_node(gfp, pol, numa_node_id()), 2288 policy_nodemask(gfp, pol)); 2289 2290 return page; 2291 } 2292 EXPORT_SYMBOL(alloc_pages); 2293 2294 struct folio *folio_alloc(gfp_t gfp, unsigned order) 2295 { 2296 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2297 2298 if (page && order > 1) 2299 prep_transhuge_page(page); 2300 return (struct folio *)page; 2301 } 2302 EXPORT_SYMBOL(folio_alloc); 2303 2304 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp, 2305 struct mempolicy *pol, unsigned long nr_pages, 2306 struct page **page_array) 2307 { 2308 int nodes; 2309 unsigned long nr_pages_per_node; 2310 int delta; 2311 int i; 2312 unsigned long nr_allocated; 2313 unsigned long total_allocated = 0; 2314 2315 nodes = nodes_weight(pol->nodes); 2316 nr_pages_per_node = nr_pages / nodes; 2317 delta = nr_pages - nodes * nr_pages_per_node; 2318 2319 for (i = 0; i < nodes; i++) { 2320 if (delta) { 2321 nr_allocated = __alloc_pages_bulk(gfp, 2322 interleave_nodes(pol), NULL, 2323 nr_pages_per_node + 1, NULL, 2324 page_array); 2325 delta--; 2326 } else { 2327 nr_allocated = __alloc_pages_bulk(gfp, 2328 interleave_nodes(pol), NULL, 2329 nr_pages_per_node, NULL, page_array); 2330 } 2331 2332 page_array += nr_allocated; 2333 total_allocated += nr_allocated; 2334 } 2335 2336 return total_allocated; 2337 } 2338 2339 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid, 2340 struct mempolicy *pol, unsigned long nr_pages, 2341 struct page **page_array) 2342 { 2343 gfp_t preferred_gfp; 2344 unsigned long nr_allocated = 0; 2345 2346 preferred_gfp = gfp | __GFP_NOWARN; 2347 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2348 2349 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes, 2350 nr_pages, NULL, page_array); 2351 2352 if (nr_allocated < nr_pages) 2353 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL, 2354 nr_pages - nr_allocated, NULL, 2355 page_array + nr_allocated); 2356 return nr_allocated; 2357 } 2358 2359 /* alloc pages bulk and mempolicy should be considered at the 2360 * same time in some situation such as vmalloc. 2361 * 2362 * It can accelerate memory allocation especially interleaving 2363 * allocate memory. 2364 */ 2365 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp, 2366 unsigned long nr_pages, struct page **page_array) 2367 { 2368 struct mempolicy *pol = &default_policy; 2369 2370 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2371 pol = get_task_policy(current); 2372 2373 if (pol->mode == MPOL_INTERLEAVE) 2374 return alloc_pages_bulk_array_interleave(gfp, pol, 2375 nr_pages, page_array); 2376 2377 if (pol->mode == MPOL_PREFERRED_MANY) 2378 return alloc_pages_bulk_array_preferred_many(gfp, 2379 numa_node_id(), pol, nr_pages, page_array); 2380 2381 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()), 2382 policy_nodemask(gfp, pol), nr_pages, NULL, 2383 page_array); 2384 } 2385 2386 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2387 { 2388 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2389 2390 if (IS_ERR(pol)) 2391 return PTR_ERR(pol); 2392 dst->vm_policy = pol; 2393 return 0; 2394 } 2395 2396 /* 2397 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2398 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2399 * with the mems_allowed returned by cpuset_mems_allowed(). This 2400 * keeps mempolicies cpuset relative after its cpuset moves. See 2401 * further kernel/cpuset.c update_nodemask(). 2402 * 2403 * current's mempolicy may be rebinded by the other task(the task that changes 2404 * cpuset's mems), so we needn't do rebind work for current task. 2405 */ 2406 2407 /* Slow path of a mempolicy duplicate */ 2408 struct mempolicy *__mpol_dup(struct mempolicy *old) 2409 { 2410 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2411 2412 if (!new) 2413 return ERR_PTR(-ENOMEM); 2414 2415 /* task's mempolicy is protected by alloc_lock */ 2416 if (old == current->mempolicy) { 2417 task_lock(current); 2418 *new = *old; 2419 task_unlock(current); 2420 } else 2421 *new = *old; 2422 2423 if (current_cpuset_is_being_rebound()) { 2424 nodemask_t mems = cpuset_mems_allowed(current); 2425 mpol_rebind_policy(new, &mems); 2426 } 2427 atomic_set(&new->refcnt, 1); 2428 return new; 2429 } 2430 2431 /* Slow path of a mempolicy comparison */ 2432 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2433 { 2434 if (!a || !b) 2435 return false; 2436 if (a->mode != b->mode) 2437 return false; 2438 if (a->flags != b->flags) 2439 return false; 2440 if (a->home_node != b->home_node) 2441 return false; 2442 if (mpol_store_user_nodemask(a)) 2443 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2444 return false; 2445 2446 switch (a->mode) { 2447 case MPOL_BIND: 2448 case MPOL_INTERLEAVE: 2449 case MPOL_PREFERRED: 2450 case MPOL_PREFERRED_MANY: 2451 return !!nodes_equal(a->nodes, b->nodes); 2452 case MPOL_LOCAL: 2453 return true; 2454 default: 2455 BUG(); 2456 return false; 2457 } 2458 } 2459 2460 /* 2461 * Shared memory backing store policy support. 2462 * 2463 * Remember policies even when nobody has shared memory mapped. 2464 * The policies are kept in Red-Black tree linked from the inode. 2465 * They are protected by the sp->lock rwlock, which should be held 2466 * for any accesses to the tree. 2467 */ 2468 2469 /* 2470 * lookup first element intersecting start-end. Caller holds sp->lock for 2471 * reading or for writing 2472 */ 2473 static struct sp_node * 2474 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2475 { 2476 struct rb_node *n = sp->root.rb_node; 2477 2478 while (n) { 2479 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2480 2481 if (start >= p->end) 2482 n = n->rb_right; 2483 else if (end <= p->start) 2484 n = n->rb_left; 2485 else 2486 break; 2487 } 2488 if (!n) 2489 return NULL; 2490 for (;;) { 2491 struct sp_node *w = NULL; 2492 struct rb_node *prev = rb_prev(n); 2493 if (!prev) 2494 break; 2495 w = rb_entry(prev, struct sp_node, nd); 2496 if (w->end <= start) 2497 break; 2498 n = prev; 2499 } 2500 return rb_entry(n, struct sp_node, nd); 2501 } 2502 2503 /* 2504 * Insert a new shared policy into the list. Caller holds sp->lock for 2505 * writing. 2506 */ 2507 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2508 { 2509 struct rb_node **p = &sp->root.rb_node; 2510 struct rb_node *parent = NULL; 2511 struct sp_node *nd; 2512 2513 while (*p) { 2514 parent = *p; 2515 nd = rb_entry(parent, struct sp_node, nd); 2516 if (new->start < nd->start) 2517 p = &(*p)->rb_left; 2518 else if (new->end > nd->end) 2519 p = &(*p)->rb_right; 2520 else 2521 BUG(); 2522 } 2523 rb_link_node(&new->nd, parent, p); 2524 rb_insert_color(&new->nd, &sp->root); 2525 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2526 new->policy ? new->policy->mode : 0); 2527 } 2528 2529 /* Find shared policy intersecting idx */ 2530 struct mempolicy * 2531 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2532 { 2533 struct mempolicy *pol = NULL; 2534 struct sp_node *sn; 2535 2536 if (!sp->root.rb_node) 2537 return NULL; 2538 read_lock(&sp->lock); 2539 sn = sp_lookup(sp, idx, idx+1); 2540 if (sn) { 2541 mpol_get(sn->policy); 2542 pol = sn->policy; 2543 } 2544 read_unlock(&sp->lock); 2545 return pol; 2546 } 2547 2548 static void sp_free(struct sp_node *n) 2549 { 2550 mpol_put(n->policy); 2551 kmem_cache_free(sn_cache, n); 2552 } 2553 2554 /** 2555 * mpol_misplaced - check whether current page node is valid in policy 2556 * 2557 * @page: page to be checked 2558 * @vma: vm area where page mapped 2559 * @addr: virtual address where page mapped 2560 * 2561 * Lookup current policy node id for vma,addr and "compare to" page's 2562 * node id. Policy determination "mimics" alloc_page_vma(). 2563 * Called from fault path where we know the vma and faulting address. 2564 * 2565 * Return: NUMA_NO_NODE if the page is in a node that is valid for this 2566 * policy, or a suitable node ID to allocate a replacement page from. 2567 */ 2568 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2569 { 2570 struct mempolicy *pol; 2571 struct zoneref *z; 2572 int curnid = page_to_nid(page); 2573 unsigned long pgoff; 2574 int thiscpu = raw_smp_processor_id(); 2575 int thisnid = cpu_to_node(thiscpu); 2576 int polnid = NUMA_NO_NODE; 2577 int ret = NUMA_NO_NODE; 2578 2579 pol = get_vma_policy(vma, addr); 2580 if (!(pol->flags & MPOL_F_MOF)) 2581 goto out; 2582 2583 switch (pol->mode) { 2584 case MPOL_INTERLEAVE: 2585 pgoff = vma->vm_pgoff; 2586 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2587 polnid = offset_il_node(pol, pgoff); 2588 break; 2589 2590 case MPOL_PREFERRED: 2591 if (node_isset(curnid, pol->nodes)) 2592 goto out; 2593 polnid = first_node(pol->nodes); 2594 break; 2595 2596 case MPOL_LOCAL: 2597 polnid = numa_node_id(); 2598 break; 2599 2600 case MPOL_BIND: 2601 /* Optimize placement among multiple nodes via NUMA balancing */ 2602 if (pol->flags & MPOL_F_MORON) { 2603 if (node_isset(thisnid, pol->nodes)) 2604 break; 2605 goto out; 2606 } 2607 fallthrough; 2608 2609 case MPOL_PREFERRED_MANY: 2610 /* 2611 * use current page if in policy nodemask, 2612 * else select nearest allowed node, if any. 2613 * If no allowed nodes, use current [!misplaced]. 2614 */ 2615 if (node_isset(curnid, pol->nodes)) 2616 goto out; 2617 z = first_zones_zonelist( 2618 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2619 gfp_zone(GFP_HIGHUSER), 2620 &pol->nodes); 2621 polnid = zone_to_nid(z->zone); 2622 break; 2623 2624 default: 2625 BUG(); 2626 } 2627 2628 /* Migrate the page towards the node whose CPU is referencing it */ 2629 if (pol->flags & MPOL_F_MORON) { 2630 polnid = thisnid; 2631 2632 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2633 goto out; 2634 } 2635 2636 if (curnid != polnid) 2637 ret = polnid; 2638 out: 2639 mpol_cond_put(pol); 2640 2641 return ret; 2642 } 2643 2644 /* 2645 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2646 * dropped after task->mempolicy is set to NULL so that any allocation done as 2647 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2648 * policy. 2649 */ 2650 void mpol_put_task_policy(struct task_struct *task) 2651 { 2652 struct mempolicy *pol; 2653 2654 task_lock(task); 2655 pol = task->mempolicy; 2656 task->mempolicy = NULL; 2657 task_unlock(task); 2658 mpol_put(pol); 2659 } 2660 2661 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2662 { 2663 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2664 rb_erase(&n->nd, &sp->root); 2665 sp_free(n); 2666 } 2667 2668 static void sp_node_init(struct sp_node *node, unsigned long start, 2669 unsigned long end, struct mempolicy *pol) 2670 { 2671 node->start = start; 2672 node->end = end; 2673 node->policy = pol; 2674 } 2675 2676 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2677 struct mempolicy *pol) 2678 { 2679 struct sp_node *n; 2680 struct mempolicy *newpol; 2681 2682 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2683 if (!n) 2684 return NULL; 2685 2686 newpol = mpol_dup(pol); 2687 if (IS_ERR(newpol)) { 2688 kmem_cache_free(sn_cache, n); 2689 return NULL; 2690 } 2691 newpol->flags |= MPOL_F_SHARED; 2692 sp_node_init(n, start, end, newpol); 2693 2694 return n; 2695 } 2696 2697 /* Replace a policy range. */ 2698 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2699 unsigned long end, struct sp_node *new) 2700 { 2701 struct sp_node *n; 2702 struct sp_node *n_new = NULL; 2703 struct mempolicy *mpol_new = NULL; 2704 int ret = 0; 2705 2706 restart: 2707 write_lock(&sp->lock); 2708 n = sp_lookup(sp, start, end); 2709 /* Take care of old policies in the same range. */ 2710 while (n && n->start < end) { 2711 struct rb_node *next = rb_next(&n->nd); 2712 if (n->start >= start) { 2713 if (n->end <= end) 2714 sp_delete(sp, n); 2715 else 2716 n->start = end; 2717 } else { 2718 /* Old policy spanning whole new range. */ 2719 if (n->end > end) { 2720 if (!n_new) 2721 goto alloc_new; 2722 2723 *mpol_new = *n->policy; 2724 atomic_set(&mpol_new->refcnt, 1); 2725 sp_node_init(n_new, end, n->end, mpol_new); 2726 n->end = start; 2727 sp_insert(sp, n_new); 2728 n_new = NULL; 2729 mpol_new = NULL; 2730 break; 2731 } else 2732 n->end = start; 2733 } 2734 if (!next) 2735 break; 2736 n = rb_entry(next, struct sp_node, nd); 2737 } 2738 if (new) 2739 sp_insert(sp, new); 2740 write_unlock(&sp->lock); 2741 ret = 0; 2742 2743 err_out: 2744 if (mpol_new) 2745 mpol_put(mpol_new); 2746 if (n_new) 2747 kmem_cache_free(sn_cache, n_new); 2748 2749 return ret; 2750 2751 alloc_new: 2752 write_unlock(&sp->lock); 2753 ret = -ENOMEM; 2754 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2755 if (!n_new) 2756 goto err_out; 2757 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2758 if (!mpol_new) 2759 goto err_out; 2760 atomic_set(&mpol_new->refcnt, 1); 2761 goto restart; 2762 } 2763 2764 /** 2765 * mpol_shared_policy_init - initialize shared policy for inode 2766 * @sp: pointer to inode shared policy 2767 * @mpol: struct mempolicy to install 2768 * 2769 * Install non-NULL @mpol in inode's shared policy rb-tree. 2770 * On entry, the current task has a reference on a non-NULL @mpol. 2771 * This must be released on exit. 2772 * This is called at get_inode() calls and we can use GFP_KERNEL. 2773 */ 2774 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2775 { 2776 int ret; 2777 2778 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2779 rwlock_init(&sp->lock); 2780 2781 if (mpol) { 2782 struct vm_area_struct pvma; 2783 struct mempolicy *new; 2784 NODEMASK_SCRATCH(scratch); 2785 2786 if (!scratch) 2787 goto put_mpol; 2788 /* contextualize the tmpfs mount point mempolicy */ 2789 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2790 if (IS_ERR(new)) 2791 goto free_scratch; /* no valid nodemask intersection */ 2792 2793 task_lock(current); 2794 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2795 task_unlock(current); 2796 if (ret) 2797 goto put_new; 2798 2799 /* Create pseudo-vma that contains just the policy */ 2800 vma_init(&pvma, NULL); 2801 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2802 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2803 2804 put_new: 2805 mpol_put(new); /* drop initial ref */ 2806 free_scratch: 2807 NODEMASK_SCRATCH_FREE(scratch); 2808 put_mpol: 2809 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2810 } 2811 } 2812 2813 int mpol_set_shared_policy(struct shared_policy *info, 2814 struct vm_area_struct *vma, struct mempolicy *npol) 2815 { 2816 int err; 2817 struct sp_node *new = NULL; 2818 unsigned long sz = vma_pages(vma); 2819 2820 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2821 vma->vm_pgoff, 2822 sz, npol ? npol->mode : -1, 2823 npol ? npol->flags : -1, 2824 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); 2825 2826 if (npol) { 2827 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2828 if (!new) 2829 return -ENOMEM; 2830 } 2831 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2832 if (err && new) 2833 sp_free(new); 2834 return err; 2835 } 2836 2837 /* Free a backing policy store on inode delete. */ 2838 void mpol_free_shared_policy(struct shared_policy *p) 2839 { 2840 struct sp_node *n; 2841 struct rb_node *next; 2842 2843 if (!p->root.rb_node) 2844 return; 2845 write_lock(&p->lock); 2846 next = rb_first(&p->root); 2847 while (next) { 2848 n = rb_entry(next, struct sp_node, nd); 2849 next = rb_next(&n->nd); 2850 sp_delete(p, n); 2851 } 2852 write_unlock(&p->lock); 2853 } 2854 2855 #ifdef CONFIG_NUMA_BALANCING 2856 static int __initdata numabalancing_override; 2857 2858 static void __init check_numabalancing_enable(void) 2859 { 2860 bool numabalancing_default = false; 2861 2862 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2863 numabalancing_default = true; 2864 2865 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2866 if (numabalancing_override) 2867 set_numabalancing_state(numabalancing_override == 1); 2868 2869 if (num_online_nodes() > 1 && !numabalancing_override) { 2870 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2871 numabalancing_default ? "Enabling" : "Disabling"); 2872 set_numabalancing_state(numabalancing_default); 2873 } 2874 } 2875 2876 static int __init setup_numabalancing(char *str) 2877 { 2878 int ret = 0; 2879 if (!str) 2880 goto out; 2881 2882 if (!strcmp(str, "enable")) { 2883 numabalancing_override = 1; 2884 ret = 1; 2885 } else if (!strcmp(str, "disable")) { 2886 numabalancing_override = -1; 2887 ret = 1; 2888 } 2889 out: 2890 if (!ret) 2891 pr_warn("Unable to parse numa_balancing=\n"); 2892 2893 return ret; 2894 } 2895 __setup("numa_balancing=", setup_numabalancing); 2896 #else 2897 static inline void __init check_numabalancing_enable(void) 2898 { 2899 } 2900 #endif /* CONFIG_NUMA_BALANCING */ 2901 2902 /* assumes fs == KERNEL_DS */ 2903 void __init numa_policy_init(void) 2904 { 2905 nodemask_t interleave_nodes; 2906 unsigned long largest = 0; 2907 int nid, prefer = 0; 2908 2909 policy_cache = kmem_cache_create("numa_policy", 2910 sizeof(struct mempolicy), 2911 0, SLAB_PANIC, NULL); 2912 2913 sn_cache = kmem_cache_create("shared_policy_node", 2914 sizeof(struct sp_node), 2915 0, SLAB_PANIC, NULL); 2916 2917 for_each_node(nid) { 2918 preferred_node_policy[nid] = (struct mempolicy) { 2919 .refcnt = ATOMIC_INIT(1), 2920 .mode = MPOL_PREFERRED, 2921 .flags = MPOL_F_MOF | MPOL_F_MORON, 2922 .nodes = nodemask_of_node(nid), 2923 }; 2924 } 2925 2926 /* 2927 * Set interleaving policy for system init. Interleaving is only 2928 * enabled across suitably sized nodes (default is >= 16MB), or 2929 * fall back to the largest node if they're all smaller. 2930 */ 2931 nodes_clear(interleave_nodes); 2932 for_each_node_state(nid, N_MEMORY) { 2933 unsigned long total_pages = node_present_pages(nid); 2934 2935 /* Preserve the largest node */ 2936 if (largest < total_pages) { 2937 largest = total_pages; 2938 prefer = nid; 2939 } 2940 2941 /* Interleave this node? */ 2942 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2943 node_set(nid, interleave_nodes); 2944 } 2945 2946 /* All too small, use the largest */ 2947 if (unlikely(nodes_empty(interleave_nodes))) 2948 node_set(prefer, interleave_nodes); 2949 2950 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2951 pr_err("%s: interleaving failed\n", __func__); 2952 2953 check_numabalancing_enable(); 2954 } 2955 2956 /* Reset policy of current process to default */ 2957 void numa_default_policy(void) 2958 { 2959 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2960 } 2961 2962 /* 2963 * Parse and format mempolicy from/to strings 2964 */ 2965 2966 static const char * const policy_modes[] = 2967 { 2968 [MPOL_DEFAULT] = "default", 2969 [MPOL_PREFERRED] = "prefer", 2970 [MPOL_BIND] = "bind", 2971 [MPOL_INTERLEAVE] = "interleave", 2972 [MPOL_LOCAL] = "local", 2973 [MPOL_PREFERRED_MANY] = "prefer (many)", 2974 }; 2975 2976 2977 #ifdef CONFIG_TMPFS 2978 /** 2979 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2980 * @str: string containing mempolicy to parse 2981 * @mpol: pointer to struct mempolicy pointer, returned on success. 2982 * 2983 * Format of input: 2984 * <mode>[=<flags>][:<nodelist>] 2985 * 2986 * Return: %0 on success, else %1 2987 */ 2988 int mpol_parse_str(char *str, struct mempolicy **mpol) 2989 { 2990 struct mempolicy *new = NULL; 2991 unsigned short mode_flags; 2992 nodemask_t nodes; 2993 char *nodelist = strchr(str, ':'); 2994 char *flags = strchr(str, '='); 2995 int err = 1, mode; 2996 2997 if (flags) 2998 *flags++ = '\0'; /* terminate mode string */ 2999 3000 if (nodelist) { 3001 /* NUL-terminate mode or flags string */ 3002 *nodelist++ = '\0'; 3003 if (nodelist_parse(nodelist, nodes)) 3004 goto out; 3005 if (!nodes_subset(nodes, node_states[N_MEMORY])) 3006 goto out; 3007 } else 3008 nodes_clear(nodes); 3009 3010 mode = match_string(policy_modes, MPOL_MAX, str); 3011 if (mode < 0) 3012 goto out; 3013 3014 switch (mode) { 3015 case MPOL_PREFERRED: 3016 /* 3017 * Insist on a nodelist of one node only, although later 3018 * we use first_node(nodes) to grab a single node, so here 3019 * nodelist (or nodes) cannot be empty. 3020 */ 3021 if (nodelist) { 3022 char *rest = nodelist; 3023 while (isdigit(*rest)) 3024 rest++; 3025 if (*rest) 3026 goto out; 3027 if (nodes_empty(nodes)) 3028 goto out; 3029 } 3030 break; 3031 case MPOL_INTERLEAVE: 3032 /* 3033 * Default to online nodes with memory if no nodelist 3034 */ 3035 if (!nodelist) 3036 nodes = node_states[N_MEMORY]; 3037 break; 3038 case MPOL_LOCAL: 3039 /* 3040 * Don't allow a nodelist; mpol_new() checks flags 3041 */ 3042 if (nodelist) 3043 goto out; 3044 break; 3045 case MPOL_DEFAULT: 3046 /* 3047 * Insist on a empty nodelist 3048 */ 3049 if (!nodelist) 3050 err = 0; 3051 goto out; 3052 case MPOL_PREFERRED_MANY: 3053 case MPOL_BIND: 3054 /* 3055 * Insist on a nodelist 3056 */ 3057 if (!nodelist) 3058 goto out; 3059 } 3060 3061 mode_flags = 0; 3062 if (flags) { 3063 /* 3064 * Currently, we only support two mutually exclusive 3065 * mode flags. 3066 */ 3067 if (!strcmp(flags, "static")) 3068 mode_flags |= MPOL_F_STATIC_NODES; 3069 else if (!strcmp(flags, "relative")) 3070 mode_flags |= MPOL_F_RELATIVE_NODES; 3071 else 3072 goto out; 3073 } 3074 3075 new = mpol_new(mode, mode_flags, &nodes); 3076 if (IS_ERR(new)) 3077 goto out; 3078 3079 /* 3080 * Save nodes for mpol_to_str() to show the tmpfs mount options 3081 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 3082 */ 3083 if (mode != MPOL_PREFERRED) { 3084 new->nodes = nodes; 3085 } else if (nodelist) { 3086 nodes_clear(new->nodes); 3087 node_set(first_node(nodes), new->nodes); 3088 } else { 3089 new->mode = MPOL_LOCAL; 3090 } 3091 3092 /* 3093 * Save nodes for contextualization: this will be used to "clone" 3094 * the mempolicy in a specific context [cpuset] at a later time. 3095 */ 3096 new->w.user_nodemask = nodes; 3097 3098 err = 0; 3099 3100 out: 3101 /* Restore string for error message */ 3102 if (nodelist) 3103 *--nodelist = ':'; 3104 if (flags) 3105 *--flags = '='; 3106 if (!err) 3107 *mpol = new; 3108 return err; 3109 } 3110 #endif /* CONFIG_TMPFS */ 3111 3112 /** 3113 * mpol_to_str - format a mempolicy structure for printing 3114 * @buffer: to contain formatted mempolicy string 3115 * @maxlen: length of @buffer 3116 * @pol: pointer to mempolicy to be formatted 3117 * 3118 * Convert @pol into a string. If @buffer is too short, truncate the string. 3119 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3120 * longest flag, "relative", and to display at least a few node ids. 3121 */ 3122 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3123 { 3124 char *p = buffer; 3125 nodemask_t nodes = NODE_MASK_NONE; 3126 unsigned short mode = MPOL_DEFAULT; 3127 unsigned short flags = 0; 3128 3129 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3130 mode = pol->mode; 3131 flags = pol->flags; 3132 } 3133 3134 switch (mode) { 3135 case MPOL_DEFAULT: 3136 case MPOL_LOCAL: 3137 break; 3138 case MPOL_PREFERRED: 3139 case MPOL_PREFERRED_MANY: 3140 case MPOL_BIND: 3141 case MPOL_INTERLEAVE: 3142 nodes = pol->nodes; 3143 break; 3144 default: 3145 WARN_ON_ONCE(1); 3146 snprintf(p, maxlen, "unknown"); 3147 return; 3148 } 3149 3150 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3151 3152 if (flags & MPOL_MODE_FLAGS) { 3153 p += snprintf(p, buffer + maxlen - p, "="); 3154 3155 /* 3156 * Currently, the only defined flags are mutually exclusive 3157 */ 3158 if (flags & MPOL_F_STATIC_NODES) 3159 p += snprintf(p, buffer + maxlen - p, "static"); 3160 else if (flags & MPOL_F_RELATIVE_NODES) 3161 p += snprintf(p, buffer + maxlen - p, "relative"); 3162 } 3163 3164 if (!nodes_empty(nodes)) 3165 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3166 nodemask_pr_args(&nodes)); 3167 } 3168