1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple NUMA memory policy for the Linux kernel. 4 * 5 * Copyright 2003,2004 Andi Kleen, SuSE Labs. 6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. 7 * 8 * NUMA policy allows the user to give hints in which node(s) memory should 9 * be allocated. 10 * 11 * Support four policies per VMA and per process: 12 * 13 * The VMA policy has priority over the process policy for a page fault. 14 * 15 * interleave Allocate memory interleaved over a set of nodes, 16 * with normal fallback if it fails. 17 * For VMA based allocations this interleaves based on the 18 * offset into the backing object or offset into the mapping 19 * for anonymous memory. For process policy an process counter 20 * is used. 21 * 22 * bind Only allocate memory on a specific set of nodes, 23 * no fallback. 24 * FIXME: memory is allocated starting with the first node 25 * to the last. It would be better if bind would truly restrict 26 * the allocation to memory nodes instead 27 * 28 * preferred Try a specific node first before normal fallback. 29 * As a special case NUMA_NO_NODE here means do the allocation 30 * on the local CPU. This is normally identical to default, 31 * but useful to set in a VMA when you have a non default 32 * process policy. 33 * 34 * default Allocate on the local node first, or when on a VMA 35 * use the process policy. This is what Linux always did 36 * in a NUMA aware kernel and still does by, ahem, default. 37 * 38 * The process policy is applied for most non interrupt memory allocations 39 * in that process' context. Interrupts ignore the policies and always 40 * try to allocate on the local CPU. The VMA policy is only applied for memory 41 * allocations for a VMA in the VM. 42 * 43 * Currently there are a few corner cases in swapping where the policy 44 * is not applied, but the majority should be handled. When process policy 45 * is used it is not remembered over swap outs/swap ins. 46 * 47 * Only the highest zone in the zone hierarchy gets policied. Allocations 48 * requesting a lower zone just use default policy. This implies that 49 * on systems with highmem kernel lowmem allocation don't get policied. 50 * Same with GFP_DMA allocations. 51 * 52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between 53 * all users and remembered even when nobody has memory mapped. 54 */ 55 56 /* Notebook: 57 fix mmap readahead to honour policy and enable policy for any page cache 58 object 59 statistics for bigpages 60 global policy for page cache? currently it uses process policy. Requires 61 first item above. 62 handle mremap for shared memory (currently ignored for the policy) 63 grows down? 64 make bind policy root only? It can trigger oom much faster and the 65 kernel is not always grateful with that. 66 */ 67 68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 69 70 #include <linux/mempolicy.h> 71 #include <linux/pagewalk.h> 72 #include <linux/highmem.h> 73 #include <linux/hugetlb.h> 74 #include <linux/kernel.h> 75 #include <linux/sched.h> 76 #include <linux/sched/mm.h> 77 #include <linux/sched/numa_balancing.h> 78 #include <linux/sched/task.h> 79 #include <linux/nodemask.h> 80 #include <linux/cpuset.h> 81 #include <linux/slab.h> 82 #include <linux/string.h> 83 #include <linux/export.h> 84 #include <linux/nsproxy.h> 85 #include <linux/interrupt.h> 86 #include <linux/init.h> 87 #include <linux/compat.h> 88 #include <linux/ptrace.h> 89 #include <linux/swap.h> 90 #include <linux/seq_file.h> 91 #include <linux/proc_fs.h> 92 #include <linux/migrate.h> 93 #include <linux/ksm.h> 94 #include <linux/rmap.h> 95 #include <linux/security.h> 96 #include <linux/syscalls.h> 97 #include <linux/ctype.h> 98 #include <linux/mm_inline.h> 99 #include <linux/mmu_notifier.h> 100 #include <linux/printk.h> 101 #include <linux/swapops.h> 102 103 #include <asm/tlbflush.h> 104 #include <linux/uaccess.h> 105 106 #include "internal.h" 107 108 /* Internal flags */ 109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ 110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ 111 112 static struct kmem_cache *policy_cache; 113 static struct kmem_cache *sn_cache; 114 115 /* Highest zone. An specific allocation for a zone below that is not 116 policied. */ 117 enum zone_type policy_zone = 0; 118 119 /* 120 * run-time system-wide default policy => local allocation 121 */ 122 static struct mempolicy default_policy = { 123 .refcnt = ATOMIC_INIT(1), /* never free it */ 124 .mode = MPOL_PREFERRED, 125 .flags = MPOL_F_LOCAL, 126 }; 127 128 static struct mempolicy preferred_node_policy[MAX_NUMNODES]; 129 130 struct mempolicy *get_task_policy(struct task_struct *p) 131 { 132 struct mempolicy *pol = p->mempolicy; 133 int node; 134 135 if (pol) 136 return pol; 137 138 node = numa_node_id(); 139 if (node != NUMA_NO_NODE) { 140 pol = &preferred_node_policy[node]; 141 /* preferred_node_policy is not initialised early in boot */ 142 if (pol->mode) 143 return pol; 144 } 145 146 return &default_policy; 147 } 148 149 static const struct mempolicy_operations { 150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes); 151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); 152 } mpol_ops[MPOL_MAX]; 153 154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol) 155 { 156 return pol->flags & MPOL_MODE_FLAGS; 157 } 158 159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, 160 const nodemask_t *rel) 161 { 162 nodemask_t tmp; 163 nodes_fold(tmp, *orig, nodes_weight(*rel)); 164 nodes_onto(*ret, tmp, *rel); 165 } 166 167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) 168 { 169 if (nodes_empty(*nodes)) 170 return -EINVAL; 171 pol->v.nodes = *nodes; 172 return 0; 173 } 174 175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) 176 { 177 if (!nodes) 178 pol->flags |= MPOL_F_LOCAL; /* local allocation */ 179 else if (nodes_empty(*nodes)) 180 return -EINVAL; /* no allowed nodes */ 181 else 182 pol->v.preferred_node = first_node(*nodes); 183 return 0; 184 } 185 186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) 187 { 188 if (nodes_empty(*nodes)) 189 return -EINVAL; 190 pol->v.nodes = *nodes; 191 return 0; 192 } 193 194 /* 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if 196 * any, for the new policy. mpol_new() has already validated the nodes 197 * parameter with respect to the policy mode and flags. But, we need to 198 * handle an empty nodemask with MPOL_PREFERRED here. 199 * 200 * Must be called holding task's alloc_lock to protect task's mems_allowed 201 * and mempolicy. May also be called holding the mmap_semaphore for write. 202 */ 203 static int mpol_set_nodemask(struct mempolicy *pol, 204 const nodemask_t *nodes, struct nodemask_scratch *nsc) 205 { 206 int ret; 207 208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ 209 if (pol == NULL) 210 return 0; 211 /* Check N_MEMORY */ 212 nodes_and(nsc->mask1, 213 cpuset_current_mems_allowed, node_states[N_MEMORY]); 214 215 VM_BUG_ON(!nodes); 216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) 217 nodes = NULL; /* explicit local allocation */ 218 else { 219 if (pol->flags & MPOL_F_RELATIVE_NODES) 220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); 221 else 222 nodes_and(nsc->mask2, *nodes, nsc->mask1); 223 224 if (mpol_store_user_nodemask(pol)) 225 pol->w.user_nodemask = *nodes; 226 else 227 pol->w.cpuset_mems_allowed = 228 cpuset_current_mems_allowed; 229 } 230 231 if (nodes) 232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); 233 else 234 ret = mpol_ops[pol->mode].create(pol, NULL); 235 return ret; 236 } 237 238 /* 239 * This function just creates a new policy, does some check and simple 240 * initialization. You must invoke mpol_set_nodemask() to set nodes. 241 */ 242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, 243 nodemask_t *nodes) 244 { 245 struct mempolicy *policy; 246 247 pr_debug("setting mode %d flags %d nodes[0] %lx\n", 248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); 249 250 if (mode == MPOL_DEFAULT) { 251 if (nodes && !nodes_empty(*nodes)) 252 return ERR_PTR(-EINVAL); 253 return NULL; 254 } 255 VM_BUG_ON(!nodes); 256 257 /* 258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or 259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). 260 * All other modes require a valid pointer to a non-empty nodemask. 261 */ 262 if (mode == MPOL_PREFERRED) { 263 if (nodes_empty(*nodes)) { 264 if (((flags & MPOL_F_STATIC_NODES) || 265 (flags & MPOL_F_RELATIVE_NODES))) 266 return ERR_PTR(-EINVAL); 267 } 268 } else if (mode == MPOL_LOCAL) { 269 if (!nodes_empty(*nodes) || 270 (flags & MPOL_F_STATIC_NODES) || 271 (flags & MPOL_F_RELATIVE_NODES)) 272 return ERR_PTR(-EINVAL); 273 mode = MPOL_PREFERRED; 274 } else if (nodes_empty(*nodes)) 275 return ERR_PTR(-EINVAL); 276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); 277 if (!policy) 278 return ERR_PTR(-ENOMEM); 279 atomic_set(&policy->refcnt, 1); 280 policy->mode = mode; 281 policy->flags = flags; 282 283 return policy; 284 } 285 286 /* Slow path of a mpol destructor. */ 287 void __mpol_put(struct mempolicy *p) 288 { 289 if (!atomic_dec_and_test(&p->refcnt)) 290 return; 291 kmem_cache_free(policy_cache, p); 292 } 293 294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) 295 { 296 } 297 298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) 299 { 300 nodemask_t tmp; 301 302 if (pol->flags & MPOL_F_STATIC_NODES) 303 nodes_and(tmp, pol->w.user_nodemask, *nodes); 304 else if (pol->flags & MPOL_F_RELATIVE_NODES) 305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 306 else { 307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, 308 *nodes); 309 pol->w.cpuset_mems_allowed = *nodes; 310 } 311 312 if (nodes_empty(tmp)) 313 tmp = *nodes; 314 315 pol->v.nodes = tmp; 316 } 317 318 static void mpol_rebind_preferred(struct mempolicy *pol, 319 const nodemask_t *nodes) 320 { 321 nodemask_t tmp; 322 323 if (pol->flags & MPOL_F_STATIC_NODES) { 324 int node = first_node(pol->w.user_nodemask); 325 326 if (node_isset(node, *nodes)) { 327 pol->v.preferred_node = node; 328 pol->flags &= ~MPOL_F_LOCAL; 329 } else 330 pol->flags |= MPOL_F_LOCAL; 331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) { 332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); 333 pol->v.preferred_node = first_node(tmp); 334 } else if (!(pol->flags & MPOL_F_LOCAL)) { 335 pol->v.preferred_node = node_remap(pol->v.preferred_node, 336 pol->w.cpuset_mems_allowed, 337 *nodes); 338 pol->w.cpuset_mems_allowed = *nodes; 339 } 340 } 341 342 /* 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes 344 * 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task 346 * policies are protected by task->mems_allowed_seq to prevent a premature 347 * OOM/allocation failure due to parallel nodemask modification. 348 */ 349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) 350 { 351 if (!pol) 352 return; 353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && 354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) 355 return; 356 357 mpol_ops[pol->mode].rebind(pol, newmask); 358 } 359 360 /* 361 * Wrapper for mpol_rebind_policy() that just requires task 362 * pointer, and updates task mempolicy. 363 * 364 * Called with task's alloc_lock held. 365 */ 366 367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) 368 { 369 mpol_rebind_policy(tsk->mempolicy, new); 370 } 371 372 /* 373 * Rebind each vma in mm to new nodemask. 374 * 375 * Call holding a reference to mm. Takes mm->mmap_sem during call. 376 */ 377 378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) 379 { 380 struct vm_area_struct *vma; 381 382 down_write(&mm->mmap_sem); 383 for (vma = mm->mmap; vma; vma = vma->vm_next) 384 mpol_rebind_policy(vma->vm_policy, new); 385 up_write(&mm->mmap_sem); 386 } 387 388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { 389 [MPOL_DEFAULT] = { 390 .rebind = mpol_rebind_default, 391 }, 392 [MPOL_INTERLEAVE] = { 393 .create = mpol_new_interleave, 394 .rebind = mpol_rebind_nodemask, 395 }, 396 [MPOL_PREFERRED] = { 397 .create = mpol_new_preferred, 398 .rebind = mpol_rebind_preferred, 399 }, 400 [MPOL_BIND] = { 401 .create = mpol_new_bind, 402 .rebind = mpol_rebind_nodemask, 403 }, 404 }; 405 406 static int migrate_page_add(struct page *page, struct list_head *pagelist, 407 unsigned long flags); 408 409 struct queue_pages { 410 struct list_head *pagelist; 411 unsigned long flags; 412 nodemask_t *nmask; 413 unsigned long start; 414 unsigned long end; 415 struct vm_area_struct *first; 416 }; 417 418 /* 419 * Check if the page's nid is in qp->nmask. 420 * 421 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is 422 * in the invert of qp->nmask. 423 */ 424 static inline bool queue_pages_required(struct page *page, 425 struct queue_pages *qp) 426 { 427 int nid = page_to_nid(page); 428 unsigned long flags = qp->flags; 429 430 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); 431 } 432 433 /* 434 * queue_pages_pmd() has four possible return values: 435 * 0 - pages are placed on the right node or queued successfully. 436 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 437 * specified. 438 * 2 - THP was split. 439 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an 440 * existing page was already on a node that does not follow the 441 * policy. 442 */ 443 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, 444 unsigned long end, struct mm_walk *walk) 445 __releases(ptl) 446 { 447 int ret = 0; 448 struct page *page; 449 struct queue_pages *qp = walk->private; 450 unsigned long flags; 451 452 if (unlikely(is_pmd_migration_entry(*pmd))) { 453 ret = -EIO; 454 goto unlock; 455 } 456 page = pmd_page(*pmd); 457 if (is_huge_zero_page(page)) { 458 spin_unlock(ptl); 459 __split_huge_pmd(walk->vma, pmd, addr, false, NULL); 460 ret = 2; 461 goto out; 462 } 463 if (!queue_pages_required(page, qp)) 464 goto unlock; 465 466 flags = qp->flags; 467 /* go to thp migration */ 468 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 469 if (!vma_migratable(walk->vma) || 470 migrate_page_add(page, qp->pagelist, flags)) { 471 ret = 1; 472 goto unlock; 473 } 474 } else 475 ret = -EIO; 476 unlock: 477 spin_unlock(ptl); 478 out: 479 return ret; 480 } 481 482 /* 483 * Scan through pages checking if pages follow certain conditions, 484 * and move them to the pagelist if they do. 485 * 486 * queue_pages_pte_range() has three possible return values: 487 * 0 - pages are placed on the right node or queued successfully. 488 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were 489 * specified. 490 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already 491 * on a node that does not follow the policy. 492 */ 493 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, 494 unsigned long end, struct mm_walk *walk) 495 { 496 struct vm_area_struct *vma = walk->vma; 497 struct page *page; 498 struct queue_pages *qp = walk->private; 499 unsigned long flags = qp->flags; 500 int ret; 501 bool has_unmovable = false; 502 pte_t *pte; 503 spinlock_t *ptl; 504 505 ptl = pmd_trans_huge_lock(pmd, vma); 506 if (ptl) { 507 ret = queue_pages_pmd(pmd, ptl, addr, end, walk); 508 if (ret != 2) 509 return ret; 510 } 511 /* THP was split, fall through to pte walk */ 512 513 if (pmd_trans_unstable(pmd)) 514 return 0; 515 516 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 517 for (; addr != end; pte++, addr += PAGE_SIZE) { 518 if (!pte_present(*pte)) 519 continue; 520 page = vm_normal_page(vma, addr, *pte); 521 if (!page) 522 continue; 523 /* 524 * vm_normal_page() filters out zero pages, but there might 525 * still be PageReserved pages to skip, perhaps in a VDSO. 526 */ 527 if (PageReserved(page)) 528 continue; 529 if (!queue_pages_required(page, qp)) 530 continue; 531 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 532 /* MPOL_MF_STRICT must be specified if we get here */ 533 if (!vma_migratable(vma)) { 534 has_unmovable = true; 535 break; 536 } 537 538 /* 539 * Do not abort immediately since there may be 540 * temporary off LRU pages in the range. Still 541 * need migrate other LRU pages. 542 */ 543 if (migrate_page_add(page, qp->pagelist, flags)) 544 has_unmovable = true; 545 } else 546 break; 547 } 548 pte_unmap_unlock(pte - 1, ptl); 549 cond_resched(); 550 551 if (has_unmovable) 552 return 1; 553 554 return addr != end ? -EIO : 0; 555 } 556 557 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, 558 unsigned long addr, unsigned long end, 559 struct mm_walk *walk) 560 { 561 int ret = 0; 562 #ifdef CONFIG_HUGETLB_PAGE 563 struct queue_pages *qp = walk->private; 564 unsigned long flags = (qp->flags & MPOL_MF_VALID); 565 struct page *page; 566 spinlock_t *ptl; 567 pte_t entry; 568 569 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 570 entry = huge_ptep_get(pte); 571 if (!pte_present(entry)) 572 goto unlock; 573 page = pte_page(entry); 574 if (!queue_pages_required(page, qp)) 575 goto unlock; 576 577 if (flags == MPOL_MF_STRICT) { 578 /* 579 * STRICT alone means only detecting misplaced page and no 580 * need to further check other vma. 581 */ 582 ret = -EIO; 583 goto unlock; 584 } 585 586 if (!vma_migratable(walk->vma)) { 587 /* 588 * Must be STRICT with MOVE*, otherwise .test_walk() have 589 * stopped walking current vma. 590 * Detecting misplaced page but allow migrating pages which 591 * have been queued. 592 */ 593 ret = 1; 594 goto unlock; 595 } 596 597 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ 598 if (flags & (MPOL_MF_MOVE_ALL) || 599 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { 600 if (!isolate_huge_page(page, qp->pagelist) && 601 (flags & MPOL_MF_STRICT)) 602 /* 603 * Failed to isolate page but allow migrating pages 604 * which have been queued. 605 */ 606 ret = 1; 607 } 608 unlock: 609 spin_unlock(ptl); 610 #else 611 BUG(); 612 #endif 613 return ret; 614 } 615 616 #ifdef CONFIG_NUMA_BALANCING 617 /* 618 * This is used to mark a range of virtual addresses to be inaccessible. 619 * These are later cleared by a NUMA hinting fault. Depending on these 620 * faults, pages may be migrated for better NUMA placement. 621 * 622 * This is assuming that NUMA faults are handled using PROT_NONE. If 623 * an architecture makes a different choice, it will need further 624 * changes to the core. 625 */ 626 unsigned long change_prot_numa(struct vm_area_struct *vma, 627 unsigned long addr, unsigned long end) 628 { 629 int nr_updated; 630 631 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); 632 if (nr_updated) 633 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); 634 635 return nr_updated; 636 } 637 #else 638 static unsigned long change_prot_numa(struct vm_area_struct *vma, 639 unsigned long addr, unsigned long end) 640 { 641 return 0; 642 } 643 #endif /* CONFIG_NUMA_BALANCING */ 644 645 static int queue_pages_test_walk(unsigned long start, unsigned long end, 646 struct mm_walk *walk) 647 { 648 struct vm_area_struct *vma = walk->vma; 649 struct queue_pages *qp = walk->private; 650 unsigned long endvma = vma->vm_end; 651 unsigned long flags = qp->flags; 652 653 /* range check first */ 654 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); 655 656 if (!qp->first) { 657 qp->first = vma; 658 if (!(flags & MPOL_MF_DISCONTIG_OK) && 659 (qp->start < vma->vm_start)) 660 /* hole at head side of range */ 661 return -EFAULT; 662 } 663 if (!(flags & MPOL_MF_DISCONTIG_OK) && 664 ((vma->vm_end < qp->end) && 665 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) 666 /* hole at middle or tail of range */ 667 return -EFAULT; 668 669 /* 670 * Need check MPOL_MF_STRICT to return -EIO if possible 671 * regardless of vma_migratable 672 */ 673 if (!vma_migratable(vma) && 674 !(flags & MPOL_MF_STRICT)) 675 return 1; 676 677 if (endvma > end) 678 endvma = end; 679 680 if (flags & MPOL_MF_LAZY) { 681 /* Similar to task_numa_work, skip inaccessible VMAs */ 682 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && 683 !(vma->vm_flags & VM_MIXEDMAP)) 684 change_prot_numa(vma, start, endvma); 685 return 1; 686 } 687 688 /* queue pages from current vma */ 689 if (flags & MPOL_MF_VALID) 690 return 0; 691 return 1; 692 } 693 694 static const struct mm_walk_ops queue_pages_walk_ops = { 695 .hugetlb_entry = queue_pages_hugetlb, 696 .pmd_entry = queue_pages_pte_range, 697 .test_walk = queue_pages_test_walk, 698 }; 699 700 /* 701 * Walk through page tables and collect pages to be migrated. 702 * 703 * If pages found in a given range are on a set of nodes (determined by 704 * @nodes and @flags,) it's isolated and queued to the pagelist which is 705 * passed via @private. 706 * 707 * queue_pages_range() has three possible return values: 708 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were 709 * specified. 710 * 0 - queue pages successfully or no misplaced page. 711 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or 712 * memory range specified by nodemask and maxnode points outside 713 * your accessible address space (-EFAULT) 714 */ 715 static int 716 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, 717 nodemask_t *nodes, unsigned long flags, 718 struct list_head *pagelist) 719 { 720 int err; 721 struct queue_pages qp = { 722 .pagelist = pagelist, 723 .flags = flags, 724 .nmask = nodes, 725 .start = start, 726 .end = end, 727 .first = NULL, 728 }; 729 730 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); 731 732 if (!qp.first) 733 /* whole range in hole */ 734 err = -EFAULT; 735 736 return err; 737 } 738 739 /* 740 * Apply policy to a single VMA 741 * This must be called with the mmap_sem held for writing. 742 */ 743 static int vma_replace_policy(struct vm_area_struct *vma, 744 struct mempolicy *pol) 745 { 746 int err; 747 struct mempolicy *old; 748 struct mempolicy *new; 749 750 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", 751 vma->vm_start, vma->vm_end, vma->vm_pgoff, 752 vma->vm_ops, vma->vm_file, 753 vma->vm_ops ? vma->vm_ops->set_policy : NULL); 754 755 new = mpol_dup(pol); 756 if (IS_ERR(new)) 757 return PTR_ERR(new); 758 759 if (vma->vm_ops && vma->vm_ops->set_policy) { 760 err = vma->vm_ops->set_policy(vma, new); 761 if (err) 762 goto err_out; 763 } 764 765 old = vma->vm_policy; 766 vma->vm_policy = new; /* protected by mmap_sem */ 767 mpol_put(old); 768 769 return 0; 770 err_out: 771 mpol_put(new); 772 return err; 773 } 774 775 /* Step 2: apply policy to a range and do splits. */ 776 static int mbind_range(struct mm_struct *mm, unsigned long start, 777 unsigned long end, struct mempolicy *new_pol) 778 { 779 struct vm_area_struct *next; 780 struct vm_area_struct *prev; 781 struct vm_area_struct *vma; 782 int err = 0; 783 pgoff_t pgoff; 784 unsigned long vmstart; 785 unsigned long vmend; 786 787 vma = find_vma(mm, start); 788 VM_BUG_ON(!vma); 789 790 prev = vma->vm_prev; 791 if (start > vma->vm_start) 792 prev = vma; 793 794 for (; vma && vma->vm_start < end; prev = vma, vma = next) { 795 next = vma->vm_next; 796 vmstart = max(start, vma->vm_start); 797 vmend = min(end, vma->vm_end); 798 799 if (mpol_equal(vma_policy(vma), new_pol)) 800 continue; 801 802 pgoff = vma->vm_pgoff + 803 ((vmstart - vma->vm_start) >> PAGE_SHIFT); 804 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, 805 vma->anon_vma, vma->vm_file, pgoff, 806 new_pol, vma->vm_userfaultfd_ctx); 807 if (prev) { 808 vma = prev; 809 next = vma->vm_next; 810 if (mpol_equal(vma_policy(vma), new_pol)) 811 continue; 812 /* vma_merge() joined vma && vma->next, case 8 */ 813 goto replace; 814 } 815 if (vma->vm_start != vmstart) { 816 err = split_vma(vma->vm_mm, vma, vmstart, 1); 817 if (err) 818 goto out; 819 } 820 if (vma->vm_end != vmend) { 821 err = split_vma(vma->vm_mm, vma, vmend, 0); 822 if (err) 823 goto out; 824 } 825 replace: 826 err = vma_replace_policy(vma, new_pol); 827 if (err) 828 goto out; 829 } 830 831 out: 832 return err; 833 } 834 835 /* Set the process memory policy */ 836 static long do_set_mempolicy(unsigned short mode, unsigned short flags, 837 nodemask_t *nodes) 838 { 839 struct mempolicy *new, *old; 840 NODEMASK_SCRATCH(scratch); 841 int ret; 842 843 if (!scratch) 844 return -ENOMEM; 845 846 new = mpol_new(mode, flags, nodes); 847 if (IS_ERR(new)) { 848 ret = PTR_ERR(new); 849 goto out; 850 } 851 852 task_lock(current); 853 ret = mpol_set_nodemask(new, nodes, scratch); 854 if (ret) { 855 task_unlock(current); 856 mpol_put(new); 857 goto out; 858 } 859 old = current->mempolicy; 860 current->mempolicy = new; 861 if (new && new->mode == MPOL_INTERLEAVE) 862 current->il_prev = MAX_NUMNODES-1; 863 task_unlock(current); 864 mpol_put(old); 865 ret = 0; 866 out: 867 NODEMASK_SCRATCH_FREE(scratch); 868 return ret; 869 } 870 871 /* 872 * Return nodemask for policy for get_mempolicy() query 873 * 874 * Called with task's alloc_lock held 875 */ 876 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) 877 { 878 nodes_clear(*nodes); 879 if (p == &default_policy) 880 return; 881 882 switch (p->mode) { 883 case MPOL_BIND: 884 case MPOL_INTERLEAVE: 885 *nodes = p->v.nodes; 886 break; 887 case MPOL_PREFERRED: 888 if (!(p->flags & MPOL_F_LOCAL)) 889 node_set(p->v.preferred_node, *nodes); 890 /* else return empty node mask for local allocation */ 891 break; 892 default: 893 BUG(); 894 } 895 } 896 897 static int lookup_node(struct mm_struct *mm, unsigned long addr) 898 { 899 struct page *p = NULL; 900 int err; 901 902 int locked = 1; 903 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); 904 if (err == 0) { 905 /* E.g. GUP interrupted by fatal signal */ 906 err = -EFAULT; 907 } else if (err > 0) { 908 err = page_to_nid(p); 909 put_page(p); 910 } 911 if (locked) 912 up_read(&mm->mmap_sem); 913 return err; 914 } 915 916 /* Retrieve NUMA policy */ 917 static long do_get_mempolicy(int *policy, nodemask_t *nmask, 918 unsigned long addr, unsigned long flags) 919 { 920 int err; 921 struct mm_struct *mm = current->mm; 922 struct vm_area_struct *vma = NULL; 923 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; 924 925 if (flags & 926 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) 927 return -EINVAL; 928 929 if (flags & MPOL_F_MEMS_ALLOWED) { 930 if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) 931 return -EINVAL; 932 *policy = 0; /* just so it's initialized */ 933 task_lock(current); 934 *nmask = cpuset_current_mems_allowed; 935 task_unlock(current); 936 return 0; 937 } 938 939 if (flags & MPOL_F_ADDR) { 940 /* 941 * Do NOT fall back to task policy if the 942 * vma/shared policy at addr is NULL. We 943 * want to return MPOL_DEFAULT in this case. 944 */ 945 down_read(&mm->mmap_sem); 946 vma = find_vma_intersection(mm, addr, addr+1); 947 if (!vma) { 948 up_read(&mm->mmap_sem); 949 return -EFAULT; 950 } 951 if (vma->vm_ops && vma->vm_ops->get_policy) 952 pol = vma->vm_ops->get_policy(vma, addr); 953 else 954 pol = vma->vm_policy; 955 } else if (addr) 956 return -EINVAL; 957 958 if (!pol) 959 pol = &default_policy; /* indicates default behavior */ 960 961 if (flags & MPOL_F_NODE) { 962 if (flags & MPOL_F_ADDR) { 963 /* 964 * Take a refcount on the mpol, lookup_node() 965 * wil drop the mmap_sem, so after calling 966 * lookup_node() only "pol" remains valid, "vma" 967 * is stale. 968 */ 969 pol_refcount = pol; 970 vma = NULL; 971 mpol_get(pol); 972 err = lookup_node(mm, addr); 973 if (err < 0) 974 goto out; 975 *policy = err; 976 } else if (pol == current->mempolicy && 977 pol->mode == MPOL_INTERLEAVE) { 978 *policy = next_node_in(current->il_prev, pol->v.nodes); 979 } else { 980 err = -EINVAL; 981 goto out; 982 } 983 } else { 984 *policy = pol == &default_policy ? MPOL_DEFAULT : 985 pol->mode; 986 /* 987 * Internal mempolicy flags must be masked off before exposing 988 * the policy to userspace. 989 */ 990 *policy |= (pol->flags & MPOL_MODE_FLAGS); 991 } 992 993 err = 0; 994 if (nmask) { 995 if (mpol_store_user_nodemask(pol)) { 996 *nmask = pol->w.user_nodemask; 997 } else { 998 task_lock(current); 999 get_policy_nodemask(pol, nmask); 1000 task_unlock(current); 1001 } 1002 } 1003 1004 out: 1005 mpol_cond_put(pol); 1006 if (vma) 1007 up_read(&mm->mmap_sem); 1008 if (pol_refcount) 1009 mpol_put(pol_refcount); 1010 return err; 1011 } 1012 1013 #ifdef CONFIG_MIGRATION 1014 /* 1015 * page migration, thp tail pages can be passed. 1016 */ 1017 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1018 unsigned long flags) 1019 { 1020 struct page *head = compound_head(page); 1021 /* 1022 * Avoid migrating a page that is shared with others. 1023 */ 1024 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { 1025 if (!isolate_lru_page(head)) { 1026 list_add_tail(&head->lru, pagelist); 1027 mod_node_page_state(page_pgdat(head), 1028 NR_ISOLATED_ANON + page_is_file_lru(head), 1029 hpage_nr_pages(head)); 1030 } else if (flags & MPOL_MF_STRICT) { 1031 /* 1032 * Non-movable page may reach here. And, there may be 1033 * temporary off LRU pages or non-LRU movable pages. 1034 * Treat them as unmovable pages since they can't be 1035 * isolated, so they can't be moved at the moment. It 1036 * should return -EIO for this case too. 1037 */ 1038 return -EIO; 1039 } 1040 } 1041 1042 return 0; 1043 } 1044 1045 /* page allocation callback for NUMA node migration */ 1046 struct page *alloc_new_node_page(struct page *page, unsigned long node) 1047 { 1048 if (PageHuge(page)) 1049 return alloc_huge_page_node(page_hstate(compound_head(page)), 1050 node); 1051 else if (PageTransHuge(page)) { 1052 struct page *thp; 1053 1054 thp = alloc_pages_node(node, 1055 (GFP_TRANSHUGE | __GFP_THISNODE), 1056 HPAGE_PMD_ORDER); 1057 if (!thp) 1058 return NULL; 1059 prep_transhuge_page(thp); 1060 return thp; 1061 } else 1062 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE | 1063 __GFP_THISNODE, 0); 1064 } 1065 1066 /* 1067 * Migrate pages from one node to a target node. 1068 * Returns error or the number of pages not migrated. 1069 */ 1070 static int migrate_to_node(struct mm_struct *mm, int source, int dest, 1071 int flags) 1072 { 1073 nodemask_t nmask; 1074 LIST_HEAD(pagelist); 1075 int err = 0; 1076 1077 nodes_clear(nmask); 1078 node_set(source, nmask); 1079 1080 /* 1081 * This does not "check" the range but isolates all pages that 1082 * need migration. Between passing in the full user address 1083 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. 1084 */ 1085 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); 1086 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, 1087 flags | MPOL_MF_DISCONTIG_OK, &pagelist); 1088 1089 if (!list_empty(&pagelist)) { 1090 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest, 1091 MIGRATE_SYNC, MR_SYSCALL); 1092 if (err) 1093 putback_movable_pages(&pagelist); 1094 } 1095 1096 return err; 1097 } 1098 1099 /* 1100 * Move pages between the two nodesets so as to preserve the physical 1101 * layout as much as possible. 1102 * 1103 * Returns the number of page that could not be moved. 1104 */ 1105 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1106 const nodemask_t *to, int flags) 1107 { 1108 int busy = 0; 1109 int err; 1110 nodemask_t tmp; 1111 1112 err = migrate_prep(); 1113 if (err) 1114 return err; 1115 1116 down_read(&mm->mmap_sem); 1117 1118 /* 1119 * Find a 'source' bit set in 'tmp' whose corresponding 'dest' 1120 * bit in 'to' is not also set in 'tmp'. Clear the found 'source' 1121 * bit in 'tmp', and return that <source, dest> pair for migration. 1122 * The pair of nodemasks 'to' and 'from' define the map. 1123 * 1124 * If no pair of bits is found that way, fallback to picking some 1125 * pair of 'source' and 'dest' bits that are not the same. If the 1126 * 'source' and 'dest' bits are the same, this represents a node 1127 * that will be migrating to itself, so no pages need move. 1128 * 1129 * If no bits are left in 'tmp', or if all remaining bits left 1130 * in 'tmp' correspond to the same bit in 'to', return false 1131 * (nothing left to migrate). 1132 * 1133 * This lets us pick a pair of nodes to migrate between, such that 1134 * if possible the dest node is not already occupied by some other 1135 * source node, minimizing the risk of overloading the memory on a 1136 * node that would happen if we migrated incoming memory to a node 1137 * before migrating outgoing memory source that same node. 1138 * 1139 * A single scan of tmp is sufficient. As we go, we remember the 1140 * most recent <s, d> pair that moved (s != d). If we find a pair 1141 * that not only moved, but what's better, moved to an empty slot 1142 * (d is not set in tmp), then we break out then, with that pair. 1143 * Otherwise when we finish scanning from_tmp, we at least have the 1144 * most recent <s, d> pair that moved. If we get all the way through 1145 * the scan of tmp without finding any node that moved, much less 1146 * moved to an empty node, then there is nothing left worth migrating. 1147 */ 1148 1149 tmp = *from; 1150 while (!nodes_empty(tmp)) { 1151 int s,d; 1152 int source = NUMA_NO_NODE; 1153 int dest = 0; 1154 1155 for_each_node_mask(s, tmp) { 1156 1157 /* 1158 * do_migrate_pages() tries to maintain the relative 1159 * node relationship of the pages established between 1160 * threads and memory areas. 1161 * 1162 * However if the number of source nodes is not equal to 1163 * the number of destination nodes we can not preserve 1164 * this node relative relationship. In that case, skip 1165 * copying memory from a node that is in the destination 1166 * mask. 1167 * 1168 * Example: [2,3,4] -> [3,4,5] moves everything. 1169 * [0-7] - > [3,4,5] moves only 0,1,2,6,7. 1170 */ 1171 1172 if ((nodes_weight(*from) != nodes_weight(*to)) && 1173 (node_isset(s, *to))) 1174 continue; 1175 1176 d = node_remap(s, *from, *to); 1177 if (s == d) 1178 continue; 1179 1180 source = s; /* Node moved. Memorize */ 1181 dest = d; 1182 1183 /* dest not in remaining from nodes? */ 1184 if (!node_isset(dest, tmp)) 1185 break; 1186 } 1187 if (source == NUMA_NO_NODE) 1188 break; 1189 1190 node_clear(source, tmp); 1191 err = migrate_to_node(mm, source, dest, flags); 1192 if (err > 0) 1193 busy += err; 1194 if (err < 0) 1195 break; 1196 } 1197 up_read(&mm->mmap_sem); 1198 if (err < 0) 1199 return err; 1200 return busy; 1201 1202 } 1203 1204 /* 1205 * Allocate a new page for page migration based on vma policy. 1206 * Start by assuming the page is mapped by the same vma as contains @start. 1207 * Search forward from there, if not. N.B., this assumes that the 1208 * list of pages handed to migrate_pages()--which is how we get here-- 1209 * is in virtual address order. 1210 */ 1211 static struct page *new_page(struct page *page, unsigned long start) 1212 { 1213 struct vm_area_struct *vma; 1214 unsigned long uninitialized_var(address); 1215 1216 vma = find_vma(current->mm, start); 1217 while (vma) { 1218 address = page_address_in_vma(page, vma); 1219 if (address != -EFAULT) 1220 break; 1221 vma = vma->vm_next; 1222 } 1223 1224 if (PageHuge(page)) { 1225 return alloc_huge_page_vma(page_hstate(compound_head(page)), 1226 vma, address); 1227 } else if (PageTransHuge(page)) { 1228 struct page *thp; 1229 1230 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, 1231 HPAGE_PMD_ORDER); 1232 if (!thp) 1233 return NULL; 1234 prep_transhuge_page(thp); 1235 return thp; 1236 } 1237 /* 1238 * if !vma, alloc_page_vma() will use task or system default policy 1239 */ 1240 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, 1241 vma, address); 1242 } 1243 #else 1244 1245 static int migrate_page_add(struct page *page, struct list_head *pagelist, 1246 unsigned long flags) 1247 { 1248 return -EIO; 1249 } 1250 1251 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, 1252 const nodemask_t *to, int flags) 1253 { 1254 return -ENOSYS; 1255 } 1256 1257 static struct page *new_page(struct page *page, unsigned long start) 1258 { 1259 return NULL; 1260 } 1261 #endif 1262 1263 static long do_mbind(unsigned long start, unsigned long len, 1264 unsigned short mode, unsigned short mode_flags, 1265 nodemask_t *nmask, unsigned long flags) 1266 { 1267 struct mm_struct *mm = current->mm; 1268 struct mempolicy *new; 1269 unsigned long end; 1270 int err; 1271 int ret; 1272 LIST_HEAD(pagelist); 1273 1274 if (flags & ~(unsigned long)MPOL_MF_VALID) 1275 return -EINVAL; 1276 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1277 return -EPERM; 1278 1279 if (start & ~PAGE_MASK) 1280 return -EINVAL; 1281 1282 if (mode == MPOL_DEFAULT) 1283 flags &= ~MPOL_MF_STRICT; 1284 1285 len = (len + PAGE_SIZE - 1) & PAGE_MASK; 1286 end = start + len; 1287 1288 if (end < start) 1289 return -EINVAL; 1290 if (end == start) 1291 return 0; 1292 1293 new = mpol_new(mode, mode_flags, nmask); 1294 if (IS_ERR(new)) 1295 return PTR_ERR(new); 1296 1297 if (flags & MPOL_MF_LAZY) 1298 new->flags |= MPOL_F_MOF; 1299 1300 /* 1301 * If we are using the default policy then operation 1302 * on discontinuous address spaces is okay after all 1303 */ 1304 if (!new) 1305 flags |= MPOL_MF_DISCONTIG_OK; 1306 1307 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", 1308 start, start + len, mode, mode_flags, 1309 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); 1310 1311 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { 1312 1313 err = migrate_prep(); 1314 if (err) 1315 goto mpol_out; 1316 } 1317 { 1318 NODEMASK_SCRATCH(scratch); 1319 if (scratch) { 1320 down_write(&mm->mmap_sem); 1321 task_lock(current); 1322 err = mpol_set_nodemask(new, nmask, scratch); 1323 task_unlock(current); 1324 if (err) 1325 up_write(&mm->mmap_sem); 1326 } else 1327 err = -ENOMEM; 1328 NODEMASK_SCRATCH_FREE(scratch); 1329 } 1330 if (err) 1331 goto mpol_out; 1332 1333 ret = queue_pages_range(mm, start, end, nmask, 1334 flags | MPOL_MF_INVERT, &pagelist); 1335 1336 if (ret < 0) { 1337 err = ret; 1338 goto up_out; 1339 } 1340 1341 err = mbind_range(mm, start, end, new); 1342 1343 if (!err) { 1344 int nr_failed = 0; 1345 1346 if (!list_empty(&pagelist)) { 1347 WARN_ON_ONCE(flags & MPOL_MF_LAZY); 1348 nr_failed = migrate_pages(&pagelist, new_page, NULL, 1349 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); 1350 if (nr_failed) 1351 putback_movable_pages(&pagelist); 1352 } 1353 1354 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) 1355 err = -EIO; 1356 } else { 1357 up_out: 1358 if (!list_empty(&pagelist)) 1359 putback_movable_pages(&pagelist); 1360 } 1361 1362 up_write(&mm->mmap_sem); 1363 mpol_out: 1364 mpol_put(new); 1365 return err; 1366 } 1367 1368 /* 1369 * User space interface with variable sized bitmaps for nodelists. 1370 */ 1371 1372 /* Copy a node mask from user space. */ 1373 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, 1374 unsigned long maxnode) 1375 { 1376 unsigned long k; 1377 unsigned long t; 1378 unsigned long nlongs; 1379 unsigned long endmask; 1380 1381 --maxnode; 1382 nodes_clear(*nodes); 1383 if (maxnode == 0 || !nmask) 1384 return 0; 1385 if (maxnode > PAGE_SIZE*BITS_PER_BYTE) 1386 return -EINVAL; 1387 1388 nlongs = BITS_TO_LONGS(maxnode); 1389 if ((maxnode % BITS_PER_LONG) == 0) 1390 endmask = ~0UL; 1391 else 1392 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; 1393 1394 /* 1395 * When the user specified more nodes than supported just check 1396 * if the non supported part is all zero. 1397 * 1398 * If maxnode have more longs than MAX_NUMNODES, check 1399 * the bits in that area first. And then go through to 1400 * check the rest bits which equal or bigger than MAX_NUMNODES. 1401 * Otherwise, just check bits [MAX_NUMNODES, maxnode). 1402 */ 1403 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { 1404 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { 1405 if (get_user(t, nmask + k)) 1406 return -EFAULT; 1407 if (k == nlongs - 1) { 1408 if (t & endmask) 1409 return -EINVAL; 1410 } else if (t) 1411 return -EINVAL; 1412 } 1413 nlongs = BITS_TO_LONGS(MAX_NUMNODES); 1414 endmask = ~0UL; 1415 } 1416 1417 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { 1418 unsigned long valid_mask = endmask; 1419 1420 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); 1421 if (get_user(t, nmask + nlongs - 1)) 1422 return -EFAULT; 1423 if (t & valid_mask) 1424 return -EINVAL; 1425 } 1426 1427 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) 1428 return -EFAULT; 1429 nodes_addr(*nodes)[nlongs-1] &= endmask; 1430 return 0; 1431 } 1432 1433 /* Copy a kernel node mask to user space */ 1434 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, 1435 nodemask_t *nodes) 1436 { 1437 unsigned long copy = ALIGN(maxnode-1, 64) / 8; 1438 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); 1439 1440 if (copy > nbytes) { 1441 if (copy > PAGE_SIZE) 1442 return -EINVAL; 1443 if (clear_user((char __user *)mask + nbytes, copy - nbytes)) 1444 return -EFAULT; 1445 copy = nbytes; 1446 } 1447 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; 1448 } 1449 1450 static long kernel_mbind(unsigned long start, unsigned long len, 1451 unsigned long mode, const unsigned long __user *nmask, 1452 unsigned long maxnode, unsigned int flags) 1453 { 1454 nodemask_t nodes; 1455 int err; 1456 unsigned short mode_flags; 1457 1458 start = untagged_addr(start); 1459 mode_flags = mode & MPOL_MODE_FLAGS; 1460 mode &= ~MPOL_MODE_FLAGS; 1461 if (mode >= MPOL_MAX) 1462 return -EINVAL; 1463 if ((mode_flags & MPOL_F_STATIC_NODES) && 1464 (mode_flags & MPOL_F_RELATIVE_NODES)) 1465 return -EINVAL; 1466 err = get_nodes(&nodes, nmask, maxnode); 1467 if (err) 1468 return err; 1469 return do_mbind(start, len, mode, mode_flags, &nodes, flags); 1470 } 1471 1472 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, 1473 unsigned long, mode, const unsigned long __user *, nmask, 1474 unsigned long, maxnode, unsigned int, flags) 1475 { 1476 return kernel_mbind(start, len, mode, nmask, maxnode, flags); 1477 } 1478 1479 /* Set the process memory policy */ 1480 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, 1481 unsigned long maxnode) 1482 { 1483 int err; 1484 nodemask_t nodes; 1485 unsigned short flags; 1486 1487 flags = mode & MPOL_MODE_FLAGS; 1488 mode &= ~MPOL_MODE_FLAGS; 1489 if ((unsigned int)mode >= MPOL_MAX) 1490 return -EINVAL; 1491 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) 1492 return -EINVAL; 1493 err = get_nodes(&nodes, nmask, maxnode); 1494 if (err) 1495 return err; 1496 return do_set_mempolicy(mode, flags, &nodes); 1497 } 1498 1499 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, 1500 unsigned long, maxnode) 1501 { 1502 return kernel_set_mempolicy(mode, nmask, maxnode); 1503 } 1504 1505 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, 1506 const unsigned long __user *old_nodes, 1507 const unsigned long __user *new_nodes) 1508 { 1509 struct mm_struct *mm = NULL; 1510 struct task_struct *task; 1511 nodemask_t task_nodes; 1512 int err; 1513 nodemask_t *old; 1514 nodemask_t *new; 1515 NODEMASK_SCRATCH(scratch); 1516 1517 if (!scratch) 1518 return -ENOMEM; 1519 1520 old = &scratch->mask1; 1521 new = &scratch->mask2; 1522 1523 err = get_nodes(old, old_nodes, maxnode); 1524 if (err) 1525 goto out; 1526 1527 err = get_nodes(new, new_nodes, maxnode); 1528 if (err) 1529 goto out; 1530 1531 /* Find the mm_struct */ 1532 rcu_read_lock(); 1533 task = pid ? find_task_by_vpid(pid) : current; 1534 if (!task) { 1535 rcu_read_unlock(); 1536 err = -ESRCH; 1537 goto out; 1538 } 1539 get_task_struct(task); 1540 1541 err = -EINVAL; 1542 1543 /* 1544 * Check if this process has the right to modify the specified process. 1545 * Use the regular "ptrace_may_access()" checks. 1546 */ 1547 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1548 rcu_read_unlock(); 1549 err = -EPERM; 1550 goto out_put; 1551 } 1552 rcu_read_unlock(); 1553 1554 task_nodes = cpuset_mems_allowed(task); 1555 /* Is the user allowed to access the target nodes? */ 1556 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { 1557 err = -EPERM; 1558 goto out_put; 1559 } 1560 1561 task_nodes = cpuset_mems_allowed(current); 1562 nodes_and(*new, *new, task_nodes); 1563 if (nodes_empty(*new)) 1564 goto out_put; 1565 1566 err = security_task_movememory(task); 1567 if (err) 1568 goto out_put; 1569 1570 mm = get_task_mm(task); 1571 put_task_struct(task); 1572 1573 if (!mm) { 1574 err = -EINVAL; 1575 goto out; 1576 } 1577 1578 err = do_migrate_pages(mm, old, new, 1579 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); 1580 1581 mmput(mm); 1582 out: 1583 NODEMASK_SCRATCH_FREE(scratch); 1584 1585 return err; 1586 1587 out_put: 1588 put_task_struct(task); 1589 goto out; 1590 1591 } 1592 1593 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, 1594 const unsigned long __user *, old_nodes, 1595 const unsigned long __user *, new_nodes) 1596 { 1597 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); 1598 } 1599 1600 1601 /* Retrieve NUMA policy */ 1602 static int kernel_get_mempolicy(int __user *policy, 1603 unsigned long __user *nmask, 1604 unsigned long maxnode, 1605 unsigned long addr, 1606 unsigned long flags) 1607 { 1608 int err; 1609 int uninitialized_var(pval); 1610 nodemask_t nodes; 1611 1612 addr = untagged_addr(addr); 1613 1614 if (nmask != NULL && maxnode < nr_node_ids) 1615 return -EINVAL; 1616 1617 err = do_get_mempolicy(&pval, &nodes, addr, flags); 1618 1619 if (err) 1620 return err; 1621 1622 if (policy && put_user(pval, policy)) 1623 return -EFAULT; 1624 1625 if (nmask) 1626 err = copy_nodes_to_user(nmask, maxnode, &nodes); 1627 1628 return err; 1629 } 1630 1631 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1632 unsigned long __user *, nmask, unsigned long, maxnode, 1633 unsigned long, addr, unsigned long, flags) 1634 { 1635 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); 1636 } 1637 1638 #ifdef CONFIG_COMPAT 1639 1640 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, 1641 compat_ulong_t __user *, nmask, 1642 compat_ulong_t, maxnode, 1643 compat_ulong_t, addr, compat_ulong_t, flags) 1644 { 1645 long err; 1646 unsigned long __user *nm = NULL; 1647 unsigned long nr_bits, alloc_size; 1648 DECLARE_BITMAP(bm, MAX_NUMNODES); 1649 1650 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); 1651 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1652 1653 if (nmask) 1654 nm = compat_alloc_user_space(alloc_size); 1655 1656 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); 1657 1658 if (!err && nmask) { 1659 unsigned long copy_size; 1660 copy_size = min_t(unsigned long, sizeof(bm), alloc_size); 1661 err = copy_from_user(bm, nm, copy_size); 1662 /* ensure entire bitmap is zeroed */ 1663 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); 1664 err |= compat_put_bitmap(nmask, bm, nr_bits); 1665 } 1666 1667 return err; 1668 } 1669 1670 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, 1671 compat_ulong_t, maxnode) 1672 { 1673 unsigned long __user *nm = NULL; 1674 unsigned long nr_bits, alloc_size; 1675 DECLARE_BITMAP(bm, MAX_NUMNODES); 1676 1677 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1678 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1679 1680 if (nmask) { 1681 if (compat_get_bitmap(bm, nmask, nr_bits)) 1682 return -EFAULT; 1683 nm = compat_alloc_user_space(alloc_size); 1684 if (copy_to_user(nm, bm, alloc_size)) 1685 return -EFAULT; 1686 } 1687 1688 return kernel_set_mempolicy(mode, nm, nr_bits+1); 1689 } 1690 1691 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, 1692 compat_ulong_t, mode, compat_ulong_t __user *, nmask, 1693 compat_ulong_t, maxnode, compat_ulong_t, flags) 1694 { 1695 unsigned long __user *nm = NULL; 1696 unsigned long nr_bits, alloc_size; 1697 nodemask_t bm; 1698 1699 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); 1700 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1701 1702 if (nmask) { 1703 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) 1704 return -EFAULT; 1705 nm = compat_alloc_user_space(alloc_size); 1706 if (copy_to_user(nm, nodes_addr(bm), alloc_size)) 1707 return -EFAULT; 1708 } 1709 1710 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); 1711 } 1712 1713 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, 1714 compat_ulong_t, maxnode, 1715 const compat_ulong_t __user *, old_nodes, 1716 const compat_ulong_t __user *, new_nodes) 1717 { 1718 unsigned long __user *old = NULL; 1719 unsigned long __user *new = NULL; 1720 nodemask_t tmp_mask; 1721 unsigned long nr_bits; 1722 unsigned long size; 1723 1724 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); 1725 size = ALIGN(nr_bits, BITS_PER_LONG) / 8; 1726 if (old_nodes) { 1727 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) 1728 return -EFAULT; 1729 old = compat_alloc_user_space(new_nodes ? size * 2 : size); 1730 if (new_nodes) 1731 new = old + size / sizeof(unsigned long); 1732 if (copy_to_user(old, nodes_addr(tmp_mask), size)) 1733 return -EFAULT; 1734 } 1735 if (new_nodes) { 1736 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) 1737 return -EFAULT; 1738 if (new == NULL) 1739 new = compat_alloc_user_space(size); 1740 if (copy_to_user(new, nodes_addr(tmp_mask), size)) 1741 return -EFAULT; 1742 } 1743 return kernel_migrate_pages(pid, nr_bits + 1, old, new); 1744 } 1745 1746 #endif /* CONFIG_COMPAT */ 1747 1748 bool vma_migratable(struct vm_area_struct *vma) 1749 { 1750 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1751 return false; 1752 1753 /* 1754 * DAX device mappings require predictable access latency, so avoid 1755 * incurring periodic faults. 1756 */ 1757 if (vma_is_dax(vma)) 1758 return false; 1759 1760 if (is_vm_hugetlb_page(vma) && 1761 !hugepage_migration_supported(hstate_vma(vma))) 1762 return false; 1763 1764 /* 1765 * Migration allocates pages in the highest zone. If we cannot 1766 * do so then migration (at least from node to node) is not 1767 * possible. 1768 */ 1769 if (vma->vm_file && 1770 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) 1771 < policy_zone) 1772 return false; 1773 return true; 1774 } 1775 1776 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, 1777 unsigned long addr) 1778 { 1779 struct mempolicy *pol = NULL; 1780 1781 if (vma) { 1782 if (vma->vm_ops && vma->vm_ops->get_policy) { 1783 pol = vma->vm_ops->get_policy(vma, addr); 1784 } else if (vma->vm_policy) { 1785 pol = vma->vm_policy; 1786 1787 /* 1788 * shmem_alloc_page() passes MPOL_F_SHARED policy with 1789 * a pseudo vma whose vma->vm_ops=NULL. Take a reference 1790 * count on these policies which will be dropped by 1791 * mpol_cond_put() later 1792 */ 1793 if (mpol_needs_cond_ref(pol)) 1794 mpol_get(pol); 1795 } 1796 } 1797 1798 return pol; 1799 } 1800 1801 /* 1802 * get_vma_policy(@vma, @addr) 1803 * @vma: virtual memory area whose policy is sought 1804 * @addr: address in @vma for shared policy lookup 1805 * 1806 * Returns effective policy for a VMA at specified address. 1807 * Falls back to current->mempolicy or system default policy, as necessary. 1808 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference 1809 * count--added by the get_policy() vm_op, as appropriate--to protect against 1810 * freeing by another task. It is the caller's responsibility to free the 1811 * extra reference for shared policies. 1812 */ 1813 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, 1814 unsigned long addr) 1815 { 1816 struct mempolicy *pol = __get_vma_policy(vma, addr); 1817 1818 if (!pol) 1819 pol = get_task_policy(current); 1820 1821 return pol; 1822 } 1823 1824 bool vma_policy_mof(struct vm_area_struct *vma) 1825 { 1826 struct mempolicy *pol; 1827 1828 if (vma->vm_ops && vma->vm_ops->get_policy) { 1829 bool ret = false; 1830 1831 pol = vma->vm_ops->get_policy(vma, vma->vm_start); 1832 if (pol && (pol->flags & MPOL_F_MOF)) 1833 ret = true; 1834 mpol_cond_put(pol); 1835 1836 return ret; 1837 } 1838 1839 pol = vma->vm_policy; 1840 if (!pol) 1841 pol = get_task_policy(current); 1842 1843 return pol->flags & MPOL_F_MOF; 1844 } 1845 1846 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) 1847 { 1848 enum zone_type dynamic_policy_zone = policy_zone; 1849 1850 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); 1851 1852 /* 1853 * if policy->v.nodes has movable memory only, 1854 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. 1855 * 1856 * policy->v.nodes is intersect with node_states[N_MEMORY]. 1857 * so if the following test faile, it implies 1858 * policy->v.nodes has movable memory only. 1859 */ 1860 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) 1861 dynamic_policy_zone = ZONE_MOVABLE; 1862 1863 return zone >= dynamic_policy_zone; 1864 } 1865 1866 /* 1867 * Return a nodemask representing a mempolicy for filtering nodes for 1868 * page allocation 1869 */ 1870 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) 1871 { 1872 /* Lower zones don't get a nodemask applied for MPOL_BIND */ 1873 if (unlikely(policy->mode == MPOL_BIND) && 1874 apply_policy_zone(policy, gfp_zone(gfp)) && 1875 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) 1876 return &policy->v.nodes; 1877 1878 return NULL; 1879 } 1880 1881 /* Return the node id preferred by the given mempolicy, or the given id */ 1882 static int policy_node(gfp_t gfp, struct mempolicy *policy, 1883 int nd) 1884 { 1885 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) 1886 nd = policy->v.preferred_node; 1887 else { 1888 /* 1889 * __GFP_THISNODE shouldn't even be used with the bind policy 1890 * because we might easily break the expectation to stay on the 1891 * requested node and not break the policy. 1892 */ 1893 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); 1894 } 1895 1896 return nd; 1897 } 1898 1899 /* Do dynamic interleaving for a process */ 1900 static unsigned interleave_nodes(struct mempolicy *policy) 1901 { 1902 unsigned next; 1903 struct task_struct *me = current; 1904 1905 next = next_node_in(me->il_prev, policy->v.nodes); 1906 if (next < MAX_NUMNODES) 1907 me->il_prev = next; 1908 return next; 1909 } 1910 1911 /* 1912 * Depending on the memory policy provide a node from which to allocate the 1913 * next slab entry. 1914 */ 1915 unsigned int mempolicy_slab_node(void) 1916 { 1917 struct mempolicy *policy; 1918 int node = numa_mem_id(); 1919 1920 if (in_interrupt()) 1921 return node; 1922 1923 policy = current->mempolicy; 1924 if (!policy || policy->flags & MPOL_F_LOCAL) 1925 return node; 1926 1927 switch (policy->mode) { 1928 case MPOL_PREFERRED: 1929 /* 1930 * handled MPOL_F_LOCAL above 1931 */ 1932 return policy->v.preferred_node; 1933 1934 case MPOL_INTERLEAVE: 1935 return interleave_nodes(policy); 1936 1937 case MPOL_BIND: { 1938 struct zoneref *z; 1939 1940 /* 1941 * Follow bind policy behavior and start allocation at the 1942 * first node. 1943 */ 1944 struct zonelist *zonelist; 1945 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); 1946 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; 1947 z = first_zones_zonelist(zonelist, highest_zoneidx, 1948 &policy->v.nodes); 1949 return z->zone ? zone_to_nid(z->zone) : node; 1950 } 1951 1952 default: 1953 BUG(); 1954 } 1955 } 1956 1957 /* 1958 * Do static interleaving for a VMA with known offset @n. Returns the n'th 1959 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the 1960 * number of present nodes. 1961 */ 1962 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) 1963 { 1964 unsigned nnodes = nodes_weight(pol->v.nodes); 1965 unsigned target; 1966 int i; 1967 int nid; 1968 1969 if (!nnodes) 1970 return numa_node_id(); 1971 target = (unsigned int)n % nnodes; 1972 nid = first_node(pol->v.nodes); 1973 for (i = 0; i < target; i++) 1974 nid = next_node(nid, pol->v.nodes); 1975 return nid; 1976 } 1977 1978 /* Determine a node number for interleave */ 1979 static inline unsigned interleave_nid(struct mempolicy *pol, 1980 struct vm_area_struct *vma, unsigned long addr, int shift) 1981 { 1982 if (vma) { 1983 unsigned long off; 1984 1985 /* 1986 * for small pages, there is no difference between 1987 * shift and PAGE_SHIFT, so the bit-shift is safe. 1988 * for huge pages, since vm_pgoff is in units of small 1989 * pages, we need to shift off the always 0 bits to get 1990 * a useful offset. 1991 */ 1992 BUG_ON(shift < PAGE_SHIFT); 1993 off = vma->vm_pgoff >> (shift - PAGE_SHIFT); 1994 off += (addr - vma->vm_start) >> shift; 1995 return offset_il_node(pol, off); 1996 } else 1997 return interleave_nodes(pol); 1998 } 1999 2000 #ifdef CONFIG_HUGETLBFS 2001 /* 2002 * huge_node(@vma, @addr, @gfp_flags, @mpol) 2003 * @vma: virtual memory area whose policy is sought 2004 * @addr: address in @vma for shared policy lookup and interleave policy 2005 * @gfp_flags: for requested zone 2006 * @mpol: pointer to mempolicy pointer for reference counted mempolicy 2007 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask 2008 * 2009 * Returns a nid suitable for a huge page allocation and a pointer 2010 * to the struct mempolicy for conditional unref after allocation. 2011 * If the effective policy is 'BIND, returns a pointer to the mempolicy's 2012 * @nodemask for filtering the zonelist. 2013 * 2014 * Must be protected by read_mems_allowed_begin() 2015 */ 2016 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, 2017 struct mempolicy **mpol, nodemask_t **nodemask) 2018 { 2019 int nid; 2020 2021 *mpol = get_vma_policy(vma, addr); 2022 *nodemask = NULL; /* assume !MPOL_BIND */ 2023 2024 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { 2025 nid = interleave_nid(*mpol, vma, addr, 2026 huge_page_shift(hstate_vma(vma))); 2027 } else { 2028 nid = policy_node(gfp_flags, *mpol, numa_node_id()); 2029 if ((*mpol)->mode == MPOL_BIND) 2030 *nodemask = &(*mpol)->v.nodes; 2031 } 2032 return nid; 2033 } 2034 2035 /* 2036 * init_nodemask_of_mempolicy 2037 * 2038 * If the current task's mempolicy is "default" [NULL], return 'false' 2039 * to indicate default policy. Otherwise, extract the policy nodemask 2040 * for 'bind' or 'interleave' policy into the argument nodemask, or 2041 * initialize the argument nodemask to contain the single node for 2042 * 'preferred' or 'local' policy and return 'true' to indicate presence 2043 * of non-default mempolicy. 2044 * 2045 * We don't bother with reference counting the mempolicy [mpol_get/put] 2046 * because the current task is examining it's own mempolicy and a task's 2047 * mempolicy is only ever changed by the task itself. 2048 * 2049 * N.B., it is the caller's responsibility to free a returned nodemask. 2050 */ 2051 bool init_nodemask_of_mempolicy(nodemask_t *mask) 2052 { 2053 struct mempolicy *mempolicy; 2054 int nid; 2055 2056 if (!(mask && current->mempolicy)) 2057 return false; 2058 2059 task_lock(current); 2060 mempolicy = current->mempolicy; 2061 switch (mempolicy->mode) { 2062 case MPOL_PREFERRED: 2063 if (mempolicy->flags & MPOL_F_LOCAL) 2064 nid = numa_node_id(); 2065 else 2066 nid = mempolicy->v.preferred_node; 2067 init_nodemask_of_node(mask, nid); 2068 break; 2069 2070 case MPOL_BIND: 2071 case MPOL_INTERLEAVE: 2072 *mask = mempolicy->v.nodes; 2073 break; 2074 2075 default: 2076 BUG(); 2077 } 2078 task_unlock(current); 2079 2080 return true; 2081 } 2082 #endif 2083 2084 /* 2085 * mempolicy_nodemask_intersects 2086 * 2087 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default 2088 * policy. Otherwise, check for intersection between mask and the policy 2089 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' 2090 * policy, always return true since it may allocate elsewhere on fallback. 2091 * 2092 * Takes task_lock(tsk) to prevent freeing of its mempolicy. 2093 */ 2094 bool mempolicy_nodemask_intersects(struct task_struct *tsk, 2095 const nodemask_t *mask) 2096 { 2097 struct mempolicy *mempolicy; 2098 bool ret = true; 2099 2100 if (!mask) 2101 return ret; 2102 task_lock(tsk); 2103 mempolicy = tsk->mempolicy; 2104 if (!mempolicy) 2105 goto out; 2106 2107 switch (mempolicy->mode) { 2108 case MPOL_PREFERRED: 2109 /* 2110 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to 2111 * allocate from, they may fallback to other nodes when oom. 2112 * Thus, it's possible for tsk to have allocated memory from 2113 * nodes in mask. 2114 */ 2115 break; 2116 case MPOL_BIND: 2117 case MPOL_INTERLEAVE: 2118 ret = nodes_intersects(mempolicy->v.nodes, *mask); 2119 break; 2120 default: 2121 BUG(); 2122 } 2123 out: 2124 task_unlock(tsk); 2125 return ret; 2126 } 2127 2128 /* Allocate a page in interleaved policy. 2129 Own path because it needs to do special accounting. */ 2130 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, 2131 unsigned nid) 2132 { 2133 struct page *page; 2134 2135 page = __alloc_pages(gfp, order, nid); 2136 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ 2137 if (!static_branch_likely(&vm_numa_stat_key)) 2138 return page; 2139 if (page && page_to_nid(page) == nid) { 2140 preempt_disable(); 2141 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); 2142 preempt_enable(); 2143 } 2144 return page; 2145 } 2146 2147 /** 2148 * alloc_pages_vma - Allocate a page for a VMA. 2149 * 2150 * @gfp: 2151 * %GFP_USER user allocation. 2152 * %GFP_KERNEL kernel allocations, 2153 * %GFP_HIGHMEM highmem/user allocations, 2154 * %GFP_FS allocation should not call back into a file system. 2155 * %GFP_ATOMIC don't sleep. 2156 * 2157 * @order:Order of the GFP allocation. 2158 * @vma: Pointer to VMA or NULL if not available. 2159 * @addr: Virtual Address of the allocation. Must be inside the VMA. 2160 * @node: Which node to prefer for allocation (modulo policy). 2161 * @hugepage: for hugepages try only the preferred node if possible 2162 * 2163 * This function allocates a page from the kernel page pool and applies 2164 * a NUMA policy associated with the VMA or the current process. 2165 * When VMA is not NULL caller must hold down_read on the mmap_sem of the 2166 * mm_struct of the VMA to prevent it from going away. Should be used for 2167 * all allocations for pages that will be mapped into user space. Returns 2168 * NULL when no page can be allocated. 2169 */ 2170 struct page * 2171 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, 2172 unsigned long addr, int node, bool hugepage) 2173 { 2174 struct mempolicy *pol; 2175 struct page *page; 2176 int preferred_nid; 2177 nodemask_t *nmask; 2178 2179 pol = get_vma_policy(vma, addr); 2180 2181 if (pol->mode == MPOL_INTERLEAVE) { 2182 unsigned nid; 2183 2184 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); 2185 mpol_cond_put(pol); 2186 page = alloc_page_interleave(gfp, order, nid); 2187 goto out; 2188 } 2189 2190 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { 2191 int hpage_node = node; 2192 2193 /* 2194 * For hugepage allocation and non-interleave policy which 2195 * allows the current node (or other explicitly preferred 2196 * node) we only try to allocate from the current/preferred 2197 * node and don't fall back to other nodes, as the cost of 2198 * remote accesses would likely offset THP benefits. 2199 * 2200 * If the policy is interleave, or does not allow the current 2201 * node in its nodemask, we allocate the standard way. 2202 */ 2203 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) 2204 hpage_node = pol->v.preferred_node; 2205 2206 nmask = policy_nodemask(gfp, pol); 2207 if (!nmask || node_isset(hpage_node, *nmask)) { 2208 mpol_cond_put(pol); 2209 /* 2210 * First, try to allocate THP only on local node, but 2211 * don't reclaim unnecessarily, just compact. 2212 */ 2213 page = __alloc_pages_node(hpage_node, 2214 gfp | __GFP_THISNODE | __GFP_NORETRY, order); 2215 2216 /* 2217 * If hugepage allocations are configured to always 2218 * synchronous compact or the vma has been madvised 2219 * to prefer hugepage backing, retry allowing remote 2220 * memory with both reclaim and compact as well. 2221 */ 2222 if (!page && (gfp & __GFP_DIRECT_RECLAIM)) 2223 page = __alloc_pages_node(hpage_node, 2224 gfp, order); 2225 2226 goto out; 2227 } 2228 } 2229 2230 nmask = policy_nodemask(gfp, pol); 2231 preferred_nid = policy_node(gfp, pol, node); 2232 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); 2233 mpol_cond_put(pol); 2234 out: 2235 return page; 2236 } 2237 EXPORT_SYMBOL(alloc_pages_vma); 2238 2239 /** 2240 * alloc_pages_current - Allocate pages. 2241 * 2242 * @gfp: 2243 * %GFP_USER user allocation, 2244 * %GFP_KERNEL kernel allocation, 2245 * %GFP_HIGHMEM highmem allocation, 2246 * %GFP_FS don't call back into a file system. 2247 * %GFP_ATOMIC don't sleep. 2248 * @order: Power of two of allocation size in pages. 0 is a single page. 2249 * 2250 * Allocate a page from the kernel page pool. When not in 2251 * interrupt context and apply the current process NUMA policy. 2252 * Returns NULL when no page can be allocated. 2253 */ 2254 struct page *alloc_pages_current(gfp_t gfp, unsigned order) 2255 { 2256 struct mempolicy *pol = &default_policy; 2257 struct page *page; 2258 2259 if (!in_interrupt() && !(gfp & __GFP_THISNODE)) 2260 pol = get_task_policy(current); 2261 2262 /* 2263 * No reference counting needed for current->mempolicy 2264 * nor system default_policy 2265 */ 2266 if (pol->mode == MPOL_INTERLEAVE) 2267 page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); 2268 else 2269 page = __alloc_pages_nodemask(gfp, order, 2270 policy_node(gfp, pol, numa_node_id()), 2271 policy_nodemask(gfp, pol)); 2272 2273 return page; 2274 } 2275 EXPORT_SYMBOL(alloc_pages_current); 2276 2277 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) 2278 { 2279 struct mempolicy *pol = mpol_dup(vma_policy(src)); 2280 2281 if (IS_ERR(pol)) 2282 return PTR_ERR(pol); 2283 dst->vm_policy = pol; 2284 return 0; 2285 } 2286 2287 /* 2288 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it 2289 * rebinds the mempolicy its copying by calling mpol_rebind_policy() 2290 * with the mems_allowed returned by cpuset_mems_allowed(). This 2291 * keeps mempolicies cpuset relative after its cpuset moves. See 2292 * further kernel/cpuset.c update_nodemask(). 2293 * 2294 * current's mempolicy may be rebinded by the other task(the task that changes 2295 * cpuset's mems), so we needn't do rebind work for current task. 2296 */ 2297 2298 /* Slow path of a mempolicy duplicate */ 2299 struct mempolicy *__mpol_dup(struct mempolicy *old) 2300 { 2301 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2302 2303 if (!new) 2304 return ERR_PTR(-ENOMEM); 2305 2306 /* task's mempolicy is protected by alloc_lock */ 2307 if (old == current->mempolicy) { 2308 task_lock(current); 2309 *new = *old; 2310 task_unlock(current); 2311 } else 2312 *new = *old; 2313 2314 if (current_cpuset_is_being_rebound()) { 2315 nodemask_t mems = cpuset_mems_allowed(current); 2316 mpol_rebind_policy(new, &mems); 2317 } 2318 atomic_set(&new->refcnt, 1); 2319 return new; 2320 } 2321 2322 /* Slow path of a mempolicy comparison */ 2323 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) 2324 { 2325 if (!a || !b) 2326 return false; 2327 if (a->mode != b->mode) 2328 return false; 2329 if (a->flags != b->flags) 2330 return false; 2331 if (mpol_store_user_nodemask(a)) 2332 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) 2333 return false; 2334 2335 switch (a->mode) { 2336 case MPOL_BIND: 2337 case MPOL_INTERLEAVE: 2338 return !!nodes_equal(a->v.nodes, b->v.nodes); 2339 case MPOL_PREFERRED: 2340 /* a's ->flags is the same as b's */ 2341 if (a->flags & MPOL_F_LOCAL) 2342 return true; 2343 return a->v.preferred_node == b->v.preferred_node; 2344 default: 2345 BUG(); 2346 return false; 2347 } 2348 } 2349 2350 /* 2351 * Shared memory backing store policy support. 2352 * 2353 * Remember policies even when nobody has shared memory mapped. 2354 * The policies are kept in Red-Black tree linked from the inode. 2355 * They are protected by the sp->lock rwlock, which should be held 2356 * for any accesses to the tree. 2357 */ 2358 2359 /* 2360 * lookup first element intersecting start-end. Caller holds sp->lock for 2361 * reading or for writing 2362 */ 2363 static struct sp_node * 2364 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) 2365 { 2366 struct rb_node *n = sp->root.rb_node; 2367 2368 while (n) { 2369 struct sp_node *p = rb_entry(n, struct sp_node, nd); 2370 2371 if (start >= p->end) 2372 n = n->rb_right; 2373 else if (end <= p->start) 2374 n = n->rb_left; 2375 else 2376 break; 2377 } 2378 if (!n) 2379 return NULL; 2380 for (;;) { 2381 struct sp_node *w = NULL; 2382 struct rb_node *prev = rb_prev(n); 2383 if (!prev) 2384 break; 2385 w = rb_entry(prev, struct sp_node, nd); 2386 if (w->end <= start) 2387 break; 2388 n = prev; 2389 } 2390 return rb_entry(n, struct sp_node, nd); 2391 } 2392 2393 /* 2394 * Insert a new shared policy into the list. Caller holds sp->lock for 2395 * writing. 2396 */ 2397 static void sp_insert(struct shared_policy *sp, struct sp_node *new) 2398 { 2399 struct rb_node **p = &sp->root.rb_node; 2400 struct rb_node *parent = NULL; 2401 struct sp_node *nd; 2402 2403 while (*p) { 2404 parent = *p; 2405 nd = rb_entry(parent, struct sp_node, nd); 2406 if (new->start < nd->start) 2407 p = &(*p)->rb_left; 2408 else if (new->end > nd->end) 2409 p = &(*p)->rb_right; 2410 else 2411 BUG(); 2412 } 2413 rb_link_node(&new->nd, parent, p); 2414 rb_insert_color(&new->nd, &sp->root); 2415 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, 2416 new->policy ? new->policy->mode : 0); 2417 } 2418 2419 /* Find shared policy intersecting idx */ 2420 struct mempolicy * 2421 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) 2422 { 2423 struct mempolicy *pol = NULL; 2424 struct sp_node *sn; 2425 2426 if (!sp->root.rb_node) 2427 return NULL; 2428 read_lock(&sp->lock); 2429 sn = sp_lookup(sp, idx, idx+1); 2430 if (sn) { 2431 mpol_get(sn->policy); 2432 pol = sn->policy; 2433 } 2434 read_unlock(&sp->lock); 2435 return pol; 2436 } 2437 2438 static void sp_free(struct sp_node *n) 2439 { 2440 mpol_put(n->policy); 2441 kmem_cache_free(sn_cache, n); 2442 } 2443 2444 /** 2445 * mpol_misplaced - check whether current page node is valid in policy 2446 * 2447 * @page: page to be checked 2448 * @vma: vm area where page mapped 2449 * @addr: virtual address where page mapped 2450 * 2451 * Lookup current policy node id for vma,addr and "compare to" page's 2452 * node id. 2453 * 2454 * Returns: 2455 * -1 - not misplaced, page is in the right node 2456 * node - node id where the page should be 2457 * 2458 * Policy determination "mimics" alloc_page_vma(). 2459 * Called from fault path where we know the vma and faulting address. 2460 */ 2461 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) 2462 { 2463 struct mempolicy *pol; 2464 struct zoneref *z; 2465 int curnid = page_to_nid(page); 2466 unsigned long pgoff; 2467 int thiscpu = raw_smp_processor_id(); 2468 int thisnid = cpu_to_node(thiscpu); 2469 int polnid = NUMA_NO_NODE; 2470 int ret = -1; 2471 2472 pol = get_vma_policy(vma, addr); 2473 if (!(pol->flags & MPOL_F_MOF)) 2474 goto out; 2475 2476 switch (pol->mode) { 2477 case MPOL_INTERLEAVE: 2478 pgoff = vma->vm_pgoff; 2479 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; 2480 polnid = offset_il_node(pol, pgoff); 2481 break; 2482 2483 case MPOL_PREFERRED: 2484 if (pol->flags & MPOL_F_LOCAL) 2485 polnid = numa_node_id(); 2486 else 2487 polnid = pol->v.preferred_node; 2488 break; 2489 2490 case MPOL_BIND: 2491 2492 /* 2493 * allows binding to multiple nodes. 2494 * use current page if in policy nodemask, 2495 * else select nearest allowed node, if any. 2496 * If no allowed nodes, use current [!misplaced]. 2497 */ 2498 if (node_isset(curnid, pol->v.nodes)) 2499 goto out; 2500 z = first_zones_zonelist( 2501 node_zonelist(numa_node_id(), GFP_HIGHUSER), 2502 gfp_zone(GFP_HIGHUSER), 2503 &pol->v.nodes); 2504 polnid = zone_to_nid(z->zone); 2505 break; 2506 2507 default: 2508 BUG(); 2509 } 2510 2511 /* Migrate the page towards the node whose CPU is referencing it */ 2512 if (pol->flags & MPOL_F_MORON) { 2513 polnid = thisnid; 2514 2515 if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) 2516 goto out; 2517 } 2518 2519 if (curnid != polnid) 2520 ret = polnid; 2521 out: 2522 mpol_cond_put(pol); 2523 2524 return ret; 2525 } 2526 2527 /* 2528 * Drop the (possibly final) reference to task->mempolicy. It needs to be 2529 * dropped after task->mempolicy is set to NULL so that any allocation done as 2530 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed 2531 * policy. 2532 */ 2533 void mpol_put_task_policy(struct task_struct *task) 2534 { 2535 struct mempolicy *pol; 2536 2537 task_lock(task); 2538 pol = task->mempolicy; 2539 task->mempolicy = NULL; 2540 task_unlock(task); 2541 mpol_put(pol); 2542 } 2543 2544 static void sp_delete(struct shared_policy *sp, struct sp_node *n) 2545 { 2546 pr_debug("deleting %lx-l%lx\n", n->start, n->end); 2547 rb_erase(&n->nd, &sp->root); 2548 sp_free(n); 2549 } 2550 2551 static void sp_node_init(struct sp_node *node, unsigned long start, 2552 unsigned long end, struct mempolicy *pol) 2553 { 2554 node->start = start; 2555 node->end = end; 2556 node->policy = pol; 2557 } 2558 2559 static struct sp_node *sp_alloc(unsigned long start, unsigned long end, 2560 struct mempolicy *pol) 2561 { 2562 struct sp_node *n; 2563 struct mempolicy *newpol; 2564 2565 n = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2566 if (!n) 2567 return NULL; 2568 2569 newpol = mpol_dup(pol); 2570 if (IS_ERR(newpol)) { 2571 kmem_cache_free(sn_cache, n); 2572 return NULL; 2573 } 2574 newpol->flags |= MPOL_F_SHARED; 2575 sp_node_init(n, start, end, newpol); 2576 2577 return n; 2578 } 2579 2580 /* Replace a policy range. */ 2581 static int shared_policy_replace(struct shared_policy *sp, unsigned long start, 2582 unsigned long end, struct sp_node *new) 2583 { 2584 struct sp_node *n; 2585 struct sp_node *n_new = NULL; 2586 struct mempolicy *mpol_new = NULL; 2587 int ret = 0; 2588 2589 restart: 2590 write_lock(&sp->lock); 2591 n = sp_lookup(sp, start, end); 2592 /* Take care of old policies in the same range. */ 2593 while (n && n->start < end) { 2594 struct rb_node *next = rb_next(&n->nd); 2595 if (n->start >= start) { 2596 if (n->end <= end) 2597 sp_delete(sp, n); 2598 else 2599 n->start = end; 2600 } else { 2601 /* Old policy spanning whole new range. */ 2602 if (n->end > end) { 2603 if (!n_new) 2604 goto alloc_new; 2605 2606 *mpol_new = *n->policy; 2607 atomic_set(&mpol_new->refcnt, 1); 2608 sp_node_init(n_new, end, n->end, mpol_new); 2609 n->end = start; 2610 sp_insert(sp, n_new); 2611 n_new = NULL; 2612 mpol_new = NULL; 2613 break; 2614 } else 2615 n->end = start; 2616 } 2617 if (!next) 2618 break; 2619 n = rb_entry(next, struct sp_node, nd); 2620 } 2621 if (new) 2622 sp_insert(sp, new); 2623 write_unlock(&sp->lock); 2624 ret = 0; 2625 2626 err_out: 2627 if (mpol_new) 2628 mpol_put(mpol_new); 2629 if (n_new) 2630 kmem_cache_free(sn_cache, n_new); 2631 2632 return ret; 2633 2634 alloc_new: 2635 write_unlock(&sp->lock); 2636 ret = -ENOMEM; 2637 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); 2638 if (!n_new) 2639 goto err_out; 2640 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); 2641 if (!mpol_new) 2642 goto err_out; 2643 goto restart; 2644 } 2645 2646 /** 2647 * mpol_shared_policy_init - initialize shared policy for inode 2648 * @sp: pointer to inode shared policy 2649 * @mpol: struct mempolicy to install 2650 * 2651 * Install non-NULL @mpol in inode's shared policy rb-tree. 2652 * On entry, the current task has a reference on a non-NULL @mpol. 2653 * This must be released on exit. 2654 * This is called at get_inode() calls and we can use GFP_KERNEL. 2655 */ 2656 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) 2657 { 2658 int ret; 2659 2660 sp->root = RB_ROOT; /* empty tree == default mempolicy */ 2661 rwlock_init(&sp->lock); 2662 2663 if (mpol) { 2664 struct vm_area_struct pvma; 2665 struct mempolicy *new; 2666 NODEMASK_SCRATCH(scratch); 2667 2668 if (!scratch) 2669 goto put_mpol; 2670 /* contextualize the tmpfs mount point mempolicy */ 2671 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); 2672 if (IS_ERR(new)) 2673 goto free_scratch; /* no valid nodemask intersection */ 2674 2675 task_lock(current); 2676 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); 2677 task_unlock(current); 2678 if (ret) 2679 goto put_new; 2680 2681 /* Create pseudo-vma that contains just the policy */ 2682 vma_init(&pvma, NULL); 2683 pvma.vm_end = TASK_SIZE; /* policy covers entire file */ 2684 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ 2685 2686 put_new: 2687 mpol_put(new); /* drop initial ref */ 2688 free_scratch: 2689 NODEMASK_SCRATCH_FREE(scratch); 2690 put_mpol: 2691 mpol_put(mpol); /* drop our incoming ref on sb mpol */ 2692 } 2693 } 2694 2695 int mpol_set_shared_policy(struct shared_policy *info, 2696 struct vm_area_struct *vma, struct mempolicy *npol) 2697 { 2698 int err; 2699 struct sp_node *new = NULL; 2700 unsigned long sz = vma_pages(vma); 2701 2702 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", 2703 vma->vm_pgoff, 2704 sz, npol ? npol->mode : -1, 2705 npol ? npol->flags : -1, 2706 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); 2707 2708 if (npol) { 2709 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); 2710 if (!new) 2711 return -ENOMEM; 2712 } 2713 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); 2714 if (err && new) 2715 sp_free(new); 2716 return err; 2717 } 2718 2719 /* Free a backing policy store on inode delete. */ 2720 void mpol_free_shared_policy(struct shared_policy *p) 2721 { 2722 struct sp_node *n; 2723 struct rb_node *next; 2724 2725 if (!p->root.rb_node) 2726 return; 2727 write_lock(&p->lock); 2728 next = rb_first(&p->root); 2729 while (next) { 2730 n = rb_entry(next, struct sp_node, nd); 2731 next = rb_next(&n->nd); 2732 sp_delete(p, n); 2733 } 2734 write_unlock(&p->lock); 2735 } 2736 2737 #ifdef CONFIG_NUMA_BALANCING 2738 static int __initdata numabalancing_override; 2739 2740 static void __init check_numabalancing_enable(void) 2741 { 2742 bool numabalancing_default = false; 2743 2744 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) 2745 numabalancing_default = true; 2746 2747 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ 2748 if (numabalancing_override) 2749 set_numabalancing_state(numabalancing_override == 1); 2750 2751 if (num_online_nodes() > 1 && !numabalancing_override) { 2752 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", 2753 numabalancing_default ? "Enabling" : "Disabling"); 2754 set_numabalancing_state(numabalancing_default); 2755 } 2756 } 2757 2758 static int __init setup_numabalancing(char *str) 2759 { 2760 int ret = 0; 2761 if (!str) 2762 goto out; 2763 2764 if (!strcmp(str, "enable")) { 2765 numabalancing_override = 1; 2766 ret = 1; 2767 } else if (!strcmp(str, "disable")) { 2768 numabalancing_override = -1; 2769 ret = 1; 2770 } 2771 out: 2772 if (!ret) 2773 pr_warn("Unable to parse numa_balancing=\n"); 2774 2775 return ret; 2776 } 2777 __setup("numa_balancing=", setup_numabalancing); 2778 #else 2779 static inline void __init check_numabalancing_enable(void) 2780 { 2781 } 2782 #endif /* CONFIG_NUMA_BALANCING */ 2783 2784 /* assumes fs == KERNEL_DS */ 2785 void __init numa_policy_init(void) 2786 { 2787 nodemask_t interleave_nodes; 2788 unsigned long largest = 0; 2789 int nid, prefer = 0; 2790 2791 policy_cache = kmem_cache_create("numa_policy", 2792 sizeof(struct mempolicy), 2793 0, SLAB_PANIC, NULL); 2794 2795 sn_cache = kmem_cache_create("shared_policy_node", 2796 sizeof(struct sp_node), 2797 0, SLAB_PANIC, NULL); 2798 2799 for_each_node(nid) { 2800 preferred_node_policy[nid] = (struct mempolicy) { 2801 .refcnt = ATOMIC_INIT(1), 2802 .mode = MPOL_PREFERRED, 2803 .flags = MPOL_F_MOF | MPOL_F_MORON, 2804 .v = { .preferred_node = nid, }, 2805 }; 2806 } 2807 2808 /* 2809 * Set interleaving policy for system init. Interleaving is only 2810 * enabled across suitably sized nodes (default is >= 16MB), or 2811 * fall back to the largest node if they're all smaller. 2812 */ 2813 nodes_clear(interleave_nodes); 2814 for_each_node_state(nid, N_MEMORY) { 2815 unsigned long total_pages = node_present_pages(nid); 2816 2817 /* Preserve the largest node */ 2818 if (largest < total_pages) { 2819 largest = total_pages; 2820 prefer = nid; 2821 } 2822 2823 /* Interleave this node? */ 2824 if ((total_pages << PAGE_SHIFT) >= (16 << 20)) 2825 node_set(nid, interleave_nodes); 2826 } 2827 2828 /* All too small, use the largest */ 2829 if (unlikely(nodes_empty(interleave_nodes))) 2830 node_set(prefer, interleave_nodes); 2831 2832 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) 2833 pr_err("%s: interleaving failed\n", __func__); 2834 2835 check_numabalancing_enable(); 2836 } 2837 2838 /* Reset policy of current process to default */ 2839 void numa_default_policy(void) 2840 { 2841 do_set_mempolicy(MPOL_DEFAULT, 0, NULL); 2842 } 2843 2844 /* 2845 * Parse and format mempolicy from/to strings 2846 */ 2847 2848 /* 2849 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. 2850 */ 2851 static const char * const policy_modes[] = 2852 { 2853 [MPOL_DEFAULT] = "default", 2854 [MPOL_PREFERRED] = "prefer", 2855 [MPOL_BIND] = "bind", 2856 [MPOL_INTERLEAVE] = "interleave", 2857 [MPOL_LOCAL] = "local", 2858 }; 2859 2860 2861 #ifdef CONFIG_TMPFS 2862 /** 2863 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. 2864 * @str: string containing mempolicy to parse 2865 * @mpol: pointer to struct mempolicy pointer, returned on success. 2866 * 2867 * Format of input: 2868 * <mode>[=<flags>][:<nodelist>] 2869 * 2870 * On success, returns 0, else 1 2871 */ 2872 int mpol_parse_str(char *str, struct mempolicy **mpol) 2873 { 2874 struct mempolicy *new = NULL; 2875 unsigned short mode_flags; 2876 nodemask_t nodes; 2877 char *nodelist = strchr(str, ':'); 2878 char *flags = strchr(str, '='); 2879 int err = 1, mode; 2880 2881 if (flags) 2882 *flags++ = '\0'; /* terminate mode string */ 2883 2884 if (nodelist) { 2885 /* NUL-terminate mode or flags string */ 2886 *nodelist++ = '\0'; 2887 if (nodelist_parse(nodelist, nodes)) 2888 goto out; 2889 if (!nodes_subset(nodes, node_states[N_MEMORY])) 2890 goto out; 2891 } else 2892 nodes_clear(nodes); 2893 2894 mode = match_string(policy_modes, MPOL_MAX, str); 2895 if (mode < 0) 2896 goto out; 2897 2898 switch (mode) { 2899 case MPOL_PREFERRED: 2900 /* 2901 * Insist on a nodelist of one node only, although later 2902 * we use first_node(nodes) to grab a single node, so here 2903 * nodelist (or nodes) cannot be empty. 2904 */ 2905 if (nodelist) { 2906 char *rest = nodelist; 2907 while (isdigit(*rest)) 2908 rest++; 2909 if (*rest) 2910 goto out; 2911 if (nodes_empty(nodes)) 2912 goto out; 2913 } 2914 break; 2915 case MPOL_INTERLEAVE: 2916 /* 2917 * Default to online nodes with memory if no nodelist 2918 */ 2919 if (!nodelist) 2920 nodes = node_states[N_MEMORY]; 2921 break; 2922 case MPOL_LOCAL: 2923 /* 2924 * Don't allow a nodelist; mpol_new() checks flags 2925 */ 2926 if (nodelist) 2927 goto out; 2928 mode = MPOL_PREFERRED; 2929 break; 2930 case MPOL_DEFAULT: 2931 /* 2932 * Insist on a empty nodelist 2933 */ 2934 if (!nodelist) 2935 err = 0; 2936 goto out; 2937 case MPOL_BIND: 2938 /* 2939 * Insist on a nodelist 2940 */ 2941 if (!nodelist) 2942 goto out; 2943 } 2944 2945 mode_flags = 0; 2946 if (flags) { 2947 /* 2948 * Currently, we only support two mutually exclusive 2949 * mode flags. 2950 */ 2951 if (!strcmp(flags, "static")) 2952 mode_flags |= MPOL_F_STATIC_NODES; 2953 else if (!strcmp(flags, "relative")) 2954 mode_flags |= MPOL_F_RELATIVE_NODES; 2955 else 2956 goto out; 2957 } 2958 2959 new = mpol_new(mode, mode_flags, &nodes); 2960 if (IS_ERR(new)) 2961 goto out; 2962 2963 /* 2964 * Save nodes for mpol_to_str() to show the tmpfs mount options 2965 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. 2966 */ 2967 if (mode != MPOL_PREFERRED) 2968 new->v.nodes = nodes; 2969 else if (nodelist) 2970 new->v.preferred_node = first_node(nodes); 2971 else 2972 new->flags |= MPOL_F_LOCAL; 2973 2974 /* 2975 * Save nodes for contextualization: this will be used to "clone" 2976 * the mempolicy in a specific context [cpuset] at a later time. 2977 */ 2978 new->w.user_nodemask = nodes; 2979 2980 err = 0; 2981 2982 out: 2983 /* Restore string for error message */ 2984 if (nodelist) 2985 *--nodelist = ':'; 2986 if (flags) 2987 *--flags = '='; 2988 if (!err) 2989 *mpol = new; 2990 return err; 2991 } 2992 #endif /* CONFIG_TMPFS */ 2993 2994 /** 2995 * mpol_to_str - format a mempolicy structure for printing 2996 * @buffer: to contain formatted mempolicy string 2997 * @maxlen: length of @buffer 2998 * @pol: pointer to mempolicy to be formatted 2999 * 3000 * Convert @pol into a string. If @buffer is too short, truncate the string. 3001 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the 3002 * longest flag, "relative", and to display at least a few node ids. 3003 */ 3004 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) 3005 { 3006 char *p = buffer; 3007 nodemask_t nodes = NODE_MASK_NONE; 3008 unsigned short mode = MPOL_DEFAULT; 3009 unsigned short flags = 0; 3010 3011 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { 3012 mode = pol->mode; 3013 flags = pol->flags; 3014 } 3015 3016 switch (mode) { 3017 case MPOL_DEFAULT: 3018 break; 3019 case MPOL_PREFERRED: 3020 if (flags & MPOL_F_LOCAL) 3021 mode = MPOL_LOCAL; 3022 else 3023 node_set(pol->v.preferred_node, nodes); 3024 break; 3025 case MPOL_BIND: 3026 case MPOL_INTERLEAVE: 3027 nodes = pol->v.nodes; 3028 break; 3029 default: 3030 WARN_ON_ONCE(1); 3031 snprintf(p, maxlen, "unknown"); 3032 return; 3033 } 3034 3035 p += snprintf(p, maxlen, "%s", policy_modes[mode]); 3036 3037 if (flags & MPOL_MODE_FLAGS) { 3038 p += snprintf(p, buffer + maxlen - p, "="); 3039 3040 /* 3041 * Currently, the only defined flags are mutually exclusive 3042 */ 3043 if (flags & MPOL_F_STATIC_NODES) 3044 p += snprintf(p, buffer + maxlen - p, "static"); 3045 else if (flags & MPOL_F_RELATIVE_NODES) 3046 p += snprintf(p, buffer + maxlen - p, "relative"); 3047 } 3048 3049 if (!nodes_empty(nodes)) 3050 p += scnprintf(p, buffer + maxlen - p, ":%*pbl", 3051 nodemask_pr_args(&nodes)); 3052 } 3053