xref: /linux/mm/memory_hotplug.c (revision fdfc374af5dc345fbb9686921fa60176c1c41da0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 enum {
45 	MEMMAP_ON_MEMORY_DISABLE = 0,
46 	MEMMAP_ON_MEMORY_ENABLE,
47 	MEMMAP_ON_MEMORY_FORCE,
48 };
49 
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51 
52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56 
57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60 
61 	/*
62 	 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 	 * vmemmap size to cover full pageblocks. That way, we can add memory
64 	 * even if the vmemmap size is not properly aligned, however, we might waste
65 	 * memory.
66 	 */
67 	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 		return pageblock_align(nr_pages);
69 	return nr_pages;
70 }
71 
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74  * memory_hotplug.memmap_on_memory parameter
75  */
76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 	int ret, mode;
79 	bool enabled;
80 
81 	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
82 		mode = MEMMAP_ON_MEMORY_FORCE;
83 	} else {
84 		ret = kstrtobool(val, &enabled);
85 		if (ret < 0)
86 			return ret;
87 		if (enabled)
88 			mode = MEMMAP_ON_MEMORY_ENABLE;
89 		else
90 			mode = MEMMAP_ON_MEMORY_DISABLE;
91 	}
92 	*((int *)kp->arg) = mode;
93 	if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95 
96 		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 			     memmap_pages - PFN_UP(memory_block_memmap_size()));
98 	}
99 	return 0;
100 }
101 
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 	if (*((int *)kp->arg) == MEMMAP_ON_MEMORY_FORCE)
105 		return sprintf(buffer,  "force\n");
106 	return param_get_bool(buffer, kp);
107 }
108 
109 static const struct kernel_param_ops memmap_mode_ops = {
110 	.set = set_memmap_mode,
111 	.get = get_memmap_mode,
112 };
113 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
114 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
115 		 "With value \"force\" it could result in memory wastage due "
116 		 "to memmap size limitations (Y/N/force)");
117 
118 static inline bool mhp_memmap_on_memory(void)
119 {
120 	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
121 }
122 #else
123 static inline bool mhp_memmap_on_memory(void)
124 {
125 	return false;
126 }
127 #endif
128 
129 enum {
130 	ONLINE_POLICY_CONTIG_ZONES = 0,
131 	ONLINE_POLICY_AUTO_MOVABLE,
132 };
133 
134 static const char * const online_policy_to_str[] = {
135 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
136 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
137 };
138 
139 static int set_online_policy(const char *val, const struct kernel_param *kp)
140 {
141 	int ret = sysfs_match_string(online_policy_to_str, val);
142 
143 	if (ret < 0)
144 		return ret;
145 	*((int *)kp->arg) = ret;
146 	return 0;
147 }
148 
149 static int get_online_policy(char *buffer, const struct kernel_param *kp)
150 {
151 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
152 }
153 
154 /*
155  * memory_hotplug.online_policy: configure online behavior when onlining without
156  * specifying a zone (MMOP_ONLINE)
157  *
158  * "contig-zones": keep zone contiguous
159  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
160  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
161  */
162 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
163 static const struct kernel_param_ops online_policy_ops = {
164 	.set = set_online_policy,
165 	.get = get_online_policy,
166 };
167 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
168 MODULE_PARM_DESC(online_policy,
169 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
170 		"Default: \"contig-zones\"");
171 
172 /*
173  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
174  *
175  * The ratio represent an upper limit and the kernel might decide to not
176  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
177  * doesn't allow for more MOVABLE memory.
178  */
179 static unsigned int auto_movable_ratio __read_mostly = 301;
180 module_param(auto_movable_ratio, uint, 0644);
181 MODULE_PARM_DESC(auto_movable_ratio,
182 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
183 		"in percent for \"auto-movable\" online policy. Default: 301");
184 
185 /*
186  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
187  */
188 #ifdef CONFIG_NUMA
189 static bool auto_movable_numa_aware __read_mostly = true;
190 module_param(auto_movable_numa_aware, bool, 0644);
191 MODULE_PARM_DESC(auto_movable_numa_aware,
192 		"Consider numa node stats in addition to global stats in "
193 		"\"auto-movable\" online policy. Default: true");
194 #endif /* CONFIG_NUMA */
195 
196 /*
197  * online_page_callback contains pointer to current page onlining function.
198  * Initially it is generic_online_page(). If it is required it could be
199  * changed by calling set_online_page_callback() for callback registration
200  * and restore_online_page_callback() for generic callback restore.
201  */
202 
203 static online_page_callback_t online_page_callback = generic_online_page;
204 static DEFINE_MUTEX(online_page_callback_lock);
205 
206 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
207 
208 void get_online_mems(void)
209 {
210 	percpu_down_read(&mem_hotplug_lock);
211 }
212 
213 void put_online_mems(void)
214 {
215 	percpu_up_read(&mem_hotplug_lock);
216 }
217 
218 bool movable_node_enabled = false;
219 
220 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
221 int mhp_default_online_type = MMOP_OFFLINE;
222 #else
223 int mhp_default_online_type = MMOP_ONLINE;
224 #endif
225 
226 static int __init setup_memhp_default_state(char *str)
227 {
228 	const int online_type = mhp_online_type_from_str(str);
229 
230 	if (online_type >= 0)
231 		mhp_default_online_type = online_type;
232 
233 	return 1;
234 }
235 __setup("memhp_default_state=", setup_memhp_default_state);
236 
237 void mem_hotplug_begin(void)
238 {
239 	cpus_read_lock();
240 	percpu_down_write(&mem_hotplug_lock);
241 }
242 
243 void mem_hotplug_done(void)
244 {
245 	percpu_up_write(&mem_hotplug_lock);
246 	cpus_read_unlock();
247 }
248 
249 u64 max_mem_size = U64_MAX;
250 
251 /* add this memory to iomem resource */
252 static struct resource *register_memory_resource(u64 start, u64 size,
253 						 const char *resource_name)
254 {
255 	struct resource *res;
256 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
257 
258 	if (strcmp(resource_name, "System RAM"))
259 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
260 
261 	if (!mhp_range_allowed(start, size, true))
262 		return ERR_PTR(-E2BIG);
263 
264 	/*
265 	 * Make sure value parsed from 'mem=' only restricts memory adding
266 	 * while booting, so that memory hotplug won't be impacted. Please
267 	 * refer to document of 'mem=' in kernel-parameters.txt for more
268 	 * details.
269 	 */
270 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
271 		return ERR_PTR(-E2BIG);
272 
273 	/*
274 	 * Request ownership of the new memory range.  This might be
275 	 * a child of an existing resource that was present but
276 	 * not marked as busy.
277 	 */
278 	res = __request_region(&iomem_resource, start, size,
279 			       resource_name, flags);
280 
281 	if (!res) {
282 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
283 				start, start + size);
284 		return ERR_PTR(-EEXIST);
285 	}
286 	return res;
287 }
288 
289 static void release_memory_resource(struct resource *res)
290 {
291 	if (!res)
292 		return;
293 	release_resource(res);
294 	kfree(res);
295 }
296 
297 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
298 {
299 	/*
300 	 * Disallow all operations smaller than a sub-section and only
301 	 * allow operations smaller than a section for
302 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
303 	 * enforces a larger memory_block_size_bytes() granularity for
304 	 * memory that will be marked online, so this check should only
305 	 * fire for direct arch_{add,remove}_memory() users outside of
306 	 * add_memory_resource().
307 	 */
308 	unsigned long min_align;
309 
310 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
311 		min_align = PAGES_PER_SUBSECTION;
312 	else
313 		min_align = PAGES_PER_SECTION;
314 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
315 		return -EINVAL;
316 	return 0;
317 }
318 
319 /*
320  * Return page for the valid pfn only if the page is online. All pfn
321  * walkers which rely on the fully initialized page->flags and others
322  * should use this rather than pfn_valid && pfn_to_page
323  */
324 struct page *pfn_to_online_page(unsigned long pfn)
325 {
326 	unsigned long nr = pfn_to_section_nr(pfn);
327 	struct dev_pagemap *pgmap;
328 	struct mem_section *ms;
329 
330 	if (nr >= NR_MEM_SECTIONS)
331 		return NULL;
332 
333 	ms = __nr_to_section(nr);
334 	if (!online_section(ms))
335 		return NULL;
336 
337 	/*
338 	 * Save some code text when online_section() +
339 	 * pfn_section_valid() are sufficient.
340 	 */
341 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
342 		return NULL;
343 
344 	if (!pfn_section_valid(ms, pfn))
345 		return NULL;
346 
347 	if (!online_device_section(ms))
348 		return pfn_to_page(pfn);
349 
350 	/*
351 	 * Slowpath: when ZONE_DEVICE collides with
352 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
353 	 * the section may be 'offline' but 'valid'. Only
354 	 * get_dev_pagemap() can determine sub-section online status.
355 	 */
356 	pgmap = get_dev_pagemap(pfn, NULL);
357 	put_dev_pagemap(pgmap);
358 
359 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
360 	if (pgmap)
361 		return NULL;
362 
363 	return pfn_to_page(pfn);
364 }
365 EXPORT_SYMBOL_GPL(pfn_to_online_page);
366 
367 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
368 		struct mhp_params *params)
369 {
370 	const unsigned long end_pfn = pfn + nr_pages;
371 	unsigned long cur_nr_pages;
372 	int err;
373 	struct vmem_altmap *altmap = params->altmap;
374 
375 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
376 		return -EINVAL;
377 
378 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
379 
380 	if (altmap) {
381 		/*
382 		 * Validate altmap is within bounds of the total request
383 		 */
384 		if (altmap->base_pfn != pfn
385 				|| vmem_altmap_offset(altmap) > nr_pages) {
386 			pr_warn_once("memory add fail, invalid altmap\n");
387 			return -EINVAL;
388 		}
389 		altmap->alloc = 0;
390 	}
391 
392 	if (check_pfn_span(pfn, nr_pages)) {
393 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
394 		return -EINVAL;
395 	}
396 
397 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
398 		/* Select all remaining pages up to the next section boundary */
399 		cur_nr_pages = min(end_pfn - pfn,
400 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
401 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
402 					 params->pgmap);
403 		if (err)
404 			break;
405 		cond_resched();
406 	}
407 	vmemmap_populate_print_last();
408 	return err;
409 }
410 
411 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
412 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
413 				     unsigned long start_pfn,
414 				     unsigned long end_pfn)
415 {
416 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
417 		if (unlikely(!pfn_to_online_page(start_pfn)))
418 			continue;
419 
420 		if (unlikely(pfn_to_nid(start_pfn) != nid))
421 			continue;
422 
423 		if (zone != page_zone(pfn_to_page(start_pfn)))
424 			continue;
425 
426 		return start_pfn;
427 	}
428 
429 	return 0;
430 }
431 
432 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
433 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
434 				    unsigned long start_pfn,
435 				    unsigned long end_pfn)
436 {
437 	unsigned long pfn;
438 
439 	/* pfn is the end pfn of a memory section. */
440 	pfn = end_pfn - 1;
441 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
442 		if (unlikely(!pfn_to_online_page(pfn)))
443 			continue;
444 
445 		if (unlikely(pfn_to_nid(pfn) != nid))
446 			continue;
447 
448 		if (zone != page_zone(pfn_to_page(pfn)))
449 			continue;
450 
451 		return pfn;
452 	}
453 
454 	return 0;
455 }
456 
457 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
458 			     unsigned long end_pfn)
459 {
460 	unsigned long pfn;
461 	int nid = zone_to_nid(zone);
462 
463 	if (zone->zone_start_pfn == start_pfn) {
464 		/*
465 		 * If the section is smallest section in the zone, it need
466 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
467 		 * In this case, we find second smallest valid mem_section
468 		 * for shrinking zone.
469 		 */
470 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
471 						zone_end_pfn(zone));
472 		if (pfn) {
473 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
474 			zone->zone_start_pfn = pfn;
475 		} else {
476 			zone->zone_start_pfn = 0;
477 			zone->spanned_pages = 0;
478 		}
479 	} else if (zone_end_pfn(zone) == end_pfn) {
480 		/*
481 		 * If the section is biggest section in the zone, it need
482 		 * shrink zone->spanned_pages.
483 		 * In this case, we find second biggest valid mem_section for
484 		 * shrinking zone.
485 		 */
486 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
487 					       start_pfn);
488 		if (pfn)
489 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
490 		else {
491 			zone->zone_start_pfn = 0;
492 			zone->spanned_pages = 0;
493 		}
494 	}
495 }
496 
497 static void update_pgdat_span(struct pglist_data *pgdat)
498 {
499 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
500 	struct zone *zone;
501 
502 	for (zone = pgdat->node_zones;
503 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
504 		unsigned long end_pfn = zone_end_pfn(zone);
505 
506 		/* No need to lock the zones, they can't change. */
507 		if (!zone->spanned_pages)
508 			continue;
509 		if (!node_end_pfn) {
510 			node_start_pfn = zone->zone_start_pfn;
511 			node_end_pfn = end_pfn;
512 			continue;
513 		}
514 
515 		if (end_pfn > node_end_pfn)
516 			node_end_pfn = end_pfn;
517 		if (zone->zone_start_pfn < node_start_pfn)
518 			node_start_pfn = zone->zone_start_pfn;
519 	}
520 
521 	pgdat->node_start_pfn = node_start_pfn;
522 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
523 }
524 
525 void __ref remove_pfn_range_from_zone(struct zone *zone,
526 				      unsigned long start_pfn,
527 				      unsigned long nr_pages)
528 {
529 	const unsigned long end_pfn = start_pfn + nr_pages;
530 	struct pglist_data *pgdat = zone->zone_pgdat;
531 	unsigned long pfn, cur_nr_pages;
532 
533 	/* Poison struct pages because they are now uninitialized again. */
534 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
535 		cond_resched();
536 
537 		/* Select all remaining pages up to the next section boundary */
538 		cur_nr_pages =
539 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
540 		page_init_poison(pfn_to_page(pfn),
541 				 sizeof(struct page) * cur_nr_pages);
542 	}
543 
544 	/*
545 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
546 	 * we will not try to shrink the zones - which is okay as
547 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
548 	 */
549 	if (zone_is_zone_device(zone))
550 		return;
551 
552 	clear_zone_contiguous(zone);
553 
554 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
555 	update_pgdat_span(pgdat);
556 
557 	set_zone_contiguous(zone);
558 }
559 
560 /**
561  * __remove_pages() - remove sections of pages
562  * @pfn: starting pageframe (must be aligned to start of a section)
563  * @nr_pages: number of pages to remove (must be multiple of section size)
564  * @altmap: alternative device page map or %NULL if default memmap is used
565  *
566  * Generic helper function to remove section mappings and sysfs entries
567  * for the section of the memory we are removing. Caller needs to make
568  * sure that pages are marked reserved and zones are adjust properly by
569  * calling offline_pages().
570  */
571 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
572 		    struct vmem_altmap *altmap)
573 {
574 	const unsigned long end_pfn = pfn + nr_pages;
575 	unsigned long cur_nr_pages;
576 
577 	if (check_pfn_span(pfn, nr_pages)) {
578 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
579 		return;
580 	}
581 
582 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
583 		cond_resched();
584 		/* Select all remaining pages up to the next section boundary */
585 		cur_nr_pages = min(end_pfn - pfn,
586 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
587 		sparse_remove_section(pfn, cur_nr_pages, altmap);
588 	}
589 }
590 
591 int set_online_page_callback(online_page_callback_t callback)
592 {
593 	int rc = -EINVAL;
594 
595 	get_online_mems();
596 	mutex_lock(&online_page_callback_lock);
597 
598 	if (online_page_callback == generic_online_page) {
599 		online_page_callback = callback;
600 		rc = 0;
601 	}
602 
603 	mutex_unlock(&online_page_callback_lock);
604 	put_online_mems();
605 
606 	return rc;
607 }
608 EXPORT_SYMBOL_GPL(set_online_page_callback);
609 
610 int restore_online_page_callback(online_page_callback_t callback)
611 {
612 	int rc = -EINVAL;
613 
614 	get_online_mems();
615 	mutex_lock(&online_page_callback_lock);
616 
617 	if (online_page_callback == callback) {
618 		online_page_callback = generic_online_page;
619 		rc = 0;
620 	}
621 
622 	mutex_unlock(&online_page_callback_lock);
623 	put_online_mems();
624 
625 	return rc;
626 }
627 EXPORT_SYMBOL_GPL(restore_online_page_callback);
628 
629 void generic_online_page(struct page *page, unsigned int order)
630 {
631 	/*
632 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
633 	 * so we should map it first. This is better than introducing a special
634 	 * case in page freeing fast path.
635 	 */
636 	debug_pagealloc_map_pages(page, 1 << order);
637 	__free_pages_core(page, order);
638 	totalram_pages_add(1UL << order);
639 }
640 EXPORT_SYMBOL_GPL(generic_online_page);
641 
642 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
643 {
644 	const unsigned long end_pfn = start_pfn + nr_pages;
645 	unsigned long pfn;
646 
647 	/*
648 	 * Online the pages in MAX_ORDER aligned chunks. The callback might
649 	 * decide to not expose all pages to the buddy (e.g., expose them
650 	 * later). We account all pages as being online and belonging to this
651 	 * zone ("present").
652 	 * When using memmap_on_memory, the range might not be aligned to
653 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
654 	 * this and the first chunk to online will be pageblock_nr_pages.
655 	 */
656 	for (pfn = start_pfn; pfn < end_pfn;) {
657 		int order;
658 
659 		/*
660 		 * Free to online pages in the largest chunks alignment allows.
661 		 *
662 		 * __ffs() behaviour is undefined for 0. start == 0 is
663 		 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case.
664 		 */
665 		if (pfn)
666 			order = min_t(int, MAX_ORDER, __ffs(pfn));
667 		else
668 			order = MAX_ORDER;
669 
670 		(*online_page_callback)(pfn_to_page(pfn), order);
671 		pfn += (1UL << order);
672 	}
673 
674 	/* mark all involved sections as online */
675 	online_mem_sections(start_pfn, end_pfn);
676 }
677 
678 /* check which state of node_states will be changed when online memory */
679 static void node_states_check_changes_online(unsigned long nr_pages,
680 	struct zone *zone, struct memory_notify *arg)
681 {
682 	int nid = zone_to_nid(zone);
683 
684 	arg->status_change_nid = NUMA_NO_NODE;
685 	arg->status_change_nid_normal = NUMA_NO_NODE;
686 
687 	if (!node_state(nid, N_MEMORY))
688 		arg->status_change_nid = nid;
689 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
690 		arg->status_change_nid_normal = nid;
691 }
692 
693 static void node_states_set_node(int node, struct memory_notify *arg)
694 {
695 	if (arg->status_change_nid_normal >= 0)
696 		node_set_state(node, N_NORMAL_MEMORY);
697 
698 	if (arg->status_change_nid >= 0)
699 		node_set_state(node, N_MEMORY);
700 }
701 
702 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
703 		unsigned long nr_pages)
704 {
705 	unsigned long old_end_pfn = zone_end_pfn(zone);
706 
707 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
708 		zone->zone_start_pfn = start_pfn;
709 
710 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
711 }
712 
713 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
714                                      unsigned long nr_pages)
715 {
716 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
717 
718 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
719 		pgdat->node_start_pfn = start_pfn;
720 
721 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
722 
723 }
724 
725 #ifdef CONFIG_ZONE_DEVICE
726 static void section_taint_zone_device(unsigned long pfn)
727 {
728 	struct mem_section *ms = __pfn_to_section(pfn);
729 
730 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
731 }
732 #else
733 static inline void section_taint_zone_device(unsigned long pfn)
734 {
735 }
736 #endif
737 
738 /*
739  * Associate the pfn range with the given zone, initializing the memmaps
740  * and resizing the pgdat/zone data to span the added pages. After this
741  * call, all affected pages are PG_reserved.
742  *
743  * All aligned pageblocks are initialized to the specified migratetype
744  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
745  * zone stats (e.g., nr_isolate_pageblock) are touched.
746  */
747 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
748 				  unsigned long nr_pages,
749 				  struct vmem_altmap *altmap, int migratetype)
750 {
751 	struct pglist_data *pgdat = zone->zone_pgdat;
752 	int nid = pgdat->node_id;
753 
754 	clear_zone_contiguous(zone);
755 
756 	if (zone_is_empty(zone))
757 		init_currently_empty_zone(zone, start_pfn, nr_pages);
758 	resize_zone_range(zone, start_pfn, nr_pages);
759 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
760 
761 	/*
762 	 * Subsection population requires care in pfn_to_online_page().
763 	 * Set the taint to enable the slow path detection of
764 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
765 	 * section.
766 	 */
767 	if (zone_is_zone_device(zone)) {
768 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
769 			section_taint_zone_device(start_pfn);
770 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
771 			section_taint_zone_device(start_pfn + nr_pages);
772 	}
773 
774 	/*
775 	 * TODO now we have a visible range of pages which are not associated
776 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
777 	 * expects the zone spans the pfn range. All the pages in the range
778 	 * are reserved so nobody should be touching them so we should be safe
779 	 */
780 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
781 			 MEMINIT_HOTPLUG, altmap, migratetype);
782 
783 	set_zone_contiguous(zone);
784 }
785 
786 struct auto_movable_stats {
787 	unsigned long kernel_early_pages;
788 	unsigned long movable_pages;
789 };
790 
791 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
792 					    struct zone *zone)
793 {
794 	if (zone_idx(zone) == ZONE_MOVABLE) {
795 		stats->movable_pages += zone->present_pages;
796 	} else {
797 		stats->kernel_early_pages += zone->present_early_pages;
798 #ifdef CONFIG_CMA
799 		/*
800 		 * CMA pages (never on hotplugged memory) behave like
801 		 * ZONE_MOVABLE.
802 		 */
803 		stats->movable_pages += zone->cma_pages;
804 		stats->kernel_early_pages -= zone->cma_pages;
805 #endif /* CONFIG_CMA */
806 	}
807 }
808 struct auto_movable_group_stats {
809 	unsigned long movable_pages;
810 	unsigned long req_kernel_early_pages;
811 };
812 
813 static int auto_movable_stats_account_group(struct memory_group *group,
814 					   void *arg)
815 {
816 	const int ratio = READ_ONCE(auto_movable_ratio);
817 	struct auto_movable_group_stats *stats = arg;
818 	long pages;
819 
820 	/*
821 	 * We don't support modifying the config while the auto-movable online
822 	 * policy is already enabled. Just avoid the division by zero below.
823 	 */
824 	if (!ratio)
825 		return 0;
826 
827 	/*
828 	 * Calculate how many early kernel pages this group requires to
829 	 * satisfy the configured zone ratio.
830 	 */
831 	pages = group->present_movable_pages * 100 / ratio;
832 	pages -= group->present_kernel_pages;
833 
834 	if (pages > 0)
835 		stats->req_kernel_early_pages += pages;
836 	stats->movable_pages += group->present_movable_pages;
837 	return 0;
838 }
839 
840 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
841 					    unsigned long nr_pages)
842 {
843 	unsigned long kernel_early_pages, movable_pages;
844 	struct auto_movable_group_stats group_stats = {};
845 	struct auto_movable_stats stats = {};
846 	pg_data_t *pgdat = NODE_DATA(nid);
847 	struct zone *zone;
848 	int i;
849 
850 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
851 	if (nid == NUMA_NO_NODE) {
852 		/* TODO: cache values */
853 		for_each_populated_zone(zone)
854 			auto_movable_stats_account_zone(&stats, zone);
855 	} else {
856 		for (i = 0; i < MAX_NR_ZONES; i++) {
857 			zone = pgdat->node_zones + i;
858 			if (populated_zone(zone))
859 				auto_movable_stats_account_zone(&stats, zone);
860 		}
861 	}
862 
863 	kernel_early_pages = stats.kernel_early_pages;
864 	movable_pages = stats.movable_pages;
865 
866 	/*
867 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
868 	 * memory within the same group. Remove the effect of all but the
869 	 * current group from the stats.
870 	 */
871 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
872 				   group, &group_stats);
873 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
874 		return false;
875 	kernel_early_pages -= group_stats.req_kernel_early_pages;
876 	movable_pages -= group_stats.movable_pages;
877 
878 	if (group && group->is_dynamic)
879 		kernel_early_pages += group->present_kernel_pages;
880 
881 	/*
882 	 * Test if we could online the given number of pages to ZONE_MOVABLE
883 	 * and still stay in the configured ratio.
884 	 */
885 	movable_pages += nr_pages;
886 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
887 }
888 
889 /*
890  * Returns a default kernel memory zone for the given pfn range.
891  * If no kernel zone covers this pfn range it will automatically go
892  * to the ZONE_NORMAL.
893  */
894 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
895 		unsigned long nr_pages)
896 {
897 	struct pglist_data *pgdat = NODE_DATA(nid);
898 	int zid;
899 
900 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
901 		struct zone *zone = &pgdat->node_zones[zid];
902 
903 		if (zone_intersects(zone, start_pfn, nr_pages))
904 			return zone;
905 	}
906 
907 	return &pgdat->node_zones[ZONE_NORMAL];
908 }
909 
910 /*
911  * Determine to which zone to online memory dynamically based on user
912  * configuration and system stats. We care about the following ratio:
913  *
914  *   MOVABLE : KERNEL
915  *
916  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
917  * one of the kernel zones. CMA pages inside one of the kernel zones really
918  * behaves like ZONE_MOVABLE, so we treat them accordingly.
919  *
920  * We don't allow for hotplugged memory in a KERNEL zone to increase the
921  * amount of MOVABLE memory we can have, so we end up with:
922  *
923  *   MOVABLE : KERNEL_EARLY
924  *
925  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
926  * boot. We base our calculation on KERNEL_EARLY internally, because:
927  *
928  * a) Hotplugged memory in one of the kernel zones can sometimes still get
929  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
930  *    There is no coordination across memory devices, therefore "automatic"
931  *    hotunplugging, as implemented in hypervisors, could result in zone
932  *    imbalances.
933  * b) Early/boot memory in one of the kernel zones can usually not get
934  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
935  *    with unmovable allocations). While there are corner cases where it might
936  *    still work, it is barely relevant in practice.
937  *
938  * Exceptions are dynamic memory groups, which allow for more MOVABLE
939  * memory within the same memory group -- because in that case, there is
940  * coordination within the single memory device managed by a single driver.
941  *
942  * We rely on "present pages" instead of "managed pages", as the latter is
943  * highly unreliable and dynamic in virtualized environments, and does not
944  * consider boot time allocations. For example, memory ballooning adjusts the
945  * managed pages when inflating/deflating the balloon, and balloon compaction
946  * can even migrate inflated pages between zones.
947  *
948  * Using "present pages" is better but some things to keep in mind are:
949  *
950  * a) Some memblock allocations, such as for the crashkernel area, are
951  *    effectively unused by the kernel, yet they account to "present pages".
952  *    Fortunately, these allocations are comparatively small in relevant setups
953  *    (e.g., fraction of system memory).
954  * b) Some hotplugged memory blocks in virtualized environments, esecially
955  *    hotplugged by virtio-mem, look like they are completely present, however,
956  *    only parts of the memory block are actually currently usable.
957  *    "present pages" is an upper limit that can get reached at runtime. As
958  *    we base our calculations on KERNEL_EARLY, this is not an issue.
959  */
960 static struct zone *auto_movable_zone_for_pfn(int nid,
961 					      struct memory_group *group,
962 					      unsigned long pfn,
963 					      unsigned long nr_pages)
964 {
965 	unsigned long online_pages = 0, max_pages, end_pfn;
966 	struct page *page;
967 
968 	if (!auto_movable_ratio)
969 		goto kernel_zone;
970 
971 	if (group && !group->is_dynamic) {
972 		max_pages = group->s.max_pages;
973 		online_pages = group->present_movable_pages;
974 
975 		/* If anything is !MOVABLE online the rest !MOVABLE. */
976 		if (group->present_kernel_pages)
977 			goto kernel_zone;
978 	} else if (!group || group->d.unit_pages == nr_pages) {
979 		max_pages = nr_pages;
980 	} else {
981 		max_pages = group->d.unit_pages;
982 		/*
983 		 * Take a look at all online sections in the current unit.
984 		 * We can safely assume that all pages within a section belong
985 		 * to the same zone, because dynamic memory groups only deal
986 		 * with hotplugged memory.
987 		 */
988 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
989 		end_pfn = pfn + group->d.unit_pages;
990 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
991 			page = pfn_to_online_page(pfn);
992 			if (!page)
993 				continue;
994 			/* If anything is !MOVABLE online the rest !MOVABLE. */
995 			if (!is_zone_movable_page(page))
996 				goto kernel_zone;
997 			online_pages += PAGES_PER_SECTION;
998 		}
999 	}
1000 
1001 	/*
1002 	 * Online MOVABLE if we could *currently* online all remaining parts
1003 	 * MOVABLE. We expect to (add+) online them immediately next, so if
1004 	 * nobody interferes, all will be MOVABLE if possible.
1005 	 */
1006 	nr_pages = max_pages - online_pages;
1007 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1008 		goto kernel_zone;
1009 
1010 #ifdef CONFIG_NUMA
1011 	if (auto_movable_numa_aware &&
1012 	    !auto_movable_can_online_movable(nid, group, nr_pages))
1013 		goto kernel_zone;
1014 #endif /* CONFIG_NUMA */
1015 
1016 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1017 kernel_zone:
1018 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1019 }
1020 
1021 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1022 		unsigned long nr_pages)
1023 {
1024 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1025 			nr_pages);
1026 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1027 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1028 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1029 
1030 	/*
1031 	 * We inherit the existing zone in a simple case where zones do not
1032 	 * overlap in the given range
1033 	 */
1034 	if (in_kernel ^ in_movable)
1035 		return (in_kernel) ? kernel_zone : movable_zone;
1036 
1037 	/*
1038 	 * If the range doesn't belong to any zone or two zones overlap in the
1039 	 * given range then we use movable zone only if movable_node is
1040 	 * enabled because we always online to a kernel zone by default.
1041 	 */
1042 	return movable_node_enabled ? movable_zone : kernel_zone;
1043 }
1044 
1045 struct zone *zone_for_pfn_range(int online_type, int nid,
1046 		struct memory_group *group, unsigned long start_pfn,
1047 		unsigned long nr_pages)
1048 {
1049 	if (online_type == MMOP_ONLINE_KERNEL)
1050 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1051 
1052 	if (online_type == MMOP_ONLINE_MOVABLE)
1053 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1054 
1055 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1056 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1057 
1058 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1059 }
1060 
1061 /*
1062  * This function should only be called by memory_block_{online,offline},
1063  * and {online,offline}_pages.
1064  */
1065 void adjust_present_page_count(struct page *page, struct memory_group *group,
1066 			       long nr_pages)
1067 {
1068 	struct zone *zone = page_zone(page);
1069 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1070 
1071 	/*
1072 	 * We only support onlining/offlining/adding/removing of complete
1073 	 * memory blocks; therefore, either all is either early or hotplugged.
1074 	 */
1075 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1076 		zone->present_early_pages += nr_pages;
1077 	zone->present_pages += nr_pages;
1078 	zone->zone_pgdat->node_present_pages += nr_pages;
1079 
1080 	if (group && movable)
1081 		group->present_movable_pages += nr_pages;
1082 	else if (group && !movable)
1083 		group->present_kernel_pages += nr_pages;
1084 }
1085 
1086 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1087 			      struct zone *zone)
1088 {
1089 	unsigned long end_pfn = pfn + nr_pages;
1090 	int ret, i;
1091 
1092 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1093 	if (ret)
1094 		return ret;
1095 
1096 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1097 
1098 	for (i = 0; i < nr_pages; i++)
1099 		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1100 
1101 	/*
1102 	 * It might be that the vmemmap_pages fully span sections. If that is
1103 	 * the case, mark those sections online here as otherwise they will be
1104 	 * left offline.
1105 	 */
1106 	if (nr_pages >= PAGES_PER_SECTION)
1107 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1108 
1109 	return ret;
1110 }
1111 
1112 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1113 {
1114 	unsigned long end_pfn = pfn + nr_pages;
1115 
1116 	/*
1117 	 * It might be that the vmemmap_pages fully span sections. If that is
1118 	 * the case, mark those sections offline here as otherwise they will be
1119 	 * left online.
1120 	 */
1121 	if (nr_pages >= PAGES_PER_SECTION)
1122 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1123 
1124         /*
1125 	 * The pages associated with this vmemmap have been offlined, so
1126 	 * we can reset its state here.
1127 	 */
1128 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1129 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1130 }
1131 
1132 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1133 		       struct zone *zone, struct memory_group *group)
1134 {
1135 	unsigned long flags;
1136 	int need_zonelists_rebuild = 0;
1137 	const int nid = zone_to_nid(zone);
1138 	int ret;
1139 	struct memory_notify arg;
1140 
1141 	/*
1142 	 * {on,off}lining is constrained to full memory sections (or more
1143 	 * precisely to memory blocks from the user space POV).
1144 	 * memmap_on_memory is an exception because it reserves initial part
1145 	 * of the physical memory space for vmemmaps. That space is pageblock
1146 	 * aligned.
1147 	 */
1148 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1149 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1150 		return -EINVAL;
1151 
1152 	mem_hotplug_begin();
1153 
1154 	/* associate pfn range with the zone */
1155 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1156 
1157 	arg.start_pfn = pfn;
1158 	arg.nr_pages = nr_pages;
1159 	node_states_check_changes_online(nr_pages, zone, &arg);
1160 
1161 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1162 	ret = notifier_to_errno(ret);
1163 	if (ret)
1164 		goto failed_addition;
1165 
1166 	/*
1167 	 * Fixup the number of isolated pageblocks before marking the sections
1168 	 * onlining, such that undo_isolate_page_range() works correctly.
1169 	 */
1170 	spin_lock_irqsave(&zone->lock, flags);
1171 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1172 	spin_unlock_irqrestore(&zone->lock, flags);
1173 
1174 	/*
1175 	 * If this zone is not populated, then it is not in zonelist.
1176 	 * This means the page allocator ignores this zone.
1177 	 * So, zonelist must be updated after online.
1178 	 */
1179 	if (!populated_zone(zone)) {
1180 		need_zonelists_rebuild = 1;
1181 		setup_zone_pageset(zone);
1182 	}
1183 
1184 	online_pages_range(pfn, nr_pages);
1185 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1186 
1187 	node_states_set_node(nid, &arg);
1188 	if (need_zonelists_rebuild)
1189 		build_all_zonelists(NULL);
1190 
1191 	/* Basic onlining is complete, allow allocation of onlined pages. */
1192 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1193 
1194 	/*
1195 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1196 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1197 	 * zone to make sure the just onlined pages are properly distributed
1198 	 * across the whole freelist - to create an initial shuffle.
1199 	 */
1200 	shuffle_zone(zone);
1201 
1202 	/* reinitialise watermarks and update pcp limits */
1203 	init_per_zone_wmark_min();
1204 
1205 	kswapd_run(nid);
1206 	kcompactd_run(nid);
1207 
1208 	writeback_set_ratelimit();
1209 
1210 	memory_notify(MEM_ONLINE, &arg);
1211 	mem_hotplug_done();
1212 	return 0;
1213 
1214 failed_addition:
1215 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1216 		 (unsigned long long) pfn << PAGE_SHIFT,
1217 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1218 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1219 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1220 	mem_hotplug_done();
1221 	return ret;
1222 }
1223 
1224 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1225 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1226 {
1227 	struct pglist_data *pgdat;
1228 
1229 	/*
1230 	 * NODE_DATA is preallocated (free_area_init) but its internal
1231 	 * state is not allocated completely. Add missing pieces.
1232 	 * Completely offline nodes stay around and they just need
1233 	 * reintialization.
1234 	 */
1235 	pgdat = NODE_DATA(nid);
1236 
1237 	/* init node's zones as empty zones, we don't have any present pages.*/
1238 	free_area_init_core_hotplug(pgdat);
1239 
1240 	/*
1241 	 * The node we allocated has no zone fallback lists. For avoiding
1242 	 * to access not-initialized zonelist, build here.
1243 	 */
1244 	build_all_zonelists(pgdat);
1245 
1246 	return pgdat;
1247 }
1248 
1249 /*
1250  * __try_online_node - online a node if offlined
1251  * @nid: the node ID
1252  * @set_node_online: Whether we want to online the node
1253  * called by cpu_up() to online a node without onlined memory.
1254  *
1255  * Returns:
1256  * 1 -> a new node has been allocated
1257  * 0 -> the node is already online
1258  * -ENOMEM -> the node could not be allocated
1259  */
1260 static int __try_online_node(int nid, bool set_node_online)
1261 {
1262 	pg_data_t *pgdat;
1263 	int ret = 1;
1264 
1265 	if (node_online(nid))
1266 		return 0;
1267 
1268 	pgdat = hotadd_init_pgdat(nid);
1269 	if (!pgdat) {
1270 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1271 		ret = -ENOMEM;
1272 		goto out;
1273 	}
1274 
1275 	if (set_node_online) {
1276 		node_set_online(nid);
1277 		ret = register_one_node(nid);
1278 		BUG_ON(ret);
1279 	}
1280 out:
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Users of this function always want to online/register the node
1286  */
1287 int try_online_node(int nid)
1288 {
1289 	int ret;
1290 
1291 	mem_hotplug_begin();
1292 	ret =  __try_online_node(nid, true);
1293 	mem_hotplug_done();
1294 	return ret;
1295 }
1296 
1297 static int check_hotplug_memory_range(u64 start, u64 size)
1298 {
1299 	/* memory range must be block size aligned */
1300 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1301 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1302 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1303 		       memory_block_size_bytes(), start, size);
1304 		return -EINVAL;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static int online_memory_block(struct memory_block *mem, void *arg)
1311 {
1312 	mem->online_type = mhp_default_online_type;
1313 	return device_online(&mem->dev);
1314 }
1315 
1316 #ifndef arch_supports_memmap_on_memory
1317 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1318 {
1319 	/*
1320 	 * As default, we want the vmemmap to span a complete PMD such that we
1321 	 * can map the vmemmap using a single PMD if supported by the
1322 	 * architecture.
1323 	 */
1324 	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1325 }
1326 #endif
1327 
1328 static bool mhp_supports_memmap_on_memory(unsigned long size)
1329 {
1330 	unsigned long vmemmap_size = memory_block_memmap_size();
1331 	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1332 
1333 	/*
1334 	 * Besides having arch support and the feature enabled at runtime, we
1335 	 * need a few more assumptions to hold true:
1336 	 *
1337 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1338 	 *    in memory block granularity. We don't want the vmemmap of online
1339 	 *    memory blocks to reside on offline memory blocks. In the future,
1340 	 *    we might want to support variable-sized memory blocks to make the
1341 	 *    feature more versatile.
1342 	 *
1343 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1344 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1345 	 *    other memory blocks)
1346 	 *
1347 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1348 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1349 	 *    code requires applicable ranges to be page-aligned, for example, to
1350 	 *    set the migratetypes properly.
1351 	 *
1352 	 * TODO: Although we have a check here to make sure that vmemmap pages
1353 	 *       fully populate a PMD, it is not the right place to check for
1354 	 *       this. A much better solution involves improving vmemmap code
1355 	 *       to fallback to base pages when trying to populate vmemmap using
1356 	 *       altmap as an alternative source of memory, and we do not exactly
1357 	 *       populate a single PMD.
1358 	 */
1359 	if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1360 		return false;
1361 
1362 	/*
1363 	 * Make sure the vmemmap allocation is fully contained
1364 	 * so that we always allocate vmemmap memory from altmap area.
1365 	 */
1366 	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1367 		return false;
1368 
1369 	/*
1370 	 * start pfn should be pageblock_nr_pages aligned for correctly
1371 	 * setting migrate types
1372 	 */
1373 	if (!pageblock_aligned(memmap_pages))
1374 		return false;
1375 
1376 	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1377 		/* No effective hotplugged memory doesn't make sense. */
1378 		return false;
1379 
1380 	return arch_supports_memmap_on_memory(vmemmap_size);
1381 }
1382 
1383 /*
1384  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1385  * and online/offline operations (triggered e.g. by sysfs).
1386  *
1387  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1388  */
1389 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1390 {
1391 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1392 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1393 	struct vmem_altmap mhp_altmap = {
1394 		.base_pfn =  PHYS_PFN(res->start),
1395 		.end_pfn  =  PHYS_PFN(res->end),
1396 	};
1397 	struct memory_group *group = NULL;
1398 	u64 start, size;
1399 	bool new_node = false;
1400 	int ret;
1401 
1402 	start = res->start;
1403 	size = resource_size(res);
1404 
1405 	ret = check_hotplug_memory_range(start, size);
1406 	if (ret)
1407 		return ret;
1408 
1409 	if (mhp_flags & MHP_NID_IS_MGID) {
1410 		group = memory_group_find_by_id(nid);
1411 		if (!group)
1412 			return -EINVAL;
1413 		nid = group->nid;
1414 	}
1415 
1416 	if (!node_possible(nid)) {
1417 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1418 		return -EINVAL;
1419 	}
1420 
1421 	mem_hotplug_begin();
1422 
1423 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1424 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1425 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1426 		ret = memblock_add_node(start, size, nid, memblock_flags);
1427 		if (ret)
1428 			goto error_mem_hotplug_end;
1429 	}
1430 
1431 	ret = __try_online_node(nid, false);
1432 	if (ret < 0)
1433 		goto error;
1434 	new_node = ret;
1435 
1436 	/*
1437 	 * Self hosted memmap array
1438 	 */
1439 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1440 		if (mhp_supports_memmap_on_memory(size)) {
1441 			mhp_altmap.free = memory_block_memmap_on_memory_pages();
1442 			params.altmap = kmalloc(sizeof(struct vmem_altmap), GFP_KERNEL);
1443 			if (!params.altmap) {
1444 				ret = -ENOMEM;
1445 				goto error;
1446 			}
1447 
1448 			memcpy(params.altmap, &mhp_altmap, sizeof(mhp_altmap));
1449 		}
1450 		/* fallback to not using altmap  */
1451 	}
1452 
1453 	/* call arch's memory hotadd */
1454 	ret = arch_add_memory(nid, start, size, &params);
1455 	if (ret < 0)
1456 		goto error_free;
1457 
1458 	/* create memory block devices after memory was added */
1459 	ret = create_memory_block_devices(start, size, params.altmap, group);
1460 	if (ret) {
1461 		arch_remove_memory(start, size, NULL);
1462 		goto error_free;
1463 	}
1464 
1465 	if (new_node) {
1466 		/* If sysfs file of new node can't be created, cpu on the node
1467 		 * can't be hot-added. There is no rollback way now.
1468 		 * So, check by BUG_ON() to catch it reluctantly..
1469 		 * We online node here. We can't roll back from here.
1470 		 */
1471 		node_set_online(nid);
1472 		ret = __register_one_node(nid);
1473 		BUG_ON(ret);
1474 	}
1475 
1476 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1477 					  PFN_UP(start + size - 1),
1478 					  MEMINIT_HOTPLUG);
1479 
1480 	/* create new memmap entry */
1481 	if (!strcmp(res->name, "System RAM"))
1482 		firmware_map_add_hotplug(start, start + size, "System RAM");
1483 
1484 	/* device_online() will take the lock when calling online_pages() */
1485 	mem_hotplug_done();
1486 
1487 	/*
1488 	 * In case we're allowed to merge the resource, flag it and trigger
1489 	 * merging now that adding succeeded.
1490 	 */
1491 	if (mhp_flags & MHP_MERGE_RESOURCE)
1492 		merge_system_ram_resource(res);
1493 
1494 	/* online pages if requested */
1495 	if (mhp_default_online_type != MMOP_OFFLINE)
1496 		walk_memory_blocks(start, size, NULL, online_memory_block);
1497 
1498 	return ret;
1499 error_free:
1500 	kfree(params.altmap);
1501 error:
1502 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1503 		memblock_remove(start, size);
1504 error_mem_hotplug_end:
1505 	mem_hotplug_done();
1506 	return ret;
1507 }
1508 
1509 /* requires device_hotplug_lock, see add_memory_resource() */
1510 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1511 {
1512 	struct resource *res;
1513 	int ret;
1514 
1515 	res = register_memory_resource(start, size, "System RAM");
1516 	if (IS_ERR(res))
1517 		return PTR_ERR(res);
1518 
1519 	ret = add_memory_resource(nid, res, mhp_flags);
1520 	if (ret < 0)
1521 		release_memory_resource(res);
1522 	return ret;
1523 }
1524 
1525 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1526 {
1527 	int rc;
1528 
1529 	lock_device_hotplug();
1530 	rc = __add_memory(nid, start, size, mhp_flags);
1531 	unlock_device_hotplug();
1532 
1533 	return rc;
1534 }
1535 EXPORT_SYMBOL_GPL(add_memory);
1536 
1537 /*
1538  * Add special, driver-managed memory to the system as system RAM. Such
1539  * memory is not exposed via the raw firmware-provided memmap as system
1540  * RAM, instead, it is detected and added by a driver - during cold boot,
1541  * after a reboot, and after kexec.
1542  *
1543  * Reasons why this memory should not be used for the initial memmap of a
1544  * kexec kernel or for placing kexec images:
1545  * - The booting kernel is in charge of determining how this memory will be
1546  *   used (e.g., use persistent memory as system RAM)
1547  * - Coordination with a hypervisor is required before this memory
1548  *   can be used (e.g., inaccessible parts).
1549  *
1550  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1551  * memory map") are created. Also, the created memory resource is flagged
1552  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1553  * this memory as well (esp., not place kexec images onto it).
1554  *
1555  * The resource_name (visible via /proc/iomem) has to have the format
1556  * "System RAM ($DRIVER)".
1557  */
1558 int add_memory_driver_managed(int nid, u64 start, u64 size,
1559 			      const char *resource_name, mhp_t mhp_flags)
1560 {
1561 	struct resource *res;
1562 	int rc;
1563 
1564 	if (!resource_name ||
1565 	    strstr(resource_name, "System RAM (") != resource_name ||
1566 	    resource_name[strlen(resource_name) - 1] != ')')
1567 		return -EINVAL;
1568 
1569 	lock_device_hotplug();
1570 
1571 	res = register_memory_resource(start, size, resource_name);
1572 	if (IS_ERR(res)) {
1573 		rc = PTR_ERR(res);
1574 		goto out_unlock;
1575 	}
1576 
1577 	rc = add_memory_resource(nid, res, mhp_flags);
1578 	if (rc < 0)
1579 		release_memory_resource(res);
1580 
1581 out_unlock:
1582 	unlock_device_hotplug();
1583 	return rc;
1584 }
1585 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1586 
1587 /*
1588  * Platforms should define arch_get_mappable_range() that provides
1589  * maximum possible addressable physical memory range for which the
1590  * linear mapping could be created. The platform returned address
1591  * range must adhere to these following semantics.
1592  *
1593  * - range.start <= range.end
1594  * - Range includes both end points [range.start..range.end]
1595  *
1596  * There is also a fallback definition provided here, allowing the
1597  * entire possible physical address range in case any platform does
1598  * not define arch_get_mappable_range().
1599  */
1600 struct range __weak arch_get_mappable_range(void)
1601 {
1602 	struct range mhp_range = {
1603 		.start = 0UL,
1604 		.end = -1ULL,
1605 	};
1606 	return mhp_range;
1607 }
1608 
1609 struct range mhp_get_pluggable_range(bool need_mapping)
1610 {
1611 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1612 	struct range mhp_range;
1613 
1614 	if (need_mapping) {
1615 		mhp_range = arch_get_mappable_range();
1616 		if (mhp_range.start > max_phys) {
1617 			mhp_range.start = 0;
1618 			mhp_range.end = 0;
1619 		}
1620 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1621 	} else {
1622 		mhp_range.start = 0;
1623 		mhp_range.end = max_phys;
1624 	}
1625 	return mhp_range;
1626 }
1627 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1628 
1629 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1630 {
1631 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1632 	u64 end = start + size;
1633 
1634 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1635 		return true;
1636 
1637 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1638 		start, end, mhp_range.start, mhp_range.end);
1639 	return false;
1640 }
1641 
1642 #ifdef CONFIG_MEMORY_HOTREMOVE
1643 /*
1644  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1645  * non-lru movable pages and hugepages). Will skip over most unmovable
1646  * pages (esp., pages that can be skipped when offlining), but bail out on
1647  * definitely unmovable pages.
1648  *
1649  * Returns:
1650  *	0 in case a movable page is found and movable_pfn was updated.
1651  *	-ENOENT in case no movable page was found.
1652  *	-EBUSY in case a definitely unmovable page was found.
1653  */
1654 static int scan_movable_pages(unsigned long start, unsigned long end,
1655 			      unsigned long *movable_pfn)
1656 {
1657 	unsigned long pfn;
1658 
1659 	for (pfn = start; pfn < end; pfn++) {
1660 		struct page *page, *head;
1661 		unsigned long skip;
1662 
1663 		if (!pfn_valid(pfn))
1664 			continue;
1665 		page = pfn_to_page(pfn);
1666 		if (PageLRU(page))
1667 			goto found;
1668 		if (__PageMovable(page))
1669 			goto found;
1670 
1671 		/*
1672 		 * PageOffline() pages that are not marked __PageMovable() and
1673 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1674 		 * definitely unmovable. If their reference count would be 0,
1675 		 * they could at least be skipped when offlining memory.
1676 		 */
1677 		if (PageOffline(page) && page_count(page))
1678 			return -EBUSY;
1679 
1680 		if (!PageHuge(page))
1681 			continue;
1682 		head = compound_head(page);
1683 		/*
1684 		 * This test is racy as we hold no reference or lock.  The
1685 		 * hugetlb page could have been free'ed and head is no longer
1686 		 * a hugetlb page before the following check.  In such unlikely
1687 		 * cases false positives and negatives are possible.  Calling
1688 		 * code must deal with these scenarios.
1689 		 */
1690 		if (HPageMigratable(head))
1691 			goto found;
1692 		skip = compound_nr(head) - (page - head);
1693 		pfn += skip - 1;
1694 	}
1695 	return -ENOENT;
1696 found:
1697 	*movable_pfn = pfn;
1698 	return 0;
1699 }
1700 
1701 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1702 {
1703 	unsigned long pfn;
1704 	struct page *page, *head;
1705 	LIST_HEAD(source);
1706 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1707 				      DEFAULT_RATELIMIT_BURST);
1708 
1709 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1710 		struct folio *folio;
1711 		bool isolated;
1712 
1713 		if (!pfn_valid(pfn))
1714 			continue;
1715 		page = pfn_to_page(pfn);
1716 		folio = page_folio(page);
1717 		head = &folio->page;
1718 
1719 		if (PageHuge(page)) {
1720 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1721 			isolate_hugetlb(folio, &source);
1722 			continue;
1723 		} else if (PageTransHuge(page))
1724 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1725 
1726 		/*
1727 		 * HWPoison pages have elevated reference counts so the migration would
1728 		 * fail on them. It also doesn't make any sense to migrate them in the
1729 		 * first place. Still try to unmap such a page in case it is still mapped
1730 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1731 		 * the unmap as the catch all safety net).
1732 		 */
1733 		if (PageHWPoison(page)) {
1734 			if (WARN_ON(folio_test_lru(folio)))
1735 				folio_isolate_lru(folio);
1736 			if (folio_mapped(folio))
1737 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1738 			continue;
1739 		}
1740 
1741 		if (!get_page_unless_zero(page))
1742 			continue;
1743 		/*
1744 		 * We can skip free pages. And we can deal with pages on
1745 		 * LRU and non-lru movable pages.
1746 		 */
1747 		if (PageLRU(page))
1748 			isolated = isolate_lru_page(page);
1749 		else
1750 			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1751 		if (isolated) {
1752 			list_add_tail(&page->lru, &source);
1753 			if (!__PageMovable(page))
1754 				inc_node_page_state(page, NR_ISOLATED_ANON +
1755 						    page_is_file_lru(page));
1756 
1757 		} else {
1758 			if (__ratelimit(&migrate_rs)) {
1759 				pr_warn("failed to isolate pfn %lx\n", pfn);
1760 				dump_page(page, "isolation failed");
1761 			}
1762 		}
1763 		put_page(page);
1764 	}
1765 	if (!list_empty(&source)) {
1766 		nodemask_t nmask = node_states[N_MEMORY];
1767 		struct migration_target_control mtc = {
1768 			.nmask = &nmask,
1769 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1770 		};
1771 		int ret;
1772 
1773 		/*
1774 		 * We have checked that migration range is on a single zone so
1775 		 * we can use the nid of the first page to all the others.
1776 		 */
1777 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1778 
1779 		/*
1780 		 * try to allocate from a different node but reuse this node
1781 		 * if there are no other online nodes to be used (e.g. we are
1782 		 * offlining a part of the only existing node)
1783 		 */
1784 		node_clear(mtc.nid, nmask);
1785 		if (nodes_empty(nmask))
1786 			node_set(mtc.nid, nmask);
1787 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1788 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1789 		if (ret) {
1790 			list_for_each_entry(page, &source, lru) {
1791 				if (__ratelimit(&migrate_rs)) {
1792 					pr_warn("migrating pfn %lx failed ret:%d\n",
1793 						page_to_pfn(page), ret);
1794 					dump_page(page, "migration failure");
1795 				}
1796 			}
1797 			putback_movable_pages(&source);
1798 		}
1799 	}
1800 }
1801 
1802 static int __init cmdline_parse_movable_node(char *p)
1803 {
1804 	movable_node_enabled = true;
1805 	return 0;
1806 }
1807 early_param("movable_node", cmdline_parse_movable_node);
1808 
1809 /* check which state of node_states will be changed when offline memory */
1810 static void node_states_check_changes_offline(unsigned long nr_pages,
1811 		struct zone *zone, struct memory_notify *arg)
1812 {
1813 	struct pglist_data *pgdat = zone->zone_pgdat;
1814 	unsigned long present_pages = 0;
1815 	enum zone_type zt;
1816 
1817 	arg->status_change_nid = NUMA_NO_NODE;
1818 	arg->status_change_nid_normal = NUMA_NO_NODE;
1819 
1820 	/*
1821 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1822 	 * If the memory to be offline is within the range
1823 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1824 	 * the zones in that range will become empty after the offlining,
1825 	 * thus we can determine that we need to clear the node from
1826 	 * node_states[N_NORMAL_MEMORY].
1827 	 */
1828 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1829 		present_pages += pgdat->node_zones[zt].present_pages;
1830 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1831 		arg->status_change_nid_normal = zone_to_nid(zone);
1832 
1833 	/*
1834 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1835 	 * does not apply as we don't support 32bit.
1836 	 * Here we count the possible pages from ZONE_MOVABLE.
1837 	 * If after having accounted all the pages, we see that the nr_pages
1838 	 * to be offlined is over or equal to the accounted pages,
1839 	 * we know that the node will become empty, and so, we can clear
1840 	 * it for N_MEMORY as well.
1841 	 */
1842 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1843 
1844 	if (nr_pages >= present_pages)
1845 		arg->status_change_nid = zone_to_nid(zone);
1846 }
1847 
1848 static void node_states_clear_node(int node, struct memory_notify *arg)
1849 {
1850 	if (arg->status_change_nid_normal >= 0)
1851 		node_clear_state(node, N_NORMAL_MEMORY);
1852 
1853 	if (arg->status_change_nid >= 0)
1854 		node_clear_state(node, N_MEMORY);
1855 }
1856 
1857 static int count_system_ram_pages_cb(unsigned long start_pfn,
1858 				     unsigned long nr_pages, void *data)
1859 {
1860 	unsigned long *nr_system_ram_pages = data;
1861 
1862 	*nr_system_ram_pages += nr_pages;
1863 	return 0;
1864 }
1865 
1866 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1867 			struct zone *zone, struct memory_group *group)
1868 {
1869 	const unsigned long end_pfn = start_pfn + nr_pages;
1870 	unsigned long pfn, system_ram_pages = 0;
1871 	const int node = zone_to_nid(zone);
1872 	unsigned long flags;
1873 	struct memory_notify arg;
1874 	char *reason;
1875 	int ret;
1876 
1877 	/*
1878 	 * {on,off}lining is constrained to full memory sections (or more
1879 	 * precisely to memory blocks from the user space POV).
1880 	 * memmap_on_memory is an exception because it reserves initial part
1881 	 * of the physical memory space for vmemmaps. That space is pageblock
1882 	 * aligned.
1883 	 */
1884 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1885 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1886 		return -EINVAL;
1887 
1888 	mem_hotplug_begin();
1889 
1890 	/*
1891 	 * Don't allow to offline memory blocks that contain holes.
1892 	 * Consequently, memory blocks with holes can never get onlined
1893 	 * via the hotplug path - online_pages() - as hotplugged memory has
1894 	 * no holes. This way, we e.g., don't have to worry about marking
1895 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1896 	 * avoid using walk_system_ram_range() later.
1897 	 */
1898 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1899 			      count_system_ram_pages_cb);
1900 	if (system_ram_pages != nr_pages) {
1901 		ret = -EINVAL;
1902 		reason = "memory holes";
1903 		goto failed_removal;
1904 	}
1905 
1906 	/*
1907 	 * We only support offlining of memory blocks managed by a single zone,
1908 	 * checked by calling code. This is just a sanity check that we might
1909 	 * want to remove in the future.
1910 	 */
1911 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1912 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1913 		ret = -EINVAL;
1914 		reason = "multizone range";
1915 		goto failed_removal;
1916 	}
1917 
1918 	/*
1919 	 * Disable pcplists so that page isolation cannot race with freeing
1920 	 * in a way that pages from isolated pageblock are left on pcplists.
1921 	 */
1922 	zone_pcp_disable(zone);
1923 	lru_cache_disable();
1924 
1925 	/* set above range as isolated */
1926 	ret = start_isolate_page_range(start_pfn, end_pfn,
1927 				       MIGRATE_MOVABLE,
1928 				       MEMORY_OFFLINE | REPORT_FAILURE,
1929 				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1930 	if (ret) {
1931 		reason = "failure to isolate range";
1932 		goto failed_removal_pcplists_disabled;
1933 	}
1934 
1935 	arg.start_pfn = start_pfn;
1936 	arg.nr_pages = nr_pages;
1937 	node_states_check_changes_offline(nr_pages, zone, &arg);
1938 
1939 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1940 	ret = notifier_to_errno(ret);
1941 	if (ret) {
1942 		reason = "notifier failure";
1943 		goto failed_removal_isolated;
1944 	}
1945 
1946 	do {
1947 		pfn = start_pfn;
1948 		do {
1949 			/*
1950 			 * Historically we always checked for any signal and
1951 			 * can't limit it to fatal signals without eventually
1952 			 * breaking user space.
1953 			 */
1954 			if (signal_pending(current)) {
1955 				ret = -EINTR;
1956 				reason = "signal backoff";
1957 				goto failed_removal_isolated;
1958 			}
1959 
1960 			cond_resched();
1961 
1962 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1963 			if (!ret) {
1964 				/*
1965 				 * TODO: fatal migration failures should bail
1966 				 * out
1967 				 */
1968 				do_migrate_range(pfn, end_pfn);
1969 			}
1970 		} while (!ret);
1971 
1972 		if (ret != -ENOENT) {
1973 			reason = "unmovable page";
1974 			goto failed_removal_isolated;
1975 		}
1976 
1977 		/*
1978 		 * Dissolve free hugepages in the memory block before doing
1979 		 * offlining actually in order to make hugetlbfs's object
1980 		 * counting consistent.
1981 		 */
1982 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1983 		if (ret) {
1984 			reason = "failure to dissolve huge pages";
1985 			goto failed_removal_isolated;
1986 		}
1987 
1988 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1989 
1990 	} while (ret);
1991 
1992 	/* Mark all sections offline and remove free pages from the buddy. */
1993 	__offline_isolated_pages(start_pfn, end_pfn);
1994 	pr_debug("Offlined Pages %ld\n", nr_pages);
1995 
1996 	/*
1997 	 * The memory sections are marked offline, and the pageblock flags
1998 	 * effectively stale; nobody should be touching them. Fixup the number
1999 	 * of isolated pageblocks, memory onlining will properly revert this.
2000 	 */
2001 	spin_lock_irqsave(&zone->lock, flags);
2002 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2003 	spin_unlock_irqrestore(&zone->lock, flags);
2004 
2005 	lru_cache_enable();
2006 	zone_pcp_enable(zone);
2007 
2008 	/* removal success */
2009 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2010 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2011 
2012 	/* reinitialise watermarks and update pcp limits */
2013 	init_per_zone_wmark_min();
2014 
2015 	if (!populated_zone(zone)) {
2016 		zone_pcp_reset(zone);
2017 		build_all_zonelists(NULL);
2018 	}
2019 
2020 	node_states_clear_node(node, &arg);
2021 	if (arg.status_change_nid >= 0) {
2022 		kcompactd_stop(node);
2023 		kswapd_stop(node);
2024 	}
2025 
2026 	writeback_set_ratelimit();
2027 
2028 	memory_notify(MEM_OFFLINE, &arg);
2029 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2030 	mem_hotplug_done();
2031 	return 0;
2032 
2033 failed_removal_isolated:
2034 	/* pushback to free area */
2035 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2036 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2037 failed_removal_pcplists_disabled:
2038 	lru_cache_enable();
2039 	zone_pcp_enable(zone);
2040 failed_removal:
2041 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2042 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2043 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2044 		 reason);
2045 	mem_hotplug_done();
2046 	return ret;
2047 }
2048 
2049 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2050 {
2051 	int *nid = arg;
2052 
2053 	*nid = mem->nid;
2054 	if (unlikely(mem->state != MEM_OFFLINE)) {
2055 		phys_addr_t beginpa, endpa;
2056 
2057 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2058 		endpa = beginpa + memory_block_size_bytes() - 1;
2059 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2060 			&beginpa, &endpa);
2061 
2062 		return -EBUSY;
2063 	}
2064 	return 0;
2065 }
2066 
2067 static int test_has_altmap_cb(struct memory_block *mem, void *arg)
2068 {
2069 	struct memory_block **mem_ptr = (struct memory_block **)arg;
2070 	/*
2071 	 * return the memblock if we have altmap
2072 	 * and break callback.
2073 	 */
2074 	if (mem->altmap) {
2075 		*mem_ptr = mem;
2076 		return 1;
2077 	}
2078 	return 0;
2079 }
2080 
2081 static int check_cpu_on_node(int nid)
2082 {
2083 	int cpu;
2084 
2085 	for_each_present_cpu(cpu) {
2086 		if (cpu_to_node(cpu) == nid)
2087 			/*
2088 			 * the cpu on this node isn't removed, and we can't
2089 			 * offline this node.
2090 			 */
2091 			return -EBUSY;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2098 {
2099 	int nid = *(int *)arg;
2100 
2101 	/*
2102 	 * If a memory block belongs to multiple nodes, the stored nid is not
2103 	 * reliable. However, such blocks are always online (e.g., cannot get
2104 	 * offlined) and, therefore, are still spanned by the node.
2105 	 */
2106 	return mem->nid == nid ? -EEXIST : 0;
2107 }
2108 
2109 /**
2110  * try_offline_node
2111  * @nid: the node ID
2112  *
2113  * Offline a node if all memory sections and cpus of the node are removed.
2114  *
2115  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2116  * and online/offline operations before this call.
2117  */
2118 void try_offline_node(int nid)
2119 {
2120 	int rc;
2121 
2122 	/*
2123 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2124 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2125 	 * e.g., after the memory block was onlined.
2126 	 */
2127 	if (node_spanned_pages(nid))
2128 		return;
2129 
2130 	/*
2131 	 * Especially offline memory blocks might not be spanned by the
2132 	 * node. They will get spanned by the node once they get onlined.
2133 	 * However, they link to the node in sysfs and can get onlined later.
2134 	 */
2135 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2136 	if (rc)
2137 		return;
2138 
2139 	if (check_cpu_on_node(nid))
2140 		return;
2141 
2142 	/*
2143 	 * all memory/cpu of this node are removed, we can offline this
2144 	 * node now.
2145 	 */
2146 	node_set_offline(nid);
2147 	unregister_one_node(nid);
2148 }
2149 EXPORT_SYMBOL(try_offline_node);
2150 
2151 static int __ref try_remove_memory(u64 start, u64 size)
2152 {
2153 	struct memory_block *mem;
2154 	int rc = 0, nid = NUMA_NO_NODE;
2155 	struct vmem_altmap *altmap = NULL;
2156 
2157 	BUG_ON(check_hotplug_memory_range(start, size));
2158 
2159 	/*
2160 	 * All memory blocks must be offlined before removing memory.  Check
2161 	 * whether all memory blocks in question are offline and return error
2162 	 * if this is not the case.
2163 	 *
2164 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2165 	 * we'd only try to offline the last determined one -- which is good
2166 	 * enough for the cases we care about.
2167 	 */
2168 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2169 	if (rc)
2170 		return rc;
2171 
2172 	/*
2173 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2174 	 * the same granularity it was added - a single memory block.
2175 	 */
2176 	if (mhp_memmap_on_memory()) {
2177 		rc = walk_memory_blocks(start, size, &mem, test_has_altmap_cb);
2178 		if (rc) {
2179 			if (size != memory_block_size_bytes()) {
2180 				pr_warn("Refuse to remove %#llx - %#llx,"
2181 					"wrong granularity\n",
2182 					start, start + size);
2183 				return -EINVAL;
2184 			}
2185 			altmap = mem->altmap;
2186 			/*
2187 			 * Mark altmap NULL so that we can add a debug
2188 			 * check on memblock free.
2189 			 */
2190 			mem->altmap = NULL;
2191 		}
2192 	}
2193 
2194 	/* remove memmap entry */
2195 	firmware_map_remove(start, start + size, "System RAM");
2196 
2197 	/*
2198 	 * Memory block device removal under the device_hotplug_lock is
2199 	 * a barrier against racing online attempts.
2200 	 */
2201 	remove_memory_block_devices(start, size);
2202 
2203 	mem_hotplug_begin();
2204 
2205 	arch_remove_memory(start, size, altmap);
2206 
2207 	/* Verify that all vmemmap pages have actually been freed. */
2208 	if (altmap) {
2209 		WARN(altmap->alloc, "Altmap not fully unmapped");
2210 		kfree(altmap);
2211 	}
2212 
2213 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2214 		memblock_phys_free(start, size);
2215 		memblock_remove(start, size);
2216 	}
2217 
2218 	release_mem_region_adjustable(start, size);
2219 
2220 	if (nid != NUMA_NO_NODE)
2221 		try_offline_node(nid);
2222 
2223 	mem_hotplug_done();
2224 	return 0;
2225 }
2226 
2227 /**
2228  * __remove_memory - Remove memory if every memory block is offline
2229  * @start: physical address of the region to remove
2230  * @size: size of the region to remove
2231  *
2232  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2233  * and online/offline operations before this call, as required by
2234  * try_offline_node().
2235  */
2236 void __remove_memory(u64 start, u64 size)
2237 {
2238 
2239 	/*
2240 	 * trigger BUG() if some memory is not offlined prior to calling this
2241 	 * function
2242 	 */
2243 	if (try_remove_memory(start, size))
2244 		BUG();
2245 }
2246 
2247 /*
2248  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2249  * some memory is not offline
2250  */
2251 int remove_memory(u64 start, u64 size)
2252 {
2253 	int rc;
2254 
2255 	lock_device_hotplug();
2256 	rc = try_remove_memory(start, size);
2257 	unlock_device_hotplug();
2258 
2259 	return rc;
2260 }
2261 EXPORT_SYMBOL_GPL(remove_memory);
2262 
2263 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2264 {
2265 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2266 	uint8_t **online_types = arg;
2267 	struct page *page;
2268 	int rc;
2269 
2270 	/*
2271 	 * Sense the online_type via the zone of the memory block. Offlining
2272 	 * with multiple zones within one memory block will be rejected
2273 	 * by offlining code ... so we don't care about that.
2274 	 */
2275 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2276 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2277 		online_type = MMOP_ONLINE_MOVABLE;
2278 
2279 	rc = device_offline(&mem->dev);
2280 	/*
2281 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2282 	 * so try_reonline_memory_block() can do the right thing.
2283 	 */
2284 	if (!rc)
2285 		**online_types = online_type;
2286 
2287 	(*online_types)++;
2288 	/* Ignore if already offline. */
2289 	return rc < 0 ? rc : 0;
2290 }
2291 
2292 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2293 {
2294 	uint8_t **online_types = arg;
2295 	int rc;
2296 
2297 	if (**online_types != MMOP_OFFLINE) {
2298 		mem->online_type = **online_types;
2299 		rc = device_online(&mem->dev);
2300 		if (rc < 0)
2301 			pr_warn("%s: Failed to re-online memory: %d",
2302 				__func__, rc);
2303 	}
2304 
2305 	/* Continue processing all remaining memory blocks. */
2306 	(*online_types)++;
2307 	return 0;
2308 }
2309 
2310 /*
2311  * Try to offline and remove memory. Might take a long time to finish in case
2312  * memory is still in use. Primarily useful for memory devices that logically
2313  * unplugged all memory (so it's no longer in use) and want to offline + remove
2314  * that memory.
2315  */
2316 int offline_and_remove_memory(u64 start, u64 size)
2317 {
2318 	const unsigned long mb_count = size / memory_block_size_bytes();
2319 	uint8_t *online_types, *tmp;
2320 	int rc;
2321 
2322 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2323 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2324 		return -EINVAL;
2325 
2326 	/*
2327 	 * We'll remember the old online type of each memory block, so we can
2328 	 * try to revert whatever we did when offlining one memory block fails
2329 	 * after offlining some others succeeded.
2330 	 */
2331 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2332 				     GFP_KERNEL);
2333 	if (!online_types)
2334 		return -ENOMEM;
2335 	/*
2336 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2337 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2338 	 * try_reonline_memory_block().
2339 	 */
2340 	memset(online_types, MMOP_OFFLINE, mb_count);
2341 
2342 	lock_device_hotplug();
2343 
2344 	tmp = online_types;
2345 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2346 
2347 	/*
2348 	 * In case we succeeded to offline all memory, remove it.
2349 	 * This cannot fail as it cannot get onlined in the meantime.
2350 	 */
2351 	if (!rc) {
2352 		rc = try_remove_memory(start, size);
2353 		if (rc)
2354 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2355 	}
2356 
2357 	/*
2358 	 * Rollback what we did. While memory onlining might theoretically fail
2359 	 * (nacked by a notifier), it barely ever happens.
2360 	 */
2361 	if (rc) {
2362 		tmp = online_types;
2363 		walk_memory_blocks(start, size, &tmp,
2364 				   try_reonline_memory_block);
2365 	}
2366 	unlock_device_hotplug();
2367 
2368 	kfree(online_types);
2369 	return rc;
2370 }
2371 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2372 #endif /* CONFIG_MEMORY_HOTREMOVE */
2373