xref: /linux/mm/memory_hotplug.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36 #include <linux/compaction.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * online_page_callback contains pointer to current page onlining function.
44  * Initially it is generic_online_page(). If it is required it could be
45  * changed by calling set_online_page_callback() for callback registration
46  * and restore_online_page_callback() for generic callback restore.
47  */
48 
49 static void generic_online_page(struct page *page);
50 
51 static online_page_callback_t online_page_callback = generic_online_page;
52 static DEFINE_MUTEX(online_page_callback_lock);
53 
54 /* The same as the cpu_hotplug lock, but for memory hotplug. */
55 static struct {
56 	struct task_struct *active_writer;
57 	struct mutex lock; /* Synchronizes accesses to refcount, */
58 	/*
59 	 * Also blocks the new readers during
60 	 * an ongoing mem hotplug operation.
61 	 */
62 	int refcount;
63 
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 	struct lockdep_map dep_map;
66 #endif
67 } mem_hotplug = {
68 	.active_writer = NULL,
69 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 	.refcount = 0,
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 	.dep_map = {.name = "mem_hotplug.lock" },
73 #endif
74 };
75 
76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
79 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
80 
81 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
82 bool memhp_auto_online;
83 #else
84 bool memhp_auto_online = true;
85 #endif
86 EXPORT_SYMBOL_GPL(memhp_auto_online);
87 
88 static int __init setup_memhp_default_state(char *str)
89 {
90 	if (!strcmp(str, "online"))
91 		memhp_auto_online = true;
92 	else if (!strcmp(str, "offline"))
93 		memhp_auto_online = false;
94 
95 	return 1;
96 }
97 __setup("memhp_default_state=", setup_memhp_default_state);
98 
99 void get_online_mems(void)
100 {
101 	might_sleep();
102 	if (mem_hotplug.active_writer == current)
103 		return;
104 	memhp_lock_acquire_read();
105 	mutex_lock(&mem_hotplug.lock);
106 	mem_hotplug.refcount++;
107 	mutex_unlock(&mem_hotplug.lock);
108 
109 }
110 
111 void put_online_mems(void)
112 {
113 	if (mem_hotplug.active_writer == current)
114 		return;
115 	mutex_lock(&mem_hotplug.lock);
116 
117 	if (WARN_ON(!mem_hotplug.refcount))
118 		mem_hotplug.refcount++; /* try to fix things up */
119 
120 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
121 		wake_up_process(mem_hotplug.active_writer);
122 	mutex_unlock(&mem_hotplug.lock);
123 	memhp_lock_release();
124 
125 }
126 
127 void mem_hotplug_begin(void)
128 {
129 	mem_hotplug.active_writer = current;
130 
131 	memhp_lock_acquire();
132 	for (;;) {
133 		mutex_lock(&mem_hotplug.lock);
134 		if (likely(!mem_hotplug.refcount))
135 			break;
136 		__set_current_state(TASK_UNINTERRUPTIBLE);
137 		mutex_unlock(&mem_hotplug.lock);
138 		schedule();
139 	}
140 }
141 
142 void mem_hotplug_done(void)
143 {
144 	mem_hotplug.active_writer = NULL;
145 	mutex_unlock(&mem_hotplug.lock);
146 	memhp_lock_release();
147 }
148 
149 /* add this memory to iomem resource */
150 static struct resource *register_memory_resource(u64 start, u64 size)
151 {
152 	struct resource *res;
153 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
154 	if (!res)
155 		return ERR_PTR(-ENOMEM);
156 
157 	res->name = "System RAM";
158 	res->start = start;
159 	res->end = start + size - 1;
160 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
161 	if (request_resource(&iomem_resource, res) < 0) {
162 		pr_debug("System RAM resource %pR cannot be added\n", res);
163 		kfree(res);
164 		return ERR_PTR(-EEXIST);
165 	}
166 	return res;
167 }
168 
169 static void release_memory_resource(struct resource *res)
170 {
171 	if (!res)
172 		return;
173 	release_resource(res);
174 	kfree(res);
175 	return;
176 }
177 
178 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
179 void get_page_bootmem(unsigned long info,  struct page *page,
180 		      unsigned long type)
181 {
182 	page->lru.next = (struct list_head *) type;
183 	SetPagePrivate(page);
184 	set_page_private(page, info);
185 	page_ref_inc(page);
186 }
187 
188 void put_page_bootmem(struct page *page)
189 {
190 	unsigned long type;
191 
192 	type = (unsigned long) page->lru.next;
193 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
194 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
195 
196 	if (page_ref_dec_return(page) == 1) {
197 		ClearPagePrivate(page);
198 		set_page_private(page, 0);
199 		INIT_LIST_HEAD(&page->lru);
200 		free_reserved_page(page);
201 	}
202 }
203 
204 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
205 #ifndef CONFIG_SPARSEMEM_VMEMMAP
206 static void register_page_bootmem_info_section(unsigned long start_pfn)
207 {
208 	unsigned long *usemap, mapsize, section_nr, i;
209 	struct mem_section *ms;
210 	struct page *page, *memmap;
211 
212 	section_nr = pfn_to_section_nr(start_pfn);
213 	ms = __nr_to_section(section_nr);
214 
215 	/* Get section's memmap address */
216 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
217 
218 	/*
219 	 * Get page for the memmap's phys address
220 	 * XXX: need more consideration for sparse_vmemmap...
221 	 */
222 	page = virt_to_page(memmap);
223 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
224 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
225 
226 	/* remember memmap's page */
227 	for (i = 0; i < mapsize; i++, page++)
228 		get_page_bootmem(section_nr, page, SECTION_INFO);
229 
230 	usemap = __nr_to_section(section_nr)->pageblock_flags;
231 	page = virt_to_page(usemap);
232 
233 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
234 
235 	for (i = 0; i < mapsize; i++, page++)
236 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
237 
238 }
239 #else /* CONFIG_SPARSEMEM_VMEMMAP */
240 static void register_page_bootmem_info_section(unsigned long start_pfn)
241 {
242 	unsigned long *usemap, mapsize, section_nr, i;
243 	struct mem_section *ms;
244 	struct page *page, *memmap;
245 
246 	if (!pfn_valid(start_pfn))
247 		return;
248 
249 	section_nr = pfn_to_section_nr(start_pfn);
250 	ms = __nr_to_section(section_nr);
251 
252 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
253 
254 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
255 
256 	usemap = __nr_to_section(section_nr)->pageblock_flags;
257 	page = virt_to_page(usemap);
258 
259 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
260 
261 	for (i = 0; i < mapsize; i++, page++)
262 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
263 }
264 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
265 
266 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
267 {
268 	unsigned long i, pfn, end_pfn, nr_pages;
269 	int node = pgdat->node_id;
270 	struct page *page;
271 
272 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
273 	page = virt_to_page(pgdat);
274 
275 	for (i = 0; i < nr_pages; i++, page++)
276 		get_page_bootmem(node, page, NODE_INFO);
277 
278 	pfn = pgdat->node_start_pfn;
279 	end_pfn = pgdat_end_pfn(pgdat);
280 
281 	/* register section info */
282 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
283 		/*
284 		 * Some platforms can assign the same pfn to multiple nodes - on
285 		 * node0 as well as nodeN.  To avoid registering a pfn against
286 		 * multiple nodes we check that this pfn does not already
287 		 * reside in some other nodes.
288 		 */
289 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
290 			register_page_bootmem_info_section(pfn);
291 	}
292 }
293 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
294 
295 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
296 				     unsigned long end_pfn)
297 {
298 	unsigned long old_zone_end_pfn;
299 
300 	zone_span_writelock(zone);
301 
302 	old_zone_end_pfn = zone_end_pfn(zone);
303 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
304 		zone->zone_start_pfn = start_pfn;
305 
306 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
307 				zone->zone_start_pfn;
308 
309 	zone_span_writeunlock(zone);
310 }
311 
312 static void resize_zone(struct zone *zone, unsigned long start_pfn,
313 		unsigned long end_pfn)
314 {
315 	zone_span_writelock(zone);
316 
317 	if (end_pfn - start_pfn) {
318 		zone->zone_start_pfn = start_pfn;
319 		zone->spanned_pages = end_pfn - start_pfn;
320 	} else {
321 		/*
322 		 * make it consist as free_area_init_core(),
323 		 * if spanned_pages = 0, then keep start_pfn = 0
324 		 */
325 		zone->zone_start_pfn = 0;
326 		zone->spanned_pages = 0;
327 	}
328 
329 	zone_span_writeunlock(zone);
330 }
331 
332 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
333 		unsigned long end_pfn)
334 {
335 	enum zone_type zid = zone_idx(zone);
336 	int nid = zone->zone_pgdat->node_id;
337 	unsigned long pfn;
338 
339 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
340 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
341 }
342 
343 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
344  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
345 static int __ref ensure_zone_is_initialized(struct zone *zone,
346 			unsigned long start_pfn, unsigned long num_pages)
347 {
348 	if (!zone_is_initialized(zone))
349 		return init_currently_empty_zone(zone, start_pfn, num_pages);
350 
351 	return 0;
352 }
353 
354 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
355 		unsigned long start_pfn, unsigned long end_pfn)
356 {
357 	int ret;
358 	unsigned long flags;
359 	unsigned long z1_start_pfn;
360 
361 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
362 	if (ret)
363 		return ret;
364 
365 	pgdat_resize_lock(z1->zone_pgdat, &flags);
366 
367 	/* can't move pfns which are higher than @z2 */
368 	if (end_pfn > zone_end_pfn(z2))
369 		goto out_fail;
370 	/* the move out part must be at the left most of @z2 */
371 	if (start_pfn > z2->zone_start_pfn)
372 		goto out_fail;
373 	/* must included/overlap */
374 	if (end_pfn <= z2->zone_start_pfn)
375 		goto out_fail;
376 
377 	/* use start_pfn for z1's start_pfn if z1 is empty */
378 	if (!zone_is_empty(z1))
379 		z1_start_pfn = z1->zone_start_pfn;
380 	else
381 		z1_start_pfn = start_pfn;
382 
383 	resize_zone(z1, z1_start_pfn, end_pfn);
384 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
385 
386 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
387 
388 	fix_zone_id(z1, start_pfn, end_pfn);
389 
390 	return 0;
391 out_fail:
392 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
393 	return -1;
394 }
395 
396 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
397 		unsigned long start_pfn, unsigned long end_pfn)
398 {
399 	int ret;
400 	unsigned long flags;
401 	unsigned long z2_end_pfn;
402 
403 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
404 	if (ret)
405 		return ret;
406 
407 	pgdat_resize_lock(z1->zone_pgdat, &flags);
408 
409 	/* can't move pfns which are lower than @z1 */
410 	if (z1->zone_start_pfn > start_pfn)
411 		goto out_fail;
412 	/* the move out part mast at the right most of @z1 */
413 	if (zone_end_pfn(z1) >  end_pfn)
414 		goto out_fail;
415 	/* must included/overlap */
416 	if (start_pfn >= zone_end_pfn(z1))
417 		goto out_fail;
418 
419 	/* use end_pfn for z2's end_pfn if z2 is empty */
420 	if (!zone_is_empty(z2))
421 		z2_end_pfn = zone_end_pfn(z2);
422 	else
423 		z2_end_pfn = end_pfn;
424 
425 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
426 	resize_zone(z2, start_pfn, z2_end_pfn);
427 
428 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
429 
430 	fix_zone_id(z2, start_pfn, end_pfn);
431 
432 	return 0;
433 out_fail:
434 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
435 	return -1;
436 }
437 
438 static struct zone * __meminit move_pfn_range(int zone_shift,
439 		unsigned long start_pfn, unsigned long end_pfn)
440 {
441 	struct zone *zone = page_zone(pfn_to_page(start_pfn));
442 	int ret = 0;
443 
444 	if (zone_shift < 0)
445 		ret = move_pfn_range_left(zone + zone_shift, zone,
446 					  start_pfn, end_pfn);
447 	else if (zone_shift)
448 		ret = move_pfn_range_right(zone, zone + zone_shift,
449 					   start_pfn, end_pfn);
450 
451 	if (ret)
452 		return NULL;
453 
454 	return zone + zone_shift;
455 }
456 
457 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
458 				      unsigned long end_pfn)
459 {
460 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
461 
462 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
463 		pgdat->node_start_pfn = start_pfn;
464 
465 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
466 					pgdat->node_start_pfn;
467 }
468 
469 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
470 {
471 	struct pglist_data *pgdat = zone->zone_pgdat;
472 	int nr_pages = PAGES_PER_SECTION;
473 	int nid = pgdat->node_id;
474 	int zone_type;
475 	unsigned long flags, pfn;
476 	int ret;
477 
478 	zone_type = zone - pgdat->node_zones;
479 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
480 	if (ret)
481 		return ret;
482 
483 	pgdat_resize_lock(zone->zone_pgdat, &flags);
484 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
485 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
486 			phys_start_pfn + nr_pages);
487 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
488 	memmap_init_zone(nr_pages, nid, zone_type,
489 			 phys_start_pfn, MEMMAP_HOTPLUG);
490 
491 	/* online_page_range is called later and expects pages reserved */
492 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
493 		if (!pfn_valid(pfn))
494 			continue;
495 
496 		SetPageReserved(pfn_to_page(pfn));
497 	}
498 	return 0;
499 }
500 
501 static int __meminit __add_section(int nid, struct zone *zone,
502 					unsigned long phys_start_pfn)
503 {
504 	int ret;
505 
506 	if (pfn_valid(phys_start_pfn))
507 		return -EEXIST;
508 
509 	ret = sparse_add_one_section(zone, phys_start_pfn);
510 
511 	if (ret < 0)
512 		return ret;
513 
514 	ret = __add_zone(zone, phys_start_pfn);
515 
516 	if (ret < 0)
517 		return ret;
518 
519 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
520 }
521 
522 /*
523  * Reasonably generic function for adding memory.  It is
524  * expected that archs that support memory hotplug will
525  * call this function after deciding the zone to which to
526  * add the new pages.
527  */
528 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
529 			unsigned long nr_pages)
530 {
531 	unsigned long i;
532 	int err = 0;
533 	int start_sec, end_sec;
534 	struct vmem_altmap *altmap;
535 
536 	clear_zone_contiguous(zone);
537 
538 	/* during initialize mem_map, align hot-added range to section */
539 	start_sec = pfn_to_section_nr(phys_start_pfn);
540 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
541 
542 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
543 	if (altmap) {
544 		/*
545 		 * Validate altmap is within bounds of the total request
546 		 */
547 		if (altmap->base_pfn != phys_start_pfn
548 				|| vmem_altmap_offset(altmap) > nr_pages) {
549 			pr_warn_once("memory add fail, invalid altmap\n");
550 			err = -EINVAL;
551 			goto out;
552 		}
553 		altmap->alloc = 0;
554 	}
555 
556 	for (i = start_sec; i <= end_sec; i++) {
557 		err = __add_section(nid, zone, section_nr_to_pfn(i));
558 
559 		/*
560 		 * EEXIST is finally dealt with by ioresource collision
561 		 * check. see add_memory() => register_memory_resource()
562 		 * Warning will be printed if there is collision.
563 		 */
564 		if (err && (err != -EEXIST))
565 			break;
566 		err = 0;
567 	}
568 	vmemmap_populate_print_last();
569 out:
570 	set_zone_contiguous(zone);
571 	return err;
572 }
573 EXPORT_SYMBOL_GPL(__add_pages);
574 
575 #ifdef CONFIG_MEMORY_HOTREMOVE
576 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
577 static int find_smallest_section_pfn(int nid, struct zone *zone,
578 				     unsigned long start_pfn,
579 				     unsigned long end_pfn)
580 {
581 	struct mem_section *ms;
582 
583 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
584 		ms = __pfn_to_section(start_pfn);
585 
586 		if (unlikely(!valid_section(ms)))
587 			continue;
588 
589 		if (unlikely(pfn_to_nid(start_pfn) != nid))
590 			continue;
591 
592 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
593 			continue;
594 
595 		return start_pfn;
596 	}
597 
598 	return 0;
599 }
600 
601 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
602 static int find_biggest_section_pfn(int nid, struct zone *zone,
603 				    unsigned long start_pfn,
604 				    unsigned long end_pfn)
605 {
606 	struct mem_section *ms;
607 	unsigned long pfn;
608 
609 	/* pfn is the end pfn of a memory section. */
610 	pfn = end_pfn - 1;
611 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
612 		ms = __pfn_to_section(pfn);
613 
614 		if (unlikely(!valid_section(ms)))
615 			continue;
616 
617 		if (unlikely(pfn_to_nid(pfn) != nid))
618 			continue;
619 
620 		if (zone && zone != page_zone(pfn_to_page(pfn)))
621 			continue;
622 
623 		return pfn;
624 	}
625 
626 	return 0;
627 }
628 
629 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
630 			     unsigned long end_pfn)
631 {
632 	unsigned long zone_start_pfn = zone->zone_start_pfn;
633 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
634 	unsigned long zone_end_pfn = z;
635 	unsigned long pfn;
636 	struct mem_section *ms;
637 	int nid = zone_to_nid(zone);
638 
639 	zone_span_writelock(zone);
640 	if (zone_start_pfn == start_pfn) {
641 		/*
642 		 * If the section is smallest section in the zone, it need
643 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
644 		 * In this case, we find second smallest valid mem_section
645 		 * for shrinking zone.
646 		 */
647 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
648 						zone_end_pfn);
649 		if (pfn) {
650 			zone->zone_start_pfn = pfn;
651 			zone->spanned_pages = zone_end_pfn - pfn;
652 		}
653 	} else if (zone_end_pfn == end_pfn) {
654 		/*
655 		 * If the section is biggest section in the zone, it need
656 		 * shrink zone->spanned_pages.
657 		 * In this case, we find second biggest valid mem_section for
658 		 * shrinking zone.
659 		 */
660 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
661 					       start_pfn);
662 		if (pfn)
663 			zone->spanned_pages = pfn - zone_start_pfn + 1;
664 	}
665 
666 	/*
667 	 * The section is not biggest or smallest mem_section in the zone, it
668 	 * only creates a hole in the zone. So in this case, we need not
669 	 * change the zone. But perhaps, the zone has only hole data. Thus
670 	 * it check the zone has only hole or not.
671 	 */
672 	pfn = zone_start_pfn;
673 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
674 		ms = __pfn_to_section(pfn);
675 
676 		if (unlikely(!valid_section(ms)))
677 			continue;
678 
679 		if (page_zone(pfn_to_page(pfn)) != zone)
680 			continue;
681 
682 		 /* If the section is current section, it continues the loop */
683 		if (start_pfn == pfn)
684 			continue;
685 
686 		/* If we find valid section, we have nothing to do */
687 		zone_span_writeunlock(zone);
688 		return;
689 	}
690 
691 	/* The zone has no valid section */
692 	zone->zone_start_pfn = 0;
693 	zone->spanned_pages = 0;
694 	zone_span_writeunlock(zone);
695 }
696 
697 static void shrink_pgdat_span(struct pglist_data *pgdat,
698 			      unsigned long start_pfn, unsigned long end_pfn)
699 {
700 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
701 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
702 	unsigned long pgdat_end_pfn = p;
703 	unsigned long pfn;
704 	struct mem_section *ms;
705 	int nid = pgdat->node_id;
706 
707 	if (pgdat_start_pfn == start_pfn) {
708 		/*
709 		 * If the section is smallest section in the pgdat, it need
710 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
711 		 * In this case, we find second smallest valid mem_section
712 		 * for shrinking zone.
713 		 */
714 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
715 						pgdat_end_pfn);
716 		if (pfn) {
717 			pgdat->node_start_pfn = pfn;
718 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
719 		}
720 	} else if (pgdat_end_pfn == end_pfn) {
721 		/*
722 		 * If the section is biggest section in the pgdat, it need
723 		 * shrink pgdat->node_spanned_pages.
724 		 * In this case, we find second biggest valid mem_section for
725 		 * shrinking zone.
726 		 */
727 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
728 					       start_pfn);
729 		if (pfn)
730 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
731 	}
732 
733 	/*
734 	 * If the section is not biggest or smallest mem_section in the pgdat,
735 	 * it only creates a hole in the pgdat. So in this case, we need not
736 	 * change the pgdat.
737 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
738 	 * has only hole or not.
739 	 */
740 	pfn = pgdat_start_pfn;
741 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
742 		ms = __pfn_to_section(pfn);
743 
744 		if (unlikely(!valid_section(ms)))
745 			continue;
746 
747 		if (pfn_to_nid(pfn) != nid)
748 			continue;
749 
750 		 /* If the section is current section, it continues the loop */
751 		if (start_pfn == pfn)
752 			continue;
753 
754 		/* If we find valid section, we have nothing to do */
755 		return;
756 	}
757 
758 	/* The pgdat has no valid section */
759 	pgdat->node_start_pfn = 0;
760 	pgdat->node_spanned_pages = 0;
761 }
762 
763 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
764 {
765 	struct pglist_data *pgdat = zone->zone_pgdat;
766 	int nr_pages = PAGES_PER_SECTION;
767 	int zone_type;
768 	unsigned long flags;
769 
770 	zone_type = zone - pgdat->node_zones;
771 
772 	pgdat_resize_lock(zone->zone_pgdat, &flags);
773 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
774 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
775 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
776 }
777 
778 static int __remove_section(struct zone *zone, struct mem_section *ms,
779 		unsigned long map_offset)
780 {
781 	unsigned long start_pfn;
782 	int scn_nr;
783 	int ret = -EINVAL;
784 
785 	if (!valid_section(ms))
786 		return ret;
787 
788 	ret = unregister_memory_section(ms);
789 	if (ret)
790 		return ret;
791 
792 	scn_nr = __section_nr(ms);
793 	start_pfn = section_nr_to_pfn(scn_nr);
794 	__remove_zone(zone, start_pfn);
795 
796 	sparse_remove_one_section(zone, ms, map_offset);
797 	return 0;
798 }
799 
800 /**
801  * __remove_pages() - remove sections of pages from a zone
802  * @zone: zone from which pages need to be removed
803  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
804  * @nr_pages: number of pages to remove (must be multiple of section size)
805  *
806  * Generic helper function to remove section mappings and sysfs entries
807  * for the section of the memory we are removing. Caller needs to make
808  * sure that pages are marked reserved and zones are adjust properly by
809  * calling offline_pages().
810  */
811 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
812 		 unsigned long nr_pages)
813 {
814 	unsigned long i;
815 	unsigned long map_offset = 0;
816 	int sections_to_remove, ret = 0;
817 
818 	/* In the ZONE_DEVICE case device driver owns the memory region */
819 	if (is_dev_zone(zone)) {
820 		struct page *page = pfn_to_page(phys_start_pfn);
821 		struct vmem_altmap *altmap;
822 
823 		altmap = to_vmem_altmap((unsigned long) page);
824 		if (altmap)
825 			map_offset = vmem_altmap_offset(altmap);
826 	} else {
827 		resource_size_t start, size;
828 
829 		start = phys_start_pfn << PAGE_SHIFT;
830 		size = nr_pages * PAGE_SIZE;
831 
832 		ret = release_mem_region_adjustable(&iomem_resource, start,
833 					size);
834 		if (ret) {
835 			resource_size_t endres = start + size - 1;
836 
837 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
838 					&start, &endres, ret);
839 		}
840 	}
841 
842 	clear_zone_contiguous(zone);
843 
844 	/*
845 	 * We can only remove entire sections
846 	 */
847 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
848 	BUG_ON(nr_pages % PAGES_PER_SECTION);
849 
850 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
851 	for (i = 0; i < sections_to_remove; i++) {
852 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
853 
854 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
855 		map_offset = 0;
856 		if (ret)
857 			break;
858 	}
859 
860 	set_zone_contiguous(zone);
861 
862 	return ret;
863 }
864 EXPORT_SYMBOL_GPL(__remove_pages);
865 #endif /* CONFIG_MEMORY_HOTREMOVE */
866 
867 int set_online_page_callback(online_page_callback_t callback)
868 {
869 	int rc = -EINVAL;
870 
871 	get_online_mems();
872 	mutex_lock(&online_page_callback_lock);
873 
874 	if (online_page_callback == generic_online_page) {
875 		online_page_callback = callback;
876 		rc = 0;
877 	}
878 
879 	mutex_unlock(&online_page_callback_lock);
880 	put_online_mems();
881 
882 	return rc;
883 }
884 EXPORT_SYMBOL_GPL(set_online_page_callback);
885 
886 int restore_online_page_callback(online_page_callback_t callback)
887 {
888 	int rc = -EINVAL;
889 
890 	get_online_mems();
891 	mutex_lock(&online_page_callback_lock);
892 
893 	if (online_page_callback == callback) {
894 		online_page_callback = generic_online_page;
895 		rc = 0;
896 	}
897 
898 	mutex_unlock(&online_page_callback_lock);
899 	put_online_mems();
900 
901 	return rc;
902 }
903 EXPORT_SYMBOL_GPL(restore_online_page_callback);
904 
905 void __online_page_set_limits(struct page *page)
906 {
907 }
908 EXPORT_SYMBOL_GPL(__online_page_set_limits);
909 
910 void __online_page_increment_counters(struct page *page)
911 {
912 	adjust_managed_page_count(page, 1);
913 }
914 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
915 
916 void __online_page_free(struct page *page)
917 {
918 	__free_reserved_page(page);
919 }
920 EXPORT_SYMBOL_GPL(__online_page_free);
921 
922 static void generic_online_page(struct page *page)
923 {
924 	__online_page_set_limits(page);
925 	__online_page_increment_counters(page);
926 	__online_page_free(page);
927 }
928 
929 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
930 			void *arg)
931 {
932 	unsigned long i;
933 	unsigned long onlined_pages = *(unsigned long *)arg;
934 	struct page *page;
935 	if (PageReserved(pfn_to_page(start_pfn)))
936 		for (i = 0; i < nr_pages; i++) {
937 			page = pfn_to_page(start_pfn + i);
938 			(*online_page_callback)(page);
939 			onlined_pages++;
940 		}
941 	*(unsigned long *)arg = onlined_pages;
942 	return 0;
943 }
944 
945 #ifdef CONFIG_MOVABLE_NODE
946 /*
947  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
948  * normal memory.
949  */
950 static bool can_online_high_movable(struct zone *zone)
951 {
952 	return true;
953 }
954 #else /* CONFIG_MOVABLE_NODE */
955 /* ensure every online node has NORMAL memory */
956 static bool can_online_high_movable(struct zone *zone)
957 {
958 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
959 }
960 #endif /* CONFIG_MOVABLE_NODE */
961 
962 /* check which state of node_states will be changed when online memory */
963 static void node_states_check_changes_online(unsigned long nr_pages,
964 	struct zone *zone, struct memory_notify *arg)
965 {
966 	int nid = zone_to_nid(zone);
967 	enum zone_type zone_last = ZONE_NORMAL;
968 
969 	/*
970 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
971 	 * contains nodes which have zones of 0...ZONE_NORMAL,
972 	 * set zone_last to ZONE_NORMAL.
973 	 *
974 	 * If we don't have HIGHMEM nor movable node,
975 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
976 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
977 	 */
978 	if (N_MEMORY == N_NORMAL_MEMORY)
979 		zone_last = ZONE_MOVABLE;
980 
981 	/*
982 	 * if the memory to be online is in a zone of 0...zone_last, and
983 	 * the zones of 0...zone_last don't have memory before online, we will
984 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
985 	 * the memory is online.
986 	 */
987 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
988 		arg->status_change_nid_normal = nid;
989 	else
990 		arg->status_change_nid_normal = -1;
991 
992 #ifdef CONFIG_HIGHMEM
993 	/*
994 	 * If we have movable node, node_states[N_HIGH_MEMORY]
995 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
996 	 * set zone_last to ZONE_HIGHMEM.
997 	 *
998 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
999 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1000 	 * set zone_last to ZONE_MOVABLE.
1001 	 */
1002 	zone_last = ZONE_HIGHMEM;
1003 	if (N_MEMORY == N_HIGH_MEMORY)
1004 		zone_last = ZONE_MOVABLE;
1005 
1006 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1007 		arg->status_change_nid_high = nid;
1008 	else
1009 		arg->status_change_nid_high = -1;
1010 #else
1011 	arg->status_change_nid_high = arg->status_change_nid_normal;
1012 #endif
1013 
1014 	/*
1015 	 * if the node don't have memory befor online, we will need to
1016 	 * set the node to node_states[N_MEMORY] after the memory
1017 	 * is online.
1018 	 */
1019 	if (!node_state(nid, N_MEMORY))
1020 		arg->status_change_nid = nid;
1021 	else
1022 		arg->status_change_nid = -1;
1023 }
1024 
1025 static void node_states_set_node(int node, struct memory_notify *arg)
1026 {
1027 	if (arg->status_change_nid_normal >= 0)
1028 		node_set_state(node, N_NORMAL_MEMORY);
1029 
1030 	if (arg->status_change_nid_high >= 0)
1031 		node_set_state(node, N_HIGH_MEMORY);
1032 
1033 	node_set_state(node, N_MEMORY);
1034 }
1035 
1036 int zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1037 		   enum zone_type target)
1038 {
1039 	struct zone *zone = page_zone(pfn_to_page(pfn));
1040 	enum zone_type idx = zone_idx(zone);
1041 	int i;
1042 
1043 	if (idx < target) {
1044 		/* pages must be at end of current zone */
1045 		if (pfn + nr_pages != zone_end_pfn(zone))
1046 			return 0;
1047 
1048 		/* no zones in use between current zone and target */
1049 		for (i = idx + 1; i < target; i++)
1050 			if (zone_is_initialized(zone - idx + i))
1051 				return 0;
1052 	}
1053 
1054 	if (target < idx) {
1055 		/* pages must be at beginning of current zone */
1056 		if (pfn != zone->zone_start_pfn)
1057 			return 0;
1058 
1059 		/* no zones in use between current zone and target */
1060 		for (i = target + 1; i < idx; i++)
1061 			if (zone_is_initialized(zone - idx + i))
1062 				return 0;
1063 	}
1064 
1065 	return target - idx;
1066 }
1067 
1068 /* Must be protected by mem_hotplug_begin() */
1069 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1070 {
1071 	unsigned long flags;
1072 	unsigned long onlined_pages = 0;
1073 	struct zone *zone;
1074 	int need_zonelists_rebuild = 0;
1075 	int nid;
1076 	int ret;
1077 	struct memory_notify arg;
1078 	int zone_shift = 0;
1079 
1080 	/*
1081 	 * This doesn't need a lock to do pfn_to_page().
1082 	 * The section can't be removed here because of the
1083 	 * memory_block->state_mutex.
1084 	 */
1085 	zone = page_zone(pfn_to_page(pfn));
1086 
1087 	if ((zone_idx(zone) > ZONE_NORMAL ||
1088 	    online_type == MMOP_ONLINE_MOVABLE) &&
1089 	    !can_online_high_movable(zone))
1090 		return -EINVAL;
1091 
1092 	if (online_type == MMOP_ONLINE_KERNEL)
1093 		zone_shift = zone_can_shift(pfn, nr_pages, ZONE_NORMAL);
1094 	else if (online_type == MMOP_ONLINE_MOVABLE)
1095 		zone_shift = zone_can_shift(pfn, nr_pages, ZONE_MOVABLE);
1096 
1097 	zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1098 	if (!zone)
1099 		return -EINVAL;
1100 
1101 	arg.start_pfn = pfn;
1102 	arg.nr_pages = nr_pages;
1103 	node_states_check_changes_online(nr_pages, zone, &arg);
1104 
1105 	nid = zone_to_nid(zone);
1106 
1107 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1108 	ret = notifier_to_errno(ret);
1109 	if (ret)
1110 		goto failed_addition;
1111 
1112 	/*
1113 	 * If this zone is not populated, then it is not in zonelist.
1114 	 * This means the page allocator ignores this zone.
1115 	 * So, zonelist must be updated after online.
1116 	 */
1117 	mutex_lock(&zonelists_mutex);
1118 	if (!populated_zone(zone)) {
1119 		need_zonelists_rebuild = 1;
1120 		build_all_zonelists(NULL, zone);
1121 	}
1122 
1123 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1124 		online_pages_range);
1125 	if (ret) {
1126 		if (need_zonelists_rebuild)
1127 			zone_pcp_reset(zone);
1128 		mutex_unlock(&zonelists_mutex);
1129 		goto failed_addition;
1130 	}
1131 
1132 	zone->present_pages += onlined_pages;
1133 
1134 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1135 	zone->zone_pgdat->node_present_pages += onlined_pages;
1136 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1137 
1138 	if (onlined_pages) {
1139 		node_states_set_node(nid, &arg);
1140 		if (need_zonelists_rebuild)
1141 			build_all_zonelists(NULL, NULL);
1142 		else
1143 			zone_pcp_update(zone);
1144 	}
1145 
1146 	mutex_unlock(&zonelists_mutex);
1147 
1148 	init_per_zone_wmark_min();
1149 
1150 	if (onlined_pages) {
1151 		kswapd_run(nid);
1152 		kcompactd_run(nid);
1153 	}
1154 
1155 	vm_total_pages = nr_free_pagecache_pages();
1156 
1157 	writeback_set_ratelimit();
1158 
1159 	if (onlined_pages)
1160 		memory_notify(MEM_ONLINE, &arg);
1161 	return 0;
1162 
1163 failed_addition:
1164 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1165 		 (unsigned long long) pfn << PAGE_SHIFT,
1166 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1167 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1168 	return ret;
1169 }
1170 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1171 
1172 static void reset_node_present_pages(pg_data_t *pgdat)
1173 {
1174 	struct zone *z;
1175 
1176 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1177 		z->present_pages = 0;
1178 
1179 	pgdat->node_present_pages = 0;
1180 }
1181 
1182 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1183 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1184 {
1185 	struct pglist_data *pgdat;
1186 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1187 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1188 	unsigned long start_pfn = PFN_DOWN(start);
1189 
1190 	pgdat = NODE_DATA(nid);
1191 	if (!pgdat) {
1192 		pgdat = arch_alloc_nodedata(nid);
1193 		if (!pgdat)
1194 			return NULL;
1195 
1196 		arch_refresh_nodedata(nid, pgdat);
1197 	} else {
1198 		/* Reset the nr_zones, order and classzone_idx before reuse */
1199 		pgdat->nr_zones = 0;
1200 		pgdat->kswapd_order = 0;
1201 		pgdat->kswapd_classzone_idx = 0;
1202 	}
1203 
1204 	/* we can use NODE_DATA(nid) from here */
1205 
1206 	/* init node's zones as empty zones, we don't have any present pages.*/
1207 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1208 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1209 
1210 	/*
1211 	 * The node we allocated has no zone fallback lists. For avoiding
1212 	 * to access not-initialized zonelist, build here.
1213 	 */
1214 	mutex_lock(&zonelists_mutex);
1215 	build_all_zonelists(pgdat, NULL);
1216 	mutex_unlock(&zonelists_mutex);
1217 
1218 	/*
1219 	 * zone->managed_pages is set to an approximate value in
1220 	 * free_area_init_core(), which will cause
1221 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1222 	 * So reset it to 0 before any memory is onlined.
1223 	 */
1224 	reset_node_managed_pages(pgdat);
1225 
1226 	/*
1227 	 * When memory is hot-added, all the memory is in offline state. So
1228 	 * clear all zones' present_pages because they will be updated in
1229 	 * online_pages() and offline_pages().
1230 	 */
1231 	reset_node_present_pages(pgdat);
1232 
1233 	return pgdat;
1234 }
1235 
1236 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1237 {
1238 	arch_refresh_nodedata(nid, NULL);
1239 	free_percpu(pgdat->per_cpu_nodestats);
1240 	arch_free_nodedata(pgdat);
1241 	return;
1242 }
1243 
1244 
1245 /**
1246  * try_online_node - online a node if offlined
1247  *
1248  * called by cpu_up() to online a node without onlined memory.
1249  */
1250 int try_online_node(int nid)
1251 {
1252 	pg_data_t	*pgdat;
1253 	int	ret;
1254 
1255 	if (node_online(nid))
1256 		return 0;
1257 
1258 	mem_hotplug_begin();
1259 	pgdat = hotadd_new_pgdat(nid, 0);
1260 	if (!pgdat) {
1261 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1262 		ret = -ENOMEM;
1263 		goto out;
1264 	}
1265 	node_set_online(nid);
1266 	ret = register_one_node(nid);
1267 	BUG_ON(ret);
1268 
1269 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1270 		mutex_lock(&zonelists_mutex);
1271 		build_all_zonelists(NULL, NULL);
1272 		mutex_unlock(&zonelists_mutex);
1273 	}
1274 
1275 out:
1276 	mem_hotplug_done();
1277 	return ret;
1278 }
1279 
1280 static int check_hotplug_memory_range(u64 start, u64 size)
1281 {
1282 	u64 start_pfn = PFN_DOWN(start);
1283 	u64 nr_pages = size >> PAGE_SHIFT;
1284 
1285 	/* Memory range must be aligned with section */
1286 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1287 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1288 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1289 				(unsigned long long)start,
1290 				(unsigned long long)size);
1291 		return -EINVAL;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * If movable zone has already been setup, newly added memory should be check.
1299  * If its address is higher than movable zone, it should be added as movable.
1300  * Without this check, movable zone may overlap with other zone.
1301  */
1302 static int should_add_memory_movable(int nid, u64 start, u64 size)
1303 {
1304 	unsigned long start_pfn = start >> PAGE_SHIFT;
1305 	pg_data_t *pgdat = NODE_DATA(nid);
1306 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1307 
1308 	if (zone_is_empty(movable_zone))
1309 		return 0;
1310 
1311 	if (movable_zone->zone_start_pfn <= start_pfn)
1312 		return 1;
1313 
1314 	return 0;
1315 }
1316 
1317 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1318 		bool for_device)
1319 {
1320 #ifdef CONFIG_ZONE_DEVICE
1321 	if (for_device)
1322 		return ZONE_DEVICE;
1323 #endif
1324 	if (should_add_memory_movable(nid, start, size))
1325 		return ZONE_MOVABLE;
1326 
1327 	return zone_default;
1328 }
1329 
1330 static int online_memory_block(struct memory_block *mem, void *arg)
1331 {
1332 	return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1333 }
1334 
1335 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1336 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1337 {
1338 	u64 start, size;
1339 	pg_data_t *pgdat = NULL;
1340 	bool new_pgdat;
1341 	bool new_node;
1342 	int ret;
1343 
1344 	start = res->start;
1345 	size = resource_size(res);
1346 
1347 	ret = check_hotplug_memory_range(start, size);
1348 	if (ret)
1349 		return ret;
1350 
1351 	{	/* Stupid hack to suppress address-never-null warning */
1352 		void *p = NODE_DATA(nid);
1353 		new_pgdat = !p;
1354 	}
1355 
1356 	mem_hotplug_begin();
1357 
1358 	/*
1359 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1360 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1361 	 * this new range and calculate total pages correctly.  The range will
1362 	 * be removed at hot-remove time.
1363 	 */
1364 	memblock_add_node(start, size, nid);
1365 
1366 	new_node = !node_online(nid);
1367 	if (new_node) {
1368 		pgdat = hotadd_new_pgdat(nid, start);
1369 		ret = -ENOMEM;
1370 		if (!pgdat)
1371 			goto error;
1372 	}
1373 
1374 	/* call arch's memory hotadd */
1375 	ret = arch_add_memory(nid, start, size, false);
1376 
1377 	if (ret < 0)
1378 		goto error;
1379 
1380 	/* we online node here. we can't roll back from here. */
1381 	node_set_online(nid);
1382 
1383 	if (new_node) {
1384 		ret = register_one_node(nid);
1385 		/*
1386 		 * If sysfs file of new node can't create, cpu on the node
1387 		 * can't be hot-added. There is no rollback way now.
1388 		 * So, check by BUG_ON() to catch it reluctantly..
1389 		 */
1390 		BUG_ON(ret);
1391 	}
1392 
1393 	/* create new memmap entry */
1394 	firmware_map_add_hotplug(start, start + size, "System RAM");
1395 
1396 	/* online pages if requested */
1397 	if (online)
1398 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1399 				  NULL, online_memory_block);
1400 
1401 	goto out;
1402 
1403 error:
1404 	/* rollback pgdat allocation and others */
1405 	if (new_pgdat)
1406 		rollback_node_hotadd(nid, pgdat);
1407 	memblock_remove(start, size);
1408 
1409 out:
1410 	mem_hotplug_done();
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(add_memory_resource);
1414 
1415 int __ref add_memory(int nid, u64 start, u64 size)
1416 {
1417 	struct resource *res;
1418 	int ret;
1419 
1420 	res = register_memory_resource(start, size);
1421 	if (IS_ERR(res))
1422 		return PTR_ERR(res);
1423 
1424 	ret = add_memory_resource(nid, res, memhp_auto_online);
1425 	if (ret < 0)
1426 		release_memory_resource(res);
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL_GPL(add_memory);
1430 
1431 #ifdef CONFIG_MEMORY_HOTREMOVE
1432 /*
1433  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1434  * set and the size of the free page is given by page_order(). Using this,
1435  * the function determines if the pageblock contains only free pages.
1436  * Due to buddy contraints, a free page at least the size of a pageblock will
1437  * be located at the start of the pageblock
1438  */
1439 static inline int pageblock_free(struct page *page)
1440 {
1441 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1442 }
1443 
1444 /* Return the start of the next active pageblock after a given page */
1445 static struct page *next_active_pageblock(struct page *page)
1446 {
1447 	/* Ensure the starting page is pageblock-aligned */
1448 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1449 
1450 	/* If the entire pageblock is free, move to the end of free page */
1451 	if (pageblock_free(page)) {
1452 		int order;
1453 		/* be careful. we don't have locks, page_order can be changed.*/
1454 		order = page_order(page);
1455 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1456 			return page + (1 << order);
1457 	}
1458 
1459 	return page + pageblock_nr_pages;
1460 }
1461 
1462 /* Checks if this range of memory is likely to be hot-removable. */
1463 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1464 {
1465 	struct page *page = pfn_to_page(start_pfn);
1466 	struct page *end_page = page + nr_pages;
1467 
1468 	/* Check the starting page of each pageblock within the range */
1469 	for (; page < end_page; page = next_active_pageblock(page)) {
1470 		if (!is_pageblock_removable_nolock(page))
1471 			return false;
1472 		cond_resched();
1473 	}
1474 
1475 	/* All pageblocks in the memory block are likely to be hot-removable */
1476 	return true;
1477 }
1478 
1479 /*
1480  * Confirm all pages in a range [start, end) is belongs to the same zone.
1481  */
1482 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1483 {
1484 	unsigned long pfn, sec_end_pfn;
1485 	struct zone *zone = NULL;
1486 	struct page *page;
1487 	int i;
1488 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1489 	     pfn < end_pfn;
1490 	     pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1491 		/* Make sure the memory section is present first */
1492 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1493 			continue;
1494 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1495 		     pfn += MAX_ORDER_NR_PAGES) {
1496 			i = 0;
1497 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1498 			while ((i < MAX_ORDER_NR_PAGES) &&
1499 				!pfn_valid_within(pfn + i))
1500 				i++;
1501 			if (i == MAX_ORDER_NR_PAGES)
1502 				continue;
1503 			page = pfn_to_page(pfn + i);
1504 			if (zone && page_zone(page) != zone)
1505 				return 0;
1506 			zone = page_zone(page);
1507 		}
1508 	}
1509 	return 1;
1510 }
1511 
1512 /*
1513  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1514  * and hugepages). We scan pfn because it's much easier than scanning over
1515  * linked list. This function returns the pfn of the first found movable
1516  * page if it's found, otherwise 0.
1517  */
1518 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1519 {
1520 	unsigned long pfn;
1521 	struct page *page;
1522 	for (pfn = start; pfn < end; pfn++) {
1523 		if (pfn_valid(pfn)) {
1524 			page = pfn_to_page(pfn);
1525 			if (PageLRU(page))
1526 				return pfn;
1527 			if (PageHuge(page)) {
1528 				if (page_huge_active(page))
1529 					return pfn;
1530 				else
1531 					pfn = round_up(pfn + 1,
1532 						1 << compound_order(page)) - 1;
1533 			}
1534 		}
1535 	}
1536 	return 0;
1537 }
1538 
1539 static struct page *new_node_page(struct page *page, unsigned long private,
1540 		int **result)
1541 {
1542 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1543 	int nid = page_to_nid(page);
1544 	nodemask_t nmask = node_states[N_MEMORY];
1545 	struct page *new_page = NULL;
1546 
1547 	/*
1548 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
1549 	 * accordance with memory policy of the user process if possible. For
1550 	 * now as a simple work-around, we use the next node for destination.
1551 	 */
1552 	if (PageHuge(page))
1553 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1554 					next_node_in(nid, nmask));
1555 
1556 	node_clear(nid, nmask);
1557 
1558 	if (PageHighMem(page)
1559 	    || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1560 		gfp_mask |= __GFP_HIGHMEM;
1561 
1562 	if (!nodes_empty(nmask))
1563 		new_page = __alloc_pages_nodemask(gfp_mask, 0,
1564 					node_zonelist(nid, gfp_mask), &nmask);
1565 	if (!new_page)
1566 		new_page = __alloc_pages(gfp_mask, 0,
1567 					node_zonelist(nid, gfp_mask));
1568 
1569 	return new_page;
1570 }
1571 
1572 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1573 static int
1574 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1575 {
1576 	unsigned long pfn;
1577 	struct page *page;
1578 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1579 	int not_managed = 0;
1580 	int ret = 0;
1581 	LIST_HEAD(source);
1582 
1583 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1584 		if (!pfn_valid(pfn))
1585 			continue;
1586 		page = pfn_to_page(pfn);
1587 
1588 		if (PageHuge(page)) {
1589 			struct page *head = compound_head(page);
1590 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1591 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1592 				ret = -EBUSY;
1593 				break;
1594 			}
1595 			if (isolate_huge_page(page, &source))
1596 				move_pages -= 1 << compound_order(head);
1597 			continue;
1598 		}
1599 
1600 		if (!get_page_unless_zero(page))
1601 			continue;
1602 		/*
1603 		 * We can skip free pages. And we can only deal with pages on
1604 		 * LRU.
1605 		 */
1606 		ret = isolate_lru_page(page);
1607 		if (!ret) { /* Success */
1608 			put_page(page);
1609 			list_add_tail(&page->lru, &source);
1610 			move_pages--;
1611 			inc_node_page_state(page, NR_ISOLATED_ANON +
1612 					    page_is_file_cache(page));
1613 
1614 		} else {
1615 #ifdef CONFIG_DEBUG_VM
1616 			pr_alert("removing pfn %lx from LRU failed\n", pfn);
1617 			dump_page(page, "failed to remove from LRU");
1618 #endif
1619 			put_page(page);
1620 			/* Because we don't have big zone->lock. we should
1621 			   check this again here. */
1622 			if (page_count(page)) {
1623 				not_managed++;
1624 				ret = -EBUSY;
1625 				break;
1626 			}
1627 		}
1628 	}
1629 	if (!list_empty(&source)) {
1630 		if (not_managed) {
1631 			putback_movable_pages(&source);
1632 			goto out;
1633 		}
1634 
1635 		/* Allocate a new page from the nearest neighbor node */
1636 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1637 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1638 		if (ret)
1639 			putback_movable_pages(&source);
1640 	}
1641 out:
1642 	return ret;
1643 }
1644 
1645 /*
1646  * remove from free_area[] and mark all as Reserved.
1647  */
1648 static int
1649 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1650 			void *data)
1651 {
1652 	__offline_isolated_pages(start, start + nr_pages);
1653 	return 0;
1654 }
1655 
1656 static void
1657 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1658 {
1659 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1660 				offline_isolated_pages_cb);
1661 }
1662 
1663 /*
1664  * Check all pages in range, recoreded as memory resource, are isolated.
1665  */
1666 static int
1667 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1668 			void *data)
1669 {
1670 	int ret;
1671 	long offlined = *(long *)data;
1672 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1673 	offlined = nr_pages;
1674 	if (!ret)
1675 		*(long *)data += offlined;
1676 	return ret;
1677 }
1678 
1679 static long
1680 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1681 {
1682 	long offlined = 0;
1683 	int ret;
1684 
1685 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1686 			check_pages_isolated_cb);
1687 	if (ret < 0)
1688 		offlined = (long)ret;
1689 	return offlined;
1690 }
1691 
1692 #ifdef CONFIG_MOVABLE_NODE
1693 /*
1694  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1695  * normal memory.
1696  */
1697 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1698 {
1699 	return true;
1700 }
1701 #else /* CONFIG_MOVABLE_NODE */
1702 /* ensure the node has NORMAL memory if it is still online */
1703 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1704 {
1705 	struct pglist_data *pgdat = zone->zone_pgdat;
1706 	unsigned long present_pages = 0;
1707 	enum zone_type zt;
1708 
1709 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1710 		present_pages += pgdat->node_zones[zt].present_pages;
1711 
1712 	if (present_pages > nr_pages)
1713 		return true;
1714 
1715 	present_pages = 0;
1716 	for (; zt <= ZONE_MOVABLE; zt++)
1717 		present_pages += pgdat->node_zones[zt].present_pages;
1718 
1719 	/*
1720 	 * we can't offline the last normal memory until all
1721 	 * higher memory is offlined.
1722 	 */
1723 	return present_pages == 0;
1724 }
1725 #endif /* CONFIG_MOVABLE_NODE */
1726 
1727 static int __init cmdline_parse_movable_node(char *p)
1728 {
1729 #ifdef CONFIG_MOVABLE_NODE
1730 	/*
1731 	 * Memory used by the kernel cannot be hot-removed because Linux
1732 	 * cannot migrate the kernel pages. When memory hotplug is
1733 	 * enabled, we should prevent memblock from allocating memory
1734 	 * for the kernel.
1735 	 *
1736 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1737 	 * SRAT is parsed, we don't know about it.
1738 	 *
1739 	 * The kernel image is loaded into memory at very early time. We
1740 	 * cannot prevent this anyway. So on NUMA system, we set any
1741 	 * node the kernel resides in as un-hotpluggable.
1742 	 *
1743 	 * Since on modern servers, one node could have double-digit
1744 	 * gigabytes memory, we can assume the memory around the kernel
1745 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1746 	 * allocate memory near the kernel image to try the best to keep
1747 	 * the kernel away from hotpluggable memory.
1748 	 */
1749 	memblock_set_bottom_up(true);
1750 	movable_node_enabled = true;
1751 #else
1752 	pr_warn("movable_node option not supported\n");
1753 #endif
1754 	return 0;
1755 }
1756 early_param("movable_node", cmdline_parse_movable_node);
1757 
1758 /* check which state of node_states will be changed when offline memory */
1759 static void node_states_check_changes_offline(unsigned long nr_pages,
1760 		struct zone *zone, struct memory_notify *arg)
1761 {
1762 	struct pglist_data *pgdat = zone->zone_pgdat;
1763 	unsigned long present_pages = 0;
1764 	enum zone_type zt, zone_last = ZONE_NORMAL;
1765 
1766 	/*
1767 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1768 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1769 	 * set zone_last to ZONE_NORMAL.
1770 	 *
1771 	 * If we don't have HIGHMEM nor movable node,
1772 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1773 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1774 	 */
1775 	if (N_MEMORY == N_NORMAL_MEMORY)
1776 		zone_last = ZONE_MOVABLE;
1777 
1778 	/*
1779 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1780 	 * If the memory to be offline is in a zone of 0...zone_last,
1781 	 * and it is the last present memory, 0...zone_last will
1782 	 * become empty after offline , thus we can determind we will
1783 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1784 	 */
1785 	for (zt = 0; zt <= zone_last; zt++)
1786 		present_pages += pgdat->node_zones[zt].present_pages;
1787 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1788 		arg->status_change_nid_normal = zone_to_nid(zone);
1789 	else
1790 		arg->status_change_nid_normal = -1;
1791 
1792 #ifdef CONFIG_HIGHMEM
1793 	/*
1794 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1795 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1796 	 * set zone_last to ZONE_HIGHMEM.
1797 	 *
1798 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1799 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1800 	 * set zone_last to ZONE_MOVABLE.
1801 	 */
1802 	zone_last = ZONE_HIGHMEM;
1803 	if (N_MEMORY == N_HIGH_MEMORY)
1804 		zone_last = ZONE_MOVABLE;
1805 
1806 	for (; zt <= zone_last; zt++)
1807 		present_pages += pgdat->node_zones[zt].present_pages;
1808 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1809 		arg->status_change_nid_high = zone_to_nid(zone);
1810 	else
1811 		arg->status_change_nid_high = -1;
1812 #else
1813 	arg->status_change_nid_high = arg->status_change_nid_normal;
1814 #endif
1815 
1816 	/*
1817 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1818 	 */
1819 	zone_last = ZONE_MOVABLE;
1820 
1821 	/*
1822 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1823 	 * If we try to offline the last present @nr_pages from the node,
1824 	 * we can determind we will need to clear the node from
1825 	 * node_states[N_HIGH_MEMORY].
1826 	 */
1827 	for (; zt <= zone_last; zt++)
1828 		present_pages += pgdat->node_zones[zt].present_pages;
1829 	if (nr_pages >= present_pages)
1830 		arg->status_change_nid = zone_to_nid(zone);
1831 	else
1832 		arg->status_change_nid = -1;
1833 }
1834 
1835 static void node_states_clear_node(int node, struct memory_notify *arg)
1836 {
1837 	if (arg->status_change_nid_normal >= 0)
1838 		node_clear_state(node, N_NORMAL_MEMORY);
1839 
1840 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1841 	    (arg->status_change_nid_high >= 0))
1842 		node_clear_state(node, N_HIGH_MEMORY);
1843 
1844 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1845 	    (arg->status_change_nid >= 0))
1846 		node_clear_state(node, N_MEMORY);
1847 }
1848 
1849 static int __ref __offline_pages(unsigned long start_pfn,
1850 		  unsigned long end_pfn, unsigned long timeout)
1851 {
1852 	unsigned long pfn, nr_pages, expire;
1853 	long offlined_pages;
1854 	int ret, drain, retry_max, node;
1855 	unsigned long flags;
1856 	struct zone *zone;
1857 	struct memory_notify arg;
1858 
1859 	/* at least, alignment against pageblock is necessary */
1860 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1861 		return -EINVAL;
1862 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1863 		return -EINVAL;
1864 	/* This makes hotplug much easier...and readable.
1865 	   we assume this for now. .*/
1866 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1867 		return -EINVAL;
1868 
1869 	zone = page_zone(pfn_to_page(start_pfn));
1870 	node = zone_to_nid(zone);
1871 	nr_pages = end_pfn - start_pfn;
1872 
1873 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1874 		return -EINVAL;
1875 
1876 	/* set above range as isolated */
1877 	ret = start_isolate_page_range(start_pfn, end_pfn,
1878 				       MIGRATE_MOVABLE, true);
1879 	if (ret)
1880 		return ret;
1881 
1882 	arg.start_pfn = start_pfn;
1883 	arg.nr_pages = nr_pages;
1884 	node_states_check_changes_offline(nr_pages, zone, &arg);
1885 
1886 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1887 	ret = notifier_to_errno(ret);
1888 	if (ret)
1889 		goto failed_removal;
1890 
1891 	pfn = start_pfn;
1892 	expire = jiffies + timeout;
1893 	drain = 0;
1894 	retry_max = 5;
1895 repeat:
1896 	/* start memory hot removal */
1897 	ret = -EAGAIN;
1898 	if (time_after(jiffies, expire))
1899 		goto failed_removal;
1900 	ret = -EINTR;
1901 	if (signal_pending(current))
1902 		goto failed_removal;
1903 	ret = 0;
1904 	if (drain) {
1905 		lru_add_drain_all();
1906 		cond_resched();
1907 		drain_all_pages(zone);
1908 	}
1909 
1910 	pfn = scan_movable_pages(start_pfn, end_pfn);
1911 	if (pfn) { /* We have movable pages */
1912 		ret = do_migrate_range(pfn, end_pfn);
1913 		if (!ret) {
1914 			drain = 1;
1915 			goto repeat;
1916 		} else {
1917 			if (ret < 0)
1918 				if (--retry_max == 0)
1919 					goto failed_removal;
1920 			yield();
1921 			drain = 1;
1922 			goto repeat;
1923 		}
1924 	}
1925 	/* drain all zone's lru pagevec, this is asynchronous... */
1926 	lru_add_drain_all();
1927 	yield();
1928 	/* drain pcp pages, this is synchronous. */
1929 	drain_all_pages(zone);
1930 	/*
1931 	 * dissolve free hugepages in the memory block before doing offlining
1932 	 * actually in order to make hugetlbfs's object counting consistent.
1933 	 */
1934 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1935 	if (ret)
1936 		goto failed_removal;
1937 	/* check again */
1938 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1939 	if (offlined_pages < 0) {
1940 		ret = -EBUSY;
1941 		goto failed_removal;
1942 	}
1943 	pr_info("Offlined Pages %ld\n", offlined_pages);
1944 	/* Ok, all of our target is isolated.
1945 	   We cannot do rollback at this point. */
1946 	offline_isolated_pages(start_pfn, end_pfn);
1947 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1948 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1949 	/* removal success */
1950 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1951 	zone->present_pages -= offlined_pages;
1952 
1953 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1954 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1955 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1956 
1957 	init_per_zone_wmark_min();
1958 
1959 	if (!populated_zone(zone)) {
1960 		zone_pcp_reset(zone);
1961 		mutex_lock(&zonelists_mutex);
1962 		build_all_zonelists(NULL, NULL);
1963 		mutex_unlock(&zonelists_mutex);
1964 	} else
1965 		zone_pcp_update(zone);
1966 
1967 	node_states_clear_node(node, &arg);
1968 	if (arg.status_change_nid >= 0) {
1969 		kswapd_stop(node);
1970 		kcompactd_stop(node);
1971 	}
1972 
1973 	vm_total_pages = nr_free_pagecache_pages();
1974 	writeback_set_ratelimit();
1975 
1976 	memory_notify(MEM_OFFLINE, &arg);
1977 	return 0;
1978 
1979 failed_removal:
1980 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1981 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1982 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1983 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1984 	/* pushback to free area */
1985 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1986 	return ret;
1987 }
1988 
1989 /* Must be protected by mem_hotplug_begin() */
1990 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1991 {
1992 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1993 }
1994 #endif /* CONFIG_MEMORY_HOTREMOVE */
1995 
1996 /**
1997  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1998  * @start_pfn: start pfn of the memory range
1999  * @end_pfn: end pfn of the memory range
2000  * @arg: argument passed to func
2001  * @func: callback for each memory section walked
2002  *
2003  * This function walks through all present mem sections in range
2004  * [start_pfn, end_pfn) and call func on each mem section.
2005  *
2006  * Returns the return value of func.
2007  */
2008 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2009 		void *arg, int (*func)(struct memory_block *, void *))
2010 {
2011 	struct memory_block *mem = NULL;
2012 	struct mem_section *section;
2013 	unsigned long pfn, section_nr;
2014 	int ret;
2015 
2016 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2017 		section_nr = pfn_to_section_nr(pfn);
2018 		if (!present_section_nr(section_nr))
2019 			continue;
2020 
2021 		section = __nr_to_section(section_nr);
2022 		/* same memblock? */
2023 		if (mem)
2024 			if ((section_nr >= mem->start_section_nr) &&
2025 			    (section_nr <= mem->end_section_nr))
2026 				continue;
2027 
2028 		mem = find_memory_block_hinted(section, mem);
2029 		if (!mem)
2030 			continue;
2031 
2032 		ret = func(mem, arg);
2033 		if (ret) {
2034 			kobject_put(&mem->dev.kobj);
2035 			return ret;
2036 		}
2037 	}
2038 
2039 	if (mem)
2040 		kobject_put(&mem->dev.kobj);
2041 
2042 	return 0;
2043 }
2044 
2045 #ifdef CONFIG_MEMORY_HOTREMOVE
2046 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2047 {
2048 	int ret = !is_memblock_offlined(mem);
2049 
2050 	if (unlikely(ret)) {
2051 		phys_addr_t beginpa, endpa;
2052 
2053 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2054 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2055 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2056 			&beginpa, &endpa);
2057 	}
2058 
2059 	return ret;
2060 }
2061 
2062 static int check_cpu_on_node(pg_data_t *pgdat)
2063 {
2064 	int cpu;
2065 
2066 	for_each_present_cpu(cpu) {
2067 		if (cpu_to_node(cpu) == pgdat->node_id)
2068 			/*
2069 			 * the cpu on this node isn't removed, and we can't
2070 			 * offline this node.
2071 			 */
2072 			return -EBUSY;
2073 	}
2074 
2075 	return 0;
2076 }
2077 
2078 static void unmap_cpu_on_node(pg_data_t *pgdat)
2079 {
2080 #ifdef CONFIG_ACPI_NUMA
2081 	int cpu;
2082 
2083 	for_each_possible_cpu(cpu)
2084 		if (cpu_to_node(cpu) == pgdat->node_id)
2085 			numa_clear_node(cpu);
2086 #endif
2087 }
2088 
2089 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2090 {
2091 	int ret;
2092 
2093 	ret = check_cpu_on_node(pgdat);
2094 	if (ret)
2095 		return ret;
2096 
2097 	/*
2098 	 * the node will be offlined when we come here, so we can clear
2099 	 * the cpu_to_node() now.
2100 	 */
2101 
2102 	unmap_cpu_on_node(pgdat);
2103 	return 0;
2104 }
2105 
2106 /**
2107  * try_offline_node
2108  *
2109  * Offline a node if all memory sections and cpus of the node are removed.
2110  *
2111  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2112  * and online/offline operations before this call.
2113  */
2114 void try_offline_node(int nid)
2115 {
2116 	pg_data_t *pgdat = NODE_DATA(nid);
2117 	unsigned long start_pfn = pgdat->node_start_pfn;
2118 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2119 	unsigned long pfn;
2120 
2121 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2122 		unsigned long section_nr = pfn_to_section_nr(pfn);
2123 
2124 		if (!present_section_nr(section_nr))
2125 			continue;
2126 
2127 		if (pfn_to_nid(pfn) != nid)
2128 			continue;
2129 
2130 		/*
2131 		 * some memory sections of this node are not removed, and we
2132 		 * can't offline node now.
2133 		 */
2134 		return;
2135 	}
2136 
2137 	if (check_and_unmap_cpu_on_node(pgdat))
2138 		return;
2139 
2140 	/*
2141 	 * all memory/cpu of this node are removed, we can offline this
2142 	 * node now.
2143 	 */
2144 	node_set_offline(nid);
2145 	unregister_one_node(nid);
2146 }
2147 EXPORT_SYMBOL(try_offline_node);
2148 
2149 /**
2150  * remove_memory
2151  *
2152  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2153  * and online/offline operations before this call, as required by
2154  * try_offline_node().
2155  */
2156 void __ref remove_memory(int nid, u64 start, u64 size)
2157 {
2158 	int ret;
2159 
2160 	BUG_ON(check_hotplug_memory_range(start, size));
2161 
2162 	mem_hotplug_begin();
2163 
2164 	/*
2165 	 * All memory blocks must be offlined before removing memory.  Check
2166 	 * whether all memory blocks in question are offline and trigger a BUG()
2167 	 * if this is not the case.
2168 	 */
2169 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2170 				check_memblock_offlined_cb);
2171 	if (ret)
2172 		BUG();
2173 
2174 	/* remove memmap entry */
2175 	firmware_map_remove(start, start + size, "System RAM");
2176 	memblock_free(start, size);
2177 	memblock_remove(start, size);
2178 
2179 	arch_remove_memory(start, size);
2180 
2181 	try_offline_node(nid);
2182 
2183 	mem_hotplug_done();
2184 }
2185 EXPORT_SYMBOL_GPL(remove_memory);
2186 #endif /* CONFIG_MEMORY_HOTREMOVE */
2187