xref: /linux/mm/memory_hotplug.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	const int online_type = memhp_online_type_from_str(str);
78 
79 	if (online_type >= 0)
80 		memhp_default_online_type = online_type;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 u64 max_mem_size = U64_MAX;
99 
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size,
102 						 const char *resource_name)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 
107 	if (strcmp(resource_name, "System RAM"))
108 		flags |= IORESOURCE_MEM_DRIVER_MANAGED;
109 
110 	/*
111 	 * Make sure value parsed from 'mem=' only restricts memory adding
112 	 * while booting, so that memory hotplug won't be impacted. Please
113 	 * refer to document of 'mem=' in kernel-parameters.txt for more
114 	 * details.
115 	 */
116 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 		return ERR_PTR(-E2BIG);
118 
119 	/*
120 	 * Request ownership of the new memory range.  This might be
121 	 * a child of an existing resource that was present but
122 	 * not marked as busy.
123 	 */
124 	res = __request_region(&iomem_resource, start, size,
125 			       resource_name, flags);
126 
127 	if (!res) {
128 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 				start, start + size);
130 		return ERR_PTR(-EEXIST);
131 	}
132 	return res;
133 }
134 
135 static void release_memory_resource(struct resource *res)
136 {
137 	if (!res)
138 		return;
139 	release_resource(res);
140 	kfree(res);
141 }
142 
143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144 void get_page_bootmem(unsigned long info,  struct page *page,
145 		      unsigned long type)
146 {
147 	page->freelist = (void *)type;
148 	SetPagePrivate(page);
149 	set_page_private(page, info);
150 	page_ref_inc(page);
151 }
152 
153 void put_page_bootmem(struct page *page)
154 {
155 	unsigned long type;
156 
157 	type = (unsigned long) page->freelist;
158 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160 
161 	if (page_ref_dec_return(page) == 1) {
162 		page->freelist = NULL;
163 		ClearPagePrivate(page);
164 		set_page_private(page, 0);
165 		INIT_LIST_HEAD(&page->lru);
166 		free_reserved_page(page);
167 	}
168 }
169 
170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171 #ifndef CONFIG_SPARSEMEM_VMEMMAP
172 static void register_page_bootmem_info_section(unsigned long start_pfn)
173 {
174 	unsigned long mapsize, section_nr, i;
175 	struct mem_section *ms;
176 	struct page *page, *memmap;
177 	struct mem_section_usage *usage;
178 
179 	section_nr = pfn_to_section_nr(start_pfn);
180 	ms = __nr_to_section(section_nr);
181 
182 	/* Get section's memmap address */
183 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184 
185 	/*
186 	 * Get page for the memmap's phys address
187 	 * XXX: need more consideration for sparse_vmemmap...
188 	 */
189 	page = virt_to_page(memmap);
190 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192 
193 	/* remember memmap's page */
194 	for (i = 0; i < mapsize; i++, page++)
195 		get_page_bootmem(section_nr, page, SECTION_INFO);
196 
197 	usage = ms->usage;
198 	page = virt_to_page(usage);
199 
200 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201 
202 	for (i = 0; i < mapsize; i++, page++)
203 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204 
205 }
206 #else /* CONFIG_SPARSEMEM_VMEMMAP */
207 static void register_page_bootmem_info_section(unsigned long start_pfn)
208 {
209 	unsigned long mapsize, section_nr, i;
210 	struct mem_section *ms;
211 	struct page *page, *memmap;
212 	struct mem_section_usage *usage;
213 
214 	section_nr = pfn_to_section_nr(start_pfn);
215 	ms = __nr_to_section(section_nr);
216 
217 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218 
219 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220 
221 	usage = ms->usage;
222 	page = virt_to_page(usage);
223 
224 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225 
226 	for (i = 0; i < mapsize; i++, page++)
227 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228 }
229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230 
231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232 {
233 	unsigned long i, pfn, end_pfn, nr_pages;
234 	int node = pgdat->node_id;
235 	struct page *page;
236 
237 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 	page = virt_to_page(pgdat);
239 
240 	for (i = 0; i < nr_pages; i++, page++)
241 		get_page_bootmem(node, page, NODE_INFO);
242 
243 	pfn = pgdat->node_start_pfn;
244 	end_pfn = pgdat_end_pfn(pgdat);
245 
246 	/* register section info */
247 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 		/*
249 		 * Some platforms can assign the same pfn to multiple nodes - on
250 		 * node0 as well as nodeN.  To avoid registering a pfn against
251 		 * multiple nodes we check that this pfn does not already
252 		 * reside in some other nodes.
253 		 */
254 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 			register_page_bootmem_info_section(pfn);
256 	}
257 }
258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259 
260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 		const char *reason)
262 {
263 	/*
264 	 * Disallow all operations smaller than a sub-section and only
265 	 * allow operations smaller than a section for
266 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 	 * enforces a larger memory_block_size_bytes() granularity for
268 	 * memory that will be marked online, so this check should only
269 	 * fire for direct arch_{add,remove}_memory() users outside of
270 	 * add_memory_resource().
271 	 */
272 	unsigned long min_align;
273 
274 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 		min_align = PAGES_PER_SUBSECTION;
276 	else
277 		min_align = PAGES_PER_SECTION;
278 	if (!IS_ALIGNED(pfn, min_align)
279 			|| !IS_ALIGNED(nr_pages, min_align)) {
280 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 				reason, pfn, pfn + nr_pages - 1);
282 		return -EINVAL;
283 	}
284 	return 0;
285 }
286 
287 static int check_hotplug_memory_addressable(unsigned long pfn,
288 					    unsigned long nr_pages)
289 {
290 	const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291 
292 	if (max_addr >> MAX_PHYSMEM_BITS) {
293 		const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 		WARN(1,
295 		     "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 		     (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 		return -E2BIG;
298 	}
299 
300 	return 0;
301 }
302 
303 /*
304  * Reasonably generic function for adding memory.  It is
305  * expected that archs that support memory hotplug will
306  * call this function after deciding the zone to which to
307  * add the new pages.
308  */
309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 		struct mhp_params *params)
311 {
312 	const unsigned long end_pfn = pfn + nr_pages;
313 	unsigned long cur_nr_pages;
314 	int err;
315 	struct vmem_altmap *altmap = params->altmap;
316 
317 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 		return -EINVAL;
319 
320 	err = check_hotplug_memory_addressable(pfn, nr_pages);
321 	if (err)
322 		return err;
323 
324 	if (altmap) {
325 		/*
326 		 * Validate altmap is within bounds of the total request
327 		 */
328 		if (altmap->base_pfn != pfn
329 				|| vmem_altmap_offset(altmap) > nr_pages) {
330 			pr_warn_once("memory add fail, invalid altmap\n");
331 			return -EINVAL;
332 		}
333 		altmap->alloc = 0;
334 	}
335 
336 	err = check_pfn_span(pfn, nr_pages, "add");
337 	if (err)
338 		return err;
339 
340 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 		/* Select all remaining pages up to the next section boundary */
342 		cur_nr_pages = min(end_pfn - pfn,
343 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
344 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 		if (err)
346 			break;
347 		cond_resched();
348 	}
349 	vmemmap_populate_print_last();
350 	return err;
351 }
352 
353 #ifdef CONFIG_NUMA
354 int __weak memory_add_physaddr_to_nid(u64 start)
355 {
356 	pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
357 			start);
358 	return 0;
359 }
360 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
361 #endif
362 
363 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
364 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
365 				     unsigned long start_pfn,
366 				     unsigned long end_pfn)
367 {
368 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
369 		if (unlikely(!pfn_to_online_page(start_pfn)))
370 			continue;
371 
372 		if (unlikely(pfn_to_nid(start_pfn) != nid))
373 			continue;
374 
375 		if (zone != page_zone(pfn_to_page(start_pfn)))
376 			continue;
377 
378 		return start_pfn;
379 	}
380 
381 	return 0;
382 }
383 
384 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
385 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
386 				    unsigned long start_pfn,
387 				    unsigned long end_pfn)
388 {
389 	unsigned long pfn;
390 
391 	/* pfn is the end pfn of a memory section. */
392 	pfn = end_pfn - 1;
393 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
394 		if (unlikely(!pfn_to_online_page(pfn)))
395 			continue;
396 
397 		if (unlikely(pfn_to_nid(pfn) != nid))
398 			continue;
399 
400 		if (zone != page_zone(pfn_to_page(pfn)))
401 			continue;
402 
403 		return pfn;
404 	}
405 
406 	return 0;
407 }
408 
409 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
410 			     unsigned long end_pfn)
411 {
412 	unsigned long pfn;
413 	int nid = zone_to_nid(zone);
414 
415 	zone_span_writelock(zone);
416 	if (zone->zone_start_pfn == start_pfn) {
417 		/*
418 		 * If the section is smallest section in the zone, it need
419 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
420 		 * In this case, we find second smallest valid mem_section
421 		 * for shrinking zone.
422 		 */
423 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
424 						zone_end_pfn(zone));
425 		if (pfn) {
426 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
427 			zone->zone_start_pfn = pfn;
428 		} else {
429 			zone->zone_start_pfn = 0;
430 			zone->spanned_pages = 0;
431 		}
432 	} else if (zone_end_pfn(zone) == end_pfn) {
433 		/*
434 		 * If the section is biggest section in the zone, it need
435 		 * shrink zone->spanned_pages.
436 		 * In this case, we find second biggest valid mem_section for
437 		 * shrinking zone.
438 		 */
439 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
440 					       start_pfn);
441 		if (pfn)
442 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
443 		else {
444 			zone->zone_start_pfn = 0;
445 			zone->spanned_pages = 0;
446 		}
447 	}
448 	zone_span_writeunlock(zone);
449 }
450 
451 static void update_pgdat_span(struct pglist_data *pgdat)
452 {
453 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
454 	struct zone *zone;
455 
456 	for (zone = pgdat->node_zones;
457 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
458 		unsigned long zone_end_pfn = zone->zone_start_pfn +
459 					     zone->spanned_pages;
460 
461 		/* No need to lock the zones, they can't change. */
462 		if (!zone->spanned_pages)
463 			continue;
464 		if (!node_end_pfn) {
465 			node_start_pfn = zone->zone_start_pfn;
466 			node_end_pfn = zone_end_pfn;
467 			continue;
468 		}
469 
470 		if (zone_end_pfn > node_end_pfn)
471 			node_end_pfn = zone_end_pfn;
472 		if (zone->zone_start_pfn < node_start_pfn)
473 			node_start_pfn = zone->zone_start_pfn;
474 	}
475 
476 	pgdat->node_start_pfn = node_start_pfn;
477 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
478 }
479 
480 void __ref remove_pfn_range_from_zone(struct zone *zone,
481 				      unsigned long start_pfn,
482 				      unsigned long nr_pages)
483 {
484 	const unsigned long end_pfn = start_pfn + nr_pages;
485 	struct pglist_data *pgdat = zone->zone_pgdat;
486 	unsigned long pfn, cur_nr_pages, flags;
487 
488 	/* Poison struct pages because they are now uninitialized again. */
489 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
490 		cond_resched();
491 
492 		/* Select all remaining pages up to the next section boundary */
493 		cur_nr_pages =
494 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
495 		page_init_poison(pfn_to_page(pfn),
496 				 sizeof(struct page) * cur_nr_pages);
497 	}
498 
499 #ifdef CONFIG_ZONE_DEVICE
500 	/*
501 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
502 	 * we will not try to shrink the zones - which is okay as
503 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
504 	 */
505 	if (zone_idx(zone) == ZONE_DEVICE)
506 		return;
507 #endif
508 
509 	clear_zone_contiguous(zone);
510 
511 	pgdat_resize_lock(zone->zone_pgdat, &flags);
512 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 	update_pgdat_span(pgdat);
514 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
515 
516 	set_zone_contiguous(zone);
517 }
518 
519 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
520 			     unsigned long map_offset,
521 			     struct vmem_altmap *altmap)
522 {
523 	struct mem_section *ms = __pfn_to_section(pfn);
524 
525 	if (WARN_ON_ONCE(!valid_section(ms)))
526 		return;
527 
528 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
529 }
530 
531 /**
532  * __remove_pages() - remove sections of pages
533  * @pfn: starting pageframe (must be aligned to start of a section)
534  * @nr_pages: number of pages to remove (must be multiple of section size)
535  * @altmap: alternative device page map or %NULL if default memmap is used
536  *
537  * Generic helper function to remove section mappings and sysfs entries
538  * for the section of the memory we are removing. Caller needs to make
539  * sure that pages are marked reserved and zones are adjust properly by
540  * calling offline_pages().
541  */
542 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
543 		    struct vmem_altmap *altmap)
544 {
545 	const unsigned long end_pfn = pfn + nr_pages;
546 	unsigned long cur_nr_pages;
547 	unsigned long map_offset = 0;
548 
549 	map_offset = vmem_altmap_offset(altmap);
550 
551 	if (check_pfn_span(pfn, nr_pages, "remove"))
552 		return;
553 
554 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
555 		cond_resched();
556 		/* Select all remaining pages up to the next section boundary */
557 		cur_nr_pages = min(end_pfn - pfn,
558 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
559 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
560 		map_offset = 0;
561 	}
562 }
563 
564 int set_online_page_callback(online_page_callback_t callback)
565 {
566 	int rc = -EINVAL;
567 
568 	get_online_mems();
569 	mutex_lock(&online_page_callback_lock);
570 
571 	if (online_page_callback == generic_online_page) {
572 		online_page_callback = callback;
573 		rc = 0;
574 	}
575 
576 	mutex_unlock(&online_page_callback_lock);
577 	put_online_mems();
578 
579 	return rc;
580 }
581 EXPORT_SYMBOL_GPL(set_online_page_callback);
582 
583 int restore_online_page_callback(online_page_callback_t callback)
584 {
585 	int rc = -EINVAL;
586 
587 	get_online_mems();
588 	mutex_lock(&online_page_callback_lock);
589 
590 	if (online_page_callback == callback) {
591 		online_page_callback = generic_online_page;
592 		rc = 0;
593 	}
594 
595 	mutex_unlock(&online_page_callback_lock);
596 	put_online_mems();
597 
598 	return rc;
599 }
600 EXPORT_SYMBOL_GPL(restore_online_page_callback);
601 
602 void generic_online_page(struct page *page, unsigned int order)
603 {
604 	/*
605 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
606 	 * so we should map it first. This is better than introducing a special
607 	 * case in page freeing fast path.
608 	 */
609 	if (debug_pagealloc_enabled_static())
610 		kernel_map_pages(page, 1 << order, 1);
611 	__free_pages_core(page, order);
612 	totalram_pages_add(1UL << order);
613 #ifdef CONFIG_HIGHMEM
614 	if (PageHighMem(page))
615 		totalhigh_pages_add(1UL << order);
616 #endif
617 }
618 EXPORT_SYMBOL_GPL(generic_online_page);
619 
620 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
621 			void *arg)
622 {
623 	const unsigned long end_pfn = start_pfn + nr_pages;
624 	unsigned long pfn;
625 	int order;
626 
627 	/*
628 	 * Online the pages. The callback might decide to keep some pages
629 	 * PG_reserved (to add them to the buddy later), but we still account
630 	 * them as being online/belonging to this zone ("present").
631 	 */
632 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
633 		order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
634 		/* __free_pages_core() wants pfns to be aligned to the order */
635 		if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
636 			order = 0;
637 		(*online_page_callback)(pfn_to_page(pfn), order);
638 	}
639 
640 	/* mark all involved sections as online */
641 	online_mem_sections(start_pfn, end_pfn);
642 
643 	*(unsigned long *)arg += nr_pages;
644 	return 0;
645 }
646 
647 /* check which state of node_states will be changed when online memory */
648 static void node_states_check_changes_online(unsigned long nr_pages,
649 	struct zone *zone, struct memory_notify *arg)
650 {
651 	int nid = zone_to_nid(zone);
652 
653 	arg->status_change_nid = NUMA_NO_NODE;
654 	arg->status_change_nid_normal = NUMA_NO_NODE;
655 	arg->status_change_nid_high = NUMA_NO_NODE;
656 
657 	if (!node_state(nid, N_MEMORY))
658 		arg->status_change_nid = nid;
659 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
660 		arg->status_change_nid_normal = nid;
661 #ifdef CONFIG_HIGHMEM
662 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
663 		arg->status_change_nid_high = nid;
664 #endif
665 }
666 
667 static void node_states_set_node(int node, struct memory_notify *arg)
668 {
669 	if (arg->status_change_nid_normal >= 0)
670 		node_set_state(node, N_NORMAL_MEMORY);
671 
672 	if (arg->status_change_nid_high >= 0)
673 		node_set_state(node, N_HIGH_MEMORY);
674 
675 	if (arg->status_change_nid >= 0)
676 		node_set_state(node, N_MEMORY);
677 }
678 
679 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
680 		unsigned long nr_pages)
681 {
682 	unsigned long old_end_pfn = zone_end_pfn(zone);
683 
684 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
685 		zone->zone_start_pfn = start_pfn;
686 
687 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
688 }
689 
690 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
691                                      unsigned long nr_pages)
692 {
693 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
694 
695 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
696 		pgdat->node_start_pfn = start_pfn;
697 
698 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
699 
700 }
701 /*
702  * Associate the pfn range with the given zone, initializing the memmaps
703  * and resizing the pgdat/zone data to span the added pages. After this
704  * call, all affected pages are PG_reserved.
705  */
706 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
707 		unsigned long nr_pages, struct vmem_altmap *altmap)
708 {
709 	struct pglist_data *pgdat = zone->zone_pgdat;
710 	int nid = pgdat->node_id;
711 	unsigned long flags;
712 
713 	clear_zone_contiguous(zone);
714 
715 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
716 	pgdat_resize_lock(pgdat, &flags);
717 	zone_span_writelock(zone);
718 	if (zone_is_empty(zone))
719 		init_currently_empty_zone(zone, start_pfn, nr_pages);
720 	resize_zone_range(zone, start_pfn, nr_pages);
721 	zone_span_writeunlock(zone);
722 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
723 	pgdat_resize_unlock(pgdat, &flags);
724 
725 	/*
726 	 * TODO now we have a visible range of pages which are not associated
727 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
728 	 * expects the zone spans the pfn range. All the pages in the range
729 	 * are reserved so nobody should be touching them so we should be safe
730 	 */
731 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
732 			MEMMAP_HOTPLUG, altmap);
733 
734 	set_zone_contiguous(zone);
735 }
736 
737 /*
738  * Returns a default kernel memory zone for the given pfn range.
739  * If no kernel zone covers this pfn range it will automatically go
740  * to the ZONE_NORMAL.
741  */
742 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
743 		unsigned long nr_pages)
744 {
745 	struct pglist_data *pgdat = NODE_DATA(nid);
746 	int zid;
747 
748 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
749 		struct zone *zone = &pgdat->node_zones[zid];
750 
751 		if (zone_intersects(zone, start_pfn, nr_pages))
752 			return zone;
753 	}
754 
755 	return &pgdat->node_zones[ZONE_NORMAL];
756 }
757 
758 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
759 		unsigned long nr_pages)
760 {
761 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
762 			nr_pages);
763 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
764 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
765 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
766 
767 	/*
768 	 * We inherit the existing zone in a simple case where zones do not
769 	 * overlap in the given range
770 	 */
771 	if (in_kernel ^ in_movable)
772 		return (in_kernel) ? kernel_zone : movable_zone;
773 
774 	/*
775 	 * If the range doesn't belong to any zone or two zones overlap in the
776 	 * given range then we use movable zone only if movable_node is
777 	 * enabled because we always online to a kernel zone by default.
778 	 */
779 	return movable_node_enabled ? movable_zone : kernel_zone;
780 }
781 
782 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
783 		unsigned long nr_pages)
784 {
785 	if (online_type == MMOP_ONLINE_KERNEL)
786 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
787 
788 	if (online_type == MMOP_ONLINE_MOVABLE)
789 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
790 
791 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
792 }
793 
794 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
795 		       int online_type, int nid)
796 {
797 	unsigned long flags;
798 	unsigned long onlined_pages = 0;
799 	struct zone *zone;
800 	int need_zonelists_rebuild = 0;
801 	int ret;
802 	struct memory_notify arg;
803 
804 	mem_hotplug_begin();
805 
806 	/* associate pfn range with the zone */
807 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
808 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
809 
810 	arg.start_pfn = pfn;
811 	arg.nr_pages = nr_pages;
812 	node_states_check_changes_online(nr_pages, zone, &arg);
813 
814 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
815 	ret = notifier_to_errno(ret);
816 	if (ret)
817 		goto failed_addition;
818 
819 	/*
820 	 * If this zone is not populated, then it is not in zonelist.
821 	 * This means the page allocator ignores this zone.
822 	 * So, zonelist must be updated after online.
823 	 */
824 	if (!populated_zone(zone)) {
825 		need_zonelists_rebuild = 1;
826 		setup_zone_pageset(zone);
827 	}
828 
829 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
830 		online_pages_range);
831 	if (ret) {
832 		/* not a single memory resource was applicable */
833 		if (need_zonelists_rebuild)
834 			zone_pcp_reset(zone);
835 		goto failed_addition;
836 	}
837 
838 	zone->present_pages += onlined_pages;
839 
840 	pgdat_resize_lock(zone->zone_pgdat, &flags);
841 	zone->zone_pgdat->node_present_pages += onlined_pages;
842 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
843 
844 	/*
845 	 * When exposing larger, physically contiguous memory areas to the
846 	 * buddy, shuffling in the buddy (when freeing onlined pages, putting
847 	 * them either to the head or the tail of the freelist) is only helpful
848 	 * for maintaining the shuffle, but not for creating the initial
849 	 * shuffle. Shuffle the whole zone to make sure the just onlined pages
850 	 * are properly distributed across the whole freelist.
851 	 */
852 	shuffle_zone(zone);
853 
854 	node_states_set_node(nid, &arg);
855 	if (need_zonelists_rebuild)
856 		build_all_zonelists(NULL);
857 	zone_pcp_update(zone);
858 
859 	init_per_zone_wmark_min();
860 
861 	kswapd_run(nid);
862 	kcompactd_run(nid);
863 
864 	writeback_set_ratelimit();
865 
866 	memory_notify(MEM_ONLINE, &arg);
867 	mem_hotplug_done();
868 	return 0;
869 
870 failed_addition:
871 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
872 		 (unsigned long long) pfn << PAGE_SHIFT,
873 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
874 	memory_notify(MEM_CANCEL_ONLINE, &arg);
875 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
876 	mem_hotplug_done();
877 	return ret;
878 }
879 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
880 
881 static void reset_node_present_pages(pg_data_t *pgdat)
882 {
883 	struct zone *z;
884 
885 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
886 		z->present_pages = 0;
887 
888 	pgdat->node_present_pages = 0;
889 }
890 
891 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
892 static pg_data_t __ref *hotadd_new_pgdat(int nid)
893 {
894 	struct pglist_data *pgdat;
895 
896 	pgdat = NODE_DATA(nid);
897 	if (!pgdat) {
898 		pgdat = arch_alloc_nodedata(nid);
899 		if (!pgdat)
900 			return NULL;
901 
902 		pgdat->per_cpu_nodestats =
903 			alloc_percpu(struct per_cpu_nodestat);
904 		arch_refresh_nodedata(nid, pgdat);
905 	} else {
906 		int cpu;
907 		/*
908 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
909 		 * Note that kswapd will init kswapd_highest_zoneidx properly
910 		 * when it starts in the near future.
911 		 */
912 		pgdat->nr_zones = 0;
913 		pgdat->kswapd_order = 0;
914 		pgdat->kswapd_highest_zoneidx = 0;
915 		for_each_online_cpu(cpu) {
916 			struct per_cpu_nodestat *p;
917 
918 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
919 			memset(p, 0, sizeof(*p));
920 		}
921 	}
922 
923 	/* we can use NODE_DATA(nid) from here */
924 	pgdat->node_id = nid;
925 	pgdat->node_start_pfn = 0;
926 
927 	/* init node's zones as empty zones, we don't have any present pages.*/
928 	free_area_init_core_hotplug(nid);
929 
930 	/*
931 	 * The node we allocated has no zone fallback lists. For avoiding
932 	 * to access not-initialized zonelist, build here.
933 	 */
934 	build_all_zonelists(pgdat);
935 
936 	/*
937 	 * When memory is hot-added, all the memory is in offline state. So
938 	 * clear all zones' present_pages because they will be updated in
939 	 * online_pages() and offline_pages().
940 	 */
941 	reset_node_managed_pages(pgdat);
942 	reset_node_present_pages(pgdat);
943 
944 	return pgdat;
945 }
946 
947 static void rollback_node_hotadd(int nid)
948 {
949 	pg_data_t *pgdat = NODE_DATA(nid);
950 
951 	arch_refresh_nodedata(nid, NULL);
952 	free_percpu(pgdat->per_cpu_nodestats);
953 	arch_free_nodedata(pgdat);
954 }
955 
956 
957 /**
958  * try_online_node - online a node if offlined
959  * @nid: the node ID
960  * @set_node_online: Whether we want to online the node
961  * called by cpu_up() to online a node without onlined memory.
962  *
963  * Returns:
964  * 1 -> a new node has been allocated
965  * 0 -> the node is already online
966  * -ENOMEM -> the node could not be allocated
967  */
968 static int __try_online_node(int nid, bool set_node_online)
969 {
970 	pg_data_t *pgdat;
971 	int ret = 1;
972 
973 	if (node_online(nid))
974 		return 0;
975 
976 	pgdat = hotadd_new_pgdat(nid);
977 	if (!pgdat) {
978 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
979 		ret = -ENOMEM;
980 		goto out;
981 	}
982 
983 	if (set_node_online) {
984 		node_set_online(nid);
985 		ret = register_one_node(nid);
986 		BUG_ON(ret);
987 	}
988 out:
989 	return ret;
990 }
991 
992 /*
993  * Users of this function always want to online/register the node
994  */
995 int try_online_node(int nid)
996 {
997 	int ret;
998 
999 	mem_hotplug_begin();
1000 	ret =  __try_online_node(nid, true);
1001 	mem_hotplug_done();
1002 	return ret;
1003 }
1004 
1005 static int check_hotplug_memory_range(u64 start, u64 size)
1006 {
1007 	/* memory range must be block size aligned */
1008 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1009 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1010 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1011 		       memory_block_size_bytes(), start, size);
1012 		return -EINVAL;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 static int online_memory_block(struct memory_block *mem, void *arg)
1019 {
1020 	mem->online_type = memhp_default_online_type;
1021 	return device_online(&mem->dev);
1022 }
1023 
1024 /*
1025  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1026  * and online/offline operations (triggered e.g. by sysfs).
1027  *
1028  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1029  */
1030 int __ref add_memory_resource(int nid, struct resource *res)
1031 {
1032 	struct mhp_params params = { .pgprot = PAGE_KERNEL };
1033 	u64 start, size;
1034 	bool new_node = false;
1035 	int ret;
1036 
1037 	start = res->start;
1038 	size = resource_size(res);
1039 
1040 	ret = check_hotplug_memory_range(start, size);
1041 	if (ret)
1042 		return ret;
1043 
1044 	if (!node_possible(nid)) {
1045 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1046 		return -EINVAL;
1047 	}
1048 
1049 	mem_hotplug_begin();
1050 
1051 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1052 		memblock_add_node(start, size, nid);
1053 
1054 	ret = __try_online_node(nid, false);
1055 	if (ret < 0)
1056 		goto error;
1057 	new_node = ret;
1058 
1059 	/* call arch's memory hotadd */
1060 	ret = arch_add_memory(nid, start, size, &params);
1061 	if (ret < 0)
1062 		goto error;
1063 
1064 	/* create memory block devices after memory was added */
1065 	ret = create_memory_block_devices(start, size);
1066 	if (ret) {
1067 		arch_remove_memory(nid, start, size, NULL);
1068 		goto error;
1069 	}
1070 
1071 	if (new_node) {
1072 		/* If sysfs file of new node can't be created, cpu on the node
1073 		 * can't be hot-added. There is no rollback way now.
1074 		 * So, check by BUG_ON() to catch it reluctantly..
1075 		 * We online node here. We can't roll back from here.
1076 		 */
1077 		node_set_online(nid);
1078 		ret = __register_one_node(nid);
1079 		BUG_ON(ret);
1080 	}
1081 
1082 	/* link memory sections under this node.*/
1083 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1084 	BUG_ON(ret);
1085 
1086 	/* create new memmap entry */
1087 	if (!strcmp(res->name, "System RAM"))
1088 		firmware_map_add_hotplug(start, start + size, "System RAM");
1089 
1090 	/* device_online() will take the lock when calling online_pages() */
1091 	mem_hotplug_done();
1092 
1093 	/* online pages if requested */
1094 	if (memhp_default_online_type != MMOP_OFFLINE)
1095 		walk_memory_blocks(start, size, NULL, online_memory_block);
1096 
1097 	return ret;
1098 error:
1099 	/* rollback pgdat allocation and others */
1100 	if (new_node)
1101 		rollback_node_hotadd(nid);
1102 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1103 		memblock_remove(start, size);
1104 	mem_hotplug_done();
1105 	return ret;
1106 }
1107 
1108 /* requires device_hotplug_lock, see add_memory_resource() */
1109 int __ref __add_memory(int nid, u64 start, u64 size)
1110 {
1111 	struct resource *res;
1112 	int ret;
1113 
1114 	res = register_memory_resource(start, size, "System RAM");
1115 	if (IS_ERR(res))
1116 		return PTR_ERR(res);
1117 
1118 	ret = add_memory_resource(nid, res);
1119 	if (ret < 0)
1120 		release_memory_resource(res);
1121 	return ret;
1122 }
1123 
1124 int add_memory(int nid, u64 start, u64 size)
1125 {
1126 	int rc;
1127 
1128 	lock_device_hotplug();
1129 	rc = __add_memory(nid, start, size);
1130 	unlock_device_hotplug();
1131 
1132 	return rc;
1133 }
1134 EXPORT_SYMBOL_GPL(add_memory);
1135 
1136 /*
1137  * Add special, driver-managed memory to the system as system RAM. Such
1138  * memory is not exposed via the raw firmware-provided memmap as system
1139  * RAM, instead, it is detected and added by a driver - during cold boot,
1140  * after a reboot, and after kexec.
1141  *
1142  * Reasons why this memory should not be used for the initial memmap of a
1143  * kexec kernel or for placing kexec images:
1144  * - The booting kernel is in charge of determining how this memory will be
1145  *   used (e.g., use persistent memory as system RAM)
1146  * - Coordination with a hypervisor is required before this memory
1147  *   can be used (e.g., inaccessible parts).
1148  *
1149  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1150  * memory map") are created. Also, the created memory resource is flagged
1151  * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case
1152  * this memory as well (esp., not place kexec images onto it).
1153  *
1154  * The resource_name (visible via /proc/iomem) has to have the format
1155  * "System RAM ($DRIVER)".
1156  */
1157 int add_memory_driver_managed(int nid, u64 start, u64 size,
1158 			      const char *resource_name)
1159 {
1160 	struct resource *res;
1161 	int rc;
1162 
1163 	if (!resource_name ||
1164 	    strstr(resource_name, "System RAM (") != resource_name ||
1165 	    resource_name[strlen(resource_name) - 1] != ')')
1166 		return -EINVAL;
1167 
1168 	lock_device_hotplug();
1169 
1170 	res = register_memory_resource(start, size, resource_name);
1171 	if (IS_ERR(res)) {
1172 		rc = PTR_ERR(res);
1173 		goto out_unlock;
1174 	}
1175 
1176 	rc = add_memory_resource(nid, res);
1177 	if (rc < 0)
1178 		release_memory_resource(res);
1179 
1180 out_unlock:
1181 	unlock_device_hotplug();
1182 	return rc;
1183 }
1184 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1185 
1186 #ifdef CONFIG_MEMORY_HOTREMOVE
1187 /*
1188  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1189  * memory holes). When true, return the zone.
1190  */
1191 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1192 				  unsigned long end_pfn)
1193 {
1194 	unsigned long pfn, sec_end_pfn;
1195 	struct zone *zone = NULL;
1196 	struct page *page;
1197 	int i;
1198 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1199 	     pfn < end_pfn;
1200 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1201 		/* Make sure the memory section is present first */
1202 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1203 			continue;
1204 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1205 		     pfn += MAX_ORDER_NR_PAGES) {
1206 			i = 0;
1207 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1208 			while ((i < MAX_ORDER_NR_PAGES) &&
1209 				!pfn_valid_within(pfn + i))
1210 				i++;
1211 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1212 				continue;
1213 			/* Check if we got outside of the zone */
1214 			if (zone && !zone_spans_pfn(zone, pfn + i))
1215 				return NULL;
1216 			page = pfn_to_page(pfn + i);
1217 			if (zone && page_zone(page) != zone)
1218 				return NULL;
1219 			zone = page_zone(page);
1220 		}
1221 	}
1222 
1223 	return zone;
1224 }
1225 
1226 /*
1227  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1228  * non-lru movable pages and hugepages). Will skip over most unmovable
1229  * pages (esp., pages that can be skipped when offlining), but bail out on
1230  * definitely unmovable pages.
1231  *
1232  * Returns:
1233  *	0 in case a movable page is found and movable_pfn was updated.
1234  *	-ENOENT in case no movable page was found.
1235  *	-EBUSY in case a definitely unmovable page was found.
1236  */
1237 static int scan_movable_pages(unsigned long start, unsigned long end,
1238 			      unsigned long *movable_pfn)
1239 {
1240 	unsigned long pfn;
1241 
1242 	for (pfn = start; pfn < end; pfn++) {
1243 		struct page *page, *head;
1244 		unsigned long skip;
1245 
1246 		if (!pfn_valid(pfn))
1247 			continue;
1248 		page = pfn_to_page(pfn);
1249 		if (PageLRU(page))
1250 			goto found;
1251 		if (__PageMovable(page))
1252 			goto found;
1253 
1254 		/*
1255 		 * PageOffline() pages that are not marked __PageMovable() and
1256 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1257 		 * definitely unmovable. If their reference count would be 0,
1258 		 * they could at least be skipped when offlining memory.
1259 		 */
1260 		if (PageOffline(page) && page_count(page))
1261 			return -EBUSY;
1262 
1263 		if (!PageHuge(page))
1264 			continue;
1265 		head = compound_head(page);
1266 		if (page_huge_active(head))
1267 			goto found;
1268 		skip = compound_nr(head) - (page - head);
1269 		pfn += skip - 1;
1270 	}
1271 	return -ENOENT;
1272 found:
1273 	*movable_pfn = pfn;
1274 	return 0;
1275 }
1276 
1277 static struct page *new_node_page(struct page *page, unsigned long private)
1278 {
1279 	nodemask_t nmask = node_states[N_MEMORY];
1280 	struct migration_target_control mtc = {
1281 		.nid = page_to_nid(page),
1282 		.nmask = &nmask,
1283 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1284 	};
1285 
1286 	/*
1287 	 * try to allocate from a different node but reuse this node if there
1288 	 * are no other online nodes to be used (e.g. we are offlining a part
1289 	 * of the only existing node)
1290 	 */
1291 	node_clear(mtc.nid, nmask);
1292 	if (nodes_empty(nmask))
1293 		node_set(mtc.nid, nmask);
1294 
1295 	return alloc_migration_target(page, (unsigned long)&mtc);
1296 }
1297 
1298 static int
1299 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1300 {
1301 	unsigned long pfn;
1302 	struct page *page, *head;
1303 	int ret = 0;
1304 	LIST_HEAD(source);
1305 
1306 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1307 		if (!pfn_valid(pfn))
1308 			continue;
1309 		page = pfn_to_page(pfn);
1310 		head = compound_head(page);
1311 
1312 		if (PageHuge(page)) {
1313 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1314 			isolate_huge_page(head, &source);
1315 			continue;
1316 		} else if (PageTransHuge(page))
1317 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1318 
1319 		/*
1320 		 * HWPoison pages have elevated reference counts so the migration would
1321 		 * fail on them. It also doesn't make any sense to migrate them in the
1322 		 * first place. Still try to unmap such a page in case it is still mapped
1323 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1324 		 * the unmap as the catch all safety net).
1325 		 */
1326 		if (PageHWPoison(page)) {
1327 			if (WARN_ON(PageLRU(page)))
1328 				isolate_lru_page(page);
1329 			if (page_mapped(page))
1330 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1331 			continue;
1332 		}
1333 
1334 		if (!get_page_unless_zero(page))
1335 			continue;
1336 		/*
1337 		 * We can skip free pages. And we can deal with pages on
1338 		 * LRU and non-lru movable pages.
1339 		 */
1340 		if (PageLRU(page))
1341 			ret = isolate_lru_page(page);
1342 		else
1343 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1344 		if (!ret) { /* Success */
1345 			list_add_tail(&page->lru, &source);
1346 			if (!__PageMovable(page))
1347 				inc_node_page_state(page, NR_ISOLATED_ANON +
1348 						    page_is_file_lru(page));
1349 
1350 		} else {
1351 			pr_warn("failed to isolate pfn %lx\n", pfn);
1352 			dump_page(page, "isolation failed");
1353 		}
1354 		put_page(page);
1355 	}
1356 	if (!list_empty(&source)) {
1357 		/* Allocate a new page from the nearest neighbor node */
1358 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1359 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1360 		if (ret) {
1361 			list_for_each_entry(page, &source, lru) {
1362 				pr_warn("migrating pfn %lx failed ret:%d ",
1363 				       page_to_pfn(page), ret);
1364 				dump_page(page, "migration failure");
1365 			}
1366 			putback_movable_pages(&source);
1367 		}
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 /* Mark all sections offline and remove all free pages from the buddy. */
1374 static int
1375 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1376 			void *data)
1377 {
1378 	unsigned long *offlined_pages = (unsigned long *)data;
1379 
1380 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Check all pages in range, recorded as memory resource, are isolated.
1386  */
1387 static int
1388 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1389 			void *data)
1390 {
1391 	return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1392 				   MEMORY_OFFLINE);
1393 }
1394 
1395 static int __init cmdline_parse_movable_node(char *p)
1396 {
1397 	movable_node_enabled = true;
1398 	return 0;
1399 }
1400 early_param("movable_node", cmdline_parse_movable_node);
1401 
1402 /* check which state of node_states will be changed when offline memory */
1403 static void node_states_check_changes_offline(unsigned long nr_pages,
1404 		struct zone *zone, struct memory_notify *arg)
1405 {
1406 	struct pglist_data *pgdat = zone->zone_pgdat;
1407 	unsigned long present_pages = 0;
1408 	enum zone_type zt;
1409 
1410 	arg->status_change_nid = NUMA_NO_NODE;
1411 	arg->status_change_nid_normal = NUMA_NO_NODE;
1412 	arg->status_change_nid_high = NUMA_NO_NODE;
1413 
1414 	/*
1415 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1416 	 * If the memory to be offline is within the range
1417 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1418 	 * the zones in that range will become empty after the offlining,
1419 	 * thus we can determine that we need to clear the node from
1420 	 * node_states[N_NORMAL_MEMORY].
1421 	 */
1422 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1423 		present_pages += pgdat->node_zones[zt].present_pages;
1424 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1425 		arg->status_change_nid_normal = zone_to_nid(zone);
1426 
1427 #ifdef CONFIG_HIGHMEM
1428 	/*
1429 	 * node_states[N_HIGH_MEMORY] contains nodes which
1430 	 * have normal memory or high memory.
1431 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1432 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1433 	 * we determine that the zones in that range become empty,
1434 	 * we need to clear the node for N_HIGH_MEMORY.
1435 	 */
1436 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1437 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1438 		arg->status_change_nid_high = zone_to_nid(zone);
1439 #endif
1440 
1441 	/*
1442 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1443 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1444 	 * as well.
1445 	 * Here we count the possible pages from ZONE_MOVABLE.
1446 	 * If after having accounted all the pages, we see that the nr_pages
1447 	 * to be offlined is over or equal to the accounted pages,
1448 	 * we know that the node will become empty, and so, we can clear
1449 	 * it for N_MEMORY as well.
1450 	 */
1451 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1452 
1453 	if (nr_pages >= present_pages)
1454 		arg->status_change_nid = zone_to_nid(zone);
1455 }
1456 
1457 static void node_states_clear_node(int node, struct memory_notify *arg)
1458 {
1459 	if (arg->status_change_nid_normal >= 0)
1460 		node_clear_state(node, N_NORMAL_MEMORY);
1461 
1462 	if (arg->status_change_nid_high >= 0)
1463 		node_clear_state(node, N_HIGH_MEMORY);
1464 
1465 	if (arg->status_change_nid >= 0)
1466 		node_clear_state(node, N_MEMORY);
1467 }
1468 
1469 static int count_system_ram_pages_cb(unsigned long start_pfn,
1470 				     unsigned long nr_pages, void *data)
1471 {
1472 	unsigned long *nr_system_ram_pages = data;
1473 
1474 	*nr_system_ram_pages += nr_pages;
1475 	return 0;
1476 }
1477 
1478 static int __ref __offline_pages(unsigned long start_pfn,
1479 		  unsigned long end_pfn)
1480 {
1481 	unsigned long pfn, nr_pages = 0;
1482 	unsigned long offlined_pages = 0;
1483 	int ret, node, nr_isolate_pageblock;
1484 	unsigned long flags;
1485 	struct zone *zone;
1486 	struct memory_notify arg;
1487 	char *reason;
1488 
1489 	mem_hotplug_begin();
1490 
1491 	/*
1492 	 * Don't allow to offline memory blocks that contain holes.
1493 	 * Consequently, memory blocks with holes can never get onlined
1494 	 * via the hotplug path - online_pages() - as hotplugged memory has
1495 	 * no holes. This way, we e.g., don't have to worry about marking
1496 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1497 	 * avoid using walk_system_ram_range() later.
1498 	 */
1499 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1500 			      count_system_ram_pages_cb);
1501 	if (nr_pages != end_pfn - start_pfn) {
1502 		ret = -EINVAL;
1503 		reason = "memory holes";
1504 		goto failed_removal;
1505 	}
1506 
1507 	/* This makes hotplug much easier...and readable.
1508 	   we assume this for now. .*/
1509 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1510 	if (!zone) {
1511 		ret = -EINVAL;
1512 		reason = "multizone range";
1513 		goto failed_removal;
1514 	}
1515 	node = zone_to_nid(zone);
1516 
1517 	/* set above range as isolated */
1518 	ret = start_isolate_page_range(start_pfn, end_pfn,
1519 				       MIGRATE_MOVABLE,
1520 				       MEMORY_OFFLINE | REPORT_FAILURE);
1521 	if (ret < 0) {
1522 		reason = "failure to isolate range";
1523 		goto failed_removal;
1524 	}
1525 	nr_isolate_pageblock = ret;
1526 
1527 	arg.start_pfn = start_pfn;
1528 	arg.nr_pages = nr_pages;
1529 	node_states_check_changes_offline(nr_pages, zone, &arg);
1530 
1531 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1532 	ret = notifier_to_errno(ret);
1533 	if (ret) {
1534 		reason = "notifier failure";
1535 		goto failed_removal_isolated;
1536 	}
1537 
1538 	do {
1539 		pfn = start_pfn;
1540 		do {
1541 			if (signal_pending(current)) {
1542 				ret = -EINTR;
1543 				reason = "signal backoff";
1544 				goto failed_removal_isolated;
1545 			}
1546 
1547 			cond_resched();
1548 			lru_add_drain_all();
1549 
1550 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1551 			if (!ret) {
1552 				/*
1553 				 * TODO: fatal migration failures should bail
1554 				 * out
1555 				 */
1556 				do_migrate_range(pfn, end_pfn);
1557 			}
1558 		} while (!ret);
1559 
1560 		if (ret != -ENOENT) {
1561 			reason = "unmovable page";
1562 			goto failed_removal_isolated;
1563 		}
1564 
1565 		/*
1566 		 * Dissolve free hugepages in the memory block before doing
1567 		 * offlining actually in order to make hugetlbfs's object
1568 		 * counting consistent.
1569 		 */
1570 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1571 		if (ret) {
1572 			reason = "failure to dissolve huge pages";
1573 			goto failed_removal_isolated;
1574 		}
1575 		/* check again */
1576 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1577 					    NULL, check_pages_isolated_cb);
1578 		/*
1579 		 * per-cpu pages are drained in start_isolate_page_range, but if
1580 		 * there are still pages that are not free, make sure that we
1581 		 * drain again, because when we isolated range we might
1582 		 * have raced with another thread that was adding pages to pcp
1583 		 * list.
1584 		 *
1585 		 * Forward progress should be still guaranteed because
1586 		 * pages on the pcp list can only belong to MOVABLE_ZONE
1587 		 * because has_unmovable_pages explicitly checks for
1588 		 * PageBuddy on freed pages on other zones.
1589 		 */
1590 		if (ret)
1591 			drain_all_pages(zone);
1592 	} while (ret);
1593 
1594 	/* Ok, all of our target is isolated.
1595 	   We cannot do rollback at this point. */
1596 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1597 			      &offlined_pages, offline_isolated_pages_cb);
1598 	pr_info("Offlined Pages %ld\n", offlined_pages);
1599 	/*
1600 	 * Onlining will reset pagetype flags and makes migrate type
1601 	 * MOVABLE, so just need to decrease the number of isolated
1602 	 * pageblocks zone counter here.
1603 	 */
1604 	spin_lock_irqsave(&zone->lock, flags);
1605 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1606 	spin_unlock_irqrestore(&zone->lock, flags);
1607 
1608 	/* removal success */
1609 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1610 	zone->present_pages -= offlined_pages;
1611 
1612 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1613 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1614 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1615 
1616 	init_per_zone_wmark_min();
1617 
1618 	if (!populated_zone(zone)) {
1619 		zone_pcp_reset(zone);
1620 		build_all_zonelists(NULL);
1621 	} else
1622 		zone_pcp_update(zone);
1623 
1624 	node_states_clear_node(node, &arg);
1625 	if (arg.status_change_nid >= 0) {
1626 		kswapd_stop(node);
1627 		kcompactd_stop(node);
1628 	}
1629 
1630 	writeback_set_ratelimit();
1631 
1632 	memory_notify(MEM_OFFLINE, &arg);
1633 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1634 	mem_hotplug_done();
1635 	return 0;
1636 
1637 failed_removal_isolated:
1638 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1639 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1640 failed_removal:
1641 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1642 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1643 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1644 		 reason);
1645 	/* pushback to free area */
1646 	mem_hotplug_done();
1647 	return ret;
1648 }
1649 
1650 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1651 {
1652 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1653 }
1654 
1655 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1656 {
1657 	int ret = !is_memblock_offlined(mem);
1658 
1659 	if (unlikely(ret)) {
1660 		phys_addr_t beginpa, endpa;
1661 
1662 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1663 		endpa = beginpa + memory_block_size_bytes() - 1;
1664 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1665 			&beginpa, &endpa);
1666 
1667 		return -EBUSY;
1668 	}
1669 	return 0;
1670 }
1671 
1672 static int check_cpu_on_node(pg_data_t *pgdat)
1673 {
1674 	int cpu;
1675 
1676 	for_each_present_cpu(cpu) {
1677 		if (cpu_to_node(cpu) == pgdat->node_id)
1678 			/*
1679 			 * the cpu on this node isn't removed, and we can't
1680 			 * offline this node.
1681 			 */
1682 			return -EBUSY;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1689 {
1690 	int nid = *(int *)arg;
1691 
1692 	/*
1693 	 * If a memory block belongs to multiple nodes, the stored nid is not
1694 	 * reliable. However, such blocks are always online (e.g., cannot get
1695 	 * offlined) and, therefore, are still spanned by the node.
1696 	 */
1697 	return mem->nid == nid ? -EEXIST : 0;
1698 }
1699 
1700 /**
1701  * try_offline_node
1702  * @nid: the node ID
1703  *
1704  * Offline a node if all memory sections and cpus of the node are removed.
1705  *
1706  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1707  * and online/offline operations before this call.
1708  */
1709 void try_offline_node(int nid)
1710 {
1711 	pg_data_t *pgdat = NODE_DATA(nid);
1712 	int rc;
1713 
1714 	/*
1715 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1716 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1717 	 * e.g., after the memory block was onlined.
1718 	 */
1719 	if (pgdat->node_spanned_pages)
1720 		return;
1721 
1722 	/*
1723 	 * Especially offline memory blocks might not be spanned by the
1724 	 * node. They will get spanned by the node once they get onlined.
1725 	 * However, they link to the node in sysfs and can get onlined later.
1726 	 */
1727 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1728 	if (rc)
1729 		return;
1730 
1731 	if (check_cpu_on_node(pgdat))
1732 		return;
1733 
1734 	/*
1735 	 * all memory/cpu of this node are removed, we can offline this
1736 	 * node now.
1737 	 */
1738 	node_set_offline(nid);
1739 	unregister_one_node(nid);
1740 }
1741 EXPORT_SYMBOL(try_offline_node);
1742 
1743 static void __release_memory_resource(resource_size_t start,
1744 				      resource_size_t size)
1745 {
1746 	int ret;
1747 
1748 	/*
1749 	 * When removing memory in the same granularity as it was added,
1750 	 * this function never fails. It might only fail if resources
1751 	 * have to be adjusted or split. We'll ignore the error, as
1752 	 * removing of memory cannot fail.
1753 	 */
1754 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1755 	if (ret) {
1756 		resource_size_t endres = start + size - 1;
1757 
1758 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1759 			&start, &endres, ret);
1760 	}
1761 }
1762 
1763 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1764 {
1765 	int rc = 0;
1766 
1767 	BUG_ON(check_hotplug_memory_range(start, size));
1768 
1769 	/*
1770 	 * All memory blocks must be offlined before removing memory.  Check
1771 	 * whether all memory blocks in question are offline and return error
1772 	 * if this is not the case.
1773 	 */
1774 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1775 	if (rc)
1776 		return rc;
1777 
1778 	/* remove memmap entry */
1779 	firmware_map_remove(start, start + size, "System RAM");
1780 
1781 	/*
1782 	 * Memory block device removal under the device_hotplug_lock is
1783 	 * a barrier against racing online attempts.
1784 	 */
1785 	remove_memory_block_devices(start, size);
1786 
1787 	mem_hotplug_begin();
1788 
1789 	arch_remove_memory(nid, start, size, NULL);
1790 
1791 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1792 		memblock_free(start, size);
1793 		memblock_remove(start, size);
1794 	}
1795 
1796 	__release_memory_resource(start, size);
1797 
1798 	try_offline_node(nid);
1799 
1800 	mem_hotplug_done();
1801 	return 0;
1802 }
1803 
1804 /**
1805  * remove_memory
1806  * @nid: the node ID
1807  * @start: physical address of the region to remove
1808  * @size: size of the region to remove
1809  *
1810  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1811  * and online/offline operations before this call, as required by
1812  * try_offline_node().
1813  */
1814 void __remove_memory(int nid, u64 start, u64 size)
1815 {
1816 
1817 	/*
1818 	 * trigger BUG() if some memory is not offlined prior to calling this
1819 	 * function
1820 	 */
1821 	if (try_remove_memory(nid, start, size))
1822 		BUG();
1823 }
1824 
1825 /*
1826  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1827  * some memory is not offline
1828  */
1829 int remove_memory(int nid, u64 start, u64 size)
1830 {
1831 	int rc;
1832 
1833 	lock_device_hotplug();
1834 	rc  = try_remove_memory(nid, start, size);
1835 	unlock_device_hotplug();
1836 
1837 	return rc;
1838 }
1839 EXPORT_SYMBOL_GPL(remove_memory);
1840 
1841 /*
1842  * Try to offline and remove a memory block. Might take a long time to
1843  * finish in case memory is still in use. Primarily useful for memory devices
1844  * that logically unplugged all memory (so it's no longer in use) and want to
1845  * offline + remove the memory block.
1846  */
1847 int offline_and_remove_memory(int nid, u64 start, u64 size)
1848 {
1849 	struct memory_block *mem;
1850 	int rc = -EINVAL;
1851 
1852 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1853 	    size != memory_block_size_bytes())
1854 		return rc;
1855 
1856 	lock_device_hotplug();
1857 	mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1858 	if (mem)
1859 		rc = device_offline(&mem->dev);
1860 	/* Ignore if the device is already offline. */
1861 	if (rc > 0)
1862 		rc = 0;
1863 
1864 	/*
1865 	 * In case we succeeded to offline the memory block, remove it.
1866 	 * This cannot fail as it cannot get onlined in the meantime.
1867 	 */
1868 	if (!rc) {
1869 		rc = try_remove_memory(nid, start, size);
1870 		WARN_ON_ONCE(rc);
1871 	}
1872 	unlock_device_hotplug();
1873 
1874 	return rc;
1875 }
1876 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1877 #endif /* CONFIG_MEMORY_HOTREMOVE */
1878