xref: /linux/mm/memory_hotplug.c (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page, unsigned int order);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 u64 max_mem_size = U64_MAX;
100 
101 /* add this memory to iomem resource */
102 static struct resource *register_memory_resource(u64 start, u64 size)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 	char *resource_name = "System RAM";
107 
108 	if (start + size > max_mem_size)
109 		return ERR_PTR(-E2BIG);
110 
111 	/*
112 	 * Request ownership of the new memory range.  This might be
113 	 * a child of an existing resource that was present but
114 	 * not marked as busy.
115 	 */
116 	res = __request_region(&iomem_resource, start, size,
117 			       resource_name, flags);
118 
119 	if (!res) {
120 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
121 				start, start + size);
122 		return ERR_PTR(-EEXIST);
123 	}
124 	return res;
125 }
126 
127 static void release_memory_resource(struct resource *res)
128 {
129 	if (!res)
130 		return;
131 	release_resource(res);
132 	kfree(res);
133 	return;
134 }
135 
136 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
137 void get_page_bootmem(unsigned long info,  struct page *page,
138 		      unsigned long type)
139 {
140 	page->freelist = (void *)type;
141 	SetPagePrivate(page);
142 	set_page_private(page, info);
143 	page_ref_inc(page);
144 }
145 
146 void put_page_bootmem(struct page *page)
147 {
148 	unsigned long type;
149 
150 	type = (unsigned long) page->freelist;
151 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
152 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
153 
154 	if (page_ref_dec_return(page) == 1) {
155 		page->freelist = NULL;
156 		ClearPagePrivate(page);
157 		set_page_private(page, 0);
158 		INIT_LIST_HEAD(&page->lru);
159 		free_reserved_page(page);
160 	}
161 }
162 
163 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
164 #ifndef CONFIG_SPARSEMEM_VMEMMAP
165 static void register_page_bootmem_info_section(unsigned long start_pfn)
166 {
167 	unsigned long *usemap, mapsize, section_nr, i;
168 	struct mem_section *ms;
169 	struct page *page, *memmap;
170 
171 	section_nr = pfn_to_section_nr(start_pfn);
172 	ms = __nr_to_section(section_nr);
173 
174 	/* Get section's memmap address */
175 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
176 
177 	/*
178 	 * Get page for the memmap's phys address
179 	 * XXX: need more consideration for sparse_vmemmap...
180 	 */
181 	page = virt_to_page(memmap);
182 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
183 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
184 
185 	/* remember memmap's page */
186 	for (i = 0; i < mapsize; i++, page++)
187 		get_page_bootmem(section_nr, page, SECTION_INFO);
188 
189 	usemap = ms->pageblock_flags;
190 	page = virt_to_page(usemap);
191 
192 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
193 
194 	for (i = 0; i < mapsize; i++, page++)
195 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
196 
197 }
198 #else /* CONFIG_SPARSEMEM_VMEMMAP */
199 static void register_page_bootmem_info_section(unsigned long start_pfn)
200 {
201 	unsigned long *usemap, mapsize, section_nr, i;
202 	struct mem_section *ms;
203 	struct page *page, *memmap;
204 
205 	section_nr = pfn_to_section_nr(start_pfn);
206 	ms = __nr_to_section(section_nr);
207 
208 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
209 
210 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
211 
212 	usemap = ms->pageblock_flags;
213 	page = virt_to_page(usemap);
214 
215 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
216 
217 	for (i = 0; i < mapsize; i++, page++)
218 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
219 }
220 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
221 
222 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
223 {
224 	unsigned long i, pfn, end_pfn, nr_pages;
225 	int node = pgdat->node_id;
226 	struct page *page;
227 
228 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
229 	page = virt_to_page(pgdat);
230 
231 	for (i = 0; i < nr_pages; i++, page++)
232 		get_page_bootmem(node, page, NODE_INFO);
233 
234 	pfn = pgdat->node_start_pfn;
235 	end_pfn = pgdat_end_pfn(pgdat);
236 
237 	/* register section info */
238 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
239 		/*
240 		 * Some platforms can assign the same pfn to multiple nodes - on
241 		 * node0 as well as nodeN.  To avoid registering a pfn against
242 		 * multiple nodes we check that this pfn does not already
243 		 * reside in some other nodes.
244 		 */
245 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
246 			register_page_bootmem_info_section(pfn);
247 	}
248 }
249 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
250 
251 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
252 		struct vmem_altmap *altmap, bool want_memblock)
253 {
254 	int ret;
255 
256 	if (pfn_valid(phys_start_pfn))
257 		return -EEXIST;
258 
259 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
260 	if (ret < 0)
261 		return ret;
262 
263 	if (!want_memblock)
264 		return 0;
265 
266 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
267 }
268 
269 /*
270  * Reasonably generic function for adding memory.  It is
271  * expected that archs that support memory hotplug will
272  * call this function after deciding the zone to which to
273  * add the new pages.
274  */
275 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
276 		unsigned long nr_pages, struct vmem_altmap *altmap,
277 		bool want_memblock)
278 {
279 	unsigned long i;
280 	int err = 0;
281 	int start_sec, end_sec;
282 
283 	/* during initialize mem_map, align hot-added range to section */
284 	start_sec = pfn_to_section_nr(phys_start_pfn);
285 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
286 
287 	if (altmap) {
288 		/*
289 		 * Validate altmap is within bounds of the total request
290 		 */
291 		if (altmap->base_pfn != phys_start_pfn
292 				|| vmem_altmap_offset(altmap) > nr_pages) {
293 			pr_warn_once("memory add fail, invalid altmap\n");
294 			err = -EINVAL;
295 			goto out;
296 		}
297 		altmap->alloc = 0;
298 	}
299 
300 	for (i = start_sec; i <= end_sec; i++) {
301 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
302 				want_memblock);
303 
304 		/*
305 		 * EEXIST is finally dealt with by ioresource collision
306 		 * check. see add_memory() => register_memory_resource()
307 		 * Warning will be printed if there is collision.
308 		 */
309 		if (err && (err != -EEXIST))
310 			break;
311 		err = 0;
312 		cond_resched();
313 	}
314 	vmemmap_populate_print_last();
315 out:
316 	return err;
317 }
318 
319 #ifdef CONFIG_MEMORY_HOTREMOVE
320 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
321 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
322 				     unsigned long start_pfn,
323 				     unsigned long end_pfn)
324 {
325 	struct mem_section *ms;
326 
327 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
328 		ms = __pfn_to_section(start_pfn);
329 
330 		if (unlikely(!valid_section(ms)))
331 			continue;
332 
333 		if (unlikely(pfn_to_nid(start_pfn) != nid))
334 			continue;
335 
336 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
337 			continue;
338 
339 		return start_pfn;
340 	}
341 
342 	return 0;
343 }
344 
345 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
346 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
347 				    unsigned long start_pfn,
348 				    unsigned long end_pfn)
349 {
350 	struct mem_section *ms;
351 	unsigned long pfn;
352 
353 	/* pfn is the end pfn of a memory section. */
354 	pfn = end_pfn - 1;
355 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
356 		ms = __pfn_to_section(pfn);
357 
358 		if (unlikely(!valid_section(ms)))
359 			continue;
360 
361 		if (unlikely(pfn_to_nid(pfn) != nid))
362 			continue;
363 
364 		if (zone && zone != page_zone(pfn_to_page(pfn)))
365 			continue;
366 
367 		return pfn;
368 	}
369 
370 	return 0;
371 }
372 
373 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
374 			     unsigned long end_pfn)
375 {
376 	unsigned long zone_start_pfn = zone->zone_start_pfn;
377 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
378 	unsigned long zone_end_pfn = z;
379 	unsigned long pfn;
380 	struct mem_section *ms;
381 	int nid = zone_to_nid(zone);
382 
383 	zone_span_writelock(zone);
384 	if (zone_start_pfn == start_pfn) {
385 		/*
386 		 * If the section is smallest section in the zone, it need
387 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 		 * In this case, we find second smallest valid mem_section
389 		 * for shrinking zone.
390 		 */
391 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 						zone_end_pfn);
393 		if (pfn) {
394 			zone->zone_start_pfn = pfn;
395 			zone->spanned_pages = zone_end_pfn - pfn;
396 		}
397 	} else if (zone_end_pfn == end_pfn) {
398 		/*
399 		 * If the section is biggest section in the zone, it need
400 		 * shrink zone->spanned_pages.
401 		 * In this case, we find second biggest valid mem_section for
402 		 * shrinking zone.
403 		 */
404 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 					       start_pfn);
406 		if (pfn)
407 			zone->spanned_pages = pfn - zone_start_pfn + 1;
408 	}
409 
410 	/*
411 	 * The section is not biggest or smallest mem_section in the zone, it
412 	 * only creates a hole in the zone. So in this case, we need not
413 	 * change the zone. But perhaps, the zone has only hole data. Thus
414 	 * it check the zone has only hole or not.
415 	 */
416 	pfn = zone_start_pfn;
417 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
418 		ms = __pfn_to_section(pfn);
419 
420 		if (unlikely(!valid_section(ms)))
421 			continue;
422 
423 		if (page_zone(pfn_to_page(pfn)) != zone)
424 			continue;
425 
426 		 /* If the section is current section, it continues the loop */
427 		if (start_pfn == pfn)
428 			continue;
429 
430 		/* If we find valid section, we have nothing to do */
431 		zone_span_writeunlock(zone);
432 		return;
433 	}
434 
435 	/* The zone has no valid section */
436 	zone->zone_start_pfn = 0;
437 	zone->spanned_pages = 0;
438 	zone_span_writeunlock(zone);
439 }
440 
441 static void shrink_pgdat_span(struct pglist_data *pgdat,
442 			      unsigned long start_pfn, unsigned long end_pfn)
443 {
444 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
445 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
446 	unsigned long pgdat_end_pfn = p;
447 	unsigned long pfn;
448 	struct mem_section *ms;
449 	int nid = pgdat->node_id;
450 
451 	if (pgdat_start_pfn == start_pfn) {
452 		/*
453 		 * If the section is smallest section in the pgdat, it need
454 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
455 		 * In this case, we find second smallest valid mem_section
456 		 * for shrinking zone.
457 		 */
458 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
459 						pgdat_end_pfn);
460 		if (pfn) {
461 			pgdat->node_start_pfn = pfn;
462 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
463 		}
464 	} else if (pgdat_end_pfn == end_pfn) {
465 		/*
466 		 * If the section is biggest section in the pgdat, it need
467 		 * shrink pgdat->node_spanned_pages.
468 		 * In this case, we find second biggest valid mem_section for
469 		 * shrinking zone.
470 		 */
471 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
472 					       start_pfn);
473 		if (pfn)
474 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
475 	}
476 
477 	/*
478 	 * If the section is not biggest or smallest mem_section in the pgdat,
479 	 * it only creates a hole in the pgdat. So in this case, we need not
480 	 * change the pgdat.
481 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
482 	 * has only hole or not.
483 	 */
484 	pfn = pgdat_start_pfn;
485 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
486 		ms = __pfn_to_section(pfn);
487 
488 		if (unlikely(!valid_section(ms)))
489 			continue;
490 
491 		if (pfn_to_nid(pfn) != nid)
492 			continue;
493 
494 		 /* If the section is current section, it continues the loop */
495 		if (start_pfn == pfn)
496 			continue;
497 
498 		/* If we find valid section, we have nothing to do */
499 		return;
500 	}
501 
502 	/* The pgdat has no valid section */
503 	pgdat->node_start_pfn = 0;
504 	pgdat->node_spanned_pages = 0;
505 }
506 
507 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
508 {
509 	struct pglist_data *pgdat = zone->zone_pgdat;
510 	int nr_pages = PAGES_PER_SECTION;
511 	unsigned long flags;
512 
513 	pgdat_resize_lock(zone->zone_pgdat, &flags);
514 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
515 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
516 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
517 }
518 
519 static int __remove_section(struct zone *zone, struct mem_section *ms,
520 		unsigned long map_offset, struct vmem_altmap *altmap)
521 {
522 	unsigned long start_pfn;
523 	int scn_nr;
524 	int ret = -EINVAL;
525 
526 	if (!valid_section(ms))
527 		return ret;
528 
529 	ret = unregister_memory_section(ms);
530 	if (ret)
531 		return ret;
532 
533 	scn_nr = __section_nr(ms);
534 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
535 	__remove_zone(zone, start_pfn);
536 
537 	sparse_remove_one_section(zone, ms, map_offset, altmap);
538 	return 0;
539 }
540 
541 /**
542  * __remove_pages() - remove sections of pages from a zone
543  * @zone: zone from which pages need to be removed
544  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
545  * @nr_pages: number of pages to remove (must be multiple of section size)
546  * @altmap: alternative device page map or %NULL if default memmap is used
547  *
548  * Generic helper function to remove section mappings and sysfs entries
549  * for the section of the memory we are removing. Caller needs to make
550  * sure that pages are marked reserved and zones are adjust properly by
551  * calling offline_pages().
552  */
553 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
554 		 unsigned long nr_pages, struct vmem_altmap *altmap)
555 {
556 	unsigned long i;
557 	unsigned long map_offset = 0;
558 	int sections_to_remove, ret = 0;
559 
560 	/* In the ZONE_DEVICE case device driver owns the memory region */
561 	if (is_dev_zone(zone)) {
562 		if (altmap)
563 			map_offset = vmem_altmap_offset(altmap);
564 	} else {
565 		resource_size_t start, size;
566 
567 		start = phys_start_pfn << PAGE_SHIFT;
568 		size = nr_pages * PAGE_SIZE;
569 
570 		ret = release_mem_region_adjustable(&iomem_resource, start,
571 					size);
572 		if (ret) {
573 			resource_size_t endres = start + size - 1;
574 
575 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
576 					&start, &endres, ret);
577 		}
578 	}
579 
580 	clear_zone_contiguous(zone);
581 
582 	/*
583 	 * We can only remove entire sections
584 	 */
585 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
586 	BUG_ON(nr_pages % PAGES_PER_SECTION);
587 
588 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
589 	for (i = 0; i < sections_to_remove; i++) {
590 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
591 
592 		cond_resched();
593 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
594 				altmap);
595 		map_offset = 0;
596 		if (ret)
597 			break;
598 	}
599 
600 	set_zone_contiguous(zone);
601 
602 	return ret;
603 }
604 #endif /* CONFIG_MEMORY_HOTREMOVE */
605 
606 int set_online_page_callback(online_page_callback_t callback)
607 {
608 	int rc = -EINVAL;
609 
610 	get_online_mems();
611 	mutex_lock(&online_page_callback_lock);
612 
613 	if (online_page_callback == generic_online_page) {
614 		online_page_callback = callback;
615 		rc = 0;
616 	}
617 
618 	mutex_unlock(&online_page_callback_lock);
619 	put_online_mems();
620 
621 	return rc;
622 }
623 EXPORT_SYMBOL_GPL(set_online_page_callback);
624 
625 int restore_online_page_callback(online_page_callback_t callback)
626 {
627 	int rc = -EINVAL;
628 
629 	get_online_mems();
630 	mutex_lock(&online_page_callback_lock);
631 
632 	if (online_page_callback == callback) {
633 		online_page_callback = generic_online_page;
634 		rc = 0;
635 	}
636 
637 	mutex_unlock(&online_page_callback_lock);
638 	put_online_mems();
639 
640 	return rc;
641 }
642 EXPORT_SYMBOL_GPL(restore_online_page_callback);
643 
644 void __online_page_set_limits(struct page *page)
645 {
646 }
647 EXPORT_SYMBOL_GPL(__online_page_set_limits);
648 
649 void __online_page_increment_counters(struct page *page)
650 {
651 	adjust_managed_page_count(page, 1);
652 }
653 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
654 
655 void __online_page_free(struct page *page)
656 {
657 	__free_reserved_page(page);
658 }
659 EXPORT_SYMBOL_GPL(__online_page_free);
660 
661 static void generic_online_page(struct page *page, unsigned int order)
662 {
663 	kernel_map_pages(page, 1 << order, 1);
664 	__free_pages_core(page, order);
665 	totalram_pages_add(1UL << order);
666 #ifdef CONFIG_HIGHMEM
667 	if (PageHighMem(page))
668 		totalhigh_pages_add(1UL << order);
669 #endif
670 }
671 
672 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
673 {
674 	unsigned long end = start + nr_pages;
675 	int order, onlined_pages = 0;
676 
677 	while (start < end) {
678 		order = min(MAX_ORDER - 1,
679 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
680 		(*online_page_callback)(pfn_to_page(start), order);
681 
682 		onlined_pages += (1UL << order);
683 		start += (1UL << order);
684 	}
685 	return onlined_pages;
686 }
687 
688 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
689 			void *arg)
690 {
691 	unsigned long onlined_pages = *(unsigned long *)arg;
692 
693 	if (PageReserved(pfn_to_page(start_pfn)))
694 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
695 
696 	online_mem_sections(start_pfn, start_pfn + nr_pages);
697 
698 	*(unsigned long *)arg = onlined_pages;
699 	return 0;
700 }
701 
702 /* check which state of node_states will be changed when online memory */
703 static void node_states_check_changes_online(unsigned long nr_pages,
704 	struct zone *zone, struct memory_notify *arg)
705 {
706 	int nid = zone_to_nid(zone);
707 
708 	arg->status_change_nid = NUMA_NO_NODE;
709 	arg->status_change_nid_normal = NUMA_NO_NODE;
710 	arg->status_change_nid_high = NUMA_NO_NODE;
711 
712 	if (!node_state(nid, N_MEMORY))
713 		arg->status_change_nid = nid;
714 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
715 		arg->status_change_nid_normal = nid;
716 #ifdef CONFIG_HIGHMEM
717 	if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
718 		arg->status_change_nid_high = nid;
719 #endif
720 }
721 
722 static void node_states_set_node(int node, struct memory_notify *arg)
723 {
724 	if (arg->status_change_nid_normal >= 0)
725 		node_set_state(node, N_NORMAL_MEMORY);
726 
727 	if (arg->status_change_nid_high >= 0)
728 		node_set_state(node, N_HIGH_MEMORY);
729 
730 	if (arg->status_change_nid >= 0)
731 		node_set_state(node, N_MEMORY);
732 }
733 
734 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
735 		unsigned long nr_pages)
736 {
737 	unsigned long old_end_pfn = zone_end_pfn(zone);
738 
739 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
740 		zone->zone_start_pfn = start_pfn;
741 
742 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
743 }
744 
745 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
746                                      unsigned long nr_pages)
747 {
748 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
749 
750 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
751 		pgdat->node_start_pfn = start_pfn;
752 
753 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
754 }
755 
756 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
757 		unsigned long nr_pages, struct vmem_altmap *altmap)
758 {
759 	struct pglist_data *pgdat = zone->zone_pgdat;
760 	int nid = pgdat->node_id;
761 	unsigned long flags;
762 
763 	clear_zone_contiguous(zone);
764 
765 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
766 	pgdat_resize_lock(pgdat, &flags);
767 	zone_span_writelock(zone);
768 	if (zone_is_empty(zone))
769 		init_currently_empty_zone(zone, start_pfn, nr_pages);
770 	resize_zone_range(zone, start_pfn, nr_pages);
771 	zone_span_writeunlock(zone);
772 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
773 	pgdat_resize_unlock(pgdat, &flags);
774 
775 	/*
776 	 * TODO now we have a visible range of pages which are not associated
777 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
778 	 * expects the zone spans the pfn range. All the pages in the range
779 	 * are reserved so nobody should be touching them so we should be safe
780 	 */
781 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
782 			MEMMAP_HOTPLUG, altmap);
783 
784 	set_zone_contiguous(zone);
785 }
786 
787 /*
788  * Returns a default kernel memory zone for the given pfn range.
789  * If no kernel zone covers this pfn range it will automatically go
790  * to the ZONE_NORMAL.
791  */
792 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
793 		unsigned long nr_pages)
794 {
795 	struct pglist_data *pgdat = NODE_DATA(nid);
796 	int zid;
797 
798 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
799 		struct zone *zone = &pgdat->node_zones[zid];
800 
801 		if (zone_intersects(zone, start_pfn, nr_pages))
802 			return zone;
803 	}
804 
805 	return &pgdat->node_zones[ZONE_NORMAL];
806 }
807 
808 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
809 		unsigned long nr_pages)
810 {
811 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
812 			nr_pages);
813 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
814 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
815 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
816 
817 	/*
818 	 * We inherit the existing zone in a simple case where zones do not
819 	 * overlap in the given range
820 	 */
821 	if (in_kernel ^ in_movable)
822 		return (in_kernel) ? kernel_zone : movable_zone;
823 
824 	/*
825 	 * If the range doesn't belong to any zone or two zones overlap in the
826 	 * given range then we use movable zone only if movable_node is
827 	 * enabled because we always online to a kernel zone by default.
828 	 */
829 	return movable_node_enabled ? movable_zone : kernel_zone;
830 }
831 
832 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
833 		unsigned long nr_pages)
834 {
835 	if (online_type == MMOP_ONLINE_KERNEL)
836 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
837 
838 	if (online_type == MMOP_ONLINE_MOVABLE)
839 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
840 
841 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
842 }
843 
844 /*
845  * Associates the given pfn range with the given node and the zone appropriate
846  * for the given online type.
847  */
848 static struct zone * __meminit move_pfn_range(int online_type, int nid,
849 		unsigned long start_pfn, unsigned long nr_pages)
850 {
851 	struct zone *zone;
852 
853 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
854 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
855 	return zone;
856 }
857 
858 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
859 {
860 	unsigned long flags;
861 	unsigned long onlined_pages = 0;
862 	struct zone *zone;
863 	int need_zonelists_rebuild = 0;
864 	int nid;
865 	int ret;
866 	struct memory_notify arg;
867 	struct memory_block *mem;
868 
869 	mem_hotplug_begin();
870 
871 	/*
872 	 * We can't use pfn_to_nid() because nid might be stored in struct page
873 	 * which is not yet initialized. Instead, we find nid from memory block.
874 	 */
875 	mem = find_memory_block(__pfn_to_section(pfn));
876 	nid = mem->nid;
877 
878 	/* associate pfn range with the zone */
879 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
880 
881 	arg.start_pfn = pfn;
882 	arg.nr_pages = nr_pages;
883 	node_states_check_changes_online(nr_pages, zone, &arg);
884 
885 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
886 	ret = notifier_to_errno(ret);
887 	if (ret)
888 		goto failed_addition;
889 
890 	/*
891 	 * If this zone is not populated, then it is not in zonelist.
892 	 * This means the page allocator ignores this zone.
893 	 * So, zonelist must be updated after online.
894 	 */
895 	if (!populated_zone(zone)) {
896 		need_zonelists_rebuild = 1;
897 		setup_zone_pageset(zone);
898 	}
899 
900 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
901 		online_pages_range);
902 	if (ret) {
903 		if (need_zonelists_rebuild)
904 			zone_pcp_reset(zone);
905 		goto failed_addition;
906 	}
907 
908 	zone->present_pages += onlined_pages;
909 
910 	pgdat_resize_lock(zone->zone_pgdat, &flags);
911 	zone->zone_pgdat->node_present_pages += onlined_pages;
912 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
913 
914 	if (onlined_pages) {
915 		node_states_set_node(nid, &arg);
916 		if (need_zonelists_rebuild)
917 			build_all_zonelists(NULL);
918 		else
919 			zone_pcp_update(zone);
920 	}
921 
922 	init_per_zone_wmark_min();
923 
924 	if (onlined_pages) {
925 		kswapd_run(nid);
926 		kcompactd_run(nid);
927 	}
928 
929 	vm_total_pages = nr_free_pagecache_pages();
930 
931 	writeback_set_ratelimit();
932 
933 	if (onlined_pages)
934 		memory_notify(MEM_ONLINE, &arg);
935 	mem_hotplug_done();
936 	return 0;
937 
938 failed_addition:
939 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
940 		 (unsigned long long) pfn << PAGE_SHIFT,
941 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
942 	memory_notify(MEM_CANCEL_ONLINE, &arg);
943 	mem_hotplug_done();
944 	return ret;
945 }
946 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
947 
948 static void reset_node_present_pages(pg_data_t *pgdat)
949 {
950 	struct zone *z;
951 
952 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
953 		z->present_pages = 0;
954 
955 	pgdat->node_present_pages = 0;
956 }
957 
958 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
959 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
960 {
961 	struct pglist_data *pgdat;
962 	unsigned long start_pfn = PFN_DOWN(start);
963 
964 	pgdat = NODE_DATA(nid);
965 	if (!pgdat) {
966 		pgdat = arch_alloc_nodedata(nid);
967 		if (!pgdat)
968 			return NULL;
969 
970 		arch_refresh_nodedata(nid, pgdat);
971 	} else {
972 		/*
973 		 * Reset the nr_zones, order and classzone_idx before reuse.
974 		 * Note that kswapd will init kswapd_classzone_idx properly
975 		 * when it starts in the near future.
976 		 */
977 		pgdat->nr_zones = 0;
978 		pgdat->kswapd_order = 0;
979 		pgdat->kswapd_classzone_idx = 0;
980 	}
981 
982 	/* we can use NODE_DATA(nid) from here */
983 
984 	pgdat->node_id = nid;
985 	pgdat->node_start_pfn = start_pfn;
986 
987 	/* init node's zones as empty zones, we don't have any present pages.*/
988 	free_area_init_core_hotplug(nid);
989 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
990 
991 	/*
992 	 * The node we allocated has no zone fallback lists. For avoiding
993 	 * to access not-initialized zonelist, build here.
994 	 */
995 	build_all_zonelists(pgdat);
996 
997 	/*
998 	 * When memory is hot-added, all the memory is in offline state. So
999 	 * clear all zones' present_pages because they will be updated in
1000 	 * online_pages() and offline_pages().
1001 	 */
1002 	reset_node_managed_pages(pgdat);
1003 	reset_node_present_pages(pgdat);
1004 
1005 	return pgdat;
1006 }
1007 
1008 static void rollback_node_hotadd(int nid)
1009 {
1010 	pg_data_t *pgdat = NODE_DATA(nid);
1011 
1012 	arch_refresh_nodedata(nid, NULL);
1013 	free_percpu(pgdat->per_cpu_nodestats);
1014 	arch_free_nodedata(pgdat);
1015 	return;
1016 }
1017 
1018 
1019 /**
1020  * try_online_node - online a node if offlined
1021  * @nid: the node ID
1022  * @start: start addr of the node
1023  * @set_node_online: Whether we want to online the node
1024  * called by cpu_up() to online a node without onlined memory.
1025  *
1026  * Returns:
1027  * 1 -> a new node has been allocated
1028  * 0 -> the node is already online
1029  * -ENOMEM -> the node could not be allocated
1030  */
1031 static int __try_online_node(int nid, u64 start, bool set_node_online)
1032 {
1033 	pg_data_t *pgdat;
1034 	int ret = 1;
1035 
1036 	if (node_online(nid))
1037 		return 0;
1038 
1039 	pgdat = hotadd_new_pgdat(nid, start);
1040 	if (!pgdat) {
1041 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1042 		ret = -ENOMEM;
1043 		goto out;
1044 	}
1045 
1046 	if (set_node_online) {
1047 		node_set_online(nid);
1048 		ret = register_one_node(nid);
1049 		BUG_ON(ret);
1050 	}
1051 out:
1052 	return ret;
1053 }
1054 
1055 /*
1056  * Users of this function always want to online/register the node
1057  */
1058 int try_online_node(int nid)
1059 {
1060 	int ret;
1061 
1062 	mem_hotplug_begin();
1063 	ret =  __try_online_node(nid, 0, true);
1064 	mem_hotplug_done();
1065 	return ret;
1066 }
1067 
1068 static int check_hotplug_memory_range(u64 start, u64 size)
1069 {
1070 	unsigned long block_sz = memory_block_size_bytes();
1071 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1072 	u64 nr_pages = size >> PAGE_SHIFT;
1073 	u64 start_pfn = PFN_DOWN(start);
1074 
1075 	/* memory range must be block size aligned */
1076 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1077 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1078 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1079 		       block_sz, start, size);
1080 		return -EINVAL;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static int online_memory_block(struct memory_block *mem, void *arg)
1087 {
1088 	return device_online(&mem->dev);
1089 }
1090 
1091 /*
1092  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1093  * and online/offline operations (triggered e.g. by sysfs).
1094  *
1095  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1096  */
1097 int __ref add_memory_resource(int nid, struct resource *res)
1098 {
1099 	u64 start, size;
1100 	bool new_node = false;
1101 	int ret;
1102 
1103 	start = res->start;
1104 	size = resource_size(res);
1105 
1106 	ret = check_hotplug_memory_range(start, size);
1107 	if (ret)
1108 		return ret;
1109 
1110 	mem_hotplug_begin();
1111 
1112 	/*
1113 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1114 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1115 	 * this new range and calculate total pages correctly.  The range will
1116 	 * be removed at hot-remove time.
1117 	 */
1118 	memblock_add_node(start, size, nid);
1119 
1120 	ret = __try_online_node(nid, start, false);
1121 	if (ret < 0)
1122 		goto error;
1123 	new_node = ret;
1124 
1125 	/* call arch's memory hotadd */
1126 	ret = arch_add_memory(nid, start, size, NULL, true);
1127 	if (ret < 0)
1128 		goto error;
1129 
1130 	if (new_node) {
1131 		/* If sysfs file of new node can't be created, cpu on the node
1132 		 * can't be hot-added. There is no rollback way now.
1133 		 * So, check by BUG_ON() to catch it reluctantly..
1134 		 * We online node here. We can't roll back from here.
1135 		 */
1136 		node_set_online(nid);
1137 		ret = __register_one_node(nid);
1138 		BUG_ON(ret);
1139 	}
1140 
1141 	/* link memory sections under this node.*/
1142 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1143 	BUG_ON(ret);
1144 
1145 	/* create new memmap entry */
1146 	firmware_map_add_hotplug(start, start + size, "System RAM");
1147 
1148 	/* device_online() will take the lock when calling online_pages() */
1149 	mem_hotplug_done();
1150 
1151 	/* online pages if requested */
1152 	if (memhp_auto_online)
1153 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1154 				  NULL, online_memory_block);
1155 
1156 	return ret;
1157 error:
1158 	/* rollback pgdat allocation and others */
1159 	if (new_node)
1160 		rollback_node_hotadd(nid);
1161 	memblock_remove(start, size);
1162 	mem_hotplug_done();
1163 	return ret;
1164 }
1165 
1166 /* requires device_hotplug_lock, see add_memory_resource() */
1167 int __ref __add_memory(int nid, u64 start, u64 size)
1168 {
1169 	struct resource *res;
1170 	int ret;
1171 
1172 	res = register_memory_resource(start, size);
1173 	if (IS_ERR(res))
1174 		return PTR_ERR(res);
1175 
1176 	ret = add_memory_resource(nid, res);
1177 	if (ret < 0)
1178 		release_memory_resource(res);
1179 	return ret;
1180 }
1181 
1182 int add_memory(int nid, u64 start, u64 size)
1183 {
1184 	int rc;
1185 
1186 	lock_device_hotplug();
1187 	rc = __add_memory(nid, start, size);
1188 	unlock_device_hotplug();
1189 
1190 	return rc;
1191 }
1192 EXPORT_SYMBOL_GPL(add_memory);
1193 
1194 #ifdef CONFIG_MEMORY_HOTREMOVE
1195 /*
1196  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1197  * set and the size of the free page is given by page_order(). Using this,
1198  * the function determines if the pageblock contains only free pages.
1199  * Due to buddy contraints, a free page at least the size of a pageblock will
1200  * be located at the start of the pageblock
1201  */
1202 static inline int pageblock_free(struct page *page)
1203 {
1204 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1205 }
1206 
1207 /* Return the pfn of the start of the next active pageblock after a given pfn */
1208 static unsigned long next_active_pageblock(unsigned long pfn)
1209 {
1210 	struct page *page = pfn_to_page(pfn);
1211 
1212 	/* Ensure the starting page is pageblock-aligned */
1213 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1214 
1215 	/* If the entire pageblock is free, move to the end of free page */
1216 	if (pageblock_free(page)) {
1217 		int order;
1218 		/* be careful. we don't have locks, page_order can be changed.*/
1219 		order = page_order(page);
1220 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1221 			return pfn + (1 << order);
1222 	}
1223 
1224 	return pfn + pageblock_nr_pages;
1225 }
1226 
1227 static bool is_pageblock_removable_nolock(unsigned long pfn)
1228 {
1229 	struct page *page = pfn_to_page(pfn);
1230 	struct zone *zone;
1231 
1232 	/*
1233 	 * We have to be careful here because we are iterating over memory
1234 	 * sections which are not zone aware so we might end up outside of
1235 	 * the zone but still within the section.
1236 	 * We have to take care about the node as well. If the node is offline
1237 	 * its NODE_DATA will be NULL - see page_zone.
1238 	 */
1239 	if (!node_online(page_to_nid(page)))
1240 		return false;
1241 
1242 	zone = page_zone(page);
1243 	pfn = page_to_pfn(page);
1244 	if (!zone_spans_pfn(zone, pfn))
1245 		return false;
1246 
1247 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1248 }
1249 
1250 /* Checks if this range of memory is likely to be hot-removable. */
1251 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1252 {
1253 	unsigned long end_pfn, pfn;
1254 
1255 	end_pfn = min(start_pfn + nr_pages,
1256 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1257 
1258 	/* Check the starting page of each pageblock within the range */
1259 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1260 		if (!is_pageblock_removable_nolock(pfn))
1261 			return false;
1262 		cond_resched();
1263 	}
1264 
1265 	/* All pageblocks in the memory block are likely to be hot-removable */
1266 	return true;
1267 }
1268 
1269 /*
1270  * Confirm all pages in a range [start, end) belong to the same zone.
1271  * When true, return its valid [start, end).
1272  */
1273 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1274 			 unsigned long *valid_start, unsigned long *valid_end)
1275 {
1276 	unsigned long pfn, sec_end_pfn;
1277 	unsigned long start, end;
1278 	struct zone *zone = NULL;
1279 	struct page *page;
1280 	int i;
1281 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1282 	     pfn < end_pfn;
1283 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1284 		/* Make sure the memory section is present first */
1285 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1286 			continue;
1287 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1288 		     pfn += MAX_ORDER_NR_PAGES) {
1289 			i = 0;
1290 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1291 			while ((i < MAX_ORDER_NR_PAGES) &&
1292 				!pfn_valid_within(pfn + i))
1293 				i++;
1294 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1295 				continue;
1296 			/* Check if we got outside of the zone */
1297 			if (zone && !zone_spans_pfn(zone, pfn + i))
1298 				return 0;
1299 			page = pfn_to_page(pfn + i);
1300 			if (zone && page_zone(page) != zone)
1301 				return 0;
1302 			if (!zone)
1303 				start = pfn + i;
1304 			zone = page_zone(page);
1305 			end = pfn + MAX_ORDER_NR_PAGES;
1306 		}
1307 	}
1308 
1309 	if (zone) {
1310 		*valid_start = start;
1311 		*valid_end = min(end, end_pfn);
1312 		return 1;
1313 	} else {
1314 		return 0;
1315 	}
1316 }
1317 
1318 /*
1319  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1320  * non-lru movable pages and hugepages). We scan pfn because it's much
1321  * easier than scanning over linked list. This function returns the pfn
1322  * of the first found movable page if it's found, otherwise 0.
1323  */
1324 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1325 {
1326 	unsigned long pfn;
1327 
1328 	for (pfn = start; pfn < end; pfn++) {
1329 		struct page *page, *head;
1330 		unsigned long skip;
1331 
1332 		if (!pfn_valid(pfn))
1333 			continue;
1334 		page = pfn_to_page(pfn);
1335 		if (PageLRU(page))
1336 			return pfn;
1337 		if (__PageMovable(page))
1338 			return pfn;
1339 
1340 		if (!PageHuge(page))
1341 			continue;
1342 		head = compound_head(page);
1343 		if (hugepage_migration_supported(page_hstate(head)) &&
1344 		    page_huge_active(head))
1345 			return pfn;
1346 		skip = (1 << compound_order(head)) - (page - head);
1347 		pfn += skip - 1;
1348 	}
1349 	return 0;
1350 }
1351 
1352 static struct page *new_node_page(struct page *page, unsigned long private)
1353 {
1354 	int nid = page_to_nid(page);
1355 	nodemask_t nmask = node_states[N_MEMORY];
1356 
1357 	/*
1358 	 * try to allocate from a different node but reuse this node if there
1359 	 * are no other online nodes to be used (e.g. we are offlining a part
1360 	 * of the only existing node)
1361 	 */
1362 	node_clear(nid, nmask);
1363 	if (nodes_empty(nmask))
1364 		node_set(nid, nmask);
1365 
1366 	return new_page_nodemask(page, nid, &nmask);
1367 }
1368 
1369 static int
1370 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1371 {
1372 	unsigned long pfn;
1373 	struct page *page;
1374 	int ret = 0;
1375 	LIST_HEAD(source);
1376 
1377 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1378 		if (!pfn_valid(pfn))
1379 			continue;
1380 		page = pfn_to_page(pfn);
1381 
1382 		if (PageHuge(page)) {
1383 			struct page *head = compound_head(page);
1384 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1385 				ret = -EBUSY;
1386 				break;
1387 			}
1388 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1389 			isolate_huge_page(head, &source);
1390 			continue;
1391 		} else if (PageTransHuge(page))
1392 			pfn = page_to_pfn(compound_head(page))
1393 				+ hpage_nr_pages(page) - 1;
1394 
1395 		/*
1396 		 * HWPoison pages have elevated reference counts so the migration would
1397 		 * fail on them. It also doesn't make any sense to migrate them in the
1398 		 * first place. Still try to unmap such a page in case it is still mapped
1399 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1400 		 * the unmap as the catch all safety net).
1401 		 */
1402 		if (PageHWPoison(page)) {
1403 			if (WARN_ON(PageLRU(page)))
1404 				isolate_lru_page(page);
1405 			if (page_mapped(page))
1406 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1407 			continue;
1408 		}
1409 
1410 		if (!get_page_unless_zero(page))
1411 			continue;
1412 		/*
1413 		 * We can skip free pages. And we can deal with pages on
1414 		 * LRU and non-lru movable pages.
1415 		 */
1416 		if (PageLRU(page))
1417 			ret = isolate_lru_page(page);
1418 		else
1419 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1420 		if (!ret) { /* Success */
1421 			list_add_tail(&page->lru, &source);
1422 			if (!__PageMovable(page))
1423 				inc_node_page_state(page, NR_ISOLATED_ANON +
1424 						    page_is_file_cache(page));
1425 
1426 		} else {
1427 			pr_warn("failed to isolate pfn %lx\n", pfn);
1428 			dump_page(page, "isolation failed");
1429 		}
1430 		put_page(page);
1431 	}
1432 	if (!list_empty(&source)) {
1433 		/* Allocate a new page from the nearest neighbor node */
1434 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1435 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1436 		if (ret) {
1437 			list_for_each_entry(page, &source, lru) {
1438 				pr_warn("migrating pfn %lx failed ret:%d ",
1439 				       page_to_pfn(page), ret);
1440 				dump_page(page, "migration failure");
1441 			}
1442 			putback_movable_pages(&source);
1443 		}
1444 	}
1445 
1446 	return ret;
1447 }
1448 
1449 /*
1450  * remove from free_area[] and mark all as Reserved.
1451  */
1452 static int
1453 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1454 			void *data)
1455 {
1456 	__offline_isolated_pages(start, start + nr_pages);
1457 	return 0;
1458 }
1459 
1460 static void
1461 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1462 {
1463 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1464 				offline_isolated_pages_cb);
1465 }
1466 
1467 /*
1468  * Check all pages in range, recoreded as memory resource, are isolated.
1469  */
1470 static int
1471 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1472 			void *data)
1473 {
1474 	int ret;
1475 	long offlined = *(long *)data;
1476 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1477 	offlined = nr_pages;
1478 	if (!ret)
1479 		*(long *)data += offlined;
1480 	return ret;
1481 }
1482 
1483 static long
1484 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1485 {
1486 	long offlined = 0;
1487 	int ret;
1488 
1489 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1490 			check_pages_isolated_cb);
1491 	if (ret < 0)
1492 		offlined = (long)ret;
1493 	return offlined;
1494 }
1495 
1496 static int __init cmdline_parse_movable_node(char *p)
1497 {
1498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1499 	movable_node_enabled = true;
1500 #else
1501 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1502 #endif
1503 	return 0;
1504 }
1505 early_param("movable_node", cmdline_parse_movable_node);
1506 
1507 /* check which state of node_states will be changed when offline memory */
1508 static void node_states_check_changes_offline(unsigned long nr_pages,
1509 		struct zone *zone, struct memory_notify *arg)
1510 {
1511 	struct pglist_data *pgdat = zone->zone_pgdat;
1512 	unsigned long present_pages = 0;
1513 	enum zone_type zt;
1514 
1515 	arg->status_change_nid = NUMA_NO_NODE;
1516 	arg->status_change_nid_normal = NUMA_NO_NODE;
1517 	arg->status_change_nid_high = NUMA_NO_NODE;
1518 
1519 	/*
1520 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1521 	 * If the memory to be offline is within the range
1522 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1523 	 * the zones in that range will become empty after the offlining,
1524 	 * thus we can determine that we need to clear the node from
1525 	 * node_states[N_NORMAL_MEMORY].
1526 	 */
1527 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1528 		present_pages += pgdat->node_zones[zt].present_pages;
1529 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1530 		arg->status_change_nid_normal = zone_to_nid(zone);
1531 
1532 #ifdef CONFIG_HIGHMEM
1533 	/*
1534 	 * node_states[N_HIGH_MEMORY] contains nodes which
1535 	 * have normal memory or high memory.
1536 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1537 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1538 	 * we determine that the zones in that range become empty,
1539 	 * we need to clear the node for N_HIGH_MEMORY.
1540 	 */
1541 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1542 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1543 		arg->status_change_nid_high = zone_to_nid(zone);
1544 #endif
1545 
1546 	/*
1547 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1548 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1549 	 * as well.
1550 	 * Here we count the possible pages from ZONE_MOVABLE.
1551 	 * If after having accounted all the pages, we see that the nr_pages
1552 	 * to be offlined is over or equal to the accounted pages,
1553 	 * we know that the node will become empty, and so, we can clear
1554 	 * it for N_MEMORY as well.
1555 	 */
1556 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1557 
1558 	if (nr_pages >= present_pages)
1559 		arg->status_change_nid = zone_to_nid(zone);
1560 }
1561 
1562 static void node_states_clear_node(int node, struct memory_notify *arg)
1563 {
1564 	if (arg->status_change_nid_normal >= 0)
1565 		node_clear_state(node, N_NORMAL_MEMORY);
1566 
1567 	if (arg->status_change_nid_high >= 0)
1568 		node_clear_state(node, N_HIGH_MEMORY);
1569 
1570 	if (arg->status_change_nid >= 0)
1571 		node_clear_state(node, N_MEMORY);
1572 }
1573 
1574 static int __ref __offline_pages(unsigned long start_pfn,
1575 		  unsigned long end_pfn)
1576 {
1577 	unsigned long pfn, nr_pages;
1578 	long offlined_pages;
1579 	int ret, node, nr_isolate_pageblock;
1580 	unsigned long flags;
1581 	unsigned long valid_start, valid_end;
1582 	struct zone *zone;
1583 	struct memory_notify arg;
1584 	char *reason;
1585 
1586 	mem_hotplug_begin();
1587 
1588 	/* This makes hotplug much easier...and readable.
1589 	   we assume this for now. .*/
1590 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1591 				  &valid_end)) {
1592 		ret = -EINVAL;
1593 		reason = "multizone range";
1594 		goto failed_removal;
1595 	}
1596 
1597 	zone = page_zone(pfn_to_page(valid_start));
1598 	node = zone_to_nid(zone);
1599 	nr_pages = end_pfn - start_pfn;
1600 
1601 	/* set above range as isolated */
1602 	ret = start_isolate_page_range(start_pfn, end_pfn,
1603 				       MIGRATE_MOVABLE,
1604 				       SKIP_HWPOISON | REPORT_FAILURE);
1605 	if (ret < 0) {
1606 		reason = "failure to isolate range";
1607 		goto failed_removal;
1608 	}
1609 	nr_isolate_pageblock = ret;
1610 
1611 	arg.start_pfn = start_pfn;
1612 	arg.nr_pages = nr_pages;
1613 	node_states_check_changes_offline(nr_pages, zone, &arg);
1614 
1615 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1616 	ret = notifier_to_errno(ret);
1617 	if (ret) {
1618 		reason = "notifier failure";
1619 		goto failed_removal_isolated;
1620 	}
1621 
1622 	do {
1623 		for (pfn = start_pfn; pfn;) {
1624 			if (signal_pending(current)) {
1625 				ret = -EINTR;
1626 				reason = "signal backoff";
1627 				goto failed_removal_isolated;
1628 			}
1629 
1630 			cond_resched();
1631 			lru_add_drain_all();
1632 
1633 			pfn = scan_movable_pages(pfn, end_pfn);
1634 			if (pfn) {
1635 				/*
1636 				 * TODO: fatal migration failures should bail
1637 				 * out
1638 				 */
1639 				do_migrate_range(pfn, end_pfn);
1640 			}
1641 		}
1642 
1643 		/*
1644 		 * Dissolve free hugepages in the memory block before doing
1645 		 * offlining actually in order to make hugetlbfs's object
1646 		 * counting consistent.
1647 		 */
1648 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1649 		if (ret) {
1650 			reason = "failure to dissolve huge pages";
1651 			goto failed_removal_isolated;
1652 		}
1653 		/* check again */
1654 		offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1655 	} while (offlined_pages < 0);
1656 
1657 	pr_info("Offlined Pages %ld\n", offlined_pages);
1658 	/* Ok, all of our target is isolated.
1659 	   We cannot do rollback at this point. */
1660 	offline_isolated_pages(start_pfn, end_pfn);
1661 
1662 	/*
1663 	 * Onlining will reset pagetype flags and makes migrate type
1664 	 * MOVABLE, so just need to decrease the number of isolated
1665 	 * pageblocks zone counter here.
1666 	 */
1667 	spin_lock_irqsave(&zone->lock, flags);
1668 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1669 	spin_unlock_irqrestore(&zone->lock, flags);
1670 
1671 	/* removal success */
1672 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1673 	zone->present_pages -= offlined_pages;
1674 
1675 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1676 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1677 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1678 
1679 	init_per_zone_wmark_min();
1680 
1681 	if (!populated_zone(zone)) {
1682 		zone_pcp_reset(zone);
1683 		build_all_zonelists(NULL);
1684 	} else
1685 		zone_pcp_update(zone);
1686 
1687 	node_states_clear_node(node, &arg);
1688 	if (arg.status_change_nid >= 0) {
1689 		kswapd_stop(node);
1690 		kcompactd_stop(node);
1691 	}
1692 
1693 	vm_total_pages = nr_free_pagecache_pages();
1694 	writeback_set_ratelimit();
1695 
1696 	memory_notify(MEM_OFFLINE, &arg);
1697 	mem_hotplug_done();
1698 	return 0;
1699 
1700 failed_removal_isolated:
1701 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1702 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1703 failed_removal:
1704 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1705 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1706 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1707 		 reason);
1708 	/* pushback to free area */
1709 	mem_hotplug_done();
1710 	return ret;
1711 }
1712 
1713 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1714 {
1715 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1716 }
1717 #endif /* CONFIG_MEMORY_HOTREMOVE */
1718 
1719 /**
1720  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1721  * @start_pfn: start pfn of the memory range
1722  * @end_pfn: end pfn of the memory range
1723  * @arg: argument passed to func
1724  * @func: callback for each memory section walked
1725  *
1726  * This function walks through all present mem sections in range
1727  * [start_pfn, end_pfn) and call func on each mem section.
1728  *
1729  * Returns the return value of func.
1730  */
1731 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1732 		void *arg, int (*func)(struct memory_block *, void *))
1733 {
1734 	struct memory_block *mem = NULL;
1735 	struct mem_section *section;
1736 	unsigned long pfn, section_nr;
1737 	int ret;
1738 
1739 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1740 		section_nr = pfn_to_section_nr(pfn);
1741 		if (!present_section_nr(section_nr))
1742 			continue;
1743 
1744 		section = __nr_to_section(section_nr);
1745 		/* same memblock? */
1746 		if (mem)
1747 			if ((section_nr >= mem->start_section_nr) &&
1748 			    (section_nr <= mem->end_section_nr))
1749 				continue;
1750 
1751 		mem = find_memory_block_hinted(section, mem);
1752 		if (!mem)
1753 			continue;
1754 
1755 		ret = func(mem, arg);
1756 		if (ret) {
1757 			kobject_put(&mem->dev.kobj);
1758 			return ret;
1759 		}
1760 	}
1761 
1762 	if (mem)
1763 		kobject_put(&mem->dev.kobj);
1764 
1765 	return 0;
1766 }
1767 
1768 #ifdef CONFIG_MEMORY_HOTREMOVE
1769 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1770 {
1771 	int ret = !is_memblock_offlined(mem);
1772 
1773 	if (unlikely(ret)) {
1774 		phys_addr_t beginpa, endpa;
1775 
1776 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1777 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1778 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1779 			&beginpa, &endpa);
1780 	}
1781 
1782 	return ret;
1783 }
1784 
1785 static int check_cpu_on_node(pg_data_t *pgdat)
1786 {
1787 	int cpu;
1788 
1789 	for_each_present_cpu(cpu) {
1790 		if (cpu_to_node(cpu) == pgdat->node_id)
1791 			/*
1792 			 * the cpu on this node isn't removed, and we can't
1793 			 * offline this node.
1794 			 */
1795 			return -EBUSY;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * try_offline_node
1803  * @nid: the node ID
1804  *
1805  * Offline a node if all memory sections and cpus of the node are removed.
1806  *
1807  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1808  * and online/offline operations before this call.
1809  */
1810 void try_offline_node(int nid)
1811 {
1812 	pg_data_t *pgdat = NODE_DATA(nid);
1813 	unsigned long start_pfn = pgdat->node_start_pfn;
1814 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1815 	unsigned long pfn;
1816 
1817 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1818 		unsigned long section_nr = pfn_to_section_nr(pfn);
1819 
1820 		if (!present_section_nr(section_nr))
1821 			continue;
1822 
1823 		if (pfn_to_nid(pfn) != nid)
1824 			continue;
1825 
1826 		/*
1827 		 * some memory sections of this node are not removed, and we
1828 		 * can't offline node now.
1829 		 */
1830 		return;
1831 	}
1832 
1833 	if (check_cpu_on_node(pgdat))
1834 		return;
1835 
1836 	/*
1837 	 * all memory/cpu of this node are removed, we can offline this
1838 	 * node now.
1839 	 */
1840 	node_set_offline(nid);
1841 	unregister_one_node(nid);
1842 }
1843 EXPORT_SYMBOL(try_offline_node);
1844 
1845 /**
1846  * remove_memory
1847  * @nid: the node ID
1848  * @start: physical address of the region to remove
1849  * @size: size of the region to remove
1850  *
1851  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1852  * and online/offline operations before this call, as required by
1853  * try_offline_node().
1854  */
1855 void __ref __remove_memory(int nid, u64 start, u64 size)
1856 {
1857 	int ret;
1858 
1859 	BUG_ON(check_hotplug_memory_range(start, size));
1860 
1861 	mem_hotplug_begin();
1862 
1863 	/*
1864 	 * All memory blocks must be offlined before removing memory.  Check
1865 	 * whether all memory blocks in question are offline and trigger a BUG()
1866 	 * if this is not the case.
1867 	 */
1868 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1869 				check_memblock_offlined_cb);
1870 	if (ret)
1871 		BUG();
1872 
1873 	/* remove memmap entry */
1874 	firmware_map_remove(start, start + size, "System RAM");
1875 	memblock_free(start, size);
1876 	memblock_remove(start, size);
1877 
1878 	arch_remove_memory(nid, start, size, NULL);
1879 
1880 	try_offline_node(nid);
1881 
1882 	mem_hotplug_done();
1883 }
1884 
1885 void remove_memory(int nid, u64 start, u64 size)
1886 {
1887 	lock_device_hotplug();
1888 	__remove_memory(nid, start, size);
1889 	unlock_device_hotplug();
1890 }
1891 EXPORT_SYMBOL_GPL(remove_memory);
1892 #endif /* CONFIG_MEMORY_HOTREMOVE */
1893