1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/highmem.h> 22 #include <linux/vmalloc.h> 23 #include <linux/ioport.h> 24 #include <linux/delay.h> 25 #include <linux/migrate.h> 26 #include <linux/page-isolation.h> 27 #include <linux/pfn.h> 28 #include <linux/suspend.h> 29 #include <linux/mm_inline.h> 30 #include <linux/firmware-map.h> 31 #include <linux/stop_machine.h> 32 #include <linux/hugetlb.h> 33 #include <linux/memblock.h> 34 #include <linux/bootmem.h> 35 36 #include <asm/tlbflush.h> 37 38 #include "internal.h" 39 40 /* 41 * online_page_callback contains pointer to current page onlining function. 42 * Initially it is generic_online_page(). If it is required it could be 43 * changed by calling set_online_page_callback() for callback registration 44 * and restore_online_page_callback() for generic callback restore. 45 */ 46 47 static void generic_online_page(struct page *page); 48 49 static online_page_callback_t online_page_callback = generic_online_page; 50 static DEFINE_MUTEX(online_page_callback_lock); 51 52 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 53 static struct { 54 struct task_struct *active_writer; 55 struct mutex lock; /* Synchronizes accesses to refcount, */ 56 /* 57 * Also blocks the new readers during 58 * an ongoing mem hotplug operation. 59 */ 60 int refcount; 61 62 #ifdef CONFIG_DEBUG_LOCK_ALLOC 63 struct lockdep_map dep_map; 64 #endif 65 } mem_hotplug = { 66 .active_writer = NULL, 67 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 68 .refcount = 0, 69 #ifdef CONFIG_DEBUG_LOCK_ALLOC 70 .dep_map = {.name = "mem_hotplug.lock" }, 71 #endif 72 }; 73 74 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 75 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 76 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 77 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 78 79 void get_online_mems(void) 80 { 81 might_sleep(); 82 if (mem_hotplug.active_writer == current) 83 return; 84 memhp_lock_acquire_read(); 85 mutex_lock(&mem_hotplug.lock); 86 mem_hotplug.refcount++; 87 mutex_unlock(&mem_hotplug.lock); 88 89 } 90 91 void put_online_mems(void) 92 { 93 if (mem_hotplug.active_writer == current) 94 return; 95 mutex_lock(&mem_hotplug.lock); 96 97 if (WARN_ON(!mem_hotplug.refcount)) 98 mem_hotplug.refcount++; /* try to fix things up */ 99 100 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 101 wake_up_process(mem_hotplug.active_writer); 102 mutex_unlock(&mem_hotplug.lock); 103 memhp_lock_release(); 104 105 } 106 107 void mem_hotplug_begin(void) 108 { 109 mem_hotplug.active_writer = current; 110 111 memhp_lock_acquire(); 112 for (;;) { 113 mutex_lock(&mem_hotplug.lock); 114 if (likely(!mem_hotplug.refcount)) 115 break; 116 __set_current_state(TASK_UNINTERRUPTIBLE); 117 mutex_unlock(&mem_hotplug.lock); 118 schedule(); 119 } 120 } 121 122 void mem_hotplug_done(void) 123 { 124 mem_hotplug.active_writer = NULL; 125 mutex_unlock(&mem_hotplug.lock); 126 memhp_lock_release(); 127 } 128 129 /* add this memory to iomem resource */ 130 static struct resource *register_memory_resource(u64 start, u64 size) 131 { 132 struct resource *res; 133 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 134 BUG_ON(!res); 135 136 res->name = "System RAM"; 137 res->start = start; 138 res->end = start + size - 1; 139 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 140 if (request_resource(&iomem_resource, res) < 0) { 141 pr_debug("System RAM resource %pR cannot be added\n", res); 142 kfree(res); 143 res = NULL; 144 } 145 return res; 146 } 147 148 static void release_memory_resource(struct resource *res) 149 { 150 if (!res) 151 return; 152 release_resource(res); 153 kfree(res); 154 return; 155 } 156 157 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 158 void get_page_bootmem(unsigned long info, struct page *page, 159 unsigned long type) 160 { 161 page->lru.next = (struct list_head *) type; 162 SetPagePrivate(page); 163 set_page_private(page, info); 164 atomic_inc(&page->_count); 165 } 166 167 void put_page_bootmem(struct page *page) 168 { 169 unsigned long type; 170 171 type = (unsigned long) page->lru.next; 172 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 173 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 174 175 if (atomic_dec_return(&page->_count) == 1) { 176 ClearPagePrivate(page); 177 set_page_private(page, 0); 178 INIT_LIST_HEAD(&page->lru); 179 free_reserved_page(page); 180 } 181 } 182 183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 184 #ifndef CONFIG_SPARSEMEM_VMEMMAP 185 static void register_page_bootmem_info_section(unsigned long start_pfn) 186 { 187 unsigned long *usemap, mapsize, section_nr, i; 188 struct mem_section *ms; 189 struct page *page, *memmap; 190 191 section_nr = pfn_to_section_nr(start_pfn); 192 ms = __nr_to_section(section_nr); 193 194 /* Get section's memmap address */ 195 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 196 197 /* 198 * Get page for the memmap's phys address 199 * XXX: need more consideration for sparse_vmemmap... 200 */ 201 page = virt_to_page(memmap); 202 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 203 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 204 205 /* remember memmap's page */ 206 for (i = 0; i < mapsize; i++, page++) 207 get_page_bootmem(section_nr, page, SECTION_INFO); 208 209 usemap = __nr_to_section(section_nr)->pageblock_flags; 210 page = virt_to_page(usemap); 211 212 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 213 214 for (i = 0; i < mapsize; i++, page++) 215 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 216 217 } 218 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 219 static void register_page_bootmem_info_section(unsigned long start_pfn) 220 { 221 unsigned long *usemap, mapsize, section_nr, i; 222 struct mem_section *ms; 223 struct page *page, *memmap; 224 225 if (!pfn_valid(start_pfn)) 226 return; 227 228 section_nr = pfn_to_section_nr(start_pfn); 229 ms = __nr_to_section(section_nr); 230 231 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 232 233 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 234 235 usemap = __nr_to_section(section_nr)->pageblock_flags; 236 page = virt_to_page(usemap); 237 238 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 239 240 for (i = 0; i < mapsize; i++, page++) 241 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 242 } 243 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 244 245 void register_page_bootmem_info_node(struct pglist_data *pgdat) 246 { 247 unsigned long i, pfn, end_pfn, nr_pages; 248 int node = pgdat->node_id; 249 struct page *page; 250 struct zone *zone; 251 252 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 253 page = virt_to_page(pgdat); 254 255 for (i = 0; i < nr_pages; i++, page++) 256 get_page_bootmem(node, page, NODE_INFO); 257 258 zone = &pgdat->node_zones[0]; 259 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { 260 if (zone_is_initialized(zone)) { 261 nr_pages = zone->wait_table_hash_nr_entries 262 * sizeof(wait_queue_head_t); 263 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; 264 page = virt_to_page(zone->wait_table); 265 266 for (i = 0; i < nr_pages; i++, page++) 267 get_page_bootmem(node, page, NODE_INFO); 268 } 269 } 270 271 pfn = pgdat->node_start_pfn; 272 end_pfn = pgdat_end_pfn(pgdat); 273 274 /* register section info */ 275 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 276 /* 277 * Some platforms can assign the same pfn to multiple nodes - on 278 * node0 as well as nodeN. To avoid registering a pfn against 279 * multiple nodes we check that this pfn does not already 280 * reside in some other nodes. 281 */ 282 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) 283 register_page_bootmem_info_section(pfn); 284 } 285 } 286 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 287 288 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 289 unsigned long end_pfn) 290 { 291 unsigned long old_zone_end_pfn; 292 293 zone_span_writelock(zone); 294 295 old_zone_end_pfn = zone_end_pfn(zone); 296 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 297 zone->zone_start_pfn = start_pfn; 298 299 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 300 zone->zone_start_pfn; 301 302 zone_span_writeunlock(zone); 303 } 304 305 static void resize_zone(struct zone *zone, unsigned long start_pfn, 306 unsigned long end_pfn) 307 { 308 zone_span_writelock(zone); 309 310 if (end_pfn - start_pfn) { 311 zone->zone_start_pfn = start_pfn; 312 zone->spanned_pages = end_pfn - start_pfn; 313 } else { 314 /* 315 * make it consist as free_area_init_core(), 316 * if spanned_pages = 0, then keep start_pfn = 0 317 */ 318 zone->zone_start_pfn = 0; 319 zone->spanned_pages = 0; 320 } 321 322 zone_span_writeunlock(zone); 323 } 324 325 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 326 unsigned long end_pfn) 327 { 328 enum zone_type zid = zone_idx(zone); 329 int nid = zone->zone_pgdat->node_id; 330 unsigned long pfn; 331 332 for (pfn = start_pfn; pfn < end_pfn; pfn++) 333 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 334 } 335 336 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 337 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 338 static int __ref ensure_zone_is_initialized(struct zone *zone, 339 unsigned long start_pfn, unsigned long num_pages) 340 { 341 if (!zone_is_initialized(zone)) 342 return init_currently_empty_zone(zone, start_pfn, num_pages, 343 MEMMAP_HOTPLUG); 344 return 0; 345 } 346 347 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 348 unsigned long start_pfn, unsigned long end_pfn) 349 { 350 int ret; 351 unsigned long flags; 352 unsigned long z1_start_pfn; 353 354 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 355 if (ret) 356 return ret; 357 358 pgdat_resize_lock(z1->zone_pgdat, &flags); 359 360 /* can't move pfns which are higher than @z2 */ 361 if (end_pfn > zone_end_pfn(z2)) 362 goto out_fail; 363 /* the move out part must be at the left most of @z2 */ 364 if (start_pfn > z2->zone_start_pfn) 365 goto out_fail; 366 /* must included/overlap */ 367 if (end_pfn <= z2->zone_start_pfn) 368 goto out_fail; 369 370 /* use start_pfn for z1's start_pfn if z1 is empty */ 371 if (!zone_is_empty(z1)) 372 z1_start_pfn = z1->zone_start_pfn; 373 else 374 z1_start_pfn = start_pfn; 375 376 resize_zone(z1, z1_start_pfn, end_pfn); 377 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 378 379 pgdat_resize_unlock(z1->zone_pgdat, &flags); 380 381 fix_zone_id(z1, start_pfn, end_pfn); 382 383 return 0; 384 out_fail: 385 pgdat_resize_unlock(z1->zone_pgdat, &flags); 386 return -1; 387 } 388 389 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 390 unsigned long start_pfn, unsigned long end_pfn) 391 { 392 int ret; 393 unsigned long flags; 394 unsigned long z2_end_pfn; 395 396 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 397 if (ret) 398 return ret; 399 400 pgdat_resize_lock(z1->zone_pgdat, &flags); 401 402 /* can't move pfns which are lower than @z1 */ 403 if (z1->zone_start_pfn > start_pfn) 404 goto out_fail; 405 /* the move out part mast at the right most of @z1 */ 406 if (zone_end_pfn(z1) > end_pfn) 407 goto out_fail; 408 /* must included/overlap */ 409 if (start_pfn >= zone_end_pfn(z1)) 410 goto out_fail; 411 412 /* use end_pfn for z2's end_pfn if z2 is empty */ 413 if (!zone_is_empty(z2)) 414 z2_end_pfn = zone_end_pfn(z2); 415 else 416 z2_end_pfn = end_pfn; 417 418 resize_zone(z1, z1->zone_start_pfn, start_pfn); 419 resize_zone(z2, start_pfn, z2_end_pfn); 420 421 pgdat_resize_unlock(z1->zone_pgdat, &flags); 422 423 fix_zone_id(z2, start_pfn, end_pfn); 424 425 return 0; 426 out_fail: 427 pgdat_resize_unlock(z1->zone_pgdat, &flags); 428 return -1; 429 } 430 431 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 432 unsigned long end_pfn) 433 { 434 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 435 436 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 437 pgdat->node_start_pfn = start_pfn; 438 439 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 440 pgdat->node_start_pfn; 441 } 442 443 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 444 { 445 struct pglist_data *pgdat = zone->zone_pgdat; 446 int nr_pages = PAGES_PER_SECTION; 447 int nid = pgdat->node_id; 448 int zone_type; 449 unsigned long flags, pfn; 450 int ret; 451 452 zone_type = zone - pgdat->node_zones; 453 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 454 if (ret) 455 return ret; 456 457 pgdat_resize_lock(zone->zone_pgdat, &flags); 458 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 459 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 460 phys_start_pfn + nr_pages); 461 pgdat_resize_unlock(zone->zone_pgdat, &flags); 462 memmap_init_zone(nr_pages, nid, zone_type, 463 phys_start_pfn, MEMMAP_HOTPLUG); 464 465 /* online_page_range is called later and expects pages reserved */ 466 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 467 if (!pfn_valid(pfn)) 468 continue; 469 470 SetPageReserved(pfn_to_page(pfn)); 471 } 472 return 0; 473 } 474 475 static int __meminit __add_section(int nid, struct zone *zone, 476 unsigned long phys_start_pfn) 477 { 478 int ret; 479 480 if (pfn_valid(phys_start_pfn)) 481 return -EEXIST; 482 483 ret = sparse_add_one_section(zone, phys_start_pfn); 484 485 if (ret < 0) 486 return ret; 487 488 ret = __add_zone(zone, phys_start_pfn); 489 490 if (ret < 0) 491 return ret; 492 493 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 494 } 495 496 /* 497 * Reasonably generic function for adding memory. It is 498 * expected that archs that support memory hotplug will 499 * call this function after deciding the zone to which to 500 * add the new pages. 501 */ 502 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 503 unsigned long nr_pages) 504 { 505 unsigned long i; 506 int err = 0; 507 int start_sec, end_sec; 508 /* during initialize mem_map, align hot-added range to section */ 509 start_sec = pfn_to_section_nr(phys_start_pfn); 510 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 511 512 for (i = start_sec; i <= end_sec; i++) { 513 err = __add_section(nid, zone, section_nr_to_pfn(i)); 514 515 /* 516 * EEXIST is finally dealt with by ioresource collision 517 * check. see add_memory() => register_memory_resource() 518 * Warning will be printed if there is collision. 519 */ 520 if (err && (err != -EEXIST)) 521 break; 522 err = 0; 523 } 524 vmemmap_populate_print_last(); 525 526 return err; 527 } 528 EXPORT_SYMBOL_GPL(__add_pages); 529 530 #ifdef CONFIG_MEMORY_HOTREMOVE 531 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 532 static int find_smallest_section_pfn(int nid, struct zone *zone, 533 unsigned long start_pfn, 534 unsigned long end_pfn) 535 { 536 struct mem_section *ms; 537 538 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 539 ms = __pfn_to_section(start_pfn); 540 541 if (unlikely(!valid_section(ms))) 542 continue; 543 544 if (unlikely(pfn_to_nid(start_pfn) != nid)) 545 continue; 546 547 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 548 continue; 549 550 return start_pfn; 551 } 552 553 return 0; 554 } 555 556 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 557 static int find_biggest_section_pfn(int nid, struct zone *zone, 558 unsigned long start_pfn, 559 unsigned long end_pfn) 560 { 561 struct mem_section *ms; 562 unsigned long pfn; 563 564 /* pfn is the end pfn of a memory section. */ 565 pfn = end_pfn - 1; 566 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 567 ms = __pfn_to_section(pfn); 568 569 if (unlikely(!valid_section(ms))) 570 continue; 571 572 if (unlikely(pfn_to_nid(pfn) != nid)) 573 continue; 574 575 if (zone && zone != page_zone(pfn_to_page(pfn))) 576 continue; 577 578 return pfn; 579 } 580 581 return 0; 582 } 583 584 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 585 unsigned long end_pfn) 586 { 587 unsigned long zone_start_pfn = zone->zone_start_pfn; 588 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 589 unsigned long zone_end_pfn = z; 590 unsigned long pfn; 591 struct mem_section *ms; 592 int nid = zone_to_nid(zone); 593 594 zone_span_writelock(zone); 595 if (zone_start_pfn == start_pfn) { 596 /* 597 * If the section is smallest section in the zone, it need 598 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 599 * In this case, we find second smallest valid mem_section 600 * for shrinking zone. 601 */ 602 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 603 zone_end_pfn); 604 if (pfn) { 605 zone->zone_start_pfn = pfn; 606 zone->spanned_pages = zone_end_pfn - pfn; 607 } 608 } else if (zone_end_pfn == end_pfn) { 609 /* 610 * If the section is biggest section in the zone, it need 611 * shrink zone->spanned_pages. 612 * In this case, we find second biggest valid mem_section for 613 * shrinking zone. 614 */ 615 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 616 start_pfn); 617 if (pfn) 618 zone->spanned_pages = pfn - zone_start_pfn + 1; 619 } 620 621 /* 622 * The section is not biggest or smallest mem_section in the zone, it 623 * only creates a hole in the zone. So in this case, we need not 624 * change the zone. But perhaps, the zone has only hole data. Thus 625 * it check the zone has only hole or not. 626 */ 627 pfn = zone_start_pfn; 628 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 629 ms = __pfn_to_section(pfn); 630 631 if (unlikely(!valid_section(ms))) 632 continue; 633 634 if (page_zone(pfn_to_page(pfn)) != zone) 635 continue; 636 637 /* If the section is current section, it continues the loop */ 638 if (start_pfn == pfn) 639 continue; 640 641 /* If we find valid section, we have nothing to do */ 642 zone_span_writeunlock(zone); 643 return; 644 } 645 646 /* The zone has no valid section */ 647 zone->zone_start_pfn = 0; 648 zone->spanned_pages = 0; 649 zone_span_writeunlock(zone); 650 } 651 652 static void shrink_pgdat_span(struct pglist_data *pgdat, 653 unsigned long start_pfn, unsigned long end_pfn) 654 { 655 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 656 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 657 unsigned long pgdat_end_pfn = p; 658 unsigned long pfn; 659 struct mem_section *ms; 660 int nid = pgdat->node_id; 661 662 if (pgdat_start_pfn == start_pfn) { 663 /* 664 * If the section is smallest section in the pgdat, it need 665 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 666 * In this case, we find second smallest valid mem_section 667 * for shrinking zone. 668 */ 669 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 670 pgdat_end_pfn); 671 if (pfn) { 672 pgdat->node_start_pfn = pfn; 673 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 674 } 675 } else if (pgdat_end_pfn == end_pfn) { 676 /* 677 * If the section is biggest section in the pgdat, it need 678 * shrink pgdat->node_spanned_pages. 679 * In this case, we find second biggest valid mem_section for 680 * shrinking zone. 681 */ 682 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 683 start_pfn); 684 if (pfn) 685 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 686 } 687 688 /* 689 * If the section is not biggest or smallest mem_section in the pgdat, 690 * it only creates a hole in the pgdat. So in this case, we need not 691 * change the pgdat. 692 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 693 * has only hole or not. 694 */ 695 pfn = pgdat_start_pfn; 696 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 697 ms = __pfn_to_section(pfn); 698 699 if (unlikely(!valid_section(ms))) 700 continue; 701 702 if (pfn_to_nid(pfn) != nid) 703 continue; 704 705 /* If the section is current section, it continues the loop */ 706 if (start_pfn == pfn) 707 continue; 708 709 /* If we find valid section, we have nothing to do */ 710 return; 711 } 712 713 /* The pgdat has no valid section */ 714 pgdat->node_start_pfn = 0; 715 pgdat->node_spanned_pages = 0; 716 } 717 718 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 719 { 720 struct pglist_data *pgdat = zone->zone_pgdat; 721 int nr_pages = PAGES_PER_SECTION; 722 int zone_type; 723 unsigned long flags; 724 725 zone_type = zone - pgdat->node_zones; 726 727 pgdat_resize_lock(zone->zone_pgdat, &flags); 728 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 729 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 730 pgdat_resize_unlock(zone->zone_pgdat, &flags); 731 } 732 733 static int __remove_section(struct zone *zone, struct mem_section *ms) 734 { 735 unsigned long start_pfn; 736 int scn_nr; 737 int ret = -EINVAL; 738 739 if (!valid_section(ms)) 740 return ret; 741 742 ret = unregister_memory_section(ms); 743 if (ret) 744 return ret; 745 746 scn_nr = __section_nr(ms); 747 start_pfn = section_nr_to_pfn(scn_nr); 748 __remove_zone(zone, start_pfn); 749 750 sparse_remove_one_section(zone, ms); 751 return 0; 752 } 753 754 /** 755 * __remove_pages() - remove sections of pages from a zone 756 * @zone: zone from which pages need to be removed 757 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 758 * @nr_pages: number of pages to remove (must be multiple of section size) 759 * 760 * Generic helper function to remove section mappings and sysfs entries 761 * for the section of the memory we are removing. Caller needs to make 762 * sure that pages are marked reserved and zones are adjust properly by 763 * calling offline_pages(). 764 */ 765 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 766 unsigned long nr_pages) 767 { 768 unsigned long i; 769 int sections_to_remove; 770 resource_size_t start, size; 771 int ret = 0; 772 773 /* 774 * We can only remove entire sections 775 */ 776 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 777 BUG_ON(nr_pages % PAGES_PER_SECTION); 778 779 start = phys_start_pfn << PAGE_SHIFT; 780 size = nr_pages * PAGE_SIZE; 781 ret = release_mem_region_adjustable(&iomem_resource, start, size); 782 if (ret) { 783 resource_size_t endres = start + size - 1; 784 785 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 786 &start, &endres, ret); 787 } 788 789 sections_to_remove = nr_pages / PAGES_PER_SECTION; 790 for (i = 0; i < sections_to_remove; i++) { 791 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 792 ret = __remove_section(zone, __pfn_to_section(pfn)); 793 if (ret) 794 break; 795 } 796 return ret; 797 } 798 EXPORT_SYMBOL_GPL(__remove_pages); 799 #endif /* CONFIG_MEMORY_HOTREMOVE */ 800 801 int set_online_page_callback(online_page_callback_t callback) 802 { 803 int rc = -EINVAL; 804 805 get_online_mems(); 806 mutex_lock(&online_page_callback_lock); 807 808 if (online_page_callback == generic_online_page) { 809 online_page_callback = callback; 810 rc = 0; 811 } 812 813 mutex_unlock(&online_page_callback_lock); 814 put_online_mems(); 815 816 return rc; 817 } 818 EXPORT_SYMBOL_GPL(set_online_page_callback); 819 820 int restore_online_page_callback(online_page_callback_t callback) 821 { 822 int rc = -EINVAL; 823 824 get_online_mems(); 825 mutex_lock(&online_page_callback_lock); 826 827 if (online_page_callback == callback) { 828 online_page_callback = generic_online_page; 829 rc = 0; 830 } 831 832 mutex_unlock(&online_page_callback_lock); 833 put_online_mems(); 834 835 return rc; 836 } 837 EXPORT_SYMBOL_GPL(restore_online_page_callback); 838 839 void __online_page_set_limits(struct page *page) 840 { 841 } 842 EXPORT_SYMBOL_GPL(__online_page_set_limits); 843 844 void __online_page_increment_counters(struct page *page) 845 { 846 adjust_managed_page_count(page, 1); 847 } 848 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 849 850 void __online_page_free(struct page *page) 851 { 852 __free_reserved_page(page); 853 } 854 EXPORT_SYMBOL_GPL(__online_page_free); 855 856 static void generic_online_page(struct page *page) 857 { 858 __online_page_set_limits(page); 859 __online_page_increment_counters(page); 860 __online_page_free(page); 861 } 862 863 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 864 void *arg) 865 { 866 unsigned long i; 867 unsigned long onlined_pages = *(unsigned long *)arg; 868 struct page *page; 869 if (PageReserved(pfn_to_page(start_pfn))) 870 for (i = 0; i < nr_pages; i++) { 871 page = pfn_to_page(start_pfn + i); 872 (*online_page_callback)(page); 873 onlined_pages++; 874 } 875 *(unsigned long *)arg = onlined_pages; 876 return 0; 877 } 878 879 #ifdef CONFIG_MOVABLE_NODE 880 /* 881 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 882 * normal memory. 883 */ 884 static bool can_online_high_movable(struct zone *zone) 885 { 886 return true; 887 } 888 #else /* CONFIG_MOVABLE_NODE */ 889 /* ensure every online node has NORMAL memory */ 890 static bool can_online_high_movable(struct zone *zone) 891 { 892 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 893 } 894 #endif /* CONFIG_MOVABLE_NODE */ 895 896 /* check which state of node_states will be changed when online memory */ 897 static void node_states_check_changes_online(unsigned long nr_pages, 898 struct zone *zone, struct memory_notify *arg) 899 { 900 int nid = zone_to_nid(zone); 901 enum zone_type zone_last = ZONE_NORMAL; 902 903 /* 904 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 905 * contains nodes which have zones of 0...ZONE_NORMAL, 906 * set zone_last to ZONE_NORMAL. 907 * 908 * If we don't have HIGHMEM nor movable node, 909 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 910 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 911 */ 912 if (N_MEMORY == N_NORMAL_MEMORY) 913 zone_last = ZONE_MOVABLE; 914 915 /* 916 * if the memory to be online is in a zone of 0...zone_last, and 917 * the zones of 0...zone_last don't have memory before online, we will 918 * need to set the node to node_states[N_NORMAL_MEMORY] after 919 * the memory is online. 920 */ 921 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 922 arg->status_change_nid_normal = nid; 923 else 924 arg->status_change_nid_normal = -1; 925 926 #ifdef CONFIG_HIGHMEM 927 /* 928 * If we have movable node, node_states[N_HIGH_MEMORY] 929 * contains nodes which have zones of 0...ZONE_HIGHMEM, 930 * set zone_last to ZONE_HIGHMEM. 931 * 932 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 933 * contains nodes which have zones of 0...ZONE_MOVABLE, 934 * set zone_last to ZONE_MOVABLE. 935 */ 936 zone_last = ZONE_HIGHMEM; 937 if (N_MEMORY == N_HIGH_MEMORY) 938 zone_last = ZONE_MOVABLE; 939 940 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 941 arg->status_change_nid_high = nid; 942 else 943 arg->status_change_nid_high = -1; 944 #else 945 arg->status_change_nid_high = arg->status_change_nid_normal; 946 #endif 947 948 /* 949 * if the node don't have memory befor online, we will need to 950 * set the node to node_states[N_MEMORY] after the memory 951 * is online. 952 */ 953 if (!node_state(nid, N_MEMORY)) 954 arg->status_change_nid = nid; 955 else 956 arg->status_change_nid = -1; 957 } 958 959 static void node_states_set_node(int node, struct memory_notify *arg) 960 { 961 if (arg->status_change_nid_normal >= 0) 962 node_set_state(node, N_NORMAL_MEMORY); 963 964 if (arg->status_change_nid_high >= 0) 965 node_set_state(node, N_HIGH_MEMORY); 966 967 node_set_state(node, N_MEMORY); 968 } 969 970 971 /* Must be protected by mem_hotplug_begin() */ 972 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 973 { 974 unsigned long flags; 975 unsigned long onlined_pages = 0; 976 struct zone *zone; 977 int need_zonelists_rebuild = 0; 978 int nid; 979 int ret; 980 struct memory_notify arg; 981 982 /* 983 * This doesn't need a lock to do pfn_to_page(). 984 * The section can't be removed here because of the 985 * memory_block->state_mutex. 986 */ 987 zone = page_zone(pfn_to_page(pfn)); 988 989 if ((zone_idx(zone) > ZONE_NORMAL || 990 online_type == MMOP_ONLINE_MOVABLE) && 991 !can_online_high_movable(zone)) 992 return -EINVAL; 993 994 if (online_type == MMOP_ONLINE_KERNEL && 995 zone_idx(zone) == ZONE_MOVABLE) { 996 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) 997 return -EINVAL; 998 } 999 if (online_type == MMOP_ONLINE_MOVABLE && 1000 zone_idx(zone) == ZONE_MOVABLE - 1) { 1001 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) 1002 return -EINVAL; 1003 } 1004 1005 /* Previous code may changed the zone of the pfn range */ 1006 zone = page_zone(pfn_to_page(pfn)); 1007 1008 arg.start_pfn = pfn; 1009 arg.nr_pages = nr_pages; 1010 node_states_check_changes_online(nr_pages, zone, &arg); 1011 1012 nid = pfn_to_nid(pfn); 1013 1014 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1015 ret = notifier_to_errno(ret); 1016 if (ret) { 1017 memory_notify(MEM_CANCEL_ONLINE, &arg); 1018 return ret; 1019 } 1020 /* 1021 * If this zone is not populated, then it is not in zonelist. 1022 * This means the page allocator ignores this zone. 1023 * So, zonelist must be updated after online. 1024 */ 1025 mutex_lock(&zonelists_mutex); 1026 if (!populated_zone(zone)) { 1027 need_zonelists_rebuild = 1; 1028 build_all_zonelists(NULL, zone); 1029 } 1030 1031 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1032 online_pages_range); 1033 if (ret) { 1034 if (need_zonelists_rebuild) 1035 zone_pcp_reset(zone); 1036 mutex_unlock(&zonelists_mutex); 1037 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n", 1038 (unsigned long long) pfn << PAGE_SHIFT, 1039 (((unsigned long long) pfn + nr_pages) 1040 << PAGE_SHIFT) - 1); 1041 memory_notify(MEM_CANCEL_ONLINE, &arg); 1042 return ret; 1043 } 1044 1045 zone->present_pages += onlined_pages; 1046 1047 pgdat_resize_lock(zone->zone_pgdat, &flags); 1048 zone->zone_pgdat->node_present_pages += onlined_pages; 1049 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1050 1051 if (onlined_pages) { 1052 node_states_set_node(zone_to_nid(zone), &arg); 1053 if (need_zonelists_rebuild) 1054 build_all_zonelists(NULL, NULL); 1055 else 1056 zone_pcp_update(zone); 1057 } 1058 1059 mutex_unlock(&zonelists_mutex); 1060 1061 init_per_zone_wmark_min(); 1062 1063 if (onlined_pages) 1064 kswapd_run(zone_to_nid(zone)); 1065 1066 vm_total_pages = nr_free_pagecache_pages(); 1067 1068 writeback_set_ratelimit(); 1069 1070 if (onlined_pages) 1071 memory_notify(MEM_ONLINE, &arg); 1072 return 0; 1073 } 1074 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1075 1076 static void reset_node_present_pages(pg_data_t *pgdat) 1077 { 1078 struct zone *z; 1079 1080 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1081 z->present_pages = 0; 1082 1083 pgdat->node_present_pages = 0; 1084 } 1085 1086 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1087 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1088 { 1089 struct pglist_data *pgdat; 1090 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1091 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1092 unsigned long start_pfn = PFN_DOWN(start); 1093 1094 pgdat = NODE_DATA(nid); 1095 if (!pgdat) { 1096 pgdat = arch_alloc_nodedata(nid); 1097 if (!pgdat) 1098 return NULL; 1099 1100 arch_refresh_nodedata(nid, pgdat); 1101 } else { 1102 /* Reset the nr_zones and classzone_idx to 0 before reuse */ 1103 pgdat->nr_zones = 0; 1104 pgdat->classzone_idx = 0; 1105 } 1106 1107 /* we can use NODE_DATA(nid) from here */ 1108 1109 /* init node's zones as empty zones, we don't have any present pages.*/ 1110 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1111 1112 /* 1113 * The node we allocated has no zone fallback lists. For avoiding 1114 * to access not-initialized zonelist, build here. 1115 */ 1116 mutex_lock(&zonelists_mutex); 1117 build_all_zonelists(pgdat, NULL); 1118 mutex_unlock(&zonelists_mutex); 1119 1120 /* 1121 * zone->managed_pages is set to an approximate value in 1122 * free_area_init_core(), which will cause 1123 * /sys/device/system/node/nodeX/meminfo has wrong data. 1124 * So reset it to 0 before any memory is onlined. 1125 */ 1126 reset_node_managed_pages(pgdat); 1127 1128 /* 1129 * When memory is hot-added, all the memory is in offline state. So 1130 * clear all zones' present_pages because they will be updated in 1131 * online_pages() and offline_pages(). 1132 */ 1133 reset_node_present_pages(pgdat); 1134 1135 return pgdat; 1136 } 1137 1138 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1139 { 1140 arch_refresh_nodedata(nid, NULL); 1141 arch_free_nodedata(pgdat); 1142 return; 1143 } 1144 1145 1146 /** 1147 * try_online_node - online a node if offlined 1148 * 1149 * called by cpu_up() to online a node without onlined memory. 1150 */ 1151 int try_online_node(int nid) 1152 { 1153 pg_data_t *pgdat; 1154 int ret; 1155 1156 if (node_online(nid)) 1157 return 0; 1158 1159 mem_hotplug_begin(); 1160 pgdat = hotadd_new_pgdat(nid, 0); 1161 if (!pgdat) { 1162 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1163 ret = -ENOMEM; 1164 goto out; 1165 } 1166 node_set_online(nid); 1167 ret = register_one_node(nid); 1168 BUG_ON(ret); 1169 1170 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1171 mutex_lock(&zonelists_mutex); 1172 build_all_zonelists(NULL, NULL); 1173 mutex_unlock(&zonelists_mutex); 1174 } 1175 1176 out: 1177 mem_hotplug_done(); 1178 return ret; 1179 } 1180 1181 static int check_hotplug_memory_range(u64 start, u64 size) 1182 { 1183 u64 start_pfn = PFN_DOWN(start); 1184 u64 nr_pages = size >> PAGE_SHIFT; 1185 1186 /* Memory range must be aligned with section */ 1187 if ((start_pfn & ~PAGE_SECTION_MASK) || 1188 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1189 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1190 (unsigned long long)start, 1191 (unsigned long long)size); 1192 return -EINVAL; 1193 } 1194 1195 return 0; 1196 } 1197 1198 /* 1199 * If movable zone has already been setup, newly added memory should be check. 1200 * If its address is higher than movable zone, it should be added as movable. 1201 * Without this check, movable zone may overlap with other zone. 1202 */ 1203 static int should_add_memory_movable(int nid, u64 start, u64 size) 1204 { 1205 unsigned long start_pfn = start >> PAGE_SHIFT; 1206 pg_data_t *pgdat = NODE_DATA(nid); 1207 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1208 1209 if (zone_is_empty(movable_zone)) 1210 return 0; 1211 1212 if (movable_zone->zone_start_pfn <= start_pfn) 1213 return 1; 1214 1215 return 0; 1216 } 1217 1218 int zone_for_memory(int nid, u64 start, u64 size, int zone_default) 1219 { 1220 if (should_add_memory_movable(nid, start, size)) 1221 return ZONE_MOVABLE; 1222 1223 return zone_default; 1224 } 1225 1226 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1227 int __ref add_memory(int nid, u64 start, u64 size) 1228 { 1229 pg_data_t *pgdat = NULL; 1230 bool new_pgdat; 1231 bool new_node; 1232 struct resource *res; 1233 int ret; 1234 1235 ret = check_hotplug_memory_range(start, size); 1236 if (ret) 1237 return ret; 1238 1239 res = register_memory_resource(start, size); 1240 ret = -EEXIST; 1241 if (!res) 1242 return ret; 1243 1244 { /* Stupid hack to suppress address-never-null warning */ 1245 void *p = NODE_DATA(nid); 1246 new_pgdat = !p; 1247 } 1248 1249 mem_hotplug_begin(); 1250 1251 /* 1252 * Add new range to memblock so that when hotadd_new_pgdat() is called 1253 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1254 * this new range and calculate total pages correctly. The range will 1255 * be removed at hot-remove time. 1256 */ 1257 memblock_add_node(start, size, nid); 1258 1259 new_node = !node_online(nid); 1260 if (new_node) { 1261 pgdat = hotadd_new_pgdat(nid, start); 1262 ret = -ENOMEM; 1263 if (!pgdat) 1264 goto error; 1265 } 1266 1267 /* call arch's memory hotadd */ 1268 ret = arch_add_memory(nid, start, size); 1269 1270 if (ret < 0) 1271 goto error; 1272 1273 /* we online node here. we can't roll back from here. */ 1274 node_set_online(nid); 1275 1276 if (new_node) { 1277 ret = register_one_node(nid); 1278 /* 1279 * If sysfs file of new node can't create, cpu on the node 1280 * can't be hot-added. There is no rollback way now. 1281 * So, check by BUG_ON() to catch it reluctantly.. 1282 */ 1283 BUG_ON(ret); 1284 } 1285 1286 /* create new memmap entry */ 1287 firmware_map_add_hotplug(start, start + size, "System RAM"); 1288 1289 goto out; 1290 1291 error: 1292 /* rollback pgdat allocation and others */ 1293 if (new_pgdat) 1294 rollback_node_hotadd(nid, pgdat); 1295 release_memory_resource(res); 1296 memblock_remove(start, size); 1297 1298 out: 1299 mem_hotplug_done(); 1300 return ret; 1301 } 1302 EXPORT_SYMBOL_GPL(add_memory); 1303 1304 #ifdef CONFIG_MEMORY_HOTREMOVE 1305 /* 1306 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1307 * set and the size of the free page is given by page_order(). Using this, 1308 * the function determines if the pageblock contains only free pages. 1309 * Due to buddy contraints, a free page at least the size of a pageblock will 1310 * be located at the start of the pageblock 1311 */ 1312 static inline int pageblock_free(struct page *page) 1313 { 1314 return PageBuddy(page) && page_order(page) >= pageblock_order; 1315 } 1316 1317 /* Return the start of the next active pageblock after a given page */ 1318 static struct page *next_active_pageblock(struct page *page) 1319 { 1320 /* Ensure the starting page is pageblock-aligned */ 1321 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1322 1323 /* If the entire pageblock is free, move to the end of free page */ 1324 if (pageblock_free(page)) { 1325 int order; 1326 /* be careful. we don't have locks, page_order can be changed.*/ 1327 order = page_order(page); 1328 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1329 return page + (1 << order); 1330 } 1331 1332 return page + pageblock_nr_pages; 1333 } 1334 1335 /* Checks if this range of memory is likely to be hot-removable. */ 1336 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1337 { 1338 struct page *page = pfn_to_page(start_pfn); 1339 struct page *end_page = page + nr_pages; 1340 1341 /* Check the starting page of each pageblock within the range */ 1342 for (; page < end_page; page = next_active_pageblock(page)) { 1343 if (!is_pageblock_removable_nolock(page)) 1344 return 0; 1345 cond_resched(); 1346 } 1347 1348 /* All pageblocks in the memory block are likely to be hot-removable */ 1349 return 1; 1350 } 1351 1352 /* 1353 * Confirm all pages in a range [start, end) is belongs to the same zone. 1354 */ 1355 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) 1356 { 1357 unsigned long pfn; 1358 struct zone *zone = NULL; 1359 struct page *page; 1360 int i; 1361 for (pfn = start_pfn; 1362 pfn < end_pfn; 1363 pfn += MAX_ORDER_NR_PAGES) { 1364 i = 0; 1365 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1366 while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i)) 1367 i++; 1368 if (i == MAX_ORDER_NR_PAGES) 1369 continue; 1370 page = pfn_to_page(pfn + i); 1371 if (zone && page_zone(page) != zone) 1372 return 0; 1373 zone = page_zone(page); 1374 } 1375 return 1; 1376 } 1377 1378 /* 1379 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1380 * and hugepages). We scan pfn because it's much easier than scanning over 1381 * linked list. This function returns the pfn of the first found movable 1382 * page if it's found, otherwise 0. 1383 */ 1384 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1385 { 1386 unsigned long pfn; 1387 struct page *page; 1388 for (pfn = start; pfn < end; pfn++) { 1389 if (pfn_valid(pfn)) { 1390 page = pfn_to_page(pfn); 1391 if (PageLRU(page)) 1392 return pfn; 1393 if (PageHuge(page)) { 1394 if (page_huge_active(page)) 1395 return pfn; 1396 else 1397 pfn = round_up(pfn + 1, 1398 1 << compound_order(page)) - 1; 1399 } 1400 } 1401 } 1402 return 0; 1403 } 1404 1405 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1406 static int 1407 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1408 { 1409 unsigned long pfn; 1410 struct page *page; 1411 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1412 int not_managed = 0; 1413 int ret = 0; 1414 LIST_HEAD(source); 1415 1416 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1417 if (!pfn_valid(pfn)) 1418 continue; 1419 page = pfn_to_page(pfn); 1420 1421 if (PageHuge(page)) { 1422 struct page *head = compound_head(page); 1423 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1424 if (compound_order(head) > PFN_SECTION_SHIFT) { 1425 ret = -EBUSY; 1426 break; 1427 } 1428 if (isolate_huge_page(page, &source)) 1429 move_pages -= 1 << compound_order(head); 1430 continue; 1431 } 1432 1433 if (!get_page_unless_zero(page)) 1434 continue; 1435 /* 1436 * We can skip free pages. And we can only deal with pages on 1437 * LRU. 1438 */ 1439 ret = isolate_lru_page(page); 1440 if (!ret) { /* Success */ 1441 put_page(page); 1442 list_add_tail(&page->lru, &source); 1443 move_pages--; 1444 inc_zone_page_state(page, NR_ISOLATED_ANON + 1445 page_is_file_cache(page)); 1446 1447 } else { 1448 #ifdef CONFIG_DEBUG_VM 1449 printk(KERN_ALERT "removing pfn %lx from LRU failed\n", 1450 pfn); 1451 dump_page(page, "failed to remove from LRU"); 1452 #endif 1453 put_page(page); 1454 /* Because we don't have big zone->lock. we should 1455 check this again here. */ 1456 if (page_count(page)) { 1457 not_managed++; 1458 ret = -EBUSY; 1459 break; 1460 } 1461 } 1462 } 1463 if (!list_empty(&source)) { 1464 if (not_managed) { 1465 putback_movable_pages(&source); 1466 goto out; 1467 } 1468 1469 /* 1470 * alloc_migrate_target should be improooooved!! 1471 * migrate_pages returns # of failed pages. 1472 */ 1473 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0, 1474 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1475 if (ret) 1476 putback_movable_pages(&source); 1477 } 1478 out: 1479 return ret; 1480 } 1481 1482 /* 1483 * remove from free_area[] and mark all as Reserved. 1484 */ 1485 static int 1486 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1487 void *data) 1488 { 1489 __offline_isolated_pages(start, start + nr_pages); 1490 return 0; 1491 } 1492 1493 static void 1494 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1495 { 1496 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1497 offline_isolated_pages_cb); 1498 } 1499 1500 /* 1501 * Check all pages in range, recoreded as memory resource, are isolated. 1502 */ 1503 static int 1504 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1505 void *data) 1506 { 1507 int ret; 1508 long offlined = *(long *)data; 1509 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1510 offlined = nr_pages; 1511 if (!ret) 1512 *(long *)data += offlined; 1513 return ret; 1514 } 1515 1516 static long 1517 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1518 { 1519 long offlined = 0; 1520 int ret; 1521 1522 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1523 check_pages_isolated_cb); 1524 if (ret < 0) 1525 offlined = (long)ret; 1526 return offlined; 1527 } 1528 1529 #ifdef CONFIG_MOVABLE_NODE 1530 /* 1531 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1532 * normal memory. 1533 */ 1534 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1535 { 1536 return true; 1537 } 1538 #else /* CONFIG_MOVABLE_NODE */ 1539 /* ensure the node has NORMAL memory if it is still online */ 1540 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1541 { 1542 struct pglist_data *pgdat = zone->zone_pgdat; 1543 unsigned long present_pages = 0; 1544 enum zone_type zt; 1545 1546 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1547 present_pages += pgdat->node_zones[zt].present_pages; 1548 1549 if (present_pages > nr_pages) 1550 return true; 1551 1552 present_pages = 0; 1553 for (; zt <= ZONE_MOVABLE; zt++) 1554 present_pages += pgdat->node_zones[zt].present_pages; 1555 1556 /* 1557 * we can't offline the last normal memory until all 1558 * higher memory is offlined. 1559 */ 1560 return present_pages == 0; 1561 } 1562 #endif /* CONFIG_MOVABLE_NODE */ 1563 1564 static int __init cmdline_parse_movable_node(char *p) 1565 { 1566 #ifdef CONFIG_MOVABLE_NODE 1567 /* 1568 * Memory used by the kernel cannot be hot-removed because Linux 1569 * cannot migrate the kernel pages. When memory hotplug is 1570 * enabled, we should prevent memblock from allocating memory 1571 * for the kernel. 1572 * 1573 * ACPI SRAT records all hotpluggable memory ranges. But before 1574 * SRAT is parsed, we don't know about it. 1575 * 1576 * The kernel image is loaded into memory at very early time. We 1577 * cannot prevent this anyway. So on NUMA system, we set any 1578 * node the kernel resides in as un-hotpluggable. 1579 * 1580 * Since on modern servers, one node could have double-digit 1581 * gigabytes memory, we can assume the memory around the kernel 1582 * image is also un-hotpluggable. So before SRAT is parsed, just 1583 * allocate memory near the kernel image to try the best to keep 1584 * the kernel away from hotpluggable memory. 1585 */ 1586 memblock_set_bottom_up(true); 1587 movable_node_enabled = true; 1588 #else 1589 pr_warn("movable_node option not supported\n"); 1590 #endif 1591 return 0; 1592 } 1593 early_param("movable_node", cmdline_parse_movable_node); 1594 1595 /* check which state of node_states will be changed when offline memory */ 1596 static void node_states_check_changes_offline(unsigned long nr_pages, 1597 struct zone *zone, struct memory_notify *arg) 1598 { 1599 struct pglist_data *pgdat = zone->zone_pgdat; 1600 unsigned long present_pages = 0; 1601 enum zone_type zt, zone_last = ZONE_NORMAL; 1602 1603 /* 1604 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1605 * contains nodes which have zones of 0...ZONE_NORMAL, 1606 * set zone_last to ZONE_NORMAL. 1607 * 1608 * If we don't have HIGHMEM nor movable node, 1609 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1610 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1611 */ 1612 if (N_MEMORY == N_NORMAL_MEMORY) 1613 zone_last = ZONE_MOVABLE; 1614 1615 /* 1616 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1617 * If the memory to be offline is in a zone of 0...zone_last, 1618 * and it is the last present memory, 0...zone_last will 1619 * become empty after offline , thus we can determind we will 1620 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1621 */ 1622 for (zt = 0; zt <= zone_last; zt++) 1623 present_pages += pgdat->node_zones[zt].present_pages; 1624 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1625 arg->status_change_nid_normal = zone_to_nid(zone); 1626 else 1627 arg->status_change_nid_normal = -1; 1628 1629 #ifdef CONFIG_HIGHMEM 1630 /* 1631 * If we have movable node, node_states[N_HIGH_MEMORY] 1632 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1633 * set zone_last to ZONE_HIGHMEM. 1634 * 1635 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1636 * contains nodes which have zones of 0...ZONE_MOVABLE, 1637 * set zone_last to ZONE_MOVABLE. 1638 */ 1639 zone_last = ZONE_HIGHMEM; 1640 if (N_MEMORY == N_HIGH_MEMORY) 1641 zone_last = ZONE_MOVABLE; 1642 1643 for (; zt <= zone_last; zt++) 1644 present_pages += pgdat->node_zones[zt].present_pages; 1645 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1646 arg->status_change_nid_high = zone_to_nid(zone); 1647 else 1648 arg->status_change_nid_high = -1; 1649 #else 1650 arg->status_change_nid_high = arg->status_change_nid_normal; 1651 #endif 1652 1653 /* 1654 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1655 */ 1656 zone_last = ZONE_MOVABLE; 1657 1658 /* 1659 * check whether node_states[N_HIGH_MEMORY] will be changed 1660 * If we try to offline the last present @nr_pages from the node, 1661 * we can determind we will need to clear the node from 1662 * node_states[N_HIGH_MEMORY]. 1663 */ 1664 for (; zt <= zone_last; zt++) 1665 present_pages += pgdat->node_zones[zt].present_pages; 1666 if (nr_pages >= present_pages) 1667 arg->status_change_nid = zone_to_nid(zone); 1668 else 1669 arg->status_change_nid = -1; 1670 } 1671 1672 static void node_states_clear_node(int node, struct memory_notify *arg) 1673 { 1674 if (arg->status_change_nid_normal >= 0) 1675 node_clear_state(node, N_NORMAL_MEMORY); 1676 1677 if ((N_MEMORY != N_NORMAL_MEMORY) && 1678 (arg->status_change_nid_high >= 0)) 1679 node_clear_state(node, N_HIGH_MEMORY); 1680 1681 if ((N_MEMORY != N_HIGH_MEMORY) && 1682 (arg->status_change_nid >= 0)) 1683 node_clear_state(node, N_MEMORY); 1684 } 1685 1686 static int __ref __offline_pages(unsigned long start_pfn, 1687 unsigned long end_pfn, unsigned long timeout) 1688 { 1689 unsigned long pfn, nr_pages, expire; 1690 long offlined_pages; 1691 int ret, drain, retry_max, node; 1692 unsigned long flags; 1693 struct zone *zone; 1694 struct memory_notify arg; 1695 1696 /* at least, alignment against pageblock is necessary */ 1697 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1698 return -EINVAL; 1699 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1700 return -EINVAL; 1701 /* This makes hotplug much easier...and readable. 1702 we assume this for now. .*/ 1703 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 1704 return -EINVAL; 1705 1706 zone = page_zone(pfn_to_page(start_pfn)); 1707 node = zone_to_nid(zone); 1708 nr_pages = end_pfn - start_pfn; 1709 1710 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1711 return -EINVAL; 1712 1713 /* set above range as isolated */ 1714 ret = start_isolate_page_range(start_pfn, end_pfn, 1715 MIGRATE_MOVABLE, true); 1716 if (ret) 1717 return ret; 1718 1719 arg.start_pfn = start_pfn; 1720 arg.nr_pages = nr_pages; 1721 node_states_check_changes_offline(nr_pages, zone, &arg); 1722 1723 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1724 ret = notifier_to_errno(ret); 1725 if (ret) 1726 goto failed_removal; 1727 1728 pfn = start_pfn; 1729 expire = jiffies + timeout; 1730 drain = 0; 1731 retry_max = 5; 1732 repeat: 1733 /* start memory hot removal */ 1734 ret = -EAGAIN; 1735 if (time_after(jiffies, expire)) 1736 goto failed_removal; 1737 ret = -EINTR; 1738 if (signal_pending(current)) 1739 goto failed_removal; 1740 ret = 0; 1741 if (drain) { 1742 lru_add_drain_all(); 1743 cond_resched(); 1744 drain_all_pages(zone); 1745 } 1746 1747 pfn = scan_movable_pages(start_pfn, end_pfn); 1748 if (pfn) { /* We have movable pages */ 1749 ret = do_migrate_range(pfn, end_pfn); 1750 if (!ret) { 1751 drain = 1; 1752 goto repeat; 1753 } else { 1754 if (ret < 0) 1755 if (--retry_max == 0) 1756 goto failed_removal; 1757 yield(); 1758 drain = 1; 1759 goto repeat; 1760 } 1761 } 1762 /* drain all zone's lru pagevec, this is asynchronous... */ 1763 lru_add_drain_all(); 1764 yield(); 1765 /* drain pcp pages, this is synchronous. */ 1766 drain_all_pages(zone); 1767 /* 1768 * dissolve free hugepages in the memory block before doing offlining 1769 * actually in order to make hugetlbfs's object counting consistent. 1770 */ 1771 dissolve_free_huge_pages(start_pfn, end_pfn); 1772 /* check again */ 1773 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1774 if (offlined_pages < 0) { 1775 ret = -EBUSY; 1776 goto failed_removal; 1777 } 1778 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages); 1779 /* Ok, all of our target is isolated. 1780 We cannot do rollback at this point. */ 1781 offline_isolated_pages(start_pfn, end_pfn); 1782 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1783 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1784 /* removal success */ 1785 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1786 zone->present_pages -= offlined_pages; 1787 1788 pgdat_resize_lock(zone->zone_pgdat, &flags); 1789 zone->zone_pgdat->node_present_pages -= offlined_pages; 1790 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1791 1792 init_per_zone_wmark_min(); 1793 1794 if (!populated_zone(zone)) { 1795 zone_pcp_reset(zone); 1796 mutex_lock(&zonelists_mutex); 1797 build_all_zonelists(NULL, NULL); 1798 mutex_unlock(&zonelists_mutex); 1799 } else 1800 zone_pcp_update(zone); 1801 1802 node_states_clear_node(node, &arg); 1803 if (arg.status_change_nid >= 0) 1804 kswapd_stop(node); 1805 1806 vm_total_pages = nr_free_pagecache_pages(); 1807 writeback_set_ratelimit(); 1808 1809 memory_notify(MEM_OFFLINE, &arg); 1810 return 0; 1811 1812 failed_removal: 1813 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n", 1814 (unsigned long long) start_pfn << PAGE_SHIFT, 1815 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1816 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1817 /* pushback to free area */ 1818 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1819 return ret; 1820 } 1821 1822 /* Must be protected by mem_hotplug_begin() */ 1823 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1824 { 1825 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 1826 } 1827 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1828 1829 /** 1830 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1831 * @start_pfn: start pfn of the memory range 1832 * @end_pfn: end pfn of the memory range 1833 * @arg: argument passed to func 1834 * @func: callback for each memory section walked 1835 * 1836 * This function walks through all present mem sections in range 1837 * [start_pfn, end_pfn) and call func on each mem section. 1838 * 1839 * Returns the return value of func. 1840 */ 1841 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1842 void *arg, int (*func)(struct memory_block *, void *)) 1843 { 1844 struct memory_block *mem = NULL; 1845 struct mem_section *section; 1846 unsigned long pfn, section_nr; 1847 int ret; 1848 1849 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1850 section_nr = pfn_to_section_nr(pfn); 1851 if (!present_section_nr(section_nr)) 1852 continue; 1853 1854 section = __nr_to_section(section_nr); 1855 /* same memblock? */ 1856 if (mem) 1857 if ((section_nr >= mem->start_section_nr) && 1858 (section_nr <= mem->end_section_nr)) 1859 continue; 1860 1861 mem = find_memory_block_hinted(section, mem); 1862 if (!mem) 1863 continue; 1864 1865 ret = func(mem, arg); 1866 if (ret) { 1867 kobject_put(&mem->dev.kobj); 1868 return ret; 1869 } 1870 } 1871 1872 if (mem) 1873 kobject_put(&mem->dev.kobj); 1874 1875 return 0; 1876 } 1877 1878 #ifdef CONFIG_MEMORY_HOTREMOVE 1879 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1880 { 1881 int ret = !is_memblock_offlined(mem); 1882 1883 if (unlikely(ret)) { 1884 phys_addr_t beginpa, endpa; 1885 1886 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1887 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1888 pr_warn("removing memory fails, because memory " 1889 "[%pa-%pa] is onlined\n", 1890 &beginpa, &endpa); 1891 } 1892 1893 return ret; 1894 } 1895 1896 static int check_cpu_on_node(pg_data_t *pgdat) 1897 { 1898 int cpu; 1899 1900 for_each_present_cpu(cpu) { 1901 if (cpu_to_node(cpu) == pgdat->node_id) 1902 /* 1903 * the cpu on this node isn't removed, and we can't 1904 * offline this node. 1905 */ 1906 return -EBUSY; 1907 } 1908 1909 return 0; 1910 } 1911 1912 static void unmap_cpu_on_node(pg_data_t *pgdat) 1913 { 1914 #ifdef CONFIG_ACPI_NUMA 1915 int cpu; 1916 1917 for_each_possible_cpu(cpu) 1918 if (cpu_to_node(cpu) == pgdat->node_id) 1919 numa_clear_node(cpu); 1920 #endif 1921 } 1922 1923 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1924 { 1925 int ret; 1926 1927 ret = check_cpu_on_node(pgdat); 1928 if (ret) 1929 return ret; 1930 1931 /* 1932 * the node will be offlined when we come here, so we can clear 1933 * the cpu_to_node() now. 1934 */ 1935 1936 unmap_cpu_on_node(pgdat); 1937 return 0; 1938 } 1939 1940 /** 1941 * try_offline_node 1942 * 1943 * Offline a node if all memory sections and cpus of the node are removed. 1944 * 1945 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1946 * and online/offline operations before this call. 1947 */ 1948 void try_offline_node(int nid) 1949 { 1950 pg_data_t *pgdat = NODE_DATA(nid); 1951 unsigned long start_pfn = pgdat->node_start_pfn; 1952 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1953 unsigned long pfn; 1954 int i; 1955 1956 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1957 unsigned long section_nr = pfn_to_section_nr(pfn); 1958 1959 if (!present_section_nr(section_nr)) 1960 continue; 1961 1962 if (pfn_to_nid(pfn) != nid) 1963 continue; 1964 1965 /* 1966 * some memory sections of this node are not removed, and we 1967 * can't offline node now. 1968 */ 1969 return; 1970 } 1971 1972 if (check_and_unmap_cpu_on_node(pgdat)) 1973 return; 1974 1975 /* 1976 * all memory/cpu of this node are removed, we can offline this 1977 * node now. 1978 */ 1979 node_set_offline(nid); 1980 unregister_one_node(nid); 1981 1982 /* free waittable in each zone */ 1983 for (i = 0; i < MAX_NR_ZONES; i++) { 1984 struct zone *zone = pgdat->node_zones + i; 1985 1986 /* 1987 * wait_table may be allocated from boot memory, 1988 * here only free if it's allocated by vmalloc. 1989 */ 1990 if (is_vmalloc_addr(zone->wait_table)) { 1991 vfree(zone->wait_table); 1992 zone->wait_table = NULL; 1993 } 1994 } 1995 } 1996 EXPORT_SYMBOL(try_offline_node); 1997 1998 /** 1999 * remove_memory 2000 * 2001 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2002 * and online/offline operations before this call, as required by 2003 * try_offline_node(). 2004 */ 2005 void __ref remove_memory(int nid, u64 start, u64 size) 2006 { 2007 int ret; 2008 2009 BUG_ON(check_hotplug_memory_range(start, size)); 2010 2011 mem_hotplug_begin(); 2012 2013 /* 2014 * All memory blocks must be offlined before removing memory. Check 2015 * whether all memory blocks in question are offline and trigger a BUG() 2016 * if this is not the case. 2017 */ 2018 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2019 check_memblock_offlined_cb); 2020 if (ret) 2021 BUG(); 2022 2023 /* remove memmap entry */ 2024 firmware_map_remove(start, start + size, "System RAM"); 2025 memblock_free(start, size); 2026 memblock_remove(start, size); 2027 2028 arch_remove_memory(start, size); 2029 2030 try_offline_node(nid); 2031 2032 mem_hotplug_done(); 2033 } 2034 EXPORT_SYMBOL_GPL(remove_memory); 2035 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2036