xref: /linux/mm/memory_hotplug.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/highmem.h>
22 #include <linux/vmalloc.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/migrate.h>
26 #include <linux/page-isolation.h>
27 #include <linux/pfn.h>
28 #include <linux/suspend.h>
29 #include <linux/mm_inline.h>
30 #include <linux/firmware-map.h>
31 #include <linux/stop_machine.h>
32 #include <linux/hugetlb.h>
33 #include <linux/memblock.h>
34 #include <linux/bootmem.h>
35 
36 #include <asm/tlbflush.h>
37 
38 #include "internal.h"
39 
40 /*
41  * online_page_callback contains pointer to current page onlining function.
42  * Initially it is generic_online_page(). If it is required it could be
43  * changed by calling set_online_page_callback() for callback registration
44  * and restore_online_page_callback() for generic callback restore.
45  */
46 
47 static void generic_online_page(struct page *page);
48 
49 static online_page_callback_t online_page_callback = generic_online_page;
50 static DEFINE_MUTEX(online_page_callback_lock);
51 
52 /* The same as the cpu_hotplug lock, but for memory hotplug. */
53 static struct {
54 	struct task_struct *active_writer;
55 	struct mutex lock; /* Synchronizes accesses to refcount, */
56 	/*
57 	 * Also blocks the new readers during
58 	 * an ongoing mem hotplug operation.
59 	 */
60 	int refcount;
61 
62 #ifdef CONFIG_DEBUG_LOCK_ALLOC
63 	struct lockdep_map dep_map;
64 #endif
65 } mem_hotplug = {
66 	.active_writer = NULL,
67 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
68 	.refcount = 0,
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 	.dep_map = {.name = "mem_hotplug.lock" },
71 #endif
72 };
73 
74 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
75 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
76 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
77 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
78 
79 void get_online_mems(void)
80 {
81 	might_sleep();
82 	if (mem_hotplug.active_writer == current)
83 		return;
84 	memhp_lock_acquire_read();
85 	mutex_lock(&mem_hotplug.lock);
86 	mem_hotplug.refcount++;
87 	mutex_unlock(&mem_hotplug.lock);
88 
89 }
90 
91 void put_online_mems(void)
92 {
93 	if (mem_hotplug.active_writer == current)
94 		return;
95 	mutex_lock(&mem_hotplug.lock);
96 
97 	if (WARN_ON(!mem_hotplug.refcount))
98 		mem_hotplug.refcount++; /* try to fix things up */
99 
100 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
101 		wake_up_process(mem_hotplug.active_writer);
102 	mutex_unlock(&mem_hotplug.lock);
103 	memhp_lock_release();
104 
105 }
106 
107 void mem_hotplug_begin(void)
108 {
109 	mem_hotplug.active_writer = current;
110 
111 	memhp_lock_acquire();
112 	for (;;) {
113 		mutex_lock(&mem_hotplug.lock);
114 		if (likely(!mem_hotplug.refcount))
115 			break;
116 		__set_current_state(TASK_UNINTERRUPTIBLE);
117 		mutex_unlock(&mem_hotplug.lock);
118 		schedule();
119 	}
120 }
121 
122 void mem_hotplug_done(void)
123 {
124 	mem_hotplug.active_writer = NULL;
125 	mutex_unlock(&mem_hotplug.lock);
126 	memhp_lock_release();
127 }
128 
129 /* add this memory to iomem resource */
130 static struct resource *register_memory_resource(u64 start, u64 size)
131 {
132 	struct resource *res;
133 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
134 	BUG_ON(!res);
135 
136 	res->name = "System RAM";
137 	res->start = start;
138 	res->end = start + size - 1;
139 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
140 	if (request_resource(&iomem_resource, res) < 0) {
141 		pr_debug("System RAM resource %pR cannot be added\n", res);
142 		kfree(res);
143 		res = NULL;
144 	}
145 	return res;
146 }
147 
148 static void release_memory_resource(struct resource *res)
149 {
150 	if (!res)
151 		return;
152 	release_resource(res);
153 	kfree(res);
154 	return;
155 }
156 
157 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
158 void get_page_bootmem(unsigned long info,  struct page *page,
159 		      unsigned long type)
160 {
161 	page->lru.next = (struct list_head *) type;
162 	SetPagePrivate(page);
163 	set_page_private(page, info);
164 	atomic_inc(&page->_count);
165 }
166 
167 void put_page_bootmem(struct page *page)
168 {
169 	unsigned long type;
170 
171 	type = (unsigned long) page->lru.next;
172 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
173 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
174 
175 	if (atomic_dec_return(&page->_count) == 1) {
176 		ClearPagePrivate(page);
177 		set_page_private(page, 0);
178 		INIT_LIST_HEAD(&page->lru);
179 		free_reserved_page(page);
180 	}
181 }
182 
183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
184 #ifndef CONFIG_SPARSEMEM_VMEMMAP
185 static void register_page_bootmem_info_section(unsigned long start_pfn)
186 {
187 	unsigned long *usemap, mapsize, section_nr, i;
188 	struct mem_section *ms;
189 	struct page *page, *memmap;
190 
191 	section_nr = pfn_to_section_nr(start_pfn);
192 	ms = __nr_to_section(section_nr);
193 
194 	/* Get section's memmap address */
195 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
196 
197 	/*
198 	 * Get page for the memmap's phys address
199 	 * XXX: need more consideration for sparse_vmemmap...
200 	 */
201 	page = virt_to_page(memmap);
202 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
203 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
204 
205 	/* remember memmap's page */
206 	for (i = 0; i < mapsize; i++, page++)
207 		get_page_bootmem(section_nr, page, SECTION_INFO);
208 
209 	usemap = __nr_to_section(section_nr)->pageblock_flags;
210 	page = virt_to_page(usemap);
211 
212 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
213 
214 	for (i = 0; i < mapsize; i++, page++)
215 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
216 
217 }
218 #else /* CONFIG_SPARSEMEM_VMEMMAP */
219 static void register_page_bootmem_info_section(unsigned long start_pfn)
220 {
221 	unsigned long *usemap, mapsize, section_nr, i;
222 	struct mem_section *ms;
223 	struct page *page, *memmap;
224 
225 	if (!pfn_valid(start_pfn))
226 		return;
227 
228 	section_nr = pfn_to_section_nr(start_pfn);
229 	ms = __nr_to_section(section_nr);
230 
231 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
232 
233 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
234 
235 	usemap = __nr_to_section(section_nr)->pageblock_flags;
236 	page = virt_to_page(usemap);
237 
238 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
239 
240 	for (i = 0; i < mapsize; i++, page++)
241 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
242 }
243 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
244 
245 void register_page_bootmem_info_node(struct pglist_data *pgdat)
246 {
247 	unsigned long i, pfn, end_pfn, nr_pages;
248 	int node = pgdat->node_id;
249 	struct page *page;
250 	struct zone *zone;
251 
252 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
253 	page = virt_to_page(pgdat);
254 
255 	for (i = 0; i < nr_pages; i++, page++)
256 		get_page_bootmem(node, page, NODE_INFO);
257 
258 	zone = &pgdat->node_zones[0];
259 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
260 		if (zone_is_initialized(zone)) {
261 			nr_pages = zone->wait_table_hash_nr_entries
262 				* sizeof(wait_queue_head_t);
263 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
264 			page = virt_to_page(zone->wait_table);
265 
266 			for (i = 0; i < nr_pages; i++, page++)
267 				get_page_bootmem(node, page, NODE_INFO);
268 		}
269 	}
270 
271 	pfn = pgdat->node_start_pfn;
272 	end_pfn = pgdat_end_pfn(pgdat);
273 
274 	/* register section info */
275 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
276 		/*
277 		 * Some platforms can assign the same pfn to multiple nodes - on
278 		 * node0 as well as nodeN.  To avoid registering a pfn against
279 		 * multiple nodes we check that this pfn does not already
280 		 * reside in some other nodes.
281 		 */
282 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
283 			register_page_bootmem_info_section(pfn);
284 	}
285 }
286 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
287 
288 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
289 				     unsigned long end_pfn)
290 {
291 	unsigned long old_zone_end_pfn;
292 
293 	zone_span_writelock(zone);
294 
295 	old_zone_end_pfn = zone_end_pfn(zone);
296 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
297 		zone->zone_start_pfn = start_pfn;
298 
299 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
300 				zone->zone_start_pfn;
301 
302 	zone_span_writeunlock(zone);
303 }
304 
305 static void resize_zone(struct zone *zone, unsigned long start_pfn,
306 		unsigned long end_pfn)
307 {
308 	zone_span_writelock(zone);
309 
310 	if (end_pfn - start_pfn) {
311 		zone->zone_start_pfn = start_pfn;
312 		zone->spanned_pages = end_pfn - start_pfn;
313 	} else {
314 		/*
315 		 * make it consist as free_area_init_core(),
316 		 * if spanned_pages = 0, then keep start_pfn = 0
317 		 */
318 		zone->zone_start_pfn = 0;
319 		zone->spanned_pages = 0;
320 	}
321 
322 	zone_span_writeunlock(zone);
323 }
324 
325 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
326 		unsigned long end_pfn)
327 {
328 	enum zone_type zid = zone_idx(zone);
329 	int nid = zone->zone_pgdat->node_id;
330 	unsigned long pfn;
331 
332 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
333 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
334 }
335 
336 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
337  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
338 static int __ref ensure_zone_is_initialized(struct zone *zone,
339 			unsigned long start_pfn, unsigned long num_pages)
340 {
341 	if (!zone_is_initialized(zone))
342 		return init_currently_empty_zone(zone, start_pfn, num_pages,
343 						 MEMMAP_HOTPLUG);
344 	return 0;
345 }
346 
347 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
348 		unsigned long start_pfn, unsigned long end_pfn)
349 {
350 	int ret;
351 	unsigned long flags;
352 	unsigned long z1_start_pfn;
353 
354 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
355 	if (ret)
356 		return ret;
357 
358 	pgdat_resize_lock(z1->zone_pgdat, &flags);
359 
360 	/* can't move pfns which are higher than @z2 */
361 	if (end_pfn > zone_end_pfn(z2))
362 		goto out_fail;
363 	/* the move out part must be at the left most of @z2 */
364 	if (start_pfn > z2->zone_start_pfn)
365 		goto out_fail;
366 	/* must included/overlap */
367 	if (end_pfn <= z2->zone_start_pfn)
368 		goto out_fail;
369 
370 	/* use start_pfn for z1's start_pfn if z1 is empty */
371 	if (!zone_is_empty(z1))
372 		z1_start_pfn = z1->zone_start_pfn;
373 	else
374 		z1_start_pfn = start_pfn;
375 
376 	resize_zone(z1, z1_start_pfn, end_pfn);
377 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
378 
379 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
380 
381 	fix_zone_id(z1, start_pfn, end_pfn);
382 
383 	return 0;
384 out_fail:
385 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
386 	return -1;
387 }
388 
389 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
390 		unsigned long start_pfn, unsigned long end_pfn)
391 {
392 	int ret;
393 	unsigned long flags;
394 	unsigned long z2_end_pfn;
395 
396 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
397 	if (ret)
398 		return ret;
399 
400 	pgdat_resize_lock(z1->zone_pgdat, &flags);
401 
402 	/* can't move pfns which are lower than @z1 */
403 	if (z1->zone_start_pfn > start_pfn)
404 		goto out_fail;
405 	/* the move out part mast at the right most of @z1 */
406 	if (zone_end_pfn(z1) >  end_pfn)
407 		goto out_fail;
408 	/* must included/overlap */
409 	if (start_pfn >= zone_end_pfn(z1))
410 		goto out_fail;
411 
412 	/* use end_pfn for z2's end_pfn if z2 is empty */
413 	if (!zone_is_empty(z2))
414 		z2_end_pfn = zone_end_pfn(z2);
415 	else
416 		z2_end_pfn = end_pfn;
417 
418 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
419 	resize_zone(z2, start_pfn, z2_end_pfn);
420 
421 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
422 
423 	fix_zone_id(z2, start_pfn, end_pfn);
424 
425 	return 0;
426 out_fail:
427 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
428 	return -1;
429 }
430 
431 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
432 				      unsigned long end_pfn)
433 {
434 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
435 
436 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
437 		pgdat->node_start_pfn = start_pfn;
438 
439 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
440 					pgdat->node_start_pfn;
441 }
442 
443 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
444 {
445 	struct pglist_data *pgdat = zone->zone_pgdat;
446 	int nr_pages = PAGES_PER_SECTION;
447 	int nid = pgdat->node_id;
448 	int zone_type;
449 	unsigned long flags, pfn;
450 	int ret;
451 
452 	zone_type = zone - pgdat->node_zones;
453 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
454 	if (ret)
455 		return ret;
456 
457 	pgdat_resize_lock(zone->zone_pgdat, &flags);
458 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
459 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
460 			phys_start_pfn + nr_pages);
461 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
462 	memmap_init_zone(nr_pages, nid, zone_type,
463 			 phys_start_pfn, MEMMAP_HOTPLUG);
464 
465 	/* online_page_range is called later and expects pages reserved */
466 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
467 		if (!pfn_valid(pfn))
468 			continue;
469 
470 		SetPageReserved(pfn_to_page(pfn));
471 	}
472 	return 0;
473 }
474 
475 static int __meminit __add_section(int nid, struct zone *zone,
476 					unsigned long phys_start_pfn)
477 {
478 	int ret;
479 
480 	if (pfn_valid(phys_start_pfn))
481 		return -EEXIST;
482 
483 	ret = sparse_add_one_section(zone, phys_start_pfn);
484 
485 	if (ret < 0)
486 		return ret;
487 
488 	ret = __add_zone(zone, phys_start_pfn);
489 
490 	if (ret < 0)
491 		return ret;
492 
493 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
494 }
495 
496 /*
497  * Reasonably generic function for adding memory.  It is
498  * expected that archs that support memory hotplug will
499  * call this function after deciding the zone to which to
500  * add the new pages.
501  */
502 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
503 			unsigned long nr_pages)
504 {
505 	unsigned long i;
506 	int err = 0;
507 	int start_sec, end_sec;
508 	/* during initialize mem_map, align hot-added range to section */
509 	start_sec = pfn_to_section_nr(phys_start_pfn);
510 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
511 
512 	for (i = start_sec; i <= end_sec; i++) {
513 		err = __add_section(nid, zone, section_nr_to_pfn(i));
514 
515 		/*
516 		 * EEXIST is finally dealt with by ioresource collision
517 		 * check. see add_memory() => register_memory_resource()
518 		 * Warning will be printed if there is collision.
519 		 */
520 		if (err && (err != -EEXIST))
521 			break;
522 		err = 0;
523 	}
524 	vmemmap_populate_print_last();
525 
526 	return err;
527 }
528 EXPORT_SYMBOL_GPL(__add_pages);
529 
530 #ifdef CONFIG_MEMORY_HOTREMOVE
531 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
532 static int find_smallest_section_pfn(int nid, struct zone *zone,
533 				     unsigned long start_pfn,
534 				     unsigned long end_pfn)
535 {
536 	struct mem_section *ms;
537 
538 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
539 		ms = __pfn_to_section(start_pfn);
540 
541 		if (unlikely(!valid_section(ms)))
542 			continue;
543 
544 		if (unlikely(pfn_to_nid(start_pfn) != nid))
545 			continue;
546 
547 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
548 			continue;
549 
550 		return start_pfn;
551 	}
552 
553 	return 0;
554 }
555 
556 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
557 static int find_biggest_section_pfn(int nid, struct zone *zone,
558 				    unsigned long start_pfn,
559 				    unsigned long end_pfn)
560 {
561 	struct mem_section *ms;
562 	unsigned long pfn;
563 
564 	/* pfn is the end pfn of a memory section. */
565 	pfn = end_pfn - 1;
566 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
567 		ms = __pfn_to_section(pfn);
568 
569 		if (unlikely(!valid_section(ms)))
570 			continue;
571 
572 		if (unlikely(pfn_to_nid(pfn) != nid))
573 			continue;
574 
575 		if (zone && zone != page_zone(pfn_to_page(pfn)))
576 			continue;
577 
578 		return pfn;
579 	}
580 
581 	return 0;
582 }
583 
584 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
585 			     unsigned long end_pfn)
586 {
587 	unsigned long zone_start_pfn = zone->zone_start_pfn;
588 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
589 	unsigned long zone_end_pfn = z;
590 	unsigned long pfn;
591 	struct mem_section *ms;
592 	int nid = zone_to_nid(zone);
593 
594 	zone_span_writelock(zone);
595 	if (zone_start_pfn == start_pfn) {
596 		/*
597 		 * If the section is smallest section in the zone, it need
598 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
599 		 * In this case, we find second smallest valid mem_section
600 		 * for shrinking zone.
601 		 */
602 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
603 						zone_end_pfn);
604 		if (pfn) {
605 			zone->zone_start_pfn = pfn;
606 			zone->spanned_pages = zone_end_pfn - pfn;
607 		}
608 	} else if (zone_end_pfn == end_pfn) {
609 		/*
610 		 * If the section is biggest section in the zone, it need
611 		 * shrink zone->spanned_pages.
612 		 * In this case, we find second biggest valid mem_section for
613 		 * shrinking zone.
614 		 */
615 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
616 					       start_pfn);
617 		if (pfn)
618 			zone->spanned_pages = pfn - zone_start_pfn + 1;
619 	}
620 
621 	/*
622 	 * The section is not biggest or smallest mem_section in the zone, it
623 	 * only creates a hole in the zone. So in this case, we need not
624 	 * change the zone. But perhaps, the zone has only hole data. Thus
625 	 * it check the zone has only hole or not.
626 	 */
627 	pfn = zone_start_pfn;
628 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
629 		ms = __pfn_to_section(pfn);
630 
631 		if (unlikely(!valid_section(ms)))
632 			continue;
633 
634 		if (page_zone(pfn_to_page(pfn)) != zone)
635 			continue;
636 
637 		 /* If the section is current section, it continues the loop */
638 		if (start_pfn == pfn)
639 			continue;
640 
641 		/* If we find valid section, we have nothing to do */
642 		zone_span_writeunlock(zone);
643 		return;
644 	}
645 
646 	/* The zone has no valid section */
647 	zone->zone_start_pfn = 0;
648 	zone->spanned_pages = 0;
649 	zone_span_writeunlock(zone);
650 }
651 
652 static void shrink_pgdat_span(struct pglist_data *pgdat,
653 			      unsigned long start_pfn, unsigned long end_pfn)
654 {
655 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
656 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
657 	unsigned long pgdat_end_pfn = p;
658 	unsigned long pfn;
659 	struct mem_section *ms;
660 	int nid = pgdat->node_id;
661 
662 	if (pgdat_start_pfn == start_pfn) {
663 		/*
664 		 * If the section is smallest section in the pgdat, it need
665 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
666 		 * In this case, we find second smallest valid mem_section
667 		 * for shrinking zone.
668 		 */
669 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
670 						pgdat_end_pfn);
671 		if (pfn) {
672 			pgdat->node_start_pfn = pfn;
673 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
674 		}
675 	} else if (pgdat_end_pfn == end_pfn) {
676 		/*
677 		 * If the section is biggest section in the pgdat, it need
678 		 * shrink pgdat->node_spanned_pages.
679 		 * In this case, we find second biggest valid mem_section for
680 		 * shrinking zone.
681 		 */
682 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
683 					       start_pfn);
684 		if (pfn)
685 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
686 	}
687 
688 	/*
689 	 * If the section is not biggest or smallest mem_section in the pgdat,
690 	 * it only creates a hole in the pgdat. So in this case, we need not
691 	 * change the pgdat.
692 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
693 	 * has only hole or not.
694 	 */
695 	pfn = pgdat_start_pfn;
696 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
697 		ms = __pfn_to_section(pfn);
698 
699 		if (unlikely(!valid_section(ms)))
700 			continue;
701 
702 		if (pfn_to_nid(pfn) != nid)
703 			continue;
704 
705 		 /* If the section is current section, it continues the loop */
706 		if (start_pfn == pfn)
707 			continue;
708 
709 		/* If we find valid section, we have nothing to do */
710 		return;
711 	}
712 
713 	/* The pgdat has no valid section */
714 	pgdat->node_start_pfn = 0;
715 	pgdat->node_spanned_pages = 0;
716 }
717 
718 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
719 {
720 	struct pglist_data *pgdat = zone->zone_pgdat;
721 	int nr_pages = PAGES_PER_SECTION;
722 	int zone_type;
723 	unsigned long flags;
724 
725 	zone_type = zone - pgdat->node_zones;
726 
727 	pgdat_resize_lock(zone->zone_pgdat, &flags);
728 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
729 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
730 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
731 }
732 
733 static int __remove_section(struct zone *zone, struct mem_section *ms)
734 {
735 	unsigned long start_pfn;
736 	int scn_nr;
737 	int ret = -EINVAL;
738 
739 	if (!valid_section(ms))
740 		return ret;
741 
742 	ret = unregister_memory_section(ms);
743 	if (ret)
744 		return ret;
745 
746 	scn_nr = __section_nr(ms);
747 	start_pfn = section_nr_to_pfn(scn_nr);
748 	__remove_zone(zone, start_pfn);
749 
750 	sparse_remove_one_section(zone, ms);
751 	return 0;
752 }
753 
754 /**
755  * __remove_pages() - remove sections of pages from a zone
756  * @zone: zone from which pages need to be removed
757  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
758  * @nr_pages: number of pages to remove (must be multiple of section size)
759  *
760  * Generic helper function to remove section mappings and sysfs entries
761  * for the section of the memory we are removing. Caller needs to make
762  * sure that pages are marked reserved and zones are adjust properly by
763  * calling offline_pages().
764  */
765 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
766 		 unsigned long nr_pages)
767 {
768 	unsigned long i;
769 	int sections_to_remove;
770 	resource_size_t start, size;
771 	int ret = 0;
772 
773 	/*
774 	 * We can only remove entire sections
775 	 */
776 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
777 	BUG_ON(nr_pages % PAGES_PER_SECTION);
778 
779 	start = phys_start_pfn << PAGE_SHIFT;
780 	size = nr_pages * PAGE_SIZE;
781 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
782 	if (ret) {
783 		resource_size_t endres = start + size - 1;
784 
785 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
786 				&start, &endres, ret);
787 	}
788 
789 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
790 	for (i = 0; i < sections_to_remove; i++) {
791 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
792 		ret = __remove_section(zone, __pfn_to_section(pfn));
793 		if (ret)
794 			break;
795 	}
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(__remove_pages);
799 #endif /* CONFIG_MEMORY_HOTREMOVE */
800 
801 int set_online_page_callback(online_page_callback_t callback)
802 {
803 	int rc = -EINVAL;
804 
805 	get_online_mems();
806 	mutex_lock(&online_page_callback_lock);
807 
808 	if (online_page_callback == generic_online_page) {
809 		online_page_callback = callback;
810 		rc = 0;
811 	}
812 
813 	mutex_unlock(&online_page_callback_lock);
814 	put_online_mems();
815 
816 	return rc;
817 }
818 EXPORT_SYMBOL_GPL(set_online_page_callback);
819 
820 int restore_online_page_callback(online_page_callback_t callback)
821 {
822 	int rc = -EINVAL;
823 
824 	get_online_mems();
825 	mutex_lock(&online_page_callback_lock);
826 
827 	if (online_page_callback == callback) {
828 		online_page_callback = generic_online_page;
829 		rc = 0;
830 	}
831 
832 	mutex_unlock(&online_page_callback_lock);
833 	put_online_mems();
834 
835 	return rc;
836 }
837 EXPORT_SYMBOL_GPL(restore_online_page_callback);
838 
839 void __online_page_set_limits(struct page *page)
840 {
841 }
842 EXPORT_SYMBOL_GPL(__online_page_set_limits);
843 
844 void __online_page_increment_counters(struct page *page)
845 {
846 	adjust_managed_page_count(page, 1);
847 }
848 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
849 
850 void __online_page_free(struct page *page)
851 {
852 	__free_reserved_page(page);
853 }
854 EXPORT_SYMBOL_GPL(__online_page_free);
855 
856 static void generic_online_page(struct page *page)
857 {
858 	__online_page_set_limits(page);
859 	__online_page_increment_counters(page);
860 	__online_page_free(page);
861 }
862 
863 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
864 			void *arg)
865 {
866 	unsigned long i;
867 	unsigned long onlined_pages = *(unsigned long *)arg;
868 	struct page *page;
869 	if (PageReserved(pfn_to_page(start_pfn)))
870 		for (i = 0; i < nr_pages; i++) {
871 			page = pfn_to_page(start_pfn + i);
872 			(*online_page_callback)(page);
873 			onlined_pages++;
874 		}
875 	*(unsigned long *)arg = onlined_pages;
876 	return 0;
877 }
878 
879 #ifdef CONFIG_MOVABLE_NODE
880 /*
881  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
882  * normal memory.
883  */
884 static bool can_online_high_movable(struct zone *zone)
885 {
886 	return true;
887 }
888 #else /* CONFIG_MOVABLE_NODE */
889 /* ensure every online node has NORMAL memory */
890 static bool can_online_high_movable(struct zone *zone)
891 {
892 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
893 }
894 #endif /* CONFIG_MOVABLE_NODE */
895 
896 /* check which state of node_states will be changed when online memory */
897 static void node_states_check_changes_online(unsigned long nr_pages,
898 	struct zone *zone, struct memory_notify *arg)
899 {
900 	int nid = zone_to_nid(zone);
901 	enum zone_type zone_last = ZONE_NORMAL;
902 
903 	/*
904 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
905 	 * contains nodes which have zones of 0...ZONE_NORMAL,
906 	 * set zone_last to ZONE_NORMAL.
907 	 *
908 	 * If we don't have HIGHMEM nor movable node,
909 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
910 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
911 	 */
912 	if (N_MEMORY == N_NORMAL_MEMORY)
913 		zone_last = ZONE_MOVABLE;
914 
915 	/*
916 	 * if the memory to be online is in a zone of 0...zone_last, and
917 	 * the zones of 0...zone_last don't have memory before online, we will
918 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
919 	 * the memory is online.
920 	 */
921 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
922 		arg->status_change_nid_normal = nid;
923 	else
924 		arg->status_change_nid_normal = -1;
925 
926 #ifdef CONFIG_HIGHMEM
927 	/*
928 	 * If we have movable node, node_states[N_HIGH_MEMORY]
929 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
930 	 * set zone_last to ZONE_HIGHMEM.
931 	 *
932 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
933 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
934 	 * set zone_last to ZONE_MOVABLE.
935 	 */
936 	zone_last = ZONE_HIGHMEM;
937 	if (N_MEMORY == N_HIGH_MEMORY)
938 		zone_last = ZONE_MOVABLE;
939 
940 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
941 		arg->status_change_nid_high = nid;
942 	else
943 		arg->status_change_nid_high = -1;
944 #else
945 	arg->status_change_nid_high = arg->status_change_nid_normal;
946 #endif
947 
948 	/*
949 	 * if the node don't have memory befor online, we will need to
950 	 * set the node to node_states[N_MEMORY] after the memory
951 	 * is online.
952 	 */
953 	if (!node_state(nid, N_MEMORY))
954 		arg->status_change_nid = nid;
955 	else
956 		arg->status_change_nid = -1;
957 }
958 
959 static void node_states_set_node(int node, struct memory_notify *arg)
960 {
961 	if (arg->status_change_nid_normal >= 0)
962 		node_set_state(node, N_NORMAL_MEMORY);
963 
964 	if (arg->status_change_nid_high >= 0)
965 		node_set_state(node, N_HIGH_MEMORY);
966 
967 	node_set_state(node, N_MEMORY);
968 }
969 
970 
971 /* Must be protected by mem_hotplug_begin() */
972 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
973 {
974 	unsigned long flags;
975 	unsigned long onlined_pages = 0;
976 	struct zone *zone;
977 	int need_zonelists_rebuild = 0;
978 	int nid;
979 	int ret;
980 	struct memory_notify arg;
981 
982 	/*
983 	 * This doesn't need a lock to do pfn_to_page().
984 	 * The section can't be removed here because of the
985 	 * memory_block->state_mutex.
986 	 */
987 	zone = page_zone(pfn_to_page(pfn));
988 
989 	if ((zone_idx(zone) > ZONE_NORMAL ||
990 	    online_type == MMOP_ONLINE_MOVABLE) &&
991 	    !can_online_high_movable(zone))
992 		return -EINVAL;
993 
994 	if (online_type == MMOP_ONLINE_KERNEL &&
995 	    zone_idx(zone) == ZONE_MOVABLE) {
996 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
997 			return -EINVAL;
998 	}
999 	if (online_type == MMOP_ONLINE_MOVABLE &&
1000 	    zone_idx(zone) == ZONE_MOVABLE - 1) {
1001 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1002 			return -EINVAL;
1003 	}
1004 
1005 	/* Previous code may changed the zone of the pfn range */
1006 	zone = page_zone(pfn_to_page(pfn));
1007 
1008 	arg.start_pfn = pfn;
1009 	arg.nr_pages = nr_pages;
1010 	node_states_check_changes_online(nr_pages, zone, &arg);
1011 
1012 	nid = pfn_to_nid(pfn);
1013 
1014 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1015 	ret = notifier_to_errno(ret);
1016 	if (ret) {
1017 		memory_notify(MEM_CANCEL_ONLINE, &arg);
1018 		return ret;
1019 	}
1020 	/*
1021 	 * If this zone is not populated, then it is not in zonelist.
1022 	 * This means the page allocator ignores this zone.
1023 	 * So, zonelist must be updated after online.
1024 	 */
1025 	mutex_lock(&zonelists_mutex);
1026 	if (!populated_zone(zone)) {
1027 		need_zonelists_rebuild = 1;
1028 		build_all_zonelists(NULL, zone);
1029 	}
1030 
1031 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1032 		online_pages_range);
1033 	if (ret) {
1034 		if (need_zonelists_rebuild)
1035 			zone_pcp_reset(zone);
1036 		mutex_unlock(&zonelists_mutex);
1037 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1038 		       (unsigned long long) pfn << PAGE_SHIFT,
1039 		       (((unsigned long long) pfn + nr_pages)
1040 			    << PAGE_SHIFT) - 1);
1041 		memory_notify(MEM_CANCEL_ONLINE, &arg);
1042 		return ret;
1043 	}
1044 
1045 	zone->present_pages += onlined_pages;
1046 
1047 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1048 	zone->zone_pgdat->node_present_pages += onlined_pages;
1049 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1050 
1051 	if (onlined_pages) {
1052 		node_states_set_node(zone_to_nid(zone), &arg);
1053 		if (need_zonelists_rebuild)
1054 			build_all_zonelists(NULL, NULL);
1055 		else
1056 			zone_pcp_update(zone);
1057 	}
1058 
1059 	mutex_unlock(&zonelists_mutex);
1060 
1061 	init_per_zone_wmark_min();
1062 
1063 	if (onlined_pages)
1064 		kswapd_run(zone_to_nid(zone));
1065 
1066 	vm_total_pages = nr_free_pagecache_pages();
1067 
1068 	writeback_set_ratelimit();
1069 
1070 	if (onlined_pages)
1071 		memory_notify(MEM_ONLINE, &arg);
1072 	return 0;
1073 }
1074 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1075 
1076 static void reset_node_present_pages(pg_data_t *pgdat)
1077 {
1078 	struct zone *z;
1079 
1080 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1081 		z->present_pages = 0;
1082 
1083 	pgdat->node_present_pages = 0;
1084 }
1085 
1086 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1087 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1088 {
1089 	struct pglist_data *pgdat;
1090 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1091 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1092 	unsigned long start_pfn = PFN_DOWN(start);
1093 
1094 	pgdat = NODE_DATA(nid);
1095 	if (!pgdat) {
1096 		pgdat = arch_alloc_nodedata(nid);
1097 		if (!pgdat)
1098 			return NULL;
1099 
1100 		arch_refresh_nodedata(nid, pgdat);
1101 	} else {
1102 		/* Reset the nr_zones and classzone_idx to 0 before reuse */
1103 		pgdat->nr_zones = 0;
1104 		pgdat->classzone_idx = 0;
1105 	}
1106 
1107 	/* we can use NODE_DATA(nid) from here */
1108 
1109 	/* init node's zones as empty zones, we don't have any present pages.*/
1110 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1111 
1112 	/*
1113 	 * The node we allocated has no zone fallback lists. For avoiding
1114 	 * to access not-initialized zonelist, build here.
1115 	 */
1116 	mutex_lock(&zonelists_mutex);
1117 	build_all_zonelists(pgdat, NULL);
1118 	mutex_unlock(&zonelists_mutex);
1119 
1120 	/*
1121 	 * zone->managed_pages is set to an approximate value in
1122 	 * free_area_init_core(), which will cause
1123 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1124 	 * So reset it to 0 before any memory is onlined.
1125 	 */
1126 	reset_node_managed_pages(pgdat);
1127 
1128 	/*
1129 	 * When memory is hot-added, all the memory is in offline state. So
1130 	 * clear all zones' present_pages because they will be updated in
1131 	 * online_pages() and offline_pages().
1132 	 */
1133 	reset_node_present_pages(pgdat);
1134 
1135 	return pgdat;
1136 }
1137 
1138 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1139 {
1140 	arch_refresh_nodedata(nid, NULL);
1141 	arch_free_nodedata(pgdat);
1142 	return;
1143 }
1144 
1145 
1146 /**
1147  * try_online_node - online a node if offlined
1148  *
1149  * called by cpu_up() to online a node without onlined memory.
1150  */
1151 int try_online_node(int nid)
1152 {
1153 	pg_data_t	*pgdat;
1154 	int	ret;
1155 
1156 	if (node_online(nid))
1157 		return 0;
1158 
1159 	mem_hotplug_begin();
1160 	pgdat = hotadd_new_pgdat(nid, 0);
1161 	if (!pgdat) {
1162 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1163 		ret = -ENOMEM;
1164 		goto out;
1165 	}
1166 	node_set_online(nid);
1167 	ret = register_one_node(nid);
1168 	BUG_ON(ret);
1169 
1170 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1171 		mutex_lock(&zonelists_mutex);
1172 		build_all_zonelists(NULL, NULL);
1173 		mutex_unlock(&zonelists_mutex);
1174 	}
1175 
1176 out:
1177 	mem_hotplug_done();
1178 	return ret;
1179 }
1180 
1181 static int check_hotplug_memory_range(u64 start, u64 size)
1182 {
1183 	u64 start_pfn = PFN_DOWN(start);
1184 	u64 nr_pages = size >> PAGE_SHIFT;
1185 
1186 	/* Memory range must be aligned with section */
1187 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1188 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1189 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1190 				(unsigned long long)start,
1191 				(unsigned long long)size);
1192 		return -EINVAL;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * If movable zone has already been setup, newly added memory should be check.
1200  * If its address is higher than movable zone, it should be added as movable.
1201  * Without this check, movable zone may overlap with other zone.
1202  */
1203 static int should_add_memory_movable(int nid, u64 start, u64 size)
1204 {
1205 	unsigned long start_pfn = start >> PAGE_SHIFT;
1206 	pg_data_t *pgdat = NODE_DATA(nid);
1207 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1208 
1209 	if (zone_is_empty(movable_zone))
1210 		return 0;
1211 
1212 	if (movable_zone->zone_start_pfn <= start_pfn)
1213 		return 1;
1214 
1215 	return 0;
1216 }
1217 
1218 int zone_for_memory(int nid, u64 start, u64 size, int zone_default)
1219 {
1220 	if (should_add_memory_movable(nid, start, size))
1221 		return ZONE_MOVABLE;
1222 
1223 	return zone_default;
1224 }
1225 
1226 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1227 int __ref add_memory(int nid, u64 start, u64 size)
1228 {
1229 	pg_data_t *pgdat = NULL;
1230 	bool new_pgdat;
1231 	bool new_node;
1232 	struct resource *res;
1233 	int ret;
1234 
1235 	ret = check_hotplug_memory_range(start, size);
1236 	if (ret)
1237 		return ret;
1238 
1239 	res = register_memory_resource(start, size);
1240 	ret = -EEXIST;
1241 	if (!res)
1242 		return ret;
1243 
1244 	{	/* Stupid hack to suppress address-never-null warning */
1245 		void *p = NODE_DATA(nid);
1246 		new_pgdat = !p;
1247 	}
1248 
1249 	mem_hotplug_begin();
1250 
1251 	new_node = !node_online(nid);
1252 	if (new_node) {
1253 		pgdat = hotadd_new_pgdat(nid, start);
1254 		ret = -ENOMEM;
1255 		if (!pgdat)
1256 			goto error;
1257 	}
1258 
1259 	/* call arch's memory hotadd */
1260 	ret = arch_add_memory(nid, start, size);
1261 
1262 	if (ret < 0)
1263 		goto error;
1264 
1265 	/* we online node here. we can't roll back from here. */
1266 	node_set_online(nid);
1267 
1268 	if (new_node) {
1269 		ret = register_one_node(nid);
1270 		/*
1271 		 * If sysfs file of new node can't create, cpu on the node
1272 		 * can't be hot-added. There is no rollback way now.
1273 		 * So, check by BUG_ON() to catch it reluctantly..
1274 		 */
1275 		BUG_ON(ret);
1276 	}
1277 
1278 	/* create new memmap entry */
1279 	firmware_map_add_hotplug(start, start + size, "System RAM");
1280 	memblock_add_node(start, size, nid);
1281 
1282 	goto out;
1283 
1284 error:
1285 	/* rollback pgdat allocation and others */
1286 	if (new_pgdat)
1287 		rollback_node_hotadd(nid, pgdat);
1288 	release_memory_resource(res);
1289 
1290 out:
1291 	mem_hotplug_done();
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL_GPL(add_memory);
1295 
1296 #ifdef CONFIG_MEMORY_HOTREMOVE
1297 /*
1298  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1299  * set and the size of the free page is given by page_order(). Using this,
1300  * the function determines if the pageblock contains only free pages.
1301  * Due to buddy contraints, a free page at least the size of a pageblock will
1302  * be located at the start of the pageblock
1303  */
1304 static inline int pageblock_free(struct page *page)
1305 {
1306 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1307 }
1308 
1309 /* Return the start of the next active pageblock after a given page */
1310 static struct page *next_active_pageblock(struct page *page)
1311 {
1312 	/* Ensure the starting page is pageblock-aligned */
1313 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1314 
1315 	/* If the entire pageblock is free, move to the end of free page */
1316 	if (pageblock_free(page)) {
1317 		int order;
1318 		/* be careful. we don't have locks, page_order can be changed.*/
1319 		order = page_order(page);
1320 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1321 			return page + (1 << order);
1322 	}
1323 
1324 	return page + pageblock_nr_pages;
1325 }
1326 
1327 /* Checks if this range of memory is likely to be hot-removable. */
1328 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1329 {
1330 	struct page *page = pfn_to_page(start_pfn);
1331 	struct page *end_page = page + nr_pages;
1332 
1333 	/* Check the starting page of each pageblock within the range */
1334 	for (; page < end_page; page = next_active_pageblock(page)) {
1335 		if (!is_pageblock_removable_nolock(page))
1336 			return 0;
1337 		cond_resched();
1338 	}
1339 
1340 	/* All pageblocks in the memory block are likely to be hot-removable */
1341 	return 1;
1342 }
1343 
1344 /*
1345  * Confirm all pages in a range [start, end) is belongs to the same zone.
1346  */
1347 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1348 {
1349 	unsigned long pfn;
1350 	struct zone *zone = NULL;
1351 	struct page *page;
1352 	int i;
1353 	for (pfn = start_pfn;
1354 	     pfn < end_pfn;
1355 	     pfn += MAX_ORDER_NR_PAGES) {
1356 		i = 0;
1357 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1358 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1359 			i++;
1360 		if (i == MAX_ORDER_NR_PAGES)
1361 			continue;
1362 		page = pfn_to_page(pfn + i);
1363 		if (zone && page_zone(page) != zone)
1364 			return 0;
1365 		zone = page_zone(page);
1366 	}
1367 	return 1;
1368 }
1369 
1370 /*
1371  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1372  * and hugepages). We scan pfn because it's much easier than scanning over
1373  * linked list. This function returns the pfn of the first found movable
1374  * page if it's found, otherwise 0.
1375  */
1376 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1377 {
1378 	unsigned long pfn;
1379 	struct page *page;
1380 	for (pfn = start; pfn < end; pfn++) {
1381 		if (pfn_valid(pfn)) {
1382 			page = pfn_to_page(pfn);
1383 			if (PageLRU(page))
1384 				return pfn;
1385 			if (PageHuge(page)) {
1386 				if (page_huge_active(page))
1387 					return pfn;
1388 				else
1389 					pfn = round_up(pfn + 1,
1390 						1 << compound_order(page)) - 1;
1391 			}
1392 		}
1393 	}
1394 	return 0;
1395 }
1396 
1397 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1398 static int
1399 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1400 {
1401 	unsigned long pfn;
1402 	struct page *page;
1403 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1404 	int not_managed = 0;
1405 	int ret = 0;
1406 	LIST_HEAD(source);
1407 
1408 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1409 		if (!pfn_valid(pfn))
1410 			continue;
1411 		page = pfn_to_page(pfn);
1412 
1413 		if (PageHuge(page)) {
1414 			struct page *head = compound_head(page);
1415 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1416 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1417 				ret = -EBUSY;
1418 				break;
1419 			}
1420 			if (isolate_huge_page(page, &source))
1421 				move_pages -= 1 << compound_order(head);
1422 			continue;
1423 		}
1424 
1425 		if (!get_page_unless_zero(page))
1426 			continue;
1427 		/*
1428 		 * We can skip free pages. And we can only deal with pages on
1429 		 * LRU.
1430 		 */
1431 		ret = isolate_lru_page(page);
1432 		if (!ret) { /* Success */
1433 			put_page(page);
1434 			list_add_tail(&page->lru, &source);
1435 			move_pages--;
1436 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1437 					    page_is_file_cache(page));
1438 
1439 		} else {
1440 #ifdef CONFIG_DEBUG_VM
1441 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1442 			       pfn);
1443 			dump_page(page, "failed to remove from LRU");
1444 #endif
1445 			put_page(page);
1446 			/* Because we don't have big zone->lock. we should
1447 			   check this again here. */
1448 			if (page_count(page)) {
1449 				not_managed++;
1450 				ret = -EBUSY;
1451 				break;
1452 			}
1453 		}
1454 	}
1455 	if (!list_empty(&source)) {
1456 		if (not_managed) {
1457 			putback_movable_pages(&source);
1458 			goto out;
1459 		}
1460 
1461 		/*
1462 		 * alloc_migrate_target should be improooooved!!
1463 		 * migrate_pages returns # of failed pages.
1464 		 */
1465 		ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1466 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1467 		if (ret)
1468 			putback_movable_pages(&source);
1469 	}
1470 out:
1471 	return ret;
1472 }
1473 
1474 /*
1475  * remove from free_area[] and mark all as Reserved.
1476  */
1477 static int
1478 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1479 			void *data)
1480 {
1481 	__offline_isolated_pages(start, start + nr_pages);
1482 	return 0;
1483 }
1484 
1485 static void
1486 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1487 {
1488 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1489 				offline_isolated_pages_cb);
1490 }
1491 
1492 /*
1493  * Check all pages in range, recoreded as memory resource, are isolated.
1494  */
1495 static int
1496 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1497 			void *data)
1498 {
1499 	int ret;
1500 	long offlined = *(long *)data;
1501 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1502 	offlined = nr_pages;
1503 	if (!ret)
1504 		*(long *)data += offlined;
1505 	return ret;
1506 }
1507 
1508 static long
1509 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1510 {
1511 	long offlined = 0;
1512 	int ret;
1513 
1514 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1515 			check_pages_isolated_cb);
1516 	if (ret < 0)
1517 		offlined = (long)ret;
1518 	return offlined;
1519 }
1520 
1521 #ifdef CONFIG_MOVABLE_NODE
1522 /*
1523  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1524  * normal memory.
1525  */
1526 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1527 {
1528 	return true;
1529 }
1530 #else /* CONFIG_MOVABLE_NODE */
1531 /* ensure the node has NORMAL memory if it is still online */
1532 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1533 {
1534 	struct pglist_data *pgdat = zone->zone_pgdat;
1535 	unsigned long present_pages = 0;
1536 	enum zone_type zt;
1537 
1538 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1539 		present_pages += pgdat->node_zones[zt].present_pages;
1540 
1541 	if (present_pages > nr_pages)
1542 		return true;
1543 
1544 	present_pages = 0;
1545 	for (; zt <= ZONE_MOVABLE; zt++)
1546 		present_pages += pgdat->node_zones[zt].present_pages;
1547 
1548 	/*
1549 	 * we can't offline the last normal memory until all
1550 	 * higher memory is offlined.
1551 	 */
1552 	return present_pages == 0;
1553 }
1554 #endif /* CONFIG_MOVABLE_NODE */
1555 
1556 static int __init cmdline_parse_movable_node(char *p)
1557 {
1558 #ifdef CONFIG_MOVABLE_NODE
1559 	/*
1560 	 * Memory used by the kernel cannot be hot-removed because Linux
1561 	 * cannot migrate the kernel pages. When memory hotplug is
1562 	 * enabled, we should prevent memblock from allocating memory
1563 	 * for the kernel.
1564 	 *
1565 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1566 	 * SRAT is parsed, we don't know about it.
1567 	 *
1568 	 * The kernel image is loaded into memory at very early time. We
1569 	 * cannot prevent this anyway. So on NUMA system, we set any
1570 	 * node the kernel resides in as un-hotpluggable.
1571 	 *
1572 	 * Since on modern servers, one node could have double-digit
1573 	 * gigabytes memory, we can assume the memory around the kernel
1574 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1575 	 * allocate memory near the kernel image to try the best to keep
1576 	 * the kernel away from hotpluggable memory.
1577 	 */
1578 	memblock_set_bottom_up(true);
1579 	movable_node_enabled = true;
1580 #else
1581 	pr_warn("movable_node option not supported\n");
1582 #endif
1583 	return 0;
1584 }
1585 early_param("movable_node", cmdline_parse_movable_node);
1586 
1587 /* check which state of node_states will be changed when offline memory */
1588 static void node_states_check_changes_offline(unsigned long nr_pages,
1589 		struct zone *zone, struct memory_notify *arg)
1590 {
1591 	struct pglist_data *pgdat = zone->zone_pgdat;
1592 	unsigned long present_pages = 0;
1593 	enum zone_type zt, zone_last = ZONE_NORMAL;
1594 
1595 	/*
1596 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1597 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1598 	 * set zone_last to ZONE_NORMAL.
1599 	 *
1600 	 * If we don't have HIGHMEM nor movable node,
1601 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1602 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1603 	 */
1604 	if (N_MEMORY == N_NORMAL_MEMORY)
1605 		zone_last = ZONE_MOVABLE;
1606 
1607 	/*
1608 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1609 	 * If the memory to be offline is in a zone of 0...zone_last,
1610 	 * and it is the last present memory, 0...zone_last will
1611 	 * become empty after offline , thus we can determind we will
1612 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1613 	 */
1614 	for (zt = 0; zt <= zone_last; zt++)
1615 		present_pages += pgdat->node_zones[zt].present_pages;
1616 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1617 		arg->status_change_nid_normal = zone_to_nid(zone);
1618 	else
1619 		arg->status_change_nid_normal = -1;
1620 
1621 #ifdef CONFIG_HIGHMEM
1622 	/*
1623 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1624 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1625 	 * set zone_last to ZONE_HIGHMEM.
1626 	 *
1627 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1628 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1629 	 * set zone_last to ZONE_MOVABLE.
1630 	 */
1631 	zone_last = ZONE_HIGHMEM;
1632 	if (N_MEMORY == N_HIGH_MEMORY)
1633 		zone_last = ZONE_MOVABLE;
1634 
1635 	for (; zt <= zone_last; zt++)
1636 		present_pages += pgdat->node_zones[zt].present_pages;
1637 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1638 		arg->status_change_nid_high = zone_to_nid(zone);
1639 	else
1640 		arg->status_change_nid_high = -1;
1641 #else
1642 	arg->status_change_nid_high = arg->status_change_nid_normal;
1643 #endif
1644 
1645 	/*
1646 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1647 	 */
1648 	zone_last = ZONE_MOVABLE;
1649 
1650 	/*
1651 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1652 	 * If we try to offline the last present @nr_pages from the node,
1653 	 * we can determind we will need to clear the node from
1654 	 * node_states[N_HIGH_MEMORY].
1655 	 */
1656 	for (; zt <= zone_last; zt++)
1657 		present_pages += pgdat->node_zones[zt].present_pages;
1658 	if (nr_pages >= present_pages)
1659 		arg->status_change_nid = zone_to_nid(zone);
1660 	else
1661 		arg->status_change_nid = -1;
1662 }
1663 
1664 static void node_states_clear_node(int node, struct memory_notify *arg)
1665 {
1666 	if (arg->status_change_nid_normal >= 0)
1667 		node_clear_state(node, N_NORMAL_MEMORY);
1668 
1669 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1670 	    (arg->status_change_nid_high >= 0))
1671 		node_clear_state(node, N_HIGH_MEMORY);
1672 
1673 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1674 	    (arg->status_change_nid >= 0))
1675 		node_clear_state(node, N_MEMORY);
1676 }
1677 
1678 static int __ref __offline_pages(unsigned long start_pfn,
1679 		  unsigned long end_pfn, unsigned long timeout)
1680 {
1681 	unsigned long pfn, nr_pages, expire;
1682 	long offlined_pages;
1683 	int ret, drain, retry_max, node;
1684 	unsigned long flags;
1685 	struct zone *zone;
1686 	struct memory_notify arg;
1687 
1688 	/* at least, alignment against pageblock is necessary */
1689 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1690 		return -EINVAL;
1691 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1692 		return -EINVAL;
1693 	/* This makes hotplug much easier...and readable.
1694 	   we assume this for now. .*/
1695 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1696 		return -EINVAL;
1697 
1698 	zone = page_zone(pfn_to_page(start_pfn));
1699 	node = zone_to_nid(zone);
1700 	nr_pages = end_pfn - start_pfn;
1701 
1702 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1703 		return -EINVAL;
1704 
1705 	/* set above range as isolated */
1706 	ret = start_isolate_page_range(start_pfn, end_pfn,
1707 				       MIGRATE_MOVABLE, true);
1708 	if (ret)
1709 		return ret;
1710 
1711 	arg.start_pfn = start_pfn;
1712 	arg.nr_pages = nr_pages;
1713 	node_states_check_changes_offline(nr_pages, zone, &arg);
1714 
1715 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1716 	ret = notifier_to_errno(ret);
1717 	if (ret)
1718 		goto failed_removal;
1719 
1720 	pfn = start_pfn;
1721 	expire = jiffies + timeout;
1722 	drain = 0;
1723 	retry_max = 5;
1724 repeat:
1725 	/* start memory hot removal */
1726 	ret = -EAGAIN;
1727 	if (time_after(jiffies, expire))
1728 		goto failed_removal;
1729 	ret = -EINTR;
1730 	if (signal_pending(current))
1731 		goto failed_removal;
1732 	ret = 0;
1733 	if (drain) {
1734 		lru_add_drain_all();
1735 		cond_resched();
1736 		drain_all_pages(zone);
1737 	}
1738 
1739 	pfn = scan_movable_pages(start_pfn, end_pfn);
1740 	if (pfn) { /* We have movable pages */
1741 		ret = do_migrate_range(pfn, end_pfn);
1742 		if (!ret) {
1743 			drain = 1;
1744 			goto repeat;
1745 		} else {
1746 			if (ret < 0)
1747 				if (--retry_max == 0)
1748 					goto failed_removal;
1749 			yield();
1750 			drain = 1;
1751 			goto repeat;
1752 		}
1753 	}
1754 	/* drain all zone's lru pagevec, this is asynchronous... */
1755 	lru_add_drain_all();
1756 	yield();
1757 	/* drain pcp pages, this is synchronous. */
1758 	drain_all_pages(zone);
1759 	/*
1760 	 * dissolve free hugepages in the memory block before doing offlining
1761 	 * actually in order to make hugetlbfs's object counting consistent.
1762 	 */
1763 	dissolve_free_huge_pages(start_pfn, end_pfn);
1764 	/* check again */
1765 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1766 	if (offlined_pages < 0) {
1767 		ret = -EBUSY;
1768 		goto failed_removal;
1769 	}
1770 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1771 	/* Ok, all of our target is isolated.
1772 	   We cannot do rollback at this point. */
1773 	offline_isolated_pages(start_pfn, end_pfn);
1774 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1775 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1776 	/* removal success */
1777 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1778 	zone->present_pages -= offlined_pages;
1779 
1780 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1781 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1782 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1783 
1784 	init_per_zone_wmark_min();
1785 
1786 	if (!populated_zone(zone)) {
1787 		zone_pcp_reset(zone);
1788 		mutex_lock(&zonelists_mutex);
1789 		build_all_zonelists(NULL, NULL);
1790 		mutex_unlock(&zonelists_mutex);
1791 	} else
1792 		zone_pcp_update(zone);
1793 
1794 	node_states_clear_node(node, &arg);
1795 	if (arg.status_change_nid >= 0)
1796 		kswapd_stop(node);
1797 
1798 	vm_total_pages = nr_free_pagecache_pages();
1799 	writeback_set_ratelimit();
1800 
1801 	memory_notify(MEM_OFFLINE, &arg);
1802 	return 0;
1803 
1804 failed_removal:
1805 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1806 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1807 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1808 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1809 	/* pushback to free area */
1810 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1811 	return ret;
1812 }
1813 
1814 /* Must be protected by mem_hotplug_begin() */
1815 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1816 {
1817 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1818 }
1819 #endif /* CONFIG_MEMORY_HOTREMOVE */
1820 
1821 /**
1822  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1823  * @start_pfn: start pfn of the memory range
1824  * @end_pfn: end pfn of the memory range
1825  * @arg: argument passed to func
1826  * @func: callback for each memory section walked
1827  *
1828  * This function walks through all present mem sections in range
1829  * [start_pfn, end_pfn) and call func on each mem section.
1830  *
1831  * Returns the return value of func.
1832  */
1833 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1834 		void *arg, int (*func)(struct memory_block *, void *))
1835 {
1836 	struct memory_block *mem = NULL;
1837 	struct mem_section *section;
1838 	unsigned long pfn, section_nr;
1839 	int ret;
1840 
1841 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1842 		section_nr = pfn_to_section_nr(pfn);
1843 		if (!present_section_nr(section_nr))
1844 			continue;
1845 
1846 		section = __nr_to_section(section_nr);
1847 		/* same memblock? */
1848 		if (mem)
1849 			if ((section_nr >= mem->start_section_nr) &&
1850 			    (section_nr <= mem->end_section_nr))
1851 				continue;
1852 
1853 		mem = find_memory_block_hinted(section, mem);
1854 		if (!mem)
1855 			continue;
1856 
1857 		ret = func(mem, arg);
1858 		if (ret) {
1859 			kobject_put(&mem->dev.kobj);
1860 			return ret;
1861 		}
1862 	}
1863 
1864 	if (mem)
1865 		kobject_put(&mem->dev.kobj);
1866 
1867 	return 0;
1868 }
1869 
1870 #ifdef CONFIG_MEMORY_HOTREMOVE
1871 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1872 {
1873 	int ret = !is_memblock_offlined(mem);
1874 
1875 	if (unlikely(ret)) {
1876 		phys_addr_t beginpa, endpa;
1877 
1878 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1879 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1880 		pr_warn("removing memory fails, because memory "
1881 			"[%pa-%pa] is onlined\n",
1882 			&beginpa, &endpa);
1883 	}
1884 
1885 	return ret;
1886 }
1887 
1888 static int check_cpu_on_node(pg_data_t *pgdat)
1889 {
1890 	int cpu;
1891 
1892 	for_each_present_cpu(cpu) {
1893 		if (cpu_to_node(cpu) == pgdat->node_id)
1894 			/*
1895 			 * the cpu on this node isn't removed, and we can't
1896 			 * offline this node.
1897 			 */
1898 			return -EBUSY;
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 static void unmap_cpu_on_node(pg_data_t *pgdat)
1905 {
1906 #ifdef CONFIG_ACPI_NUMA
1907 	int cpu;
1908 
1909 	for_each_possible_cpu(cpu)
1910 		if (cpu_to_node(cpu) == pgdat->node_id)
1911 			numa_clear_node(cpu);
1912 #endif
1913 }
1914 
1915 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1916 {
1917 	int ret;
1918 
1919 	ret = check_cpu_on_node(pgdat);
1920 	if (ret)
1921 		return ret;
1922 
1923 	/*
1924 	 * the node will be offlined when we come here, so we can clear
1925 	 * the cpu_to_node() now.
1926 	 */
1927 
1928 	unmap_cpu_on_node(pgdat);
1929 	return 0;
1930 }
1931 
1932 /**
1933  * try_offline_node
1934  *
1935  * Offline a node if all memory sections and cpus of the node are removed.
1936  *
1937  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1938  * and online/offline operations before this call.
1939  */
1940 void try_offline_node(int nid)
1941 {
1942 	pg_data_t *pgdat = NODE_DATA(nid);
1943 	unsigned long start_pfn = pgdat->node_start_pfn;
1944 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1945 	unsigned long pfn;
1946 	int i;
1947 
1948 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1949 		unsigned long section_nr = pfn_to_section_nr(pfn);
1950 
1951 		if (!present_section_nr(section_nr))
1952 			continue;
1953 
1954 		if (pfn_to_nid(pfn) != nid)
1955 			continue;
1956 
1957 		/*
1958 		 * some memory sections of this node are not removed, and we
1959 		 * can't offline node now.
1960 		 */
1961 		return;
1962 	}
1963 
1964 	if (check_and_unmap_cpu_on_node(pgdat))
1965 		return;
1966 
1967 	/*
1968 	 * all memory/cpu of this node are removed, we can offline this
1969 	 * node now.
1970 	 */
1971 	node_set_offline(nid);
1972 	unregister_one_node(nid);
1973 
1974 	/* free waittable in each zone */
1975 	for (i = 0; i < MAX_NR_ZONES; i++) {
1976 		struct zone *zone = pgdat->node_zones + i;
1977 
1978 		/*
1979 		 * wait_table may be allocated from boot memory,
1980 		 * here only free if it's allocated by vmalloc.
1981 		 */
1982 		if (is_vmalloc_addr(zone->wait_table)) {
1983 			vfree(zone->wait_table);
1984 			zone->wait_table = NULL;
1985 		}
1986 	}
1987 }
1988 EXPORT_SYMBOL(try_offline_node);
1989 
1990 /**
1991  * remove_memory
1992  *
1993  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1994  * and online/offline operations before this call, as required by
1995  * try_offline_node().
1996  */
1997 void __ref remove_memory(int nid, u64 start, u64 size)
1998 {
1999 	int ret;
2000 
2001 	BUG_ON(check_hotplug_memory_range(start, size));
2002 
2003 	mem_hotplug_begin();
2004 
2005 	/*
2006 	 * All memory blocks must be offlined before removing memory.  Check
2007 	 * whether all memory blocks in question are offline and trigger a BUG()
2008 	 * if this is not the case.
2009 	 */
2010 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2011 				check_memblock_offlined_cb);
2012 	if (ret)
2013 		BUG();
2014 
2015 	/* remove memmap entry */
2016 	firmware_map_remove(start, start + size, "System RAM");
2017 	memblock_free(start, size);
2018 	memblock_remove(start, size);
2019 
2020 	arch_remove_memory(start, size);
2021 
2022 	try_offline_node(nid);
2023 
2024 	mem_hotplug_done();
2025 }
2026 EXPORT_SYMBOL_GPL(remove_memory);
2027 #endif /* CONFIG_MEMORY_HOTREMOVE */
2028