xref: /linux/mm/memory_hotplug.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 enum {
45 	MEMMAP_ON_MEMORY_DISABLE = 0,
46 	MEMMAP_ON_MEMORY_ENABLE,
47 	MEMMAP_ON_MEMORY_FORCE,
48 };
49 
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51 
52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56 
57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60 
61 	/*
62 	 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 	 * vmemmap size to cover full pageblocks. That way, we can add memory
64 	 * even if the vmemmap size is not properly aligned, however, we might waste
65 	 * memory.
66 	 */
67 	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 		return pageblock_align(nr_pages);
69 	return nr_pages;
70 }
71 
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74  * memory_hotplug.memmap_on_memory parameter
75  */
76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 	int ret, mode;
79 	bool enabled;
80 
81 	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
82 		mode = MEMMAP_ON_MEMORY_FORCE;
83 	} else {
84 		ret = kstrtobool(val, &enabled);
85 		if (ret < 0)
86 			return ret;
87 		if (enabled)
88 			mode = MEMMAP_ON_MEMORY_ENABLE;
89 		else
90 			mode = MEMMAP_ON_MEMORY_DISABLE;
91 	}
92 	*((int *)kp->arg) = mode;
93 	if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95 
96 		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 			     memmap_pages - PFN_UP(memory_block_memmap_size()));
98 	}
99 	return 0;
100 }
101 
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 	int mode = *((int *)kp->arg);
105 
106 	if (mode == MEMMAP_ON_MEMORY_FORCE)
107 		return sprintf(buffer, "force\n");
108 	return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110 
111 static const struct kernel_param_ops memmap_mode_ops = {
112 	.set = set_memmap_mode,
113 	.get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 		 "With value \"force\" it could result in memory wastage due "
118 		 "to memmap size limitations (Y/N/force)");
119 
120 static inline bool mhp_memmap_on_memory(void)
121 {
122 	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
125 static inline bool mhp_memmap_on_memory(void)
126 {
127 	return false;
128 }
129 #endif
130 
131 enum {
132 	ONLINE_POLICY_CONTIG_ZONES = 0,
133 	ONLINE_POLICY_AUTO_MOVABLE,
134 };
135 
136 static const char * const online_policy_to_str[] = {
137 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140 
141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 	int ret = sysfs_match_string(online_policy_to_str, val);
144 
145 	if (ret < 0)
146 		return ret;
147 	*((int *)kp->arg) = ret;
148 	return 0;
149 }
150 
151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155 
156 /*
157  * memory_hotplug.online_policy: configure online behavior when onlining without
158  * specifying a zone (MMOP_ONLINE)
159  *
160  * "contig-zones": keep zone contiguous
161  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
163  */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 	.set = set_online_policy,
167 	.get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
172 		"Default: \"contig-zones\"");
173 
174 /*
175  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176  *
177  * The ratio represent an upper limit and the kernel might decide to not
178  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179  * doesn't allow for more MOVABLE memory.
180  */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 		"in percent for \"auto-movable\" online policy. Default: 301");
186 
187 /*
188  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189  */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 		"Consider numa node stats in addition to global stats in "
195 		"\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197 
198 /*
199  * online_page_callback contains pointer to current page onlining function.
200  * Initially it is generic_online_page(). If it is required it could be
201  * changed by calling set_online_page_callback() for callback registration
202  * and restore_online_page_callback() for generic callback restore.
203  */
204 
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207 
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209 
210 void get_online_mems(void)
211 {
212 	percpu_down_read(&mem_hotplug_lock);
213 }
214 
215 void put_online_mems(void)
216 {
217 	percpu_up_read(&mem_hotplug_lock);
218 }
219 
220 bool movable_node_enabled = false;
221 
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
227 
228 static int __init setup_memhp_default_state(char *str)
229 {
230 	const int online_type = mhp_online_type_from_str(str);
231 
232 	if (online_type >= 0)
233 		mhp_default_online_type = online_type;
234 
235 	return 1;
236 }
237 __setup("memhp_default_state=", setup_memhp_default_state);
238 
239 void mem_hotplug_begin(void)
240 {
241 	cpus_read_lock();
242 	percpu_down_write(&mem_hotplug_lock);
243 }
244 
245 void mem_hotplug_done(void)
246 {
247 	percpu_up_write(&mem_hotplug_lock);
248 	cpus_read_unlock();
249 }
250 
251 u64 max_mem_size = U64_MAX;
252 
253 /* add this memory to iomem resource */
254 static struct resource *register_memory_resource(u64 start, u64 size,
255 						 const char *resource_name)
256 {
257 	struct resource *res;
258 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259 
260 	if (strcmp(resource_name, "System RAM"))
261 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262 
263 	if (!mhp_range_allowed(start, size, true))
264 		return ERR_PTR(-E2BIG);
265 
266 	/*
267 	 * Make sure value parsed from 'mem=' only restricts memory adding
268 	 * while booting, so that memory hotplug won't be impacted. Please
269 	 * refer to document of 'mem=' in kernel-parameters.txt for more
270 	 * details.
271 	 */
272 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 		return ERR_PTR(-E2BIG);
274 
275 	/*
276 	 * Request ownership of the new memory range.  This might be
277 	 * a child of an existing resource that was present but
278 	 * not marked as busy.
279 	 */
280 	res = __request_region(&iomem_resource, start, size,
281 			       resource_name, flags);
282 
283 	if (!res) {
284 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 				start, start + size);
286 		return ERR_PTR(-EEXIST);
287 	}
288 	return res;
289 }
290 
291 static void release_memory_resource(struct resource *res)
292 {
293 	if (!res)
294 		return;
295 	release_resource(res);
296 	kfree(res);
297 }
298 
299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300 {
301 	/*
302 	 * Disallow all operations smaller than a sub-section and only
303 	 * allow operations smaller than a section for
304 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 	 * enforces a larger memory_block_size_bytes() granularity for
306 	 * memory that will be marked online, so this check should only
307 	 * fire for direct arch_{add,remove}_memory() users outside of
308 	 * add_memory_resource().
309 	 */
310 	unsigned long min_align;
311 
312 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 		min_align = PAGES_PER_SUBSECTION;
314 	else
315 		min_align = PAGES_PER_SECTION;
316 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 		return -EINVAL;
318 	return 0;
319 }
320 
321 /*
322  * Return page for the valid pfn only if the page is online. All pfn
323  * walkers which rely on the fully initialized page->flags and others
324  * should use this rather than pfn_valid && pfn_to_page
325  */
326 struct page *pfn_to_online_page(unsigned long pfn)
327 {
328 	unsigned long nr = pfn_to_section_nr(pfn);
329 	struct dev_pagemap *pgmap;
330 	struct mem_section *ms;
331 
332 	if (nr >= NR_MEM_SECTIONS)
333 		return NULL;
334 
335 	ms = __nr_to_section(nr);
336 	if (!online_section(ms))
337 		return NULL;
338 
339 	/*
340 	 * Save some code text when online_section() +
341 	 * pfn_section_valid() are sufficient.
342 	 */
343 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 		return NULL;
345 
346 	if (!pfn_section_valid(ms, pfn))
347 		return NULL;
348 
349 	if (!online_device_section(ms))
350 		return pfn_to_page(pfn);
351 
352 	/*
353 	 * Slowpath: when ZONE_DEVICE collides with
354 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 	 * the section may be 'offline' but 'valid'. Only
356 	 * get_dev_pagemap() can determine sub-section online status.
357 	 */
358 	pgmap = get_dev_pagemap(pfn, NULL);
359 	put_dev_pagemap(pgmap);
360 
361 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 	if (pgmap)
363 		return NULL;
364 
365 	return pfn_to_page(pfn);
366 }
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
368 
369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 		struct mhp_params *params)
371 {
372 	const unsigned long end_pfn = pfn + nr_pages;
373 	unsigned long cur_nr_pages;
374 	int err;
375 	struct vmem_altmap *altmap = params->altmap;
376 
377 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 		return -EINVAL;
379 
380 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381 
382 	if (altmap) {
383 		/*
384 		 * Validate altmap is within bounds of the total request
385 		 */
386 		if (altmap->base_pfn != pfn
387 				|| vmem_altmap_offset(altmap) > nr_pages) {
388 			pr_warn_once("memory add fail, invalid altmap\n");
389 			return -EINVAL;
390 		}
391 		altmap->alloc = 0;
392 	}
393 
394 	if (check_pfn_span(pfn, nr_pages)) {
395 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 		return -EINVAL;
397 	}
398 
399 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 		/* Select all remaining pages up to the next section boundary */
401 		cur_nr_pages = min(end_pfn - pfn,
402 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
403 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 					 params->pgmap);
405 		if (err)
406 			break;
407 		cond_resched();
408 	}
409 	vmemmap_populate_print_last();
410 	return err;
411 }
412 
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 				     unsigned long start_pfn,
416 				     unsigned long end_pfn)
417 {
418 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 		if (unlikely(!pfn_to_online_page(start_pfn)))
420 			continue;
421 
422 		if (unlikely(pfn_to_nid(start_pfn) != nid))
423 			continue;
424 
425 		if (zone != page_zone(pfn_to_page(start_pfn)))
426 			continue;
427 
428 		return start_pfn;
429 	}
430 
431 	return 0;
432 }
433 
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 				    unsigned long start_pfn,
437 				    unsigned long end_pfn)
438 {
439 	unsigned long pfn;
440 
441 	/* pfn is the end pfn of a memory section. */
442 	pfn = end_pfn - 1;
443 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 		if (unlikely(!pfn_to_online_page(pfn)))
445 			continue;
446 
447 		if (unlikely(pfn_to_nid(pfn) != nid))
448 			continue;
449 
450 		if (zone != page_zone(pfn_to_page(pfn)))
451 			continue;
452 
453 		return pfn;
454 	}
455 
456 	return 0;
457 }
458 
459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 			     unsigned long end_pfn)
461 {
462 	unsigned long pfn;
463 	int nid = zone_to_nid(zone);
464 
465 	if (zone->zone_start_pfn == start_pfn) {
466 		/*
467 		 * If the section is smallest section in the zone, it need
468 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 		 * In this case, we find second smallest valid mem_section
470 		 * for shrinking zone.
471 		 */
472 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 						zone_end_pfn(zone));
474 		if (pfn) {
475 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 			zone->zone_start_pfn = pfn;
477 		} else {
478 			zone->zone_start_pfn = 0;
479 			zone->spanned_pages = 0;
480 		}
481 	} else if (zone_end_pfn(zone) == end_pfn) {
482 		/*
483 		 * If the section is biggest section in the zone, it need
484 		 * shrink zone->spanned_pages.
485 		 * In this case, we find second biggest valid mem_section for
486 		 * shrinking zone.
487 		 */
488 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 					       start_pfn);
490 		if (pfn)
491 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 		else {
493 			zone->zone_start_pfn = 0;
494 			zone->spanned_pages = 0;
495 		}
496 	}
497 }
498 
499 static void update_pgdat_span(struct pglist_data *pgdat)
500 {
501 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 	struct zone *zone;
503 
504 	for (zone = pgdat->node_zones;
505 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 		unsigned long end_pfn = zone_end_pfn(zone);
507 
508 		/* No need to lock the zones, they can't change. */
509 		if (!zone->spanned_pages)
510 			continue;
511 		if (!node_end_pfn) {
512 			node_start_pfn = zone->zone_start_pfn;
513 			node_end_pfn = end_pfn;
514 			continue;
515 		}
516 
517 		if (end_pfn > node_end_pfn)
518 			node_end_pfn = end_pfn;
519 		if (zone->zone_start_pfn < node_start_pfn)
520 			node_start_pfn = zone->zone_start_pfn;
521 	}
522 
523 	pgdat->node_start_pfn = node_start_pfn;
524 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525 }
526 
527 void __ref remove_pfn_range_from_zone(struct zone *zone,
528 				      unsigned long start_pfn,
529 				      unsigned long nr_pages)
530 {
531 	const unsigned long end_pfn = start_pfn + nr_pages;
532 	struct pglist_data *pgdat = zone->zone_pgdat;
533 	unsigned long pfn, cur_nr_pages;
534 
535 	/* Poison struct pages because they are now uninitialized again. */
536 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 		cond_resched();
538 
539 		/* Select all remaining pages up to the next section boundary */
540 		cur_nr_pages =
541 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 		page_init_poison(pfn_to_page(pfn),
543 				 sizeof(struct page) * cur_nr_pages);
544 	}
545 
546 	/*
547 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 	 * we will not try to shrink the zones - which is okay as
549 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 	 */
551 	if (zone_is_zone_device(zone))
552 		return;
553 
554 	clear_zone_contiguous(zone);
555 
556 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 	update_pgdat_span(pgdat);
558 
559 	set_zone_contiguous(zone);
560 }
561 
562 /**
563  * __remove_pages() - remove sections of pages
564  * @pfn: starting pageframe (must be aligned to start of a section)
565  * @nr_pages: number of pages to remove (must be multiple of section size)
566  * @altmap: alternative device page map or %NULL if default memmap is used
567  *
568  * Generic helper function to remove section mappings and sysfs entries
569  * for the section of the memory we are removing. Caller needs to make
570  * sure that pages are marked reserved and zones are adjust properly by
571  * calling offline_pages().
572  */
573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 		    struct vmem_altmap *altmap)
575 {
576 	const unsigned long end_pfn = pfn + nr_pages;
577 	unsigned long cur_nr_pages;
578 
579 	if (check_pfn_span(pfn, nr_pages)) {
580 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 		return;
582 	}
583 
584 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 		cond_resched();
586 		/* Select all remaining pages up to the next section boundary */
587 		cur_nr_pages = min(end_pfn - pfn,
588 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
589 		sparse_remove_section(pfn, cur_nr_pages, altmap);
590 	}
591 }
592 
593 int set_online_page_callback(online_page_callback_t callback)
594 {
595 	int rc = -EINVAL;
596 
597 	get_online_mems();
598 	mutex_lock(&online_page_callback_lock);
599 
600 	if (online_page_callback == generic_online_page) {
601 		online_page_callback = callback;
602 		rc = 0;
603 	}
604 
605 	mutex_unlock(&online_page_callback_lock);
606 	put_online_mems();
607 
608 	return rc;
609 }
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
611 
612 int restore_online_page_callback(online_page_callback_t callback)
613 {
614 	int rc = -EINVAL;
615 
616 	get_online_mems();
617 	mutex_lock(&online_page_callback_lock);
618 
619 	if (online_page_callback == callback) {
620 		online_page_callback = generic_online_page;
621 		rc = 0;
622 	}
623 
624 	mutex_unlock(&online_page_callback_lock);
625 	put_online_mems();
626 
627 	return rc;
628 }
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630 
631 void generic_online_page(struct page *page, unsigned int order)
632 {
633 	/*
634 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 	 * so we should map it first. This is better than introducing a special
636 	 * case in page freeing fast path.
637 	 */
638 	debug_pagealloc_map_pages(page, 1 << order);
639 	__free_pages_core(page, order);
640 	totalram_pages_add(1UL << order);
641 }
642 EXPORT_SYMBOL_GPL(generic_online_page);
643 
644 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645 {
646 	const unsigned long end_pfn = start_pfn + nr_pages;
647 	unsigned long pfn;
648 
649 	/*
650 	 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651 	 * decide to not expose all pages to the buddy (e.g., expose them
652 	 * later). We account all pages as being online and belonging to this
653 	 * zone ("present").
654 	 * When using memmap_on_memory, the range might not be aligned to
655 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 	 * this and the first chunk to online will be pageblock_nr_pages.
657 	 */
658 	for (pfn = start_pfn; pfn < end_pfn;) {
659 		int order;
660 
661 		/*
662 		 * Free to online pages in the largest chunks alignment allows.
663 		 *
664 		 * __ffs() behaviour is undefined for 0. start == 0 is
665 		 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666 		 * the case.
667 		 */
668 		if (pfn)
669 			order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670 		else
671 			order = MAX_PAGE_ORDER;
672 
673 		(*online_page_callback)(pfn_to_page(pfn), order);
674 		pfn += (1UL << order);
675 	}
676 
677 	/* mark all involved sections as online */
678 	online_mem_sections(start_pfn, end_pfn);
679 }
680 
681 /* check which state of node_states will be changed when online memory */
682 static void node_states_check_changes_online(unsigned long nr_pages,
683 	struct zone *zone, struct memory_notify *arg)
684 {
685 	int nid = zone_to_nid(zone);
686 
687 	arg->status_change_nid = NUMA_NO_NODE;
688 	arg->status_change_nid_normal = NUMA_NO_NODE;
689 
690 	if (!node_state(nid, N_MEMORY))
691 		arg->status_change_nid = nid;
692 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 		arg->status_change_nid_normal = nid;
694 }
695 
696 static void node_states_set_node(int node, struct memory_notify *arg)
697 {
698 	if (arg->status_change_nid_normal >= 0)
699 		node_set_state(node, N_NORMAL_MEMORY);
700 
701 	if (arg->status_change_nid >= 0)
702 		node_set_state(node, N_MEMORY);
703 }
704 
705 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 		unsigned long nr_pages)
707 {
708 	unsigned long old_end_pfn = zone_end_pfn(zone);
709 
710 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 		zone->zone_start_pfn = start_pfn;
712 
713 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714 }
715 
716 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717                                      unsigned long nr_pages)
718 {
719 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720 
721 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 		pgdat->node_start_pfn = start_pfn;
723 
724 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725 
726 }
727 
728 #ifdef CONFIG_ZONE_DEVICE
729 static void section_taint_zone_device(unsigned long pfn)
730 {
731 	struct mem_section *ms = __pfn_to_section(pfn);
732 
733 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734 }
735 #else
736 static inline void section_taint_zone_device(unsigned long pfn)
737 {
738 }
739 #endif
740 
741 /*
742  * Associate the pfn range with the given zone, initializing the memmaps
743  * and resizing the pgdat/zone data to span the added pages. After this
744  * call, all affected pages are PG_reserved.
745  *
746  * All aligned pageblocks are initialized to the specified migratetype
747  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748  * zone stats (e.g., nr_isolate_pageblock) are touched.
749  */
750 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 				  unsigned long nr_pages,
752 				  struct vmem_altmap *altmap, int migratetype)
753 {
754 	struct pglist_data *pgdat = zone->zone_pgdat;
755 	int nid = pgdat->node_id;
756 
757 	clear_zone_contiguous(zone);
758 
759 	if (zone_is_empty(zone))
760 		init_currently_empty_zone(zone, start_pfn, nr_pages);
761 	resize_zone_range(zone, start_pfn, nr_pages);
762 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
763 
764 	/*
765 	 * Subsection population requires care in pfn_to_online_page().
766 	 * Set the taint to enable the slow path detection of
767 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
768 	 * section.
769 	 */
770 	if (zone_is_zone_device(zone)) {
771 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 			section_taint_zone_device(start_pfn);
773 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 			section_taint_zone_device(start_pfn + nr_pages);
775 	}
776 
777 	/*
778 	 * TODO now we have a visible range of pages which are not associated
779 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 	 * expects the zone spans the pfn range. All the pages in the range
781 	 * are reserved so nobody should be touching them so we should be safe
782 	 */
783 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 			 MEMINIT_HOTPLUG, altmap, migratetype);
785 
786 	set_zone_contiguous(zone);
787 }
788 
789 struct auto_movable_stats {
790 	unsigned long kernel_early_pages;
791 	unsigned long movable_pages;
792 };
793 
794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 					    struct zone *zone)
796 {
797 	if (zone_idx(zone) == ZONE_MOVABLE) {
798 		stats->movable_pages += zone->present_pages;
799 	} else {
800 		stats->kernel_early_pages += zone->present_early_pages;
801 #ifdef CONFIG_CMA
802 		/*
803 		 * CMA pages (never on hotplugged memory) behave like
804 		 * ZONE_MOVABLE.
805 		 */
806 		stats->movable_pages += zone->cma_pages;
807 		stats->kernel_early_pages -= zone->cma_pages;
808 #endif /* CONFIG_CMA */
809 	}
810 }
811 struct auto_movable_group_stats {
812 	unsigned long movable_pages;
813 	unsigned long req_kernel_early_pages;
814 };
815 
816 static int auto_movable_stats_account_group(struct memory_group *group,
817 					   void *arg)
818 {
819 	const int ratio = READ_ONCE(auto_movable_ratio);
820 	struct auto_movable_group_stats *stats = arg;
821 	long pages;
822 
823 	/*
824 	 * We don't support modifying the config while the auto-movable online
825 	 * policy is already enabled. Just avoid the division by zero below.
826 	 */
827 	if (!ratio)
828 		return 0;
829 
830 	/*
831 	 * Calculate how many early kernel pages this group requires to
832 	 * satisfy the configured zone ratio.
833 	 */
834 	pages = group->present_movable_pages * 100 / ratio;
835 	pages -= group->present_kernel_pages;
836 
837 	if (pages > 0)
838 		stats->req_kernel_early_pages += pages;
839 	stats->movable_pages += group->present_movable_pages;
840 	return 0;
841 }
842 
843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 					    unsigned long nr_pages)
845 {
846 	unsigned long kernel_early_pages, movable_pages;
847 	struct auto_movable_group_stats group_stats = {};
848 	struct auto_movable_stats stats = {};
849 	pg_data_t *pgdat = NODE_DATA(nid);
850 	struct zone *zone;
851 	int i;
852 
853 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 	if (nid == NUMA_NO_NODE) {
855 		/* TODO: cache values */
856 		for_each_populated_zone(zone)
857 			auto_movable_stats_account_zone(&stats, zone);
858 	} else {
859 		for (i = 0; i < MAX_NR_ZONES; i++) {
860 			zone = pgdat->node_zones + i;
861 			if (populated_zone(zone))
862 				auto_movable_stats_account_zone(&stats, zone);
863 		}
864 	}
865 
866 	kernel_early_pages = stats.kernel_early_pages;
867 	movable_pages = stats.movable_pages;
868 
869 	/*
870 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 	 * memory within the same group. Remove the effect of all but the
872 	 * current group from the stats.
873 	 */
874 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 				   group, &group_stats);
876 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 		return false;
878 	kernel_early_pages -= group_stats.req_kernel_early_pages;
879 	movable_pages -= group_stats.movable_pages;
880 
881 	if (group && group->is_dynamic)
882 		kernel_early_pages += group->present_kernel_pages;
883 
884 	/*
885 	 * Test if we could online the given number of pages to ZONE_MOVABLE
886 	 * and still stay in the configured ratio.
887 	 */
888 	movable_pages += nr_pages;
889 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890 }
891 
892 /*
893  * Returns a default kernel memory zone for the given pfn range.
894  * If no kernel zone covers this pfn range it will automatically go
895  * to the ZONE_NORMAL.
896  */
897 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 		unsigned long nr_pages)
899 {
900 	struct pglist_data *pgdat = NODE_DATA(nid);
901 	int zid;
902 
903 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 		struct zone *zone = &pgdat->node_zones[zid];
905 
906 		if (zone_intersects(zone, start_pfn, nr_pages))
907 			return zone;
908 	}
909 
910 	return &pgdat->node_zones[ZONE_NORMAL];
911 }
912 
913 /*
914  * Determine to which zone to online memory dynamically based on user
915  * configuration and system stats. We care about the following ratio:
916  *
917  *   MOVABLE : KERNEL
918  *
919  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920  * one of the kernel zones. CMA pages inside one of the kernel zones really
921  * behaves like ZONE_MOVABLE, so we treat them accordingly.
922  *
923  * We don't allow for hotplugged memory in a KERNEL zone to increase the
924  * amount of MOVABLE memory we can have, so we end up with:
925  *
926  *   MOVABLE : KERNEL_EARLY
927  *
928  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929  * boot. We base our calculation on KERNEL_EARLY internally, because:
930  *
931  * a) Hotplugged memory in one of the kernel zones can sometimes still get
932  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
933  *    There is no coordination across memory devices, therefore "automatic"
934  *    hotunplugging, as implemented in hypervisors, could result in zone
935  *    imbalances.
936  * b) Early/boot memory in one of the kernel zones can usually not get
937  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
938  *    with unmovable allocations). While there are corner cases where it might
939  *    still work, it is barely relevant in practice.
940  *
941  * Exceptions are dynamic memory groups, which allow for more MOVABLE
942  * memory within the same memory group -- because in that case, there is
943  * coordination within the single memory device managed by a single driver.
944  *
945  * We rely on "present pages" instead of "managed pages", as the latter is
946  * highly unreliable and dynamic in virtualized environments, and does not
947  * consider boot time allocations. For example, memory ballooning adjusts the
948  * managed pages when inflating/deflating the balloon, and balloon compaction
949  * can even migrate inflated pages between zones.
950  *
951  * Using "present pages" is better but some things to keep in mind are:
952  *
953  * a) Some memblock allocations, such as for the crashkernel area, are
954  *    effectively unused by the kernel, yet they account to "present pages".
955  *    Fortunately, these allocations are comparatively small in relevant setups
956  *    (e.g., fraction of system memory).
957  * b) Some hotplugged memory blocks in virtualized environments, esecially
958  *    hotplugged by virtio-mem, look like they are completely present, however,
959  *    only parts of the memory block are actually currently usable.
960  *    "present pages" is an upper limit that can get reached at runtime. As
961  *    we base our calculations on KERNEL_EARLY, this is not an issue.
962  */
963 static struct zone *auto_movable_zone_for_pfn(int nid,
964 					      struct memory_group *group,
965 					      unsigned long pfn,
966 					      unsigned long nr_pages)
967 {
968 	unsigned long online_pages = 0, max_pages, end_pfn;
969 	struct page *page;
970 
971 	if (!auto_movable_ratio)
972 		goto kernel_zone;
973 
974 	if (group && !group->is_dynamic) {
975 		max_pages = group->s.max_pages;
976 		online_pages = group->present_movable_pages;
977 
978 		/* If anything is !MOVABLE online the rest !MOVABLE. */
979 		if (group->present_kernel_pages)
980 			goto kernel_zone;
981 	} else if (!group || group->d.unit_pages == nr_pages) {
982 		max_pages = nr_pages;
983 	} else {
984 		max_pages = group->d.unit_pages;
985 		/*
986 		 * Take a look at all online sections in the current unit.
987 		 * We can safely assume that all pages within a section belong
988 		 * to the same zone, because dynamic memory groups only deal
989 		 * with hotplugged memory.
990 		 */
991 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 		end_pfn = pfn + group->d.unit_pages;
993 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 			page = pfn_to_online_page(pfn);
995 			if (!page)
996 				continue;
997 			/* If anything is !MOVABLE online the rest !MOVABLE. */
998 			if (!is_zone_movable_page(page))
999 				goto kernel_zone;
1000 			online_pages += PAGES_PER_SECTION;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Online MOVABLE if we could *currently* online all remaining parts
1006 	 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 	 * nobody interferes, all will be MOVABLE if possible.
1008 	 */
1009 	nr_pages = max_pages - online_pages;
1010 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 		goto kernel_zone;
1012 
1013 #ifdef CONFIG_NUMA
1014 	if (auto_movable_numa_aware &&
1015 	    !auto_movable_can_online_movable(nid, group, nr_pages))
1016 		goto kernel_zone;
1017 #endif /* CONFIG_NUMA */
1018 
1019 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020 kernel_zone:
1021 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022 }
1023 
1024 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 		unsigned long nr_pages)
1026 {
1027 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 			nr_pages);
1029 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032 
1033 	/*
1034 	 * We inherit the existing zone in a simple case where zones do not
1035 	 * overlap in the given range
1036 	 */
1037 	if (in_kernel ^ in_movable)
1038 		return (in_kernel) ? kernel_zone : movable_zone;
1039 
1040 	/*
1041 	 * If the range doesn't belong to any zone or two zones overlap in the
1042 	 * given range then we use movable zone only if movable_node is
1043 	 * enabled because we always online to a kernel zone by default.
1044 	 */
1045 	return movable_node_enabled ? movable_zone : kernel_zone;
1046 }
1047 
1048 struct zone *zone_for_pfn_range(int online_type, int nid,
1049 		struct memory_group *group, unsigned long start_pfn,
1050 		unsigned long nr_pages)
1051 {
1052 	if (online_type == MMOP_ONLINE_KERNEL)
1053 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054 
1055 	if (online_type == MMOP_ONLINE_MOVABLE)
1056 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057 
1058 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060 
1061 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062 }
1063 
1064 /*
1065  * This function should only be called by memory_block_{online,offline},
1066  * and {online,offline}_pages.
1067  */
1068 void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 			       long nr_pages)
1070 {
1071 	struct zone *zone = page_zone(page);
1072 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073 
1074 	/*
1075 	 * We only support onlining/offlining/adding/removing of complete
1076 	 * memory blocks; therefore, either all is either early or hotplugged.
1077 	 */
1078 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 		zone->present_early_pages += nr_pages;
1080 	zone->present_pages += nr_pages;
1081 	zone->zone_pgdat->node_present_pages += nr_pages;
1082 
1083 	if (group && movable)
1084 		group->present_movable_pages += nr_pages;
1085 	else if (group && !movable)
1086 		group->present_kernel_pages += nr_pages;
1087 }
1088 
1089 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 			      struct zone *zone)
1091 {
1092 	unsigned long end_pfn = pfn + nr_pages;
1093 	int ret, i;
1094 
1095 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 	if (ret)
1097 		return ret;
1098 
1099 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1100 
1101 	for (i = 0; i < nr_pages; i++)
1102 		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1103 
1104 	/*
1105 	 * It might be that the vmemmap_pages fully span sections. If that is
1106 	 * the case, mark those sections online here as otherwise they will be
1107 	 * left offline.
1108 	 */
1109 	if (nr_pages >= PAGES_PER_SECTION)
1110 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1111 
1112 	return ret;
1113 }
1114 
1115 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1116 {
1117 	unsigned long end_pfn = pfn + nr_pages;
1118 
1119 	/*
1120 	 * It might be that the vmemmap_pages fully span sections. If that is
1121 	 * the case, mark those sections offline here as otherwise they will be
1122 	 * left online.
1123 	 */
1124 	if (nr_pages >= PAGES_PER_SECTION)
1125 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1126 
1127         /*
1128 	 * The pages associated with this vmemmap have been offlined, so
1129 	 * we can reset its state here.
1130 	 */
1131 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1132 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1133 }
1134 
1135 /*
1136  * Must be called with mem_hotplug_lock in write mode.
1137  */
1138 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1139 		       struct zone *zone, struct memory_group *group)
1140 {
1141 	unsigned long flags;
1142 	int need_zonelists_rebuild = 0;
1143 	const int nid = zone_to_nid(zone);
1144 	int ret;
1145 	struct memory_notify arg;
1146 
1147 	/*
1148 	 * {on,off}lining is constrained to full memory sections (or more
1149 	 * precisely to memory blocks from the user space POV).
1150 	 * memmap_on_memory is an exception because it reserves initial part
1151 	 * of the physical memory space for vmemmaps. That space is pageblock
1152 	 * aligned.
1153 	 */
1154 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1155 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1156 		return -EINVAL;
1157 
1158 
1159 	/* associate pfn range with the zone */
1160 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1161 
1162 	arg.start_pfn = pfn;
1163 	arg.nr_pages = nr_pages;
1164 	node_states_check_changes_online(nr_pages, zone, &arg);
1165 
1166 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1167 	ret = notifier_to_errno(ret);
1168 	if (ret)
1169 		goto failed_addition;
1170 
1171 	/*
1172 	 * Fixup the number of isolated pageblocks before marking the sections
1173 	 * onlining, such that undo_isolate_page_range() works correctly.
1174 	 */
1175 	spin_lock_irqsave(&zone->lock, flags);
1176 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1177 	spin_unlock_irqrestore(&zone->lock, flags);
1178 
1179 	/*
1180 	 * If this zone is not populated, then it is not in zonelist.
1181 	 * This means the page allocator ignores this zone.
1182 	 * So, zonelist must be updated after online.
1183 	 */
1184 	if (!populated_zone(zone)) {
1185 		need_zonelists_rebuild = 1;
1186 		setup_zone_pageset(zone);
1187 	}
1188 
1189 	online_pages_range(pfn, nr_pages);
1190 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1191 
1192 	node_states_set_node(nid, &arg);
1193 	if (need_zonelists_rebuild)
1194 		build_all_zonelists(NULL);
1195 
1196 	/* Basic onlining is complete, allow allocation of onlined pages. */
1197 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1198 
1199 	/*
1200 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1201 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1202 	 * zone to make sure the just onlined pages are properly distributed
1203 	 * across the whole freelist - to create an initial shuffle.
1204 	 */
1205 	shuffle_zone(zone);
1206 
1207 	/* reinitialise watermarks and update pcp limits */
1208 	init_per_zone_wmark_min();
1209 
1210 	kswapd_run(nid);
1211 	kcompactd_run(nid);
1212 
1213 	writeback_set_ratelimit();
1214 
1215 	memory_notify(MEM_ONLINE, &arg);
1216 	return 0;
1217 
1218 failed_addition:
1219 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1220 		 (unsigned long long) pfn << PAGE_SHIFT,
1221 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1222 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1223 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1224 	return ret;
1225 }
1226 
1227 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1228 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1229 {
1230 	struct pglist_data *pgdat;
1231 
1232 	/*
1233 	 * NODE_DATA is preallocated (free_area_init) but its internal
1234 	 * state is not allocated completely. Add missing pieces.
1235 	 * Completely offline nodes stay around and they just need
1236 	 * reintialization.
1237 	 */
1238 	pgdat = NODE_DATA(nid);
1239 
1240 	/* init node's zones as empty zones, we don't have any present pages.*/
1241 	free_area_init_core_hotplug(pgdat);
1242 
1243 	/*
1244 	 * The node we allocated has no zone fallback lists. For avoiding
1245 	 * to access not-initialized zonelist, build here.
1246 	 */
1247 	build_all_zonelists(pgdat);
1248 
1249 	return pgdat;
1250 }
1251 
1252 /*
1253  * __try_online_node - online a node if offlined
1254  * @nid: the node ID
1255  * @set_node_online: Whether we want to online the node
1256  * called by cpu_up() to online a node without onlined memory.
1257  *
1258  * Returns:
1259  * 1 -> a new node has been allocated
1260  * 0 -> the node is already online
1261  * -ENOMEM -> the node could not be allocated
1262  */
1263 static int __try_online_node(int nid, bool set_node_online)
1264 {
1265 	pg_data_t *pgdat;
1266 	int ret = 1;
1267 
1268 	if (node_online(nid))
1269 		return 0;
1270 
1271 	pgdat = hotadd_init_pgdat(nid);
1272 	if (!pgdat) {
1273 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1274 		ret = -ENOMEM;
1275 		goto out;
1276 	}
1277 
1278 	if (set_node_online) {
1279 		node_set_online(nid);
1280 		ret = register_one_node(nid);
1281 		BUG_ON(ret);
1282 	}
1283 out:
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Users of this function always want to online/register the node
1289  */
1290 int try_online_node(int nid)
1291 {
1292 	int ret;
1293 
1294 	mem_hotplug_begin();
1295 	ret =  __try_online_node(nid, true);
1296 	mem_hotplug_done();
1297 	return ret;
1298 }
1299 
1300 static int check_hotplug_memory_range(u64 start, u64 size)
1301 {
1302 	/* memory range must be block size aligned */
1303 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1304 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1305 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1306 		       memory_block_size_bytes(), start, size);
1307 		return -EINVAL;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int online_memory_block(struct memory_block *mem, void *arg)
1314 {
1315 	mem->online_type = mhp_default_online_type;
1316 	return device_online(&mem->dev);
1317 }
1318 
1319 #ifndef arch_supports_memmap_on_memory
1320 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1321 {
1322 	/*
1323 	 * As default, we want the vmemmap to span a complete PMD such that we
1324 	 * can map the vmemmap using a single PMD if supported by the
1325 	 * architecture.
1326 	 */
1327 	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1328 }
1329 #endif
1330 
1331 static bool mhp_supports_memmap_on_memory(unsigned long size)
1332 {
1333 	unsigned long vmemmap_size = memory_block_memmap_size();
1334 	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1335 
1336 	/*
1337 	 * Besides having arch support and the feature enabled at runtime, we
1338 	 * need a few more assumptions to hold true:
1339 	 *
1340 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1341 	 *    in memory block granularity. We don't want the vmemmap of online
1342 	 *    memory blocks to reside on offline memory blocks. In the future,
1343 	 *    we might want to support variable-sized memory blocks to make the
1344 	 *    feature more versatile.
1345 	 *
1346 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1347 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1348 	 *    other memory blocks)
1349 	 *
1350 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1351 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1352 	 *    code requires applicable ranges to be page-aligned, for example, to
1353 	 *    set the migratetypes properly.
1354 	 *
1355 	 * TODO: Although we have a check here to make sure that vmemmap pages
1356 	 *       fully populate a PMD, it is not the right place to check for
1357 	 *       this. A much better solution involves improving vmemmap code
1358 	 *       to fallback to base pages when trying to populate vmemmap using
1359 	 *       altmap as an alternative source of memory, and we do not exactly
1360 	 *       populate a single PMD.
1361 	 */
1362 	if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1363 		return false;
1364 
1365 	/*
1366 	 * Make sure the vmemmap allocation is fully contained
1367 	 * so that we always allocate vmemmap memory from altmap area.
1368 	 */
1369 	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1370 		return false;
1371 
1372 	/*
1373 	 * start pfn should be pageblock_nr_pages aligned for correctly
1374 	 * setting migrate types
1375 	 */
1376 	if (!pageblock_aligned(memmap_pages))
1377 		return false;
1378 
1379 	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1380 		/* No effective hotplugged memory doesn't make sense. */
1381 		return false;
1382 
1383 	return arch_supports_memmap_on_memory(vmemmap_size);
1384 }
1385 
1386 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1387 {
1388 	unsigned long memblock_size = memory_block_size_bytes();
1389 	u64 cur_start;
1390 
1391 	/*
1392 	 * For memmap_on_memory, the altmaps were added on a per-memblock
1393 	 * basis; we have to process each individual memory block.
1394 	 */
1395 	for (cur_start = start; cur_start < start + size;
1396 	     cur_start += memblock_size) {
1397 		struct vmem_altmap *altmap = NULL;
1398 		struct memory_block *mem;
1399 
1400 		mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1401 		if (WARN_ON_ONCE(!mem))
1402 			continue;
1403 
1404 		altmap = mem->altmap;
1405 		mem->altmap = NULL;
1406 
1407 		remove_memory_block_devices(cur_start, memblock_size);
1408 
1409 		arch_remove_memory(cur_start, memblock_size, altmap);
1410 
1411 		/* Verify that all vmemmap pages have actually been freed. */
1412 		WARN(altmap->alloc, "Altmap not fully unmapped");
1413 		kfree(altmap);
1414 	}
1415 }
1416 
1417 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1418 					    u64 start, u64 size)
1419 {
1420 	unsigned long memblock_size = memory_block_size_bytes();
1421 	u64 cur_start;
1422 	int ret;
1423 
1424 	for (cur_start = start; cur_start < start + size;
1425 	     cur_start += memblock_size) {
1426 		struct mhp_params params = { .pgprot =
1427 						     pgprot_mhp(PAGE_KERNEL) };
1428 		struct vmem_altmap mhp_altmap = {
1429 			.base_pfn = PHYS_PFN(cur_start),
1430 			.end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1431 		};
1432 
1433 		mhp_altmap.free = memory_block_memmap_on_memory_pages();
1434 		params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1435 					GFP_KERNEL);
1436 		if (!params.altmap) {
1437 			ret = -ENOMEM;
1438 			goto out;
1439 		}
1440 
1441 		/* call arch's memory hotadd */
1442 		ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1443 		if (ret < 0) {
1444 			kfree(params.altmap);
1445 			goto out;
1446 		}
1447 
1448 		/* create memory block devices after memory was added */
1449 		ret = create_memory_block_devices(cur_start, memblock_size,
1450 						  params.altmap, group);
1451 		if (ret) {
1452 			arch_remove_memory(cur_start, memblock_size, NULL);
1453 			kfree(params.altmap);
1454 			goto out;
1455 		}
1456 	}
1457 
1458 	return 0;
1459 out:
1460 	if (ret && cur_start != start)
1461 		remove_memory_blocks_and_altmaps(start, cur_start - start);
1462 	return ret;
1463 }
1464 
1465 /*
1466  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1467  * and online/offline operations (triggered e.g. by sysfs).
1468  *
1469  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1470  */
1471 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1472 {
1473 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1474 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1475 	struct memory_group *group = NULL;
1476 	u64 start, size;
1477 	bool new_node = false;
1478 	int ret;
1479 
1480 	start = res->start;
1481 	size = resource_size(res);
1482 
1483 	ret = check_hotplug_memory_range(start, size);
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (mhp_flags & MHP_NID_IS_MGID) {
1488 		group = memory_group_find_by_id(nid);
1489 		if (!group)
1490 			return -EINVAL;
1491 		nid = group->nid;
1492 	}
1493 
1494 	if (!node_possible(nid)) {
1495 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1496 		return -EINVAL;
1497 	}
1498 
1499 	mem_hotplug_begin();
1500 
1501 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1502 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1503 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1504 		ret = memblock_add_node(start, size, nid, memblock_flags);
1505 		if (ret)
1506 			goto error_mem_hotplug_end;
1507 	}
1508 
1509 	ret = __try_online_node(nid, false);
1510 	if (ret < 0)
1511 		goto error;
1512 	new_node = ret;
1513 
1514 	/*
1515 	 * Self hosted memmap array
1516 	 */
1517 	if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1518 	    mhp_supports_memmap_on_memory(memory_block_size_bytes())) {
1519 		ret = create_altmaps_and_memory_blocks(nid, group, start, size);
1520 		if (ret)
1521 			goto error;
1522 	} else {
1523 		ret = arch_add_memory(nid, start, size, &params);
1524 		if (ret < 0)
1525 			goto error;
1526 
1527 		/* create memory block devices after memory was added */
1528 		ret = create_memory_block_devices(start, size, NULL, group);
1529 		if (ret) {
1530 			arch_remove_memory(start, size, params.altmap);
1531 			goto error;
1532 		}
1533 	}
1534 
1535 	if (new_node) {
1536 		/* If sysfs file of new node can't be created, cpu on the node
1537 		 * can't be hot-added. There is no rollback way now.
1538 		 * So, check by BUG_ON() to catch it reluctantly..
1539 		 * We online node here. We can't roll back from here.
1540 		 */
1541 		node_set_online(nid);
1542 		ret = __register_one_node(nid);
1543 		BUG_ON(ret);
1544 	}
1545 
1546 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1547 					  PFN_UP(start + size - 1),
1548 					  MEMINIT_HOTPLUG);
1549 
1550 	/* create new memmap entry */
1551 	if (!strcmp(res->name, "System RAM"))
1552 		firmware_map_add_hotplug(start, start + size, "System RAM");
1553 
1554 	/* device_online() will take the lock when calling online_pages() */
1555 	mem_hotplug_done();
1556 
1557 	/*
1558 	 * In case we're allowed to merge the resource, flag it and trigger
1559 	 * merging now that adding succeeded.
1560 	 */
1561 	if (mhp_flags & MHP_MERGE_RESOURCE)
1562 		merge_system_ram_resource(res);
1563 
1564 	/* online pages if requested */
1565 	if (mhp_default_online_type != MMOP_OFFLINE)
1566 		walk_memory_blocks(start, size, NULL, online_memory_block);
1567 
1568 	return ret;
1569 error:
1570 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1571 		memblock_remove(start, size);
1572 error_mem_hotplug_end:
1573 	mem_hotplug_done();
1574 	return ret;
1575 }
1576 
1577 /* requires device_hotplug_lock, see add_memory_resource() */
1578 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1579 {
1580 	struct resource *res;
1581 	int ret;
1582 
1583 	res = register_memory_resource(start, size, "System RAM");
1584 	if (IS_ERR(res))
1585 		return PTR_ERR(res);
1586 
1587 	ret = add_memory_resource(nid, res, mhp_flags);
1588 	if (ret < 0)
1589 		release_memory_resource(res);
1590 	return ret;
1591 }
1592 
1593 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1594 {
1595 	int rc;
1596 
1597 	lock_device_hotplug();
1598 	rc = __add_memory(nid, start, size, mhp_flags);
1599 	unlock_device_hotplug();
1600 
1601 	return rc;
1602 }
1603 EXPORT_SYMBOL_GPL(add_memory);
1604 
1605 /*
1606  * Add special, driver-managed memory to the system as system RAM. Such
1607  * memory is not exposed via the raw firmware-provided memmap as system
1608  * RAM, instead, it is detected and added by a driver - during cold boot,
1609  * after a reboot, and after kexec.
1610  *
1611  * Reasons why this memory should not be used for the initial memmap of a
1612  * kexec kernel or for placing kexec images:
1613  * - The booting kernel is in charge of determining how this memory will be
1614  *   used (e.g., use persistent memory as system RAM)
1615  * - Coordination with a hypervisor is required before this memory
1616  *   can be used (e.g., inaccessible parts).
1617  *
1618  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1619  * memory map") are created. Also, the created memory resource is flagged
1620  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1621  * this memory as well (esp., not place kexec images onto it).
1622  *
1623  * The resource_name (visible via /proc/iomem) has to have the format
1624  * "System RAM ($DRIVER)".
1625  */
1626 int add_memory_driver_managed(int nid, u64 start, u64 size,
1627 			      const char *resource_name, mhp_t mhp_flags)
1628 {
1629 	struct resource *res;
1630 	int rc;
1631 
1632 	if (!resource_name ||
1633 	    strstr(resource_name, "System RAM (") != resource_name ||
1634 	    resource_name[strlen(resource_name) - 1] != ')')
1635 		return -EINVAL;
1636 
1637 	lock_device_hotplug();
1638 
1639 	res = register_memory_resource(start, size, resource_name);
1640 	if (IS_ERR(res)) {
1641 		rc = PTR_ERR(res);
1642 		goto out_unlock;
1643 	}
1644 
1645 	rc = add_memory_resource(nid, res, mhp_flags);
1646 	if (rc < 0)
1647 		release_memory_resource(res);
1648 
1649 out_unlock:
1650 	unlock_device_hotplug();
1651 	return rc;
1652 }
1653 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1654 
1655 /*
1656  * Platforms should define arch_get_mappable_range() that provides
1657  * maximum possible addressable physical memory range for which the
1658  * linear mapping could be created. The platform returned address
1659  * range must adhere to these following semantics.
1660  *
1661  * - range.start <= range.end
1662  * - Range includes both end points [range.start..range.end]
1663  *
1664  * There is also a fallback definition provided here, allowing the
1665  * entire possible physical address range in case any platform does
1666  * not define arch_get_mappable_range().
1667  */
1668 struct range __weak arch_get_mappable_range(void)
1669 {
1670 	struct range mhp_range = {
1671 		.start = 0UL,
1672 		.end = -1ULL,
1673 	};
1674 	return mhp_range;
1675 }
1676 
1677 struct range mhp_get_pluggable_range(bool need_mapping)
1678 {
1679 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1680 	struct range mhp_range;
1681 
1682 	if (need_mapping) {
1683 		mhp_range = arch_get_mappable_range();
1684 		if (mhp_range.start > max_phys) {
1685 			mhp_range.start = 0;
1686 			mhp_range.end = 0;
1687 		}
1688 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1689 	} else {
1690 		mhp_range.start = 0;
1691 		mhp_range.end = max_phys;
1692 	}
1693 	return mhp_range;
1694 }
1695 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1696 
1697 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1698 {
1699 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1700 	u64 end = start + size;
1701 
1702 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1703 		return true;
1704 
1705 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1706 		start, end, mhp_range.start, mhp_range.end);
1707 	return false;
1708 }
1709 
1710 #ifdef CONFIG_MEMORY_HOTREMOVE
1711 /*
1712  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1713  * non-lru movable pages and hugepages). Will skip over most unmovable
1714  * pages (esp., pages that can be skipped when offlining), but bail out on
1715  * definitely unmovable pages.
1716  *
1717  * Returns:
1718  *	0 in case a movable page is found and movable_pfn was updated.
1719  *	-ENOENT in case no movable page was found.
1720  *	-EBUSY in case a definitely unmovable page was found.
1721  */
1722 static int scan_movable_pages(unsigned long start, unsigned long end,
1723 			      unsigned long *movable_pfn)
1724 {
1725 	unsigned long pfn;
1726 
1727 	for (pfn = start; pfn < end; pfn++) {
1728 		struct page *page, *head;
1729 		unsigned long skip;
1730 
1731 		if (!pfn_valid(pfn))
1732 			continue;
1733 		page = pfn_to_page(pfn);
1734 		if (PageLRU(page))
1735 			goto found;
1736 		if (__PageMovable(page))
1737 			goto found;
1738 
1739 		/*
1740 		 * PageOffline() pages that are not marked __PageMovable() and
1741 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1742 		 * definitely unmovable. If their reference count would be 0,
1743 		 * they could at least be skipped when offlining memory.
1744 		 */
1745 		if (PageOffline(page) && page_count(page))
1746 			return -EBUSY;
1747 
1748 		if (!PageHuge(page))
1749 			continue;
1750 		head = compound_head(page);
1751 		/*
1752 		 * This test is racy as we hold no reference or lock.  The
1753 		 * hugetlb page could have been free'ed and head is no longer
1754 		 * a hugetlb page before the following check.  In such unlikely
1755 		 * cases false positives and negatives are possible.  Calling
1756 		 * code must deal with these scenarios.
1757 		 */
1758 		if (HPageMigratable(head))
1759 			goto found;
1760 		skip = compound_nr(head) - (pfn - page_to_pfn(head));
1761 		pfn += skip - 1;
1762 	}
1763 	return -ENOENT;
1764 found:
1765 	*movable_pfn = pfn;
1766 	return 0;
1767 }
1768 
1769 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1770 {
1771 	unsigned long pfn;
1772 	struct page *page, *head;
1773 	LIST_HEAD(source);
1774 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1775 				      DEFAULT_RATELIMIT_BURST);
1776 
1777 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1778 		struct folio *folio;
1779 		bool isolated;
1780 
1781 		if (!pfn_valid(pfn))
1782 			continue;
1783 		page = pfn_to_page(pfn);
1784 		folio = page_folio(page);
1785 		head = &folio->page;
1786 
1787 		if (PageHuge(page)) {
1788 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1789 			isolate_hugetlb(folio, &source);
1790 			continue;
1791 		} else if (PageTransHuge(page))
1792 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1793 
1794 		/*
1795 		 * HWPoison pages have elevated reference counts so the migration would
1796 		 * fail on them. It also doesn't make any sense to migrate them in the
1797 		 * first place. Still try to unmap such a page in case it is still mapped
1798 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1799 		 * the unmap as the catch all safety net).
1800 		 */
1801 		if (PageHWPoison(page)) {
1802 			if (WARN_ON(folio_test_lru(folio)))
1803 				folio_isolate_lru(folio);
1804 			if (folio_mapped(folio))
1805 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1806 			continue;
1807 		}
1808 
1809 		if (!get_page_unless_zero(page))
1810 			continue;
1811 		/*
1812 		 * We can skip free pages. And we can deal with pages on
1813 		 * LRU and non-lru movable pages.
1814 		 */
1815 		if (PageLRU(page))
1816 			isolated = isolate_lru_page(page);
1817 		else
1818 			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1819 		if (isolated) {
1820 			list_add_tail(&page->lru, &source);
1821 			if (!__PageMovable(page))
1822 				inc_node_page_state(page, NR_ISOLATED_ANON +
1823 						    page_is_file_lru(page));
1824 
1825 		} else {
1826 			if (__ratelimit(&migrate_rs)) {
1827 				pr_warn("failed to isolate pfn %lx\n", pfn);
1828 				dump_page(page, "isolation failed");
1829 			}
1830 		}
1831 		put_page(page);
1832 	}
1833 	if (!list_empty(&source)) {
1834 		nodemask_t nmask = node_states[N_MEMORY];
1835 		struct migration_target_control mtc = {
1836 			.nmask = &nmask,
1837 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1838 		};
1839 		int ret;
1840 
1841 		/*
1842 		 * We have checked that migration range is on a single zone so
1843 		 * we can use the nid of the first page to all the others.
1844 		 */
1845 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1846 
1847 		/*
1848 		 * try to allocate from a different node but reuse this node
1849 		 * if there are no other online nodes to be used (e.g. we are
1850 		 * offlining a part of the only existing node)
1851 		 */
1852 		node_clear(mtc.nid, nmask);
1853 		if (nodes_empty(nmask))
1854 			node_set(mtc.nid, nmask);
1855 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1856 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1857 		if (ret) {
1858 			list_for_each_entry(page, &source, lru) {
1859 				if (__ratelimit(&migrate_rs)) {
1860 					pr_warn("migrating pfn %lx failed ret:%d\n",
1861 						page_to_pfn(page), ret);
1862 					dump_page(page, "migration failure");
1863 				}
1864 			}
1865 			putback_movable_pages(&source);
1866 		}
1867 	}
1868 }
1869 
1870 static int __init cmdline_parse_movable_node(char *p)
1871 {
1872 	movable_node_enabled = true;
1873 	return 0;
1874 }
1875 early_param("movable_node", cmdline_parse_movable_node);
1876 
1877 /* check which state of node_states will be changed when offline memory */
1878 static void node_states_check_changes_offline(unsigned long nr_pages,
1879 		struct zone *zone, struct memory_notify *arg)
1880 {
1881 	struct pglist_data *pgdat = zone->zone_pgdat;
1882 	unsigned long present_pages = 0;
1883 	enum zone_type zt;
1884 
1885 	arg->status_change_nid = NUMA_NO_NODE;
1886 	arg->status_change_nid_normal = NUMA_NO_NODE;
1887 
1888 	/*
1889 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1890 	 * If the memory to be offline is within the range
1891 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1892 	 * the zones in that range will become empty after the offlining,
1893 	 * thus we can determine that we need to clear the node from
1894 	 * node_states[N_NORMAL_MEMORY].
1895 	 */
1896 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1897 		present_pages += pgdat->node_zones[zt].present_pages;
1898 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1899 		arg->status_change_nid_normal = zone_to_nid(zone);
1900 
1901 	/*
1902 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1903 	 * does not apply as we don't support 32bit.
1904 	 * Here we count the possible pages from ZONE_MOVABLE.
1905 	 * If after having accounted all the pages, we see that the nr_pages
1906 	 * to be offlined is over or equal to the accounted pages,
1907 	 * we know that the node will become empty, and so, we can clear
1908 	 * it for N_MEMORY as well.
1909 	 */
1910 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1911 
1912 	if (nr_pages >= present_pages)
1913 		arg->status_change_nid = zone_to_nid(zone);
1914 }
1915 
1916 static void node_states_clear_node(int node, struct memory_notify *arg)
1917 {
1918 	if (arg->status_change_nid_normal >= 0)
1919 		node_clear_state(node, N_NORMAL_MEMORY);
1920 
1921 	if (arg->status_change_nid >= 0)
1922 		node_clear_state(node, N_MEMORY);
1923 }
1924 
1925 static int count_system_ram_pages_cb(unsigned long start_pfn,
1926 				     unsigned long nr_pages, void *data)
1927 {
1928 	unsigned long *nr_system_ram_pages = data;
1929 
1930 	*nr_system_ram_pages += nr_pages;
1931 	return 0;
1932 }
1933 
1934 /*
1935  * Must be called with mem_hotplug_lock in write mode.
1936  */
1937 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1938 			struct zone *zone, struct memory_group *group)
1939 {
1940 	const unsigned long end_pfn = start_pfn + nr_pages;
1941 	unsigned long pfn, system_ram_pages = 0;
1942 	const int node = zone_to_nid(zone);
1943 	unsigned long flags;
1944 	struct memory_notify arg;
1945 	char *reason;
1946 	int ret;
1947 
1948 	/*
1949 	 * {on,off}lining is constrained to full memory sections (or more
1950 	 * precisely to memory blocks from the user space POV).
1951 	 * memmap_on_memory is an exception because it reserves initial part
1952 	 * of the physical memory space for vmemmaps. That space is pageblock
1953 	 * aligned.
1954 	 */
1955 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1956 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1957 		return -EINVAL;
1958 
1959 	/*
1960 	 * Don't allow to offline memory blocks that contain holes.
1961 	 * Consequently, memory blocks with holes can never get onlined
1962 	 * via the hotplug path - online_pages() - as hotplugged memory has
1963 	 * no holes. This way, we e.g., don't have to worry about marking
1964 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1965 	 * avoid using walk_system_ram_range() later.
1966 	 */
1967 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1968 			      count_system_ram_pages_cb);
1969 	if (system_ram_pages != nr_pages) {
1970 		ret = -EINVAL;
1971 		reason = "memory holes";
1972 		goto failed_removal;
1973 	}
1974 
1975 	/*
1976 	 * We only support offlining of memory blocks managed by a single zone,
1977 	 * checked by calling code. This is just a sanity check that we might
1978 	 * want to remove in the future.
1979 	 */
1980 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1981 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1982 		ret = -EINVAL;
1983 		reason = "multizone range";
1984 		goto failed_removal;
1985 	}
1986 
1987 	/*
1988 	 * Disable pcplists so that page isolation cannot race with freeing
1989 	 * in a way that pages from isolated pageblock are left on pcplists.
1990 	 */
1991 	zone_pcp_disable(zone);
1992 	lru_cache_disable();
1993 
1994 	/* set above range as isolated */
1995 	ret = start_isolate_page_range(start_pfn, end_pfn,
1996 				       MIGRATE_MOVABLE,
1997 				       MEMORY_OFFLINE | REPORT_FAILURE,
1998 				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1999 	if (ret) {
2000 		reason = "failure to isolate range";
2001 		goto failed_removal_pcplists_disabled;
2002 	}
2003 
2004 	arg.start_pfn = start_pfn;
2005 	arg.nr_pages = nr_pages;
2006 	node_states_check_changes_offline(nr_pages, zone, &arg);
2007 
2008 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2009 	ret = notifier_to_errno(ret);
2010 	if (ret) {
2011 		reason = "notifier failure";
2012 		goto failed_removal_isolated;
2013 	}
2014 
2015 	do {
2016 		pfn = start_pfn;
2017 		do {
2018 			/*
2019 			 * Historically we always checked for any signal and
2020 			 * can't limit it to fatal signals without eventually
2021 			 * breaking user space.
2022 			 */
2023 			if (signal_pending(current)) {
2024 				ret = -EINTR;
2025 				reason = "signal backoff";
2026 				goto failed_removal_isolated;
2027 			}
2028 
2029 			cond_resched();
2030 
2031 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
2032 			if (!ret) {
2033 				/*
2034 				 * TODO: fatal migration failures should bail
2035 				 * out
2036 				 */
2037 				do_migrate_range(pfn, end_pfn);
2038 			}
2039 		} while (!ret);
2040 
2041 		if (ret != -ENOENT) {
2042 			reason = "unmovable page";
2043 			goto failed_removal_isolated;
2044 		}
2045 
2046 		/*
2047 		 * Dissolve free hugepages in the memory block before doing
2048 		 * offlining actually in order to make hugetlbfs's object
2049 		 * counting consistent.
2050 		 */
2051 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
2052 		if (ret) {
2053 			reason = "failure to dissolve huge pages";
2054 			goto failed_removal_isolated;
2055 		}
2056 
2057 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2058 
2059 	} while (ret);
2060 
2061 	/* Mark all sections offline and remove free pages from the buddy. */
2062 	__offline_isolated_pages(start_pfn, end_pfn);
2063 	pr_debug("Offlined Pages %ld\n", nr_pages);
2064 
2065 	/*
2066 	 * The memory sections are marked offline, and the pageblock flags
2067 	 * effectively stale; nobody should be touching them. Fixup the number
2068 	 * of isolated pageblocks, memory onlining will properly revert this.
2069 	 */
2070 	spin_lock_irqsave(&zone->lock, flags);
2071 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2072 	spin_unlock_irqrestore(&zone->lock, flags);
2073 
2074 	lru_cache_enable();
2075 	zone_pcp_enable(zone);
2076 
2077 	/* removal success */
2078 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2079 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2080 
2081 	/* reinitialise watermarks and update pcp limits */
2082 	init_per_zone_wmark_min();
2083 
2084 	/*
2085 	 * Make sure to mark the node as memory-less before rebuilding the zone
2086 	 * list. Otherwise this node would still appear in the fallback lists.
2087 	 */
2088 	node_states_clear_node(node, &arg);
2089 	if (!populated_zone(zone)) {
2090 		zone_pcp_reset(zone);
2091 		build_all_zonelists(NULL);
2092 	}
2093 
2094 	if (arg.status_change_nid >= 0) {
2095 		kcompactd_stop(node);
2096 		kswapd_stop(node);
2097 	}
2098 
2099 	writeback_set_ratelimit();
2100 
2101 	memory_notify(MEM_OFFLINE, &arg);
2102 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2103 	return 0;
2104 
2105 failed_removal_isolated:
2106 	/* pushback to free area */
2107 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2108 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2109 failed_removal_pcplists_disabled:
2110 	lru_cache_enable();
2111 	zone_pcp_enable(zone);
2112 failed_removal:
2113 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2114 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2115 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2116 		 reason);
2117 	return ret;
2118 }
2119 
2120 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2121 {
2122 	int *nid = arg;
2123 
2124 	*nid = mem->nid;
2125 	if (unlikely(mem->state != MEM_OFFLINE)) {
2126 		phys_addr_t beginpa, endpa;
2127 
2128 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2129 		endpa = beginpa + memory_block_size_bytes() - 1;
2130 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2131 			&beginpa, &endpa);
2132 
2133 		return -EBUSY;
2134 	}
2135 	return 0;
2136 }
2137 
2138 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2139 {
2140 	u64 *num_altmaps = (u64 *)arg;
2141 
2142 	if (mem->altmap)
2143 		*num_altmaps += 1;
2144 
2145 	return 0;
2146 }
2147 
2148 static int check_cpu_on_node(int nid)
2149 {
2150 	int cpu;
2151 
2152 	for_each_present_cpu(cpu) {
2153 		if (cpu_to_node(cpu) == nid)
2154 			/*
2155 			 * the cpu on this node isn't removed, and we can't
2156 			 * offline this node.
2157 			 */
2158 			return -EBUSY;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2165 {
2166 	int nid = *(int *)arg;
2167 
2168 	/*
2169 	 * If a memory block belongs to multiple nodes, the stored nid is not
2170 	 * reliable. However, such blocks are always online (e.g., cannot get
2171 	 * offlined) and, therefore, are still spanned by the node.
2172 	 */
2173 	return mem->nid == nid ? -EEXIST : 0;
2174 }
2175 
2176 /**
2177  * try_offline_node
2178  * @nid: the node ID
2179  *
2180  * Offline a node if all memory sections and cpus of the node are removed.
2181  *
2182  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2183  * and online/offline operations before this call.
2184  */
2185 void try_offline_node(int nid)
2186 {
2187 	int rc;
2188 
2189 	/*
2190 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2191 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2192 	 * e.g., after the memory block was onlined.
2193 	 */
2194 	if (node_spanned_pages(nid))
2195 		return;
2196 
2197 	/*
2198 	 * Especially offline memory blocks might not be spanned by the
2199 	 * node. They will get spanned by the node once they get onlined.
2200 	 * However, they link to the node in sysfs and can get onlined later.
2201 	 */
2202 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2203 	if (rc)
2204 		return;
2205 
2206 	if (check_cpu_on_node(nid))
2207 		return;
2208 
2209 	/*
2210 	 * all memory/cpu of this node are removed, we can offline this
2211 	 * node now.
2212 	 */
2213 	node_set_offline(nid);
2214 	unregister_one_node(nid);
2215 }
2216 EXPORT_SYMBOL(try_offline_node);
2217 
2218 static int memory_blocks_have_altmaps(u64 start, u64 size)
2219 {
2220 	u64 num_memblocks = size / memory_block_size_bytes();
2221 	u64 num_altmaps = 0;
2222 
2223 	if (!mhp_memmap_on_memory())
2224 		return 0;
2225 
2226 	walk_memory_blocks(start, size, &num_altmaps,
2227 			   count_memory_range_altmaps_cb);
2228 
2229 	if (num_altmaps == 0)
2230 		return 0;
2231 
2232 	if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2233 		return -EINVAL;
2234 
2235 	return 1;
2236 }
2237 
2238 static int __ref try_remove_memory(u64 start, u64 size)
2239 {
2240 	int rc, nid = NUMA_NO_NODE;
2241 
2242 	BUG_ON(check_hotplug_memory_range(start, size));
2243 
2244 	/*
2245 	 * All memory blocks must be offlined before removing memory.  Check
2246 	 * whether all memory blocks in question are offline and return error
2247 	 * if this is not the case.
2248 	 *
2249 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2250 	 * we'd only try to offline the last determined one -- which is good
2251 	 * enough for the cases we care about.
2252 	 */
2253 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2254 	if (rc)
2255 		return rc;
2256 
2257 	/* remove memmap entry */
2258 	firmware_map_remove(start, start + size, "System RAM");
2259 
2260 	mem_hotplug_begin();
2261 
2262 	rc = memory_blocks_have_altmaps(start, size);
2263 	if (rc < 0) {
2264 		mem_hotplug_done();
2265 		return rc;
2266 	} else if (!rc) {
2267 		/*
2268 		 * Memory block device removal under the device_hotplug_lock is
2269 		 * a barrier against racing online attempts.
2270 		 * No altmaps present, do the removal directly
2271 		 */
2272 		remove_memory_block_devices(start, size);
2273 		arch_remove_memory(start, size, NULL);
2274 	} else {
2275 		/* all memblocks in the range have altmaps */
2276 		remove_memory_blocks_and_altmaps(start, size);
2277 	}
2278 
2279 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2280 		memblock_phys_free(start, size);
2281 		memblock_remove(start, size);
2282 	}
2283 
2284 	release_mem_region_adjustable(start, size);
2285 
2286 	if (nid != NUMA_NO_NODE)
2287 		try_offline_node(nid);
2288 
2289 	mem_hotplug_done();
2290 	return 0;
2291 }
2292 
2293 /**
2294  * __remove_memory - Remove memory if every memory block is offline
2295  * @start: physical address of the region to remove
2296  * @size: size of the region to remove
2297  *
2298  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2299  * and online/offline operations before this call, as required by
2300  * try_offline_node().
2301  */
2302 void __remove_memory(u64 start, u64 size)
2303 {
2304 
2305 	/*
2306 	 * trigger BUG() if some memory is not offlined prior to calling this
2307 	 * function
2308 	 */
2309 	if (try_remove_memory(start, size))
2310 		BUG();
2311 }
2312 
2313 /*
2314  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2315  * some memory is not offline
2316  */
2317 int remove_memory(u64 start, u64 size)
2318 {
2319 	int rc;
2320 
2321 	lock_device_hotplug();
2322 	rc = try_remove_memory(start, size);
2323 	unlock_device_hotplug();
2324 
2325 	return rc;
2326 }
2327 EXPORT_SYMBOL_GPL(remove_memory);
2328 
2329 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2330 {
2331 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2332 	uint8_t **online_types = arg;
2333 	struct page *page;
2334 	int rc;
2335 
2336 	/*
2337 	 * Sense the online_type via the zone of the memory block. Offlining
2338 	 * with multiple zones within one memory block will be rejected
2339 	 * by offlining code ... so we don't care about that.
2340 	 */
2341 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2342 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2343 		online_type = MMOP_ONLINE_MOVABLE;
2344 
2345 	rc = device_offline(&mem->dev);
2346 	/*
2347 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2348 	 * so try_reonline_memory_block() can do the right thing.
2349 	 */
2350 	if (!rc)
2351 		**online_types = online_type;
2352 
2353 	(*online_types)++;
2354 	/* Ignore if already offline. */
2355 	return rc < 0 ? rc : 0;
2356 }
2357 
2358 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2359 {
2360 	uint8_t **online_types = arg;
2361 	int rc;
2362 
2363 	if (**online_types != MMOP_OFFLINE) {
2364 		mem->online_type = **online_types;
2365 		rc = device_online(&mem->dev);
2366 		if (rc < 0)
2367 			pr_warn("%s: Failed to re-online memory: %d",
2368 				__func__, rc);
2369 	}
2370 
2371 	/* Continue processing all remaining memory blocks. */
2372 	(*online_types)++;
2373 	return 0;
2374 }
2375 
2376 /*
2377  * Try to offline and remove memory. Might take a long time to finish in case
2378  * memory is still in use. Primarily useful for memory devices that logically
2379  * unplugged all memory (so it's no longer in use) and want to offline + remove
2380  * that memory.
2381  */
2382 int offline_and_remove_memory(u64 start, u64 size)
2383 {
2384 	const unsigned long mb_count = size / memory_block_size_bytes();
2385 	uint8_t *online_types, *tmp;
2386 	int rc;
2387 
2388 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2389 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2390 		return -EINVAL;
2391 
2392 	/*
2393 	 * We'll remember the old online type of each memory block, so we can
2394 	 * try to revert whatever we did when offlining one memory block fails
2395 	 * after offlining some others succeeded.
2396 	 */
2397 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2398 				     GFP_KERNEL);
2399 	if (!online_types)
2400 		return -ENOMEM;
2401 	/*
2402 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2403 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2404 	 * try_reonline_memory_block().
2405 	 */
2406 	memset(online_types, MMOP_OFFLINE, mb_count);
2407 
2408 	lock_device_hotplug();
2409 
2410 	tmp = online_types;
2411 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2412 
2413 	/*
2414 	 * In case we succeeded to offline all memory, remove it.
2415 	 * This cannot fail as it cannot get onlined in the meantime.
2416 	 */
2417 	if (!rc) {
2418 		rc = try_remove_memory(start, size);
2419 		if (rc)
2420 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2421 	}
2422 
2423 	/*
2424 	 * Rollback what we did. While memory onlining might theoretically fail
2425 	 * (nacked by a notifier), it barely ever happens.
2426 	 */
2427 	if (rc) {
2428 		tmp = online_types;
2429 		walk_memory_blocks(start, size, &tmp,
2430 				   try_reonline_memory_block);
2431 	}
2432 	unlock_device_hotplug();
2433 
2434 	kfree(online_types);
2435 	return rc;
2436 }
2437 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2438 #endif /* CONFIG_MEMORY_HOTREMOVE */
2439