1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/compaction.h> 36 #include <linux/rmap.h> 37 #include <linux/module.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 enum { 45 MEMMAP_ON_MEMORY_DISABLE = 0, 46 MEMMAP_ON_MEMORY_ENABLE, 47 MEMMAP_ON_MEMORY_FORCE, 48 }; 49 50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; 51 52 static inline unsigned long memory_block_memmap_size(void) 53 { 54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); 55 } 56 57 static inline unsigned long memory_block_memmap_on_memory_pages(void) 58 { 59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); 60 61 /* 62 * In "forced" memmap_on_memory mode, we add extra pages to align the 63 * vmemmap size to cover full pageblocks. That way, we can add memory 64 * even if the vmemmap size is not properly aligned, however, we might waste 65 * memory. 66 */ 67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) 68 return pageblock_align(nr_pages); 69 return nr_pages; 70 } 71 72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 73 /* 74 * memory_hotplug.memmap_on_memory parameter 75 */ 76 static int set_memmap_mode(const char *val, const struct kernel_param *kp) 77 { 78 int ret, mode; 79 bool enabled; 80 81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { 82 mode = MEMMAP_ON_MEMORY_FORCE; 83 } else { 84 ret = kstrtobool(val, &enabled); 85 if (ret < 0) 86 return ret; 87 if (enabled) 88 mode = MEMMAP_ON_MEMORY_ENABLE; 89 else 90 mode = MEMMAP_ON_MEMORY_DISABLE; 91 } 92 *((int *)kp->arg) = mode; 93 if (mode == MEMMAP_ON_MEMORY_FORCE) { 94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 95 96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", 97 memmap_pages - PFN_UP(memory_block_memmap_size())); 98 } 99 return 0; 100 } 101 102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp) 103 { 104 int mode = *((int *)kp->arg); 105 106 if (mode == MEMMAP_ON_MEMORY_FORCE) 107 return sprintf(buffer, "force\n"); 108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N'); 109 } 110 111 static const struct kernel_param_ops memmap_mode_ops = { 112 .set = set_memmap_mode, 113 .get = get_memmap_mode, 114 }; 115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); 116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" 117 "With value \"force\" it could result in memory wastage due " 118 "to memmap size limitations (Y/N/force)"); 119 120 static inline bool mhp_memmap_on_memory(void) 121 { 122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; 123 } 124 #else 125 static inline bool mhp_memmap_on_memory(void) 126 { 127 return false; 128 } 129 #endif 130 131 enum { 132 ONLINE_POLICY_CONTIG_ZONES = 0, 133 ONLINE_POLICY_AUTO_MOVABLE, 134 }; 135 136 static const char * const online_policy_to_str[] = { 137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 139 }; 140 141 static int set_online_policy(const char *val, const struct kernel_param *kp) 142 { 143 int ret = sysfs_match_string(online_policy_to_str, val); 144 145 if (ret < 0) 146 return ret; 147 *((int *)kp->arg) = ret; 148 return 0; 149 } 150 151 static int get_online_policy(char *buffer, const struct kernel_param *kp) 152 { 153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 154 } 155 156 /* 157 * memory_hotplug.online_policy: configure online behavior when onlining without 158 * specifying a zone (MMOP_ONLINE) 159 * 160 * "contig-zones": keep zone contiguous 161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 163 */ 164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 165 static const struct kernel_param_ops online_policy_ops = { 166 .set = set_online_policy, 167 .get = get_online_policy, 168 }; 169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 170 MODULE_PARM_DESC(online_policy, 171 "Set the online policy (\"contig-zones\", \"auto-movable\") " 172 "Default: \"contig-zones\""); 173 174 /* 175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 176 * 177 * The ratio represent an upper limit and the kernel might decide to not 178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 179 * doesn't allow for more MOVABLE memory. 180 */ 181 static unsigned int auto_movable_ratio __read_mostly = 301; 182 module_param(auto_movable_ratio, uint, 0644); 183 MODULE_PARM_DESC(auto_movable_ratio, 184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 185 "in percent for \"auto-movable\" online policy. Default: 301"); 186 187 /* 188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 189 */ 190 #ifdef CONFIG_NUMA 191 static bool auto_movable_numa_aware __read_mostly = true; 192 module_param(auto_movable_numa_aware, bool, 0644); 193 MODULE_PARM_DESC(auto_movable_numa_aware, 194 "Consider numa node stats in addition to global stats in " 195 "\"auto-movable\" online policy. Default: true"); 196 #endif /* CONFIG_NUMA */ 197 198 /* 199 * online_page_callback contains pointer to current page onlining function. 200 * Initially it is generic_online_page(). If it is required it could be 201 * changed by calling set_online_page_callback() for callback registration 202 * and restore_online_page_callback() for generic callback restore. 203 */ 204 205 static online_page_callback_t online_page_callback = generic_online_page; 206 static DEFINE_MUTEX(online_page_callback_lock); 207 208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 209 210 void get_online_mems(void) 211 { 212 percpu_down_read(&mem_hotplug_lock); 213 } 214 215 void put_online_mems(void) 216 { 217 percpu_up_read(&mem_hotplug_lock); 218 } 219 220 bool movable_node_enabled = false; 221 222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 223 int mhp_default_online_type = MMOP_OFFLINE; 224 #else 225 int mhp_default_online_type = MMOP_ONLINE; 226 #endif 227 228 static int __init setup_memhp_default_state(char *str) 229 { 230 const int online_type = mhp_online_type_from_str(str); 231 232 if (online_type >= 0) 233 mhp_default_online_type = online_type; 234 235 return 1; 236 } 237 __setup("memhp_default_state=", setup_memhp_default_state); 238 239 void mem_hotplug_begin(void) 240 { 241 cpus_read_lock(); 242 percpu_down_write(&mem_hotplug_lock); 243 } 244 245 void mem_hotplug_done(void) 246 { 247 percpu_up_write(&mem_hotplug_lock); 248 cpus_read_unlock(); 249 } 250 251 u64 max_mem_size = U64_MAX; 252 253 /* add this memory to iomem resource */ 254 static struct resource *register_memory_resource(u64 start, u64 size, 255 const char *resource_name) 256 { 257 struct resource *res; 258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 259 260 if (strcmp(resource_name, "System RAM")) 261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 262 263 if (!mhp_range_allowed(start, size, true)) 264 return ERR_PTR(-E2BIG); 265 266 /* 267 * Make sure value parsed from 'mem=' only restricts memory adding 268 * while booting, so that memory hotplug won't be impacted. Please 269 * refer to document of 'mem=' in kernel-parameters.txt for more 270 * details. 271 */ 272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 273 return ERR_PTR(-E2BIG); 274 275 /* 276 * Request ownership of the new memory range. This might be 277 * a child of an existing resource that was present but 278 * not marked as busy. 279 */ 280 res = __request_region(&iomem_resource, start, size, 281 resource_name, flags); 282 283 if (!res) { 284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 285 start, start + size); 286 return ERR_PTR(-EEXIST); 287 } 288 return res; 289 } 290 291 static void release_memory_resource(struct resource *res) 292 { 293 if (!res) 294 return; 295 release_resource(res); 296 kfree(res); 297 } 298 299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 300 { 301 /* 302 * Disallow all operations smaller than a sub-section and only 303 * allow operations smaller than a section for 304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 305 * enforces a larger memory_block_size_bytes() granularity for 306 * memory that will be marked online, so this check should only 307 * fire for direct arch_{add,remove}_memory() users outside of 308 * add_memory_resource(). 309 */ 310 unsigned long min_align; 311 312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 313 min_align = PAGES_PER_SUBSECTION; 314 else 315 min_align = PAGES_PER_SECTION; 316 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 317 return -EINVAL; 318 return 0; 319 } 320 321 /* 322 * Return page for the valid pfn only if the page is online. All pfn 323 * walkers which rely on the fully initialized page->flags and others 324 * should use this rather than pfn_valid && pfn_to_page 325 */ 326 struct page *pfn_to_online_page(unsigned long pfn) 327 { 328 unsigned long nr = pfn_to_section_nr(pfn); 329 struct dev_pagemap *pgmap; 330 struct mem_section *ms; 331 332 if (nr >= NR_MEM_SECTIONS) 333 return NULL; 334 335 ms = __nr_to_section(nr); 336 if (!online_section(ms)) 337 return NULL; 338 339 /* 340 * Save some code text when online_section() + 341 * pfn_section_valid() are sufficient. 342 */ 343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 344 return NULL; 345 346 if (!pfn_section_valid(ms, pfn)) 347 return NULL; 348 349 if (!online_device_section(ms)) 350 return pfn_to_page(pfn); 351 352 /* 353 * Slowpath: when ZONE_DEVICE collides with 354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 355 * the section may be 'offline' but 'valid'. Only 356 * get_dev_pagemap() can determine sub-section online status. 357 */ 358 pgmap = get_dev_pagemap(pfn, NULL); 359 put_dev_pagemap(pgmap); 360 361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 362 if (pgmap) 363 return NULL; 364 365 return pfn_to_page(pfn); 366 } 367 EXPORT_SYMBOL_GPL(pfn_to_online_page); 368 369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 370 struct mhp_params *params) 371 { 372 const unsigned long end_pfn = pfn + nr_pages; 373 unsigned long cur_nr_pages; 374 int err; 375 struct vmem_altmap *altmap = params->altmap; 376 377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 378 return -EINVAL; 379 380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 381 382 if (altmap) { 383 /* 384 * Validate altmap is within bounds of the total request 385 */ 386 if (altmap->base_pfn != pfn 387 || vmem_altmap_offset(altmap) > nr_pages) { 388 pr_warn_once("memory add fail, invalid altmap\n"); 389 return -EINVAL; 390 } 391 altmap->alloc = 0; 392 } 393 394 if (check_pfn_span(pfn, nr_pages)) { 395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 396 return -EINVAL; 397 } 398 399 for (; pfn < end_pfn; pfn += cur_nr_pages) { 400 /* Select all remaining pages up to the next section boundary */ 401 cur_nr_pages = min(end_pfn - pfn, 402 SECTION_ALIGN_UP(pfn + 1) - pfn); 403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 404 params->pgmap); 405 if (err) 406 break; 407 cond_resched(); 408 } 409 vmemmap_populate_print_last(); 410 return err; 411 } 412 413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 415 unsigned long start_pfn, 416 unsigned long end_pfn) 417 { 418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 419 if (unlikely(!pfn_to_online_page(start_pfn))) 420 continue; 421 422 if (unlikely(pfn_to_nid(start_pfn) != nid)) 423 continue; 424 425 if (zone != page_zone(pfn_to_page(start_pfn))) 426 continue; 427 428 return start_pfn; 429 } 430 431 return 0; 432 } 433 434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 436 unsigned long start_pfn, 437 unsigned long end_pfn) 438 { 439 unsigned long pfn; 440 441 /* pfn is the end pfn of a memory section. */ 442 pfn = end_pfn - 1; 443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 444 if (unlikely(!pfn_to_online_page(pfn))) 445 continue; 446 447 if (unlikely(pfn_to_nid(pfn) != nid)) 448 continue; 449 450 if (zone != page_zone(pfn_to_page(pfn))) 451 continue; 452 453 return pfn; 454 } 455 456 return 0; 457 } 458 459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 460 unsigned long end_pfn) 461 { 462 unsigned long pfn; 463 int nid = zone_to_nid(zone); 464 465 if (zone->zone_start_pfn == start_pfn) { 466 /* 467 * If the section is smallest section in the zone, it need 468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 469 * In this case, we find second smallest valid mem_section 470 * for shrinking zone. 471 */ 472 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 473 zone_end_pfn(zone)); 474 if (pfn) { 475 zone->spanned_pages = zone_end_pfn(zone) - pfn; 476 zone->zone_start_pfn = pfn; 477 } else { 478 zone->zone_start_pfn = 0; 479 zone->spanned_pages = 0; 480 } 481 } else if (zone_end_pfn(zone) == end_pfn) { 482 /* 483 * If the section is biggest section in the zone, it need 484 * shrink zone->spanned_pages. 485 * In this case, we find second biggest valid mem_section for 486 * shrinking zone. 487 */ 488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 489 start_pfn); 490 if (pfn) 491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 492 else { 493 zone->zone_start_pfn = 0; 494 zone->spanned_pages = 0; 495 } 496 } 497 } 498 499 static void update_pgdat_span(struct pglist_data *pgdat) 500 { 501 unsigned long node_start_pfn = 0, node_end_pfn = 0; 502 struct zone *zone; 503 504 for (zone = pgdat->node_zones; 505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 506 unsigned long end_pfn = zone_end_pfn(zone); 507 508 /* No need to lock the zones, they can't change. */ 509 if (!zone->spanned_pages) 510 continue; 511 if (!node_end_pfn) { 512 node_start_pfn = zone->zone_start_pfn; 513 node_end_pfn = end_pfn; 514 continue; 515 } 516 517 if (end_pfn > node_end_pfn) 518 node_end_pfn = end_pfn; 519 if (zone->zone_start_pfn < node_start_pfn) 520 node_start_pfn = zone->zone_start_pfn; 521 } 522 523 pgdat->node_start_pfn = node_start_pfn; 524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 525 } 526 527 void __ref remove_pfn_range_from_zone(struct zone *zone, 528 unsigned long start_pfn, 529 unsigned long nr_pages) 530 { 531 const unsigned long end_pfn = start_pfn + nr_pages; 532 struct pglist_data *pgdat = zone->zone_pgdat; 533 unsigned long pfn, cur_nr_pages; 534 535 /* Poison struct pages because they are now uninitialized again. */ 536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 537 cond_resched(); 538 539 /* Select all remaining pages up to the next section boundary */ 540 cur_nr_pages = 541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 542 page_init_poison(pfn_to_page(pfn), 543 sizeof(struct page) * cur_nr_pages); 544 } 545 546 /* 547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 548 * we will not try to shrink the zones - which is okay as 549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 550 */ 551 if (zone_is_zone_device(zone)) 552 return; 553 554 clear_zone_contiguous(zone); 555 556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 557 update_pgdat_span(pgdat); 558 559 set_zone_contiguous(zone); 560 } 561 562 /** 563 * __remove_pages() - remove sections of pages 564 * @pfn: starting pageframe (must be aligned to start of a section) 565 * @nr_pages: number of pages to remove (must be multiple of section size) 566 * @altmap: alternative device page map or %NULL if default memmap is used 567 * 568 * Generic helper function to remove section mappings and sysfs entries 569 * for the section of the memory we are removing. Caller needs to make 570 * sure that pages are marked reserved and zones are adjust properly by 571 * calling offline_pages(). 572 */ 573 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 574 struct vmem_altmap *altmap) 575 { 576 const unsigned long end_pfn = pfn + nr_pages; 577 unsigned long cur_nr_pages; 578 579 if (check_pfn_span(pfn, nr_pages)) { 580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 581 return; 582 } 583 584 for (; pfn < end_pfn; pfn += cur_nr_pages) { 585 cond_resched(); 586 /* Select all remaining pages up to the next section boundary */ 587 cur_nr_pages = min(end_pfn - pfn, 588 SECTION_ALIGN_UP(pfn + 1) - pfn); 589 sparse_remove_section(pfn, cur_nr_pages, altmap); 590 } 591 } 592 593 int set_online_page_callback(online_page_callback_t callback) 594 { 595 int rc = -EINVAL; 596 597 get_online_mems(); 598 mutex_lock(&online_page_callback_lock); 599 600 if (online_page_callback == generic_online_page) { 601 online_page_callback = callback; 602 rc = 0; 603 } 604 605 mutex_unlock(&online_page_callback_lock); 606 put_online_mems(); 607 608 return rc; 609 } 610 EXPORT_SYMBOL_GPL(set_online_page_callback); 611 612 int restore_online_page_callback(online_page_callback_t callback) 613 { 614 int rc = -EINVAL; 615 616 get_online_mems(); 617 mutex_lock(&online_page_callback_lock); 618 619 if (online_page_callback == callback) { 620 online_page_callback = generic_online_page; 621 rc = 0; 622 } 623 624 mutex_unlock(&online_page_callback_lock); 625 put_online_mems(); 626 627 return rc; 628 } 629 EXPORT_SYMBOL_GPL(restore_online_page_callback); 630 631 void generic_online_page(struct page *page, unsigned int order) 632 { 633 /* 634 * Freeing the page with debug_pagealloc enabled will try to unmap it, 635 * so we should map it first. This is better than introducing a special 636 * case in page freeing fast path. 637 */ 638 debug_pagealloc_map_pages(page, 1 << order); 639 __free_pages_core(page, order); 640 totalram_pages_add(1UL << order); 641 } 642 EXPORT_SYMBOL_GPL(generic_online_page); 643 644 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 645 { 646 const unsigned long end_pfn = start_pfn + nr_pages; 647 unsigned long pfn; 648 649 /* 650 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might 651 * decide to not expose all pages to the buddy (e.g., expose them 652 * later). We account all pages as being online and belonging to this 653 * zone ("present"). 654 * When using memmap_on_memory, the range might not be aligned to 655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 656 * this and the first chunk to online will be pageblock_nr_pages. 657 */ 658 for (pfn = start_pfn; pfn < end_pfn;) { 659 int order; 660 661 /* 662 * Free to online pages in the largest chunks alignment allows. 663 * 664 * __ffs() behaviour is undefined for 0. start == 0 is 665 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for 666 * the case. 667 */ 668 if (pfn) 669 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn)); 670 else 671 order = MAX_PAGE_ORDER; 672 673 (*online_page_callback)(pfn_to_page(pfn), order); 674 pfn += (1UL << order); 675 } 676 677 /* mark all involved sections as online */ 678 online_mem_sections(start_pfn, end_pfn); 679 } 680 681 /* check which state of node_states will be changed when online memory */ 682 static void node_states_check_changes_online(unsigned long nr_pages, 683 struct zone *zone, struct memory_notify *arg) 684 { 685 int nid = zone_to_nid(zone); 686 687 arg->status_change_nid = NUMA_NO_NODE; 688 arg->status_change_nid_normal = NUMA_NO_NODE; 689 690 if (!node_state(nid, N_MEMORY)) 691 arg->status_change_nid = nid; 692 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 693 arg->status_change_nid_normal = nid; 694 } 695 696 static void node_states_set_node(int node, struct memory_notify *arg) 697 { 698 if (arg->status_change_nid_normal >= 0) 699 node_set_state(node, N_NORMAL_MEMORY); 700 701 if (arg->status_change_nid >= 0) 702 node_set_state(node, N_MEMORY); 703 } 704 705 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 706 unsigned long nr_pages) 707 { 708 unsigned long old_end_pfn = zone_end_pfn(zone); 709 710 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 711 zone->zone_start_pfn = start_pfn; 712 713 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 714 } 715 716 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 717 unsigned long nr_pages) 718 { 719 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 720 721 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 722 pgdat->node_start_pfn = start_pfn; 723 724 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 725 726 } 727 728 #ifdef CONFIG_ZONE_DEVICE 729 static void section_taint_zone_device(unsigned long pfn) 730 { 731 struct mem_section *ms = __pfn_to_section(pfn); 732 733 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 734 } 735 #else 736 static inline void section_taint_zone_device(unsigned long pfn) 737 { 738 } 739 #endif 740 741 /* 742 * Associate the pfn range with the given zone, initializing the memmaps 743 * and resizing the pgdat/zone data to span the added pages. After this 744 * call, all affected pages are PG_reserved. 745 * 746 * All aligned pageblocks are initialized to the specified migratetype 747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 748 * zone stats (e.g., nr_isolate_pageblock) are touched. 749 */ 750 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 751 unsigned long nr_pages, 752 struct vmem_altmap *altmap, int migratetype) 753 { 754 struct pglist_data *pgdat = zone->zone_pgdat; 755 int nid = pgdat->node_id; 756 757 clear_zone_contiguous(zone); 758 759 if (zone_is_empty(zone)) 760 init_currently_empty_zone(zone, start_pfn, nr_pages); 761 resize_zone_range(zone, start_pfn, nr_pages); 762 resize_pgdat_range(pgdat, start_pfn, nr_pages); 763 764 /* 765 * Subsection population requires care in pfn_to_online_page(). 766 * Set the taint to enable the slow path detection of 767 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 768 * section. 769 */ 770 if (zone_is_zone_device(zone)) { 771 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 772 section_taint_zone_device(start_pfn); 773 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 774 section_taint_zone_device(start_pfn + nr_pages); 775 } 776 777 /* 778 * TODO now we have a visible range of pages which are not associated 779 * with their zone properly. Not nice but set_pfnblock_flags_mask 780 * expects the zone spans the pfn range. All the pages in the range 781 * are reserved so nobody should be touching them so we should be safe 782 */ 783 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 784 MEMINIT_HOTPLUG, altmap, migratetype); 785 786 set_zone_contiguous(zone); 787 } 788 789 struct auto_movable_stats { 790 unsigned long kernel_early_pages; 791 unsigned long movable_pages; 792 }; 793 794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 795 struct zone *zone) 796 { 797 if (zone_idx(zone) == ZONE_MOVABLE) { 798 stats->movable_pages += zone->present_pages; 799 } else { 800 stats->kernel_early_pages += zone->present_early_pages; 801 #ifdef CONFIG_CMA 802 /* 803 * CMA pages (never on hotplugged memory) behave like 804 * ZONE_MOVABLE. 805 */ 806 stats->movable_pages += zone->cma_pages; 807 stats->kernel_early_pages -= zone->cma_pages; 808 #endif /* CONFIG_CMA */ 809 } 810 } 811 struct auto_movable_group_stats { 812 unsigned long movable_pages; 813 unsigned long req_kernel_early_pages; 814 }; 815 816 static int auto_movable_stats_account_group(struct memory_group *group, 817 void *arg) 818 { 819 const int ratio = READ_ONCE(auto_movable_ratio); 820 struct auto_movable_group_stats *stats = arg; 821 long pages; 822 823 /* 824 * We don't support modifying the config while the auto-movable online 825 * policy is already enabled. Just avoid the division by zero below. 826 */ 827 if (!ratio) 828 return 0; 829 830 /* 831 * Calculate how many early kernel pages this group requires to 832 * satisfy the configured zone ratio. 833 */ 834 pages = group->present_movable_pages * 100 / ratio; 835 pages -= group->present_kernel_pages; 836 837 if (pages > 0) 838 stats->req_kernel_early_pages += pages; 839 stats->movable_pages += group->present_movable_pages; 840 return 0; 841 } 842 843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 844 unsigned long nr_pages) 845 { 846 unsigned long kernel_early_pages, movable_pages; 847 struct auto_movable_group_stats group_stats = {}; 848 struct auto_movable_stats stats = {}; 849 pg_data_t *pgdat = NODE_DATA(nid); 850 struct zone *zone; 851 int i; 852 853 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 854 if (nid == NUMA_NO_NODE) { 855 /* TODO: cache values */ 856 for_each_populated_zone(zone) 857 auto_movable_stats_account_zone(&stats, zone); 858 } else { 859 for (i = 0; i < MAX_NR_ZONES; i++) { 860 zone = pgdat->node_zones + i; 861 if (populated_zone(zone)) 862 auto_movable_stats_account_zone(&stats, zone); 863 } 864 } 865 866 kernel_early_pages = stats.kernel_early_pages; 867 movable_pages = stats.movable_pages; 868 869 /* 870 * Kernel memory inside dynamic memory group allows for more MOVABLE 871 * memory within the same group. Remove the effect of all but the 872 * current group from the stats. 873 */ 874 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 875 group, &group_stats); 876 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 877 return false; 878 kernel_early_pages -= group_stats.req_kernel_early_pages; 879 movable_pages -= group_stats.movable_pages; 880 881 if (group && group->is_dynamic) 882 kernel_early_pages += group->present_kernel_pages; 883 884 /* 885 * Test if we could online the given number of pages to ZONE_MOVABLE 886 * and still stay in the configured ratio. 887 */ 888 movable_pages += nr_pages; 889 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 890 } 891 892 /* 893 * Returns a default kernel memory zone for the given pfn range. 894 * If no kernel zone covers this pfn range it will automatically go 895 * to the ZONE_NORMAL. 896 */ 897 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 898 unsigned long nr_pages) 899 { 900 struct pglist_data *pgdat = NODE_DATA(nid); 901 int zid; 902 903 for (zid = 0; zid < ZONE_NORMAL; zid++) { 904 struct zone *zone = &pgdat->node_zones[zid]; 905 906 if (zone_intersects(zone, start_pfn, nr_pages)) 907 return zone; 908 } 909 910 return &pgdat->node_zones[ZONE_NORMAL]; 911 } 912 913 /* 914 * Determine to which zone to online memory dynamically based on user 915 * configuration and system stats. We care about the following ratio: 916 * 917 * MOVABLE : KERNEL 918 * 919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 920 * one of the kernel zones. CMA pages inside one of the kernel zones really 921 * behaves like ZONE_MOVABLE, so we treat them accordingly. 922 * 923 * We don't allow for hotplugged memory in a KERNEL zone to increase the 924 * amount of MOVABLE memory we can have, so we end up with: 925 * 926 * MOVABLE : KERNEL_EARLY 927 * 928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 929 * boot. We base our calculation on KERNEL_EARLY internally, because: 930 * 931 * a) Hotplugged memory in one of the kernel zones can sometimes still get 932 * hotunplugged, especially when hot(un)plugging individual memory blocks. 933 * There is no coordination across memory devices, therefore "automatic" 934 * hotunplugging, as implemented in hypervisors, could result in zone 935 * imbalances. 936 * b) Early/boot memory in one of the kernel zones can usually not get 937 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 938 * with unmovable allocations). While there are corner cases where it might 939 * still work, it is barely relevant in practice. 940 * 941 * Exceptions are dynamic memory groups, which allow for more MOVABLE 942 * memory within the same memory group -- because in that case, there is 943 * coordination within the single memory device managed by a single driver. 944 * 945 * We rely on "present pages" instead of "managed pages", as the latter is 946 * highly unreliable and dynamic in virtualized environments, and does not 947 * consider boot time allocations. For example, memory ballooning adjusts the 948 * managed pages when inflating/deflating the balloon, and balloon compaction 949 * can even migrate inflated pages between zones. 950 * 951 * Using "present pages" is better but some things to keep in mind are: 952 * 953 * a) Some memblock allocations, such as for the crashkernel area, are 954 * effectively unused by the kernel, yet they account to "present pages". 955 * Fortunately, these allocations are comparatively small in relevant setups 956 * (e.g., fraction of system memory). 957 * b) Some hotplugged memory blocks in virtualized environments, esecially 958 * hotplugged by virtio-mem, look like they are completely present, however, 959 * only parts of the memory block are actually currently usable. 960 * "present pages" is an upper limit that can get reached at runtime. As 961 * we base our calculations on KERNEL_EARLY, this is not an issue. 962 */ 963 static struct zone *auto_movable_zone_for_pfn(int nid, 964 struct memory_group *group, 965 unsigned long pfn, 966 unsigned long nr_pages) 967 { 968 unsigned long online_pages = 0, max_pages, end_pfn; 969 struct page *page; 970 971 if (!auto_movable_ratio) 972 goto kernel_zone; 973 974 if (group && !group->is_dynamic) { 975 max_pages = group->s.max_pages; 976 online_pages = group->present_movable_pages; 977 978 /* If anything is !MOVABLE online the rest !MOVABLE. */ 979 if (group->present_kernel_pages) 980 goto kernel_zone; 981 } else if (!group || group->d.unit_pages == nr_pages) { 982 max_pages = nr_pages; 983 } else { 984 max_pages = group->d.unit_pages; 985 /* 986 * Take a look at all online sections in the current unit. 987 * We can safely assume that all pages within a section belong 988 * to the same zone, because dynamic memory groups only deal 989 * with hotplugged memory. 990 */ 991 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 992 end_pfn = pfn + group->d.unit_pages; 993 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 994 page = pfn_to_online_page(pfn); 995 if (!page) 996 continue; 997 /* If anything is !MOVABLE online the rest !MOVABLE. */ 998 if (!is_zone_movable_page(page)) 999 goto kernel_zone; 1000 online_pages += PAGES_PER_SECTION; 1001 } 1002 } 1003 1004 /* 1005 * Online MOVABLE if we could *currently* online all remaining parts 1006 * MOVABLE. We expect to (add+) online them immediately next, so if 1007 * nobody interferes, all will be MOVABLE if possible. 1008 */ 1009 nr_pages = max_pages - online_pages; 1010 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 1011 goto kernel_zone; 1012 1013 #ifdef CONFIG_NUMA 1014 if (auto_movable_numa_aware && 1015 !auto_movable_can_online_movable(nid, group, nr_pages)) 1016 goto kernel_zone; 1017 #endif /* CONFIG_NUMA */ 1018 1019 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1020 kernel_zone: 1021 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 1022 } 1023 1024 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 1025 unsigned long nr_pages) 1026 { 1027 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 1028 nr_pages); 1029 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1030 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 1031 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 1032 1033 /* 1034 * We inherit the existing zone in a simple case where zones do not 1035 * overlap in the given range 1036 */ 1037 if (in_kernel ^ in_movable) 1038 return (in_kernel) ? kernel_zone : movable_zone; 1039 1040 /* 1041 * If the range doesn't belong to any zone or two zones overlap in the 1042 * given range then we use movable zone only if movable_node is 1043 * enabled because we always online to a kernel zone by default. 1044 */ 1045 return movable_node_enabled ? movable_zone : kernel_zone; 1046 } 1047 1048 struct zone *zone_for_pfn_range(int online_type, int nid, 1049 struct memory_group *group, unsigned long start_pfn, 1050 unsigned long nr_pages) 1051 { 1052 if (online_type == MMOP_ONLINE_KERNEL) 1053 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1054 1055 if (online_type == MMOP_ONLINE_MOVABLE) 1056 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1057 1058 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1059 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1060 1061 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1062 } 1063 1064 /* 1065 * This function should only be called by memory_block_{online,offline}, 1066 * and {online,offline}_pages. 1067 */ 1068 void adjust_present_page_count(struct page *page, struct memory_group *group, 1069 long nr_pages) 1070 { 1071 struct zone *zone = page_zone(page); 1072 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1073 1074 /* 1075 * We only support onlining/offlining/adding/removing of complete 1076 * memory blocks; therefore, either all is either early or hotplugged. 1077 */ 1078 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1079 zone->present_early_pages += nr_pages; 1080 zone->present_pages += nr_pages; 1081 zone->zone_pgdat->node_present_pages += nr_pages; 1082 1083 if (group && movable) 1084 group->present_movable_pages += nr_pages; 1085 else if (group && !movable) 1086 group->present_kernel_pages += nr_pages; 1087 } 1088 1089 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1090 struct zone *zone, bool mhp_off_inaccessible) 1091 { 1092 unsigned long end_pfn = pfn + nr_pages; 1093 int ret, i; 1094 1095 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1096 if (ret) 1097 return ret; 1098 1099 /* 1100 * Memory block is accessible at this stage and hence poison the struct 1101 * pages now. If the memory block is accessible during memory hotplug 1102 * addition phase, then page poisining is already performed in 1103 * sparse_add_section(). 1104 */ 1105 if (mhp_off_inaccessible) 1106 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages); 1107 1108 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1109 1110 for (i = 0; i < nr_pages; i++) 1111 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i)); 1112 1113 /* 1114 * It might be that the vmemmap_pages fully span sections. If that is 1115 * the case, mark those sections online here as otherwise they will be 1116 * left offline. 1117 */ 1118 if (nr_pages >= PAGES_PER_SECTION) 1119 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1120 1121 return ret; 1122 } 1123 1124 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1125 { 1126 unsigned long end_pfn = pfn + nr_pages; 1127 1128 /* 1129 * It might be that the vmemmap_pages fully span sections. If that is 1130 * the case, mark those sections offline here as otherwise they will be 1131 * left online. 1132 */ 1133 if (nr_pages >= PAGES_PER_SECTION) 1134 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1135 1136 /* 1137 * The pages associated with this vmemmap have been offlined, so 1138 * we can reset its state here. 1139 */ 1140 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1141 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1142 } 1143 1144 /* 1145 * Must be called with mem_hotplug_lock in write mode. 1146 */ 1147 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1148 struct zone *zone, struct memory_group *group) 1149 { 1150 unsigned long flags; 1151 int need_zonelists_rebuild = 0; 1152 const int nid = zone_to_nid(zone); 1153 int ret; 1154 struct memory_notify arg; 1155 1156 /* 1157 * {on,off}lining is constrained to full memory sections (or more 1158 * precisely to memory blocks from the user space POV). 1159 * memmap_on_memory is an exception because it reserves initial part 1160 * of the physical memory space for vmemmaps. That space is pageblock 1161 * aligned. 1162 */ 1163 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1164 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1165 return -EINVAL; 1166 1167 1168 /* associate pfn range with the zone */ 1169 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1170 1171 arg.start_pfn = pfn; 1172 arg.nr_pages = nr_pages; 1173 node_states_check_changes_online(nr_pages, zone, &arg); 1174 1175 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1176 ret = notifier_to_errno(ret); 1177 if (ret) 1178 goto failed_addition; 1179 1180 /* 1181 * Fixup the number of isolated pageblocks before marking the sections 1182 * onlining, such that undo_isolate_page_range() works correctly. 1183 */ 1184 spin_lock_irqsave(&zone->lock, flags); 1185 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1186 spin_unlock_irqrestore(&zone->lock, flags); 1187 1188 /* 1189 * If this zone is not populated, then it is not in zonelist. 1190 * This means the page allocator ignores this zone. 1191 * So, zonelist must be updated after online. 1192 */ 1193 if (!populated_zone(zone)) { 1194 need_zonelists_rebuild = 1; 1195 setup_zone_pageset(zone); 1196 } 1197 1198 online_pages_range(pfn, nr_pages); 1199 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1200 1201 node_states_set_node(nid, &arg); 1202 if (need_zonelists_rebuild) 1203 build_all_zonelists(NULL); 1204 1205 /* Basic onlining is complete, allow allocation of onlined pages. */ 1206 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1207 1208 /* 1209 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1210 * the tail of the freelist when undoing isolation). Shuffle the whole 1211 * zone to make sure the just onlined pages are properly distributed 1212 * across the whole freelist - to create an initial shuffle. 1213 */ 1214 shuffle_zone(zone); 1215 1216 /* reinitialise watermarks and update pcp limits */ 1217 init_per_zone_wmark_min(); 1218 1219 kswapd_run(nid); 1220 kcompactd_run(nid); 1221 1222 writeback_set_ratelimit(); 1223 1224 memory_notify(MEM_ONLINE, &arg); 1225 return 0; 1226 1227 failed_addition: 1228 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1229 (unsigned long long) pfn << PAGE_SHIFT, 1230 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1231 memory_notify(MEM_CANCEL_ONLINE, &arg); 1232 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1233 return ret; 1234 } 1235 1236 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1237 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1238 { 1239 struct pglist_data *pgdat; 1240 1241 /* 1242 * NODE_DATA is preallocated (free_area_init) but its internal 1243 * state is not allocated completely. Add missing pieces. 1244 * Completely offline nodes stay around and they just need 1245 * reintialization. 1246 */ 1247 pgdat = NODE_DATA(nid); 1248 1249 /* init node's zones as empty zones, we don't have any present pages.*/ 1250 free_area_init_core_hotplug(pgdat); 1251 1252 /* 1253 * The node we allocated has no zone fallback lists. For avoiding 1254 * to access not-initialized zonelist, build here. 1255 */ 1256 build_all_zonelists(pgdat); 1257 1258 return pgdat; 1259 } 1260 1261 /* 1262 * __try_online_node - online a node if offlined 1263 * @nid: the node ID 1264 * @set_node_online: Whether we want to online the node 1265 * called by cpu_up() to online a node without onlined memory. 1266 * 1267 * Returns: 1268 * 1 -> a new node has been allocated 1269 * 0 -> the node is already online 1270 * -ENOMEM -> the node could not be allocated 1271 */ 1272 static int __try_online_node(int nid, bool set_node_online) 1273 { 1274 pg_data_t *pgdat; 1275 int ret = 1; 1276 1277 if (node_online(nid)) 1278 return 0; 1279 1280 pgdat = hotadd_init_pgdat(nid); 1281 if (!pgdat) { 1282 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1283 ret = -ENOMEM; 1284 goto out; 1285 } 1286 1287 if (set_node_online) { 1288 node_set_online(nid); 1289 ret = register_one_node(nid); 1290 BUG_ON(ret); 1291 } 1292 out: 1293 return ret; 1294 } 1295 1296 /* 1297 * Users of this function always want to online/register the node 1298 */ 1299 int try_online_node(int nid) 1300 { 1301 int ret; 1302 1303 mem_hotplug_begin(); 1304 ret = __try_online_node(nid, true); 1305 mem_hotplug_done(); 1306 return ret; 1307 } 1308 1309 static int check_hotplug_memory_range(u64 start, u64 size) 1310 { 1311 /* memory range must be block size aligned */ 1312 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1313 !IS_ALIGNED(size, memory_block_size_bytes())) { 1314 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1315 memory_block_size_bytes(), start, size); 1316 return -EINVAL; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int online_memory_block(struct memory_block *mem, void *arg) 1323 { 1324 mem->online_type = mhp_default_online_type; 1325 return device_online(&mem->dev); 1326 } 1327 1328 #ifndef arch_supports_memmap_on_memory 1329 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) 1330 { 1331 /* 1332 * As default, we want the vmemmap to span a complete PMD such that we 1333 * can map the vmemmap using a single PMD if supported by the 1334 * architecture. 1335 */ 1336 return IS_ALIGNED(vmemmap_size, PMD_SIZE); 1337 } 1338 #endif 1339 1340 static bool mhp_supports_memmap_on_memory(unsigned long size) 1341 { 1342 unsigned long vmemmap_size = memory_block_memmap_size(); 1343 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 1344 1345 /* 1346 * Besides having arch support and the feature enabled at runtime, we 1347 * need a few more assumptions to hold true: 1348 * 1349 * a) We span a single memory block: memory onlining/offlinin;g happens 1350 * in memory block granularity. We don't want the vmemmap of online 1351 * memory blocks to reside on offline memory blocks. In the future, 1352 * we might want to support variable-sized memory blocks to make the 1353 * feature more versatile. 1354 * 1355 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1356 * to populate memory from the altmap for unrelated parts (i.e., 1357 * other memory blocks) 1358 * 1359 * c) The vmemmap pages (and thereby the pages that will be exposed to 1360 * the buddy) have to cover full pageblocks: memory onlining/offlining 1361 * code requires applicable ranges to be page-aligned, for example, to 1362 * set the migratetypes properly. 1363 * 1364 * TODO: Although we have a check here to make sure that vmemmap pages 1365 * fully populate a PMD, it is not the right place to check for 1366 * this. A much better solution involves improving vmemmap code 1367 * to fallback to base pages when trying to populate vmemmap using 1368 * altmap as an alternative source of memory, and we do not exactly 1369 * populate a single PMD. 1370 */ 1371 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes()) 1372 return false; 1373 1374 /* 1375 * Make sure the vmemmap allocation is fully contained 1376 * so that we always allocate vmemmap memory from altmap area. 1377 */ 1378 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) 1379 return false; 1380 1381 /* 1382 * start pfn should be pageblock_nr_pages aligned for correctly 1383 * setting migrate types 1384 */ 1385 if (!pageblock_aligned(memmap_pages)) 1386 return false; 1387 1388 if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) 1389 /* No effective hotplugged memory doesn't make sense. */ 1390 return false; 1391 1392 return arch_supports_memmap_on_memory(vmemmap_size); 1393 } 1394 1395 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size) 1396 { 1397 unsigned long memblock_size = memory_block_size_bytes(); 1398 u64 cur_start; 1399 1400 /* 1401 * For memmap_on_memory, the altmaps were added on a per-memblock 1402 * basis; we have to process each individual memory block. 1403 */ 1404 for (cur_start = start; cur_start < start + size; 1405 cur_start += memblock_size) { 1406 struct vmem_altmap *altmap = NULL; 1407 struct memory_block *mem; 1408 1409 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start))); 1410 if (WARN_ON_ONCE(!mem)) 1411 continue; 1412 1413 altmap = mem->altmap; 1414 mem->altmap = NULL; 1415 1416 remove_memory_block_devices(cur_start, memblock_size); 1417 1418 arch_remove_memory(cur_start, memblock_size, altmap); 1419 1420 /* Verify that all vmemmap pages have actually been freed. */ 1421 WARN(altmap->alloc, "Altmap not fully unmapped"); 1422 kfree(altmap); 1423 } 1424 } 1425 1426 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group, 1427 u64 start, u64 size, mhp_t mhp_flags) 1428 { 1429 unsigned long memblock_size = memory_block_size_bytes(); 1430 u64 cur_start; 1431 int ret; 1432 1433 for (cur_start = start; cur_start < start + size; 1434 cur_start += memblock_size) { 1435 struct mhp_params params = { .pgprot = 1436 pgprot_mhp(PAGE_KERNEL) }; 1437 struct vmem_altmap mhp_altmap = { 1438 .base_pfn = PHYS_PFN(cur_start), 1439 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1), 1440 }; 1441 1442 mhp_altmap.free = memory_block_memmap_on_memory_pages(); 1443 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE) 1444 mhp_altmap.inaccessible = true; 1445 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap), 1446 GFP_KERNEL); 1447 if (!params.altmap) { 1448 ret = -ENOMEM; 1449 goto out; 1450 } 1451 1452 /* call arch's memory hotadd */ 1453 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms); 1454 if (ret < 0) { 1455 kfree(params.altmap); 1456 goto out; 1457 } 1458 1459 /* create memory block devices after memory was added */ 1460 ret = create_memory_block_devices(cur_start, memblock_size, 1461 params.altmap, group); 1462 if (ret) { 1463 arch_remove_memory(cur_start, memblock_size, NULL); 1464 kfree(params.altmap); 1465 goto out; 1466 } 1467 } 1468 1469 return 0; 1470 out: 1471 if (ret && cur_start != start) 1472 remove_memory_blocks_and_altmaps(start, cur_start - start); 1473 return ret; 1474 } 1475 1476 /* 1477 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1478 * and online/offline operations (triggered e.g. by sysfs). 1479 * 1480 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1481 */ 1482 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1483 { 1484 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1485 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1486 struct memory_group *group = NULL; 1487 u64 start, size; 1488 bool new_node = false; 1489 int ret; 1490 1491 start = res->start; 1492 size = resource_size(res); 1493 1494 ret = check_hotplug_memory_range(start, size); 1495 if (ret) 1496 return ret; 1497 1498 if (mhp_flags & MHP_NID_IS_MGID) { 1499 group = memory_group_find_by_id(nid); 1500 if (!group) 1501 return -EINVAL; 1502 nid = group->nid; 1503 } 1504 1505 if (!node_possible(nid)) { 1506 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1507 return -EINVAL; 1508 } 1509 1510 mem_hotplug_begin(); 1511 1512 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1513 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1514 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1515 ret = memblock_add_node(start, size, nid, memblock_flags); 1516 if (ret) 1517 goto error_mem_hotplug_end; 1518 } 1519 1520 ret = __try_online_node(nid, false); 1521 if (ret < 0) 1522 goto error; 1523 new_node = ret; 1524 1525 /* 1526 * Self hosted memmap array 1527 */ 1528 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) && 1529 mhp_supports_memmap_on_memory(memory_block_size_bytes())) { 1530 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags); 1531 if (ret) 1532 goto error; 1533 } else { 1534 ret = arch_add_memory(nid, start, size, ¶ms); 1535 if (ret < 0) 1536 goto error; 1537 1538 /* create memory block devices after memory was added */ 1539 ret = create_memory_block_devices(start, size, NULL, group); 1540 if (ret) { 1541 arch_remove_memory(start, size, params.altmap); 1542 goto error; 1543 } 1544 } 1545 1546 if (new_node) { 1547 /* If sysfs file of new node can't be created, cpu on the node 1548 * can't be hot-added. There is no rollback way now. 1549 * So, check by BUG_ON() to catch it reluctantly.. 1550 * We online node here. We can't roll back from here. 1551 */ 1552 node_set_online(nid); 1553 ret = __register_one_node(nid); 1554 BUG_ON(ret); 1555 } 1556 1557 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1558 PFN_UP(start + size - 1), 1559 MEMINIT_HOTPLUG); 1560 1561 /* create new memmap entry */ 1562 if (!strcmp(res->name, "System RAM")) 1563 firmware_map_add_hotplug(start, start + size, "System RAM"); 1564 1565 /* device_online() will take the lock when calling online_pages() */ 1566 mem_hotplug_done(); 1567 1568 /* 1569 * In case we're allowed to merge the resource, flag it and trigger 1570 * merging now that adding succeeded. 1571 */ 1572 if (mhp_flags & MHP_MERGE_RESOURCE) 1573 merge_system_ram_resource(res); 1574 1575 /* online pages if requested */ 1576 if (mhp_default_online_type != MMOP_OFFLINE) 1577 walk_memory_blocks(start, size, NULL, online_memory_block); 1578 1579 return ret; 1580 error: 1581 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1582 memblock_remove(start, size); 1583 error_mem_hotplug_end: 1584 mem_hotplug_done(); 1585 return ret; 1586 } 1587 1588 /* requires device_hotplug_lock, see add_memory_resource() */ 1589 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1590 { 1591 struct resource *res; 1592 int ret; 1593 1594 res = register_memory_resource(start, size, "System RAM"); 1595 if (IS_ERR(res)) 1596 return PTR_ERR(res); 1597 1598 ret = add_memory_resource(nid, res, mhp_flags); 1599 if (ret < 0) 1600 release_memory_resource(res); 1601 return ret; 1602 } 1603 1604 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1605 { 1606 int rc; 1607 1608 lock_device_hotplug(); 1609 rc = __add_memory(nid, start, size, mhp_flags); 1610 unlock_device_hotplug(); 1611 1612 return rc; 1613 } 1614 EXPORT_SYMBOL_GPL(add_memory); 1615 1616 /* 1617 * Add special, driver-managed memory to the system as system RAM. Such 1618 * memory is not exposed via the raw firmware-provided memmap as system 1619 * RAM, instead, it is detected and added by a driver - during cold boot, 1620 * after a reboot, and after kexec. 1621 * 1622 * Reasons why this memory should not be used for the initial memmap of a 1623 * kexec kernel or for placing kexec images: 1624 * - The booting kernel is in charge of determining how this memory will be 1625 * used (e.g., use persistent memory as system RAM) 1626 * - Coordination with a hypervisor is required before this memory 1627 * can be used (e.g., inaccessible parts). 1628 * 1629 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1630 * memory map") are created. Also, the created memory resource is flagged 1631 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1632 * this memory as well (esp., not place kexec images onto it). 1633 * 1634 * The resource_name (visible via /proc/iomem) has to have the format 1635 * "System RAM ($DRIVER)". 1636 */ 1637 int add_memory_driver_managed(int nid, u64 start, u64 size, 1638 const char *resource_name, mhp_t mhp_flags) 1639 { 1640 struct resource *res; 1641 int rc; 1642 1643 if (!resource_name || 1644 strstr(resource_name, "System RAM (") != resource_name || 1645 resource_name[strlen(resource_name) - 1] != ')') 1646 return -EINVAL; 1647 1648 lock_device_hotplug(); 1649 1650 res = register_memory_resource(start, size, resource_name); 1651 if (IS_ERR(res)) { 1652 rc = PTR_ERR(res); 1653 goto out_unlock; 1654 } 1655 1656 rc = add_memory_resource(nid, res, mhp_flags); 1657 if (rc < 0) 1658 release_memory_resource(res); 1659 1660 out_unlock: 1661 unlock_device_hotplug(); 1662 return rc; 1663 } 1664 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1665 1666 /* 1667 * Platforms should define arch_get_mappable_range() that provides 1668 * maximum possible addressable physical memory range for which the 1669 * linear mapping could be created. The platform returned address 1670 * range must adhere to these following semantics. 1671 * 1672 * - range.start <= range.end 1673 * - Range includes both end points [range.start..range.end] 1674 * 1675 * There is also a fallback definition provided here, allowing the 1676 * entire possible physical address range in case any platform does 1677 * not define arch_get_mappable_range(). 1678 */ 1679 struct range __weak arch_get_mappable_range(void) 1680 { 1681 struct range mhp_range = { 1682 .start = 0UL, 1683 .end = -1ULL, 1684 }; 1685 return mhp_range; 1686 } 1687 1688 struct range mhp_get_pluggable_range(bool need_mapping) 1689 { 1690 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1691 struct range mhp_range; 1692 1693 if (need_mapping) { 1694 mhp_range = arch_get_mappable_range(); 1695 if (mhp_range.start > max_phys) { 1696 mhp_range.start = 0; 1697 mhp_range.end = 0; 1698 } 1699 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1700 } else { 1701 mhp_range.start = 0; 1702 mhp_range.end = max_phys; 1703 } 1704 return mhp_range; 1705 } 1706 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1707 1708 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1709 { 1710 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1711 u64 end = start + size; 1712 1713 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1714 return true; 1715 1716 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1717 start, end, mhp_range.start, mhp_range.end); 1718 return false; 1719 } 1720 1721 #ifdef CONFIG_MEMORY_HOTREMOVE 1722 /* 1723 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1724 * non-lru movable pages and hugepages). Will skip over most unmovable 1725 * pages (esp., pages that can be skipped when offlining), but bail out on 1726 * definitely unmovable pages. 1727 * 1728 * Returns: 1729 * 0 in case a movable page is found and movable_pfn was updated. 1730 * -ENOENT in case no movable page was found. 1731 * -EBUSY in case a definitely unmovable page was found. 1732 */ 1733 static int scan_movable_pages(unsigned long start, unsigned long end, 1734 unsigned long *movable_pfn) 1735 { 1736 unsigned long pfn; 1737 1738 for (pfn = start; pfn < end; pfn++) { 1739 struct page *page, *head; 1740 unsigned long skip; 1741 1742 if (!pfn_valid(pfn)) 1743 continue; 1744 page = pfn_to_page(pfn); 1745 if (PageLRU(page)) 1746 goto found; 1747 if (__PageMovable(page)) 1748 goto found; 1749 1750 /* 1751 * PageOffline() pages that are not marked __PageMovable() and 1752 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1753 * definitely unmovable. If their reference count would be 0, 1754 * they could at least be skipped when offlining memory. 1755 */ 1756 if (PageOffline(page) && page_count(page)) 1757 return -EBUSY; 1758 1759 if (!PageHuge(page)) 1760 continue; 1761 head = compound_head(page); 1762 /* 1763 * This test is racy as we hold no reference or lock. The 1764 * hugetlb page could have been free'ed and head is no longer 1765 * a hugetlb page before the following check. In such unlikely 1766 * cases false positives and negatives are possible. Calling 1767 * code must deal with these scenarios. 1768 */ 1769 if (HPageMigratable(head)) 1770 goto found; 1771 skip = compound_nr(head) - (pfn - page_to_pfn(head)); 1772 pfn += skip - 1; 1773 } 1774 return -ENOENT; 1775 found: 1776 *movable_pfn = pfn; 1777 return 0; 1778 } 1779 1780 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1781 { 1782 unsigned long pfn; 1783 struct page *page, *head; 1784 LIST_HEAD(source); 1785 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1786 DEFAULT_RATELIMIT_BURST); 1787 1788 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1789 struct folio *folio; 1790 bool isolated; 1791 1792 if (!pfn_valid(pfn)) 1793 continue; 1794 page = pfn_to_page(pfn); 1795 folio = page_folio(page); 1796 head = &folio->page; 1797 1798 if (PageHuge(page)) { 1799 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1800 isolate_hugetlb(folio, &source); 1801 continue; 1802 } else if (PageTransHuge(page)) 1803 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1804 1805 /* 1806 * HWPoison pages have elevated reference counts so the migration would 1807 * fail on them. It also doesn't make any sense to migrate them in the 1808 * first place. Still try to unmap such a page in case it is still mapped 1809 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1810 * the unmap as the catch all safety net). 1811 */ 1812 if (PageHWPoison(page)) { 1813 if (WARN_ON(folio_test_lru(folio))) 1814 folio_isolate_lru(folio); 1815 if (folio_mapped(folio)) 1816 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1817 continue; 1818 } 1819 1820 if (!get_page_unless_zero(page)) 1821 continue; 1822 /* 1823 * We can skip free pages. And we can deal with pages on 1824 * LRU and non-lru movable pages. 1825 */ 1826 if (PageLRU(page)) 1827 isolated = isolate_lru_page(page); 1828 else 1829 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1830 if (isolated) { 1831 list_add_tail(&page->lru, &source); 1832 if (!__PageMovable(page)) 1833 inc_node_page_state(page, NR_ISOLATED_ANON + 1834 page_is_file_lru(page)); 1835 1836 } else { 1837 if (__ratelimit(&migrate_rs)) { 1838 pr_warn("failed to isolate pfn %lx\n", pfn); 1839 dump_page(page, "isolation failed"); 1840 } 1841 } 1842 put_page(page); 1843 } 1844 if (!list_empty(&source)) { 1845 nodemask_t nmask = node_states[N_MEMORY]; 1846 struct migration_target_control mtc = { 1847 .nmask = &nmask, 1848 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1849 }; 1850 int ret; 1851 1852 /* 1853 * We have checked that migration range is on a single zone so 1854 * we can use the nid of the first page to all the others. 1855 */ 1856 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1857 1858 /* 1859 * try to allocate from a different node but reuse this node 1860 * if there are no other online nodes to be used (e.g. we are 1861 * offlining a part of the only existing node) 1862 */ 1863 node_clear(mtc.nid, nmask); 1864 if (nodes_empty(nmask)) 1865 node_set(mtc.nid, nmask); 1866 ret = migrate_pages(&source, alloc_migration_target, NULL, 1867 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1868 if (ret) { 1869 list_for_each_entry(page, &source, lru) { 1870 if (__ratelimit(&migrate_rs)) { 1871 pr_warn("migrating pfn %lx failed ret:%d\n", 1872 page_to_pfn(page), ret); 1873 dump_page(page, "migration failure"); 1874 } 1875 } 1876 putback_movable_pages(&source); 1877 } 1878 } 1879 } 1880 1881 static int __init cmdline_parse_movable_node(char *p) 1882 { 1883 movable_node_enabled = true; 1884 return 0; 1885 } 1886 early_param("movable_node", cmdline_parse_movable_node); 1887 1888 /* check which state of node_states will be changed when offline memory */ 1889 static void node_states_check_changes_offline(unsigned long nr_pages, 1890 struct zone *zone, struct memory_notify *arg) 1891 { 1892 struct pglist_data *pgdat = zone->zone_pgdat; 1893 unsigned long present_pages = 0; 1894 enum zone_type zt; 1895 1896 arg->status_change_nid = NUMA_NO_NODE; 1897 arg->status_change_nid_normal = NUMA_NO_NODE; 1898 1899 /* 1900 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1901 * If the memory to be offline is within the range 1902 * [0..ZONE_NORMAL], and it is the last present memory there, 1903 * the zones in that range will become empty after the offlining, 1904 * thus we can determine that we need to clear the node from 1905 * node_states[N_NORMAL_MEMORY]. 1906 */ 1907 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1908 present_pages += pgdat->node_zones[zt].present_pages; 1909 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1910 arg->status_change_nid_normal = zone_to_nid(zone); 1911 1912 /* 1913 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1914 * does not apply as we don't support 32bit. 1915 * Here we count the possible pages from ZONE_MOVABLE. 1916 * If after having accounted all the pages, we see that the nr_pages 1917 * to be offlined is over or equal to the accounted pages, 1918 * we know that the node will become empty, and so, we can clear 1919 * it for N_MEMORY as well. 1920 */ 1921 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1922 1923 if (nr_pages >= present_pages) 1924 arg->status_change_nid = zone_to_nid(zone); 1925 } 1926 1927 static void node_states_clear_node(int node, struct memory_notify *arg) 1928 { 1929 if (arg->status_change_nid_normal >= 0) 1930 node_clear_state(node, N_NORMAL_MEMORY); 1931 1932 if (arg->status_change_nid >= 0) 1933 node_clear_state(node, N_MEMORY); 1934 } 1935 1936 static int count_system_ram_pages_cb(unsigned long start_pfn, 1937 unsigned long nr_pages, void *data) 1938 { 1939 unsigned long *nr_system_ram_pages = data; 1940 1941 *nr_system_ram_pages += nr_pages; 1942 return 0; 1943 } 1944 1945 /* 1946 * Must be called with mem_hotplug_lock in write mode. 1947 */ 1948 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1949 struct zone *zone, struct memory_group *group) 1950 { 1951 const unsigned long end_pfn = start_pfn + nr_pages; 1952 unsigned long pfn, system_ram_pages = 0; 1953 const int node = zone_to_nid(zone); 1954 unsigned long flags; 1955 struct memory_notify arg; 1956 char *reason; 1957 int ret; 1958 1959 /* 1960 * {on,off}lining is constrained to full memory sections (or more 1961 * precisely to memory blocks from the user space POV). 1962 * memmap_on_memory is an exception because it reserves initial part 1963 * of the physical memory space for vmemmaps. That space is pageblock 1964 * aligned. 1965 */ 1966 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1967 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1968 return -EINVAL; 1969 1970 /* 1971 * Don't allow to offline memory blocks that contain holes. 1972 * Consequently, memory blocks with holes can never get onlined 1973 * via the hotplug path - online_pages() - as hotplugged memory has 1974 * no holes. This way, we e.g., don't have to worry about marking 1975 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1976 * avoid using walk_system_ram_range() later. 1977 */ 1978 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1979 count_system_ram_pages_cb); 1980 if (system_ram_pages != nr_pages) { 1981 ret = -EINVAL; 1982 reason = "memory holes"; 1983 goto failed_removal; 1984 } 1985 1986 /* 1987 * We only support offlining of memory blocks managed by a single zone, 1988 * checked by calling code. This is just a sanity check that we might 1989 * want to remove in the future. 1990 */ 1991 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1992 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1993 ret = -EINVAL; 1994 reason = "multizone range"; 1995 goto failed_removal; 1996 } 1997 1998 /* 1999 * Disable pcplists so that page isolation cannot race with freeing 2000 * in a way that pages from isolated pageblock are left on pcplists. 2001 */ 2002 zone_pcp_disable(zone); 2003 lru_cache_disable(); 2004 2005 /* set above range as isolated */ 2006 ret = start_isolate_page_range(start_pfn, end_pfn, 2007 MIGRATE_MOVABLE, 2008 MEMORY_OFFLINE | REPORT_FAILURE, 2009 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 2010 if (ret) { 2011 reason = "failure to isolate range"; 2012 goto failed_removal_pcplists_disabled; 2013 } 2014 2015 arg.start_pfn = start_pfn; 2016 arg.nr_pages = nr_pages; 2017 node_states_check_changes_offline(nr_pages, zone, &arg); 2018 2019 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 2020 ret = notifier_to_errno(ret); 2021 if (ret) { 2022 reason = "notifier failure"; 2023 goto failed_removal_isolated; 2024 } 2025 2026 do { 2027 pfn = start_pfn; 2028 do { 2029 /* 2030 * Historically we always checked for any signal and 2031 * can't limit it to fatal signals without eventually 2032 * breaking user space. 2033 */ 2034 if (signal_pending(current)) { 2035 ret = -EINTR; 2036 reason = "signal backoff"; 2037 goto failed_removal_isolated; 2038 } 2039 2040 cond_resched(); 2041 2042 ret = scan_movable_pages(pfn, end_pfn, &pfn); 2043 if (!ret) { 2044 /* 2045 * TODO: fatal migration failures should bail 2046 * out 2047 */ 2048 do_migrate_range(pfn, end_pfn); 2049 } 2050 } while (!ret); 2051 2052 if (ret != -ENOENT) { 2053 reason = "unmovable page"; 2054 goto failed_removal_isolated; 2055 } 2056 2057 /* 2058 * Dissolve free hugepages in the memory block before doing 2059 * offlining actually in order to make hugetlbfs's object 2060 * counting consistent. 2061 */ 2062 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 2063 if (ret) { 2064 reason = "failure to dissolve huge pages"; 2065 goto failed_removal_isolated; 2066 } 2067 2068 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 2069 2070 } while (ret); 2071 2072 /* Mark all sections offline and remove free pages from the buddy. */ 2073 __offline_isolated_pages(start_pfn, end_pfn); 2074 pr_debug("Offlined Pages %ld\n", nr_pages); 2075 2076 /* 2077 * The memory sections are marked offline, and the pageblock flags 2078 * effectively stale; nobody should be touching them. Fixup the number 2079 * of isolated pageblocks, memory onlining will properly revert this. 2080 */ 2081 spin_lock_irqsave(&zone->lock, flags); 2082 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2083 spin_unlock_irqrestore(&zone->lock, flags); 2084 2085 lru_cache_enable(); 2086 zone_pcp_enable(zone); 2087 2088 /* removal success */ 2089 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 2090 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2091 2092 /* reinitialise watermarks and update pcp limits */ 2093 init_per_zone_wmark_min(); 2094 2095 /* 2096 * Make sure to mark the node as memory-less before rebuilding the zone 2097 * list. Otherwise this node would still appear in the fallback lists. 2098 */ 2099 node_states_clear_node(node, &arg); 2100 if (!populated_zone(zone)) { 2101 zone_pcp_reset(zone); 2102 build_all_zonelists(NULL); 2103 } 2104 2105 if (arg.status_change_nid >= 0) { 2106 kcompactd_stop(node); 2107 kswapd_stop(node); 2108 } 2109 2110 writeback_set_ratelimit(); 2111 2112 memory_notify(MEM_OFFLINE, &arg); 2113 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2114 return 0; 2115 2116 failed_removal_isolated: 2117 /* pushback to free area */ 2118 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2119 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2120 failed_removal_pcplists_disabled: 2121 lru_cache_enable(); 2122 zone_pcp_enable(zone); 2123 failed_removal: 2124 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2125 (unsigned long long) start_pfn << PAGE_SHIFT, 2126 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2127 reason); 2128 return ret; 2129 } 2130 2131 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2132 { 2133 int *nid = arg; 2134 2135 *nid = mem->nid; 2136 if (unlikely(mem->state != MEM_OFFLINE)) { 2137 phys_addr_t beginpa, endpa; 2138 2139 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2140 endpa = beginpa + memory_block_size_bytes() - 1; 2141 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2142 &beginpa, &endpa); 2143 2144 return -EBUSY; 2145 } 2146 return 0; 2147 } 2148 2149 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg) 2150 { 2151 u64 *num_altmaps = (u64 *)arg; 2152 2153 if (mem->altmap) 2154 *num_altmaps += 1; 2155 2156 return 0; 2157 } 2158 2159 static int check_cpu_on_node(int nid) 2160 { 2161 int cpu; 2162 2163 for_each_present_cpu(cpu) { 2164 if (cpu_to_node(cpu) == nid) 2165 /* 2166 * the cpu on this node isn't removed, and we can't 2167 * offline this node. 2168 */ 2169 return -EBUSY; 2170 } 2171 2172 return 0; 2173 } 2174 2175 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2176 { 2177 int nid = *(int *)arg; 2178 2179 /* 2180 * If a memory block belongs to multiple nodes, the stored nid is not 2181 * reliable. However, such blocks are always online (e.g., cannot get 2182 * offlined) and, therefore, are still spanned by the node. 2183 */ 2184 return mem->nid == nid ? -EEXIST : 0; 2185 } 2186 2187 /** 2188 * try_offline_node 2189 * @nid: the node ID 2190 * 2191 * Offline a node if all memory sections and cpus of the node are removed. 2192 * 2193 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2194 * and online/offline operations before this call. 2195 */ 2196 void try_offline_node(int nid) 2197 { 2198 int rc; 2199 2200 /* 2201 * If the node still spans pages (especially ZONE_DEVICE), don't 2202 * offline it. A node spans memory after move_pfn_range_to_zone(), 2203 * e.g., after the memory block was onlined. 2204 */ 2205 if (node_spanned_pages(nid)) 2206 return; 2207 2208 /* 2209 * Especially offline memory blocks might not be spanned by the 2210 * node. They will get spanned by the node once they get onlined. 2211 * However, they link to the node in sysfs and can get onlined later. 2212 */ 2213 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2214 if (rc) 2215 return; 2216 2217 if (check_cpu_on_node(nid)) 2218 return; 2219 2220 /* 2221 * all memory/cpu of this node are removed, we can offline this 2222 * node now. 2223 */ 2224 node_set_offline(nid); 2225 unregister_one_node(nid); 2226 } 2227 EXPORT_SYMBOL(try_offline_node); 2228 2229 static int memory_blocks_have_altmaps(u64 start, u64 size) 2230 { 2231 u64 num_memblocks = size / memory_block_size_bytes(); 2232 u64 num_altmaps = 0; 2233 2234 if (!mhp_memmap_on_memory()) 2235 return 0; 2236 2237 walk_memory_blocks(start, size, &num_altmaps, 2238 count_memory_range_altmaps_cb); 2239 2240 if (num_altmaps == 0) 2241 return 0; 2242 2243 if (WARN_ON_ONCE(num_memblocks != num_altmaps)) 2244 return -EINVAL; 2245 2246 return 1; 2247 } 2248 2249 static int __ref try_remove_memory(u64 start, u64 size) 2250 { 2251 int rc, nid = NUMA_NO_NODE; 2252 2253 BUG_ON(check_hotplug_memory_range(start, size)); 2254 2255 /* 2256 * All memory blocks must be offlined before removing memory. Check 2257 * whether all memory blocks in question are offline and return error 2258 * if this is not the case. 2259 * 2260 * While at it, determine the nid. Note that if we'd have mixed nodes, 2261 * we'd only try to offline the last determined one -- which is good 2262 * enough for the cases we care about. 2263 */ 2264 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2265 if (rc) 2266 return rc; 2267 2268 /* remove memmap entry */ 2269 firmware_map_remove(start, start + size, "System RAM"); 2270 2271 mem_hotplug_begin(); 2272 2273 rc = memory_blocks_have_altmaps(start, size); 2274 if (rc < 0) { 2275 mem_hotplug_done(); 2276 return rc; 2277 } else if (!rc) { 2278 /* 2279 * Memory block device removal under the device_hotplug_lock is 2280 * a barrier against racing online attempts. 2281 * No altmaps present, do the removal directly 2282 */ 2283 remove_memory_block_devices(start, size); 2284 arch_remove_memory(start, size, NULL); 2285 } else { 2286 /* all memblocks in the range have altmaps */ 2287 remove_memory_blocks_and_altmaps(start, size); 2288 } 2289 2290 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2291 memblock_phys_free(start, size); 2292 memblock_remove(start, size); 2293 } 2294 2295 release_mem_region_adjustable(start, size); 2296 2297 if (nid != NUMA_NO_NODE) 2298 try_offline_node(nid); 2299 2300 mem_hotplug_done(); 2301 return 0; 2302 } 2303 2304 /** 2305 * __remove_memory - Remove memory if every memory block is offline 2306 * @start: physical address of the region to remove 2307 * @size: size of the region to remove 2308 * 2309 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2310 * and online/offline operations before this call, as required by 2311 * try_offline_node(). 2312 */ 2313 void __remove_memory(u64 start, u64 size) 2314 { 2315 2316 /* 2317 * trigger BUG() if some memory is not offlined prior to calling this 2318 * function 2319 */ 2320 if (try_remove_memory(start, size)) 2321 BUG(); 2322 } 2323 2324 /* 2325 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2326 * some memory is not offline 2327 */ 2328 int remove_memory(u64 start, u64 size) 2329 { 2330 int rc; 2331 2332 lock_device_hotplug(); 2333 rc = try_remove_memory(start, size); 2334 unlock_device_hotplug(); 2335 2336 return rc; 2337 } 2338 EXPORT_SYMBOL_GPL(remove_memory); 2339 2340 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2341 { 2342 uint8_t online_type = MMOP_ONLINE_KERNEL; 2343 uint8_t **online_types = arg; 2344 struct page *page; 2345 int rc; 2346 2347 /* 2348 * Sense the online_type via the zone of the memory block. Offlining 2349 * with multiple zones within one memory block will be rejected 2350 * by offlining code ... so we don't care about that. 2351 */ 2352 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2353 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2354 online_type = MMOP_ONLINE_MOVABLE; 2355 2356 rc = device_offline(&mem->dev); 2357 /* 2358 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2359 * so try_reonline_memory_block() can do the right thing. 2360 */ 2361 if (!rc) 2362 **online_types = online_type; 2363 2364 (*online_types)++; 2365 /* Ignore if already offline. */ 2366 return rc < 0 ? rc : 0; 2367 } 2368 2369 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2370 { 2371 uint8_t **online_types = arg; 2372 int rc; 2373 2374 if (**online_types != MMOP_OFFLINE) { 2375 mem->online_type = **online_types; 2376 rc = device_online(&mem->dev); 2377 if (rc < 0) 2378 pr_warn("%s: Failed to re-online memory: %d", 2379 __func__, rc); 2380 } 2381 2382 /* Continue processing all remaining memory blocks. */ 2383 (*online_types)++; 2384 return 0; 2385 } 2386 2387 /* 2388 * Try to offline and remove memory. Might take a long time to finish in case 2389 * memory is still in use. Primarily useful for memory devices that logically 2390 * unplugged all memory (so it's no longer in use) and want to offline + remove 2391 * that memory. 2392 */ 2393 int offline_and_remove_memory(u64 start, u64 size) 2394 { 2395 const unsigned long mb_count = size / memory_block_size_bytes(); 2396 uint8_t *online_types, *tmp; 2397 int rc; 2398 2399 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2400 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2401 return -EINVAL; 2402 2403 /* 2404 * We'll remember the old online type of each memory block, so we can 2405 * try to revert whatever we did when offlining one memory block fails 2406 * after offlining some others succeeded. 2407 */ 2408 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2409 GFP_KERNEL); 2410 if (!online_types) 2411 return -ENOMEM; 2412 /* 2413 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2414 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2415 * try_reonline_memory_block(). 2416 */ 2417 memset(online_types, MMOP_OFFLINE, mb_count); 2418 2419 lock_device_hotplug(); 2420 2421 tmp = online_types; 2422 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2423 2424 /* 2425 * In case we succeeded to offline all memory, remove it. 2426 * This cannot fail as it cannot get onlined in the meantime. 2427 */ 2428 if (!rc) { 2429 rc = try_remove_memory(start, size); 2430 if (rc) 2431 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2432 } 2433 2434 /* 2435 * Rollback what we did. While memory onlining might theoretically fail 2436 * (nacked by a notifier), it barely ever happens. 2437 */ 2438 if (rc) { 2439 tmp = online_types; 2440 walk_memory_blocks(start, size, &tmp, 2441 try_reonline_memory_block); 2442 } 2443 unlock_device_hotplug(); 2444 2445 kfree(online_types); 2446 return rc; 2447 } 2448 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2449 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2450