1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/compaction.h> 36 #include <linux/rmap.h> 37 #include <linux/module.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 enum { 45 MEMMAP_ON_MEMORY_DISABLE = 0, 46 MEMMAP_ON_MEMORY_ENABLE, 47 MEMMAP_ON_MEMORY_FORCE, 48 }; 49 50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; 51 52 static inline unsigned long memory_block_memmap_size(void) 53 { 54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); 55 } 56 57 static inline unsigned long memory_block_memmap_on_memory_pages(void) 58 { 59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); 60 61 /* 62 * In "forced" memmap_on_memory mode, we add extra pages to align the 63 * vmemmap size to cover full pageblocks. That way, we can add memory 64 * even if the vmemmap size is not properly aligned, however, we might waste 65 * memory. 66 */ 67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) 68 return pageblock_align(nr_pages); 69 return nr_pages; 70 } 71 72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 73 /* 74 * memory_hotplug.memmap_on_memory parameter 75 */ 76 static int set_memmap_mode(const char *val, const struct kernel_param *kp) 77 { 78 int ret, mode; 79 bool enabled; 80 81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { 82 mode = MEMMAP_ON_MEMORY_FORCE; 83 } else { 84 ret = kstrtobool(val, &enabled); 85 if (ret < 0) 86 return ret; 87 if (enabled) 88 mode = MEMMAP_ON_MEMORY_ENABLE; 89 else 90 mode = MEMMAP_ON_MEMORY_DISABLE; 91 } 92 *((int *)kp->arg) = mode; 93 if (mode == MEMMAP_ON_MEMORY_FORCE) { 94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 95 96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", 97 memmap_pages - PFN_UP(memory_block_memmap_size())); 98 } 99 return 0; 100 } 101 102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp) 103 { 104 if (*((int *)kp->arg) == MEMMAP_ON_MEMORY_FORCE) 105 return sprintf(buffer, "force\n"); 106 return param_get_bool(buffer, kp); 107 } 108 109 static const struct kernel_param_ops memmap_mode_ops = { 110 .set = set_memmap_mode, 111 .get = get_memmap_mode, 112 }; 113 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); 114 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" 115 "With value \"force\" it could result in memory wastage due " 116 "to memmap size limitations (Y/N/force)"); 117 118 static inline bool mhp_memmap_on_memory(void) 119 { 120 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; 121 } 122 #else 123 static inline bool mhp_memmap_on_memory(void) 124 { 125 return false; 126 } 127 #endif 128 129 enum { 130 ONLINE_POLICY_CONTIG_ZONES = 0, 131 ONLINE_POLICY_AUTO_MOVABLE, 132 }; 133 134 static const char * const online_policy_to_str[] = { 135 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 136 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 137 }; 138 139 static int set_online_policy(const char *val, const struct kernel_param *kp) 140 { 141 int ret = sysfs_match_string(online_policy_to_str, val); 142 143 if (ret < 0) 144 return ret; 145 *((int *)kp->arg) = ret; 146 return 0; 147 } 148 149 static int get_online_policy(char *buffer, const struct kernel_param *kp) 150 { 151 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 152 } 153 154 /* 155 * memory_hotplug.online_policy: configure online behavior when onlining without 156 * specifying a zone (MMOP_ONLINE) 157 * 158 * "contig-zones": keep zone contiguous 159 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 160 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 161 */ 162 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 163 static const struct kernel_param_ops online_policy_ops = { 164 .set = set_online_policy, 165 .get = get_online_policy, 166 }; 167 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 168 MODULE_PARM_DESC(online_policy, 169 "Set the online policy (\"contig-zones\", \"auto-movable\") " 170 "Default: \"contig-zones\""); 171 172 /* 173 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 174 * 175 * The ratio represent an upper limit and the kernel might decide to not 176 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 177 * doesn't allow for more MOVABLE memory. 178 */ 179 static unsigned int auto_movable_ratio __read_mostly = 301; 180 module_param(auto_movable_ratio, uint, 0644); 181 MODULE_PARM_DESC(auto_movable_ratio, 182 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 183 "in percent for \"auto-movable\" online policy. Default: 301"); 184 185 /* 186 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 187 */ 188 #ifdef CONFIG_NUMA 189 static bool auto_movable_numa_aware __read_mostly = true; 190 module_param(auto_movable_numa_aware, bool, 0644); 191 MODULE_PARM_DESC(auto_movable_numa_aware, 192 "Consider numa node stats in addition to global stats in " 193 "\"auto-movable\" online policy. Default: true"); 194 #endif /* CONFIG_NUMA */ 195 196 /* 197 * online_page_callback contains pointer to current page onlining function. 198 * Initially it is generic_online_page(). If it is required it could be 199 * changed by calling set_online_page_callback() for callback registration 200 * and restore_online_page_callback() for generic callback restore. 201 */ 202 203 static online_page_callback_t online_page_callback = generic_online_page; 204 static DEFINE_MUTEX(online_page_callback_lock); 205 206 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 207 208 void get_online_mems(void) 209 { 210 percpu_down_read(&mem_hotplug_lock); 211 } 212 213 void put_online_mems(void) 214 { 215 percpu_up_read(&mem_hotplug_lock); 216 } 217 218 bool movable_node_enabled = false; 219 220 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 221 int mhp_default_online_type = MMOP_OFFLINE; 222 #else 223 int mhp_default_online_type = MMOP_ONLINE; 224 #endif 225 226 static int __init setup_memhp_default_state(char *str) 227 { 228 const int online_type = mhp_online_type_from_str(str); 229 230 if (online_type >= 0) 231 mhp_default_online_type = online_type; 232 233 return 1; 234 } 235 __setup("memhp_default_state=", setup_memhp_default_state); 236 237 void mem_hotplug_begin(void) 238 { 239 cpus_read_lock(); 240 percpu_down_write(&mem_hotplug_lock); 241 } 242 243 void mem_hotplug_done(void) 244 { 245 percpu_up_write(&mem_hotplug_lock); 246 cpus_read_unlock(); 247 } 248 249 u64 max_mem_size = U64_MAX; 250 251 /* add this memory to iomem resource */ 252 static struct resource *register_memory_resource(u64 start, u64 size, 253 const char *resource_name) 254 { 255 struct resource *res; 256 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 257 258 if (strcmp(resource_name, "System RAM")) 259 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 260 261 if (!mhp_range_allowed(start, size, true)) 262 return ERR_PTR(-E2BIG); 263 264 /* 265 * Make sure value parsed from 'mem=' only restricts memory adding 266 * while booting, so that memory hotplug won't be impacted. Please 267 * refer to document of 'mem=' in kernel-parameters.txt for more 268 * details. 269 */ 270 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 271 return ERR_PTR(-E2BIG); 272 273 /* 274 * Request ownership of the new memory range. This might be 275 * a child of an existing resource that was present but 276 * not marked as busy. 277 */ 278 res = __request_region(&iomem_resource, start, size, 279 resource_name, flags); 280 281 if (!res) { 282 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 283 start, start + size); 284 return ERR_PTR(-EEXIST); 285 } 286 return res; 287 } 288 289 static void release_memory_resource(struct resource *res) 290 { 291 if (!res) 292 return; 293 release_resource(res); 294 kfree(res); 295 } 296 297 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 298 { 299 /* 300 * Disallow all operations smaller than a sub-section and only 301 * allow operations smaller than a section for 302 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 303 * enforces a larger memory_block_size_bytes() granularity for 304 * memory that will be marked online, so this check should only 305 * fire for direct arch_{add,remove}_memory() users outside of 306 * add_memory_resource(). 307 */ 308 unsigned long min_align; 309 310 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 311 min_align = PAGES_PER_SUBSECTION; 312 else 313 min_align = PAGES_PER_SECTION; 314 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 315 return -EINVAL; 316 return 0; 317 } 318 319 /* 320 * Return page for the valid pfn only if the page is online. All pfn 321 * walkers which rely on the fully initialized page->flags and others 322 * should use this rather than pfn_valid && pfn_to_page 323 */ 324 struct page *pfn_to_online_page(unsigned long pfn) 325 { 326 unsigned long nr = pfn_to_section_nr(pfn); 327 struct dev_pagemap *pgmap; 328 struct mem_section *ms; 329 330 if (nr >= NR_MEM_SECTIONS) 331 return NULL; 332 333 ms = __nr_to_section(nr); 334 if (!online_section(ms)) 335 return NULL; 336 337 /* 338 * Save some code text when online_section() + 339 * pfn_section_valid() are sufficient. 340 */ 341 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 342 return NULL; 343 344 if (!pfn_section_valid(ms, pfn)) 345 return NULL; 346 347 if (!online_device_section(ms)) 348 return pfn_to_page(pfn); 349 350 /* 351 * Slowpath: when ZONE_DEVICE collides with 352 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 353 * the section may be 'offline' but 'valid'. Only 354 * get_dev_pagemap() can determine sub-section online status. 355 */ 356 pgmap = get_dev_pagemap(pfn, NULL); 357 put_dev_pagemap(pgmap); 358 359 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 360 if (pgmap) 361 return NULL; 362 363 return pfn_to_page(pfn); 364 } 365 EXPORT_SYMBOL_GPL(pfn_to_online_page); 366 367 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 368 struct mhp_params *params) 369 { 370 const unsigned long end_pfn = pfn + nr_pages; 371 unsigned long cur_nr_pages; 372 int err; 373 struct vmem_altmap *altmap = params->altmap; 374 375 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 376 return -EINVAL; 377 378 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 379 380 if (altmap) { 381 /* 382 * Validate altmap is within bounds of the total request 383 */ 384 if (altmap->base_pfn != pfn 385 || vmem_altmap_offset(altmap) > nr_pages) { 386 pr_warn_once("memory add fail, invalid altmap\n"); 387 return -EINVAL; 388 } 389 altmap->alloc = 0; 390 } 391 392 if (check_pfn_span(pfn, nr_pages)) { 393 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 394 return -EINVAL; 395 } 396 397 for (; pfn < end_pfn; pfn += cur_nr_pages) { 398 /* Select all remaining pages up to the next section boundary */ 399 cur_nr_pages = min(end_pfn - pfn, 400 SECTION_ALIGN_UP(pfn + 1) - pfn); 401 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 402 params->pgmap); 403 if (err) 404 break; 405 cond_resched(); 406 } 407 vmemmap_populate_print_last(); 408 return err; 409 } 410 411 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 412 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 413 unsigned long start_pfn, 414 unsigned long end_pfn) 415 { 416 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 417 if (unlikely(!pfn_to_online_page(start_pfn))) 418 continue; 419 420 if (unlikely(pfn_to_nid(start_pfn) != nid)) 421 continue; 422 423 if (zone != page_zone(pfn_to_page(start_pfn))) 424 continue; 425 426 return start_pfn; 427 } 428 429 return 0; 430 } 431 432 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 433 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 434 unsigned long start_pfn, 435 unsigned long end_pfn) 436 { 437 unsigned long pfn; 438 439 /* pfn is the end pfn of a memory section. */ 440 pfn = end_pfn - 1; 441 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 442 if (unlikely(!pfn_to_online_page(pfn))) 443 continue; 444 445 if (unlikely(pfn_to_nid(pfn) != nid)) 446 continue; 447 448 if (zone != page_zone(pfn_to_page(pfn))) 449 continue; 450 451 return pfn; 452 } 453 454 return 0; 455 } 456 457 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 458 unsigned long end_pfn) 459 { 460 unsigned long pfn; 461 int nid = zone_to_nid(zone); 462 463 if (zone->zone_start_pfn == start_pfn) { 464 /* 465 * If the section is smallest section in the zone, it need 466 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 467 * In this case, we find second smallest valid mem_section 468 * for shrinking zone. 469 */ 470 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 471 zone_end_pfn(zone)); 472 if (pfn) { 473 zone->spanned_pages = zone_end_pfn(zone) - pfn; 474 zone->zone_start_pfn = pfn; 475 } else { 476 zone->zone_start_pfn = 0; 477 zone->spanned_pages = 0; 478 } 479 } else if (zone_end_pfn(zone) == end_pfn) { 480 /* 481 * If the section is biggest section in the zone, it need 482 * shrink zone->spanned_pages. 483 * In this case, we find second biggest valid mem_section for 484 * shrinking zone. 485 */ 486 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 487 start_pfn); 488 if (pfn) 489 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 490 else { 491 zone->zone_start_pfn = 0; 492 zone->spanned_pages = 0; 493 } 494 } 495 } 496 497 static void update_pgdat_span(struct pglist_data *pgdat) 498 { 499 unsigned long node_start_pfn = 0, node_end_pfn = 0; 500 struct zone *zone; 501 502 for (zone = pgdat->node_zones; 503 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 504 unsigned long end_pfn = zone_end_pfn(zone); 505 506 /* No need to lock the zones, they can't change. */ 507 if (!zone->spanned_pages) 508 continue; 509 if (!node_end_pfn) { 510 node_start_pfn = zone->zone_start_pfn; 511 node_end_pfn = end_pfn; 512 continue; 513 } 514 515 if (end_pfn > node_end_pfn) 516 node_end_pfn = end_pfn; 517 if (zone->zone_start_pfn < node_start_pfn) 518 node_start_pfn = zone->zone_start_pfn; 519 } 520 521 pgdat->node_start_pfn = node_start_pfn; 522 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 523 } 524 525 void __ref remove_pfn_range_from_zone(struct zone *zone, 526 unsigned long start_pfn, 527 unsigned long nr_pages) 528 { 529 const unsigned long end_pfn = start_pfn + nr_pages; 530 struct pglist_data *pgdat = zone->zone_pgdat; 531 unsigned long pfn, cur_nr_pages; 532 533 /* Poison struct pages because they are now uninitialized again. */ 534 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 535 cond_resched(); 536 537 /* Select all remaining pages up to the next section boundary */ 538 cur_nr_pages = 539 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 540 page_init_poison(pfn_to_page(pfn), 541 sizeof(struct page) * cur_nr_pages); 542 } 543 544 /* 545 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 546 * we will not try to shrink the zones - which is okay as 547 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 548 */ 549 if (zone_is_zone_device(zone)) 550 return; 551 552 clear_zone_contiguous(zone); 553 554 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 555 update_pgdat_span(pgdat); 556 557 set_zone_contiguous(zone); 558 } 559 560 /** 561 * __remove_pages() - remove sections of pages 562 * @pfn: starting pageframe (must be aligned to start of a section) 563 * @nr_pages: number of pages to remove (must be multiple of section size) 564 * @altmap: alternative device page map or %NULL if default memmap is used 565 * 566 * Generic helper function to remove section mappings and sysfs entries 567 * for the section of the memory we are removing. Caller needs to make 568 * sure that pages are marked reserved and zones are adjust properly by 569 * calling offline_pages(). 570 */ 571 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 572 struct vmem_altmap *altmap) 573 { 574 const unsigned long end_pfn = pfn + nr_pages; 575 unsigned long cur_nr_pages; 576 577 if (check_pfn_span(pfn, nr_pages)) { 578 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 579 return; 580 } 581 582 for (; pfn < end_pfn; pfn += cur_nr_pages) { 583 cond_resched(); 584 /* Select all remaining pages up to the next section boundary */ 585 cur_nr_pages = min(end_pfn - pfn, 586 SECTION_ALIGN_UP(pfn + 1) - pfn); 587 sparse_remove_section(pfn, cur_nr_pages, altmap); 588 } 589 } 590 591 int set_online_page_callback(online_page_callback_t callback) 592 { 593 int rc = -EINVAL; 594 595 get_online_mems(); 596 mutex_lock(&online_page_callback_lock); 597 598 if (online_page_callback == generic_online_page) { 599 online_page_callback = callback; 600 rc = 0; 601 } 602 603 mutex_unlock(&online_page_callback_lock); 604 put_online_mems(); 605 606 return rc; 607 } 608 EXPORT_SYMBOL_GPL(set_online_page_callback); 609 610 int restore_online_page_callback(online_page_callback_t callback) 611 { 612 int rc = -EINVAL; 613 614 get_online_mems(); 615 mutex_lock(&online_page_callback_lock); 616 617 if (online_page_callback == callback) { 618 online_page_callback = generic_online_page; 619 rc = 0; 620 } 621 622 mutex_unlock(&online_page_callback_lock); 623 put_online_mems(); 624 625 return rc; 626 } 627 EXPORT_SYMBOL_GPL(restore_online_page_callback); 628 629 void generic_online_page(struct page *page, unsigned int order) 630 { 631 /* 632 * Freeing the page with debug_pagealloc enabled will try to unmap it, 633 * so we should map it first. This is better than introducing a special 634 * case in page freeing fast path. 635 */ 636 debug_pagealloc_map_pages(page, 1 << order); 637 __free_pages_core(page, order); 638 totalram_pages_add(1UL << order); 639 } 640 EXPORT_SYMBOL_GPL(generic_online_page); 641 642 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 643 { 644 const unsigned long end_pfn = start_pfn + nr_pages; 645 unsigned long pfn; 646 647 /* 648 * Online the pages in MAX_ORDER aligned chunks. The callback might 649 * decide to not expose all pages to the buddy (e.g., expose them 650 * later). We account all pages as being online and belonging to this 651 * zone ("present"). 652 * When using memmap_on_memory, the range might not be aligned to 653 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 654 * this and the first chunk to online will be pageblock_nr_pages. 655 */ 656 for (pfn = start_pfn; pfn < end_pfn;) { 657 int order; 658 659 /* 660 * Free to online pages in the largest chunks alignment allows. 661 * 662 * __ffs() behaviour is undefined for 0. start == 0 is 663 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case. 664 */ 665 if (pfn) 666 order = min_t(int, MAX_ORDER, __ffs(pfn)); 667 else 668 order = MAX_ORDER; 669 670 (*online_page_callback)(pfn_to_page(pfn), order); 671 pfn += (1UL << order); 672 } 673 674 /* mark all involved sections as online */ 675 online_mem_sections(start_pfn, end_pfn); 676 } 677 678 /* check which state of node_states will be changed when online memory */ 679 static void node_states_check_changes_online(unsigned long nr_pages, 680 struct zone *zone, struct memory_notify *arg) 681 { 682 int nid = zone_to_nid(zone); 683 684 arg->status_change_nid = NUMA_NO_NODE; 685 arg->status_change_nid_normal = NUMA_NO_NODE; 686 687 if (!node_state(nid, N_MEMORY)) 688 arg->status_change_nid = nid; 689 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 690 arg->status_change_nid_normal = nid; 691 } 692 693 static void node_states_set_node(int node, struct memory_notify *arg) 694 { 695 if (arg->status_change_nid_normal >= 0) 696 node_set_state(node, N_NORMAL_MEMORY); 697 698 if (arg->status_change_nid >= 0) 699 node_set_state(node, N_MEMORY); 700 } 701 702 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 703 unsigned long nr_pages) 704 { 705 unsigned long old_end_pfn = zone_end_pfn(zone); 706 707 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 708 zone->zone_start_pfn = start_pfn; 709 710 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 711 } 712 713 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 714 unsigned long nr_pages) 715 { 716 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 717 718 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 719 pgdat->node_start_pfn = start_pfn; 720 721 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 722 723 } 724 725 #ifdef CONFIG_ZONE_DEVICE 726 static void section_taint_zone_device(unsigned long pfn) 727 { 728 struct mem_section *ms = __pfn_to_section(pfn); 729 730 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 731 } 732 #else 733 static inline void section_taint_zone_device(unsigned long pfn) 734 { 735 } 736 #endif 737 738 /* 739 * Associate the pfn range with the given zone, initializing the memmaps 740 * and resizing the pgdat/zone data to span the added pages. After this 741 * call, all affected pages are PG_reserved. 742 * 743 * All aligned pageblocks are initialized to the specified migratetype 744 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 745 * zone stats (e.g., nr_isolate_pageblock) are touched. 746 */ 747 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 748 unsigned long nr_pages, 749 struct vmem_altmap *altmap, int migratetype) 750 { 751 struct pglist_data *pgdat = zone->zone_pgdat; 752 int nid = pgdat->node_id; 753 754 clear_zone_contiguous(zone); 755 756 if (zone_is_empty(zone)) 757 init_currently_empty_zone(zone, start_pfn, nr_pages); 758 resize_zone_range(zone, start_pfn, nr_pages); 759 resize_pgdat_range(pgdat, start_pfn, nr_pages); 760 761 /* 762 * Subsection population requires care in pfn_to_online_page(). 763 * Set the taint to enable the slow path detection of 764 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 765 * section. 766 */ 767 if (zone_is_zone_device(zone)) { 768 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 769 section_taint_zone_device(start_pfn); 770 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 771 section_taint_zone_device(start_pfn + nr_pages); 772 } 773 774 /* 775 * TODO now we have a visible range of pages which are not associated 776 * with their zone properly. Not nice but set_pfnblock_flags_mask 777 * expects the zone spans the pfn range. All the pages in the range 778 * are reserved so nobody should be touching them so we should be safe 779 */ 780 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 781 MEMINIT_HOTPLUG, altmap, migratetype); 782 783 set_zone_contiguous(zone); 784 } 785 786 struct auto_movable_stats { 787 unsigned long kernel_early_pages; 788 unsigned long movable_pages; 789 }; 790 791 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 792 struct zone *zone) 793 { 794 if (zone_idx(zone) == ZONE_MOVABLE) { 795 stats->movable_pages += zone->present_pages; 796 } else { 797 stats->kernel_early_pages += zone->present_early_pages; 798 #ifdef CONFIG_CMA 799 /* 800 * CMA pages (never on hotplugged memory) behave like 801 * ZONE_MOVABLE. 802 */ 803 stats->movable_pages += zone->cma_pages; 804 stats->kernel_early_pages -= zone->cma_pages; 805 #endif /* CONFIG_CMA */ 806 } 807 } 808 struct auto_movable_group_stats { 809 unsigned long movable_pages; 810 unsigned long req_kernel_early_pages; 811 }; 812 813 static int auto_movable_stats_account_group(struct memory_group *group, 814 void *arg) 815 { 816 const int ratio = READ_ONCE(auto_movable_ratio); 817 struct auto_movable_group_stats *stats = arg; 818 long pages; 819 820 /* 821 * We don't support modifying the config while the auto-movable online 822 * policy is already enabled. Just avoid the division by zero below. 823 */ 824 if (!ratio) 825 return 0; 826 827 /* 828 * Calculate how many early kernel pages this group requires to 829 * satisfy the configured zone ratio. 830 */ 831 pages = group->present_movable_pages * 100 / ratio; 832 pages -= group->present_kernel_pages; 833 834 if (pages > 0) 835 stats->req_kernel_early_pages += pages; 836 stats->movable_pages += group->present_movable_pages; 837 return 0; 838 } 839 840 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 841 unsigned long nr_pages) 842 { 843 unsigned long kernel_early_pages, movable_pages; 844 struct auto_movable_group_stats group_stats = {}; 845 struct auto_movable_stats stats = {}; 846 pg_data_t *pgdat = NODE_DATA(nid); 847 struct zone *zone; 848 int i; 849 850 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 851 if (nid == NUMA_NO_NODE) { 852 /* TODO: cache values */ 853 for_each_populated_zone(zone) 854 auto_movable_stats_account_zone(&stats, zone); 855 } else { 856 for (i = 0; i < MAX_NR_ZONES; i++) { 857 zone = pgdat->node_zones + i; 858 if (populated_zone(zone)) 859 auto_movable_stats_account_zone(&stats, zone); 860 } 861 } 862 863 kernel_early_pages = stats.kernel_early_pages; 864 movable_pages = stats.movable_pages; 865 866 /* 867 * Kernel memory inside dynamic memory group allows for more MOVABLE 868 * memory within the same group. Remove the effect of all but the 869 * current group from the stats. 870 */ 871 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 872 group, &group_stats); 873 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 874 return false; 875 kernel_early_pages -= group_stats.req_kernel_early_pages; 876 movable_pages -= group_stats.movable_pages; 877 878 if (group && group->is_dynamic) 879 kernel_early_pages += group->present_kernel_pages; 880 881 /* 882 * Test if we could online the given number of pages to ZONE_MOVABLE 883 * and still stay in the configured ratio. 884 */ 885 movable_pages += nr_pages; 886 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 887 } 888 889 /* 890 * Returns a default kernel memory zone for the given pfn range. 891 * If no kernel zone covers this pfn range it will automatically go 892 * to the ZONE_NORMAL. 893 */ 894 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 895 unsigned long nr_pages) 896 { 897 struct pglist_data *pgdat = NODE_DATA(nid); 898 int zid; 899 900 for (zid = 0; zid < ZONE_NORMAL; zid++) { 901 struct zone *zone = &pgdat->node_zones[zid]; 902 903 if (zone_intersects(zone, start_pfn, nr_pages)) 904 return zone; 905 } 906 907 return &pgdat->node_zones[ZONE_NORMAL]; 908 } 909 910 /* 911 * Determine to which zone to online memory dynamically based on user 912 * configuration and system stats. We care about the following ratio: 913 * 914 * MOVABLE : KERNEL 915 * 916 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 917 * one of the kernel zones. CMA pages inside one of the kernel zones really 918 * behaves like ZONE_MOVABLE, so we treat them accordingly. 919 * 920 * We don't allow for hotplugged memory in a KERNEL zone to increase the 921 * amount of MOVABLE memory we can have, so we end up with: 922 * 923 * MOVABLE : KERNEL_EARLY 924 * 925 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 926 * boot. We base our calculation on KERNEL_EARLY internally, because: 927 * 928 * a) Hotplugged memory in one of the kernel zones can sometimes still get 929 * hotunplugged, especially when hot(un)plugging individual memory blocks. 930 * There is no coordination across memory devices, therefore "automatic" 931 * hotunplugging, as implemented in hypervisors, could result in zone 932 * imbalances. 933 * b) Early/boot memory in one of the kernel zones can usually not get 934 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 935 * with unmovable allocations). While there are corner cases where it might 936 * still work, it is barely relevant in practice. 937 * 938 * Exceptions are dynamic memory groups, which allow for more MOVABLE 939 * memory within the same memory group -- because in that case, there is 940 * coordination within the single memory device managed by a single driver. 941 * 942 * We rely on "present pages" instead of "managed pages", as the latter is 943 * highly unreliable and dynamic in virtualized environments, and does not 944 * consider boot time allocations. For example, memory ballooning adjusts the 945 * managed pages when inflating/deflating the balloon, and balloon compaction 946 * can even migrate inflated pages between zones. 947 * 948 * Using "present pages" is better but some things to keep in mind are: 949 * 950 * a) Some memblock allocations, such as for the crashkernel area, are 951 * effectively unused by the kernel, yet they account to "present pages". 952 * Fortunately, these allocations are comparatively small in relevant setups 953 * (e.g., fraction of system memory). 954 * b) Some hotplugged memory blocks in virtualized environments, esecially 955 * hotplugged by virtio-mem, look like they are completely present, however, 956 * only parts of the memory block are actually currently usable. 957 * "present pages" is an upper limit that can get reached at runtime. As 958 * we base our calculations on KERNEL_EARLY, this is not an issue. 959 */ 960 static struct zone *auto_movable_zone_for_pfn(int nid, 961 struct memory_group *group, 962 unsigned long pfn, 963 unsigned long nr_pages) 964 { 965 unsigned long online_pages = 0, max_pages, end_pfn; 966 struct page *page; 967 968 if (!auto_movable_ratio) 969 goto kernel_zone; 970 971 if (group && !group->is_dynamic) { 972 max_pages = group->s.max_pages; 973 online_pages = group->present_movable_pages; 974 975 /* If anything is !MOVABLE online the rest !MOVABLE. */ 976 if (group->present_kernel_pages) 977 goto kernel_zone; 978 } else if (!group || group->d.unit_pages == nr_pages) { 979 max_pages = nr_pages; 980 } else { 981 max_pages = group->d.unit_pages; 982 /* 983 * Take a look at all online sections in the current unit. 984 * We can safely assume that all pages within a section belong 985 * to the same zone, because dynamic memory groups only deal 986 * with hotplugged memory. 987 */ 988 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 989 end_pfn = pfn + group->d.unit_pages; 990 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 991 page = pfn_to_online_page(pfn); 992 if (!page) 993 continue; 994 /* If anything is !MOVABLE online the rest !MOVABLE. */ 995 if (!is_zone_movable_page(page)) 996 goto kernel_zone; 997 online_pages += PAGES_PER_SECTION; 998 } 999 } 1000 1001 /* 1002 * Online MOVABLE if we could *currently* online all remaining parts 1003 * MOVABLE. We expect to (add+) online them immediately next, so if 1004 * nobody interferes, all will be MOVABLE if possible. 1005 */ 1006 nr_pages = max_pages - online_pages; 1007 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 1008 goto kernel_zone; 1009 1010 #ifdef CONFIG_NUMA 1011 if (auto_movable_numa_aware && 1012 !auto_movable_can_online_movable(nid, group, nr_pages)) 1013 goto kernel_zone; 1014 #endif /* CONFIG_NUMA */ 1015 1016 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1017 kernel_zone: 1018 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 1019 } 1020 1021 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 1022 unsigned long nr_pages) 1023 { 1024 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 1025 nr_pages); 1026 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1027 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 1028 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 1029 1030 /* 1031 * We inherit the existing zone in a simple case where zones do not 1032 * overlap in the given range 1033 */ 1034 if (in_kernel ^ in_movable) 1035 return (in_kernel) ? kernel_zone : movable_zone; 1036 1037 /* 1038 * If the range doesn't belong to any zone or two zones overlap in the 1039 * given range then we use movable zone only if movable_node is 1040 * enabled because we always online to a kernel zone by default. 1041 */ 1042 return movable_node_enabled ? movable_zone : kernel_zone; 1043 } 1044 1045 struct zone *zone_for_pfn_range(int online_type, int nid, 1046 struct memory_group *group, unsigned long start_pfn, 1047 unsigned long nr_pages) 1048 { 1049 if (online_type == MMOP_ONLINE_KERNEL) 1050 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1051 1052 if (online_type == MMOP_ONLINE_MOVABLE) 1053 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1054 1055 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1056 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1057 1058 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1059 } 1060 1061 /* 1062 * This function should only be called by memory_block_{online,offline}, 1063 * and {online,offline}_pages. 1064 */ 1065 void adjust_present_page_count(struct page *page, struct memory_group *group, 1066 long nr_pages) 1067 { 1068 struct zone *zone = page_zone(page); 1069 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1070 1071 /* 1072 * We only support onlining/offlining/adding/removing of complete 1073 * memory blocks; therefore, either all is either early or hotplugged. 1074 */ 1075 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1076 zone->present_early_pages += nr_pages; 1077 zone->present_pages += nr_pages; 1078 zone->zone_pgdat->node_present_pages += nr_pages; 1079 1080 if (group && movable) 1081 group->present_movable_pages += nr_pages; 1082 else if (group && !movable) 1083 group->present_kernel_pages += nr_pages; 1084 } 1085 1086 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1087 struct zone *zone) 1088 { 1089 unsigned long end_pfn = pfn + nr_pages; 1090 int ret, i; 1091 1092 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1093 if (ret) 1094 return ret; 1095 1096 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1097 1098 for (i = 0; i < nr_pages; i++) 1099 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i)); 1100 1101 /* 1102 * It might be that the vmemmap_pages fully span sections. If that is 1103 * the case, mark those sections online here as otherwise they will be 1104 * left offline. 1105 */ 1106 if (nr_pages >= PAGES_PER_SECTION) 1107 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1108 1109 return ret; 1110 } 1111 1112 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1113 { 1114 unsigned long end_pfn = pfn + nr_pages; 1115 1116 /* 1117 * It might be that the vmemmap_pages fully span sections. If that is 1118 * the case, mark those sections offline here as otherwise they will be 1119 * left online. 1120 */ 1121 if (nr_pages >= PAGES_PER_SECTION) 1122 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1123 1124 /* 1125 * The pages associated with this vmemmap have been offlined, so 1126 * we can reset its state here. 1127 */ 1128 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1129 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1130 } 1131 1132 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1133 struct zone *zone, struct memory_group *group) 1134 { 1135 unsigned long flags; 1136 int need_zonelists_rebuild = 0; 1137 const int nid = zone_to_nid(zone); 1138 int ret; 1139 struct memory_notify arg; 1140 1141 /* 1142 * {on,off}lining is constrained to full memory sections (or more 1143 * precisely to memory blocks from the user space POV). 1144 * memmap_on_memory is an exception because it reserves initial part 1145 * of the physical memory space for vmemmaps. That space is pageblock 1146 * aligned. 1147 */ 1148 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1149 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1150 return -EINVAL; 1151 1152 mem_hotplug_begin(); 1153 1154 /* associate pfn range with the zone */ 1155 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1156 1157 arg.start_pfn = pfn; 1158 arg.nr_pages = nr_pages; 1159 node_states_check_changes_online(nr_pages, zone, &arg); 1160 1161 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1162 ret = notifier_to_errno(ret); 1163 if (ret) 1164 goto failed_addition; 1165 1166 /* 1167 * Fixup the number of isolated pageblocks before marking the sections 1168 * onlining, such that undo_isolate_page_range() works correctly. 1169 */ 1170 spin_lock_irqsave(&zone->lock, flags); 1171 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1172 spin_unlock_irqrestore(&zone->lock, flags); 1173 1174 /* 1175 * If this zone is not populated, then it is not in zonelist. 1176 * This means the page allocator ignores this zone. 1177 * So, zonelist must be updated after online. 1178 */ 1179 if (!populated_zone(zone)) { 1180 need_zonelists_rebuild = 1; 1181 setup_zone_pageset(zone); 1182 } 1183 1184 online_pages_range(pfn, nr_pages); 1185 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1186 1187 node_states_set_node(nid, &arg); 1188 if (need_zonelists_rebuild) 1189 build_all_zonelists(NULL); 1190 1191 /* Basic onlining is complete, allow allocation of onlined pages. */ 1192 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1193 1194 /* 1195 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1196 * the tail of the freelist when undoing isolation). Shuffle the whole 1197 * zone to make sure the just onlined pages are properly distributed 1198 * across the whole freelist - to create an initial shuffle. 1199 */ 1200 shuffle_zone(zone); 1201 1202 /* reinitialise watermarks and update pcp limits */ 1203 init_per_zone_wmark_min(); 1204 1205 kswapd_run(nid); 1206 kcompactd_run(nid); 1207 1208 writeback_set_ratelimit(); 1209 1210 memory_notify(MEM_ONLINE, &arg); 1211 mem_hotplug_done(); 1212 return 0; 1213 1214 failed_addition: 1215 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1216 (unsigned long long) pfn << PAGE_SHIFT, 1217 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1218 memory_notify(MEM_CANCEL_ONLINE, &arg); 1219 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1220 mem_hotplug_done(); 1221 return ret; 1222 } 1223 1224 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1225 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1226 { 1227 struct pglist_data *pgdat; 1228 1229 /* 1230 * NODE_DATA is preallocated (free_area_init) but its internal 1231 * state is not allocated completely. Add missing pieces. 1232 * Completely offline nodes stay around and they just need 1233 * reintialization. 1234 */ 1235 pgdat = NODE_DATA(nid); 1236 1237 /* init node's zones as empty zones, we don't have any present pages.*/ 1238 free_area_init_core_hotplug(pgdat); 1239 1240 /* 1241 * The node we allocated has no zone fallback lists. For avoiding 1242 * to access not-initialized zonelist, build here. 1243 */ 1244 build_all_zonelists(pgdat); 1245 1246 return pgdat; 1247 } 1248 1249 /* 1250 * __try_online_node - online a node if offlined 1251 * @nid: the node ID 1252 * @set_node_online: Whether we want to online the node 1253 * called by cpu_up() to online a node without onlined memory. 1254 * 1255 * Returns: 1256 * 1 -> a new node has been allocated 1257 * 0 -> the node is already online 1258 * -ENOMEM -> the node could not be allocated 1259 */ 1260 static int __try_online_node(int nid, bool set_node_online) 1261 { 1262 pg_data_t *pgdat; 1263 int ret = 1; 1264 1265 if (node_online(nid)) 1266 return 0; 1267 1268 pgdat = hotadd_init_pgdat(nid); 1269 if (!pgdat) { 1270 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1271 ret = -ENOMEM; 1272 goto out; 1273 } 1274 1275 if (set_node_online) { 1276 node_set_online(nid); 1277 ret = register_one_node(nid); 1278 BUG_ON(ret); 1279 } 1280 out: 1281 return ret; 1282 } 1283 1284 /* 1285 * Users of this function always want to online/register the node 1286 */ 1287 int try_online_node(int nid) 1288 { 1289 int ret; 1290 1291 mem_hotplug_begin(); 1292 ret = __try_online_node(nid, true); 1293 mem_hotplug_done(); 1294 return ret; 1295 } 1296 1297 static int check_hotplug_memory_range(u64 start, u64 size) 1298 { 1299 /* memory range must be block size aligned */ 1300 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1301 !IS_ALIGNED(size, memory_block_size_bytes())) { 1302 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1303 memory_block_size_bytes(), start, size); 1304 return -EINVAL; 1305 } 1306 1307 return 0; 1308 } 1309 1310 static int online_memory_block(struct memory_block *mem, void *arg) 1311 { 1312 mem->online_type = mhp_default_online_type; 1313 return device_online(&mem->dev); 1314 } 1315 1316 #ifndef arch_supports_memmap_on_memory 1317 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) 1318 { 1319 /* 1320 * As default, we want the vmemmap to span a complete PMD such that we 1321 * can map the vmemmap using a single PMD if supported by the 1322 * architecture. 1323 */ 1324 return IS_ALIGNED(vmemmap_size, PMD_SIZE); 1325 } 1326 #endif 1327 1328 static bool mhp_supports_memmap_on_memory(unsigned long size) 1329 { 1330 unsigned long vmemmap_size = memory_block_memmap_size(); 1331 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 1332 1333 /* 1334 * Besides having arch support and the feature enabled at runtime, we 1335 * need a few more assumptions to hold true: 1336 * 1337 * a) We span a single memory block: memory onlining/offlinin;g happens 1338 * in memory block granularity. We don't want the vmemmap of online 1339 * memory blocks to reside on offline memory blocks. In the future, 1340 * we might want to support variable-sized memory blocks to make the 1341 * feature more versatile. 1342 * 1343 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1344 * to populate memory from the altmap for unrelated parts (i.e., 1345 * other memory blocks) 1346 * 1347 * c) The vmemmap pages (and thereby the pages that will be exposed to 1348 * the buddy) have to cover full pageblocks: memory onlining/offlining 1349 * code requires applicable ranges to be page-aligned, for example, to 1350 * set the migratetypes properly. 1351 * 1352 * TODO: Although we have a check here to make sure that vmemmap pages 1353 * fully populate a PMD, it is not the right place to check for 1354 * this. A much better solution involves improving vmemmap code 1355 * to fallback to base pages when trying to populate vmemmap using 1356 * altmap as an alternative source of memory, and we do not exactly 1357 * populate a single PMD. 1358 */ 1359 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes()) 1360 return false; 1361 1362 /* 1363 * Make sure the vmemmap allocation is fully contained 1364 * so that we always allocate vmemmap memory from altmap area. 1365 */ 1366 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) 1367 return false; 1368 1369 /* 1370 * start pfn should be pageblock_nr_pages aligned for correctly 1371 * setting migrate types 1372 */ 1373 if (!pageblock_aligned(memmap_pages)) 1374 return false; 1375 1376 if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) 1377 /* No effective hotplugged memory doesn't make sense. */ 1378 return false; 1379 1380 return arch_supports_memmap_on_memory(vmemmap_size); 1381 } 1382 1383 /* 1384 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1385 * and online/offline operations (triggered e.g. by sysfs). 1386 * 1387 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1388 */ 1389 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1390 { 1391 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1392 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1393 struct vmem_altmap mhp_altmap = { 1394 .base_pfn = PHYS_PFN(res->start), 1395 .end_pfn = PHYS_PFN(res->end), 1396 }; 1397 struct memory_group *group = NULL; 1398 u64 start, size; 1399 bool new_node = false; 1400 int ret; 1401 1402 start = res->start; 1403 size = resource_size(res); 1404 1405 ret = check_hotplug_memory_range(start, size); 1406 if (ret) 1407 return ret; 1408 1409 if (mhp_flags & MHP_NID_IS_MGID) { 1410 group = memory_group_find_by_id(nid); 1411 if (!group) 1412 return -EINVAL; 1413 nid = group->nid; 1414 } 1415 1416 if (!node_possible(nid)) { 1417 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1418 return -EINVAL; 1419 } 1420 1421 mem_hotplug_begin(); 1422 1423 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1424 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1425 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1426 ret = memblock_add_node(start, size, nid, memblock_flags); 1427 if (ret) 1428 goto error_mem_hotplug_end; 1429 } 1430 1431 ret = __try_online_node(nid, false); 1432 if (ret < 0) 1433 goto error; 1434 new_node = ret; 1435 1436 /* 1437 * Self hosted memmap array 1438 */ 1439 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1440 if (mhp_supports_memmap_on_memory(size)) { 1441 mhp_altmap.free = memory_block_memmap_on_memory_pages(); 1442 params.altmap = kmalloc(sizeof(struct vmem_altmap), GFP_KERNEL); 1443 if (!params.altmap) { 1444 ret = -ENOMEM; 1445 goto error; 1446 } 1447 1448 memcpy(params.altmap, &mhp_altmap, sizeof(mhp_altmap)); 1449 } 1450 /* fallback to not using altmap */ 1451 } 1452 1453 /* call arch's memory hotadd */ 1454 ret = arch_add_memory(nid, start, size, ¶ms); 1455 if (ret < 0) 1456 goto error_free; 1457 1458 /* create memory block devices after memory was added */ 1459 ret = create_memory_block_devices(start, size, params.altmap, group); 1460 if (ret) { 1461 arch_remove_memory(start, size, NULL); 1462 goto error_free; 1463 } 1464 1465 if (new_node) { 1466 /* If sysfs file of new node can't be created, cpu on the node 1467 * can't be hot-added. There is no rollback way now. 1468 * So, check by BUG_ON() to catch it reluctantly.. 1469 * We online node here. We can't roll back from here. 1470 */ 1471 node_set_online(nid); 1472 ret = __register_one_node(nid); 1473 BUG_ON(ret); 1474 } 1475 1476 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1477 PFN_UP(start + size - 1), 1478 MEMINIT_HOTPLUG); 1479 1480 /* create new memmap entry */ 1481 if (!strcmp(res->name, "System RAM")) 1482 firmware_map_add_hotplug(start, start + size, "System RAM"); 1483 1484 /* device_online() will take the lock when calling online_pages() */ 1485 mem_hotplug_done(); 1486 1487 /* 1488 * In case we're allowed to merge the resource, flag it and trigger 1489 * merging now that adding succeeded. 1490 */ 1491 if (mhp_flags & MHP_MERGE_RESOURCE) 1492 merge_system_ram_resource(res); 1493 1494 /* online pages if requested */ 1495 if (mhp_default_online_type != MMOP_OFFLINE) 1496 walk_memory_blocks(start, size, NULL, online_memory_block); 1497 1498 return ret; 1499 error_free: 1500 kfree(params.altmap); 1501 error: 1502 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1503 memblock_remove(start, size); 1504 error_mem_hotplug_end: 1505 mem_hotplug_done(); 1506 return ret; 1507 } 1508 1509 /* requires device_hotplug_lock, see add_memory_resource() */ 1510 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1511 { 1512 struct resource *res; 1513 int ret; 1514 1515 res = register_memory_resource(start, size, "System RAM"); 1516 if (IS_ERR(res)) 1517 return PTR_ERR(res); 1518 1519 ret = add_memory_resource(nid, res, mhp_flags); 1520 if (ret < 0) 1521 release_memory_resource(res); 1522 return ret; 1523 } 1524 1525 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1526 { 1527 int rc; 1528 1529 lock_device_hotplug(); 1530 rc = __add_memory(nid, start, size, mhp_flags); 1531 unlock_device_hotplug(); 1532 1533 return rc; 1534 } 1535 EXPORT_SYMBOL_GPL(add_memory); 1536 1537 /* 1538 * Add special, driver-managed memory to the system as system RAM. Such 1539 * memory is not exposed via the raw firmware-provided memmap as system 1540 * RAM, instead, it is detected and added by a driver - during cold boot, 1541 * after a reboot, and after kexec. 1542 * 1543 * Reasons why this memory should not be used for the initial memmap of a 1544 * kexec kernel or for placing kexec images: 1545 * - The booting kernel is in charge of determining how this memory will be 1546 * used (e.g., use persistent memory as system RAM) 1547 * - Coordination with a hypervisor is required before this memory 1548 * can be used (e.g., inaccessible parts). 1549 * 1550 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1551 * memory map") are created. Also, the created memory resource is flagged 1552 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1553 * this memory as well (esp., not place kexec images onto it). 1554 * 1555 * The resource_name (visible via /proc/iomem) has to have the format 1556 * "System RAM ($DRIVER)". 1557 */ 1558 int add_memory_driver_managed(int nid, u64 start, u64 size, 1559 const char *resource_name, mhp_t mhp_flags) 1560 { 1561 struct resource *res; 1562 int rc; 1563 1564 if (!resource_name || 1565 strstr(resource_name, "System RAM (") != resource_name || 1566 resource_name[strlen(resource_name) - 1] != ')') 1567 return -EINVAL; 1568 1569 lock_device_hotplug(); 1570 1571 res = register_memory_resource(start, size, resource_name); 1572 if (IS_ERR(res)) { 1573 rc = PTR_ERR(res); 1574 goto out_unlock; 1575 } 1576 1577 rc = add_memory_resource(nid, res, mhp_flags); 1578 if (rc < 0) 1579 release_memory_resource(res); 1580 1581 out_unlock: 1582 unlock_device_hotplug(); 1583 return rc; 1584 } 1585 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1586 1587 /* 1588 * Platforms should define arch_get_mappable_range() that provides 1589 * maximum possible addressable physical memory range for which the 1590 * linear mapping could be created. The platform returned address 1591 * range must adhere to these following semantics. 1592 * 1593 * - range.start <= range.end 1594 * - Range includes both end points [range.start..range.end] 1595 * 1596 * There is also a fallback definition provided here, allowing the 1597 * entire possible physical address range in case any platform does 1598 * not define arch_get_mappable_range(). 1599 */ 1600 struct range __weak arch_get_mappable_range(void) 1601 { 1602 struct range mhp_range = { 1603 .start = 0UL, 1604 .end = -1ULL, 1605 }; 1606 return mhp_range; 1607 } 1608 1609 struct range mhp_get_pluggable_range(bool need_mapping) 1610 { 1611 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1612 struct range mhp_range; 1613 1614 if (need_mapping) { 1615 mhp_range = arch_get_mappable_range(); 1616 if (mhp_range.start > max_phys) { 1617 mhp_range.start = 0; 1618 mhp_range.end = 0; 1619 } 1620 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1621 } else { 1622 mhp_range.start = 0; 1623 mhp_range.end = max_phys; 1624 } 1625 return mhp_range; 1626 } 1627 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1628 1629 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1630 { 1631 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1632 u64 end = start + size; 1633 1634 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1635 return true; 1636 1637 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1638 start, end, mhp_range.start, mhp_range.end); 1639 return false; 1640 } 1641 1642 #ifdef CONFIG_MEMORY_HOTREMOVE 1643 /* 1644 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1645 * non-lru movable pages and hugepages). Will skip over most unmovable 1646 * pages (esp., pages that can be skipped when offlining), but bail out on 1647 * definitely unmovable pages. 1648 * 1649 * Returns: 1650 * 0 in case a movable page is found and movable_pfn was updated. 1651 * -ENOENT in case no movable page was found. 1652 * -EBUSY in case a definitely unmovable page was found. 1653 */ 1654 static int scan_movable_pages(unsigned long start, unsigned long end, 1655 unsigned long *movable_pfn) 1656 { 1657 unsigned long pfn; 1658 1659 for (pfn = start; pfn < end; pfn++) { 1660 struct page *page, *head; 1661 unsigned long skip; 1662 1663 if (!pfn_valid(pfn)) 1664 continue; 1665 page = pfn_to_page(pfn); 1666 if (PageLRU(page)) 1667 goto found; 1668 if (__PageMovable(page)) 1669 goto found; 1670 1671 /* 1672 * PageOffline() pages that are not marked __PageMovable() and 1673 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1674 * definitely unmovable. If their reference count would be 0, 1675 * they could at least be skipped when offlining memory. 1676 */ 1677 if (PageOffline(page) && page_count(page)) 1678 return -EBUSY; 1679 1680 if (!PageHuge(page)) 1681 continue; 1682 head = compound_head(page); 1683 /* 1684 * This test is racy as we hold no reference or lock. The 1685 * hugetlb page could have been free'ed and head is no longer 1686 * a hugetlb page before the following check. In such unlikely 1687 * cases false positives and negatives are possible. Calling 1688 * code must deal with these scenarios. 1689 */ 1690 if (HPageMigratable(head)) 1691 goto found; 1692 skip = compound_nr(head) - (page - head); 1693 pfn += skip - 1; 1694 } 1695 return -ENOENT; 1696 found: 1697 *movable_pfn = pfn; 1698 return 0; 1699 } 1700 1701 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1702 { 1703 unsigned long pfn; 1704 struct page *page, *head; 1705 LIST_HEAD(source); 1706 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1707 DEFAULT_RATELIMIT_BURST); 1708 1709 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1710 struct folio *folio; 1711 bool isolated; 1712 1713 if (!pfn_valid(pfn)) 1714 continue; 1715 page = pfn_to_page(pfn); 1716 folio = page_folio(page); 1717 head = &folio->page; 1718 1719 if (PageHuge(page)) { 1720 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1721 isolate_hugetlb(folio, &source); 1722 continue; 1723 } else if (PageTransHuge(page)) 1724 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1725 1726 /* 1727 * HWPoison pages have elevated reference counts so the migration would 1728 * fail on them. It also doesn't make any sense to migrate them in the 1729 * first place. Still try to unmap such a page in case it is still mapped 1730 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1731 * the unmap as the catch all safety net). 1732 */ 1733 if (PageHWPoison(page)) { 1734 if (WARN_ON(folio_test_lru(folio))) 1735 folio_isolate_lru(folio); 1736 if (folio_mapped(folio)) 1737 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1738 continue; 1739 } 1740 1741 if (!get_page_unless_zero(page)) 1742 continue; 1743 /* 1744 * We can skip free pages. And we can deal with pages on 1745 * LRU and non-lru movable pages. 1746 */ 1747 if (PageLRU(page)) 1748 isolated = isolate_lru_page(page); 1749 else 1750 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1751 if (isolated) { 1752 list_add_tail(&page->lru, &source); 1753 if (!__PageMovable(page)) 1754 inc_node_page_state(page, NR_ISOLATED_ANON + 1755 page_is_file_lru(page)); 1756 1757 } else { 1758 if (__ratelimit(&migrate_rs)) { 1759 pr_warn("failed to isolate pfn %lx\n", pfn); 1760 dump_page(page, "isolation failed"); 1761 } 1762 } 1763 put_page(page); 1764 } 1765 if (!list_empty(&source)) { 1766 nodemask_t nmask = node_states[N_MEMORY]; 1767 struct migration_target_control mtc = { 1768 .nmask = &nmask, 1769 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1770 }; 1771 int ret; 1772 1773 /* 1774 * We have checked that migration range is on a single zone so 1775 * we can use the nid of the first page to all the others. 1776 */ 1777 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1778 1779 /* 1780 * try to allocate from a different node but reuse this node 1781 * if there are no other online nodes to be used (e.g. we are 1782 * offlining a part of the only existing node) 1783 */ 1784 node_clear(mtc.nid, nmask); 1785 if (nodes_empty(nmask)) 1786 node_set(mtc.nid, nmask); 1787 ret = migrate_pages(&source, alloc_migration_target, NULL, 1788 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1789 if (ret) { 1790 list_for_each_entry(page, &source, lru) { 1791 if (__ratelimit(&migrate_rs)) { 1792 pr_warn("migrating pfn %lx failed ret:%d\n", 1793 page_to_pfn(page), ret); 1794 dump_page(page, "migration failure"); 1795 } 1796 } 1797 putback_movable_pages(&source); 1798 } 1799 } 1800 } 1801 1802 static int __init cmdline_parse_movable_node(char *p) 1803 { 1804 movable_node_enabled = true; 1805 return 0; 1806 } 1807 early_param("movable_node", cmdline_parse_movable_node); 1808 1809 /* check which state of node_states will be changed when offline memory */ 1810 static void node_states_check_changes_offline(unsigned long nr_pages, 1811 struct zone *zone, struct memory_notify *arg) 1812 { 1813 struct pglist_data *pgdat = zone->zone_pgdat; 1814 unsigned long present_pages = 0; 1815 enum zone_type zt; 1816 1817 arg->status_change_nid = NUMA_NO_NODE; 1818 arg->status_change_nid_normal = NUMA_NO_NODE; 1819 1820 /* 1821 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1822 * If the memory to be offline is within the range 1823 * [0..ZONE_NORMAL], and it is the last present memory there, 1824 * the zones in that range will become empty after the offlining, 1825 * thus we can determine that we need to clear the node from 1826 * node_states[N_NORMAL_MEMORY]. 1827 */ 1828 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1829 present_pages += pgdat->node_zones[zt].present_pages; 1830 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1831 arg->status_change_nid_normal = zone_to_nid(zone); 1832 1833 /* 1834 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1835 * does not apply as we don't support 32bit. 1836 * Here we count the possible pages from ZONE_MOVABLE. 1837 * If after having accounted all the pages, we see that the nr_pages 1838 * to be offlined is over or equal to the accounted pages, 1839 * we know that the node will become empty, and so, we can clear 1840 * it for N_MEMORY as well. 1841 */ 1842 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1843 1844 if (nr_pages >= present_pages) 1845 arg->status_change_nid = zone_to_nid(zone); 1846 } 1847 1848 static void node_states_clear_node(int node, struct memory_notify *arg) 1849 { 1850 if (arg->status_change_nid_normal >= 0) 1851 node_clear_state(node, N_NORMAL_MEMORY); 1852 1853 if (arg->status_change_nid >= 0) 1854 node_clear_state(node, N_MEMORY); 1855 } 1856 1857 static int count_system_ram_pages_cb(unsigned long start_pfn, 1858 unsigned long nr_pages, void *data) 1859 { 1860 unsigned long *nr_system_ram_pages = data; 1861 1862 *nr_system_ram_pages += nr_pages; 1863 return 0; 1864 } 1865 1866 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1867 struct zone *zone, struct memory_group *group) 1868 { 1869 const unsigned long end_pfn = start_pfn + nr_pages; 1870 unsigned long pfn, system_ram_pages = 0; 1871 const int node = zone_to_nid(zone); 1872 unsigned long flags; 1873 struct memory_notify arg; 1874 char *reason; 1875 int ret; 1876 1877 /* 1878 * {on,off}lining is constrained to full memory sections (or more 1879 * precisely to memory blocks from the user space POV). 1880 * memmap_on_memory is an exception because it reserves initial part 1881 * of the physical memory space for vmemmaps. That space is pageblock 1882 * aligned. 1883 */ 1884 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1885 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1886 return -EINVAL; 1887 1888 mem_hotplug_begin(); 1889 1890 /* 1891 * Don't allow to offline memory blocks that contain holes. 1892 * Consequently, memory blocks with holes can never get onlined 1893 * via the hotplug path - online_pages() - as hotplugged memory has 1894 * no holes. This way, we e.g., don't have to worry about marking 1895 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1896 * avoid using walk_system_ram_range() later. 1897 */ 1898 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1899 count_system_ram_pages_cb); 1900 if (system_ram_pages != nr_pages) { 1901 ret = -EINVAL; 1902 reason = "memory holes"; 1903 goto failed_removal; 1904 } 1905 1906 /* 1907 * We only support offlining of memory blocks managed by a single zone, 1908 * checked by calling code. This is just a sanity check that we might 1909 * want to remove in the future. 1910 */ 1911 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1912 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1913 ret = -EINVAL; 1914 reason = "multizone range"; 1915 goto failed_removal; 1916 } 1917 1918 /* 1919 * Disable pcplists so that page isolation cannot race with freeing 1920 * in a way that pages from isolated pageblock are left on pcplists. 1921 */ 1922 zone_pcp_disable(zone); 1923 lru_cache_disable(); 1924 1925 /* set above range as isolated */ 1926 ret = start_isolate_page_range(start_pfn, end_pfn, 1927 MIGRATE_MOVABLE, 1928 MEMORY_OFFLINE | REPORT_FAILURE, 1929 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 1930 if (ret) { 1931 reason = "failure to isolate range"; 1932 goto failed_removal_pcplists_disabled; 1933 } 1934 1935 arg.start_pfn = start_pfn; 1936 arg.nr_pages = nr_pages; 1937 node_states_check_changes_offline(nr_pages, zone, &arg); 1938 1939 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1940 ret = notifier_to_errno(ret); 1941 if (ret) { 1942 reason = "notifier failure"; 1943 goto failed_removal_isolated; 1944 } 1945 1946 do { 1947 pfn = start_pfn; 1948 do { 1949 /* 1950 * Historically we always checked for any signal and 1951 * can't limit it to fatal signals without eventually 1952 * breaking user space. 1953 */ 1954 if (signal_pending(current)) { 1955 ret = -EINTR; 1956 reason = "signal backoff"; 1957 goto failed_removal_isolated; 1958 } 1959 1960 cond_resched(); 1961 1962 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1963 if (!ret) { 1964 /* 1965 * TODO: fatal migration failures should bail 1966 * out 1967 */ 1968 do_migrate_range(pfn, end_pfn); 1969 } 1970 } while (!ret); 1971 1972 if (ret != -ENOENT) { 1973 reason = "unmovable page"; 1974 goto failed_removal_isolated; 1975 } 1976 1977 /* 1978 * Dissolve free hugepages in the memory block before doing 1979 * offlining actually in order to make hugetlbfs's object 1980 * counting consistent. 1981 */ 1982 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1983 if (ret) { 1984 reason = "failure to dissolve huge pages"; 1985 goto failed_removal_isolated; 1986 } 1987 1988 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1989 1990 } while (ret); 1991 1992 /* Mark all sections offline and remove free pages from the buddy. */ 1993 __offline_isolated_pages(start_pfn, end_pfn); 1994 pr_debug("Offlined Pages %ld\n", nr_pages); 1995 1996 /* 1997 * The memory sections are marked offline, and the pageblock flags 1998 * effectively stale; nobody should be touching them. Fixup the number 1999 * of isolated pageblocks, memory onlining will properly revert this. 2000 */ 2001 spin_lock_irqsave(&zone->lock, flags); 2002 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2003 spin_unlock_irqrestore(&zone->lock, flags); 2004 2005 lru_cache_enable(); 2006 zone_pcp_enable(zone); 2007 2008 /* removal success */ 2009 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 2010 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2011 2012 /* reinitialise watermarks and update pcp limits */ 2013 init_per_zone_wmark_min(); 2014 2015 if (!populated_zone(zone)) { 2016 zone_pcp_reset(zone); 2017 build_all_zonelists(NULL); 2018 } 2019 2020 node_states_clear_node(node, &arg); 2021 if (arg.status_change_nid >= 0) { 2022 kcompactd_stop(node); 2023 kswapd_stop(node); 2024 } 2025 2026 writeback_set_ratelimit(); 2027 2028 memory_notify(MEM_OFFLINE, &arg); 2029 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2030 mem_hotplug_done(); 2031 return 0; 2032 2033 failed_removal_isolated: 2034 /* pushback to free area */ 2035 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2036 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2037 failed_removal_pcplists_disabled: 2038 lru_cache_enable(); 2039 zone_pcp_enable(zone); 2040 failed_removal: 2041 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2042 (unsigned long long) start_pfn << PAGE_SHIFT, 2043 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2044 reason); 2045 mem_hotplug_done(); 2046 return ret; 2047 } 2048 2049 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2050 { 2051 int *nid = arg; 2052 2053 *nid = mem->nid; 2054 if (unlikely(mem->state != MEM_OFFLINE)) { 2055 phys_addr_t beginpa, endpa; 2056 2057 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2058 endpa = beginpa + memory_block_size_bytes() - 1; 2059 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2060 &beginpa, &endpa); 2061 2062 return -EBUSY; 2063 } 2064 return 0; 2065 } 2066 2067 static int test_has_altmap_cb(struct memory_block *mem, void *arg) 2068 { 2069 struct memory_block **mem_ptr = (struct memory_block **)arg; 2070 /* 2071 * return the memblock if we have altmap 2072 * and break callback. 2073 */ 2074 if (mem->altmap) { 2075 *mem_ptr = mem; 2076 return 1; 2077 } 2078 return 0; 2079 } 2080 2081 static int check_cpu_on_node(int nid) 2082 { 2083 int cpu; 2084 2085 for_each_present_cpu(cpu) { 2086 if (cpu_to_node(cpu) == nid) 2087 /* 2088 * the cpu on this node isn't removed, and we can't 2089 * offline this node. 2090 */ 2091 return -EBUSY; 2092 } 2093 2094 return 0; 2095 } 2096 2097 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2098 { 2099 int nid = *(int *)arg; 2100 2101 /* 2102 * If a memory block belongs to multiple nodes, the stored nid is not 2103 * reliable. However, such blocks are always online (e.g., cannot get 2104 * offlined) and, therefore, are still spanned by the node. 2105 */ 2106 return mem->nid == nid ? -EEXIST : 0; 2107 } 2108 2109 /** 2110 * try_offline_node 2111 * @nid: the node ID 2112 * 2113 * Offline a node if all memory sections and cpus of the node are removed. 2114 * 2115 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2116 * and online/offline operations before this call. 2117 */ 2118 void try_offline_node(int nid) 2119 { 2120 int rc; 2121 2122 /* 2123 * If the node still spans pages (especially ZONE_DEVICE), don't 2124 * offline it. A node spans memory after move_pfn_range_to_zone(), 2125 * e.g., after the memory block was onlined. 2126 */ 2127 if (node_spanned_pages(nid)) 2128 return; 2129 2130 /* 2131 * Especially offline memory blocks might not be spanned by the 2132 * node. They will get spanned by the node once they get onlined. 2133 * However, they link to the node in sysfs and can get onlined later. 2134 */ 2135 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2136 if (rc) 2137 return; 2138 2139 if (check_cpu_on_node(nid)) 2140 return; 2141 2142 /* 2143 * all memory/cpu of this node are removed, we can offline this 2144 * node now. 2145 */ 2146 node_set_offline(nid); 2147 unregister_one_node(nid); 2148 } 2149 EXPORT_SYMBOL(try_offline_node); 2150 2151 static int __ref try_remove_memory(u64 start, u64 size) 2152 { 2153 struct memory_block *mem; 2154 int rc = 0, nid = NUMA_NO_NODE; 2155 struct vmem_altmap *altmap = NULL; 2156 2157 BUG_ON(check_hotplug_memory_range(start, size)); 2158 2159 /* 2160 * All memory blocks must be offlined before removing memory. Check 2161 * whether all memory blocks in question are offline and return error 2162 * if this is not the case. 2163 * 2164 * While at it, determine the nid. Note that if we'd have mixed nodes, 2165 * we'd only try to offline the last determined one -- which is good 2166 * enough for the cases we care about. 2167 */ 2168 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2169 if (rc) 2170 return rc; 2171 2172 /* 2173 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2174 * the same granularity it was added - a single memory block. 2175 */ 2176 if (mhp_memmap_on_memory()) { 2177 rc = walk_memory_blocks(start, size, &mem, test_has_altmap_cb); 2178 if (rc) { 2179 if (size != memory_block_size_bytes()) { 2180 pr_warn("Refuse to remove %#llx - %#llx," 2181 "wrong granularity\n", 2182 start, start + size); 2183 return -EINVAL; 2184 } 2185 altmap = mem->altmap; 2186 /* 2187 * Mark altmap NULL so that we can add a debug 2188 * check on memblock free. 2189 */ 2190 mem->altmap = NULL; 2191 } 2192 } 2193 2194 /* remove memmap entry */ 2195 firmware_map_remove(start, start + size, "System RAM"); 2196 2197 /* 2198 * Memory block device removal under the device_hotplug_lock is 2199 * a barrier against racing online attempts. 2200 */ 2201 remove_memory_block_devices(start, size); 2202 2203 mem_hotplug_begin(); 2204 2205 arch_remove_memory(start, size, altmap); 2206 2207 /* Verify that all vmemmap pages have actually been freed. */ 2208 if (altmap) { 2209 WARN(altmap->alloc, "Altmap not fully unmapped"); 2210 kfree(altmap); 2211 } 2212 2213 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2214 memblock_phys_free(start, size); 2215 memblock_remove(start, size); 2216 } 2217 2218 release_mem_region_adjustable(start, size); 2219 2220 if (nid != NUMA_NO_NODE) 2221 try_offline_node(nid); 2222 2223 mem_hotplug_done(); 2224 return 0; 2225 } 2226 2227 /** 2228 * __remove_memory - Remove memory if every memory block is offline 2229 * @start: physical address of the region to remove 2230 * @size: size of the region to remove 2231 * 2232 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2233 * and online/offline operations before this call, as required by 2234 * try_offline_node(). 2235 */ 2236 void __remove_memory(u64 start, u64 size) 2237 { 2238 2239 /* 2240 * trigger BUG() if some memory is not offlined prior to calling this 2241 * function 2242 */ 2243 if (try_remove_memory(start, size)) 2244 BUG(); 2245 } 2246 2247 /* 2248 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2249 * some memory is not offline 2250 */ 2251 int remove_memory(u64 start, u64 size) 2252 { 2253 int rc; 2254 2255 lock_device_hotplug(); 2256 rc = try_remove_memory(start, size); 2257 unlock_device_hotplug(); 2258 2259 return rc; 2260 } 2261 EXPORT_SYMBOL_GPL(remove_memory); 2262 2263 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2264 { 2265 uint8_t online_type = MMOP_ONLINE_KERNEL; 2266 uint8_t **online_types = arg; 2267 struct page *page; 2268 int rc; 2269 2270 /* 2271 * Sense the online_type via the zone of the memory block. Offlining 2272 * with multiple zones within one memory block will be rejected 2273 * by offlining code ... so we don't care about that. 2274 */ 2275 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2276 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2277 online_type = MMOP_ONLINE_MOVABLE; 2278 2279 rc = device_offline(&mem->dev); 2280 /* 2281 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2282 * so try_reonline_memory_block() can do the right thing. 2283 */ 2284 if (!rc) 2285 **online_types = online_type; 2286 2287 (*online_types)++; 2288 /* Ignore if already offline. */ 2289 return rc < 0 ? rc : 0; 2290 } 2291 2292 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2293 { 2294 uint8_t **online_types = arg; 2295 int rc; 2296 2297 if (**online_types != MMOP_OFFLINE) { 2298 mem->online_type = **online_types; 2299 rc = device_online(&mem->dev); 2300 if (rc < 0) 2301 pr_warn("%s: Failed to re-online memory: %d", 2302 __func__, rc); 2303 } 2304 2305 /* Continue processing all remaining memory blocks. */ 2306 (*online_types)++; 2307 return 0; 2308 } 2309 2310 /* 2311 * Try to offline and remove memory. Might take a long time to finish in case 2312 * memory is still in use. Primarily useful for memory devices that logically 2313 * unplugged all memory (so it's no longer in use) and want to offline + remove 2314 * that memory. 2315 */ 2316 int offline_and_remove_memory(u64 start, u64 size) 2317 { 2318 const unsigned long mb_count = size / memory_block_size_bytes(); 2319 uint8_t *online_types, *tmp; 2320 int rc; 2321 2322 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2323 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2324 return -EINVAL; 2325 2326 /* 2327 * We'll remember the old online type of each memory block, so we can 2328 * try to revert whatever we did when offlining one memory block fails 2329 * after offlining some others succeeded. 2330 */ 2331 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2332 GFP_KERNEL); 2333 if (!online_types) 2334 return -ENOMEM; 2335 /* 2336 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2337 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2338 * try_reonline_memory_block(). 2339 */ 2340 memset(online_types, MMOP_OFFLINE, mb_count); 2341 2342 lock_device_hotplug(); 2343 2344 tmp = online_types; 2345 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2346 2347 /* 2348 * In case we succeeded to offline all memory, remove it. 2349 * This cannot fail as it cannot get onlined in the meantime. 2350 */ 2351 if (!rc) { 2352 rc = try_remove_memory(start, size); 2353 if (rc) 2354 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2355 } 2356 2357 /* 2358 * Rollback what we did. While memory onlining might theoretically fail 2359 * (nacked by a notifier), it barely ever happens. 2360 */ 2361 if (rc) { 2362 tmp = online_types; 2363 walk_memory_blocks(start, size, &tmp, 2364 try_reonline_memory_block); 2365 } 2366 unlock_device_hotplug(); 2367 2368 kfree(online_types); 2369 return rc; 2370 } 2371 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2372 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2373