1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static void generic_online_page(struct page *page, unsigned int order); 53 54 static online_page_callback_t online_page_callback = generic_online_page; 55 static DEFINE_MUTEX(online_page_callback_lock); 56 57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 58 59 void get_online_mems(void) 60 { 61 percpu_down_read(&mem_hotplug_lock); 62 } 63 64 void put_online_mems(void) 65 { 66 percpu_up_read(&mem_hotplug_lock); 67 } 68 69 bool movable_node_enabled = false; 70 71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 72 bool memhp_auto_online; 73 #else 74 bool memhp_auto_online = true; 75 #endif 76 EXPORT_SYMBOL_GPL(memhp_auto_online); 77 78 static int __init setup_memhp_default_state(char *str) 79 { 80 if (!strcmp(str, "online")) 81 memhp_auto_online = true; 82 else if (!strcmp(str, "offline")) 83 memhp_auto_online = false; 84 85 return 1; 86 } 87 __setup("memhp_default_state=", setup_memhp_default_state); 88 89 void mem_hotplug_begin(void) 90 { 91 cpus_read_lock(); 92 percpu_down_write(&mem_hotplug_lock); 93 } 94 95 void mem_hotplug_done(void) 96 { 97 percpu_up_write(&mem_hotplug_lock); 98 cpus_read_unlock(); 99 } 100 101 u64 max_mem_size = U64_MAX; 102 103 /* add this memory to iomem resource */ 104 static struct resource *register_memory_resource(u64 start, u64 size) 105 { 106 struct resource *res; 107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 108 char *resource_name = "System RAM"; 109 110 if (start + size > max_mem_size) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Request ownership of the new memory range. This might be 115 * a child of an existing resource that was present but 116 * not marked as busy. 117 */ 118 res = __request_region(&iomem_resource, start, size, 119 resource_name, flags); 120 121 if (!res) { 122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 123 start, start + size); 124 return ERR_PTR(-EEXIST); 125 } 126 return res; 127 } 128 129 static void release_memory_resource(struct resource *res) 130 { 131 if (!res) 132 return; 133 release_resource(res); 134 kfree(res); 135 } 136 137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 138 void get_page_bootmem(unsigned long info, struct page *page, 139 unsigned long type) 140 { 141 page->freelist = (void *)type; 142 SetPagePrivate(page); 143 set_page_private(page, info); 144 page_ref_inc(page); 145 } 146 147 void put_page_bootmem(struct page *page) 148 { 149 unsigned long type; 150 151 type = (unsigned long) page->freelist; 152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 154 155 if (page_ref_dec_return(page) == 1) { 156 page->freelist = NULL; 157 ClearPagePrivate(page); 158 set_page_private(page, 0); 159 INIT_LIST_HEAD(&page->lru); 160 free_reserved_page(page); 161 } 162 } 163 164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 165 #ifndef CONFIG_SPARSEMEM_VMEMMAP 166 static void register_page_bootmem_info_section(unsigned long start_pfn) 167 { 168 unsigned long mapsize, section_nr, i; 169 struct mem_section *ms; 170 struct page *page, *memmap; 171 struct mem_section_usage *usage; 172 173 section_nr = pfn_to_section_nr(start_pfn); 174 ms = __nr_to_section(section_nr); 175 176 /* Get section's memmap address */ 177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 178 179 /* 180 * Get page for the memmap's phys address 181 * XXX: need more consideration for sparse_vmemmap... 182 */ 183 page = virt_to_page(memmap); 184 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 186 187 /* remember memmap's page */ 188 for (i = 0; i < mapsize; i++, page++) 189 get_page_bootmem(section_nr, page, SECTION_INFO); 190 191 usage = ms->usage; 192 page = virt_to_page(usage); 193 194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 195 196 for (i = 0; i < mapsize; i++, page++) 197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 198 199 } 200 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 201 static void register_page_bootmem_info_section(unsigned long start_pfn) 202 { 203 unsigned long mapsize, section_nr, i; 204 struct mem_section *ms; 205 struct page *page, *memmap; 206 struct mem_section_usage *usage; 207 208 section_nr = pfn_to_section_nr(start_pfn); 209 ms = __nr_to_section(section_nr); 210 211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 212 213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 214 215 usage = ms->usage; 216 page = virt_to_page(usage); 217 218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 219 220 for (i = 0; i < mapsize; i++, page++) 221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 222 } 223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 224 225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 226 { 227 unsigned long i, pfn, end_pfn, nr_pages; 228 int node = pgdat->node_id; 229 struct page *page; 230 231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 232 page = virt_to_page(pgdat); 233 234 for (i = 0; i < nr_pages; i++, page++) 235 get_page_bootmem(node, page, NODE_INFO); 236 237 pfn = pgdat->node_start_pfn; 238 end_pfn = pgdat_end_pfn(pgdat); 239 240 /* register section info */ 241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 242 /* 243 * Some platforms can assign the same pfn to multiple nodes - on 244 * node0 as well as nodeN. To avoid registering a pfn against 245 * multiple nodes we check that this pfn does not already 246 * reside in some other nodes. 247 */ 248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 249 register_page_bootmem_info_section(pfn); 250 } 251 } 252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 253 254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 255 const char *reason) 256 { 257 /* 258 * Disallow all operations smaller than a sub-section and only 259 * allow operations smaller than a section for 260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 261 * enforces a larger memory_block_size_bytes() granularity for 262 * memory that will be marked online, so this check should only 263 * fire for direct arch_{add,remove}_memory() users outside of 264 * add_memory_resource(). 265 */ 266 unsigned long min_align; 267 268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 269 min_align = PAGES_PER_SUBSECTION; 270 else 271 min_align = PAGES_PER_SECTION; 272 if (!IS_ALIGNED(pfn, min_align) 273 || !IS_ALIGNED(nr_pages, min_align)) { 274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 275 reason, pfn, pfn + nr_pages - 1); 276 return -EINVAL; 277 } 278 return 0; 279 } 280 281 /* 282 * Reasonably generic function for adding memory. It is 283 * expected that archs that support memory hotplug will 284 * call this function after deciding the zone to which to 285 * add the new pages. 286 */ 287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 288 struct mhp_restrictions *restrictions) 289 { 290 int err; 291 unsigned long nr, start_sec, end_sec; 292 struct vmem_altmap *altmap = restrictions->altmap; 293 294 if (altmap) { 295 /* 296 * Validate altmap is within bounds of the total request 297 */ 298 if (altmap->base_pfn != pfn 299 || vmem_altmap_offset(altmap) > nr_pages) { 300 pr_warn_once("memory add fail, invalid altmap\n"); 301 return -EINVAL; 302 } 303 altmap->alloc = 0; 304 } 305 306 err = check_pfn_span(pfn, nr_pages, "add"); 307 if (err) 308 return err; 309 310 start_sec = pfn_to_section_nr(pfn); 311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 312 for (nr = start_sec; nr <= end_sec; nr++) { 313 unsigned long pfns; 314 315 pfns = min(nr_pages, PAGES_PER_SECTION 316 - (pfn & ~PAGE_SECTION_MASK)); 317 err = sparse_add_section(nid, pfn, pfns, altmap); 318 if (err) 319 break; 320 pfn += pfns; 321 nr_pages -= pfns; 322 cond_resched(); 323 } 324 vmemmap_populate_print_last(); 325 return err; 326 } 327 328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 330 unsigned long start_pfn, 331 unsigned long end_pfn) 332 { 333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 334 if (unlikely(!pfn_valid(start_pfn))) 335 continue; 336 337 if (unlikely(pfn_to_nid(start_pfn) != nid)) 338 continue; 339 340 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 341 continue; 342 343 return start_pfn; 344 } 345 346 return 0; 347 } 348 349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 351 unsigned long start_pfn, 352 unsigned long end_pfn) 353 { 354 unsigned long pfn; 355 356 /* pfn is the end pfn of a memory section. */ 357 pfn = end_pfn - 1; 358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 359 if (unlikely(!pfn_valid(pfn))) 360 continue; 361 362 if (unlikely(pfn_to_nid(pfn) != nid)) 363 continue; 364 365 if (zone && zone != page_zone(pfn_to_page(pfn))) 366 continue; 367 368 return pfn; 369 } 370 371 return 0; 372 } 373 374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 375 unsigned long end_pfn) 376 { 377 unsigned long zone_start_pfn = zone->zone_start_pfn; 378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 379 unsigned long zone_end_pfn = z; 380 unsigned long pfn; 381 int nid = zone_to_nid(zone); 382 383 zone_span_writelock(zone); 384 if (zone_start_pfn == start_pfn) { 385 /* 386 * If the section is smallest section in the zone, it need 387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 388 * In this case, we find second smallest valid mem_section 389 * for shrinking zone. 390 */ 391 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 392 zone_end_pfn); 393 if (pfn) { 394 zone->zone_start_pfn = pfn; 395 zone->spanned_pages = zone_end_pfn - pfn; 396 } 397 } else if (zone_end_pfn == end_pfn) { 398 /* 399 * If the section is biggest section in the zone, it need 400 * shrink zone->spanned_pages. 401 * In this case, we find second biggest valid mem_section for 402 * shrinking zone. 403 */ 404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 405 start_pfn); 406 if (pfn) 407 zone->spanned_pages = pfn - zone_start_pfn + 1; 408 } 409 410 /* 411 * The section is not biggest or smallest mem_section in the zone, it 412 * only creates a hole in the zone. So in this case, we need not 413 * change the zone. But perhaps, the zone has only hole data. Thus 414 * it check the zone has only hole or not. 415 */ 416 pfn = zone_start_pfn; 417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) { 418 if (unlikely(!pfn_valid(pfn))) 419 continue; 420 421 if (page_zone(pfn_to_page(pfn)) != zone) 422 continue; 423 424 /* Skip range to be removed */ 425 if (pfn >= start_pfn && pfn < end_pfn) 426 continue; 427 428 /* If we find valid section, we have nothing to do */ 429 zone_span_writeunlock(zone); 430 return; 431 } 432 433 /* The zone has no valid section */ 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 zone_span_writeunlock(zone); 437 } 438 439 static void update_pgdat_span(struct pglist_data *pgdat) 440 { 441 unsigned long node_start_pfn = 0, node_end_pfn = 0; 442 struct zone *zone; 443 444 for (zone = pgdat->node_zones; 445 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 446 unsigned long zone_end_pfn = zone->zone_start_pfn + 447 zone->spanned_pages; 448 449 /* No need to lock the zones, they can't change. */ 450 if (!zone->spanned_pages) 451 continue; 452 if (!node_end_pfn) { 453 node_start_pfn = zone->zone_start_pfn; 454 node_end_pfn = zone_end_pfn; 455 continue; 456 } 457 458 if (zone_end_pfn > node_end_pfn) 459 node_end_pfn = zone_end_pfn; 460 if (zone->zone_start_pfn < node_start_pfn) 461 node_start_pfn = zone->zone_start_pfn; 462 } 463 464 pgdat->node_start_pfn = node_start_pfn; 465 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 466 } 467 468 static void __remove_zone(struct zone *zone, unsigned long start_pfn, 469 unsigned long nr_pages) 470 { 471 struct pglist_data *pgdat = zone->zone_pgdat; 472 unsigned long flags; 473 474 pgdat_resize_lock(zone->zone_pgdat, &flags); 475 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 476 update_pgdat_span(pgdat); 477 pgdat_resize_unlock(zone->zone_pgdat, &flags); 478 } 479 480 static void __remove_section(struct zone *zone, unsigned long pfn, 481 unsigned long nr_pages, unsigned long map_offset, 482 struct vmem_altmap *altmap) 483 { 484 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn)); 485 486 if (WARN_ON_ONCE(!valid_section(ms))) 487 return; 488 489 __remove_zone(zone, pfn, nr_pages); 490 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 491 } 492 493 /** 494 * __remove_pages() - remove sections of pages from a zone 495 * @zone: zone from which pages need to be removed 496 * @pfn: starting pageframe (must be aligned to start of a section) 497 * @nr_pages: number of pages to remove (must be multiple of section size) 498 * @altmap: alternative device page map or %NULL if default memmap is used 499 * 500 * Generic helper function to remove section mappings and sysfs entries 501 * for the section of the memory we are removing. Caller needs to make 502 * sure that pages are marked reserved and zones are adjust properly by 503 * calling offline_pages(). 504 */ 505 void __remove_pages(struct zone *zone, unsigned long pfn, 506 unsigned long nr_pages, struct vmem_altmap *altmap) 507 { 508 unsigned long map_offset = 0; 509 unsigned long nr, start_sec, end_sec; 510 511 map_offset = vmem_altmap_offset(altmap); 512 513 clear_zone_contiguous(zone); 514 515 if (check_pfn_span(pfn, nr_pages, "remove")) 516 return; 517 518 start_sec = pfn_to_section_nr(pfn); 519 end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 520 for (nr = start_sec; nr <= end_sec; nr++) { 521 unsigned long pfns; 522 523 cond_resched(); 524 pfns = min(nr_pages, PAGES_PER_SECTION 525 - (pfn & ~PAGE_SECTION_MASK)); 526 __remove_section(zone, pfn, pfns, map_offset, altmap); 527 pfn += pfns; 528 nr_pages -= pfns; 529 map_offset = 0; 530 } 531 532 set_zone_contiguous(zone); 533 } 534 535 int set_online_page_callback(online_page_callback_t callback) 536 { 537 int rc = -EINVAL; 538 539 get_online_mems(); 540 mutex_lock(&online_page_callback_lock); 541 542 if (online_page_callback == generic_online_page) { 543 online_page_callback = callback; 544 rc = 0; 545 } 546 547 mutex_unlock(&online_page_callback_lock); 548 put_online_mems(); 549 550 return rc; 551 } 552 EXPORT_SYMBOL_GPL(set_online_page_callback); 553 554 int restore_online_page_callback(online_page_callback_t callback) 555 { 556 int rc = -EINVAL; 557 558 get_online_mems(); 559 mutex_lock(&online_page_callback_lock); 560 561 if (online_page_callback == callback) { 562 online_page_callback = generic_online_page; 563 rc = 0; 564 } 565 566 mutex_unlock(&online_page_callback_lock); 567 put_online_mems(); 568 569 return rc; 570 } 571 EXPORT_SYMBOL_GPL(restore_online_page_callback); 572 573 void __online_page_set_limits(struct page *page) 574 { 575 } 576 EXPORT_SYMBOL_GPL(__online_page_set_limits); 577 578 void __online_page_increment_counters(struct page *page) 579 { 580 adjust_managed_page_count(page, 1); 581 } 582 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 583 584 void __online_page_free(struct page *page) 585 { 586 __free_reserved_page(page); 587 } 588 EXPORT_SYMBOL_GPL(__online_page_free); 589 590 static void generic_online_page(struct page *page, unsigned int order) 591 { 592 kernel_map_pages(page, 1 << order, 1); 593 __free_pages_core(page, order); 594 totalram_pages_add(1UL << order); 595 #ifdef CONFIG_HIGHMEM 596 if (PageHighMem(page)) 597 totalhigh_pages_add(1UL << order); 598 #endif 599 } 600 601 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 602 void *arg) 603 { 604 const unsigned long end_pfn = start_pfn + nr_pages; 605 unsigned long pfn; 606 int order; 607 608 /* 609 * Online the pages. The callback might decide to keep some pages 610 * PG_reserved (to add them to the buddy later), but we still account 611 * them as being online/belonging to this zone ("present"). 612 */ 613 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) { 614 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn))); 615 /* __free_pages_core() wants pfns to be aligned to the order */ 616 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order))) 617 order = 0; 618 (*online_page_callback)(pfn_to_page(pfn), order); 619 } 620 621 /* mark all involved sections as online */ 622 online_mem_sections(start_pfn, end_pfn); 623 624 *(unsigned long *)arg += nr_pages; 625 return 0; 626 } 627 628 /* check which state of node_states will be changed when online memory */ 629 static void node_states_check_changes_online(unsigned long nr_pages, 630 struct zone *zone, struct memory_notify *arg) 631 { 632 int nid = zone_to_nid(zone); 633 634 arg->status_change_nid = NUMA_NO_NODE; 635 arg->status_change_nid_normal = NUMA_NO_NODE; 636 arg->status_change_nid_high = NUMA_NO_NODE; 637 638 if (!node_state(nid, N_MEMORY)) 639 arg->status_change_nid = nid; 640 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 641 arg->status_change_nid_normal = nid; 642 #ifdef CONFIG_HIGHMEM 643 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 644 arg->status_change_nid_high = nid; 645 #endif 646 } 647 648 static void node_states_set_node(int node, struct memory_notify *arg) 649 { 650 if (arg->status_change_nid_normal >= 0) 651 node_set_state(node, N_NORMAL_MEMORY); 652 653 if (arg->status_change_nid_high >= 0) 654 node_set_state(node, N_HIGH_MEMORY); 655 656 if (arg->status_change_nid >= 0) 657 node_set_state(node, N_MEMORY); 658 } 659 660 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 661 unsigned long nr_pages) 662 { 663 unsigned long old_end_pfn = zone_end_pfn(zone); 664 665 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 666 zone->zone_start_pfn = start_pfn; 667 668 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 669 } 670 671 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 672 unsigned long nr_pages) 673 { 674 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 675 676 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 677 pgdat->node_start_pfn = start_pfn; 678 679 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 680 681 } 682 /* 683 * Associate the pfn range with the given zone, initializing the memmaps 684 * and resizing the pgdat/zone data to span the added pages. After this 685 * call, all affected pages are PG_reserved. 686 */ 687 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 688 unsigned long nr_pages, struct vmem_altmap *altmap) 689 { 690 struct pglist_data *pgdat = zone->zone_pgdat; 691 int nid = pgdat->node_id; 692 unsigned long flags; 693 694 clear_zone_contiguous(zone); 695 696 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 697 pgdat_resize_lock(pgdat, &flags); 698 zone_span_writelock(zone); 699 if (zone_is_empty(zone)) 700 init_currently_empty_zone(zone, start_pfn, nr_pages); 701 resize_zone_range(zone, start_pfn, nr_pages); 702 zone_span_writeunlock(zone); 703 resize_pgdat_range(pgdat, start_pfn, nr_pages); 704 pgdat_resize_unlock(pgdat, &flags); 705 706 /* 707 * TODO now we have a visible range of pages which are not associated 708 * with their zone properly. Not nice but set_pfnblock_flags_mask 709 * expects the zone spans the pfn range. All the pages in the range 710 * are reserved so nobody should be touching them so we should be safe 711 */ 712 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 713 MEMMAP_HOTPLUG, altmap); 714 715 set_zone_contiguous(zone); 716 } 717 718 /* 719 * Returns a default kernel memory zone for the given pfn range. 720 * If no kernel zone covers this pfn range it will automatically go 721 * to the ZONE_NORMAL. 722 */ 723 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 724 unsigned long nr_pages) 725 { 726 struct pglist_data *pgdat = NODE_DATA(nid); 727 int zid; 728 729 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 730 struct zone *zone = &pgdat->node_zones[zid]; 731 732 if (zone_intersects(zone, start_pfn, nr_pages)) 733 return zone; 734 } 735 736 return &pgdat->node_zones[ZONE_NORMAL]; 737 } 738 739 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 740 unsigned long nr_pages) 741 { 742 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 743 nr_pages); 744 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 745 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 746 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 747 748 /* 749 * We inherit the existing zone in a simple case where zones do not 750 * overlap in the given range 751 */ 752 if (in_kernel ^ in_movable) 753 return (in_kernel) ? kernel_zone : movable_zone; 754 755 /* 756 * If the range doesn't belong to any zone or two zones overlap in the 757 * given range then we use movable zone only if movable_node is 758 * enabled because we always online to a kernel zone by default. 759 */ 760 return movable_node_enabled ? movable_zone : kernel_zone; 761 } 762 763 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 764 unsigned long nr_pages) 765 { 766 if (online_type == MMOP_ONLINE_KERNEL) 767 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 768 769 if (online_type == MMOP_ONLINE_MOVABLE) 770 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 771 772 return default_zone_for_pfn(nid, start_pfn, nr_pages); 773 } 774 775 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 776 { 777 unsigned long flags; 778 unsigned long onlined_pages = 0; 779 struct zone *zone; 780 int need_zonelists_rebuild = 0; 781 int nid; 782 int ret; 783 struct memory_notify arg; 784 struct memory_block *mem; 785 786 mem_hotplug_begin(); 787 788 /* 789 * We can't use pfn_to_nid() because nid might be stored in struct page 790 * which is not yet initialized. Instead, we find nid from memory block. 791 */ 792 mem = find_memory_block(__pfn_to_section(pfn)); 793 nid = mem->nid; 794 put_device(&mem->dev); 795 796 /* associate pfn range with the zone */ 797 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 798 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL); 799 800 arg.start_pfn = pfn; 801 arg.nr_pages = nr_pages; 802 node_states_check_changes_online(nr_pages, zone, &arg); 803 804 ret = memory_notify(MEM_GOING_ONLINE, &arg); 805 ret = notifier_to_errno(ret); 806 if (ret) 807 goto failed_addition; 808 809 /* 810 * If this zone is not populated, then it is not in zonelist. 811 * This means the page allocator ignores this zone. 812 * So, zonelist must be updated after online. 813 */ 814 if (!populated_zone(zone)) { 815 need_zonelists_rebuild = 1; 816 setup_zone_pageset(zone); 817 } 818 819 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 820 online_pages_range); 821 if (ret) { 822 /* not a single memory resource was applicable */ 823 if (need_zonelists_rebuild) 824 zone_pcp_reset(zone); 825 goto failed_addition; 826 } 827 828 zone->present_pages += onlined_pages; 829 830 pgdat_resize_lock(zone->zone_pgdat, &flags); 831 zone->zone_pgdat->node_present_pages += onlined_pages; 832 pgdat_resize_unlock(zone->zone_pgdat, &flags); 833 834 shuffle_zone(zone); 835 836 node_states_set_node(nid, &arg); 837 if (need_zonelists_rebuild) 838 build_all_zonelists(NULL); 839 else 840 zone_pcp_update(zone); 841 842 init_per_zone_wmark_min(); 843 844 kswapd_run(nid); 845 kcompactd_run(nid); 846 847 vm_total_pages = nr_free_pagecache_pages(); 848 849 writeback_set_ratelimit(); 850 851 memory_notify(MEM_ONLINE, &arg); 852 mem_hotplug_done(); 853 return 0; 854 855 failed_addition: 856 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 857 (unsigned long long) pfn << PAGE_SHIFT, 858 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 859 memory_notify(MEM_CANCEL_ONLINE, &arg); 860 mem_hotplug_done(); 861 return ret; 862 } 863 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 864 865 static void reset_node_present_pages(pg_data_t *pgdat) 866 { 867 struct zone *z; 868 869 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 870 z->present_pages = 0; 871 872 pgdat->node_present_pages = 0; 873 } 874 875 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 876 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 877 { 878 struct pglist_data *pgdat; 879 unsigned long start_pfn = PFN_DOWN(start); 880 881 pgdat = NODE_DATA(nid); 882 if (!pgdat) { 883 pgdat = arch_alloc_nodedata(nid); 884 if (!pgdat) 885 return NULL; 886 887 pgdat->per_cpu_nodestats = 888 alloc_percpu(struct per_cpu_nodestat); 889 arch_refresh_nodedata(nid, pgdat); 890 } else { 891 int cpu; 892 /* 893 * Reset the nr_zones, order and classzone_idx before reuse. 894 * Note that kswapd will init kswapd_classzone_idx properly 895 * when it starts in the near future. 896 */ 897 pgdat->nr_zones = 0; 898 pgdat->kswapd_order = 0; 899 pgdat->kswapd_classzone_idx = 0; 900 for_each_online_cpu(cpu) { 901 struct per_cpu_nodestat *p; 902 903 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 904 memset(p, 0, sizeof(*p)); 905 } 906 } 907 908 /* we can use NODE_DATA(nid) from here */ 909 910 pgdat->node_id = nid; 911 pgdat->node_start_pfn = start_pfn; 912 913 /* init node's zones as empty zones, we don't have any present pages.*/ 914 free_area_init_core_hotplug(nid); 915 916 /* 917 * The node we allocated has no zone fallback lists. For avoiding 918 * to access not-initialized zonelist, build here. 919 */ 920 build_all_zonelists(pgdat); 921 922 /* 923 * When memory is hot-added, all the memory is in offline state. So 924 * clear all zones' present_pages because they will be updated in 925 * online_pages() and offline_pages(). 926 */ 927 reset_node_managed_pages(pgdat); 928 reset_node_present_pages(pgdat); 929 930 return pgdat; 931 } 932 933 static void rollback_node_hotadd(int nid) 934 { 935 pg_data_t *pgdat = NODE_DATA(nid); 936 937 arch_refresh_nodedata(nid, NULL); 938 free_percpu(pgdat->per_cpu_nodestats); 939 arch_free_nodedata(pgdat); 940 } 941 942 943 /** 944 * try_online_node - online a node if offlined 945 * @nid: the node ID 946 * @start: start addr of the node 947 * @set_node_online: Whether we want to online the node 948 * called by cpu_up() to online a node without onlined memory. 949 * 950 * Returns: 951 * 1 -> a new node has been allocated 952 * 0 -> the node is already online 953 * -ENOMEM -> the node could not be allocated 954 */ 955 static int __try_online_node(int nid, u64 start, bool set_node_online) 956 { 957 pg_data_t *pgdat; 958 int ret = 1; 959 960 if (node_online(nid)) 961 return 0; 962 963 pgdat = hotadd_new_pgdat(nid, start); 964 if (!pgdat) { 965 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 966 ret = -ENOMEM; 967 goto out; 968 } 969 970 if (set_node_online) { 971 node_set_online(nid); 972 ret = register_one_node(nid); 973 BUG_ON(ret); 974 } 975 out: 976 return ret; 977 } 978 979 /* 980 * Users of this function always want to online/register the node 981 */ 982 int try_online_node(int nid) 983 { 984 int ret; 985 986 mem_hotplug_begin(); 987 ret = __try_online_node(nid, 0, true); 988 mem_hotplug_done(); 989 return ret; 990 } 991 992 static int check_hotplug_memory_range(u64 start, u64 size) 993 { 994 /* memory range must be block size aligned */ 995 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 996 !IS_ALIGNED(size, memory_block_size_bytes())) { 997 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 998 memory_block_size_bytes(), start, size); 999 return -EINVAL; 1000 } 1001 1002 return 0; 1003 } 1004 1005 static int online_memory_block(struct memory_block *mem, void *arg) 1006 { 1007 return device_online(&mem->dev); 1008 } 1009 1010 /* 1011 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1012 * and online/offline operations (triggered e.g. by sysfs). 1013 * 1014 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1015 */ 1016 int __ref add_memory_resource(int nid, struct resource *res) 1017 { 1018 struct mhp_restrictions restrictions = {}; 1019 u64 start, size; 1020 bool new_node = false; 1021 int ret; 1022 1023 start = res->start; 1024 size = resource_size(res); 1025 1026 ret = check_hotplug_memory_range(start, size); 1027 if (ret) 1028 return ret; 1029 1030 mem_hotplug_begin(); 1031 1032 /* 1033 * Add new range to memblock so that when hotadd_new_pgdat() is called 1034 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1035 * this new range and calculate total pages correctly. The range will 1036 * be removed at hot-remove time. 1037 */ 1038 memblock_add_node(start, size, nid); 1039 1040 ret = __try_online_node(nid, start, false); 1041 if (ret < 0) 1042 goto error; 1043 new_node = ret; 1044 1045 /* call arch's memory hotadd */ 1046 ret = arch_add_memory(nid, start, size, &restrictions); 1047 if (ret < 0) 1048 goto error; 1049 1050 /* create memory block devices after memory was added */ 1051 ret = create_memory_block_devices(start, size); 1052 if (ret) { 1053 arch_remove_memory(nid, start, size, NULL); 1054 goto error; 1055 } 1056 1057 if (new_node) { 1058 /* If sysfs file of new node can't be created, cpu on the node 1059 * can't be hot-added. There is no rollback way now. 1060 * So, check by BUG_ON() to catch it reluctantly.. 1061 * We online node here. We can't roll back from here. 1062 */ 1063 node_set_online(nid); 1064 ret = __register_one_node(nid); 1065 BUG_ON(ret); 1066 } 1067 1068 /* link memory sections under this node.*/ 1069 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1070 BUG_ON(ret); 1071 1072 /* create new memmap entry */ 1073 firmware_map_add_hotplug(start, start + size, "System RAM"); 1074 1075 /* device_online() will take the lock when calling online_pages() */ 1076 mem_hotplug_done(); 1077 1078 /* online pages if requested */ 1079 if (memhp_auto_online) 1080 walk_memory_blocks(start, size, NULL, online_memory_block); 1081 1082 return ret; 1083 error: 1084 /* rollback pgdat allocation and others */ 1085 if (new_node) 1086 rollback_node_hotadd(nid); 1087 memblock_remove(start, size); 1088 mem_hotplug_done(); 1089 return ret; 1090 } 1091 1092 /* requires device_hotplug_lock, see add_memory_resource() */ 1093 int __ref __add_memory(int nid, u64 start, u64 size) 1094 { 1095 struct resource *res; 1096 int ret; 1097 1098 res = register_memory_resource(start, size); 1099 if (IS_ERR(res)) 1100 return PTR_ERR(res); 1101 1102 ret = add_memory_resource(nid, res); 1103 if (ret < 0) 1104 release_memory_resource(res); 1105 return ret; 1106 } 1107 1108 int add_memory(int nid, u64 start, u64 size) 1109 { 1110 int rc; 1111 1112 lock_device_hotplug(); 1113 rc = __add_memory(nid, start, size); 1114 unlock_device_hotplug(); 1115 1116 return rc; 1117 } 1118 EXPORT_SYMBOL_GPL(add_memory); 1119 1120 #ifdef CONFIG_MEMORY_HOTREMOVE 1121 /* 1122 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1123 * set and the size of the free page is given by page_order(). Using this, 1124 * the function determines if the pageblock contains only free pages. 1125 * Due to buddy contraints, a free page at least the size of a pageblock will 1126 * be located at the start of the pageblock 1127 */ 1128 static inline int pageblock_free(struct page *page) 1129 { 1130 return PageBuddy(page) && page_order(page) >= pageblock_order; 1131 } 1132 1133 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1134 static unsigned long next_active_pageblock(unsigned long pfn) 1135 { 1136 struct page *page = pfn_to_page(pfn); 1137 1138 /* Ensure the starting page is pageblock-aligned */ 1139 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1140 1141 /* If the entire pageblock is free, move to the end of free page */ 1142 if (pageblock_free(page)) { 1143 int order; 1144 /* be careful. we don't have locks, page_order can be changed.*/ 1145 order = page_order(page); 1146 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1147 return pfn + (1 << order); 1148 } 1149 1150 return pfn + pageblock_nr_pages; 1151 } 1152 1153 static bool is_pageblock_removable_nolock(unsigned long pfn) 1154 { 1155 struct page *page = pfn_to_page(pfn); 1156 struct zone *zone; 1157 1158 /* 1159 * We have to be careful here because we are iterating over memory 1160 * sections which are not zone aware so we might end up outside of 1161 * the zone but still within the section. 1162 * We have to take care about the node as well. If the node is offline 1163 * its NODE_DATA will be NULL - see page_zone. 1164 */ 1165 if (!node_online(page_to_nid(page))) 1166 return false; 1167 1168 zone = page_zone(page); 1169 pfn = page_to_pfn(page); 1170 if (!zone_spans_pfn(zone, pfn)) 1171 return false; 1172 1173 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1174 } 1175 1176 /* Checks if this range of memory is likely to be hot-removable. */ 1177 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1178 { 1179 unsigned long end_pfn, pfn; 1180 1181 end_pfn = min(start_pfn + nr_pages, 1182 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1183 1184 /* Check the starting page of each pageblock within the range */ 1185 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1186 if (!is_pageblock_removable_nolock(pfn)) 1187 return false; 1188 cond_resched(); 1189 } 1190 1191 /* All pageblocks in the memory block are likely to be hot-removable */ 1192 return true; 1193 } 1194 1195 /* 1196 * Confirm all pages in a range [start, end) belong to the same zone. 1197 * When true, return its valid [start, end). 1198 */ 1199 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1200 unsigned long *valid_start, unsigned long *valid_end) 1201 { 1202 unsigned long pfn, sec_end_pfn; 1203 unsigned long start, end; 1204 struct zone *zone = NULL; 1205 struct page *page; 1206 int i; 1207 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1208 pfn < end_pfn; 1209 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1210 /* Make sure the memory section is present first */ 1211 if (!present_section_nr(pfn_to_section_nr(pfn))) 1212 continue; 1213 for (; pfn < sec_end_pfn && pfn < end_pfn; 1214 pfn += MAX_ORDER_NR_PAGES) { 1215 i = 0; 1216 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1217 while ((i < MAX_ORDER_NR_PAGES) && 1218 !pfn_valid_within(pfn + i)) 1219 i++; 1220 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1221 continue; 1222 /* Check if we got outside of the zone */ 1223 if (zone && !zone_spans_pfn(zone, pfn + i)) 1224 return 0; 1225 page = pfn_to_page(pfn + i); 1226 if (zone && page_zone(page) != zone) 1227 return 0; 1228 if (!zone) 1229 start = pfn + i; 1230 zone = page_zone(page); 1231 end = pfn + MAX_ORDER_NR_PAGES; 1232 } 1233 } 1234 1235 if (zone) { 1236 *valid_start = start; 1237 *valid_end = min(end, end_pfn); 1238 return 1; 1239 } else { 1240 return 0; 1241 } 1242 } 1243 1244 /* 1245 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1246 * non-lru movable pages and hugepages). We scan pfn because it's much 1247 * easier than scanning over linked list. This function returns the pfn 1248 * of the first found movable page if it's found, otherwise 0. 1249 */ 1250 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1251 { 1252 unsigned long pfn; 1253 1254 for (pfn = start; pfn < end; pfn++) { 1255 struct page *page, *head; 1256 unsigned long skip; 1257 1258 if (!pfn_valid(pfn)) 1259 continue; 1260 page = pfn_to_page(pfn); 1261 if (PageLRU(page)) 1262 return pfn; 1263 if (__PageMovable(page)) 1264 return pfn; 1265 1266 if (!PageHuge(page)) 1267 continue; 1268 head = compound_head(page); 1269 if (page_huge_active(head)) 1270 return pfn; 1271 skip = compound_nr(head) - (page - head); 1272 pfn += skip - 1; 1273 } 1274 return 0; 1275 } 1276 1277 static struct page *new_node_page(struct page *page, unsigned long private) 1278 { 1279 int nid = page_to_nid(page); 1280 nodemask_t nmask = node_states[N_MEMORY]; 1281 1282 /* 1283 * try to allocate from a different node but reuse this node if there 1284 * are no other online nodes to be used (e.g. we are offlining a part 1285 * of the only existing node) 1286 */ 1287 node_clear(nid, nmask); 1288 if (nodes_empty(nmask)) 1289 node_set(nid, nmask); 1290 1291 return new_page_nodemask(page, nid, &nmask); 1292 } 1293 1294 static int 1295 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1296 { 1297 unsigned long pfn; 1298 struct page *page; 1299 int ret = 0; 1300 LIST_HEAD(source); 1301 1302 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1303 if (!pfn_valid(pfn)) 1304 continue; 1305 page = pfn_to_page(pfn); 1306 1307 if (PageHuge(page)) { 1308 struct page *head = compound_head(page); 1309 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1310 isolate_huge_page(head, &source); 1311 continue; 1312 } else if (PageTransHuge(page)) 1313 pfn = page_to_pfn(compound_head(page)) 1314 + hpage_nr_pages(page) - 1; 1315 1316 /* 1317 * HWPoison pages have elevated reference counts so the migration would 1318 * fail on them. It also doesn't make any sense to migrate them in the 1319 * first place. Still try to unmap such a page in case it is still mapped 1320 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1321 * the unmap as the catch all safety net). 1322 */ 1323 if (PageHWPoison(page)) { 1324 if (WARN_ON(PageLRU(page))) 1325 isolate_lru_page(page); 1326 if (page_mapped(page)) 1327 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1328 continue; 1329 } 1330 1331 if (!get_page_unless_zero(page)) 1332 continue; 1333 /* 1334 * We can skip free pages. And we can deal with pages on 1335 * LRU and non-lru movable pages. 1336 */ 1337 if (PageLRU(page)) 1338 ret = isolate_lru_page(page); 1339 else 1340 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1341 if (!ret) { /* Success */ 1342 list_add_tail(&page->lru, &source); 1343 if (!__PageMovable(page)) 1344 inc_node_page_state(page, NR_ISOLATED_ANON + 1345 page_is_file_cache(page)); 1346 1347 } else { 1348 pr_warn("failed to isolate pfn %lx\n", pfn); 1349 dump_page(page, "isolation failed"); 1350 } 1351 put_page(page); 1352 } 1353 if (!list_empty(&source)) { 1354 /* Allocate a new page from the nearest neighbor node */ 1355 ret = migrate_pages(&source, new_node_page, NULL, 0, 1356 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1357 if (ret) { 1358 list_for_each_entry(page, &source, lru) { 1359 pr_warn("migrating pfn %lx failed ret:%d ", 1360 page_to_pfn(page), ret); 1361 dump_page(page, "migration failure"); 1362 } 1363 putback_movable_pages(&source); 1364 } 1365 } 1366 1367 return ret; 1368 } 1369 1370 /* 1371 * remove from free_area[] and mark all as Reserved. 1372 */ 1373 static int 1374 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1375 void *data) 1376 { 1377 unsigned long *offlined_pages = (unsigned long *)data; 1378 1379 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1380 return 0; 1381 } 1382 1383 /* 1384 * Check all pages in range, recoreded as memory resource, are isolated. 1385 */ 1386 static int 1387 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1388 void *data) 1389 { 1390 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1391 } 1392 1393 static int __init cmdline_parse_movable_node(char *p) 1394 { 1395 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1396 movable_node_enabled = true; 1397 #else 1398 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1399 #endif 1400 return 0; 1401 } 1402 early_param("movable_node", cmdline_parse_movable_node); 1403 1404 /* check which state of node_states will be changed when offline memory */ 1405 static void node_states_check_changes_offline(unsigned long nr_pages, 1406 struct zone *zone, struct memory_notify *arg) 1407 { 1408 struct pglist_data *pgdat = zone->zone_pgdat; 1409 unsigned long present_pages = 0; 1410 enum zone_type zt; 1411 1412 arg->status_change_nid = NUMA_NO_NODE; 1413 arg->status_change_nid_normal = NUMA_NO_NODE; 1414 arg->status_change_nid_high = NUMA_NO_NODE; 1415 1416 /* 1417 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1418 * If the memory to be offline is within the range 1419 * [0..ZONE_NORMAL], and it is the last present memory there, 1420 * the zones in that range will become empty after the offlining, 1421 * thus we can determine that we need to clear the node from 1422 * node_states[N_NORMAL_MEMORY]. 1423 */ 1424 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1425 present_pages += pgdat->node_zones[zt].present_pages; 1426 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1427 arg->status_change_nid_normal = zone_to_nid(zone); 1428 1429 #ifdef CONFIG_HIGHMEM 1430 /* 1431 * node_states[N_HIGH_MEMORY] contains nodes which 1432 * have normal memory or high memory. 1433 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1434 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1435 * we determine that the zones in that range become empty, 1436 * we need to clear the node for N_HIGH_MEMORY. 1437 */ 1438 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1439 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1440 arg->status_change_nid_high = zone_to_nid(zone); 1441 #endif 1442 1443 /* 1444 * We have accounted the pages from [0..ZONE_NORMAL), and 1445 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1446 * as well. 1447 * Here we count the possible pages from ZONE_MOVABLE. 1448 * If after having accounted all the pages, we see that the nr_pages 1449 * to be offlined is over or equal to the accounted pages, 1450 * we know that the node will become empty, and so, we can clear 1451 * it for N_MEMORY as well. 1452 */ 1453 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1454 1455 if (nr_pages >= present_pages) 1456 arg->status_change_nid = zone_to_nid(zone); 1457 } 1458 1459 static void node_states_clear_node(int node, struct memory_notify *arg) 1460 { 1461 if (arg->status_change_nid_normal >= 0) 1462 node_clear_state(node, N_NORMAL_MEMORY); 1463 1464 if (arg->status_change_nid_high >= 0) 1465 node_clear_state(node, N_HIGH_MEMORY); 1466 1467 if (arg->status_change_nid >= 0) 1468 node_clear_state(node, N_MEMORY); 1469 } 1470 1471 static int __ref __offline_pages(unsigned long start_pfn, 1472 unsigned long end_pfn) 1473 { 1474 unsigned long pfn, nr_pages; 1475 unsigned long offlined_pages = 0; 1476 int ret, node, nr_isolate_pageblock; 1477 unsigned long flags; 1478 unsigned long valid_start, valid_end; 1479 struct zone *zone; 1480 struct memory_notify arg; 1481 char *reason; 1482 1483 mem_hotplug_begin(); 1484 1485 /* This makes hotplug much easier...and readable. 1486 we assume this for now. .*/ 1487 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1488 &valid_end)) { 1489 ret = -EINVAL; 1490 reason = "multizone range"; 1491 goto failed_removal; 1492 } 1493 1494 zone = page_zone(pfn_to_page(valid_start)); 1495 node = zone_to_nid(zone); 1496 nr_pages = end_pfn - start_pfn; 1497 1498 /* set above range as isolated */ 1499 ret = start_isolate_page_range(start_pfn, end_pfn, 1500 MIGRATE_MOVABLE, 1501 SKIP_HWPOISON | REPORT_FAILURE); 1502 if (ret < 0) { 1503 reason = "failure to isolate range"; 1504 goto failed_removal; 1505 } 1506 nr_isolate_pageblock = ret; 1507 1508 arg.start_pfn = start_pfn; 1509 arg.nr_pages = nr_pages; 1510 node_states_check_changes_offline(nr_pages, zone, &arg); 1511 1512 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1513 ret = notifier_to_errno(ret); 1514 if (ret) { 1515 reason = "notifier failure"; 1516 goto failed_removal_isolated; 1517 } 1518 1519 do { 1520 for (pfn = start_pfn; pfn;) { 1521 if (signal_pending(current)) { 1522 ret = -EINTR; 1523 reason = "signal backoff"; 1524 goto failed_removal_isolated; 1525 } 1526 1527 cond_resched(); 1528 lru_add_drain_all(); 1529 1530 pfn = scan_movable_pages(pfn, end_pfn); 1531 if (pfn) { 1532 /* 1533 * TODO: fatal migration failures should bail 1534 * out 1535 */ 1536 do_migrate_range(pfn, end_pfn); 1537 } 1538 } 1539 1540 /* 1541 * Dissolve free hugepages in the memory block before doing 1542 * offlining actually in order to make hugetlbfs's object 1543 * counting consistent. 1544 */ 1545 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1546 if (ret) { 1547 reason = "failure to dissolve huge pages"; 1548 goto failed_removal_isolated; 1549 } 1550 /* check again */ 1551 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1552 NULL, check_pages_isolated_cb); 1553 } while (ret); 1554 1555 /* Ok, all of our target is isolated. 1556 We cannot do rollback at this point. */ 1557 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1558 &offlined_pages, offline_isolated_pages_cb); 1559 pr_info("Offlined Pages %ld\n", offlined_pages); 1560 /* 1561 * Onlining will reset pagetype flags and makes migrate type 1562 * MOVABLE, so just need to decrease the number of isolated 1563 * pageblocks zone counter here. 1564 */ 1565 spin_lock_irqsave(&zone->lock, flags); 1566 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1567 spin_unlock_irqrestore(&zone->lock, flags); 1568 1569 /* removal success */ 1570 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1571 zone->present_pages -= offlined_pages; 1572 1573 pgdat_resize_lock(zone->zone_pgdat, &flags); 1574 zone->zone_pgdat->node_present_pages -= offlined_pages; 1575 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1576 1577 init_per_zone_wmark_min(); 1578 1579 if (!populated_zone(zone)) { 1580 zone_pcp_reset(zone); 1581 build_all_zonelists(NULL); 1582 } else 1583 zone_pcp_update(zone); 1584 1585 node_states_clear_node(node, &arg); 1586 if (arg.status_change_nid >= 0) { 1587 kswapd_stop(node); 1588 kcompactd_stop(node); 1589 } 1590 1591 vm_total_pages = nr_free_pagecache_pages(); 1592 writeback_set_ratelimit(); 1593 1594 memory_notify(MEM_OFFLINE, &arg); 1595 mem_hotplug_done(); 1596 return 0; 1597 1598 failed_removal_isolated: 1599 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1600 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1601 failed_removal: 1602 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1603 (unsigned long long) start_pfn << PAGE_SHIFT, 1604 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1605 reason); 1606 /* pushback to free area */ 1607 mem_hotplug_done(); 1608 return ret; 1609 } 1610 1611 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1612 { 1613 return __offline_pages(start_pfn, start_pfn + nr_pages); 1614 } 1615 1616 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1617 { 1618 int ret = !is_memblock_offlined(mem); 1619 1620 if (unlikely(ret)) { 1621 phys_addr_t beginpa, endpa; 1622 1623 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1624 endpa = beginpa + memory_block_size_bytes() - 1; 1625 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1626 &beginpa, &endpa); 1627 1628 return -EBUSY; 1629 } 1630 return 0; 1631 } 1632 1633 static int check_cpu_on_node(pg_data_t *pgdat) 1634 { 1635 int cpu; 1636 1637 for_each_present_cpu(cpu) { 1638 if (cpu_to_node(cpu) == pgdat->node_id) 1639 /* 1640 * the cpu on this node isn't removed, and we can't 1641 * offline this node. 1642 */ 1643 return -EBUSY; 1644 } 1645 1646 return 0; 1647 } 1648 1649 /** 1650 * try_offline_node 1651 * @nid: the node ID 1652 * 1653 * Offline a node if all memory sections and cpus of the node are removed. 1654 * 1655 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1656 * and online/offline operations before this call. 1657 */ 1658 void try_offline_node(int nid) 1659 { 1660 pg_data_t *pgdat = NODE_DATA(nid); 1661 unsigned long start_pfn = pgdat->node_start_pfn; 1662 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1663 unsigned long pfn; 1664 1665 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1666 unsigned long section_nr = pfn_to_section_nr(pfn); 1667 1668 if (!present_section_nr(section_nr)) 1669 continue; 1670 1671 if (pfn_to_nid(pfn) != nid) 1672 continue; 1673 1674 /* 1675 * some memory sections of this node are not removed, and we 1676 * can't offline node now. 1677 */ 1678 return; 1679 } 1680 1681 if (check_cpu_on_node(pgdat)) 1682 return; 1683 1684 /* 1685 * all memory/cpu of this node are removed, we can offline this 1686 * node now. 1687 */ 1688 node_set_offline(nid); 1689 unregister_one_node(nid); 1690 } 1691 EXPORT_SYMBOL(try_offline_node); 1692 1693 static void __release_memory_resource(resource_size_t start, 1694 resource_size_t size) 1695 { 1696 int ret; 1697 1698 /* 1699 * When removing memory in the same granularity as it was added, 1700 * this function never fails. It might only fail if resources 1701 * have to be adjusted or split. We'll ignore the error, as 1702 * removing of memory cannot fail. 1703 */ 1704 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1705 if (ret) { 1706 resource_size_t endres = start + size - 1; 1707 1708 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1709 &start, &endres, ret); 1710 } 1711 } 1712 1713 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1714 { 1715 int rc = 0; 1716 1717 BUG_ON(check_hotplug_memory_range(start, size)); 1718 1719 mem_hotplug_begin(); 1720 1721 /* 1722 * All memory blocks must be offlined before removing memory. Check 1723 * whether all memory blocks in question are offline and return error 1724 * if this is not the case. 1725 */ 1726 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1727 if (rc) 1728 goto done; 1729 1730 /* remove memmap entry */ 1731 firmware_map_remove(start, start + size, "System RAM"); 1732 memblock_free(start, size); 1733 memblock_remove(start, size); 1734 1735 /* remove memory block devices before removing memory */ 1736 remove_memory_block_devices(start, size); 1737 1738 arch_remove_memory(nid, start, size, NULL); 1739 __release_memory_resource(start, size); 1740 1741 try_offline_node(nid); 1742 1743 done: 1744 mem_hotplug_done(); 1745 return rc; 1746 } 1747 1748 /** 1749 * remove_memory 1750 * @nid: the node ID 1751 * @start: physical address of the region to remove 1752 * @size: size of the region to remove 1753 * 1754 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1755 * and online/offline operations before this call, as required by 1756 * try_offline_node(). 1757 */ 1758 void __remove_memory(int nid, u64 start, u64 size) 1759 { 1760 1761 /* 1762 * trigger BUG() if some memory is not offlined prior to calling this 1763 * function 1764 */ 1765 if (try_remove_memory(nid, start, size)) 1766 BUG(); 1767 } 1768 1769 /* 1770 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1771 * some memory is not offline 1772 */ 1773 int remove_memory(int nid, u64 start, u64 size) 1774 { 1775 int rc; 1776 1777 lock_device_hotplug(); 1778 rc = try_remove_memory(nid, start, size); 1779 unlock_device_hotplug(); 1780 1781 return rc; 1782 } 1783 EXPORT_SYMBOL_GPL(remove_memory); 1784 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1785