1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/highmem.h> 22 #include <linux/vmalloc.h> 23 #include <linux/ioport.h> 24 #include <linux/delay.h> 25 #include <linux/migrate.h> 26 #include <linux/page-isolation.h> 27 #include <linux/pfn.h> 28 #include <linux/suspend.h> 29 #include <linux/mm_inline.h> 30 #include <linux/firmware-map.h> 31 #include <linux/stop_machine.h> 32 #include <linux/hugetlb.h> 33 #include <linux/memblock.h> 34 #include <linux/bootmem.h> 35 36 #include <asm/tlbflush.h> 37 38 #include "internal.h" 39 40 /* 41 * online_page_callback contains pointer to current page onlining function. 42 * Initially it is generic_online_page(). If it is required it could be 43 * changed by calling set_online_page_callback() for callback registration 44 * and restore_online_page_callback() for generic callback restore. 45 */ 46 47 static void generic_online_page(struct page *page); 48 49 static online_page_callback_t online_page_callback = generic_online_page; 50 static DEFINE_MUTEX(online_page_callback_lock); 51 52 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 53 static struct { 54 struct task_struct *active_writer; 55 struct mutex lock; /* Synchronizes accesses to refcount, */ 56 /* 57 * Also blocks the new readers during 58 * an ongoing mem hotplug operation. 59 */ 60 int refcount; 61 62 #ifdef CONFIG_DEBUG_LOCK_ALLOC 63 struct lockdep_map dep_map; 64 #endif 65 } mem_hotplug = { 66 .active_writer = NULL, 67 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 68 .refcount = 0, 69 #ifdef CONFIG_DEBUG_LOCK_ALLOC 70 .dep_map = {.name = "mem_hotplug.lock" }, 71 #endif 72 }; 73 74 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 75 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 76 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 77 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 78 79 void get_online_mems(void) 80 { 81 might_sleep(); 82 if (mem_hotplug.active_writer == current) 83 return; 84 memhp_lock_acquire_read(); 85 mutex_lock(&mem_hotplug.lock); 86 mem_hotplug.refcount++; 87 mutex_unlock(&mem_hotplug.lock); 88 89 } 90 91 void put_online_mems(void) 92 { 93 if (mem_hotplug.active_writer == current) 94 return; 95 mutex_lock(&mem_hotplug.lock); 96 97 if (WARN_ON(!mem_hotplug.refcount)) 98 mem_hotplug.refcount++; /* try to fix things up */ 99 100 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 101 wake_up_process(mem_hotplug.active_writer); 102 mutex_unlock(&mem_hotplug.lock); 103 memhp_lock_release(); 104 105 } 106 107 void mem_hotplug_begin(void) 108 { 109 mem_hotplug.active_writer = current; 110 111 memhp_lock_acquire(); 112 for (;;) { 113 mutex_lock(&mem_hotplug.lock); 114 if (likely(!mem_hotplug.refcount)) 115 break; 116 __set_current_state(TASK_UNINTERRUPTIBLE); 117 mutex_unlock(&mem_hotplug.lock); 118 schedule(); 119 } 120 } 121 122 void mem_hotplug_done(void) 123 { 124 mem_hotplug.active_writer = NULL; 125 mutex_unlock(&mem_hotplug.lock); 126 memhp_lock_release(); 127 } 128 129 /* add this memory to iomem resource */ 130 static struct resource *register_memory_resource(u64 start, u64 size) 131 { 132 struct resource *res; 133 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 134 BUG_ON(!res); 135 136 res->name = "System RAM"; 137 res->start = start; 138 res->end = start + size - 1; 139 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 140 if (request_resource(&iomem_resource, res) < 0) { 141 pr_debug("System RAM resource %pR cannot be added\n", res); 142 kfree(res); 143 res = NULL; 144 } 145 return res; 146 } 147 148 static void release_memory_resource(struct resource *res) 149 { 150 if (!res) 151 return; 152 release_resource(res); 153 kfree(res); 154 return; 155 } 156 157 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 158 void get_page_bootmem(unsigned long info, struct page *page, 159 unsigned long type) 160 { 161 page->lru.next = (struct list_head *) type; 162 SetPagePrivate(page); 163 set_page_private(page, info); 164 atomic_inc(&page->_count); 165 } 166 167 void put_page_bootmem(struct page *page) 168 { 169 unsigned long type; 170 171 type = (unsigned long) page->lru.next; 172 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 173 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 174 175 if (atomic_dec_return(&page->_count) == 1) { 176 ClearPagePrivate(page); 177 set_page_private(page, 0); 178 INIT_LIST_HEAD(&page->lru); 179 free_reserved_page(page); 180 } 181 } 182 183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 184 #ifndef CONFIG_SPARSEMEM_VMEMMAP 185 static void register_page_bootmem_info_section(unsigned long start_pfn) 186 { 187 unsigned long *usemap, mapsize, section_nr, i; 188 struct mem_section *ms; 189 struct page *page, *memmap; 190 191 section_nr = pfn_to_section_nr(start_pfn); 192 ms = __nr_to_section(section_nr); 193 194 /* Get section's memmap address */ 195 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 196 197 /* 198 * Get page for the memmap's phys address 199 * XXX: need more consideration for sparse_vmemmap... 200 */ 201 page = virt_to_page(memmap); 202 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 203 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 204 205 /* remember memmap's page */ 206 for (i = 0; i < mapsize; i++, page++) 207 get_page_bootmem(section_nr, page, SECTION_INFO); 208 209 usemap = __nr_to_section(section_nr)->pageblock_flags; 210 page = virt_to_page(usemap); 211 212 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 213 214 for (i = 0; i < mapsize; i++, page++) 215 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 216 217 } 218 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 219 static void register_page_bootmem_info_section(unsigned long start_pfn) 220 { 221 unsigned long *usemap, mapsize, section_nr, i; 222 struct mem_section *ms; 223 struct page *page, *memmap; 224 225 if (!pfn_valid(start_pfn)) 226 return; 227 228 section_nr = pfn_to_section_nr(start_pfn); 229 ms = __nr_to_section(section_nr); 230 231 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 232 233 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 234 235 usemap = __nr_to_section(section_nr)->pageblock_flags; 236 page = virt_to_page(usemap); 237 238 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 239 240 for (i = 0; i < mapsize; i++, page++) 241 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 242 } 243 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 244 245 void register_page_bootmem_info_node(struct pglist_data *pgdat) 246 { 247 unsigned long i, pfn, end_pfn, nr_pages; 248 int node = pgdat->node_id; 249 struct page *page; 250 struct zone *zone; 251 252 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 253 page = virt_to_page(pgdat); 254 255 for (i = 0; i < nr_pages; i++, page++) 256 get_page_bootmem(node, page, NODE_INFO); 257 258 zone = &pgdat->node_zones[0]; 259 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { 260 if (zone_is_initialized(zone)) { 261 nr_pages = zone->wait_table_hash_nr_entries 262 * sizeof(wait_queue_head_t); 263 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; 264 page = virt_to_page(zone->wait_table); 265 266 for (i = 0; i < nr_pages; i++, page++) 267 get_page_bootmem(node, page, NODE_INFO); 268 } 269 } 270 271 pfn = pgdat->node_start_pfn; 272 end_pfn = pgdat_end_pfn(pgdat); 273 274 /* register section info */ 275 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 276 /* 277 * Some platforms can assign the same pfn to multiple nodes - on 278 * node0 as well as nodeN. To avoid registering a pfn against 279 * multiple nodes we check that this pfn does not already 280 * reside in some other nodes. 281 */ 282 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) 283 register_page_bootmem_info_section(pfn); 284 } 285 } 286 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 287 288 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 289 unsigned long end_pfn) 290 { 291 unsigned long old_zone_end_pfn; 292 293 zone_span_writelock(zone); 294 295 old_zone_end_pfn = zone_end_pfn(zone); 296 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 297 zone->zone_start_pfn = start_pfn; 298 299 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 300 zone->zone_start_pfn; 301 302 zone_span_writeunlock(zone); 303 } 304 305 static void resize_zone(struct zone *zone, unsigned long start_pfn, 306 unsigned long end_pfn) 307 { 308 zone_span_writelock(zone); 309 310 if (end_pfn - start_pfn) { 311 zone->zone_start_pfn = start_pfn; 312 zone->spanned_pages = end_pfn - start_pfn; 313 } else { 314 /* 315 * make it consist as free_area_init_core(), 316 * if spanned_pages = 0, then keep start_pfn = 0 317 */ 318 zone->zone_start_pfn = 0; 319 zone->spanned_pages = 0; 320 } 321 322 zone_span_writeunlock(zone); 323 } 324 325 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 326 unsigned long end_pfn) 327 { 328 enum zone_type zid = zone_idx(zone); 329 int nid = zone->zone_pgdat->node_id; 330 unsigned long pfn; 331 332 for (pfn = start_pfn; pfn < end_pfn; pfn++) 333 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 334 } 335 336 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 337 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 338 static int __ref ensure_zone_is_initialized(struct zone *zone, 339 unsigned long start_pfn, unsigned long num_pages) 340 { 341 if (!zone_is_initialized(zone)) 342 return init_currently_empty_zone(zone, start_pfn, num_pages); 343 344 return 0; 345 } 346 347 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 348 unsigned long start_pfn, unsigned long end_pfn) 349 { 350 int ret; 351 unsigned long flags; 352 unsigned long z1_start_pfn; 353 354 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 355 if (ret) 356 return ret; 357 358 pgdat_resize_lock(z1->zone_pgdat, &flags); 359 360 /* can't move pfns which are higher than @z2 */ 361 if (end_pfn > zone_end_pfn(z2)) 362 goto out_fail; 363 /* the move out part must be at the left most of @z2 */ 364 if (start_pfn > z2->zone_start_pfn) 365 goto out_fail; 366 /* must included/overlap */ 367 if (end_pfn <= z2->zone_start_pfn) 368 goto out_fail; 369 370 /* use start_pfn for z1's start_pfn if z1 is empty */ 371 if (!zone_is_empty(z1)) 372 z1_start_pfn = z1->zone_start_pfn; 373 else 374 z1_start_pfn = start_pfn; 375 376 resize_zone(z1, z1_start_pfn, end_pfn); 377 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 378 379 pgdat_resize_unlock(z1->zone_pgdat, &flags); 380 381 fix_zone_id(z1, start_pfn, end_pfn); 382 383 return 0; 384 out_fail: 385 pgdat_resize_unlock(z1->zone_pgdat, &flags); 386 return -1; 387 } 388 389 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 390 unsigned long start_pfn, unsigned long end_pfn) 391 { 392 int ret; 393 unsigned long flags; 394 unsigned long z2_end_pfn; 395 396 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 397 if (ret) 398 return ret; 399 400 pgdat_resize_lock(z1->zone_pgdat, &flags); 401 402 /* can't move pfns which are lower than @z1 */ 403 if (z1->zone_start_pfn > start_pfn) 404 goto out_fail; 405 /* the move out part mast at the right most of @z1 */ 406 if (zone_end_pfn(z1) > end_pfn) 407 goto out_fail; 408 /* must included/overlap */ 409 if (start_pfn >= zone_end_pfn(z1)) 410 goto out_fail; 411 412 /* use end_pfn for z2's end_pfn if z2 is empty */ 413 if (!zone_is_empty(z2)) 414 z2_end_pfn = zone_end_pfn(z2); 415 else 416 z2_end_pfn = end_pfn; 417 418 resize_zone(z1, z1->zone_start_pfn, start_pfn); 419 resize_zone(z2, start_pfn, z2_end_pfn); 420 421 pgdat_resize_unlock(z1->zone_pgdat, &flags); 422 423 fix_zone_id(z2, start_pfn, end_pfn); 424 425 return 0; 426 out_fail: 427 pgdat_resize_unlock(z1->zone_pgdat, &flags); 428 return -1; 429 } 430 431 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 432 unsigned long end_pfn) 433 { 434 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 435 436 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 437 pgdat->node_start_pfn = start_pfn; 438 439 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 440 pgdat->node_start_pfn; 441 } 442 443 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 444 { 445 struct pglist_data *pgdat = zone->zone_pgdat; 446 int nr_pages = PAGES_PER_SECTION; 447 int nid = pgdat->node_id; 448 int zone_type; 449 unsigned long flags, pfn; 450 int ret; 451 452 zone_type = zone - pgdat->node_zones; 453 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 454 if (ret) 455 return ret; 456 457 pgdat_resize_lock(zone->zone_pgdat, &flags); 458 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 459 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 460 phys_start_pfn + nr_pages); 461 pgdat_resize_unlock(zone->zone_pgdat, &flags); 462 memmap_init_zone(nr_pages, nid, zone_type, 463 phys_start_pfn, MEMMAP_HOTPLUG); 464 465 /* online_page_range is called later and expects pages reserved */ 466 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 467 if (!pfn_valid(pfn)) 468 continue; 469 470 SetPageReserved(pfn_to_page(pfn)); 471 } 472 return 0; 473 } 474 475 static int __meminit __add_section(int nid, struct zone *zone, 476 unsigned long phys_start_pfn) 477 { 478 int ret; 479 480 if (pfn_valid(phys_start_pfn)) 481 return -EEXIST; 482 483 ret = sparse_add_one_section(zone, phys_start_pfn); 484 485 if (ret < 0) 486 return ret; 487 488 ret = __add_zone(zone, phys_start_pfn); 489 490 if (ret < 0) 491 return ret; 492 493 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 494 } 495 496 /* 497 * Reasonably generic function for adding memory. It is 498 * expected that archs that support memory hotplug will 499 * call this function after deciding the zone to which to 500 * add the new pages. 501 */ 502 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 503 unsigned long nr_pages) 504 { 505 unsigned long i; 506 int err = 0; 507 int start_sec, end_sec; 508 /* during initialize mem_map, align hot-added range to section */ 509 start_sec = pfn_to_section_nr(phys_start_pfn); 510 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 511 512 for (i = start_sec; i <= end_sec; i++) { 513 err = __add_section(nid, zone, section_nr_to_pfn(i)); 514 515 /* 516 * EEXIST is finally dealt with by ioresource collision 517 * check. see add_memory() => register_memory_resource() 518 * Warning will be printed if there is collision. 519 */ 520 if (err && (err != -EEXIST)) 521 break; 522 err = 0; 523 } 524 vmemmap_populate_print_last(); 525 526 return err; 527 } 528 EXPORT_SYMBOL_GPL(__add_pages); 529 530 #ifdef CONFIG_MEMORY_HOTREMOVE 531 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 532 static int find_smallest_section_pfn(int nid, struct zone *zone, 533 unsigned long start_pfn, 534 unsigned long end_pfn) 535 { 536 struct mem_section *ms; 537 538 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 539 ms = __pfn_to_section(start_pfn); 540 541 if (unlikely(!valid_section(ms))) 542 continue; 543 544 if (unlikely(pfn_to_nid(start_pfn) != nid)) 545 continue; 546 547 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 548 continue; 549 550 return start_pfn; 551 } 552 553 return 0; 554 } 555 556 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 557 static int find_biggest_section_pfn(int nid, struct zone *zone, 558 unsigned long start_pfn, 559 unsigned long end_pfn) 560 { 561 struct mem_section *ms; 562 unsigned long pfn; 563 564 /* pfn is the end pfn of a memory section. */ 565 pfn = end_pfn - 1; 566 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 567 ms = __pfn_to_section(pfn); 568 569 if (unlikely(!valid_section(ms))) 570 continue; 571 572 if (unlikely(pfn_to_nid(pfn) != nid)) 573 continue; 574 575 if (zone && zone != page_zone(pfn_to_page(pfn))) 576 continue; 577 578 return pfn; 579 } 580 581 return 0; 582 } 583 584 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 585 unsigned long end_pfn) 586 { 587 unsigned long zone_start_pfn = zone->zone_start_pfn; 588 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 589 unsigned long zone_end_pfn = z; 590 unsigned long pfn; 591 struct mem_section *ms; 592 int nid = zone_to_nid(zone); 593 594 zone_span_writelock(zone); 595 if (zone_start_pfn == start_pfn) { 596 /* 597 * If the section is smallest section in the zone, it need 598 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 599 * In this case, we find second smallest valid mem_section 600 * for shrinking zone. 601 */ 602 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 603 zone_end_pfn); 604 if (pfn) { 605 zone->zone_start_pfn = pfn; 606 zone->spanned_pages = zone_end_pfn - pfn; 607 } 608 } else if (zone_end_pfn == end_pfn) { 609 /* 610 * If the section is biggest section in the zone, it need 611 * shrink zone->spanned_pages. 612 * In this case, we find second biggest valid mem_section for 613 * shrinking zone. 614 */ 615 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 616 start_pfn); 617 if (pfn) 618 zone->spanned_pages = pfn - zone_start_pfn + 1; 619 } 620 621 /* 622 * The section is not biggest or smallest mem_section in the zone, it 623 * only creates a hole in the zone. So in this case, we need not 624 * change the zone. But perhaps, the zone has only hole data. Thus 625 * it check the zone has only hole or not. 626 */ 627 pfn = zone_start_pfn; 628 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 629 ms = __pfn_to_section(pfn); 630 631 if (unlikely(!valid_section(ms))) 632 continue; 633 634 if (page_zone(pfn_to_page(pfn)) != zone) 635 continue; 636 637 /* If the section is current section, it continues the loop */ 638 if (start_pfn == pfn) 639 continue; 640 641 /* If we find valid section, we have nothing to do */ 642 zone_span_writeunlock(zone); 643 return; 644 } 645 646 /* The zone has no valid section */ 647 zone->zone_start_pfn = 0; 648 zone->spanned_pages = 0; 649 zone_span_writeunlock(zone); 650 } 651 652 static void shrink_pgdat_span(struct pglist_data *pgdat, 653 unsigned long start_pfn, unsigned long end_pfn) 654 { 655 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 656 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 657 unsigned long pgdat_end_pfn = p; 658 unsigned long pfn; 659 struct mem_section *ms; 660 int nid = pgdat->node_id; 661 662 if (pgdat_start_pfn == start_pfn) { 663 /* 664 * If the section is smallest section in the pgdat, it need 665 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 666 * In this case, we find second smallest valid mem_section 667 * for shrinking zone. 668 */ 669 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 670 pgdat_end_pfn); 671 if (pfn) { 672 pgdat->node_start_pfn = pfn; 673 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 674 } 675 } else if (pgdat_end_pfn == end_pfn) { 676 /* 677 * If the section is biggest section in the pgdat, it need 678 * shrink pgdat->node_spanned_pages. 679 * In this case, we find second biggest valid mem_section for 680 * shrinking zone. 681 */ 682 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 683 start_pfn); 684 if (pfn) 685 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 686 } 687 688 /* 689 * If the section is not biggest or smallest mem_section in the pgdat, 690 * it only creates a hole in the pgdat. So in this case, we need not 691 * change the pgdat. 692 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 693 * has only hole or not. 694 */ 695 pfn = pgdat_start_pfn; 696 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 697 ms = __pfn_to_section(pfn); 698 699 if (unlikely(!valid_section(ms))) 700 continue; 701 702 if (pfn_to_nid(pfn) != nid) 703 continue; 704 705 /* If the section is current section, it continues the loop */ 706 if (start_pfn == pfn) 707 continue; 708 709 /* If we find valid section, we have nothing to do */ 710 return; 711 } 712 713 /* The pgdat has no valid section */ 714 pgdat->node_start_pfn = 0; 715 pgdat->node_spanned_pages = 0; 716 } 717 718 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 719 { 720 struct pglist_data *pgdat = zone->zone_pgdat; 721 int nr_pages = PAGES_PER_SECTION; 722 int zone_type; 723 unsigned long flags; 724 725 zone_type = zone - pgdat->node_zones; 726 727 pgdat_resize_lock(zone->zone_pgdat, &flags); 728 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 729 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 730 pgdat_resize_unlock(zone->zone_pgdat, &flags); 731 } 732 733 static int __remove_section(struct zone *zone, struct mem_section *ms) 734 { 735 unsigned long start_pfn; 736 int scn_nr; 737 int ret = -EINVAL; 738 739 if (!valid_section(ms)) 740 return ret; 741 742 ret = unregister_memory_section(ms); 743 if (ret) 744 return ret; 745 746 scn_nr = __section_nr(ms); 747 start_pfn = section_nr_to_pfn(scn_nr); 748 __remove_zone(zone, start_pfn); 749 750 sparse_remove_one_section(zone, ms); 751 return 0; 752 } 753 754 /** 755 * __remove_pages() - remove sections of pages from a zone 756 * @zone: zone from which pages need to be removed 757 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 758 * @nr_pages: number of pages to remove (must be multiple of section size) 759 * 760 * Generic helper function to remove section mappings and sysfs entries 761 * for the section of the memory we are removing. Caller needs to make 762 * sure that pages are marked reserved and zones are adjust properly by 763 * calling offline_pages(). 764 */ 765 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 766 unsigned long nr_pages) 767 { 768 unsigned long i; 769 int sections_to_remove; 770 resource_size_t start, size; 771 int ret = 0; 772 773 /* 774 * We can only remove entire sections 775 */ 776 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 777 BUG_ON(nr_pages % PAGES_PER_SECTION); 778 779 start = phys_start_pfn << PAGE_SHIFT; 780 size = nr_pages * PAGE_SIZE; 781 782 /* in the ZONE_DEVICE case device driver owns the memory region */ 783 if (!is_dev_zone(zone)) 784 ret = release_mem_region_adjustable(&iomem_resource, start, size); 785 if (ret) { 786 resource_size_t endres = start + size - 1; 787 788 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 789 &start, &endres, ret); 790 } 791 792 sections_to_remove = nr_pages / PAGES_PER_SECTION; 793 for (i = 0; i < sections_to_remove; i++) { 794 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 795 ret = __remove_section(zone, __pfn_to_section(pfn)); 796 if (ret) 797 break; 798 } 799 return ret; 800 } 801 EXPORT_SYMBOL_GPL(__remove_pages); 802 #endif /* CONFIG_MEMORY_HOTREMOVE */ 803 804 int set_online_page_callback(online_page_callback_t callback) 805 { 806 int rc = -EINVAL; 807 808 get_online_mems(); 809 mutex_lock(&online_page_callback_lock); 810 811 if (online_page_callback == generic_online_page) { 812 online_page_callback = callback; 813 rc = 0; 814 } 815 816 mutex_unlock(&online_page_callback_lock); 817 put_online_mems(); 818 819 return rc; 820 } 821 EXPORT_SYMBOL_GPL(set_online_page_callback); 822 823 int restore_online_page_callback(online_page_callback_t callback) 824 { 825 int rc = -EINVAL; 826 827 get_online_mems(); 828 mutex_lock(&online_page_callback_lock); 829 830 if (online_page_callback == callback) { 831 online_page_callback = generic_online_page; 832 rc = 0; 833 } 834 835 mutex_unlock(&online_page_callback_lock); 836 put_online_mems(); 837 838 return rc; 839 } 840 EXPORT_SYMBOL_GPL(restore_online_page_callback); 841 842 void __online_page_set_limits(struct page *page) 843 { 844 } 845 EXPORT_SYMBOL_GPL(__online_page_set_limits); 846 847 void __online_page_increment_counters(struct page *page) 848 { 849 adjust_managed_page_count(page, 1); 850 } 851 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 852 853 void __online_page_free(struct page *page) 854 { 855 __free_reserved_page(page); 856 } 857 EXPORT_SYMBOL_GPL(__online_page_free); 858 859 static void generic_online_page(struct page *page) 860 { 861 __online_page_set_limits(page); 862 __online_page_increment_counters(page); 863 __online_page_free(page); 864 } 865 866 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 867 void *arg) 868 { 869 unsigned long i; 870 unsigned long onlined_pages = *(unsigned long *)arg; 871 struct page *page; 872 if (PageReserved(pfn_to_page(start_pfn))) 873 for (i = 0; i < nr_pages; i++) { 874 page = pfn_to_page(start_pfn + i); 875 (*online_page_callback)(page); 876 onlined_pages++; 877 } 878 *(unsigned long *)arg = onlined_pages; 879 return 0; 880 } 881 882 #ifdef CONFIG_MOVABLE_NODE 883 /* 884 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 885 * normal memory. 886 */ 887 static bool can_online_high_movable(struct zone *zone) 888 { 889 return true; 890 } 891 #else /* CONFIG_MOVABLE_NODE */ 892 /* ensure every online node has NORMAL memory */ 893 static bool can_online_high_movable(struct zone *zone) 894 { 895 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 896 } 897 #endif /* CONFIG_MOVABLE_NODE */ 898 899 /* check which state of node_states will be changed when online memory */ 900 static void node_states_check_changes_online(unsigned long nr_pages, 901 struct zone *zone, struct memory_notify *arg) 902 { 903 int nid = zone_to_nid(zone); 904 enum zone_type zone_last = ZONE_NORMAL; 905 906 /* 907 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 908 * contains nodes which have zones of 0...ZONE_NORMAL, 909 * set zone_last to ZONE_NORMAL. 910 * 911 * If we don't have HIGHMEM nor movable node, 912 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 913 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 914 */ 915 if (N_MEMORY == N_NORMAL_MEMORY) 916 zone_last = ZONE_MOVABLE; 917 918 /* 919 * if the memory to be online is in a zone of 0...zone_last, and 920 * the zones of 0...zone_last don't have memory before online, we will 921 * need to set the node to node_states[N_NORMAL_MEMORY] after 922 * the memory is online. 923 */ 924 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 925 arg->status_change_nid_normal = nid; 926 else 927 arg->status_change_nid_normal = -1; 928 929 #ifdef CONFIG_HIGHMEM 930 /* 931 * If we have movable node, node_states[N_HIGH_MEMORY] 932 * contains nodes which have zones of 0...ZONE_HIGHMEM, 933 * set zone_last to ZONE_HIGHMEM. 934 * 935 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 936 * contains nodes which have zones of 0...ZONE_MOVABLE, 937 * set zone_last to ZONE_MOVABLE. 938 */ 939 zone_last = ZONE_HIGHMEM; 940 if (N_MEMORY == N_HIGH_MEMORY) 941 zone_last = ZONE_MOVABLE; 942 943 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 944 arg->status_change_nid_high = nid; 945 else 946 arg->status_change_nid_high = -1; 947 #else 948 arg->status_change_nid_high = arg->status_change_nid_normal; 949 #endif 950 951 /* 952 * if the node don't have memory befor online, we will need to 953 * set the node to node_states[N_MEMORY] after the memory 954 * is online. 955 */ 956 if (!node_state(nid, N_MEMORY)) 957 arg->status_change_nid = nid; 958 else 959 arg->status_change_nid = -1; 960 } 961 962 static void node_states_set_node(int node, struct memory_notify *arg) 963 { 964 if (arg->status_change_nid_normal >= 0) 965 node_set_state(node, N_NORMAL_MEMORY); 966 967 if (arg->status_change_nid_high >= 0) 968 node_set_state(node, N_HIGH_MEMORY); 969 970 node_set_state(node, N_MEMORY); 971 } 972 973 974 /* Must be protected by mem_hotplug_begin() */ 975 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 976 { 977 unsigned long flags; 978 unsigned long onlined_pages = 0; 979 struct zone *zone; 980 int need_zonelists_rebuild = 0; 981 int nid; 982 int ret; 983 struct memory_notify arg; 984 985 /* 986 * This doesn't need a lock to do pfn_to_page(). 987 * The section can't be removed here because of the 988 * memory_block->state_mutex. 989 */ 990 zone = page_zone(pfn_to_page(pfn)); 991 992 if ((zone_idx(zone) > ZONE_NORMAL || 993 online_type == MMOP_ONLINE_MOVABLE) && 994 !can_online_high_movable(zone)) 995 return -EINVAL; 996 997 if (online_type == MMOP_ONLINE_KERNEL && 998 zone_idx(zone) == ZONE_MOVABLE) { 999 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) 1000 return -EINVAL; 1001 } 1002 if (online_type == MMOP_ONLINE_MOVABLE && 1003 zone_idx(zone) == ZONE_MOVABLE - 1) { 1004 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) 1005 return -EINVAL; 1006 } 1007 1008 /* Previous code may changed the zone of the pfn range */ 1009 zone = page_zone(pfn_to_page(pfn)); 1010 1011 arg.start_pfn = pfn; 1012 arg.nr_pages = nr_pages; 1013 node_states_check_changes_online(nr_pages, zone, &arg); 1014 1015 nid = pfn_to_nid(pfn); 1016 1017 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1018 ret = notifier_to_errno(ret); 1019 if (ret) { 1020 memory_notify(MEM_CANCEL_ONLINE, &arg); 1021 return ret; 1022 } 1023 /* 1024 * If this zone is not populated, then it is not in zonelist. 1025 * This means the page allocator ignores this zone. 1026 * So, zonelist must be updated after online. 1027 */ 1028 mutex_lock(&zonelists_mutex); 1029 if (!populated_zone(zone)) { 1030 need_zonelists_rebuild = 1; 1031 build_all_zonelists(NULL, zone); 1032 } 1033 1034 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1035 online_pages_range); 1036 if (ret) { 1037 if (need_zonelists_rebuild) 1038 zone_pcp_reset(zone); 1039 mutex_unlock(&zonelists_mutex); 1040 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n", 1041 (unsigned long long) pfn << PAGE_SHIFT, 1042 (((unsigned long long) pfn + nr_pages) 1043 << PAGE_SHIFT) - 1); 1044 memory_notify(MEM_CANCEL_ONLINE, &arg); 1045 return ret; 1046 } 1047 1048 zone->present_pages += onlined_pages; 1049 1050 pgdat_resize_lock(zone->zone_pgdat, &flags); 1051 zone->zone_pgdat->node_present_pages += onlined_pages; 1052 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1053 1054 if (onlined_pages) { 1055 node_states_set_node(zone_to_nid(zone), &arg); 1056 if (need_zonelists_rebuild) 1057 build_all_zonelists(NULL, NULL); 1058 else 1059 zone_pcp_update(zone); 1060 } 1061 1062 mutex_unlock(&zonelists_mutex); 1063 1064 init_per_zone_wmark_min(); 1065 1066 if (onlined_pages) 1067 kswapd_run(zone_to_nid(zone)); 1068 1069 vm_total_pages = nr_free_pagecache_pages(); 1070 1071 writeback_set_ratelimit(); 1072 1073 if (onlined_pages) 1074 memory_notify(MEM_ONLINE, &arg); 1075 return 0; 1076 } 1077 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1078 1079 static void reset_node_present_pages(pg_data_t *pgdat) 1080 { 1081 struct zone *z; 1082 1083 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1084 z->present_pages = 0; 1085 1086 pgdat->node_present_pages = 0; 1087 } 1088 1089 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1090 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1091 { 1092 struct pglist_data *pgdat; 1093 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1094 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1095 unsigned long start_pfn = PFN_DOWN(start); 1096 1097 pgdat = NODE_DATA(nid); 1098 if (!pgdat) { 1099 pgdat = arch_alloc_nodedata(nid); 1100 if (!pgdat) 1101 return NULL; 1102 1103 arch_refresh_nodedata(nid, pgdat); 1104 } else { 1105 /* Reset the nr_zones and classzone_idx to 0 before reuse */ 1106 pgdat->nr_zones = 0; 1107 pgdat->classzone_idx = 0; 1108 } 1109 1110 /* we can use NODE_DATA(nid) from here */ 1111 1112 /* init node's zones as empty zones, we don't have any present pages.*/ 1113 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1114 1115 /* 1116 * The node we allocated has no zone fallback lists. For avoiding 1117 * to access not-initialized zonelist, build here. 1118 */ 1119 mutex_lock(&zonelists_mutex); 1120 build_all_zonelists(pgdat, NULL); 1121 mutex_unlock(&zonelists_mutex); 1122 1123 /* 1124 * zone->managed_pages is set to an approximate value in 1125 * free_area_init_core(), which will cause 1126 * /sys/device/system/node/nodeX/meminfo has wrong data. 1127 * So reset it to 0 before any memory is onlined. 1128 */ 1129 reset_node_managed_pages(pgdat); 1130 1131 /* 1132 * When memory is hot-added, all the memory is in offline state. So 1133 * clear all zones' present_pages because they will be updated in 1134 * online_pages() and offline_pages(). 1135 */ 1136 reset_node_present_pages(pgdat); 1137 1138 return pgdat; 1139 } 1140 1141 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1142 { 1143 arch_refresh_nodedata(nid, NULL); 1144 arch_free_nodedata(pgdat); 1145 return; 1146 } 1147 1148 1149 /** 1150 * try_online_node - online a node if offlined 1151 * 1152 * called by cpu_up() to online a node without onlined memory. 1153 */ 1154 int try_online_node(int nid) 1155 { 1156 pg_data_t *pgdat; 1157 int ret; 1158 1159 if (node_online(nid)) 1160 return 0; 1161 1162 mem_hotplug_begin(); 1163 pgdat = hotadd_new_pgdat(nid, 0); 1164 if (!pgdat) { 1165 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1166 ret = -ENOMEM; 1167 goto out; 1168 } 1169 node_set_online(nid); 1170 ret = register_one_node(nid); 1171 BUG_ON(ret); 1172 1173 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1174 mutex_lock(&zonelists_mutex); 1175 build_all_zonelists(NULL, NULL); 1176 mutex_unlock(&zonelists_mutex); 1177 } 1178 1179 out: 1180 mem_hotplug_done(); 1181 return ret; 1182 } 1183 1184 static int check_hotplug_memory_range(u64 start, u64 size) 1185 { 1186 u64 start_pfn = PFN_DOWN(start); 1187 u64 nr_pages = size >> PAGE_SHIFT; 1188 1189 /* Memory range must be aligned with section */ 1190 if ((start_pfn & ~PAGE_SECTION_MASK) || 1191 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1192 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1193 (unsigned long long)start, 1194 (unsigned long long)size); 1195 return -EINVAL; 1196 } 1197 1198 return 0; 1199 } 1200 1201 /* 1202 * If movable zone has already been setup, newly added memory should be check. 1203 * If its address is higher than movable zone, it should be added as movable. 1204 * Without this check, movable zone may overlap with other zone. 1205 */ 1206 static int should_add_memory_movable(int nid, u64 start, u64 size) 1207 { 1208 unsigned long start_pfn = start >> PAGE_SHIFT; 1209 pg_data_t *pgdat = NODE_DATA(nid); 1210 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1211 1212 if (zone_is_empty(movable_zone)) 1213 return 0; 1214 1215 if (movable_zone->zone_start_pfn <= start_pfn) 1216 return 1; 1217 1218 return 0; 1219 } 1220 1221 int zone_for_memory(int nid, u64 start, u64 size, int zone_default, 1222 bool for_device) 1223 { 1224 #ifdef CONFIG_ZONE_DEVICE 1225 if (for_device) 1226 return ZONE_DEVICE; 1227 #endif 1228 if (should_add_memory_movable(nid, start, size)) 1229 return ZONE_MOVABLE; 1230 1231 return zone_default; 1232 } 1233 1234 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1235 int __ref add_memory_resource(int nid, struct resource *res) 1236 { 1237 u64 start, size; 1238 pg_data_t *pgdat = NULL; 1239 bool new_pgdat; 1240 bool new_node; 1241 int ret; 1242 1243 start = res->start; 1244 size = resource_size(res); 1245 1246 ret = check_hotplug_memory_range(start, size); 1247 if (ret) 1248 return ret; 1249 1250 { /* Stupid hack to suppress address-never-null warning */ 1251 void *p = NODE_DATA(nid); 1252 new_pgdat = !p; 1253 } 1254 1255 mem_hotplug_begin(); 1256 1257 /* 1258 * Add new range to memblock so that when hotadd_new_pgdat() is called 1259 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1260 * this new range and calculate total pages correctly. The range will 1261 * be removed at hot-remove time. 1262 */ 1263 memblock_add_node(start, size, nid); 1264 1265 new_node = !node_online(nid); 1266 if (new_node) { 1267 pgdat = hotadd_new_pgdat(nid, start); 1268 ret = -ENOMEM; 1269 if (!pgdat) 1270 goto error; 1271 } 1272 1273 /* call arch's memory hotadd */ 1274 ret = arch_add_memory(nid, start, size, false); 1275 1276 if (ret < 0) 1277 goto error; 1278 1279 /* we online node here. we can't roll back from here. */ 1280 node_set_online(nid); 1281 1282 if (new_node) { 1283 ret = register_one_node(nid); 1284 /* 1285 * If sysfs file of new node can't create, cpu on the node 1286 * can't be hot-added. There is no rollback way now. 1287 * So, check by BUG_ON() to catch it reluctantly.. 1288 */ 1289 BUG_ON(ret); 1290 } 1291 1292 /* create new memmap entry */ 1293 firmware_map_add_hotplug(start, start + size, "System RAM"); 1294 1295 goto out; 1296 1297 error: 1298 /* rollback pgdat allocation and others */ 1299 if (new_pgdat) 1300 rollback_node_hotadd(nid, pgdat); 1301 memblock_remove(start, size); 1302 1303 out: 1304 mem_hotplug_done(); 1305 return ret; 1306 } 1307 EXPORT_SYMBOL_GPL(add_memory_resource); 1308 1309 int __ref add_memory(int nid, u64 start, u64 size) 1310 { 1311 struct resource *res; 1312 int ret; 1313 1314 res = register_memory_resource(start, size); 1315 if (!res) 1316 return -EEXIST; 1317 1318 ret = add_memory_resource(nid, res); 1319 if (ret < 0) 1320 release_memory_resource(res); 1321 return ret; 1322 } 1323 EXPORT_SYMBOL_GPL(add_memory); 1324 1325 #ifdef CONFIG_MEMORY_HOTREMOVE 1326 /* 1327 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1328 * set and the size of the free page is given by page_order(). Using this, 1329 * the function determines if the pageblock contains only free pages. 1330 * Due to buddy contraints, a free page at least the size of a pageblock will 1331 * be located at the start of the pageblock 1332 */ 1333 static inline int pageblock_free(struct page *page) 1334 { 1335 return PageBuddy(page) && page_order(page) >= pageblock_order; 1336 } 1337 1338 /* Return the start of the next active pageblock after a given page */ 1339 static struct page *next_active_pageblock(struct page *page) 1340 { 1341 /* Ensure the starting page is pageblock-aligned */ 1342 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1343 1344 /* If the entire pageblock is free, move to the end of free page */ 1345 if (pageblock_free(page)) { 1346 int order; 1347 /* be careful. we don't have locks, page_order can be changed.*/ 1348 order = page_order(page); 1349 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1350 return page + (1 << order); 1351 } 1352 1353 return page + pageblock_nr_pages; 1354 } 1355 1356 /* Checks if this range of memory is likely to be hot-removable. */ 1357 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1358 { 1359 struct page *page = pfn_to_page(start_pfn); 1360 struct page *end_page = page + nr_pages; 1361 1362 /* Check the starting page of each pageblock within the range */ 1363 for (; page < end_page; page = next_active_pageblock(page)) { 1364 if (!is_pageblock_removable_nolock(page)) 1365 return 0; 1366 cond_resched(); 1367 } 1368 1369 /* All pageblocks in the memory block are likely to be hot-removable */ 1370 return 1; 1371 } 1372 1373 /* 1374 * Confirm all pages in a range [start, end) is belongs to the same zone. 1375 */ 1376 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) 1377 { 1378 unsigned long pfn; 1379 struct zone *zone = NULL; 1380 struct page *page; 1381 int i; 1382 for (pfn = start_pfn; 1383 pfn < end_pfn; 1384 pfn += MAX_ORDER_NR_PAGES) { 1385 i = 0; 1386 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1387 while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i)) 1388 i++; 1389 if (i == MAX_ORDER_NR_PAGES) 1390 continue; 1391 page = pfn_to_page(pfn + i); 1392 if (zone && page_zone(page) != zone) 1393 return 0; 1394 zone = page_zone(page); 1395 } 1396 return 1; 1397 } 1398 1399 /* 1400 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages 1401 * and hugepages). We scan pfn because it's much easier than scanning over 1402 * linked list. This function returns the pfn of the first found movable 1403 * page if it's found, otherwise 0. 1404 */ 1405 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1406 { 1407 unsigned long pfn; 1408 struct page *page; 1409 for (pfn = start; pfn < end; pfn++) { 1410 if (pfn_valid(pfn)) { 1411 page = pfn_to_page(pfn); 1412 if (PageLRU(page)) 1413 return pfn; 1414 if (PageHuge(page)) { 1415 if (page_huge_active(page)) 1416 return pfn; 1417 else 1418 pfn = round_up(pfn + 1, 1419 1 << compound_order(page)) - 1; 1420 } 1421 } 1422 } 1423 return 0; 1424 } 1425 1426 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1427 static int 1428 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1429 { 1430 unsigned long pfn; 1431 struct page *page; 1432 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1433 int not_managed = 0; 1434 int ret = 0; 1435 LIST_HEAD(source); 1436 1437 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1438 if (!pfn_valid(pfn)) 1439 continue; 1440 page = pfn_to_page(pfn); 1441 1442 if (PageHuge(page)) { 1443 struct page *head = compound_head(page); 1444 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1445 if (compound_order(head) > PFN_SECTION_SHIFT) { 1446 ret = -EBUSY; 1447 break; 1448 } 1449 if (isolate_huge_page(page, &source)) 1450 move_pages -= 1 << compound_order(head); 1451 continue; 1452 } 1453 1454 if (!get_page_unless_zero(page)) 1455 continue; 1456 /* 1457 * We can skip free pages. And we can only deal with pages on 1458 * LRU. 1459 */ 1460 ret = isolate_lru_page(page); 1461 if (!ret) { /* Success */ 1462 put_page(page); 1463 list_add_tail(&page->lru, &source); 1464 move_pages--; 1465 inc_zone_page_state(page, NR_ISOLATED_ANON + 1466 page_is_file_cache(page)); 1467 1468 } else { 1469 #ifdef CONFIG_DEBUG_VM 1470 printk(KERN_ALERT "removing pfn %lx from LRU failed\n", 1471 pfn); 1472 dump_page(page, "failed to remove from LRU"); 1473 #endif 1474 put_page(page); 1475 /* Because we don't have big zone->lock. we should 1476 check this again here. */ 1477 if (page_count(page)) { 1478 not_managed++; 1479 ret = -EBUSY; 1480 break; 1481 } 1482 } 1483 } 1484 if (!list_empty(&source)) { 1485 if (not_managed) { 1486 putback_movable_pages(&source); 1487 goto out; 1488 } 1489 1490 /* 1491 * alloc_migrate_target should be improooooved!! 1492 * migrate_pages returns # of failed pages. 1493 */ 1494 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0, 1495 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1496 if (ret) 1497 putback_movable_pages(&source); 1498 } 1499 out: 1500 return ret; 1501 } 1502 1503 /* 1504 * remove from free_area[] and mark all as Reserved. 1505 */ 1506 static int 1507 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1508 void *data) 1509 { 1510 __offline_isolated_pages(start, start + nr_pages); 1511 return 0; 1512 } 1513 1514 static void 1515 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1516 { 1517 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1518 offline_isolated_pages_cb); 1519 } 1520 1521 /* 1522 * Check all pages in range, recoreded as memory resource, are isolated. 1523 */ 1524 static int 1525 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1526 void *data) 1527 { 1528 int ret; 1529 long offlined = *(long *)data; 1530 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1531 offlined = nr_pages; 1532 if (!ret) 1533 *(long *)data += offlined; 1534 return ret; 1535 } 1536 1537 static long 1538 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1539 { 1540 long offlined = 0; 1541 int ret; 1542 1543 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1544 check_pages_isolated_cb); 1545 if (ret < 0) 1546 offlined = (long)ret; 1547 return offlined; 1548 } 1549 1550 #ifdef CONFIG_MOVABLE_NODE 1551 /* 1552 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1553 * normal memory. 1554 */ 1555 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1556 { 1557 return true; 1558 } 1559 #else /* CONFIG_MOVABLE_NODE */ 1560 /* ensure the node has NORMAL memory if it is still online */ 1561 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1562 { 1563 struct pglist_data *pgdat = zone->zone_pgdat; 1564 unsigned long present_pages = 0; 1565 enum zone_type zt; 1566 1567 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1568 present_pages += pgdat->node_zones[zt].present_pages; 1569 1570 if (present_pages > nr_pages) 1571 return true; 1572 1573 present_pages = 0; 1574 for (; zt <= ZONE_MOVABLE; zt++) 1575 present_pages += pgdat->node_zones[zt].present_pages; 1576 1577 /* 1578 * we can't offline the last normal memory until all 1579 * higher memory is offlined. 1580 */ 1581 return present_pages == 0; 1582 } 1583 #endif /* CONFIG_MOVABLE_NODE */ 1584 1585 static int __init cmdline_parse_movable_node(char *p) 1586 { 1587 #ifdef CONFIG_MOVABLE_NODE 1588 /* 1589 * Memory used by the kernel cannot be hot-removed because Linux 1590 * cannot migrate the kernel pages. When memory hotplug is 1591 * enabled, we should prevent memblock from allocating memory 1592 * for the kernel. 1593 * 1594 * ACPI SRAT records all hotpluggable memory ranges. But before 1595 * SRAT is parsed, we don't know about it. 1596 * 1597 * The kernel image is loaded into memory at very early time. We 1598 * cannot prevent this anyway. So on NUMA system, we set any 1599 * node the kernel resides in as un-hotpluggable. 1600 * 1601 * Since on modern servers, one node could have double-digit 1602 * gigabytes memory, we can assume the memory around the kernel 1603 * image is also un-hotpluggable. So before SRAT is parsed, just 1604 * allocate memory near the kernel image to try the best to keep 1605 * the kernel away from hotpluggable memory. 1606 */ 1607 memblock_set_bottom_up(true); 1608 movable_node_enabled = true; 1609 #else 1610 pr_warn("movable_node option not supported\n"); 1611 #endif 1612 return 0; 1613 } 1614 early_param("movable_node", cmdline_parse_movable_node); 1615 1616 /* check which state of node_states will be changed when offline memory */ 1617 static void node_states_check_changes_offline(unsigned long nr_pages, 1618 struct zone *zone, struct memory_notify *arg) 1619 { 1620 struct pglist_data *pgdat = zone->zone_pgdat; 1621 unsigned long present_pages = 0; 1622 enum zone_type zt, zone_last = ZONE_NORMAL; 1623 1624 /* 1625 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1626 * contains nodes which have zones of 0...ZONE_NORMAL, 1627 * set zone_last to ZONE_NORMAL. 1628 * 1629 * If we don't have HIGHMEM nor movable node, 1630 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1631 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1632 */ 1633 if (N_MEMORY == N_NORMAL_MEMORY) 1634 zone_last = ZONE_MOVABLE; 1635 1636 /* 1637 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1638 * If the memory to be offline is in a zone of 0...zone_last, 1639 * and it is the last present memory, 0...zone_last will 1640 * become empty after offline , thus we can determind we will 1641 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1642 */ 1643 for (zt = 0; zt <= zone_last; zt++) 1644 present_pages += pgdat->node_zones[zt].present_pages; 1645 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1646 arg->status_change_nid_normal = zone_to_nid(zone); 1647 else 1648 arg->status_change_nid_normal = -1; 1649 1650 #ifdef CONFIG_HIGHMEM 1651 /* 1652 * If we have movable node, node_states[N_HIGH_MEMORY] 1653 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1654 * set zone_last to ZONE_HIGHMEM. 1655 * 1656 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1657 * contains nodes which have zones of 0...ZONE_MOVABLE, 1658 * set zone_last to ZONE_MOVABLE. 1659 */ 1660 zone_last = ZONE_HIGHMEM; 1661 if (N_MEMORY == N_HIGH_MEMORY) 1662 zone_last = ZONE_MOVABLE; 1663 1664 for (; zt <= zone_last; zt++) 1665 present_pages += pgdat->node_zones[zt].present_pages; 1666 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1667 arg->status_change_nid_high = zone_to_nid(zone); 1668 else 1669 arg->status_change_nid_high = -1; 1670 #else 1671 arg->status_change_nid_high = arg->status_change_nid_normal; 1672 #endif 1673 1674 /* 1675 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1676 */ 1677 zone_last = ZONE_MOVABLE; 1678 1679 /* 1680 * check whether node_states[N_HIGH_MEMORY] will be changed 1681 * If we try to offline the last present @nr_pages from the node, 1682 * we can determind we will need to clear the node from 1683 * node_states[N_HIGH_MEMORY]. 1684 */ 1685 for (; zt <= zone_last; zt++) 1686 present_pages += pgdat->node_zones[zt].present_pages; 1687 if (nr_pages >= present_pages) 1688 arg->status_change_nid = zone_to_nid(zone); 1689 else 1690 arg->status_change_nid = -1; 1691 } 1692 1693 static void node_states_clear_node(int node, struct memory_notify *arg) 1694 { 1695 if (arg->status_change_nid_normal >= 0) 1696 node_clear_state(node, N_NORMAL_MEMORY); 1697 1698 if ((N_MEMORY != N_NORMAL_MEMORY) && 1699 (arg->status_change_nid_high >= 0)) 1700 node_clear_state(node, N_HIGH_MEMORY); 1701 1702 if ((N_MEMORY != N_HIGH_MEMORY) && 1703 (arg->status_change_nid >= 0)) 1704 node_clear_state(node, N_MEMORY); 1705 } 1706 1707 static int __ref __offline_pages(unsigned long start_pfn, 1708 unsigned long end_pfn, unsigned long timeout) 1709 { 1710 unsigned long pfn, nr_pages, expire; 1711 long offlined_pages; 1712 int ret, drain, retry_max, node; 1713 unsigned long flags; 1714 struct zone *zone; 1715 struct memory_notify arg; 1716 1717 /* at least, alignment against pageblock is necessary */ 1718 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1719 return -EINVAL; 1720 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1721 return -EINVAL; 1722 /* This makes hotplug much easier...and readable. 1723 we assume this for now. .*/ 1724 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 1725 return -EINVAL; 1726 1727 zone = page_zone(pfn_to_page(start_pfn)); 1728 node = zone_to_nid(zone); 1729 nr_pages = end_pfn - start_pfn; 1730 1731 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1732 return -EINVAL; 1733 1734 /* set above range as isolated */ 1735 ret = start_isolate_page_range(start_pfn, end_pfn, 1736 MIGRATE_MOVABLE, true); 1737 if (ret) 1738 return ret; 1739 1740 arg.start_pfn = start_pfn; 1741 arg.nr_pages = nr_pages; 1742 node_states_check_changes_offline(nr_pages, zone, &arg); 1743 1744 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1745 ret = notifier_to_errno(ret); 1746 if (ret) 1747 goto failed_removal; 1748 1749 pfn = start_pfn; 1750 expire = jiffies + timeout; 1751 drain = 0; 1752 retry_max = 5; 1753 repeat: 1754 /* start memory hot removal */ 1755 ret = -EAGAIN; 1756 if (time_after(jiffies, expire)) 1757 goto failed_removal; 1758 ret = -EINTR; 1759 if (signal_pending(current)) 1760 goto failed_removal; 1761 ret = 0; 1762 if (drain) { 1763 lru_add_drain_all(); 1764 cond_resched(); 1765 drain_all_pages(zone); 1766 } 1767 1768 pfn = scan_movable_pages(start_pfn, end_pfn); 1769 if (pfn) { /* We have movable pages */ 1770 ret = do_migrate_range(pfn, end_pfn); 1771 if (!ret) { 1772 drain = 1; 1773 goto repeat; 1774 } else { 1775 if (ret < 0) 1776 if (--retry_max == 0) 1777 goto failed_removal; 1778 yield(); 1779 drain = 1; 1780 goto repeat; 1781 } 1782 } 1783 /* drain all zone's lru pagevec, this is asynchronous... */ 1784 lru_add_drain_all(); 1785 yield(); 1786 /* drain pcp pages, this is synchronous. */ 1787 drain_all_pages(zone); 1788 /* 1789 * dissolve free hugepages in the memory block before doing offlining 1790 * actually in order to make hugetlbfs's object counting consistent. 1791 */ 1792 dissolve_free_huge_pages(start_pfn, end_pfn); 1793 /* check again */ 1794 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1795 if (offlined_pages < 0) { 1796 ret = -EBUSY; 1797 goto failed_removal; 1798 } 1799 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages); 1800 /* Ok, all of our target is isolated. 1801 We cannot do rollback at this point. */ 1802 offline_isolated_pages(start_pfn, end_pfn); 1803 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1804 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1805 /* removal success */ 1806 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1807 zone->present_pages -= offlined_pages; 1808 1809 pgdat_resize_lock(zone->zone_pgdat, &flags); 1810 zone->zone_pgdat->node_present_pages -= offlined_pages; 1811 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1812 1813 init_per_zone_wmark_min(); 1814 1815 if (!populated_zone(zone)) { 1816 zone_pcp_reset(zone); 1817 mutex_lock(&zonelists_mutex); 1818 build_all_zonelists(NULL, NULL); 1819 mutex_unlock(&zonelists_mutex); 1820 } else 1821 zone_pcp_update(zone); 1822 1823 node_states_clear_node(node, &arg); 1824 if (arg.status_change_nid >= 0) 1825 kswapd_stop(node); 1826 1827 vm_total_pages = nr_free_pagecache_pages(); 1828 writeback_set_ratelimit(); 1829 1830 memory_notify(MEM_OFFLINE, &arg); 1831 return 0; 1832 1833 failed_removal: 1834 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n", 1835 (unsigned long long) start_pfn << PAGE_SHIFT, 1836 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1837 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1838 /* pushback to free area */ 1839 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1840 return ret; 1841 } 1842 1843 /* Must be protected by mem_hotplug_begin() */ 1844 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1845 { 1846 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 1847 } 1848 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1849 1850 /** 1851 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1852 * @start_pfn: start pfn of the memory range 1853 * @end_pfn: end pfn of the memory range 1854 * @arg: argument passed to func 1855 * @func: callback for each memory section walked 1856 * 1857 * This function walks through all present mem sections in range 1858 * [start_pfn, end_pfn) and call func on each mem section. 1859 * 1860 * Returns the return value of func. 1861 */ 1862 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1863 void *arg, int (*func)(struct memory_block *, void *)) 1864 { 1865 struct memory_block *mem = NULL; 1866 struct mem_section *section; 1867 unsigned long pfn, section_nr; 1868 int ret; 1869 1870 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1871 section_nr = pfn_to_section_nr(pfn); 1872 if (!present_section_nr(section_nr)) 1873 continue; 1874 1875 section = __nr_to_section(section_nr); 1876 /* same memblock? */ 1877 if (mem) 1878 if ((section_nr >= mem->start_section_nr) && 1879 (section_nr <= mem->end_section_nr)) 1880 continue; 1881 1882 mem = find_memory_block_hinted(section, mem); 1883 if (!mem) 1884 continue; 1885 1886 ret = func(mem, arg); 1887 if (ret) { 1888 kobject_put(&mem->dev.kobj); 1889 return ret; 1890 } 1891 } 1892 1893 if (mem) 1894 kobject_put(&mem->dev.kobj); 1895 1896 return 0; 1897 } 1898 1899 #ifdef CONFIG_MEMORY_HOTREMOVE 1900 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1901 { 1902 int ret = !is_memblock_offlined(mem); 1903 1904 if (unlikely(ret)) { 1905 phys_addr_t beginpa, endpa; 1906 1907 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1908 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1909 pr_warn("removing memory fails, because memory " 1910 "[%pa-%pa] is onlined\n", 1911 &beginpa, &endpa); 1912 } 1913 1914 return ret; 1915 } 1916 1917 static int check_cpu_on_node(pg_data_t *pgdat) 1918 { 1919 int cpu; 1920 1921 for_each_present_cpu(cpu) { 1922 if (cpu_to_node(cpu) == pgdat->node_id) 1923 /* 1924 * the cpu on this node isn't removed, and we can't 1925 * offline this node. 1926 */ 1927 return -EBUSY; 1928 } 1929 1930 return 0; 1931 } 1932 1933 static void unmap_cpu_on_node(pg_data_t *pgdat) 1934 { 1935 #ifdef CONFIG_ACPI_NUMA 1936 int cpu; 1937 1938 for_each_possible_cpu(cpu) 1939 if (cpu_to_node(cpu) == pgdat->node_id) 1940 numa_clear_node(cpu); 1941 #endif 1942 } 1943 1944 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1945 { 1946 int ret; 1947 1948 ret = check_cpu_on_node(pgdat); 1949 if (ret) 1950 return ret; 1951 1952 /* 1953 * the node will be offlined when we come here, so we can clear 1954 * the cpu_to_node() now. 1955 */ 1956 1957 unmap_cpu_on_node(pgdat); 1958 return 0; 1959 } 1960 1961 /** 1962 * try_offline_node 1963 * 1964 * Offline a node if all memory sections and cpus of the node are removed. 1965 * 1966 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1967 * and online/offline operations before this call. 1968 */ 1969 void try_offline_node(int nid) 1970 { 1971 pg_data_t *pgdat = NODE_DATA(nid); 1972 unsigned long start_pfn = pgdat->node_start_pfn; 1973 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1974 unsigned long pfn; 1975 int i; 1976 1977 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1978 unsigned long section_nr = pfn_to_section_nr(pfn); 1979 1980 if (!present_section_nr(section_nr)) 1981 continue; 1982 1983 if (pfn_to_nid(pfn) != nid) 1984 continue; 1985 1986 /* 1987 * some memory sections of this node are not removed, and we 1988 * can't offline node now. 1989 */ 1990 return; 1991 } 1992 1993 if (check_and_unmap_cpu_on_node(pgdat)) 1994 return; 1995 1996 /* 1997 * all memory/cpu of this node are removed, we can offline this 1998 * node now. 1999 */ 2000 node_set_offline(nid); 2001 unregister_one_node(nid); 2002 2003 /* free waittable in each zone */ 2004 for (i = 0; i < MAX_NR_ZONES; i++) { 2005 struct zone *zone = pgdat->node_zones + i; 2006 2007 /* 2008 * wait_table may be allocated from boot memory, 2009 * here only free if it's allocated by vmalloc. 2010 */ 2011 if (is_vmalloc_addr(zone->wait_table)) { 2012 vfree(zone->wait_table); 2013 zone->wait_table = NULL; 2014 } 2015 } 2016 } 2017 EXPORT_SYMBOL(try_offline_node); 2018 2019 /** 2020 * remove_memory 2021 * 2022 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2023 * and online/offline operations before this call, as required by 2024 * try_offline_node(). 2025 */ 2026 void __ref remove_memory(int nid, u64 start, u64 size) 2027 { 2028 int ret; 2029 2030 BUG_ON(check_hotplug_memory_range(start, size)); 2031 2032 mem_hotplug_begin(); 2033 2034 /* 2035 * All memory blocks must be offlined before removing memory. Check 2036 * whether all memory blocks in question are offline and trigger a BUG() 2037 * if this is not the case. 2038 */ 2039 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2040 check_memblock_offlined_cb); 2041 if (ret) 2042 BUG(); 2043 2044 /* remove memmap entry */ 2045 firmware_map_remove(start, start + size, "System RAM"); 2046 memblock_free(start, size); 2047 memblock_remove(start, size); 2048 2049 arch_remove_memory(start, size); 2050 2051 try_offline_node(nid); 2052 2053 mem_hotplug_done(); 2054 } 2055 EXPORT_SYMBOL_GPL(remove_memory); 2056 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2057