xref: /linux/mm/memory_hotplug.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54 
55 /*
56  * online_page_callback contains pointer to current page onlining function.
57  * Initially it is generic_online_page(). If it is required it could be
58  * changed by calling set_online_page_callback() for callback registration
59  * and restore_online_page_callback() for generic callback restore.
60  */
61 
62 static online_page_callback_t online_page_callback = generic_online_page;
63 static DEFINE_MUTEX(online_page_callback_lock);
64 
65 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66 
67 void get_online_mems(void)
68 {
69 	percpu_down_read(&mem_hotplug_lock);
70 }
71 
72 void put_online_mems(void)
73 {
74 	percpu_up_read(&mem_hotplug_lock);
75 }
76 
77 bool movable_node_enabled = false;
78 
79 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80 int mhp_default_online_type = MMOP_OFFLINE;
81 #else
82 int mhp_default_online_type = MMOP_ONLINE;
83 #endif
84 
85 static int __init setup_memhp_default_state(char *str)
86 {
87 	const int online_type = mhp_online_type_from_str(str);
88 
89 	if (online_type >= 0)
90 		mhp_default_online_type = online_type;
91 
92 	return 1;
93 }
94 __setup("memhp_default_state=", setup_memhp_default_state);
95 
96 void mem_hotplug_begin(void)
97 {
98 	cpus_read_lock();
99 	percpu_down_write(&mem_hotplug_lock);
100 }
101 
102 void mem_hotplug_done(void)
103 {
104 	percpu_up_write(&mem_hotplug_lock);
105 	cpus_read_unlock();
106 }
107 
108 u64 max_mem_size = U64_MAX;
109 
110 /* add this memory to iomem resource */
111 static struct resource *register_memory_resource(u64 start, u64 size,
112 						 const char *resource_name)
113 {
114 	struct resource *res;
115 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116 
117 	if (strcmp(resource_name, "System RAM"))
118 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119 
120 	if (!mhp_range_allowed(start, size, true))
121 		return ERR_PTR(-E2BIG);
122 
123 	/*
124 	 * Make sure value parsed from 'mem=' only restricts memory adding
125 	 * while booting, so that memory hotplug won't be impacted. Please
126 	 * refer to document of 'mem=' in kernel-parameters.txt for more
127 	 * details.
128 	 */
129 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 		return ERR_PTR(-E2BIG);
131 
132 	/*
133 	 * Request ownership of the new memory range.  This might be
134 	 * a child of an existing resource that was present but
135 	 * not marked as busy.
136 	 */
137 	res = __request_region(&iomem_resource, start, size,
138 			       resource_name, flags);
139 
140 	if (!res) {
141 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 				start, start + size);
143 		return ERR_PTR(-EEXIST);
144 	}
145 	return res;
146 }
147 
148 static void release_memory_resource(struct resource *res)
149 {
150 	if (!res)
151 		return;
152 	release_resource(res);
153 	kfree(res);
154 }
155 
156 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157 void get_page_bootmem(unsigned long info,  struct page *page,
158 		      unsigned long type)
159 {
160 	page->freelist = (void *)type;
161 	SetPagePrivate(page);
162 	set_page_private(page, info);
163 	page_ref_inc(page);
164 }
165 
166 void put_page_bootmem(struct page *page)
167 {
168 	unsigned long type;
169 
170 	type = (unsigned long) page->freelist;
171 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
172 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
173 
174 	if (page_ref_dec_return(page) == 1) {
175 		page->freelist = NULL;
176 		ClearPagePrivate(page);
177 		set_page_private(page, 0);
178 		INIT_LIST_HEAD(&page->lru);
179 		free_reserved_page(page);
180 	}
181 }
182 
183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
184 #ifndef CONFIG_SPARSEMEM_VMEMMAP
185 static void register_page_bootmem_info_section(unsigned long start_pfn)
186 {
187 	unsigned long mapsize, section_nr, i;
188 	struct mem_section *ms;
189 	struct page *page, *memmap;
190 	struct mem_section_usage *usage;
191 
192 	section_nr = pfn_to_section_nr(start_pfn);
193 	ms = __nr_to_section(section_nr);
194 
195 	/* Get section's memmap address */
196 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
197 
198 	/*
199 	 * Get page for the memmap's phys address
200 	 * XXX: need more consideration for sparse_vmemmap...
201 	 */
202 	page = virt_to_page(memmap);
203 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
204 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
205 
206 	/* remember memmap's page */
207 	for (i = 0; i < mapsize; i++, page++)
208 		get_page_bootmem(section_nr, page, SECTION_INFO);
209 
210 	usage = ms->usage;
211 	page = virt_to_page(usage);
212 
213 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
214 
215 	for (i = 0; i < mapsize; i++, page++)
216 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217 
218 }
219 #else /* CONFIG_SPARSEMEM_VMEMMAP */
220 static void register_page_bootmem_info_section(unsigned long start_pfn)
221 {
222 	unsigned long mapsize, section_nr, i;
223 	struct mem_section *ms;
224 	struct page *page, *memmap;
225 	struct mem_section_usage *usage;
226 
227 	section_nr = pfn_to_section_nr(start_pfn);
228 	ms = __nr_to_section(section_nr);
229 
230 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
231 
232 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
233 
234 	usage = ms->usage;
235 	page = virt_to_page(usage);
236 
237 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
238 
239 	for (i = 0; i < mapsize; i++, page++)
240 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
241 }
242 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
243 
244 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
245 {
246 	unsigned long i, pfn, end_pfn, nr_pages;
247 	int node = pgdat->node_id;
248 	struct page *page;
249 
250 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
251 	page = virt_to_page(pgdat);
252 
253 	for (i = 0; i < nr_pages; i++, page++)
254 		get_page_bootmem(node, page, NODE_INFO);
255 
256 	pfn = pgdat->node_start_pfn;
257 	end_pfn = pgdat_end_pfn(pgdat);
258 
259 	/* register section info */
260 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
261 		/*
262 		 * Some platforms can assign the same pfn to multiple nodes - on
263 		 * node0 as well as nodeN.  To avoid registering a pfn against
264 		 * multiple nodes we check that this pfn does not already
265 		 * reside in some other nodes.
266 		 */
267 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
268 			register_page_bootmem_info_section(pfn);
269 	}
270 }
271 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
272 
273 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
274 		const char *reason)
275 {
276 	/*
277 	 * Disallow all operations smaller than a sub-section and only
278 	 * allow operations smaller than a section for
279 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
280 	 * enforces a larger memory_block_size_bytes() granularity for
281 	 * memory that will be marked online, so this check should only
282 	 * fire for direct arch_{add,remove}_memory() users outside of
283 	 * add_memory_resource().
284 	 */
285 	unsigned long min_align;
286 
287 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
288 		min_align = PAGES_PER_SUBSECTION;
289 	else
290 		min_align = PAGES_PER_SECTION;
291 	if (!IS_ALIGNED(pfn, min_align)
292 			|| !IS_ALIGNED(nr_pages, min_align)) {
293 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
294 				reason, pfn, pfn + nr_pages - 1);
295 		return -EINVAL;
296 	}
297 	return 0;
298 }
299 
300 /*
301  * Return page for the valid pfn only if the page is online. All pfn
302  * walkers which rely on the fully initialized page->flags and others
303  * should use this rather than pfn_valid && pfn_to_page
304  */
305 struct page *pfn_to_online_page(unsigned long pfn)
306 {
307 	unsigned long nr = pfn_to_section_nr(pfn);
308 	struct dev_pagemap *pgmap;
309 	struct mem_section *ms;
310 
311 	if (nr >= NR_MEM_SECTIONS)
312 		return NULL;
313 
314 	ms = __nr_to_section(nr);
315 	if (!online_section(ms))
316 		return NULL;
317 
318 	/*
319 	 * Save some code text when online_section() +
320 	 * pfn_section_valid() are sufficient.
321 	 */
322 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
323 		return NULL;
324 
325 	if (!pfn_section_valid(ms, pfn))
326 		return NULL;
327 
328 	if (!online_device_section(ms))
329 		return pfn_to_page(pfn);
330 
331 	/*
332 	 * Slowpath: when ZONE_DEVICE collides with
333 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
334 	 * the section may be 'offline' but 'valid'. Only
335 	 * get_dev_pagemap() can determine sub-section online status.
336 	 */
337 	pgmap = get_dev_pagemap(pfn, NULL);
338 	put_dev_pagemap(pgmap);
339 
340 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
341 	if (pgmap)
342 		return NULL;
343 
344 	return pfn_to_page(pfn);
345 }
346 EXPORT_SYMBOL_GPL(pfn_to_online_page);
347 
348 /*
349  * Reasonably generic function for adding memory.  It is
350  * expected that archs that support memory hotplug will
351  * call this function after deciding the zone to which to
352  * add the new pages.
353  */
354 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
355 		struct mhp_params *params)
356 {
357 	const unsigned long end_pfn = pfn + nr_pages;
358 	unsigned long cur_nr_pages;
359 	int err;
360 	struct vmem_altmap *altmap = params->altmap;
361 
362 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
363 		return -EINVAL;
364 
365 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
366 
367 	if (altmap) {
368 		/*
369 		 * Validate altmap is within bounds of the total request
370 		 */
371 		if (altmap->base_pfn != pfn
372 				|| vmem_altmap_offset(altmap) > nr_pages) {
373 			pr_warn_once("memory add fail, invalid altmap\n");
374 			return -EINVAL;
375 		}
376 		altmap->alloc = 0;
377 	}
378 
379 	err = check_pfn_span(pfn, nr_pages, "add");
380 	if (err)
381 		return err;
382 
383 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
384 		/* Select all remaining pages up to the next section boundary */
385 		cur_nr_pages = min(end_pfn - pfn,
386 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
387 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
388 		if (err)
389 			break;
390 		cond_resched();
391 	}
392 	vmemmap_populate_print_last();
393 	return err;
394 }
395 
396 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
397 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
398 				     unsigned long start_pfn,
399 				     unsigned long end_pfn)
400 {
401 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
402 		if (unlikely(!pfn_to_online_page(start_pfn)))
403 			continue;
404 
405 		if (unlikely(pfn_to_nid(start_pfn) != nid))
406 			continue;
407 
408 		if (zone != page_zone(pfn_to_page(start_pfn)))
409 			continue;
410 
411 		return start_pfn;
412 	}
413 
414 	return 0;
415 }
416 
417 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
418 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
419 				    unsigned long start_pfn,
420 				    unsigned long end_pfn)
421 {
422 	unsigned long pfn;
423 
424 	/* pfn is the end pfn of a memory section. */
425 	pfn = end_pfn - 1;
426 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
427 		if (unlikely(!pfn_to_online_page(pfn)))
428 			continue;
429 
430 		if (unlikely(pfn_to_nid(pfn) != nid))
431 			continue;
432 
433 		if (zone != page_zone(pfn_to_page(pfn)))
434 			continue;
435 
436 		return pfn;
437 	}
438 
439 	return 0;
440 }
441 
442 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
443 			     unsigned long end_pfn)
444 {
445 	unsigned long pfn;
446 	int nid = zone_to_nid(zone);
447 
448 	zone_span_writelock(zone);
449 	if (zone->zone_start_pfn == start_pfn) {
450 		/*
451 		 * If the section is smallest section in the zone, it need
452 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
453 		 * In this case, we find second smallest valid mem_section
454 		 * for shrinking zone.
455 		 */
456 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
457 						zone_end_pfn(zone));
458 		if (pfn) {
459 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
460 			zone->zone_start_pfn = pfn;
461 		} else {
462 			zone->zone_start_pfn = 0;
463 			zone->spanned_pages = 0;
464 		}
465 	} else if (zone_end_pfn(zone) == end_pfn) {
466 		/*
467 		 * If the section is biggest section in the zone, it need
468 		 * shrink zone->spanned_pages.
469 		 * In this case, we find second biggest valid mem_section for
470 		 * shrinking zone.
471 		 */
472 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
473 					       start_pfn);
474 		if (pfn)
475 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
476 		else {
477 			zone->zone_start_pfn = 0;
478 			zone->spanned_pages = 0;
479 		}
480 	}
481 	zone_span_writeunlock(zone);
482 }
483 
484 static void update_pgdat_span(struct pglist_data *pgdat)
485 {
486 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
487 	struct zone *zone;
488 
489 	for (zone = pgdat->node_zones;
490 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
491 		unsigned long end_pfn = zone_end_pfn(zone);
492 
493 		/* No need to lock the zones, they can't change. */
494 		if (!zone->spanned_pages)
495 			continue;
496 		if (!node_end_pfn) {
497 			node_start_pfn = zone->zone_start_pfn;
498 			node_end_pfn = end_pfn;
499 			continue;
500 		}
501 
502 		if (end_pfn > node_end_pfn)
503 			node_end_pfn = end_pfn;
504 		if (zone->zone_start_pfn < node_start_pfn)
505 			node_start_pfn = zone->zone_start_pfn;
506 	}
507 
508 	pgdat->node_start_pfn = node_start_pfn;
509 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
510 }
511 
512 void __ref remove_pfn_range_from_zone(struct zone *zone,
513 				      unsigned long start_pfn,
514 				      unsigned long nr_pages)
515 {
516 	const unsigned long end_pfn = start_pfn + nr_pages;
517 	struct pglist_data *pgdat = zone->zone_pgdat;
518 	unsigned long pfn, cur_nr_pages, flags;
519 
520 	/* Poison struct pages because they are now uninitialized again. */
521 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
522 		cond_resched();
523 
524 		/* Select all remaining pages up to the next section boundary */
525 		cur_nr_pages =
526 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
527 		page_init_poison(pfn_to_page(pfn),
528 				 sizeof(struct page) * cur_nr_pages);
529 	}
530 
531 #ifdef CONFIG_ZONE_DEVICE
532 	/*
533 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
534 	 * we will not try to shrink the zones - which is okay as
535 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
536 	 */
537 	if (zone_idx(zone) == ZONE_DEVICE)
538 		return;
539 #endif
540 
541 	clear_zone_contiguous(zone);
542 
543 	pgdat_resize_lock(zone->zone_pgdat, &flags);
544 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
545 	update_pgdat_span(pgdat);
546 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
547 
548 	set_zone_contiguous(zone);
549 }
550 
551 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
552 			     unsigned long map_offset,
553 			     struct vmem_altmap *altmap)
554 {
555 	struct mem_section *ms = __pfn_to_section(pfn);
556 
557 	if (WARN_ON_ONCE(!valid_section(ms)))
558 		return;
559 
560 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
561 }
562 
563 /**
564  * __remove_pages() - remove sections of pages
565  * @pfn: starting pageframe (must be aligned to start of a section)
566  * @nr_pages: number of pages to remove (must be multiple of section size)
567  * @altmap: alternative device page map or %NULL if default memmap is used
568  *
569  * Generic helper function to remove section mappings and sysfs entries
570  * for the section of the memory we are removing. Caller needs to make
571  * sure that pages are marked reserved and zones are adjust properly by
572  * calling offline_pages().
573  */
574 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
575 		    struct vmem_altmap *altmap)
576 {
577 	const unsigned long end_pfn = pfn + nr_pages;
578 	unsigned long cur_nr_pages;
579 	unsigned long map_offset = 0;
580 
581 	map_offset = vmem_altmap_offset(altmap);
582 
583 	if (check_pfn_span(pfn, nr_pages, "remove"))
584 		return;
585 
586 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
587 		cond_resched();
588 		/* Select all remaining pages up to the next section boundary */
589 		cur_nr_pages = min(end_pfn - pfn,
590 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
591 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
592 		map_offset = 0;
593 	}
594 }
595 
596 int set_online_page_callback(online_page_callback_t callback)
597 {
598 	int rc = -EINVAL;
599 
600 	get_online_mems();
601 	mutex_lock(&online_page_callback_lock);
602 
603 	if (online_page_callback == generic_online_page) {
604 		online_page_callback = callback;
605 		rc = 0;
606 	}
607 
608 	mutex_unlock(&online_page_callback_lock);
609 	put_online_mems();
610 
611 	return rc;
612 }
613 EXPORT_SYMBOL_GPL(set_online_page_callback);
614 
615 int restore_online_page_callback(online_page_callback_t callback)
616 {
617 	int rc = -EINVAL;
618 
619 	get_online_mems();
620 	mutex_lock(&online_page_callback_lock);
621 
622 	if (online_page_callback == callback) {
623 		online_page_callback = generic_online_page;
624 		rc = 0;
625 	}
626 
627 	mutex_unlock(&online_page_callback_lock);
628 	put_online_mems();
629 
630 	return rc;
631 }
632 EXPORT_SYMBOL_GPL(restore_online_page_callback);
633 
634 void generic_online_page(struct page *page, unsigned int order)
635 {
636 	/*
637 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
638 	 * so we should map it first. This is better than introducing a special
639 	 * case in page freeing fast path.
640 	 */
641 	debug_pagealloc_map_pages(page, 1 << order);
642 	__free_pages_core(page, order);
643 	totalram_pages_add(1UL << order);
644 #ifdef CONFIG_HIGHMEM
645 	if (PageHighMem(page))
646 		totalhigh_pages_add(1UL << order);
647 #endif
648 }
649 EXPORT_SYMBOL_GPL(generic_online_page);
650 
651 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
652 {
653 	const unsigned long end_pfn = start_pfn + nr_pages;
654 	unsigned long pfn;
655 
656 	/*
657 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
658 	 * decide to not expose all pages to the buddy (e.g., expose them
659 	 * later). We account all pages as being online and belonging to this
660 	 * zone ("present").
661 	 * When using memmap_on_memory, the range might not be aligned to
662 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
663 	 * this and the first chunk to online will be pageblock_nr_pages.
664 	 */
665 	for (pfn = start_pfn; pfn < end_pfn;) {
666 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
667 
668 		(*online_page_callback)(pfn_to_page(pfn), order);
669 		pfn += (1UL << order);
670 	}
671 
672 	/* mark all involved sections as online */
673 	online_mem_sections(start_pfn, end_pfn);
674 }
675 
676 /* check which state of node_states will be changed when online memory */
677 static void node_states_check_changes_online(unsigned long nr_pages,
678 	struct zone *zone, struct memory_notify *arg)
679 {
680 	int nid = zone_to_nid(zone);
681 
682 	arg->status_change_nid = NUMA_NO_NODE;
683 	arg->status_change_nid_normal = NUMA_NO_NODE;
684 	arg->status_change_nid_high = NUMA_NO_NODE;
685 
686 	if (!node_state(nid, N_MEMORY))
687 		arg->status_change_nid = nid;
688 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
689 		arg->status_change_nid_normal = nid;
690 #ifdef CONFIG_HIGHMEM
691 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
692 		arg->status_change_nid_high = nid;
693 #endif
694 }
695 
696 static void node_states_set_node(int node, struct memory_notify *arg)
697 {
698 	if (arg->status_change_nid_normal >= 0)
699 		node_set_state(node, N_NORMAL_MEMORY);
700 
701 	if (arg->status_change_nid_high >= 0)
702 		node_set_state(node, N_HIGH_MEMORY);
703 
704 	if (arg->status_change_nid >= 0)
705 		node_set_state(node, N_MEMORY);
706 }
707 
708 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
709 		unsigned long nr_pages)
710 {
711 	unsigned long old_end_pfn = zone_end_pfn(zone);
712 
713 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
714 		zone->zone_start_pfn = start_pfn;
715 
716 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
717 }
718 
719 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
720                                      unsigned long nr_pages)
721 {
722 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
723 
724 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
725 		pgdat->node_start_pfn = start_pfn;
726 
727 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
728 
729 }
730 
731 static void section_taint_zone_device(unsigned long pfn)
732 {
733 	struct mem_section *ms = __pfn_to_section(pfn);
734 
735 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
736 }
737 
738 /*
739  * Associate the pfn range with the given zone, initializing the memmaps
740  * and resizing the pgdat/zone data to span the added pages. After this
741  * call, all affected pages are PG_reserved.
742  *
743  * All aligned pageblocks are initialized to the specified migratetype
744  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
745  * zone stats (e.g., nr_isolate_pageblock) are touched.
746  */
747 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
748 				  unsigned long nr_pages,
749 				  struct vmem_altmap *altmap, int migratetype)
750 {
751 	struct pglist_data *pgdat = zone->zone_pgdat;
752 	int nid = pgdat->node_id;
753 	unsigned long flags;
754 
755 	clear_zone_contiguous(zone);
756 
757 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
758 	pgdat_resize_lock(pgdat, &flags);
759 	zone_span_writelock(zone);
760 	if (zone_is_empty(zone))
761 		init_currently_empty_zone(zone, start_pfn, nr_pages);
762 	resize_zone_range(zone, start_pfn, nr_pages);
763 	zone_span_writeunlock(zone);
764 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
765 	pgdat_resize_unlock(pgdat, &flags);
766 
767 	/*
768 	 * Subsection population requires care in pfn_to_online_page().
769 	 * Set the taint to enable the slow path detection of
770 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
771 	 * section.
772 	 */
773 	if (zone_is_zone_device(zone)) {
774 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
775 			section_taint_zone_device(start_pfn);
776 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
777 			section_taint_zone_device(start_pfn + nr_pages);
778 	}
779 
780 	/*
781 	 * TODO now we have a visible range of pages which are not associated
782 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
783 	 * expects the zone spans the pfn range. All the pages in the range
784 	 * are reserved so nobody should be touching them so we should be safe
785 	 */
786 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
787 			 MEMINIT_HOTPLUG, altmap, migratetype);
788 
789 	set_zone_contiguous(zone);
790 }
791 
792 /*
793  * Returns a default kernel memory zone for the given pfn range.
794  * If no kernel zone covers this pfn range it will automatically go
795  * to the ZONE_NORMAL.
796  */
797 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
798 		unsigned long nr_pages)
799 {
800 	struct pglist_data *pgdat = NODE_DATA(nid);
801 	int zid;
802 
803 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
804 		struct zone *zone = &pgdat->node_zones[zid];
805 
806 		if (zone_intersects(zone, start_pfn, nr_pages))
807 			return zone;
808 	}
809 
810 	return &pgdat->node_zones[ZONE_NORMAL];
811 }
812 
813 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
814 		unsigned long nr_pages)
815 {
816 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
817 			nr_pages);
818 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
819 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
820 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
821 
822 	/*
823 	 * We inherit the existing zone in a simple case where zones do not
824 	 * overlap in the given range
825 	 */
826 	if (in_kernel ^ in_movable)
827 		return (in_kernel) ? kernel_zone : movable_zone;
828 
829 	/*
830 	 * If the range doesn't belong to any zone or two zones overlap in the
831 	 * given range then we use movable zone only if movable_node is
832 	 * enabled because we always online to a kernel zone by default.
833 	 */
834 	return movable_node_enabled ? movable_zone : kernel_zone;
835 }
836 
837 struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
838 		unsigned long nr_pages)
839 {
840 	if (online_type == MMOP_ONLINE_KERNEL)
841 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
842 
843 	if (online_type == MMOP_ONLINE_MOVABLE)
844 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
845 
846 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
847 }
848 
849 /*
850  * This function should only be called by memory_block_{online,offline},
851  * and {online,offline}_pages.
852  */
853 void adjust_present_page_count(struct zone *zone, long nr_pages)
854 {
855 	unsigned long flags;
856 
857 	zone->present_pages += nr_pages;
858 	pgdat_resize_lock(zone->zone_pgdat, &flags);
859 	zone->zone_pgdat->node_present_pages += nr_pages;
860 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
861 }
862 
863 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
864 			      struct zone *zone)
865 {
866 	unsigned long end_pfn = pfn + nr_pages;
867 	int ret;
868 
869 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
870 	if (ret)
871 		return ret;
872 
873 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
874 
875 	/*
876 	 * It might be that the vmemmap_pages fully span sections. If that is
877 	 * the case, mark those sections online here as otherwise they will be
878 	 * left offline.
879 	 */
880 	if (nr_pages >= PAGES_PER_SECTION)
881 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
882 
883 	return ret;
884 }
885 
886 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
887 {
888 	unsigned long end_pfn = pfn + nr_pages;
889 
890 	/*
891 	 * It might be that the vmemmap_pages fully span sections. If that is
892 	 * the case, mark those sections offline here as otherwise they will be
893 	 * left online.
894 	 */
895 	if (nr_pages >= PAGES_PER_SECTION)
896 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
897 
898         /*
899 	 * The pages associated with this vmemmap have been offlined, so
900 	 * we can reset its state here.
901 	 */
902 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
903 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
904 }
905 
906 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
907 {
908 	unsigned long flags;
909 	int need_zonelists_rebuild = 0;
910 	const int nid = zone_to_nid(zone);
911 	int ret;
912 	struct memory_notify arg;
913 
914 	/*
915 	 * {on,off}lining is constrained to full memory sections (or more
916 	 * precisly to memory blocks from the user space POV).
917 	 * memmap_on_memory is an exception because it reserves initial part
918 	 * of the physical memory space for vmemmaps. That space is pageblock
919 	 * aligned.
920 	 */
921 	if (WARN_ON_ONCE(!nr_pages ||
922 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
923 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
924 		return -EINVAL;
925 
926 	mem_hotplug_begin();
927 
928 	/* associate pfn range with the zone */
929 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
930 
931 	arg.start_pfn = pfn;
932 	arg.nr_pages = nr_pages;
933 	node_states_check_changes_online(nr_pages, zone, &arg);
934 
935 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
936 	ret = notifier_to_errno(ret);
937 	if (ret)
938 		goto failed_addition;
939 
940 	/*
941 	 * Fixup the number of isolated pageblocks before marking the sections
942 	 * onlining, such that undo_isolate_page_range() works correctly.
943 	 */
944 	spin_lock_irqsave(&zone->lock, flags);
945 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
946 	spin_unlock_irqrestore(&zone->lock, flags);
947 
948 	/*
949 	 * If this zone is not populated, then it is not in zonelist.
950 	 * This means the page allocator ignores this zone.
951 	 * So, zonelist must be updated after online.
952 	 */
953 	if (!populated_zone(zone)) {
954 		need_zonelists_rebuild = 1;
955 		setup_zone_pageset(zone);
956 	}
957 
958 	online_pages_range(pfn, nr_pages);
959 	adjust_present_page_count(zone, nr_pages);
960 
961 	node_states_set_node(nid, &arg);
962 	if (need_zonelists_rebuild)
963 		build_all_zonelists(NULL);
964 	zone_pcp_update(zone);
965 
966 	/* Basic onlining is complete, allow allocation of onlined pages. */
967 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
968 
969 	/*
970 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
971 	 * the tail of the freelist when undoing isolation). Shuffle the whole
972 	 * zone to make sure the just onlined pages are properly distributed
973 	 * across the whole freelist - to create an initial shuffle.
974 	 */
975 	shuffle_zone(zone);
976 
977 	init_per_zone_wmark_min();
978 
979 	kswapd_run(nid);
980 	kcompactd_run(nid);
981 
982 	writeback_set_ratelimit();
983 
984 	memory_notify(MEM_ONLINE, &arg);
985 	mem_hotplug_done();
986 	return 0;
987 
988 failed_addition:
989 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
990 		 (unsigned long long) pfn << PAGE_SHIFT,
991 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
992 	memory_notify(MEM_CANCEL_ONLINE, &arg);
993 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
994 	mem_hotplug_done();
995 	return ret;
996 }
997 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
998 
999 static void reset_node_present_pages(pg_data_t *pgdat)
1000 {
1001 	struct zone *z;
1002 
1003 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1004 		z->present_pages = 0;
1005 
1006 	pgdat->node_present_pages = 0;
1007 }
1008 
1009 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1010 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1011 {
1012 	struct pglist_data *pgdat;
1013 
1014 	pgdat = NODE_DATA(nid);
1015 	if (!pgdat) {
1016 		pgdat = arch_alloc_nodedata(nid);
1017 		if (!pgdat)
1018 			return NULL;
1019 
1020 		pgdat->per_cpu_nodestats =
1021 			alloc_percpu(struct per_cpu_nodestat);
1022 		arch_refresh_nodedata(nid, pgdat);
1023 	} else {
1024 		int cpu;
1025 		/*
1026 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
1027 		 * Note that kswapd will init kswapd_highest_zoneidx properly
1028 		 * when it starts in the near future.
1029 		 */
1030 		pgdat->nr_zones = 0;
1031 		pgdat->kswapd_order = 0;
1032 		pgdat->kswapd_highest_zoneidx = 0;
1033 		for_each_online_cpu(cpu) {
1034 			struct per_cpu_nodestat *p;
1035 
1036 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1037 			memset(p, 0, sizeof(*p));
1038 		}
1039 	}
1040 
1041 	/* we can use NODE_DATA(nid) from here */
1042 	pgdat->node_id = nid;
1043 	pgdat->node_start_pfn = 0;
1044 
1045 	/* init node's zones as empty zones, we don't have any present pages.*/
1046 	free_area_init_core_hotplug(nid);
1047 
1048 	/*
1049 	 * The node we allocated has no zone fallback lists. For avoiding
1050 	 * to access not-initialized zonelist, build here.
1051 	 */
1052 	build_all_zonelists(pgdat);
1053 
1054 	/*
1055 	 * When memory is hot-added, all the memory is in offline state. So
1056 	 * clear all zones' present_pages because they will be updated in
1057 	 * online_pages() and offline_pages().
1058 	 */
1059 	reset_node_managed_pages(pgdat);
1060 	reset_node_present_pages(pgdat);
1061 
1062 	return pgdat;
1063 }
1064 
1065 static void rollback_node_hotadd(int nid)
1066 {
1067 	pg_data_t *pgdat = NODE_DATA(nid);
1068 
1069 	arch_refresh_nodedata(nid, NULL);
1070 	free_percpu(pgdat->per_cpu_nodestats);
1071 	arch_free_nodedata(pgdat);
1072 }
1073 
1074 
1075 /**
1076  * try_online_node - online a node if offlined
1077  * @nid: the node ID
1078  * @set_node_online: Whether we want to online the node
1079  * called by cpu_up() to online a node without onlined memory.
1080  *
1081  * Returns:
1082  * 1 -> a new node has been allocated
1083  * 0 -> the node is already online
1084  * -ENOMEM -> the node could not be allocated
1085  */
1086 static int __try_online_node(int nid, bool set_node_online)
1087 {
1088 	pg_data_t *pgdat;
1089 	int ret = 1;
1090 
1091 	if (node_online(nid))
1092 		return 0;
1093 
1094 	pgdat = hotadd_new_pgdat(nid);
1095 	if (!pgdat) {
1096 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1097 		ret = -ENOMEM;
1098 		goto out;
1099 	}
1100 
1101 	if (set_node_online) {
1102 		node_set_online(nid);
1103 		ret = register_one_node(nid);
1104 		BUG_ON(ret);
1105 	}
1106 out:
1107 	return ret;
1108 }
1109 
1110 /*
1111  * Users of this function always want to online/register the node
1112  */
1113 int try_online_node(int nid)
1114 {
1115 	int ret;
1116 
1117 	mem_hotplug_begin();
1118 	ret =  __try_online_node(nid, true);
1119 	mem_hotplug_done();
1120 	return ret;
1121 }
1122 
1123 static int check_hotplug_memory_range(u64 start, u64 size)
1124 {
1125 	/* memory range must be block size aligned */
1126 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1127 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1128 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1129 		       memory_block_size_bytes(), start, size);
1130 		return -EINVAL;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static int online_memory_block(struct memory_block *mem, void *arg)
1137 {
1138 	mem->online_type = mhp_default_online_type;
1139 	return device_online(&mem->dev);
1140 }
1141 
1142 bool mhp_supports_memmap_on_memory(unsigned long size)
1143 {
1144 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1145 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1146 	unsigned long remaining_size = size - vmemmap_size;
1147 
1148 	/*
1149 	 * Besides having arch support and the feature enabled at runtime, we
1150 	 * need a few more assumptions to hold true:
1151 	 *
1152 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1153 	 *    in memory block granularity. We don't want the vmemmap of online
1154 	 *    memory blocks to reside on offline memory blocks. In the future,
1155 	 *    we might want to support variable-sized memory blocks to make the
1156 	 *    feature more versatile.
1157 	 *
1158 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1159 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1160 	 *    other memory blocks)
1161 	 *
1162 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1163 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1164 	 *    code requires applicable ranges to be page-aligned, for example, to
1165 	 *    set the migratetypes properly.
1166 	 *
1167 	 * TODO: Although we have a check here to make sure that vmemmap pages
1168 	 *       fully populate a PMD, it is not the right place to check for
1169 	 *       this. A much better solution involves improving vmemmap code
1170 	 *       to fallback to base pages when trying to populate vmemmap using
1171 	 *       altmap as an alternative source of memory, and we do not exactly
1172 	 *       populate a single PMD.
1173 	 */
1174 	return memmap_on_memory &&
1175 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1176 	       size == memory_block_size_bytes() &&
1177 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1178 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1179 }
1180 
1181 /*
1182  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1183  * and online/offline operations (triggered e.g. by sysfs).
1184  *
1185  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1186  */
1187 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1188 {
1189 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1190 	struct vmem_altmap mhp_altmap = {};
1191 	u64 start, size;
1192 	bool new_node = false;
1193 	int ret;
1194 
1195 	start = res->start;
1196 	size = resource_size(res);
1197 
1198 	ret = check_hotplug_memory_range(start, size);
1199 	if (ret)
1200 		return ret;
1201 
1202 	if (!node_possible(nid)) {
1203 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1204 		return -EINVAL;
1205 	}
1206 
1207 	mem_hotplug_begin();
1208 
1209 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1210 		memblock_add_node(start, size, nid);
1211 
1212 	ret = __try_online_node(nid, false);
1213 	if (ret < 0)
1214 		goto error;
1215 	new_node = ret;
1216 
1217 	/*
1218 	 * Self hosted memmap array
1219 	 */
1220 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1221 		if (!mhp_supports_memmap_on_memory(size)) {
1222 			ret = -EINVAL;
1223 			goto error;
1224 		}
1225 		mhp_altmap.free = PHYS_PFN(size);
1226 		mhp_altmap.base_pfn = PHYS_PFN(start);
1227 		params.altmap = &mhp_altmap;
1228 	}
1229 
1230 	/* call arch's memory hotadd */
1231 	ret = arch_add_memory(nid, start, size, &params);
1232 	if (ret < 0)
1233 		goto error;
1234 
1235 	/* create memory block devices after memory was added */
1236 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1237 	if (ret) {
1238 		arch_remove_memory(nid, start, size, NULL);
1239 		goto error;
1240 	}
1241 
1242 	if (new_node) {
1243 		/* If sysfs file of new node can't be created, cpu on the node
1244 		 * can't be hot-added. There is no rollback way now.
1245 		 * So, check by BUG_ON() to catch it reluctantly..
1246 		 * We online node here. We can't roll back from here.
1247 		 */
1248 		node_set_online(nid);
1249 		ret = __register_one_node(nid);
1250 		BUG_ON(ret);
1251 	}
1252 
1253 	/* link memory sections under this node.*/
1254 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1255 			  MEMINIT_HOTPLUG);
1256 
1257 	/* create new memmap entry */
1258 	if (!strcmp(res->name, "System RAM"))
1259 		firmware_map_add_hotplug(start, start + size, "System RAM");
1260 
1261 	/* device_online() will take the lock when calling online_pages() */
1262 	mem_hotplug_done();
1263 
1264 	/*
1265 	 * In case we're allowed to merge the resource, flag it and trigger
1266 	 * merging now that adding succeeded.
1267 	 */
1268 	if (mhp_flags & MHP_MERGE_RESOURCE)
1269 		merge_system_ram_resource(res);
1270 
1271 	/* online pages if requested */
1272 	if (mhp_default_online_type != MMOP_OFFLINE)
1273 		walk_memory_blocks(start, size, NULL, online_memory_block);
1274 
1275 	return ret;
1276 error:
1277 	/* rollback pgdat allocation and others */
1278 	if (new_node)
1279 		rollback_node_hotadd(nid);
1280 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1281 		memblock_remove(start, size);
1282 	mem_hotplug_done();
1283 	return ret;
1284 }
1285 
1286 /* requires device_hotplug_lock, see add_memory_resource() */
1287 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1288 {
1289 	struct resource *res;
1290 	int ret;
1291 
1292 	res = register_memory_resource(start, size, "System RAM");
1293 	if (IS_ERR(res))
1294 		return PTR_ERR(res);
1295 
1296 	ret = add_memory_resource(nid, res, mhp_flags);
1297 	if (ret < 0)
1298 		release_memory_resource(res);
1299 	return ret;
1300 }
1301 
1302 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1303 {
1304 	int rc;
1305 
1306 	lock_device_hotplug();
1307 	rc = __add_memory(nid, start, size, mhp_flags);
1308 	unlock_device_hotplug();
1309 
1310 	return rc;
1311 }
1312 EXPORT_SYMBOL_GPL(add_memory);
1313 
1314 /*
1315  * Add special, driver-managed memory to the system as system RAM. Such
1316  * memory is not exposed via the raw firmware-provided memmap as system
1317  * RAM, instead, it is detected and added by a driver - during cold boot,
1318  * after a reboot, and after kexec.
1319  *
1320  * Reasons why this memory should not be used for the initial memmap of a
1321  * kexec kernel or for placing kexec images:
1322  * - The booting kernel is in charge of determining how this memory will be
1323  *   used (e.g., use persistent memory as system RAM)
1324  * - Coordination with a hypervisor is required before this memory
1325  *   can be used (e.g., inaccessible parts).
1326  *
1327  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1328  * memory map") are created. Also, the created memory resource is flagged
1329  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1330  * this memory as well (esp., not place kexec images onto it).
1331  *
1332  * The resource_name (visible via /proc/iomem) has to have the format
1333  * "System RAM ($DRIVER)".
1334  */
1335 int add_memory_driver_managed(int nid, u64 start, u64 size,
1336 			      const char *resource_name, mhp_t mhp_flags)
1337 {
1338 	struct resource *res;
1339 	int rc;
1340 
1341 	if (!resource_name ||
1342 	    strstr(resource_name, "System RAM (") != resource_name ||
1343 	    resource_name[strlen(resource_name) - 1] != ')')
1344 		return -EINVAL;
1345 
1346 	lock_device_hotplug();
1347 
1348 	res = register_memory_resource(start, size, resource_name);
1349 	if (IS_ERR(res)) {
1350 		rc = PTR_ERR(res);
1351 		goto out_unlock;
1352 	}
1353 
1354 	rc = add_memory_resource(nid, res, mhp_flags);
1355 	if (rc < 0)
1356 		release_memory_resource(res);
1357 
1358 out_unlock:
1359 	unlock_device_hotplug();
1360 	return rc;
1361 }
1362 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1363 
1364 /*
1365  * Platforms should define arch_get_mappable_range() that provides
1366  * maximum possible addressable physical memory range for which the
1367  * linear mapping could be created. The platform returned address
1368  * range must adhere to these following semantics.
1369  *
1370  * - range.start <= range.end
1371  * - Range includes both end points [range.start..range.end]
1372  *
1373  * There is also a fallback definition provided here, allowing the
1374  * entire possible physical address range in case any platform does
1375  * not define arch_get_mappable_range().
1376  */
1377 struct range __weak arch_get_mappable_range(void)
1378 {
1379 	struct range mhp_range = {
1380 		.start = 0UL,
1381 		.end = -1ULL,
1382 	};
1383 	return mhp_range;
1384 }
1385 
1386 struct range mhp_get_pluggable_range(bool need_mapping)
1387 {
1388 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1389 	struct range mhp_range;
1390 
1391 	if (need_mapping) {
1392 		mhp_range = arch_get_mappable_range();
1393 		if (mhp_range.start > max_phys) {
1394 			mhp_range.start = 0;
1395 			mhp_range.end = 0;
1396 		}
1397 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1398 	} else {
1399 		mhp_range.start = 0;
1400 		mhp_range.end = max_phys;
1401 	}
1402 	return mhp_range;
1403 }
1404 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1405 
1406 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1407 {
1408 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1409 	u64 end = start + size;
1410 
1411 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1412 		return true;
1413 
1414 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1415 		start, end, mhp_range.start, mhp_range.end);
1416 	return false;
1417 }
1418 
1419 #ifdef CONFIG_MEMORY_HOTREMOVE
1420 /*
1421  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1422  * memory holes). When true, return the zone.
1423  */
1424 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1425 				  unsigned long end_pfn)
1426 {
1427 	unsigned long pfn, sec_end_pfn;
1428 	struct zone *zone = NULL;
1429 	struct page *page;
1430 	int i;
1431 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1432 	     pfn < end_pfn;
1433 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1434 		/* Make sure the memory section is present first */
1435 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1436 			continue;
1437 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1438 		     pfn += MAX_ORDER_NR_PAGES) {
1439 			i = 0;
1440 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1441 			while ((i < MAX_ORDER_NR_PAGES) &&
1442 				!pfn_valid_within(pfn + i))
1443 				i++;
1444 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1445 				continue;
1446 			/* Check if we got outside of the zone */
1447 			if (zone && !zone_spans_pfn(zone, pfn + i))
1448 				return NULL;
1449 			page = pfn_to_page(pfn + i);
1450 			if (zone && page_zone(page) != zone)
1451 				return NULL;
1452 			zone = page_zone(page);
1453 		}
1454 	}
1455 
1456 	return zone;
1457 }
1458 
1459 /*
1460  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1461  * non-lru movable pages and hugepages). Will skip over most unmovable
1462  * pages (esp., pages that can be skipped when offlining), but bail out on
1463  * definitely unmovable pages.
1464  *
1465  * Returns:
1466  *	0 in case a movable page is found and movable_pfn was updated.
1467  *	-ENOENT in case no movable page was found.
1468  *	-EBUSY in case a definitely unmovable page was found.
1469  */
1470 static int scan_movable_pages(unsigned long start, unsigned long end,
1471 			      unsigned long *movable_pfn)
1472 {
1473 	unsigned long pfn;
1474 
1475 	for (pfn = start; pfn < end; pfn++) {
1476 		struct page *page, *head;
1477 		unsigned long skip;
1478 
1479 		if (!pfn_valid(pfn))
1480 			continue;
1481 		page = pfn_to_page(pfn);
1482 		if (PageLRU(page))
1483 			goto found;
1484 		if (__PageMovable(page))
1485 			goto found;
1486 
1487 		/*
1488 		 * PageOffline() pages that are not marked __PageMovable() and
1489 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1490 		 * definitely unmovable. If their reference count would be 0,
1491 		 * they could at least be skipped when offlining memory.
1492 		 */
1493 		if (PageOffline(page) && page_count(page))
1494 			return -EBUSY;
1495 
1496 		if (!PageHuge(page))
1497 			continue;
1498 		head = compound_head(page);
1499 		/*
1500 		 * This test is racy as we hold no reference or lock.  The
1501 		 * hugetlb page could have been free'ed and head is no longer
1502 		 * a hugetlb page before the following check.  In such unlikely
1503 		 * cases false positives and negatives are possible.  Calling
1504 		 * code must deal with these scenarios.
1505 		 */
1506 		if (HPageMigratable(head))
1507 			goto found;
1508 		skip = compound_nr(head) - (page - head);
1509 		pfn += skip - 1;
1510 	}
1511 	return -ENOENT;
1512 found:
1513 	*movable_pfn = pfn;
1514 	return 0;
1515 }
1516 
1517 static int
1518 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1519 {
1520 	unsigned long pfn;
1521 	struct page *page, *head;
1522 	int ret = 0;
1523 	LIST_HEAD(source);
1524 
1525 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 		if (!pfn_valid(pfn))
1527 			continue;
1528 		page = pfn_to_page(pfn);
1529 		head = compound_head(page);
1530 
1531 		if (PageHuge(page)) {
1532 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1533 			isolate_huge_page(head, &source);
1534 			continue;
1535 		} else if (PageTransHuge(page))
1536 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1537 
1538 		/*
1539 		 * HWPoison pages have elevated reference counts so the migration would
1540 		 * fail on them. It also doesn't make any sense to migrate them in the
1541 		 * first place. Still try to unmap such a page in case it is still mapped
1542 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1543 		 * the unmap as the catch all safety net).
1544 		 */
1545 		if (PageHWPoison(page)) {
1546 			if (WARN_ON(PageLRU(page)))
1547 				isolate_lru_page(page);
1548 			if (page_mapped(page))
1549 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1550 			continue;
1551 		}
1552 
1553 		if (!get_page_unless_zero(page))
1554 			continue;
1555 		/*
1556 		 * We can skip free pages. And we can deal with pages on
1557 		 * LRU and non-lru movable pages.
1558 		 */
1559 		if (PageLRU(page))
1560 			ret = isolate_lru_page(page);
1561 		else
1562 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1563 		if (!ret) { /* Success */
1564 			list_add_tail(&page->lru, &source);
1565 			if (!__PageMovable(page))
1566 				inc_node_page_state(page, NR_ISOLATED_ANON +
1567 						    page_is_file_lru(page));
1568 
1569 		} else {
1570 			pr_warn("failed to isolate pfn %lx\n", pfn);
1571 			dump_page(page, "isolation failed");
1572 		}
1573 		put_page(page);
1574 	}
1575 	if (!list_empty(&source)) {
1576 		nodemask_t nmask = node_states[N_MEMORY];
1577 		struct migration_target_control mtc = {
1578 			.nmask = &nmask,
1579 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1580 		};
1581 
1582 		/*
1583 		 * We have checked that migration range is on a single zone so
1584 		 * we can use the nid of the first page to all the others.
1585 		 */
1586 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1587 
1588 		/*
1589 		 * try to allocate from a different node but reuse this node
1590 		 * if there are no other online nodes to be used (e.g. we are
1591 		 * offlining a part of the only existing node)
1592 		 */
1593 		node_clear(mtc.nid, nmask);
1594 		if (nodes_empty(nmask))
1595 			node_set(mtc.nid, nmask);
1596 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1597 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1598 		if (ret) {
1599 			list_for_each_entry(page, &source, lru) {
1600 				pr_warn("migrating pfn %lx failed ret:%d ",
1601 				       page_to_pfn(page), ret);
1602 				dump_page(page, "migration failure");
1603 			}
1604 			putback_movable_pages(&source);
1605 		}
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 static int __init cmdline_parse_movable_node(char *p)
1612 {
1613 	movable_node_enabled = true;
1614 	return 0;
1615 }
1616 early_param("movable_node", cmdline_parse_movable_node);
1617 
1618 /* check which state of node_states will be changed when offline memory */
1619 static void node_states_check_changes_offline(unsigned long nr_pages,
1620 		struct zone *zone, struct memory_notify *arg)
1621 {
1622 	struct pglist_data *pgdat = zone->zone_pgdat;
1623 	unsigned long present_pages = 0;
1624 	enum zone_type zt;
1625 
1626 	arg->status_change_nid = NUMA_NO_NODE;
1627 	arg->status_change_nid_normal = NUMA_NO_NODE;
1628 	arg->status_change_nid_high = NUMA_NO_NODE;
1629 
1630 	/*
1631 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1632 	 * If the memory to be offline is within the range
1633 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1634 	 * the zones in that range will become empty after the offlining,
1635 	 * thus we can determine that we need to clear the node from
1636 	 * node_states[N_NORMAL_MEMORY].
1637 	 */
1638 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1639 		present_pages += pgdat->node_zones[zt].present_pages;
1640 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1641 		arg->status_change_nid_normal = zone_to_nid(zone);
1642 
1643 #ifdef CONFIG_HIGHMEM
1644 	/*
1645 	 * node_states[N_HIGH_MEMORY] contains nodes which
1646 	 * have normal memory or high memory.
1647 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1648 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1649 	 * we determine that the zones in that range become empty,
1650 	 * we need to clear the node for N_HIGH_MEMORY.
1651 	 */
1652 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1653 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1654 		arg->status_change_nid_high = zone_to_nid(zone);
1655 #endif
1656 
1657 	/*
1658 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1659 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1660 	 * as well.
1661 	 * Here we count the possible pages from ZONE_MOVABLE.
1662 	 * If after having accounted all the pages, we see that the nr_pages
1663 	 * to be offlined is over or equal to the accounted pages,
1664 	 * we know that the node will become empty, and so, we can clear
1665 	 * it for N_MEMORY as well.
1666 	 */
1667 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1668 
1669 	if (nr_pages >= present_pages)
1670 		arg->status_change_nid = zone_to_nid(zone);
1671 }
1672 
1673 static void node_states_clear_node(int node, struct memory_notify *arg)
1674 {
1675 	if (arg->status_change_nid_normal >= 0)
1676 		node_clear_state(node, N_NORMAL_MEMORY);
1677 
1678 	if (arg->status_change_nid_high >= 0)
1679 		node_clear_state(node, N_HIGH_MEMORY);
1680 
1681 	if (arg->status_change_nid >= 0)
1682 		node_clear_state(node, N_MEMORY);
1683 }
1684 
1685 static int count_system_ram_pages_cb(unsigned long start_pfn,
1686 				     unsigned long nr_pages, void *data)
1687 {
1688 	unsigned long *nr_system_ram_pages = data;
1689 
1690 	*nr_system_ram_pages += nr_pages;
1691 	return 0;
1692 }
1693 
1694 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1695 {
1696 	const unsigned long end_pfn = start_pfn + nr_pages;
1697 	unsigned long pfn, system_ram_pages = 0;
1698 	unsigned long flags;
1699 	struct zone *zone;
1700 	struct memory_notify arg;
1701 	int ret, node;
1702 	char *reason;
1703 
1704 	/*
1705 	 * {on,off}lining is constrained to full memory sections (or more
1706 	 * precisly to memory blocks from the user space POV).
1707 	 * memmap_on_memory is an exception because it reserves initial part
1708 	 * of the physical memory space for vmemmaps. That space is pageblock
1709 	 * aligned.
1710 	 */
1711 	if (WARN_ON_ONCE(!nr_pages ||
1712 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1713 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1714 		return -EINVAL;
1715 
1716 	mem_hotplug_begin();
1717 
1718 	/*
1719 	 * Don't allow to offline memory blocks that contain holes.
1720 	 * Consequently, memory blocks with holes can never get onlined
1721 	 * via the hotplug path - online_pages() - as hotplugged memory has
1722 	 * no holes. This way, we e.g., don't have to worry about marking
1723 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1724 	 * avoid using walk_system_ram_range() later.
1725 	 */
1726 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1727 			      count_system_ram_pages_cb);
1728 	if (system_ram_pages != nr_pages) {
1729 		ret = -EINVAL;
1730 		reason = "memory holes";
1731 		goto failed_removal;
1732 	}
1733 
1734 	/* This makes hotplug much easier...and readable.
1735 	   we assume this for now. .*/
1736 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1737 	if (!zone) {
1738 		ret = -EINVAL;
1739 		reason = "multizone range";
1740 		goto failed_removal;
1741 	}
1742 	node = zone_to_nid(zone);
1743 
1744 	/*
1745 	 * Disable pcplists so that page isolation cannot race with freeing
1746 	 * in a way that pages from isolated pageblock are left on pcplists.
1747 	 */
1748 	zone_pcp_disable(zone);
1749 	lru_cache_disable();
1750 
1751 	/* set above range as isolated */
1752 	ret = start_isolate_page_range(start_pfn, end_pfn,
1753 				       MIGRATE_MOVABLE,
1754 				       MEMORY_OFFLINE | REPORT_FAILURE);
1755 	if (ret) {
1756 		reason = "failure to isolate range";
1757 		goto failed_removal_pcplists_disabled;
1758 	}
1759 
1760 	arg.start_pfn = start_pfn;
1761 	arg.nr_pages = nr_pages;
1762 	node_states_check_changes_offline(nr_pages, zone, &arg);
1763 
1764 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1765 	ret = notifier_to_errno(ret);
1766 	if (ret) {
1767 		reason = "notifier failure";
1768 		goto failed_removal_isolated;
1769 	}
1770 
1771 	do {
1772 		pfn = start_pfn;
1773 		do {
1774 			if (signal_pending(current)) {
1775 				ret = -EINTR;
1776 				reason = "signal backoff";
1777 				goto failed_removal_isolated;
1778 			}
1779 
1780 			cond_resched();
1781 
1782 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1783 			if (!ret) {
1784 				/*
1785 				 * TODO: fatal migration failures should bail
1786 				 * out
1787 				 */
1788 				do_migrate_range(pfn, end_pfn);
1789 			}
1790 		} while (!ret);
1791 
1792 		if (ret != -ENOENT) {
1793 			reason = "unmovable page";
1794 			goto failed_removal_isolated;
1795 		}
1796 
1797 		/*
1798 		 * Dissolve free hugepages in the memory block before doing
1799 		 * offlining actually in order to make hugetlbfs's object
1800 		 * counting consistent.
1801 		 */
1802 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1803 		if (ret) {
1804 			reason = "failure to dissolve huge pages";
1805 			goto failed_removal_isolated;
1806 		}
1807 
1808 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1809 
1810 	} while (ret);
1811 
1812 	/* Mark all sections offline and remove free pages from the buddy. */
1813 	__offline_isolated_pages(start_pfn, end_pfn);
1814 	pr_debug("Offlined Pages %ld\n", nr_pages);
1815 
1816 	/*
1817 	 * The memory sections are marked offline, and the pageblock flags
1818 	 * effectively stale; nobody should be touching them. Fixup the number
1819 	 * of isolated pageblocks, memory onlining will properly revert this.
1820 	 */
1821 	spin_lock_irqsave(&zone->lock, flags);
1822 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1823 	spin_unlock_irqrestore(&zone->lock, flags);
1824 
1825 	lru_cache_enable();
1826 	zone_pcp_enable(zone);
1827 
1828 	/* removal success */
1829 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1830 	adjust_present_page_count(zone, -nr_pages);
1831 
1832 	init_per_zone_wmark_min();
1833 
1834 	if (!populated_zone(zone)) {
1835 		zone_pcp_reset(zone);
1836 		build_all_zonelists(NULL);
1837 	} else
1838 		zone_pcp_update(zone);
1839 
1840 	node_states_clear_node(node, &arg);
1841 	if (arg.status_change_nid >= 0) {
1842 		kswapd_stop(node);
1843 		kcompactd_stop(node);
1844 	}
1845 
1846 	writeback_set_ratelimit();
1847 
1848 	memory_notify(MEM_OFFLINE, &arg);
1849 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1850 	mem_hotplug_done();
1851 	return 0;
1852 
1853 failed_removal_isolated:
1854 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1855 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1856 failed_removal_pcplists_disabled:
1857 	zone_pcp_enable(zone);
1858 failed_removal:
1859 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1860 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1861 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1862 		 reason);
1863 	/* pushback to free area */
1864 	mem_hotplug_done();
1865 	return ret;
1866 }
1867 
1868 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1869 {
1870 	int ret = !is_memblock_offlined(mem);
1871 
1872 	if (unlikely(ret)) {
1873 		phys_addr_t beginpa, endpa;
1874 
1875 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1876 		endpa = beginpa + memory_block_size_bytes() - 1;
1877 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1878 			&beginpa, &endpa);
1879 
1880 		return -EBUSY;
1881 	}
1882 	return 0;
1883 }
1884 
1885 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1886 {
1887 	/*
1888 	 * If not set, continue with the next block.
1889 	 */
1890 	return mem->nr_vmemmap_pages;
1891 }
1892 
1893 static int check_cpu_on_node(pg_data_t *pgdat)
1894 {
1895 	int cpu;
1896 
1897 	for_each_present_cpu(cpu) {
1898 		if (cpu_to_node(cpu) == pgdat->node_id)
1899 			/*
1900 			 * the cpu on this node isn't removed, and we can't
1901 			 * offline this node.
1902 			 */
1903 			return -EBUSY;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1910 {
1911 	int nid = *(int *)arg;
1912 
1913 	/*
1914 	 * If a memory block belongs to multiple nodes, the stored nid is not
1915 	 * reliable. However, such blocks are always online (e.g., cannot get
1916 	 * offlined) and, therefore, are still spanned by the node.
1917 	 */
1918 	return mem->nid == nid ? -EEXIST : 0;
1919 }
1920 
1921 /**
1922  * try_offline_node
1923  * @nid: the node ID
1924  *
1925  * Offline a node if all memory sections and cpus of the node are removed.
1926  *
1927  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1928  * and online/offline operations before this call.
1929  */
1930 void try_offline_node(int nid)
1931 {
1932 	pg_data_t *pgdat = NODE_DATA(nid);
1933 	int rc;
1934 
1935 	/*
1936 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1937 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1938 	 * e.g., after the memory block was onlined.
1939 	 */
1940 	if (pgdat->node_spanned_pages)
1941 		return;
1942 
1943 	/*
1944 	 * Especially offline memory blocks might not be spanned by the
1945 	 * node. They will get spanned by the node once they get onlined.
1946 	 * However, they link to the node in sysfs and can get onlined later.
1947 	 */
1948 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1949 	if (rc)
1950 		return;
1951 
1952 	if (check_cpu_on_node(pgdat))
1953 		return;
1954 
1955 	/*
1956 	 * all memory/cpu of this node are removed, we can offline this
1957 	 * node now.
1958 	 */
1959 	node_set_offline(nid);
1960 	unregister_one_node(nid);
1961 }
1962 EXPORT_SYMBOL(try_offline_node);
1963 
1964 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1965 {
1966 	int rc = 0;
1967 	struct vmem_altmap mhp_altmap = {};
1968 	struct vmem_altmap *altmap = NULL;
1969 	unsigned long nr_vmemmap_pages;
1970 
1971 	BUG_ON(check_hotplug_memory_range(start, size));
1972 
1973 	/*
1974 	 * All memory blocks must be offlined before removing memory.  Check
1975 	 * whether all memory blocks in question are offline and return error
1976 	 * if this is not the case.
1977 	 */
1978 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1979 	if (rc)
1980 		return rc;
1981 
1982 	/*
1983 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1984 	 * the same granularity it was added - a single memory block.
1985 	 */
1986 	if (memmap_on_memory) {
1987 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1988 						      get_nr_vmemmap_pages_cb);
1989 		if (nr_vmemmap_pages) {
1990 			if (size != memory_block_size_bytes()) {
1991 				pr_warn("Refuse to remove %#llx - %#llx,"
1992 					"wrong granularity\n",
1993 					start, start + size);
1994 				return -EINVAL;
1995 			}
1996 
1997 			/*
1998 			 * Let remove_pmd_table->free_hugepage_table do the
1999 			 * right thing if we used vmem_altmap when hot-adding
2000 			 * the range.
2001 			 */
2002 			mhp_altmap.alloc = nr_vmemmap_pages;
2003 			altmap = &mhp_altmap;
2004 		}
2005 	}
2006 
2007 	/* remove memmap entry */
2008 	firmware_map_remove(start, start + size, "System RAM");
2009 
2010 	/*
2011 	 * Memory block device removal under the device_hotplug_lock is
2012 	 * a barrier against racing online attempts.
2013 	 */
2014 	remove_memory_block_devices(start, size);
2015 
2016 	mem_hotplug_begin();
2017 
2018 	arch_remove_memory(nid, start, size, altmap);
2019 
2020 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2021 		memblock_free(start, size);
2022 		memblock_remove(start, size);
2023 	}
2024 
2025 	release_mem_region_adjustable(start, size);
2026 
2027 	try_offline_node(nid);
2028 
2029 	mem_hotplug_done();
2030 	return 0;
2031 }
2032 
2033 /**
2034  * remove_memory
2035  * @nid: the node ID
2036  * @start: physical address of the region to remove
2037  * @size: size of the region to remove
2038  *
2039  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2040  * and online/offline operations before this call, as required by
2041  * try_offline_node().
2042  */
2043 void __remove_memory(int nid, u64 start, u64 size)
2044 {
2045 
2046 	/*
2047 	 * trigger BUG() if some memory is not offlined prior to calling this
2048 	 * function
2049 	 */
2050 	if (try_remove_memory(nid, start, size))
2051 		BUG();
2052 }
2053 
2054 /*
2055  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2056  * some memory is not offline
2057  */
2058 int remove_memory(int nid, u64 start, u64 size)
2059 {
2060 	int rc;
2061 
2062 	lock_device_hotplug();
2063 	rc  = try_remove_memory(nid, start, size);
2064 	unlock_device_hotplug();
2065 
2066 	return rc;
2067 }
2068 EXPORT_SYMBOL_GPL(remove_memory);
2069 
2070 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2071 {
2072 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2073 	uint8_t **online_types = arg;
2074 	struct page *page;
2075 	int rc;
2076 
2077 	/*
2078 	 * Sense the online_type via the zone of the memory block. Offlining
2079 	 * with multiple zones within one memory block will be rejected
2080 	 * by offlining code ... so we don't care about that.
2081 	 */
2082 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2083 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2084 		online_type = MMOP_ONLINE_MOVABLE;
2085 
2086 	rc = device_offline(&mem->dev);
2087 	/*
2088 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2089 	 * so try_reonline_memory_block() can do the right thing.
2090 	 */
2091 	if (!rc)
2092 		**online_types = online_type;
2093 
2094 	(*online_types)++;
2095 	/* Ignore if already offline. */
2096 	return rc < 0 ? rc : 0;
2097 }
2098 
2099 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2100 {
2101 	uint8_t **online_types = arg;
2102 	int rc;
2103 
2104 	if (**online_types != MMOP_OFFLINE) {
2105 		mem->online_type = **online_types;
2106 		rc = device_online(&mem->dev);
2107 		if (rc < 0)
2108 			pr_warn("%s: Failed to re-online memory: %d",
2109 				__func__, rc);
2110 	}
2111 
2112 	/* Continue processing all remaining memory blocks. */
2113 	(*online_types)++;
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Try to offline and remove memory. Might take a long time to finish in case
2119  * memory is still in use. Primarily useful for memory devices that logically
2120  * unplugged all memory (so it's no longer in use) and want to offline + remove
2121  * that memory.
2122  */
2123 int offline_and_remove_memory(int nid, u64 start, u64 size)
2124 {
2125 	const unsigned long mb_count = size / memory_block_size_bytes();
2126 	uint8_t *online_types, *tmp;
2127 	int rc;
2128 
2129 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2130 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2131 		return -EINVAL;
2132 
2133 	/*
2134 	 * We'll remember the old online type of each memory block, so we can
2135 	 * try to revert whatever we did when offlining one memory block fails
2136 	 * after offlining some others succeeded.
2137 	 */
2138 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2139 				     GFP_KERNEL);
2140 	if (!online_types)
2141 		return -ENOMEM;
2142 	/*
2143 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2144 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2145 	 * try_reonline_memory_block().
2146 	 */
2147 	memset(online_types, MMOP_OFFLINE, mb_count);
2148 
2149 	lock_device_hotplug();
2150 
2151 	tmp = online_types;
2152 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2153 
2154 	/*
2155 	 * In case we succeeded to offline all memory, remove it.
2156 	 * This cannot fail as it cannot get onlined in the meantime.
2157 	 */
2158 	if (!rc) {
2159 		rc = try_remove_memory(nid, start, size);
2160 		if (rc)
2161 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2162 	}
2163 
2164 	/*
2165 	 * Rollback what we did. While memory onlining might theoretically fail
2166 	 * (nacked by a notifier), it barely ever happens.
2167 	 */
2168 	if (rc) {
2169 		tmp = online_types;
2170 		walk_memory_blocks(start, size, &tmp,
2171 				   try_reonline_memory_block);
2172 	}
2173 	unlock_device_hotplug();
2174 
2175 	kfree(online_types);
2176 	return rc;
2177 }
2178 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2179 #endif /* CONFIG_MEMORY_HOTREMOVE */
2180