xref: /linux/mm/memory_hotplug.c (revision 954ea91fb68b771dba6d87cfa61b68e09cc2497f)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/memory_hotplug.c
4   *
5   *  Copyright (C)
6   */
7  
8  #include <linux/stddef.h>
9  #include <linux/mm.h>
10  #include <linux/sched/signal.h>
11  #include <linux/swap.h>
12  #include <linux/interrupt.h>
13  #include <linux/pagemap.h>
14  #include <linux/compiler.h>
15  #include <linux/export.h>
16  #include <linux/pagevec.h>
17  #include <linux/writeback.h>
18  #include <linux/slab.h>
19  #include <linux/sysctl.h>
20  #include <linux/cpu.h>
21  #include <linux/memory.h>
22  #include <linux/memremap.h>
23  #include <linux/memory_hotplug.h>
24  #include <linux/vmalloc.h>
25  #include <linux/ioport.h>
26  #include <linux/delay.h>
27  #include <linux/migrate.h>
28  #include <linux/page-isolation.h>
29  #include <linux/pfn.h>
30  #include <linux/suspend.h>
31  #include <linux/mm_inline.h>
32  #include <linux/firmware-map.h>
33  #include <linux/stop_machine.h>
34  #include <linux/hugetlb.h>
35  #include <linux/memblock.h>
36  #include <linux/compaction.h>
37  #include <linux/rmap.h>
38  #include <linux/module.h>
39  
40  #include <asm/tlbflush.h>
41  
42  #include "internal.h"
43  #include "shuffle.h"
44  
45  #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
46  /*
47   * memory_hotplug.memmap_on_memory parameter
48   */
49  static bool memmap_on_memory __ro_after_init;
50  module_param(memmap_on_memory, bool, 0444);
51  MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
52  
53  static inline bool mhp_memmap_on_memory(void)
54  {
55  	return memmap_on_memory;
56  }
57  #else
58  static inline bool mhp_memmap_on_memory(void)
59  {
60  	return false;
61  }
62  #endif
63  
64  enum {
65  	ONLINE_POLICY_CONTIG_ZONES = 0,
66  	ONLINE_POLICY_AUTO_MOVABLE,
67  };
68  
69  static const char * const online_policy_to_str[] = {
70  	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
71  	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
72  };
73  
74  static int set_online_policy(const char *val, const struct kernel_param *kp)
75  {
76  	int ret = sysfs_match_string(online_policy_to_str, val);
77  
78  	if (ret < 0)
79  		return ret;
80  	*((int *)kp->arg) = ret;
81  	return 0;
82  }
83  
84  static int get_online_policy(char *buffer, const struct kernel_param *kp)
85  {
86  	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
87  }
88  
89  /*
90   * memory_hotplug.online_policy: configure online behavior when onlining without
91   * specifying a zone (MMOP_ONLINE)
92   *
93   * "contig-zones": keep zone contiguous
94   * "auto-movable": online memory to ZONE_MOVABLE if the configuration
95   *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
96   */
97  static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
98  static const struct kernel_param_ops online_policy_ops = {
99  	.set = set_online_policy,
100  	.get = get_online_policy,
101  };
102  module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
103  MODULE_PARM_DESC(online_policy,
104  		"Set the online policy (\"contig-zones\", \"auto-movable\") "
105  		"Default: \"contig-zones\"");
106  
107  /*
108   * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
109   *
110   * The ratio represent an upper limit and the kernel might decide to not
111   * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
112   * doesn't allow for more MOVABLE memory.
113   */
114  static unsigned int auto_movable_ratio __read_mostly = 301;
115  module_param(auto_movable_ratio, uint, 0644);
116  MODULE_PARM_DESC(auto_movable_ratio,
117  		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
118  		"in percent for \"auto-movable\" online policy. Default: 301");
119  
120  /*
121   * memory_hotplug.auto_movable_numa_aware: consider numa node stats
122   */
123  #ifdef CONFIG_NUMA
124  static bool auto_movable_numa_aware __read_mostly = true;
125  module_param(auto_movable_numa_aware, bool, 0644);
126  MODULE_PARM_DESC(auto_movable_numa_aware,
127  		"Consider numa node stats in addition to global stats in "
128  		"\"auto-movable\" online policy. Default: true");
129  #endif /* CONFIG_NUMA */
130  
131  /*
132   * online_page_callback contains pointer to current page onlining function.
133   * Initially it is generic_online_page(). If it is required it could be
134   * changed by calling set_online_page_callback() for callback registration
135   * and restore_online_page_callback() for generic callback restore.
136   */
137  
138  static online_page_callback_t online_page_callback = generic_online_page;
139  static DEFINE_MUTEX(online_page_callback_lock);
140  
141  DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
142  
143  void get_online_mems(void)
144  {
145  	percpu_down_read(&mem_hotplug_lock);
146  }
147  
148  void put_online_mems(void)
149  {
150  	percpu_up_read(&mem_hotplug_lock);
151  }
152  
153  bool movable_node_enabled = false;
154  
155  #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
156  int mhp_default_online_type = MMOP_OFFLINE;
157  #else
158  int mhp_default_online_type = MMOP_ONLINE;
159  #endif
160  
161  static int __init setup_memhp_default_state(char *str)
162  {
163  	const int online_type = mhp_online_type_from_str(str);
164  
165  	if (online_type >= 0)
166  		mhp_default_online_type = online_type;
167  
168  	return 1;
169  }
170  __setup("memhp_default_state=", setup_memhp_default_state);
171  
172  void mem_hotplug_begin(void)
173  {
174  	cpus_read_lock();
175  	percpu_down_write(&mem_hotplug_lock);
176  }
177  
178  void mem_hotplug_done(void)
179  {
180  	percpu_up_write(&mem_hotplug_lock);
181  	cpus_read_unlock();
182  }
183  
184  u64 max_mem_size = U64_MAX;
185  
186  /* add this memory to iomem resource */
187  static struct resource *register_memory_resource(u64 start, u64 size,
188  						 const char *resource_name)
189  {
190  	struct resource *res;
191  	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
192  
193  	if (strcmp(resource_name, "System RAM"))
194  		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
195  
196  	if (!mhp_range_allowed(start, size, true))
197  		return ERR_PTR(-E2BIG);
198  
199  	/*
200  	 * Make sure value parsed from 'mem=' only restricts memory adding
201  	 * while booting, so that memory hotplug won't be impacted. Please
202  	 * refer to document of 'mem=' in kernel-parameters.txt for more
203  	 * details.
204  	 */
205  	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
206  		return ERR_PTR(-E2BIG);
207  
208  	/*
209  	 * Request ownership of the new memory range.  This might be
210  	 * a child of an existing resource that was present but
211  	 * not marked as busy.
212  	 */
213  	res = __request_region(&iomem_resource, start, size,
214  			       resource_name, flags);
215  
216  	if (!res) {
217  		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
218  				start, start + size);
219  		return ERR_PTR(-EEXIST);
220  	}
221  	return res;
222  }
223  
224  static void release_memory_resource(struct resource *res)
225  {
226  	if (!res)
227  		return;
228  	release_resource(res);
229  	kfree(res);
230  }
231  
232  static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
233  {
234  	/*
235  	 * Disallow all operations smaller than a sub-section and only
236  	 * allow operations smaller than a section for
237  	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
238  	 * enforces a larger memory_block_size_bytes() granularity for
239  	 * memory that will be marked online, so this check should only
240  	 * fire for direct arch_{add,remove}_memory() users outside of
241  	 * add_memory_resource().
242  	 */
243  	unsigned long min_align;
244  
245  	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
246  		min_align = PAGES_PER_SUBSECTION;
247  	else
248  		min_align = PAGES_PER_SECTION;
249  	if (!IS_ALIGNED(pfn | nr_pages, min_align))
250  		return -EINVAL;
251  	return 0;
252  }
253  
254  /*
255   * Return page for the valid pfn only if the page is online. All pfn
256   * walkers which rely on the fully initialized page->flags and others
257   * should use this rather than pfn_valid && pfn_to_page
258   */
259  struct page *pfn_to_online_page(unsigned long pfn)
260  {
261  	unsigned long nr = pfn_to_section_nr(pfn);
262  	struct dev_pagemap *pgmap;
263  	struct mem_section *ms;
264  
265  	if (nr >= NR_MEM_SECTIONS)
266  		return NULL;
267  
268  	ms = __nr_to_section(nr);
269  	if (!online_section(ms))
270  		return NULL;
271  
272  	/*
273  	 * Save some code text when online_section() +
274  	 * pfn_section_valid() are sufficient.
275  	 */
276  	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
277  		return NULL;
278  
279  	if (!pfn_section_valid(ms, pfn))
280  		return NULL;
281  
282  	if (!online_device_section(ms))
283  		return pfn_to_page(pfn);
284  
285  	/*
286  	 * Slowpath: when ZONE_DEVICE collides with
287  	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
288  	 * the section may be 'offline' but 'valid'. Only
289  	 * get_dev_pagemap() can determine sub-section online status.
290  	 */
291  	pgmap = get_dev_pagemap(pfn, NULL);
292  	put_dev_pagemap(pgmap);
293  
294  	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
295  	if (pgmap)
296  		return NULL;
297  
298  	return pfn_to_page(pfn);
299  }
300  EXPORT_SYMBOL_GPL(pfn_to_online_page);
301  
302  int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
303  		struct mhp_params *params)
304  {
305  	const unsigned long end_pfn = pfn + nr_pages;
306  	unsigned long cur_nr_pages;
307  	int err;
308  	struct vmem_altmap *altmap = params->altmap;
309  
310  	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
311  		return -EINVAL;
312  
313  	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
314  
315  	if (altmap) {
316  		/*
317  		 * Validate altmap is within bounds of the total request
318  		 */
319  		if (altmap->base_pfn != pfn
320  				|| vmem_altmap_offset(altmap) > nr_pages) {
321  			pr_warn_once("memory add fail, invalid altmap\n");
322  			return -EINVAL;
323  		}
324  		altmap->alloc = 0;
325  	}
326  
327  	if (check_pfn_span(pfn, nr_pages)) {
328  		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
329  		return -EINVAL;
330  	}
331  
332  	for (; pfn < end_pfn; pfn += cur_nr_pages) {
333  		/* Select all remaining pages up to the next section boundary */
334  		cur_nr_pages = min(end_pfn - pfn,
335  				   SECTION_ALIGN_UP(pfn + 1) - pfn);
336  		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
337  					 params->pgmap);
338  		if (err)
339  			break;
340  		cond_resched();
341  	}
342  	vmemmap_populate_print_last();
343  	return err;
344  }
345  
346  /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347  static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348  				     unsigned long start_pfn,
349  				     unsigned long end_pfn)
350  {
351  	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352  		if (unlikely(!pfn_to_online_page(start_pfn)))
353  			continue;
354  
355  		if (unlikely(pfn_to_nid(start_pfn) != nid))
356  			continue;
357  
358  		if (zone != page_zone(pfn_to_page(start_pfn)))
359  			continue;
360  
361  		return start_pfn;
362  	}
363  
364  	return 0;
365  }
366  
367  /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368  static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369  				    unsigned long start_pfn,
370  				    unsigned long end_pfn)
371  {
372  	unsigned long pfn;
373  
374  	/* pfn is the end pfn of a memory section. */
375  	pfn = end_pfn - 1;
376  	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377  		if (unlikely(!pfn_to_online_page(pfn)))
378  			continue;
379  
380  		if (unlikely(pfn_to_nid(pfn) != nid))
381  			continue;
382  
383  		if (zone != page_zone(pfn_to_page(pfn)))
384  			continue;
385  
386  		return pfn;
387  	}
388  
389  	return 0;
390  }
391  
392  static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393  			     unsigned long end_pfn)
394  {
395  	unsigned long pfn;
396  	int nid = zone_to_nid(zone);
397  
398  	if (zone->zone_start_pfn == start_pfn) {
399  		/*
400  		 * If the section is smallest section in the zone, it need
401  		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
402  		 * In this case, we find second smallest valid mem_section
403  		 * for shrinking zone.
404  		 */
405  		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
406  						zone_end_pfn(zone));
407  		if (pfn) {
408  			zone->spanned_pages = zone_end_pfn(zone) - pfn;
409  			zone->zone_start_pfn = pfn;
410  		} else {
411  			zone->zone_start_pfn = 0;
412  			zone->spanned_pages = 0;
413  		}
414  	} else if (zone_end_pfn(zone) == end_pfn) {
415  		/*
416  		 * If the section is biggest section in the zone, it need
417  		 * shrink zone->spanned_pages.
418  		 * In this case, we find second biggest valid mem_section for
419  		 * shrinking zone.
420  		 */
421  		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
422  					       start_pfn);
423  		if (pfn)
424  			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
425  		else {
426  			zone->zone_start_pfn = 0;
427  			zone->spanned_pages = 0;
428  		}
429  	}
430  }
431  
432  static void update_pgdat_span(struct pglist_data *pgdat)
433  {
434  	unsigned long node_start_pfn = 0, node_end_pfn = 0;
435  	struct zone *zone;
436  
437  	for (zone = pgdat->node_zones;
438  	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
439  		unsigned long end_pfn = zone_end_pfn(zone);
440  
441  		/* No need to lock the zones, they can't change. */
442  		if (!zone->spanned_pages)
443  			continue;
444  		if (!node_end_pfn) {
445  			node_start_pfn = zone->zone_start_pfn;
446  			node_end_pfn = end_pfn;
447  			continue;
448  		}
449  
450  		if (end_pfn > node_end_pfn)
451  			node_end_pfn = end_pfn;
452  		if (zone->zone_start_pfn < node_start_pfn)
453  			node_start_pfn = zone->zone_start_pfn;
454  	}
455  
456  	pgdat->node_start_pfn = node_start_pfn;
457  	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
458  }
459  
460  void __ref remove_pfn_range_from_zone(struct zone *zone,
461  				      unsigned long start_pfn,
462  				      unsigned long nr_pages)
463  {
464  	const unsigned long end_pfn = start_pfn + nr_pages;
465  	struct pglist_data *pgdat = zone->zone_pgdat;
466  	unsigned long pfn, cur_nr_pages;
467  
468  	/* Poison struct pages because they are now uninitialized again. */
469  	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
470  		cond_resched();
471  
472  		/* Select all remaining pages up to the next section boundary */
473  		cur_nr_pages =
474  			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
475  		page_init_poison(pfn_to_page(pfn),
476  				 sizeof(struct page) * cur_nr_pages);
477  	}
478  
479  	/*
480  	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
481  	 * we will not try to shrink the zones - which is okay as
482  	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
483  	 */
484  	if (zone_is_zone_device(zone))
485  		return;
486  
487  	clear_zone_contiguous(zone);
488  
489  	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
490  	update_pgdat_span(pgdat);
491  
492  	set_zone_contiguous(zone);
493  }
494  
495  static void __remove_section(unsigned long pfn, unsigned long nr_pages,
496  			     unsigned long map_offset,
497  			     struct vmem_altmap *altmap)
498  {
499  	struct mem_section *ms = __pfn_to_section(pfn);
500  
501  	if (WARN_ON_ONCE(!valid_section(ms)))
502  		return;
503  
504  	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
505  }
506  
507  /**
508   * __remove_pages() - remove sections of pages
509   * @pfn: starting pageframe (must be aligned to start of a section)
510   * @nr_pages: number of pages to remove (must be multiple of section size)
511   * @altmap: alternative device page map or %NULL if default memmap is used
512   *
513   * Generic helper function to remove section mappings and sysfs entries
514   * for the section of the memory we are removing. Caller needs to make
515   * sure that pages are marked reserved and zones are adjust properly by
516   * calling offline_pages().
517   */
518  void __remove_pages(unsigned long pfn, unsigned long nr_pages,
519  		    struct vmem_altmap *altmap)
520  {
521  	const unsigned long end_pfn = pfn + nr_pages;
522  	unsigned long cur_nr_pages;
523  	unsigned long map_offset = 0;
524  
525  	map_offset = vmem_altmap_offset(altmap);
526  
527  	if (check_pfn_span(pfn, nr_pages)) {
528  		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
529  		return;
530  	}
531  
532  	for (; pfn < end_pfn; pfn += cur_nr_pages) {
533  		cond_resched();
534  		/* Select all remaining pages up to the next section boundary */
535  		cur_nr_pages = min(end_pfn - pfn,
536  				   SECTION_ALIGN_UP(pfn + 1) - pfn);
537  		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
538  		map_offset = 0;
539  	}
540  }
541  
542  int set_online_page_callback(online_page_callback_t callback)
543  {
544  	int rc = -EINVAL;
545  
546  	get_online_mems();
547  	mutex_lock(&online_page_callback_lock);
548  
549  	if (online_page_callback == generic_online_page) {
550  		online_page_callback = callback;
551  		rc = 0;
552  	}
553  
554  	mutex_unlock(&online_page_callback_lock);
555  	put_online_mems();
556  
557  	return rc;
558  }
559  EXPORT_SYMBOL_GPL(set_online_page_callback);
560  
561  int restore_online_page_callback(online_page_callback_t callback)
562  {
563  	int rc = -EINVAL;
564  
565  	get_online_mems();
566  	mutex_lock(&online_page_callback_lock);
567  
568  	if (online_page_callback == callback) {
569  		online_page_callback = generic_online_page;
570  		rc = 0;
571  	}
572  
573  	mutex_unlock(&online_page_callback_lock);
574  	put_online_mems();
575  
576  	return rc;
577  }
578  EXPORT_SYMBOL_GPL(restore_online_page_callback);
579  
580  void generic_online_page(struct page *page, unsigned int order)
581  {
582  	/*
583  	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
584  	 * so we should map it first. This is better than introducing a special
585  	 * case in page freeing fast path.
586  	 */
587  	debug_pagealloc_map_pages(page, 1 << order);
588  	__free_pages_core(page, order);
589  	totalram_pages_add(1UL << order);
590  }
591  EXPORT_SYMBOL_GPL(generic_online_page);
592  
593  static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
594  {
595  	const unsigned long end_pfn = start_pfn + nr_pages;
596  	unsigned long pfn;
597  
598  	/*
599  	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
600  	 * decide to not expose all pages to the buddy (e.g., expose them
601  	 * later). We account all pages as being online and belonging to this
602  	 * zone ("present").
603  	 * When using memmap_on_memory, the range might not be aligned to
604  	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
605  	 * this and the first chunk to online will be pageblock_nr_pages.
606  	 */
607  	for (pfn = start_pfn; pfn < end_pfn;) {
608  		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
609  
610  		(*online_page_callback)(pfn_to_page(pfn), order);
611  		pfn += (1UL << order);
612  	}
613  
614  	/* mark all involved sections as online */
615  	online_mem_sections(start_pfn, end_pfn);
616  }
617  
618  /* check which state of node_states will be changed when online memory */
619  static void node_states_check_changes_online(unsigned long nr_pages,
620  	struct zone *zone, struct memory_notify *arg)
621  {
622  	int nid = zone_to_nid(zone);
623  
624  	arg->status_change_nid = NUMA_NO_NODE;
625  	arg->status_change_nid_normal = NUMA_NO_NODE;
626  
627  	if (!node_state(nid, N_MEMORY))
628  		arg->status_change_nid = nid;
629  	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
630  		arg->status_change_nid_normal = nid;
631  }
632  
633  static void node_states_set_node(int node, struct memory_notify *arg)
634  {
635  	if (arg->status_change_nid_normal >= 0)
636  		node_set_state(node, N_NORMAL_MEMORY);
637  
638  	if (arg->status_change_nid >= 0)
639  		node_set_state(node, N_MEMORY);
640  }
641  
642  static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
643  		unsigned long nr_pages)
644  {
645  	unsigned long old_end_pfn = zone_end_pfn(zone);
646  
647  	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
648  		zone->zone_start_pfn = start_pfn;
649  
650  	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
651  }
652  
653  static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
654                                       unsigned long nr_pages)
655  {
656  	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
657  
658  	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
659  		pgdat->node_start_pfn = start_pfn;
660  
661  	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
662  
663  }
664  
665  #ifdef CONFIG_ZONE_DEVICE
666  static void section_taint_zone_device(unsigned long pfn)
667  {
668  	struct mem_section *ms = __pfn_to_section(pfn);
669  
670  	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
671  }
672  #else
673  static inline void section_taint_zone_device(unsigned long pfn)
674  {
675  }
676  #endif
677  
678  /*
679   * Associate the pfn range with the given zone, initializing the memmaps
680   * and resizing the pgdat/zone data to span the added pages. After this
681   * call, all affected pages are PG_reserved.
682   *
683   * All aligned pageblocks are initialized to the specified migratetype
684   * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
685   * zone stats (e.g., nr_isolate_pageblock) are touched.
686   */
687  void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
688  				  unsigned long nr_pages,
689  				  struct vmem_altmap *altmap, int migratetype)
690  {
691  	struct pglist_data *pgdat = zone->zone_pgdat;
692  	int nid = pgdat->node_id;
693  
694  	clear_zone_contiguous(zone);
695  
696  	if (zone_is_empty(zone))
697  		init_currently_empty_zone(zone, start_pfn, nr_pages);
698  	resize_zone_range(zone, start_pfn, nr_pages);
699  	resize_pgdat_range(pgdat, start_pfn, nr_pages);
700  
701  	/*
702  	 * Subsection population requires care in pfn_to_online_page().
703  	 * Set the taint to enable the slow path detection of
704  	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
705  	 * section.
706  	 */
707  	if (zone_is_zone_device(zone)) {
708  		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
709  			section_taint_zone_device(start_pfn);
710  		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
711  			section_taint_zone_device(start_pfn + nr_pages);
712  	}
713  
714  	/*
715  	 * TODO now we have a visible range of pages which are not associated
716  	 * with their zone properly. Not nice but set_pfnblock_flags_mask
717  	 * expects the zone spans the pfn range. All the pages in the range
718  	 * are reserved so nobody should be touching them so we should be safe
719  	 */
720  	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
721  			 MEMINIT_HOTPLUG, altmap, migratetype);
722  
723  	set_zone_contiguous(zone);
724  }
725  
726  struct auto_movable_stats {
727  	unsigned long kernel_early_pages;
728  	unsigned long movable_pages;
729  };
730  
731  static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
732  					    struct zone *zone)
733  {
734  	if (zone_idx(zone) == ZONE_MOVABLE) {
735  		stats->movable_pages += zone->present_pages;
736  	} else {
737  		stats->kernel_early_pages += zone->present_early_pages;
738  #ifdef CONFIG_CMA
739  		/*
740  		 * CMA pages (never on hotplugged memory) behave like
741  		 * ZONE_MOVABLE.
742  		 */
743  		stats->movable_pages += zone->cma_pages;
744  		stats->kernel_early_pages -= zone->cma_pages;
745  #endif /* CONFIG_CMA */
746  	}
747  }
748  struct auto_movable_group_stats {
749  	unsigned long movable_pages;
750  	unsigned long req_kernel_early_pages;
751  };
752  
753  static int auto_movable_stats_account_group(struct memory_group *group,
754  					   void *arg)
755  {
756  	const int ratio = READ_ONCE(auto_movable_ratio);
757  	struct auto_movable_group_stats *stats = arg;
758  	long pages;
759  
760  	/*
761  	 * We don't support modifying the config while the auto-movable online
762  	 * policy is already enabled. Just avoid the division by zero below.
763  	 */
764  	if (!ratio)
765  		return 0;
766  
767  	/*
768  	 * Calculate how many early kernel pages this group requires to
769  	 * satisfy the configured zone ratio.
770  	 */
771  	pages = group->present_movable_pages * 100 / ratio;
772  	pages -= group->present_kernel_pages;
773  
774  	if (pages > 0)
775  		stats->req_kernel_early_pages += pages;
776  	stats->movable_pages += group->present_movable_pages;
777  	return 0;
778  }
779  
780  static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
781  					    unsigned long nr_pages)
782  {
783  	unsigned long kernel_early_pages, movable_pages;
784  	struct auto_movable_group_stats group_stats = {};
785  	struct auto_movable_stats stats = {};
786  	pg_data_t *pgdat = NODE_DATA(nid);
787  	struct zone *zone;
788  	int i;
789  
790  	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
791  	if (nid == NUMA_NO_NODE) {
792  		/* TODO: cache values */
793  		for_each_populated_zone(zone)
794  			auto_movable_stats_account_zone(&stats, zone);
795  	} else {
796  		for (i = 0; i < MAX_NR_ZONES; i++) {
797  			zone = pgdat->node_zones + i;
798  			if (populated_zone(zone))
799  				auto_movable_stats_account_zone(&stats, zone);
800  		}
801  	}
802  
803  	kernel_early_pages = stats.kernel_early_pages;
804  	movable_pages = stats.movable_pages;
805  
806  	/*
807  	 * Kernel memory inside dynamic memory group allows for more MOVABLE
808  	 * memory within the same group. Remove the effect of all but the
809  	 * current group from the stats.
810  	 */
811  	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
812  				   group, &group_stats);
813  	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
814  		return false;
815  	kernel_early_pages -= group_stats.req_kernel_early_pages;
816  	movable_pages -= group_stats.movable_pages;
817  
818  	if (group && group->is_dynamic)
819  		kernel_early_pages += group->present_kernel_pages;
820  
821  	/*
822  	 * Test if we could online the given number of pages to ZONE_MOVABLE
823  	 * and still stay in the configured ratio.
824  	 */
825  	movable_pages += nr_pages;
826  	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
827  }
828  
829  /*
830   * Returns a default kernel memory zone for the given pfn range.
831   * If no kernel zone covers this pfn range it will automatically go
832   * to the ZONE_NORMAL.
833   */
834  static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
835  		unsigned long nr_pages)
836  {
837  	struct pglist_data *pgdat = NODE_DATA(nid);
838  	int zid;
839  
840  	for (zid = 0; zid < ZONE_NORMAL; zid++) {
841  		struct zone *zone = &pgdat->node_zones[zid];
842  
843  		if (zone_intersects(zone, start_pfn, nr_pages))
844  			return zone;
845  	}
846  
847  	return &pgdat->node_zones[ZONE_NORMAL];
848  }
849  
850  /*
851   * Determine to which zone to online memory dynamically based on user
852   * configuration and system stats. We care about the following ratio:
853   *
854   *   MOVABLE : KERNEL
855   *
856   * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
857   * one of the kernel zones. CMA pages inside one of the kernel zones really
858   * behaves like ZONE_MOVABLE, so we treat them accordingly.
859   *
860   * We don't allow for hotplugged memory in a KERNEL zone to increase the
861   * amount of MOVABLE memory we can have, so we end up with:
862   *
863   *   MOVABLE : KERNEL_EARLY
864   *
865   * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
866   * boot. We base our calculation on KERNEL_EARLY internally, because:
867   *
868   * a) Hotplugged memory in one of the kernel zones can sometimes still get
869   *    hotunplugged, especially when hot(un)plugging individual memory blocks.
870   *    There is no coordination across memory devices, therefore "automatic"
871   *    hotunplugging, as implemented in hypervisors, could result in zone
872   *    imbalances.
873   * b) Early/boot memory in one of the kernel zones can usually not get
874   *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
875   *    with unmovable allocations). While there are corner cases where it might
876   *    still work, it is barely relevant in practice.
877   *
878   * Exceptions are dynamic memory groups, which allow for more MOVABLE
879   * memory within the same memory group -- because in that case, there is
880   * coordination within the single memory device managed by a single driver.
881   *
882   * We rely on "present pages" instead of "managed pages", as the latter is
883   * highly unreliable and dynamic in virtualized environments, and does not
884   * consider boot time allocations. For example, memory ballooning adjusts the
885   * managed pages when inflating/deflating the balloon, and balloon compaction
886   * can even migrate inflated pages between zones.
887   *
888   * Using "present pages" is better but some things to keep in mind are:
889   *
890   * a) Some memblock allocations, such as for the crashkernel area, are
891   *    effectively unused by the kernel, yet they account to "present pages".
892   *    Fortunately, these allocations are comparatively small in relevant setups
893   *    (e.g., fraction of system memory).
894   * b) Some hotplugged memory blocks in virtualized environments, esecially
895   *    hotplugged by virtio-mem, look like they are completely present, however,
896   *    only parts of the memory block are actually currently usable.
897   *    "present pages" is an upper limit that can get reached at runtime. As
898   *    we base our calculations on KERNEL_EARLY, this is not an issue.
899   */
900  static struct zone *auto_movable_zone_for_pfn(int nid,
901  					      struct memory_group *group,
902  					      unsigned long pfn,
903  					      unsigned long nr_pages)
904  {
905  	unsigned long online_pages = 0, max_pages, end_pfn;
906  	struct page *page;
907  
908  	if (!auto_movable_ratio)
909  		goto kernel_zone;
910  
911  	if (group && !group->is_dynamic) {
912  		max_pages = group->s.max_pages;
913  		online_pages = group->present_movable_pages;
914  
915  		/* If anything is !MOVABLE online the rest !MOVABLE. */
916  		if (group->present_kernel_pages)
917  			goto kernel_zone;
918  	} else if (!group || group->d.unit_pages == nr_pages) {
919  		max_pages = nr_pages;
920  	} else {
921  		max_pages = group->d.unit_pages;
922  		/*
923  		 * Take a look at all online sections in the current unit.
924  		 * We can safely assume that all pages within a section belong
925  		 * to the same zone, because dynamic memory groups only deal
926  		 * with hotplugged memory.
927  		 */
928  		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
929  		end_pfn = pfn + group->d.unit_pages;
930  		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
931  			page = pfn_to_online_page(pfn);
932  			if (!page)
933  				continue;
934  			/* If anything is !MOVABLE online the rest !MOVABLE. */
935  			if (!is_zone_movable_page(page))
936  				goto kernel_zone;
937  			online_pages += PAGES_PER_SECTION;
938  		}
939  	}
940  
941  	/*
942  	 * Online MOVABLE if we could *currently* online all remaining parts
943  	 * MOVABLE. We expect to (add+) online them immediately next, so if
944  	 * nobody interferes, all will be MOVABLE if possible.
945  	 */
946  	nr_pages = max_pages - online_pages;
947  	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
948  		goto kernel_zone;
949  
950  #ifdef CONFIG_NUMA
951  	if (auto_movable_numa_aware &&
952  	    !auto_movable_can_online_movable(nid, group, nr_pages))
953  		goto kernel_zone;
954  #endif /* CONFIG_NUMA */
955  
956  	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
957  kernel_zone:
958  	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
959  }
960  
961  static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
962  		unsigned long nr_pages)
963  {
964  	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
965  			nr_pages);
966  	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
967  	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
968  	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
969  
970  	/*
971  	 * We inherit the existing zone in a simple case where zones do not
972  	 * overlap in the given range
973  	 */
974  	if (in_kernel ^ in_movable)
975  		return (in_kernel) ? kernel_zone : movable_zone;
976  
977  	/*
978  	 * If the range doesn't belong to any zone or two zones overlap in the
979  	 * given range then we use movable zone only if movable_node is
980  	 * enabled because we always online to a kernel zone by default.
981  	 */
982  	return movable_node_enabled ? movable_zone : kernel_zone;
983  }
984  
985  struct zone *zone_for_pfn_range(int online_type, int nid,
986  		struct memory_group *group, unsigned long start_pfn,
987  		unsigned long nr_pages)
988  {
989  	if (online_type == MMOP_ONLINE_KERNEL)
990  		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
991  
992  	if (online_type == MMOP_ONLINE_MOVABLE)
993  		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
994  
995  	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
996  		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
997  
998  	return default_zone_for_pfn(nid, start_pfn, nr_pages);
999  }
1000  
1001  /*
1002   * This function should only be called by memory_block_{online,offline},
1003   * and {online,offline}_pages.
1004   */
1005  void adjust_present_page_count(struct page *page, struct memory_group *group,
1006  			       long nr_pages)
1007  {
1008  	struct zone *zone = page_zone(page);
1009  	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1010  
1011  	/*
1012  	 * We only support onlining/offlining/adding/removing of complete
1013  	 * memory blocks; therefore, either all is either early or hotplugged.
1014  	 */
1015  	if (early_section(__pfn_to_section(page_to_pfn(page))))
1016  		zone->present_early_pages += nr_pages;
1017  	zone->present_pages += nr_pages;
1018  	zone->zone_pgdat->node_present_pages += nr_pages;
1019  
1020  	if (group && movable)
1021  		group->present_movable_pages += nr_pages;
1022  	else if (group && !movable)
1023  		group->present_kernel_pages += nr_pages;
1024  }
1025  
1026  int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1027  			      struct zone *zone)
1028  {
1029  	unsigned long end_pfn = pfn + nr_pages;
1030  	int ret, i;
1031  
1032  	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1033  	if (ret)
1034  		return ret;
1035  
1036  	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1037  
1038  	for (i = 0; i < nr_pages; i++)
1039  		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1040  
1041  	/*
1042  	 * It might be that the vmemmap_pages fully span sections. If that is
1043  	 * the case, mark those sections online here as otherwise they will be
1044  	 * left offline.
1045  	 */
1046  	if (nr_pages >= PAGES_PER_SECTION)
1047  	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1048  
1049  	return ret;
1050  }
1051  
1052  void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1053  {
1054  	unsigned long end_pfn = pfn + nr_pages;
1055  
1056  	/*
1057  	 * It might be that the vmemmap_pages fully span sections. If that is
1058  	 * the case, mark those sections offline here as otherwise they will be
1059  	 * left online.
1060  	 */
1061  	if (nr_pages >= PAGES_PER_SECTION)
1062  		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1063  
1064          /*
1065  	 * The pages associated with this vmemmap have been offlined, so
1066  	 * we can reset its state here.
1067  	 */
1068  	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1069  	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1070  }
1071  
1072  int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1073  		       struct zone *zone, struct memory_group *group)
1074  {
1075  	unsigned long flags;
1076  	int need_zonelists_rebuild = 0;
1077  	const int nid = zone_to_nid(zone);
1078  	int ret;
1079  	struct memory_notify arg;
1080  
1081  	/*
1082  	 * {on,off}lining is constrained to full memory sections (or more
1083  	 * precisely to memory blocks from the user space POV).
1084  	 * memmap_on_memory is an exception because it reserves initial part
1085  	 * of the physical memory space for vmemmaps. That space is pageblock
1086  	 * aligned.
1087  	 */
1088  	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1089  			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1090  		return -EINVAL;
1091  
1092  	mem_hotplug_begin();
1093  
1094  	/* associate pfn range with the zone */
1095  	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1096  
1097  	arg.start_pfn = pfn;
1098  	arg.nr_pages = nr_pages;
1099  	node_states_check_changes_online(nr_pages, zone, &arg);
1100  
1101  	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1102  	ret = notifier_to_errno(ret);
1103  	if (ret)
1104  		goto failed_addition;
1105  
1106  	/*
1107  	 * Fixup the number of isolated pageblocks before marking the sections
1108  	 * onlining, such that undo_isolate_page_range() works correctly.
1109  	 */
1110  	spin_lock_irqsave(&zone->lock, flags);
1111  	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1112  	spin_unlock_irqrestore(&zone->lock, flags);
1113  
1114  	/*
1115  	 * If this zone is not populated, then it is not in zonelist.
1116  	 * This means the page allocator ignores this zone.
1117  	 * So, zonelist must be updated after online.
1118  	 */
1119  	if (!populated_zone(zone)) {
1120  		need_zonelists_rebuild = 1;
1121  		setup_zone_pageset(zone);
1122  	}
1123  
1124  	online_pages_range(pfn, nr_pages);
1125  	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1126  
1127  	node_states_set_node(nid, &arg);
1128  	if (need_zonelists_rebuild)
1129  		build_all_zonelists(NULL);
1130  
1131  	/* Basic onlining is complete, allow allocation of onlined pages. */
1132  	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1133  
1134  	/*
1135  	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1136  	 * the tail of the freelist when undoing isolation). Shuffle the whole
1137  	 * zone to make sure the just onlined pages are properly distributed
1138  	 * across the whole freelist - to create an initial shuffle.
1139  	 */
1140  	shuffle_zone(zone);
1141  
1142  	/* reinitialise watermarks and update pcp limits */
1143  	init_per_zone_wmark_min();
1144  
1145  	kswapd_run(nid);
1146  	kcompactd_run(nid);
1147  
1148  	writeback_set_ratelimit();
1149  
1150  	memory_notify(MEM_ONLINE, &arg);
1151  	mem_hotplug_done();
1152  	return 0;
1153  
1154  failed_addition:
1155  	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1156  		 (unsigned long long) pfn << PAGE_SHIFT,
1157  		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1158  	memory_notify(MEM_CANCEL_ONLINE, &arg);
1159  	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1160  	mem_hotplug_done();
1161  	return ret;
1162  }
1163  
1164  static void reset_node_present_pages(pg_data_t *pgdat)
1165  {
1166  	struct zone *z;
1167  
1168  	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1169  		z->present_pages = 0;
1170  
1171  	pgdat->node_present_pages = 0;
1172  }
1173  
1174  /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1175  static pg_data_t __ref *hotadd_init_pgdat(int nid)
1176  {
1177  	struct pglist_data *pgdat;
1178  
1179  	/*
1180  	 * NODE_DATA is preallocated (free_area_init) but its internal
1181  	 * state is not allocated completely. Add missing pieces.
1182  	 * Completely offline nodes stay around and they just need
1183  	 * reintialization.
1184  	 */
1185  	pgdat = NODE_DATA(nid);
1186  
1187  	/* init node's zones as empty zones, we don't have any present pages.*/
1188  	free_area_init_core_hotplug(pgdat);
1189  
1190  	/*
1191  	 * The node we allocated has no zone fallback lists. For avoiding
1192  	 * to access not-initialized zonelist, build here.
1193  	 */
1194  	build_all_zonelists(pgdat);
1195  
1196  	/*
1197  	 * When memory is hot-added, all the memory is in offline state. So
1198  	 * clear all zones' present_pages because they will be updated in
1199  	 * online_pages() and offline_pages().
1200  	 * TODO: should be in free_area_init_core_hotplug?
1201  	 */
1202  	reset_node_managed_pages(pgdat);
1203  	reset_node_present_pages(pgdat);
1204  
1205  	return pgdat;
1206  }
1207  
1208  /*
1209   * __try_online_node - online a node if offlined
1210   * @nid: the node ID
1211   * @set_node_online: Whether we want to online the node
1212   * called by cpu_up() to online a node without onlined memory.
1213   *
1214   * Returns:
1215   * 1 -> a new node has been allocated
1216   * 0 -> the node is already online
1217   * -ENOMEM -> the node could not be allocated
1218   */
1219  static int __try_online_node(int nid, bool set_node_online)
1220  {
1221  	pg_data_t *pgdat;
1222  	int ret = 1;
1223  
1224  	if (node_online(nid))
1225  		return 0;
1226  
1227  	pgdat = hotadd_init_pgdat(nid);
1228  	if (!pgdat) {
1229  		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1230  		ret = -ENOMEM;
1231  		goto out;
1232  	}
1233  
1234  	if (set_node_online) {
1235  		node_set_online(nid);
1236  		ret = register_one_node(nid);
1237  		BUG_ON(ret);
1238  	}
1239  out:
1240  	return ret;
1241  }
1242  
1243  /*
1244   * Users of this function always want to online/register the node
1245   */
1246  int try_online_node(int nid)
1247  {
1248  	int ret;
1249  
1250  	mem_hotplug_begin();
1251  	ret =  __try_online_node(nid, true);
1252  	mem_hotplug_done();
1253  	return ret;
1254  }
1255  
1256  static int check_hotplug_memory_range(u64 start, u64 size)
1257  {
1258  	/* memory range must be block size aligned */
1259  	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1260  	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1261  		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1262  		       memory_block_size_bytes(), start, size);
1263  		return -EINVAL;
1264  	}
1265  
1266  	return 0;
1267  }
1268  
1269  static int online_memory_block(struct memory_block *mem, void *arg)
1270  {
1271  	mem->online_type = mhp_default_online_type;
1272  	return device_online(&mem->dev);
1273  }
1274  
1275  bool mhp_supports_memmap_on_memory(unsigned long size)
1276  {
1277  	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1278  	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1279  	unsigned long remaining_size = size - vmemmap_size;
1280  
1281  	/*
1282  	 * Besides having arch support and the feature enabled at runtime, we
1283  	 * need a few more assumptions to hold true:
1284  	 *
1285  	 * a) We span a single memory block: memory onlining/offlinin;g happens
1286  	 *    in memory block granularity. We don't want the vmemmap of online
1287  	 *    memory blocks to reside on offline memory blocks. In the future,
1288  	 *    we might want to support variable-sized memory blocks to make the
1289  	 *    feature more versatile.
1290  	 *
1291  	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1292  	 *    to populate memory from the altmap for unrelated parts (i.e.,
1293  	 *    other memory blocks)
1294  	 *
1295  	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1296  	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1297  	 *    code requires applicable ranges to be page-aligned, for example, to
1298  	 *    set the migratetypes properly.
1299  	 *
1300  	 * TODO: Although we have a check here to make sure that vmemmap pages
1301  	 *       fully populate a PMD, it is not the right place to check for
1302  	 *       this. A much better solution involves improving vmemmap code
1303  	 *       to fallback to base pages when trying to populate vmemmap using
1304  	 *       altmap as an alternative source of memory, and we do not exactly
1305  	 *       populate a single PMD.
1306  	 */
1307  	return mhp_memmap_on_memory() &&
1308  	       size == memory_block_size_bytes() &&
1309  	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1310  	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1311  }
1312  
1313  /*
1314   * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1315   * and online/offline operations (triggered e.g. by sysfs).
1316   *
1317   * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1318   */
1319  int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1320  {
1321  	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1322  	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1323  	struct vmem_altmap mhp_altmap = {};
1324  	struct memory_group *group = NULL;
1325  	u64 start, size;
1326  	bool new_node = false;
1327  	int ret;
1328  
1329  	start = res->start;
1330  	size = resource_size(res);
1331  
1332  	ret = check_hotplug_memory_range(start, size);
1333  	if (ret)
1334  		return ret;
1335  
1336  	if (mhp_flags & MHP_NID_IS_MGID) {
1337  		group = memory_group_find_by_id(nid);
1338  		if (!group)
1339  			return -EINVAL;
1340  		nid = group->nid;
1341  	}
1342  
1343  	if (!node_possible(nid)) {
1344  		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1345  		return -EINVAL;
1346  	}
1347  
1348  	mem_hotplug_begin();
1349  
1350  	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1351  		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1352  			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1353  		ret = memblock_add_node(start, size, nid, memblock_flags);
1354  		if (ret)
1355  			goto error_mem_hotplug_end;
1356  	}
1357  
1358  	ret = __try_online_node(nid, false);
1359  	if (ret < 0)
1360  		goto error;
1361  	new_node = ret;
1362  
1363  	/*
1364  	 * Self hosted memmap array
1365  	 */
1366  	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1367  		if (!mhp_supports_memmap_on_memory(size)) {
1368  			ret = -EINVAL;
1369  			goto error;
1370  		}
1371  		mhp_altmap.free = PHYS_PFN(size);
1372  		mhp_altmap.base_pfn = PHYS_PFN(start);
1373  		params.altmap = &mhp_altmap;
1374  	}
1375  
1376  	/* call arch's memory hotadd */
1377  	ret = arch_add_memory(nid, start, size, &params);
1378  	if (ret < 0)
1379  		goto error;
1380  
1381  	/* create memory block devices after memory was added */
1382  	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1383  					  group);
1384  	if (ret) {
1385  		arch_remove_memory(start, size, NULL);
1386  		goto error;
1387  	}
1388  
1389  	if (new_node) {
1390  		/* If sysfs file of new node can't be created, cpu on the node
1391  		 * can't be hot-added. There is no rollback way now.
1392  		 * So, check by BUG_ON() to catch it reluctantly..
1393  		 * We online node here. We can't roll back from here.
1394  		 */
1395  		node_set_online(nid);
1396  		ret = __register_one_node(nid);
1397  		BUG_ON(ret);
1398  	}
1399  
1400  	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1401  					  PFN_UP(start + size - 1),
1402  					  MEMINIT_HOTPLUG);
1403  
1404  	/* create new memmap entry */
1405  	if (!strcmp(res->name, "System RAM"))
1406  		firmware_map_add_hotplug(start, start + size, "System RAM");
1407  
1408  	/* device_online() will take the lock when calling online_pages() */
1409  	mem_hotplug_done();
1410  
1411  	/*
1412  	 * In case we're allowed to merge the resource, flag it and trigger
1413  	 * merging now that adding succeeded.
1414  	 */
1415  	if (mhp_flags & MHP_MERGE_RESOURCE)
1416  		merge_system_ram_resource(res);
1417  
1418  	/* online pages if requested */
1419  	if (mhp_default_online_type != MMOP_OFFLINE)
1420  		walk_memory_blocks(start, size, NULL, online_memory_block);
1421  
1422  	return ret;
1423  error:
1424  	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1425  		memblock_remove(start, size);
1426  error_mem_hotplug_end:
1427  	mem_hotplug_done();
1428  	return ret;
1429  }
1430  
1431  /* requires device_hotplug_lock, see add_memory_resource() */
1432  int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1433  {
1434  	struct resource *res;
1435  	int ret;
1436  
1437  	res = register_memory_resource(start, size, "System RAM");
1438  	if (IS_ERR(res))
1439  		return PTR_ERR(res);
1440  
1441  	ret = add_memory_resource(nid, res, mhp_flags);
1442  	if (ret < 0)
1443  		release_memory_resource(res);
1444  	return ret;
1445  }
1446  
1447  int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1448  {
1449  	int rc;
1450  
1451  	lock_device_hotplug();
1452  	rc = __add_memory(nid, start, size, mhp_flags);
1453  	unlock_device_hotplug();
1454  
1455  	return rc;
1456  }
1457  EXPORT_SYMBOL_GPL(add_memory);
1458  
1459  /*
1460   * Add special, driver-managed memory to the system as system RAM. Such
1461   * memory is not exposed via the raw firmware-provided memmap as system
1462   * RAM, instead, it is detected and added by a driver - during cold boot,
1463   * after a reboot, and after kexec.
1464   *
1465   * Reasons why this memory should not be used for the initial memmap of a
1466   * kexec kernel or for placing kexec images:
1467   * - The booting kernel is in charge of determining how this memory will be
1468   *   used (e.g., use persistent memory as system RAM)
1469   * - Coordination with a hypervisor is required before this memory
1470   *   can be used (e.g., inaccessible parts).
1471   *
1472   * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1473   * memory map") are created. Also, the created memory resource is flagged
1474   * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1475   * this memory as well (esp., not place kexec images onto it).
1476   *
1477   * The resource_name (visible via /proc/iomem) has to have the format
1478   * "System RAM ($DRIVER)".
1479   */
1480  int add_memory_driver_managed(int nid, u64 start, u64 size,
1481  			      const char *resource_name, mhp_t mhp_flags)
1482  {
1483  	struct resource *res;
1484  	int rc;
1485  
1486  	if (!resource_name ||
1487  	    strstr(resource_name, "System RAM (") != resource_name ||
1488  	    resource_name[strlen(resource_name) - 1] != ')')
1489  		return -EINVAL;
1490  
1491  	lock_device_hotplug();
1492  
1493  	res = register_memory_resource(start, size, resource_name);
1494  	if (IS_ERR(res)) {
1495  		rc = PTR_ERR(res);
1496  		goto out_unlock;
1497  	}
1498  
1499  	rc = add_memory_resource(nid, res, mhp_flags);
1500  	if (rc < 0)
1501  		release_memory_resource(res);
1502  
1503  out_unlock:
1504  	unlock_device_hotplug();
1505  	return rc;
1506  }
1507  EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1508  
1509  /*
1510   * Platforms should define arch_get_mappable_range() that provides
1511   * maximum possible addressable physical memory range for which the
1512   * linear mapping could be created. The platform returned address
1513   * range must adhere to these following semantics.
1514   *
1515   * - range.start <= range.end
1516   * - Range includes both end points [range.start..range.end]
1517   *
1518   * There is also a fallback definition provided here, allowing the
1519   * entire possible physical address range in case any platform does
1520   * not define arch_get_mappable_range().
1521   */
1522  struct range __weak arch_get_mappable_range(void)
1523  {
1524  	struct range mhp_range = {
1525  		.start = 0UL,
1526  		.end = -1ULL,
1527  	};
1528  	return mhp_range;
1529  }
1530  
1531  struct range mhp_get_pluggable_range(bool need_mapping)
1532  {
1533  	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1534  	struct range mhp_range;
1535  
1536  	if (need_mapping) {
1537  		mhp_range = arch_get_mappable_range();
1538  		if (mhp_range.start > max_phys) {
1539  			mhp_range.start = 0;
1540  			mhp_range.end = 0;
1541  		}
1542  		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1543  	} else {
1544  		mhp_range.start = 0;
1545  		mhp_range.end = max_phys;
1546  	}
1547  	return mhp_range;
1548  }
1549  EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1550  
1551  bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1552  {
1553  	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1554  	u64 end = start + size;
1555  
1556  	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1557  		return true;
1558  
1559  	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1560  		start, end, mhp_range.start, mhp_range.end);
1561  	return false;
1562  }
1563  
1564  #ifdef CONFIG_MEMORY_HOTREMOVE
1565  /*
1566   * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1567   * non-lru movable pages and hugepages). Will skip over most unmovable
1568   * pages (esp., pages that can be skipped when offlining), but bail out on
1569   * definitely unmovable pages.
1570   *
1571   * Returns:
1572   *	0 in case a movable page is found and movable_pfn was updated.
1573   *	-ENOENT in case no movable page was found.
1574   *	-EBUSY in case a definitely unmovable page was found.
1575   */
1576  static int scan_movable_pages(unsigned long start, unsigned long end,
1577  			      unsigned long *movable_pfn)
1578  {
1579  	unsigned long pfn;
1580  
1581  	for (pfn = start; pfn < end; pfn++) {
1582  		struct page *page, *head;
1583  		unsigned long skip;
1584  
1585  		if (!pfn_valid(pfn))
1586  			continue;
1587  		page = pfn_to_page(pfn);
1588  		if (PageLRU(page))
1589  			goto found;
1590  		if (__PageMovable(page))
1591  			goto found;
1592  
1593  		/*
1594  		 * PageOffline() pages that are not marked __PageMovable() and
1595  		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1596  		 * definitely unmovable. If their reference count would be 0,
1597  		 * they could at least be skipped when offlining memory.
1598  		 */
1599  		if (PageOffline(page) && page_count(page))
1600  			return -EBUSY;
1601  
1602  		if (!PageHuge(page))
1603  			continue;
1604  		head = compound_head(page);
1605  		/*
1606  		 * This test is racy as we hold no reference or lock.  The
1607  		 * hugetlb page could have been free'ed and head is no longer
1608  		 * a hugetlb page before the following check.  In such unlikely
1609  		 * cases false positives and negatives are possible.  Calling
1610  		 * code must deal with these scenarios.
1611  		 */
1612  		if (HPageMigratable(head))
1613  			goto found;
1614  		skip = compound_nr(head) - (page - head);
1615  		pfn += skip - 1;
1616  	}
1617  	return -ENOENT;
1618  found:
1619  	*movable_pfn = pfn;
1620  	return 0;
1621  }
1622  
1623  static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1624  {
1625  	unsigned long pfn;
1626  	struct page *page, *head;
1627  	LIST_HEAD(source);
1628  	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1629  				      DEFAULT_RATELIMIT_BURST);
1630  
1631  	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1632  		struct folio *folio;
1633  		bool isolated;
1634  
1635  		if (!pfn_valid(pfn))
1636  			continue;
1637  		page = pfn_to_page(pfn);
1638  		folio = page_folio(page);
1639  		head = &folio->page;
1640  
1641  		if (PageHuge(page)) {
1642  			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1643  			isolate_hugetlb(folio, &source);
1644  			continue;
1645  		} else if (PageTransHuge(page))
1646  			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1647  
1648  		/*
1649  		 * HWPoison pages have elevated reference counts so the migration would
1650  		 * fail on them. It also doesn't make any sense to migrate them in the
1651  		 * first place. Still try to unmap such a page in case it is still mapped
1652  		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1653  		 * the unmap as the catch all safety net).
1654  		 */
1655  		if (PageHWPoison(page)) {
1656  			if (WARN_ON(folio_test_lru(folio)))
1657  				folio_isolate_lru(folio);
1658  			if (folio_mapped(folio))
1659  				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1660  			continue;
1661  		}
1662  
1663  		if (!get_page_unless_zero(page))
1664  			continue;
1665  		/*
1666  		 * We can skip free pages. And we can deal with pages on
1667  		 * LRU and non-lru movable pages.
1668  		 */
1669  		if (PageLRU(page))
1670  			isolated = isolate_lru_page(page);
1671  		else
1672  			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1673  		if (isolated) {
1674  			list_add_tail(&page->lru, &source);
1675  			if (!__PageMovable(page))
1676  				inc_node_page_state(page, NR_ISOLATED_ANON +
1677  						    page_is_file_lru(page));
1678  
1679  		} else {
1680  			if (__ratelimit(&migrate_rs)) {
1681  				pr_warn("failed to isolate pfn %lx\n", pfn);
1682  				dump_page(page, "isolation failed");
1683  			}
1684  		}
1685  		put_page(page);
1686  	}
1687  	if (!list_empty(&source)) {
1688  		nodemask_t nmask = node_states[N_MEMORY];
1689  		struct migration_target_control mtc = {
1690  			.nmask = &nmask,
1691  			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1692  		};
1693  		int ret;
1694  
1695  		/*
1696  		 * We have checked that migration range is on a single zone so
1697  		 * we can use the nid of the first page to all the others.
1698  		 */
1699  		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1700  
1701  		/*
1702  		 * try to allocate from a different node but reuse this node
1703  		 * if there are no other online nodes to be used (e.g. we are
1704  		 * offlining a part of the only existing node)
1705  		 */
1706  		node_clear(mtc.nid, nmask);
1707  		if (nodes_empty(nmask))
1708  			node_set(mtc.nid, nmask);
1709  		ret = migrate_pages(&source, alloc_migration_target, NULL,
1710  			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1711  		if (ret) {
1712  			list_for_each_entry(page, &source, lru) {
1713  				if (__ratelimit(&migrate_rs)) {
1714  					pr_warn("migrating pfn %lx failed ret:%d\n",
1715  						page_to_pfn(page), ret);
1716  					dump_page(page, "migration failure");
1717  				}
1718  			}
1719  			putback_movable_pages(&source);
1720  		}
1721  	}
1722  }
1723  
1724  static int __init cmdline_parse_movable_node(char *p)
1725  {
1726  	movable_node_enabled = true;
1727  	return 0;
1728  }
1729  early_param("movable_node", cmdline_parse_movable_node);
1730  
1731  /* check which state of node_states will be changed when offline memory */
1732  static void node_states_check_changes_offline(unsigned long nr_pages,
1733  		struct zone *zone, struct memory_notify *arg)
1734  {
1735  	struct pglist_data *pgdat = zone->zone_pgdat;
1736  	unsigned long present_pages = 0;
1737  	enum zone_type zt;
1738  
1739  	arg->status_change_nid = NUMA_NO_NODE;
1740  	arg->status_change_nid_normal = NUMA_NO_NODE;
1741  
1742  	/*
1743  	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1744  	 * If the memory to be offline is within the range
1745  	 * [0..ZONE_NORMAL], and it is the last present memory there,
1746  	 * the zones in that range will become empty after the offlining,
1747  	 * thus we can determine that we need to clear the node from
1748  	 * node_states[N_NORMAL_MEMORY].
1749  	 */
1750  	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1751  		present_pages += pgdat->node_zones[zt].present_pages;
1752  	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1753  		arg->status_change_nid_normal = zone_to_nid(zone);
1754  
1755  	/*
1756  	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1757  	 * does not apply as we don't support 32bit.
1758  	 * Here we count the possible pages from ZONE_MOVABLE.
1759  	 * If after having accounted all the pages, we see that the nr_pages
1760  	 * to be offlined is over or equal to the accounted pages,
1761  	 * we know that the node will become empty, and so, we can clear
1762  	 * it for N_MEMORY as well.
1763  	 */
1764  	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1765  
1766  	if (nr_pages >= present_pages)
1767  		arg->status_change_nid = zone_to_nid(zone);
1768  }
1769  
1770  static void node_states_clear_node(int node, struct memory_notify *arg)
1771  {
1772  	if (arg->status_change_nid_normal >= 0)
1773  		node_clear_state(node, N_NORMAL_MEMORY);
1774  
1775  	if (arg->status_change_nid >= 0)
1776  		node_clear_state(node, N_MEMORY);
1777  }
1778  
1779  static int count_system_ram_pages_cb(unsigned long start_pfn,
1780  				     unsigned long nr_pages, void *data)
1781  {
1782  	unsigned long *nr_system_ram_pages = data;
1783  
1784  	*nr_system_ram_pages += nr_pages;
1785  	return 0;
1786  }
1787  
1788  int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1789  			struct zone *zone, struct memory_group *group)
1790  {
1791  	const unsigned long end_pfn = start_pfn + nr_pages;
1792  	unsigned long pfn, system_ram_pages = 0;
1793  	const int node = zone_to_nid(zone);
1794  	unsigned long flags;
1795  	struct memory_notify arg;
1796  	char *reason;
1797  	int ret;
1798  
1799  	/*
1800  	 * {on,off}lining is constrained to full memory sections (or more
1801  	 * precisely to memory blocks from the user space POV).
1802  	 * memmap_on_memory is an exception because it reserves initial part
1803  	 * of the physical memory space for vmemmaps. That space is pageblock
1804  	 * aligned.
1805  	 */
1806  	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1807  			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1808  		return -EINVAL;
1809  
1810  	mem_hotplug_begin();
1811  
1812  	/*
1813  	 * Don't allow to offline memory blocks that contain holes.
1814  	 * Consequently, memory blocks with holes can never get onlined
1815  	 * via the hotplug path - online_pages() - as hotplugged memory has
1816  	 * no holes. This way, we e.g., don't have to worry about marking
1817  	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1818  	 * avoid using walk_system_ram_range() later.
1819  	 */
1820  	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1821  			      count_system_ram_pages_cb);
1822  	if (system_ram_pages != nr_pages) {
1823  		ret = -EINVAL;
1824  		reason = "memory holes";
1825  		goto failed_removal;
1826  	}
1827  
1828  	/*
1829  	 * We only support offlining of memory blocks managed by a single zone,
1830  	 * checked by calling code. This is just a sanity check that we might
1831  	 * want to remove in the future.
1832  	 */
1833  	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1834  			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1835  		ret = -EINVAL;
1836  		reason = "multizone range";
1837  		goto failed_removal;
1838  	}
1839  
1840  	/*
1841  	 * Disable pcplists so that page isolation cannot race with freeing
1842  	 * in a way that pages from isolated pageblock are left on pcplists.
1843  	 */
1844  	zone_pcp_disable(zone);
1845  	lru_cache_disable();
1846  
1847  	/* set above range as isolated */
1848  	ret = start_isolate_page_range(start_pfn, end_pfn,
1849  				       MIGRATE_MOVABLE,
1850  				       MEMORY_OFFLINE | REPORT_FAILURE,
1851  				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1852  	if (ret) {
1853  		reason = "failure to isolate range";
1854  		goto failed_removal_pcplists_disabled;
1855  	}
1856  
1857  	arg.start_pfn = start_pfn;
1858  	arg.nr_pages = nr_pages;
1859  	node_states_check_changes_offline(nr_pages, zone, &arg);
1860  
1861  	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1862  	ret = notifier_to_errno(ret);
1863  	if (ret) {
1864  		reason = "notifier failure";
1865  		goto failed_removal_isolated;
1866  	}
1867  
1868  	do {
1869  		pfn = start_pfn;
1870  		do {
1871  			if (signal_pending(current)) {
1872  				ret = -EINTR;
1873  				reason = "signal backoff";
1874  				goto failed_removal_isolated;
1875  			}
1876  
1877  			cond_resched();
1878  
1879  			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1880  			if (!ret) {
1881  				/*
1882  				 * TODO: fatal migration failures should bail
1883  				 * out
1884  				 */
1885  				do_migrate_range(pfn, end_pfn);
1886  			}
1887  		} while (!ret);
1888  
1889  		if (ret != -ENOENT) {
1890  			reason = "unmovable page";
1891  			goto failed_removal_isolated;
1892  		}
1893  
1894  		/*
1895  		 * Dissolve free hugepages in the memory block before doing
1896  		 * offlining actually in order to make hugetlbfs's object
1897  		 * counting consistent.
1898  		 */
1899  		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1900  		if (ret) {
1901  			reason = "failure to dissolve huge pages";
1902  			goto failed_removal_isolated;
1903  		}
1904  
1905  		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1906  
1907  	} while (ret);
1908  
1909  	/* Mark all sections offline and remove free pages from the buddy. */
1910  	__offline_isolated_pages(start_pfn, end_pfn);
1911  	pr_debug("Offlined Pages %ld\n", nr_pages);
1912  
1913  	/*
1914  	 * The memory sections are marked offline, and the pageblock flags
1915  	 * effectively stale; nobody should be touching them. Fixup the number
1916  	 * of isolated pageblocks, memory onlining will properly revert this.
1917  	 */
1918  	spin_lock_irqsave(&zone->lock, flags);
1919  	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1920  	spin_unlock_irqrestore(&zone->lock, flags);
1921  
1922  	lru_cache_enable();
1923  	zone_pcp_enable(zone);
1924  
1925  	/* removal success */
1926  	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1927  	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1928  
1929  	/* reinitialise watermarks and update pcp limits */
1930  	init_per_zone_wmark_min();
1931  
1932  	if (!populated_zone(zone)) {
1933  		zone_pcp_reset(zone);
1934  		build_all_zonelists(NULL);
1935  	}
1936  
1937  	node_states_clear_node(node, &arg);
1938  	if (arg.status_change_nid >= 0) {
1939  		kcompactd_stop(node);
1940  		kswapd_stop(node);
1941  	}
1942  
1943  	writeback_set_ratelimit();
1944  
1945  	memory_notify(MEM_OFFLINE, &arg);
1946  	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1947  	mem_hotplug_done();
1948  	return 0;
1949  
1950  failed_removal_isolated:
1951  	/* pushback to free area */
1952  	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1953  	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1954  failed_removal_pcplists_disabled:
1955  	lru_cache_enable();
1956  	zone_pcp_enable(zone);
1957  failed_removal:
1958  	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1959  		 (unsigned long long) start_pfn << PAGE_SHIFT,
1960  		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1961  		 reason);
1962  	mem_hotplug_done();
1963  	return ret;
1964  }
1965  
1966  static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1967  {
1968  	int *nid = arg;
1969  
1970  	*nid = mem->nid;
1971  	if (unlikely(mem->state != MEM_OFFLINE)) {
1972  		phys_addr_t beginpa, endpa;
1973  
1974  		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1975  		endpa = beginpa + memory_block_size_bytes() - 1;
1976  		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1977  			&beginpa, &endpa);
1978  
1979  		return -EBUSY;
1980  	}
1981  	return 0;
1982  }
1983  
1984  static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1985  {
1986  	/*
1987  	 * If not set, continue with the next block.
1988  	 */
1989  	return mem->nr_vmemmap_pages;
1990  }
1991  
1992  static int check_cpu_on_node(int nid)
1993  {
1994  	int cpu;
1995  
1996  	for_each_present_cpu(cpu) {
1997  		if (cpu_to_node(cpu) == nid)
1998  			/*
1999  			 * the cpu on this node isn't removed, and we can't
2000  			 * offline this node.
2001  			 */
2002  			return -EBUSY;
2003  	}
2004  
2005  	return 0;
2006  }
2007  
2008  static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2009  {
2010  	int nid = *(int *)arg;
2011  
2012  	/*
2013  	 * If a memory block belongs to multiple nodes, the stored nid is not
2014  	 * reliable. However, such blocks are always online (e.g., cannot get
2015  	 * offlined) and, therefore, are still spanned by the node.
2016  	 */
2017  	return mem->nid == nid ? -EEXIST : 0;
2018  }
2019  
2020  /**
2021   * try_offline_node
2022   * @nid: the node ID
2023   *
2024   * Offline a node if all memory sections and cpus of the node are removed.
2025   *
2026   * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2027   * and online/offline operations before this call.
2028   */
2029  void try_offline_node(int nid)
2030  {
2031  	int rc;
2032  
2033  	/*
2034  	 * If the node still spans pages (especially ZONE_DEVICE), don't
2035  	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2036  	 * e.g., after the memory block was onlined.
2037  	 */
2038  	if (node_spanned_pages(nid))
2039  		return;
2040  
2041  	/*
2042  	 * Especially offline memory blocks might not be spanned by the
2043  	 * node. They will get spanned by the node once they get onlined.
2044  	 * However, they link to the node in sysfs and can get onlined later.
2045  	 */
2046  	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2047  	if (rc)
2048  		return;
2049  
2050  	if (check_cpu_on_node(nid))
2051  		return;
2052  
2053  	/*
2054  	 * all memory/cpu of this node are removed, we can offline this
2055  	 * node now.
2056  	 */
2057  	node_set_offline(nid);
2058  	unregister_one_node(nid);
2059  }
2060  EXPORT_SYMBOL(try_offline_node);
2061  
2062  static int __ref try_remove_memory(u64 start, u64 size)
2063  {
2064  	struct vmem_altmap mhp_altmap = {};
2065  	struct vmem_altmap *altmap = NULL;
2066  	unsigned long nr_vmemmap_pages;
2067  	int rc = 0, nid = NUMA_NO_NODE;
2068  
2069  	BUG_ON(check_hotplug_memory_range(start, size));
2070  
2071  	/*
2072  	 * All memory blocks must be offlined before removing memory.  Check
2073  	 * whether all memory blocks in question are offline and return error
2074  	 * if this is not the case.
2075  	 *
2076  	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2077  	 * we'd only try to offline the last determined one -- which is good
2078  	 * enough for the cases we care about.
2079  	 */
2080  	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2081  	if (rc)
2082  		return rc;
2083  
2084  	/*
2085  	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2086  	 * the same granularity it was added - a single memory block.
2087  	 */
2088  	if (mhp_memmap_on_memory()) {
2089  		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2090  						      get_nr_vmemmap_pages_cb);
2091  		if (nr_vmemmap_pages) {
2092  			if (size != memory_block_size_bytes()) {
2093  				pr_warn("Refuse to remove %#llx - %#llx,"
2094  					"wrong granularity\n",
2095  					start, start + size);
2096  				return -EINVAL;
2097  			}
2098  
2099  			/*
2100  			 * Let remove_pmd_table->free_hugepage_table do the
2101  			 * right thing if we used vmem_altmap when hot-adding
2102  			 * the range.
2103  			 */
2104  			mhp_altmap.alloc = nr_vmemmap_pages;
2105  			altmap = &mhp_altmap;
2106  		}
2107  	}
2108  
2109  	/* remove memmap entry */
2110  	firmware_map_remove(start, start + size, "System RAM");
2111  
2112  	/*
2113  	 * Memory block device removal under the device_hotplug_lock is
2114  	 * a barrier against racing online attempts.
2115  	 */
2116  	remove_memory_block_devices(start, size);
2117  
2118  	mem_hotplug_begin();
2119  
2120  	arch_remove_memory(start, size, altmap);
2121  
2122  	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2123  		memblock_phys_free(start, size);
2124  		memblock_remove(start, size);
2125  	}
2126  
2127  	release_mem_region_adjustable(start, size);
2128  
2129  	if (nid != NUMA_NO_NODE)
2130  		try_offline_node(nid);
2131  
2132  	mem_hotplug_done();
2133  	return 0;
2134  }
2135  
2136  /**
2137   * __remove_memory - Remove memory if every memory block is offline
2138   * @start: physical address of the region to remove
2139   * @size: size of the region to remove
2140   *
2141   * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2142   * and online/offline operations before this call, as required by
2143   * try_offline_node().
2144   */
2145  void __remove_memory(u64 start, u64 size)
2146  {
2147  
2148  	/*
2149  	 * trigger BUG() if some memory is not offlined prior to calling this
2150  	 * function
2151  	 */
2152  	if (try_remove_memory(start, size))
2153  		BUG();
2154  }
2155  
2156  /*
2157   * Remove memory if every memory block is offline, otherwise return -EBUSY is
2158   * some memory is not offline
2159   */
2160  int remove_memory(u64 start, u64 size)
2161  {
2162  	int rc;
2163  
2164  	lock_device_hotplug();
2165  	rc = try_remove_memory(start, size);
2166  	unlock_device_hotplug();
2167  
2168  	return rc;
2169  }
2170  EXPORT_SYMBOL_GPL(remove_memory);
2171  
2172  static int try_offline_memory_block(struct memory_block *mem, void *arg)
2173  {
2174  	uint8_t online_type = MMOP_ONLINE_KERNEL;
2175  	uint8_t **online_types = arg;
2176  	struct page *page;
2177  	int rc;
2178  
2179  	/*
2180  	 * Sense the online_type via the zone of the memory block. Offlining
2181  	 * with multiple zones within one memory block will be rejected
2182  	 * by offlining code ... so we don't care about that.
2183  	 */
2184  	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2185  	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2186  		online_type = MMOP_ONLINE_MOVABLE;
2187  
2188  	rc = device_offline(&mem->dev);
2189  	/*
2190  	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2191  	 * so try_reonline_memory_block() can do the right thing.
2192  	 */
2193  	if (!rc)
2194  		**online_types = online_type;
2195  
2196  	(*online_types)++;
2197  	/* Ignore if already offline. */
2198  	return rc < 0 ? rc : 0;
2199  }
2200  
2201  static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2202  {
2203  	uint8_t **online_types = arg;
2204  	int rc;
2205  
2206  	if (**online_types != MMOP_OFFLINE) {
2207  		mem->online_type = **online_types;
2208  		rc = device_online(&mem->dev);
2209  		if (rc < 0)
2210  			pr_warn("%s: Failed to re-online memory: %d",
2211  				__func__, rc);
2212  	}
2213  
2214  	/* Continue processing all remaining memory blocks. */
2215  	(*online_types)++;
2216  	return 0;
2217  }
2218  
2219  /*
2220   * Try to offline and remove memory. Might take a long time to finish in case
2221   * memory is still in use. Primarily useful for memory devices that logically
2222   * unplugged all memory (so it's no longer in use) and want to offline + remove
2223   * that memory.
2224   */
2225  int offline_and_remove_memory(u64 start, u64 size)
2226  {
2227  	const unsigned long mb_count = size / memory_block_size_bytes();
2228  	uint8_t *online_types, *tmp;
2229  	int rc;
2230  
2231  	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2232  	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2233  		return -EINVAL;
2234  
2235  	/*
2236  	 * We'll remember the old online type of each memory block, so we can
2237  	 * try to revert whatever we did when offlining one memory block fails
2238  	 * after offlining some others succeeded.
2239  	 */
2240  	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2241  				     GFP_KERNEL);
2242  	if (!online_types)
2243  		return -ENOMEM;
2244  	/*
2245  	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2246  	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2247  	 * try_reonline_memory_block().
2248  	 */
2249  	memset(online_types, MMOP_OFFLINE, mb_count);
2250  
2251  	lock_device_hotplug();
2252  
2253  	tmp = online_types;
2254  	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2255  
2256  	/*
2257  	 * In case we succeeded to offline all memory, remove it.
2258  	 * This cannot fail as it cannot get onlined in the meantime.
2259  	 */
2260  	if (!rc) {
2261  		rc = try_remove_memory(start, size);
2262  		if (rc)
2263  			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2264  	}
2265  
2266  	/*
2267  	 * Rollback what we did. While memory onlining might theoretically fail
2268  	 * (nacked by a notifier), it barely ever happens.
2269  	 */
2270  	if (rc) {
2271  		tmp = online_types;
2272  		walk_memory_blocks(start, size, &tmp,
2273  				   try_reonline_memory_block);
2274  	}
2275  	unlock_device_hotplug();
2276  
2277  	kfree(online_types);
2278  	return rc;
2279  }
2280  EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2281  #endif /* CONFIG_MEMORY_HOTREMOVE */
2282