1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/bootmem.h> 37 #include <linux/compaction.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 56 static struct { 57 struct task_struct *active_writer; 58 struct mutex lock; /* Synchronizes accesses to refcount, */ 59 /* 60 * Also blocks the new readers during 61 * an ongoing mem hotplug operation. 62 */ 63 int refcount; 64 65 #ifdef CONFIG_DEBUG_LOCK_ALLOC 66 struct lockdep_map dep_map; 67 #endif 68 } mem_hotplug = { 69 .active_writer = NULL, 70 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 71 .refcount = 0, 72 #ifdef CONFIG_DEBUG_LOCK_ALLOC 73 .dep_map = {.name = "mem_hotplug.lock" }, 74 #endif 75 }; 76 77 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 78 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 79 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 80 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 81 82 bool movable_node_enabled = false; 83 84 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 85 bool memhp_auto_online; 86 #else 87 bool memhp_auto_online = true; 88 #endif 89 EXPORT_SYMBOL_GPL(memhp_auto_online); 90 91 static int __init setup_memhp_default_state(char *str) 92 { 93 if (!strcmp(str, "online")) 94 memhp_auto_online = true; 95 else if (!strcmp(str, "offline")) 96 memhp_auto_online = false; 97 98 return 1; 99 } 100 __setup("memhp_default_state=", setup_memhp_default_state); 101 102 void get_online_mems(void) 103 { 104 might_sleep(); 105 if (mem_hotplug.active_writer == current) 106 return; 107 memhp_lock_acquire_read(); 108 mutex_lock(&mem_hotplug.lock); 109 mem_hotplug.refcount++; 110 mutex_unlock(&mem_hotplug.lock); 111 112 } 113 114 void put_online_mems(void) 115 { 116 if (mem_hotplug.active_writer == current) 117 return; 118 mutex_lock(&mem_hotplug.lock); 119 120 if (WARN_ON(!mem_hotplug.refcount)) 121 mem_hotplug.refcount++; /* try to fix things up */ 122 123 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 124 wake_up_process(mem_hotplug.active_writer); 125 mutex_unlock(&mem_hotplug.lock); 126 memhp_lock_release(); 127 128 } 129 130 /* Serializes write accesses to mem_hotplug.active_writer. */ 131 static DEFINE_MUTEX(memory_add_remove_lock); 132 133 void mem_hotplug_begin(void) 134 { 135 mutex_lock(&memory_add_remove_lock); 136 137 mem_hotplug.active_writer = current; 138 139 memhp_lock_acquire(); 140 for (;;) { 141 mutex_lock(&mem_hotplug.lock); 142 if (likely(!mem_hotplug.refcount)) 143 break; 144 __set_current_state(TASK_UNINTERRUPTIBLE); 145 mutex_unlock(&mem_hotplug.lock); 146 schedule(); 147 } 148 } 149 150 void mem_hotplug_done(void) 151 { 152 mem_hotplug.active_writer = NULL; 153 mutex_unlock(&mem_hotplug.lock); 154 memhp_lock_release(); 155 mutex_unlock(&memory_add_remove_lock); 156 } 157 158 /* add this memory to iomem resource */ 159 static struct resource *register_memory_resource(u64 start, u64 size) 160 { 161 struct resource *res; 162 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 163 if (!res) 164 return ERR_PTR(-ENOMEM); 165 166 res->name = "System RAM"; 167 res->start = start; 168 res->end = start + size - 1; 169 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 170 if (request_resource(&iomem_resource, res) < 0) { 171 pr_debug("System RAM resource %pR cannot be added\n", res); 172 kfree(res); 173 return ERR_PTR(-EEXIST); 174 } 175 return res; 176 } 177 178 static void release_memory_resource(struct resource *res) 179 { 180 if (!res) 181 return; 182 release_resource(res); 183 kfree(res); 184 return; 185 } 186 187 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 188 void get_page_bootmem(unsigned long info, struct page *page, 189 unsigned long type) 190 { 191 page->freelist = (void *)type; 192 SetPagePrivate(page); 193 set_page_private(page, info); 194 page_ref_inc(page); 195 } 196 197 void put_page_bootmem(struct page *page) 198 { 199 unsigned long type; 200 201 type = (unsigned long) page->freelist; 202 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 203 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 204 205 if (page_ref_dec_return(page) == 1) { 206 page->freelist = NULL; 207 ClearPagePrivate(page); 208 set_page_private(page, 0); 209 INIT_LIST_HEAD(&page->lru); 210 free_reserved_page(page); 211 } 212 } 213 214 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 215 #ifndef CONFIG_SPARSEMEM_VMEMMAP 216 static void register_page_bootmem_info_section(unsigned long start_pfn) 217 { 218 unsigned long *usemap, mapsize, section_nr, i; 219 struct mem_section *ms; 220 struct page *page, *memmap; 221 222 section_nr = pfn_to_section_nr(start_pfn); 223 ms = __nr_to_section(section_nr); 224 225 /* Get section's memmap address */ 226 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 227 228 /* 229 * Get page for the memmap's phys address 230 * XXX: need more consideration for sparse_vmemmap... 231 */ 232 page = virt_to_page(memmap); 233 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 234 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 235 236 /* remember memmap's page */ 237 for (i = 0; i < mapsize; i++, page++) 238 get_page_bootmem(section_nr, page, SECTION_INFO); 239 240 usemap = __nr_to_section(section_nr)->pageblock_flags; 241 page = virt_to_page(usemap); 242 243 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 244 245 for (i = 0; i < mapsize; i++, page++) 246 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 247 248 } 249 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 250 static void register_page_bootmem_info_section(unsigned long start_pfn) 251 { 252 unsigned long *usemap, mapsize, section_nr, i; 253 struct mem_section *ms; 254 struct page *page, *memmap; 255 256 if (!pfn_valid(start_pfn)) 257 return; 258 259 section_nr = pfn_to_section_nr(start_pfn); 260 ms = __nr_to_section(section_nr); 261 262 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 263 264 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 265 266 usemap = __nr_to_section(section_nr)->pageblock_flags; 267 page = virt_to_page(usemap); 268 269 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 270 271 for (i = 0; i < mapsize; i++, page++) 272 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 273 } 274 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 275 276 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 277 { 278 unsigned long i, pfn, end_pfn, nr_pages; 279 int node = pgdat->node_id; 280 struct page *page; 281 282 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 283 page = virt_to_page(pgdat); 284 285 for (i = 0; i < nr_pages; i++, page++) 286 get_page_bootmem(node, page, NODE_INFO); 287 288 pfn = pgdat->node_start_pfn; 289 end_pfn = pgdat_end_pfn(pgdat); 290 291 /* register section info */ 292 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 293 /* 294 * Some platforms can assign the same pfn to multiple nodes - on 295 * node0 as well as nodeN. To avoid registering a pfn against 296 * multiple nodes we check that this pfn does not already 297 * reside in some other nodes. 298 */ 299 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 300 register_page_bootmem_info_section(pfn); 301 } 302 } 303 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 304 305 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 306 bool want_memblock) 307 { 308 int ret; 309 int i; 310 311 if (pfn_valid(phys_start_pfn)) 312 return -EEXIST; 313 314 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn); 315 if (ret < 0) 316 return ret; 317 318 /* 319 * Make all the pages reserved so that nobody will stumble over half 320 * initialized state. 321 * FIXME: We also have to associate it with a node because pfn_to_node 322 * relies on having page with the proper node. 323 */ 324 for (i = 0; i < PAGES_PER_SECTION; i++) { 325 unsigned long pfn = phys_start_pfn + i; 326 struct page *page; 327 if (!pfn_valid(pfn)) 328 continue; 329 330 page = pfn_to_page(pfn); 331 set_page_node(page, nid); 332 SetPageReserved(page); 333 } 334 335 if (!want_memblock) 336 return 0; 337 338 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 339 } 340 341 /* 342 * Reasonably generic function for adding memory. It is 343 * expected that archs that support memory hotplug will 344 * call this function after deciding the zone to which to 345 * add the new pages. 346 */ 347 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 348 unsigned long nr_pages, bool want_memblock) 349 { 350 unsigned long i; 351 int err = 0; 352 int start_sec, end_sec; 353 struct vmem_altmap *altmap; 354 355 /* during initialize mem_map, align hot-added range to section */ 356 start_sec = pfn_to_section_nr(phys_start_pfn); 357 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 358 359 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn)); 360 if (altmap) { 361 /* 362 * Validate altmap is within bounds of the total request 363 */ 364 if (altmap->base_pfn != phys_start_pfn 365 || vmem_altmap_offset(altmap) > nr_pages) { 366 pr_warn_once("memory add fail, invalid altmap\n"); 367 err = -EINVAL; 368 goto out; 369 } 370 altmap->alloc = 0; 371 } 372 373 for (i = start_sec; i <= end_sec; i++) { 374 err = __add_section(nid, section_nr_to_pfn(i), want_memblock); 375 376 /* 377 * EEXIST is finally dealt with by ioresource collision 378 * check. see add_memory() => register_memory_resource() 379 * Warning will be printed if there is collision. 380 */ 381 if (err && (err != -EEXIST)) 382 break; 383 err = 0; 384 } 385 vmemmap_populate_print_last(); 386 out: 387 return err; 388 } 389 EXPORT_SYMBOL_GPL(__add_pages); 390 391 #ifdef CONFIG_MEMORY_HOTREMOVE 392 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 393 static int find_smallest_section_pfn(int nid, struct zone *zone, 394 unsigned long start_pfn, 395 unsigned long end_pfn) 396 { 397 struct mem_section *ms; 398 399 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 400 ms = __pfn_to_section(start_pfn); 401 402 if (unlikely(!valid_section(ms))) 403 continue; 404 405 if (unlikely(pfn_to_nid(start_pfn) != nid)) 406 continue; 407 408 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 409 continue; 410 411 return start_pfn; 412 } 413 414 return 0; 415 } 416 417 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 418 static int find_biggest_section_pfn(int nid, struct zone *zone, 419 unsigned long start_pfn, 420 unsigned long end_pfn) 421 { 422 struct mem_section *ms; 423 unsigned long pfn; 424 425 /* pfn is the end pfn of a memory section. */ 426 pfn = end_pfn - 1; 427 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 428 ms = __pfn_to_section(pfn); 429 430 if (unlikely(!valid_section(ms))) 431 continue; 432 433 if (unlikely(pfn_to_nid(pfn) != nid)) 434 continue; 435 436 if (zone && zone != page_zone(pfn_to_page(pfn))) 437 continue; 438 439 return pfn; 440 } 441 442 return 0; 443 } 444 445 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 446 unsigned long end_pfn) 447 { 448 unsigned long zone_start_pfn = zone->zone_start_pfn; 449 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 450 unsigned long zone_end_pfn = z; 451 unsigned long pfn; 452 struct mem_section *ms; 453 int nid = zone_to_nid(zone); 454 455 zone_span_writelock(zone); 456 if (zone_start_pfn == start_pfn) { 457 /* 458 * If the section is smallest section in the zone, it need 459 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 460 * In this case, we find second smallest valid mem_section 461 * for shrinking zone. 462 */ 463 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 464 zone_end_pfn); 465 if (pfn) { 466 zone->zone_start_pfn = pfn; 467 zone->spanned_pages = zone_end_pfn - pfn; 468 } 469 } else if (zone_end_pfn == end_pfn) { 470 /* 471 * If the section is biggest section in the zone, it need 472 * shrink zone->spanned_pages. 473 * In this case, we find second biggest valid mem_section for 474 * shrinking zone. 475 */ 476 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 477 start_pfn); 478 if (pfn) 479 zone->spanned_pages = pfn - zone_start_pfn + 1; 480 } 481 482 /* 483 * The section is not biggest or smallest mem_section in the zone, it 484 * only creates a hole in the zone. So in this case, we need not 485 * change the zone. But perhaps, the zone has only hole data. Thus 486 * it check the zone has only hole or not. 487 */ 488 pfn = zone_start_pfn; 489 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 490 ms = __pfn_to_section(pfn); 491 492 if (unlikely(!valid_section(ms))) 493 continue; 494 495 if (page_zone(pfn_to_page(pfn)) != zone) 496 continue; 497 498 /* If the section is current section, it continues the loop */ 499 if (start_pfn == pfn) 500 continue; 501 502 /* If we find valid section, we have nothing to do */ 503 zone_span_writeunlock(zone); 504 return; 505 } 506 507 /* The zone has no valid section */ 508 zone->zone_start_pfn = 0; 509 zone->spanned_pages = 0; 510 zone_span_writeunlock(zone); 511 } 512 513 static void shrink_pgdat_span(struct pglist_data *pgdat, 514 unsigned long start_pfn, unsigned long end_pfn) 515 { 516 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 517 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 518 unsigned long pgdat_end_pfn = p; 519 unsigned long pfn; 520 struct mem_section *ms; 521 int nid = pgdat->node_id; 522 523 if (pgdat_start_pfn == start_pfn) { 524 /* 525 * If the section is smallest section in the pgdat, it need 526 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 527 * In this case, we find second smallest valid mem_section 528 * for shrinking zone. 529 */ 530 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 531 pgdat_end_pfn); 532 if (pfn) { 533 pgdat->node_start_pfn = pfn; 534 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 535 } 536 } else if (pgdat_end_pfn == end_pfn) { 537 /* 538 * If the section is biggest section in the pgdat, it need 539 * shrink pgdat->node_spanned_pages. 540 * In this case, we find second biggest valid mem_section for 541 * shrinking zone. 542 */ 543 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 544 start_pfn); 545 if (pfn) 546 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 547 } 548 549 /* 550 * If the section is not biggest or smallest mem_section in the pgdat, 551 * it only creates a hole in the pgdat. So in this case, we need not 552 * change the pgdat. 553 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 554 * has only hole or not. 555 */ 556 pfn = pgdat_start_pfn; 557 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 558 ms = __pfn_to_section(pfn); 559 560 if (unlikely(!valid_section(ms))) 561 continue; 562 563 if (pfn_to_nid(pfn) != nid) 564 continue; 565 566 /* If the section is current section, it continues the loop */ 567 if (start_pfn == pfn) 568 continue; 569 570 /* If we find valid section, we have nothing to do */ 571 return; 572 } 573 574 /* The pgdat has no valid section */ 575 pgdat->node_start_pfn = 0; 576 pgdat->node_spanned_pages = 0; 577 } 578 579 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 580 { 581 struct pglist_data *pgdat = zone->zone_pgdat; 582 int nr_pages = PAGES_PER_SECTION; 583 int zone_type; 584 unsigned long flags; 585 586 zone_type = zone - pgdat->node_zones; 587 588 pgdat_resize_lock(zone->zone_pgdat, &flags); 589 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 590 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 591 pgdat_resize_unlock(zone->zone_pgdat, &flags); 592 } 593 594 static int __remove_section(struct zone *zone, struct mem_section *ms, 595 unsigned long map_offset) 596 { 597 unsigned long start_pfn; 598 int scn_nr; 599 int ret = -EINVAL; 600 601 if (!valid_section(ms)) 602 return ret; 603 604 ret = unregister_memory_section(ms); 605 if (ret) 606 return ret; 607 608 scn_nr = __section_nr(ms); 609 start_pfn = section_nr_to_pfn(scn_nr); 610 __remove_zone(zone, start_pfn); 611 612 sparse_remove_one_section(zone, ms, map_offset); 613 return 0; 614 } 615 616 /** 617 * __remove_pages() - remove sections of pages from a zone 618 * @zone: zone from which pages need to be removed 619 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 620 * @nr_pages: number of pages to remove (must be multiple of section size) 621 * 622 * Generic helper function to remove section mappings and sysfs entries 623 * for the section of the memory we are removing. Caller needs to make 624 * sure that pages are marked reserved and zones are adjust properly by 625 * calling offline_pages(). 626 */ 627 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 628 unsigned long nr_pages) 629 { 630 unsigned long i; 631 unsigned long map_offset = 0; 632 int sections_to_remove, ret = 0; 633 634 /* In the ZONE_DEVICE case device driver owns the memory region */ 635 if (is_dev_zone(zone)) { 636 struct page *page = pfn_to_page(phys_start_pfn); 637 struct vmem_altmap *altmap; 638 639 altmap = to_vmem_altmap((unsigned long) page); 640 if (altmap) 641 map_offset = vmem_altmap_offset(altmap); 642 } else { 643 resource_size_t start, size; 644 645 start = phys_start_pfn << PAGE_SHIFT; 646 size = nr_pages * PAGE_SIZE; 647 648 ret = release_mem_region_adjustable(&iomem_resource, start, 649 size); 650 if (ret) { 651 resource_size_t endres = start + size - 1; 652 653 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 654 &start, &endres, ret); 655 } 656 } 657 658 clear_zone_contiguous(zone); 659 660 /* 661 * We can only remove entire sections 662 */ 663 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 664 BUG_ON(nr_pages % PAGES_PER_SECTION); 665 666 sections_to_remove = nr_pages / PAGES_PER_SECTION; 667 for (i = 0; i < sections_to_remove; i++) { 668 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 669 670 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset); 671 map_offset = 0; 672 if (ret) 673 break; 674 } 675 676 set_zone_contiguous(zone); 677 678 return ret; 679 } 680 #endif /* CONFIG_MEMORY_HOTREMOVE */ 681 682 int set_online_page_callback(online_page_callback_t callback) 683 { 684 int rc = -EINVAL; 685 686 get_online_mems(); 687 mutex_lock(&online_page_callback_lock); 688 689 if (online_page_callback == generic_online_page) { 690 online_page_callback = callback; 691 rc = 0; 692 } 693 694 mutex_unlock(&online_page_callback_lock); 695 put_online_mems(); 696 697 return rc; 698 } 699 EXPORT_SYMBOL_GPL(set_online_page_callback); 700 701 int restore_online_page_callback(online_page_callback_t callback) 702 { 703 int rc = -EINVAL; 704 705 get_online_mems(); 706 mutex_lock(&online_page_callback_lock); 707 708 if (online_page_callback == callback) { 709 online_page_callback = generic_online_page; 710 rc = 0; 711 } 712 713 mutex_unlock(&online_page_callback_lock); 714 put_online_mems(); 715 716 return rc; 717 } 718 EXPORT_SYMBOL_GPL(restore_online_page_callback); 719 720 void __online_page_set_limits(struct page *page) 721 { 722 } 723 EXPORT_SYMBOL_GPL(__online_page_set_limits); 724 725 void __online_page_increment_counters(struct page *page) 726 { 727 adjust_managed_page_count(page, 1); 728 } 729 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 730 731 void __online_page_free(struct page *page) 732 { 733 __free_reserved_page(page); 734 } 735 EXPORT_SYMBOL_GPL(__online_page_free); 736 737 static void generic_online_page(struct page *page) 738 { 739 __online_page_set_limits(page); 740 __online_page_increment_counters(page); 741 __online_page_free(page); 742 } 743 744 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 745 void *arg) 746 { 747 unsigned long i; 748 unsigned long onlined_pages = *(unsigned long *)arg; 749 struct page *page; 750 751 if (PageReserved(pfn_to_page(start_pfn))) 752 for (i = 0; i < nr_pages; i++) { 753 page = pfn_to_page(start_pfn + i); 754 (*online_page_callback)(page); 755 onlined_pages++; 756 } 757 758 online_mem_sections(start_pfn, start_pfn + nr_pages); 759 760 *(unsigned long *)arg = onlined_pages; 761 return 0; 762 } 763 764 /* check which state of node_states will be changed when online memory */ 765 static void node_states_check_changes_online(unsigned long nr_pages, 766 struct zone *zone, struct memory_notify *arg) 767 { 768 int nid = zone_to_nid(zone); 769 enum zone_type zone_last = ZONE_NORMAL; 770 771 /* 772 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 773 * contains nodes which have zones of 0...ZONE_NORMAL, 774 * set zone_last to ZONE_NORMAL. 775 * 776 * If we don't have HIGHMEM nor movable node, 777 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 778 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 779 */ 780 if (N_MEMORY == N_NORMAL_MEMORY) 781 zone_last = ZONE_MOVABLE; 782 783 /* 784 * if the memory to be online is in a zone of 0...zone_last, and 785 * the zones of 0...zone_last don't have memory before online, we will 786 * need to set the node to node_states[N_NORMAL_MEMORY] after 787 * the memory is online. 788 */ 789 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 790 arg->status_change_nid_normal = nid; 791 else 792 arg->status_change_nid_normal = -1; 793 794 #ifdef CONFIG_HIGHMEM 795 /* 796 * If we have movable node, node_states[N_HIGH_MEMORY] 797 * contains nodes which have zones of 0...ZONE_HIGHMEM, 798 * set zone_last to ZONE_HIGHMEM. 799 * 800 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 801 * contains nodes which have zones of 0...ZONE_MOVABLE, 802 * set zone_last to ZONE_MOVABLE. 803 */ 804 zone_last = ZONE_HIGHMEM; 805 if (N_MEMORY == N_HIGH_MEMORY) 806 zone_last = ZONE_MOVABLE; 807 808 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 809 arg->status_change_nid_high = nid; 810 else 811 arg->status_change_nid_high = -1; 812 #else 813 arg->status_change_nid_high = arg->status_change_nid_normal; 814 #endif 815 816 /* 817 * if the node don't have memory befor online, we will need to 818 * set the node to node_states[N_MEMORY] after the memory 819 * is online. 820 */ 821 if (!node_state(nid, N_MEMORY)) 822 arg->status_change_nid = nid; 823 else 824 arg->status_change_nid = -1; 825 } 826 827 static void node_states_set_node(int node, struct memory_notify *arg) 828 { 829 if (arg->status_change_nid_normal >= 0) 830 node_set_state(node, N_NORMAL_MEMORY); 831 832 if (arg->status_change_nid_high >= 0) 833 node_set_state(node, N_HIGH_MEMORY); 834 835 node_set_state(node, N_MEMORY); 836 } 837 838 bool allow_online_pfn_range(int nid, unsigned long pfn, unsigned long nr_pages, int online_type) 839 { 840 struct pglist_data *pgdat = NODE_DATA(nid); 841 struct zone *movable_zone = &pgdat->node_zones[ZONE_MOVABLE]; 842 struct zone *default_zone = default_zone_for_pfn(nid, pfn, nr_pages); 843 844 /* 845 * TODO there shouldn't be any inherent reason to have ZONE_NORMAL 846 * physically before ZONE_MOVABLE. All we need is they do not 847 * overlap. Historically we didn't allow ZONE_NORMAL after ZONE_MOVABLE 848 * though so let's stick with it for simplicity for now. 849 * TODO make sure we do not overlap with ZONE_DEVICE 850 */ 851 if (online_type == MMOP_ONLINE_KERNEL) { 852 if (zone_is_empty(movable_zone)) 853 return true; 854 return movable_zone->zone_start_pfn >= pfn + nr_pages; 855 } else if (online_type == MMOP_ONLINE_MOVABLE) { 856 return zone_end_pfn(default_zone) <= pfn; 857 } 858 859 /* MMOP_ONLINE_KEEP will always succeed and inherits the current zone */ 860 return online_type == MMOP_ONLINE_KEEP; 861 } 862 863 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 864 unsigned long nr_pages) 865 { 866 unsigned long old_end_pfn = zone_end_pfn(zone); 867 868 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 869 zone->zone_start_pfn = start_pfn; 870 871 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 872 } 873 874 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 875 unsigned long nr_pages) 876 { 877 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 878 879 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 880 pgdat->node_start_pfn = start_pfn; 881 882 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 883 } 884 885 void __ref move_pfn_range_to_zone(struct zone *zone, 886 unsigned long start_pfn, unsigned long nr_pages) 887 { 888 struct pglist_data *pgdat = zone->zone_pgdat; 889 int nid = pgdat->node_id; 890 unsigned long flags; 891 892 if (zone_is_empty(zone)) 893 init_currently_empty_zone(zone, start_pfn, nr_pages); 894 895 clear_zone_contiguous(zone); 896 897 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 898 pgdat_resize_lock(pgdat, &flags); 899 zone_span_writelock(zone); 900 resize_zone_range(zone, start_pfn, nr_pages); 901 zone_span_writeunlock(zone); 902 resize_pgdat_range(pgdat, start_pfn, nr_pages); 903 pgdat_resize_unlock(pgdat, &flags); 904 905 /* 906 * TODO now we have a visible range of pages which are not associated 907 * with their zone properly. Not nice but set_pfnblock_flags_mask 908 * expects the zone spans the pfn range. All the pages in the range 909 * are reserved so nobody should be touching them so we should be safe 910 */ 911 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, MEMMAP_HOTPLUG); 912 913 set_zone_contiguous(zone); 914 } 915 916 /* 917 * Returns a default kernel memory zone for the given pfn range. 918 * If no kernel zone covers this pfn range it will automatically go 919 * to the ZONE_NORMAL. 920 */ 921 struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 922 unsigned long nr_pages) 923 { 924 struct pglist_data *pgdat = NODE_DATA(nid); 925 int zid; 926 927 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 928 struct zone *zone = &pgdat->node_zones[zid]; 929 930 if (zone_intersects(zone, start_pfn, nr_pages)) 931 return zone; 932 } 933 934 return &pgdat->node_zones[ZONE_NORMAL]; 935 } 936 937 /* 938 * Associates the given pfn range with the given node and the zone appropriate 939 * for the given online type. 940 */ 941 static struct zone * __meminit move_pfn_range(int online_type, int nid, 942 unsigned long start_pfn, unsigned long nr_pages) 943 { 944 struct pglist_data *pgdat = NODE_DATA(nid); 945 struct zone *zone = default_zone_for_pfn(nid, start_pfn, nr_pages); 946 947 if (online_type == MMOP_ONLINE_KEEP) { 948 struct zone *movable_zone = &pgdat->node_zones[ZONE_MOVABLE]; 949 /* 950 * MMOP_ONLINE_KEEP defaults to MMOP_ONLINE_KERNEL but use 951 * movable zone if that is not possible (e.g. we are within 952 * or past the existing movable zone) 953 */ 954 if (!allow_online_pfn_range(nid, start_pfn, nr_pages, 955 MMOP_ONLINE_KERNEL)) 956 zone = movable_zone; 957 } else if (online_type == MMOP_ONLINE_MOVABLE) { 958 zone = &pgdat->node_zones[ZONE_MOVABLE]; 959 } 960 961 move_pfn_range_to_zone(zone, start_pfn, nr_pages); 962 return zone; 963 } 964 965 /* Must be protected by mem_hotplug_begin() */ 966 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 967 { 968 unsigned long flags; 969 unsigned long onlined_pages = 0; 970 struct zone *zone; 971 int need_zonelists_rebuild = 0; 972 int nid; 973 int ret; 974 struct memory_notify arg; 975 976 nid = pfn_to_nid(pfn); 977 if (!allow_online_pfn_range(nid, pfn, nr_pages, online_type)) 978 return -EINVAL; 979 980 /* associate pfn range with the zone */ 981 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 982 983 arg.start_pfn = pfn; 984 arg.nr_pages = nr_pages; 985 node_states_check_changes_online(nr_pages, zone, &arg); 986 987 ret = memory_notify(MEM_GOING_ONLINE, &arg); 988 ret = notifier_to_errno(ret); 989 if (ret) 990 goto failed_addition; 991 992 /* 993 * If this zone is not populated, then it is not in zonelist. 994 * This means the page allocator ignores this zone. 995 * So, zonelist must be updated after online. 996 */ 997 mutex_lock(&zonelists_mutex); 998 if (!populated_zone(zone)) { 999 need_zonelists_rebuild = 1; 1000 build_all_zonelists(NULL, zone); 1001 } 1002 1003 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1004 online_pages_range); 1005 if (ret) { 1006 if (need_zonelists_rebuild) 1007 zone_pcp_reset(zone); 1008 mutex_unlock(&zonelists_mutex); 1009 goto failed_addition; 1010 } 1011 1012 zone->present_pages += onlined_pages; 1013 1014 pgdat_resize_lock(zone->zone_pgdat, &flags); 1015 zone->zone_pgdat->node_present_pages += onlined_pages; 1016 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1017 1018 if (onlined_pages) { 1019 node_states_set_node(nid, &arg); 1020 if (need_zonelists_rebuild) 1021 build_all_zonelists(NULL, NULL); 1022 else 1023 zone_pcp_update(zone); 1024 } 1025 1026 mutex_unlock(&zonelists_mutex); 1027 1028 init_per_zone_wmark_min(); 1029 1030 if (onlined_pages) { 1031 kswapd_run(nid); 1032 kcompactd_run(nid); 1033 } 1034 1035 vm_total_pages = nr_free_pagecache_pages(); 1036 1037 writeback_set_ratelimit(); 1038 1039 if (onlined_pages) 1040 memory_notify(MEM_ONLINE, &arg); 1041 return 0; 1042 1043 failed_addition: 1044 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1045 (unsigned long long) pfn << PAGE_SHIFT, 1046 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1047 memory_notify(MEM_CANCEL_ONLINE, &arg); 1048 return ret; 1049 } 1050 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1051 1052 static void reset_node_present_pages(pg_data_t *pgdat) 1053 { 1054 struct zone *z; 1055 1056 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1057 z->present_pages = 0; 1058 1059 pgdat->node_present_pages = 0; 1060 } 1061 1062 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1063 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1064 { 1065 struct pglist_data *pgdat; 1066 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1067 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1068 unsigned long start_pfn = PFN_DOWN(start); 1069 1070 pgdat = NODE_DATA(nid); 1071 if (!pgdat) { 1072 pgdat = arch_alloc_nodedata(nid); 1073 if (!pgdat) 1074 return NULL; 1075 1076 arch_refresh_nodedata(nid, pgdat); 1077 } else { 1078 /* 1079 * Reset the nr_zones, order and classzone_idx before reuse. 1080 * Note that kswapd will init kswapd_classzone_idx properly 1081 * when it starts in the near future. 1082 */ 1083 pgdat->nr_zones = 0; 1084 pgdat->kswapd_order = 0; 1085 pgdat->kswapd_classzone_idx = 0; 1086 } 1087 1088 /* we can use NODE_DATA(nid) from here */ 1089 1090 /* init node's zones as empty zones, we don't have any present pages.*/ 1091 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1092 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1093 1094 /* 1095 * The node we allocated has no zone fallback lists. For avoiding 1096 * to access not-initialized zonelist, build here. 1097 */ 1098 mutex_lock(&zonelists_mutex); 1099 build_all_zonelists(pgdat, NULL); 1100 mutex_unlock(&zonelists_mutex); 1101 1102 /* 1103 * zone->managed_pages is set to an approximate value in 1104 * free_area_init_core(), which will cause 1105 * /sys/device/system/node/nodeX/meminfo has wrong data. 1106 * So reset it to 0 before any memory is onlined. 1107 */ 1108 reset_node_managed_pages(pgdat); 1109 1110 /* 1111 * When memory is hot-added, all the memory is in offline state. So 1112 * clear all zones' present_pages because they will be updated in 1113 * online_pages() and offline_pages(). 1114 */ 1115 reset_node_present_pages(pgdat); 1116 1117 return pgdat; 1118 } 1119 1120 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1121 { 1122 arch_refresh_nodedata(nid, NULL); 1123 free_percpu(pgdat->per_cpu_nodestats); 1124 arch_free_nodedata(pgdat); 1125 return; 1126 } 1127 1128 1129 /** 1130 * try_online_node - online a node if offlined 1131 * 1132 * called by cpu_up() to online a node without onlined memory. 1133 */ 1134 int try_online_node(int nid) 1135 { 1136 pg_data_t *pgdat; 1137 int ret; 1138 1139 if (node_online(nid)) 1140 return 0; 1141 1142 mem_hotplug_begin(); 1143 pgdat = hotadd_new_pgdat(nid, 0); 1144 if (!pgdat) { 1145 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1146 ret = -ENOMEM; 1147 goto out; 1148 } 1149 node_set_online(nid); 1150 ret = register_one_node(nid); 1151 BUG_ON(ret); 1152 1153 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1154 mutex_lock(&zonelists_mutex); 1155 build_all_zonelists(NULL, NULL); 1156 mutex_unlock(&zonelists_mutex); 1157 } 1158 1159 out: 1160 mem_hotplug_done(); 1161 return ret; 1162 } 1163 1164 static int check_hotplug_memory_range(u64 start, u64 size) 1165 { 1166 u64 start_pfn = PFN_DOWN(start); 1167 u64 nr_pages = size >> PAGE_SHIFT; 1168 1169 /* Memory range must be aligned with section */ 1170 if ((start_pfn & ~PAGE_SECTION_MASK) || 1171 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1172 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1173 (unsigned long long)start, 1174 (unsigned long long)size); 1175 return -EINVAL; 1176 } 1177 1178 return 0; 1179 } 1180 1181 static int online_memory_block(struct memory_block *mem, void *arg) 1182 { 1183 return device_online(&mem->dev); 1184 } 1185 1186 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1187 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1188 { 1189 u64 start, size; 1190 pg_data_t *pgdat = NULL; 1191 bool new_pgdat; 1192 bool new_node; 1193 int ret; 1194 1195 start = res->start; 1196 size = resource_size(res); 1197 1198 ret = check_hotplug_memory_range(start, size); 1199 if (ret) 1200 return ret; 1201 1202 { /* Stupid hack to suppress address-never-null warning */ 1203 void *p = NODE_DATA(nid); 1204 new_pgdat = !p; 1205 } 1206 1207 mem_hotplug_begin(); 1208 1209 /* 1210 * Add new range to memblock so that when hotadd_new_pgdat() is called 1211 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1212 * this new range and calculate total pages correctly. The range will 1213 * be removed at hot-remove time. 1214 */ 1215 memblock_add_node(start, size, nid); 1216 1217 new_node = !node_online(nid); 1218 if (new_node) { 1219 pgdat = hotadd_new_pgdat(nid, start); 1220 ret = -ENOMEM; 1221 if (!pgdat) 1222 goto error; 1223 } 1224 1225 /* call arch's memory hotadd */ 1226 ret = arch_add_memory(nid, start, size, true); 1227 1228 if (ret < 0) 1229 goto error; 1230 1231 /* we online node here. we can't roll back from here. */ 1232 node_set_online(nid); 1233 1234 if (new_node) { 1235 unsigned long start_pfn = start >> PAGE_SHIFT; 1236 unsigned long nr_pages = size >> PAGE_SHIFT; 1237 1238 ret = __register_one_node(nid); 1239 if (ret) 1240 goto register_fail; 1241 1242 /* 1243 * link memory sections under this node. This is already 1244 * done when creatig memory section in register_new_memory 1245 * but that depends to have the node registered so offline 1246 * nodes have to go through register_node. 1247 * TODO clean up this mess. 1248 */ 1249 ret = link_mem_sections(nid, start_pfn, nr_pages); 1250 register_fail: 1251 /* 1252 * If sysfs file of new node can't create, cpu on the node 1253 * can't be hot-added. There is no rollback way now. 1254 * So, check by BUG_ON() to catch it reluctantly.. 1255 */ 1256 BUG_ON(ret); 1257 } 1258 1259 /* create new memmap entry */ 1260 firmware_map_add_hotplug(start, start + size, "System RAM"); 1261 1262 /* online pages if requested */ 1263 if (online) 1264 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1265 NULL, online_memory_block); 1266 1267 goto out; 1268 1269 error: 1270 /* rollback pgdat allocation and others */ 1271 if (new_pgdat) 1272 rollback_node_hotadd(nid, pgdat); 1273 memblock_remove(start, size); 1274 1275 out: 1276 mem_hotplug_done(); 1277 return ret; 1278 } 1279 EXPORT_SYMBOL_GPL(add_memory_resource); 1280 1281 int __ref add_memory(int nid, u64 start, u64 size) 1282 { 1283 struct resource *res; 1284 int ret; 1285 1286 res = register_memory_resource(start, size); 1287 if (IS_ERR(res)) 1288 return PTR_ERR(res); 1289 1290 ret = add_memory_resource(nid, res, memhp_auto_online); 1291 if (ret < 0) 1292 release_memory_resource(res); 1293 return ret; 1294 } 1295 EXPORT_SYMBOL_GPL(add_memory); 1296 1297 #ifdef CONFIG_MEMORY_HOTREMOVE 1298 /* 1299 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1300 * set and the size of the free page is given by page_order(). Using this, 1301 * the function determines if the pageblock contains only free pages. 1302 * Due to buddy contraints, a free page at least the size of a pageblock will 1303 * be located at the start of the pageblock 1304 */ 1305 static inline int pageblock_free(struct page *page) 1306 { 1307 return PageBuddy(page) && page_order(page) >= pageblock_order; 1308 } 1309 1310 /* Return the start of the next active pageblock after a given page */ 1311 static struct page *next_active_pageblock(struct page *page) 1312 { 1313 /* Ensure the starting page is pageblock-aligned */ 1314 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1315 1316 /* If the entire pageblock is free, move to the end of free page */ 1317 if (pageblock_free(page)) { 1318 int order; 1319 /* be careful. we don't have locks, page_order can be changed.*/ 1320 order = page_order(page); 1321 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1322 return page + (1 << order); 1323 } 1324 1325 return page + pageblock_nr_pages; 1326 } 1327 1328 /* Checks if this range of memory is likely to be hot-removable. */ 1329 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1330 { 1331 struct page *page = pfn_to_page(start_pfn); 1332 struct page *end_page = page + nr_pages; 1333 1334 /* Check the starting page of each pageblock within the range */ 1335 for (; page < end_page; page = next_active_pageblock(page)) { 1336 if (!is_pageblock_removable_nolock(page)) 1337 return false; 1338 cond_resched(); 1339 } 1340 1341 /* All pageblocks in the memory block are likely to be hot-removable */ 1342 return true; 1343 } 1344 1345 /* 1346 * Confirm all pages in a range [start, end) belong to the same zone. 1347 * When true, return its valid [start, end). 1348 */ 1349 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1350 unsigned long *valid_start, unsigned long *valid_end) 1351 { 1352 unsigned long pfn, sec_end_pfn; 1353 unsigned long start, end; 1354 struct zone *zone = NULL; 1355 struct page *page; 1356 int i; 1357 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1358 pfn < end_pfn; 1359 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1360 /* Make sure the memory section is present first */ 1361 if (!present_section_nr(pfn_to_section_nr(pfn))) 1362 continue; 1363 for (; pfn < sec_end_pfn && pfn < end_pfn; 1364 pfn += MAX_ORDER_NR_PAGES) { 1365 i = 0; 1366 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1367 while ((i < MAX_ORDER_NR_PAGES) && 1368 !pfn_valid_within(pfn + i)) 1369 i++; 1370 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1371 continue; 1372 page = pfn_to_page(pfn + i); 1373 if (zone && page_zone(page) != zone) 1374 return 0; 1375 if (!zone) 1376 start = pfn + i; 1377 zone = page_zone(page); 1378 end = pfn + MAX_ORDER_NR_PAGES; 1379 } 1380 } 1381 1382 if (zone) { 1383 *valid_start = start; 1384 *valid_end = min(end, end_pfn); 1385 return 1; 1386 } else { 1387 return 0; 1388 } 1389 } 1390 1391 /* 1392 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1393 * non-lru movable pages and hugepages). We scan pfn because it's much 1394 * easier than scanning over linked list. This function returns the pfn 1395 * of the first found movable page if it's found, otherwise 0. 1396 */ 1397 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1398 { 1399 unsigned long pfn; 1400 struct page *page; 1401 for (pfn = start; pfn < end; pfn++) { 1402 if (pfn_valid(pfn)) { 1403 page = pfn_to_page(pfn); 1404 if (PageLRU(page)) 1405 return pfn; 1406 if (__PageMovable(page)) 1407 return pfn; 1408 if (PageHuge(page)) { 1409 if (page_huge_active(page)) 1410 return pfn; 1411 else 1412 pfn = round_up(pfn + 1, 1413 1 << compound_order(page)) - 1; 1414 } 1415 } 1416 } 1417 return 0; 1418 } 1419 1420 static struct page *new_node_page(struct page *page, unsigned long private, 1421 int **result) 1422 { 1423 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; 1424 int nid = page_to_nid(page); 1425 nodemask_t nmask = node_states[N_MEMORY]; 1426 struct page *new_page = NULL; 1427 1428 /* 1429 * TODO: allocate a destination hugepage from a nearest neighbor node, 1430 * accordance with memory policy of the user process if possible. For 1431 * now as a simple work-around, we use the next node for destination. 1432 */ 1433 if (PageHuge(page)) 1434 return alloc_huge_page_node(page_hstate(compound_head(page)), 1435 next_node_in(nid, nmask)); 1436 1437 node_clear(nid, nmask); 1438 1439 if (PageHighMem(page) 1440 || (zone_idx(page_zone(page)) == ZONE_MOVABLE)) 1441 gfp_mask |= __GFP_HIGHMEM; 1442 1443 if (!nodes_empty(nmask)) 1444 new_page = __alloc_pages_nodemask(gfp_mask, 0, nid, &nmask); 1445 if (!new_page) 1446 new_page = __alloc_pages(gfp_mask, 0, nid); 1447 1448 return new_page; 1449 } 1450 1451 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1452 static int 1453 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1454 { 1455 unsigned long pfn; 1456 struct page *page; 1457 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1458 int not_managed = 0; 1459 int ret = 0; 1460 LIST_HEAD(source); 1461 1462 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1463 if (!pfn_valid(pfn)) 1464 continue; 1465 page = pfn_to_page(pfn); 1466 1467 if (PageHuge(page)) { 1468 struct page *head = compound_head(page); 1469 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1470 if (compound_order(head) > PFN_SECTION_SHIFT) { 1471 ret = -EBUSY; 1472 break; 1473 } 1474 if (isolate_huge_page(page, &source)) 1475 move_pages -= 1 << compound_order(head); 1476 continue; 1477 } 1478 1479 if (!get_page_unless_zero(page)) 1480 continue; 1481 /* 1482 * We can skip free pages. And we can deal with pages on 1483 * LRU and non-lru movable pages. 1484 */ 1485 if (PageLRU(page)) 1486 ret = isolate_lru_page(page); 1487 else 1488 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1489 if (!ret) { /* Success */ 1490 put_page(page); 1491 list_add_tail(&page->lru, &source); 1492 move_pages--; 1493 if (!__PageMovable(page)) 1494 inc_node_page_state(page, NR_ISOLATED_ANON + 1495 page_is_file_cache(page)); 1496 1497 } else { 1498 #ifdef CONFIG_DEBUG_VM 1499 pr_alert("failed to isolate pfn %lx\n", pfn); 1500 dump_page(page, "isolation failed"); 1501 #endif 1502 put_page(page); 1503 /* Because we don't have big zone->lock. we should 1504 check this again here. */ 1505 if (page_count(page)) { 1506 not_managed++; 1507 ret = -EBUSY; 1508 break; 1509 } 1510 } 1511 } 1512 if (!list_empty(&source)) { 1513 if (not_managed) { 1514 putback_movable_pages(&source); 1515 goto out; 1516 } 1517 1518 /* Allocate a new page from the nearest neighbor node */ 1519 ret = migrate_pages(&source, new_node_page, NULL, 0, 1520 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1521 if (ret) 1522 putback_movable_pages(&source); 1523 } 1524 out: 1525 return ret; 1526 } 1527 1528 /* 1529 * remove from free_area[] and mark all as Reserved. 1530 */ 1531 static int 1532 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1533 void *data) 1534 { 1535 __offline_isolated_pages(start, start + nr_pages); 1536 return 0; 1537 } 1538 1539 static void 1540 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1541 { 1542 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1543 offline_isolated_pages_cb); 1544 } 1545 1546 /* 1547 * Check all pages in range, recoreded as memory resource, are isolated. 1548 */ 1549 static int 1550 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1551 void *data) 1552 { 1553 int ret; 1554 long offlined = *(long *)data; 1555 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1556 offlined = nr_pages; 1557 if (!ret) 1558 *(long *)data += offlined; 1559 return ret; 1560 } 1561 1562 static long 1563 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1564 { 1565 long offlined = 0; 1566 int ret; 1567 1568 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1569 check_pages_isolated_cb); 1570 if (ret < 0) 1571 offlined = (long)ret; 1572 return offlined; 1573 } 1574 1575 static int __init cmdline_parse_movable_node(char *p) 1576 { 1577 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1578 movable_node_enabled = true; 1579 #else 1580 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1581 #endif 1582 return 0; 1583 } 1584 early_param("movable_node", cmdline_parse_movable_node); 1585 1586 /* check which state of node_states will be changed when offline memory */ 1587 static void node_states_check_changes_offline(unsigned long nr_pages, 1588 struct zone *zone, struct memory_notify *arg) 1589 { 1590 struct pglist_data *pgdat = zone->zone_pgdat; 1591 unsigned long present_pages = 0; 1592 enum zone_type zt, zone_last = ZONE_NORMAL; 1593 1594 /* 1595 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1596 * contains nodes which have zones of 0...ZONE_NORMAL, 1597 * set zone_last to ZONE_NORMAL. 1598 * 1599 * If we don't have HIGHMEM nor movable node, 1600 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1601 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1602 */ 1603 if (N_MEMORY == N_NORMAL_MEMORY) 1604 zone_last = ZONE_MOVABLE; 1605 1606 /* 1607 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1608 * If the memory to be offline is in a zone of 0...zone_last, 1609 * and it is the last present memory, 0...zone_last will 1610 * become empty after offline , thus we can determind we will 1611 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1612 */ 1613 for (zt = 0; zt <= zone_last; zt++) 1614 present_pages += pgdat->node_zones[zt].present_pages; 1615 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1616 arg->status_change_nid_normal = zone_to_nid(zone); 1617 else 1618 arg->status_change_nid_normal = -1; 1619 1620 #ifdef CONFIG_HIGHMEM 1621 /* 1622 * If we have movable node, node_states[N_HIGH_MEMORY] 1623 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1624 * set zone_last to ZONE_HIGHMEM. 1625 * 1626 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1627 * contains nodes which have zones of 0...ZONE_MOVABLE, 1628 * set zone_last to ZONE_MOVABLE. 1629 */ 1630 zone_last = ZONE_HIGHMEM; 1631 if (N_MEMORY == N_HIGH_MEMORY) 1632 zone_last = ZONE_MOVABLE; 1633 1634 for (; zt <= zone_last; zt++) 1635 present_pages += pgdat->node_zones[zt].present_pages; 1636 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1637 arg->status_change_nid_high = zone_to_nid(zone); 1638 else 1639 arg->status_change_nid_high = -1; 1640 #else 1641 arg->status_change_nid_high = arg->status_change_nid_normal; 1642 #endif 1643 1644 /* 1645 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1646 */ 1647 zone_last = ZONE_MOVABLE; 1648 1649 /* 1650 * check whether node_states[N_HIGH_MEMORY] will be changed 1651 * If we try to offline the last present @nr_pages from the node, 1652 * we can determind we will need to clear the node from 1653 * node_states[N_HIGH_MEMORY]. 1654 */ 1655 for (; zt <= zone_last; zt++) 1656 present_pages += pgdat->node_zones[zt].present_pages; 1657 if (nr_pages >= present_pages) 1658 arg->status_change_nid = zone_to_nid(zone); 1659 else 1660 arg->status_change_nid = -1; 1661 } 1662 1663 static void node_states_clear_node(int node, struct memory_notify *arg) 1664 { 1665 if (arg->status_change_nid_normal >= 0) 1666 node_clear_state(node, N_NORMAL_MEMORY); 1667 1668 if ((N_MEMORY != N_NORMAL_MEMORY) && 1669 (arg->status_change_nid_high >= 0)) 1670 node_clear_state(node, N_HIGH_MEMORY); 1671 1672 if ((N_MEMORY != N_HIGH_MEMORY) && 1673 (arg->status_change_nid >= 0)) 1674 node_clear_state(node, N_MEMORY); 1675 } 1676 1677 static int __ref __offline_pages(unsigned long start_pfn, 1678 unsigned long end_pfn, unsigned long timeout) 1679 { 1680 unsigned long pfn, nr_pages, expire; 1681 long offlined_pages; 1682 int ret, drain, retry_max, node; 1683 unsigned long flags; 1684 unsigned long valid_start, valid_end; 1685 struct zone *zone; 1686 struct memory_notify arg; 1687 1688 /* at least, alignment against pageblock is necessary */ 1689 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1690 return -EINVAL; 1691 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1692 return -EINVAL; 1693 /* This makes hotplug much easier...and readable. 1694 we assume this for now. .*/ 1695 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end)) 1696 return -EINVAL; 1697 1698 zone = page_zone(pfn_to_page(valid_start)); 1699 node = zone_to_nid(zone); 1700 nr_pages = end_pfn - start_pfn; 1701 1702 /* set above range as isolated */ 1703 ret = start_isolate_page_range(start_pfn, end_pfn, 1704 MIGRATE_MOVABLE, true); 1705 if (ret) 1706 return ret; 1707 1708 arg.start_pfn = start_pfn; 1709 arg.nr_pages = nr_pages; 1710 node_states_check_changes_offline(nr_pages, zone, &arg); 1711 1712 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1713 ret = notifier_to_errno(ret); 1714 if (ret) 1715 goto failed_removal; 1716 1717 pfn = start_pfn; 1718 expire = jiffies + timeout; 1719 drain = 0; 1720 retry_max = 5; 1721 repeat: 1722 /* start memory hot removal */ 1723 ret = -EAGAIN; 1724 if (time_after(jiffies, expire)) 1725 goto failed_removal; 1726 ret = -EINTR; 1727 if (signal_pending(current)) 1728 goto failed_removal; 1729 ret = 0; 1730 if (drain) { 1731 lru_add_drain_all(); 1732 cond_resched(); 1733 drain_all_pages(zone); 1734 } 1735 1736 pfn = scan_movable_pages(start_pfn, end_pfn); 1737 if (pfn) { /* We have movable pages */ 1738 ret = do_migrate_range(pfn, end_pfn); 1739 if (!ret) { 1740 drain = 1; 1741 goto repeat; 1742 } else { 1743 if (ret < 0) 1744 if (--retry_max == 0) 1745 goto failed_removal; 1746 yield(); 1747 drain = 1; 1748 goto repeat; 1749 } 1750 } 1751 /* drain all zone's lru pagevec, this is asynchronous... */ 1752 lru_add_drain_all(); 1753 yield(); 1754 /* drain pcp pages, this is synchronous. */ 1755 drain_all_pages(zone); 1756 /* 1757 * dissolve free hugepages in the memory block before doing offlining 1758 * actually in order to make hugetlbfs's object counting consistent. 1759 */ 1760 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1761 if (ret) 1762 goto failed_removal; 1763 /* check again */ 1764 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1765 if (offlined_pages < 0) { 1766 ret = -EBUSY; 1767 goto failed_removal; 1768 } 1769 pr_info("Offlined Pages %ld\n", offlined_pages); 1770 /* Ok, all of our target is isolated. 1771 We cannot do rollback at this point. */ 1772 offline_isolated_pages(start_pfn, end_pfn); 1773 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1774 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1775 /* removal success */ 1776 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1777 zone->present_pages -= offlined_pages; 1778 1779 pgdat_resize_lock(zone->zone_pgdat, &flags); 1780 zone->zone_pgdat->node_present_pages -= offlined_pages; 1781 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1782 1783 init_per_zone_wmark_min(); 1784 1785 if (!populated_zone(zone)) { 1786 zone_pcp_reset(zone); 1787 mutex_lock(&zonelists_mutex); 1788 build_all_zonelists(NULL, NULL); 1789 mutex_unlock(&zonelists_mutex); 1790 } else 1791 zone_pcp_update(zone); 1792 1793 node_states_clear_node(node, &arg); 1794 if (arg.status_change_nid >= 0) { 1795 kswapd_stop(node); 1796 kcompactd_stop(node); 1797 } 1798 1799 vm_total_pages = nr_free_pagecache_pages(); 1800 writeback_set_ratelimit(); 1801 1802 memory_notify(MEM_OFFLINE, &arg); 1803 return 0; 1804 1805 failed_removal: 1806 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 1807 (unsigned long long) start_pfn << PAGE_SHIFT, 1808 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1809 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1810 /* pushback to free area */ 1811 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1812 return ret; 1813 } 1814 1815 /* Must be protected by mem_hotplug_begin() */ 1816 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1817 { 1818 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 1819 } 1820 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1821 1822 /** 1823 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1824 * @start_pfn: start pfn of the memory range 1825 * @end_pfn: end pfn of the memory range 1826 * @arg: argument passed to func 1827 * @func: callback for each memory section walked 1828 * 1829 * This function walks through all present mem sections in range 1830 * [start_pfn, end_pfn) and call func on each mem section. 1831 * 1832 * Returns the return value of func. 1833 */ 1834 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1835 void *arg, int (*func)(struct memory_block *, void *)) 1836 { 1837 struct memory_block *mem = NULL; 1838 struct mem_section *section; 1839 unsigned long pfn, section_nr; 1840 int ret; 1841 1842 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1843 section_nr = pfn_to_section_nr(pfn); 1844 if (!present_section_nr(section_nr)) 1845 continue; 1846 1847 section = __nr_to_section(section_nr); 1848 /* same memblock? */ 1849 if (mem) 1850 if ((section_nr >= mem->start_section_nr) && 1851 (section_nr <= mem->end_section_nr)) 1852 continue; 1853 1854 mem = find_memory_block_hinted(section, mem); 1855 if (!mem) 1856 continue; 1857 1858 ret = func(mem, arg); 1859 if (ret) { 1860 kobject_put(&mem->dev.kobj); 1861 return ret; 1862 } 1863 } 1864 1865 if (mem) 1866 kobject_put(&mem->dev.kobj); 1867 1868 return 0; 1869 } 1870 1871 #ifdef CONFIG_MEMORY_HOTREMOVE 1872 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1873 { 1874 int ret = !is_memblock_offlined(mem); 1875 1876 if (unlikely(ret)) { 1877 phys_addr_t beginpa, endpa; 1878 1879 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1880 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1881 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1882 &beginpa, &endpa); 1883 } 1884 1885 return ret; 1886 } 1887 1888 static int check_cpu_on_node(pg_data_t *pgdat) 1889 { 1890 int cpu; 1891 1892 for_each_present_cpu(cpu) { 1893 if (cpu_to_node(cpu) == pgdat->node_id) 1894 /* 1895 * the cpu on this node isn't removed, and we can't 1896 * offline this node. 1897 */ 1898 return -EBUSY; 1899 } 1900 1901 return 0; 1902 } 1903 1904 static void unmap_cpu_on_node(pg_data_t *pgdat) 1905 { 1906 #ifdef CONFIG_ACPI_NUMA 1907 int cpu; 1908 1909 for_each_possible_cpu(cpu) 1910 if (cpu_to_node(cpu) == pgdat->node_id) 1911 numa_clear_node(cpu); 1912 #endif 1913 } 1914 1915 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1916 { 1917 int ret; 1918 1919 ret = check_cpu_on_node(pgdat); 1920 if (ret) 1921 return ret; 1922 1923 /* 1924 * the node will be offlined when we come here, so we can clear 1925 * the cpu_to_node() now. 1926 */ 1927 1928 unmap_cpu_on_node(pgdat); 1929 return 0; 1930 } 1931 1932 /** 1933 * try_offline_node 1934 * 1935 * Offline a node if all memory sections and cpus of the node are removed. 1936 * 1937 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1938 * and online/offline operations before this call. 1939 */ 1940 void try_offline_node(int nid) 1941 { 1942 pg_data_t *pgdat = NODE_DATA(nid); 1943 unsigned long start_pfn = pgdat->node_start_pfn; 1944 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1945 unsigned long pfn; 1946 1947 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1948 unsigned long section_nr = pfn_to_section_nr(pfn); 1949 1950 if (!present_section_nr(section_nr)) 1951 continue; 1952 1953 if (pfn_to_nid(pfn) != nid) 1954 continue; 1955 1956 /* 1957 * some memory sections of this node are not removed, and we 1958 * can't offline node now. 1959 */ 1960 return; 1961 } 1962 1963 if (check_and_unmap_cpu_on_node(pgdat)) 1964 return; 1965 1966 /* 1967 * all memory/cpu of this node are removed, we can offline this 1968 * node now. 1969 */ 1970 node_set_offline(nid); 1971 unregister_one_node(nid); 1972 } 1973 EXPORT_SYMBOL(try_offline_node); 1974 1975 /** 1976 * remove_memory 1977 * 1978 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1979 * and online/offline operations before this call, as required by 1980 * try_offline_node(). 1981 */ 1982 void __ref remove_memory(int nid, u64 start, u64 size) 1983 { 1984 int ret; 1985 1986 BUG_ON(check_hotplug_memory_range(start, size)); 1987 1988 mem_hotplug_begin(); 1989 1990 /* 1991 * All memory blocks must be offlined before removing memory. Check 1992 * whether all memory blocks in question are offline and trigger a BUG() 1993 * if this is not the case. 1994 */ 1995 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1996 check_memblock_offlined_cb); 1997 if (ret) 1998 BUG(); 1999 2000 /* remove memmap entry */ 2001 firmware_map_remove(start, start + size, "System RAM"); 2002 memblock_free(start, size); 2003 memblock_remove(start, size); 2004 2005 arch_remove_memory(start, size); 2006 2007 try_offline_node(nid); 2008 2009 mem_hotplug_done(); 2010 } 2011 EXPORT_SYMBOL_GPL(remove_memory); 2012 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2013